Sample records for earth moon mars

  1. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars (United States)

    Murray, B.; Malin, M. C.; Greeley, R.


    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  2. Science in Exploration: From the Moon to Mars and Back Home to Earth (United States)

    Garvin, James B.


    NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will

  3. Using GRIDVIEW to Better Understand the Early Bombardment History of the Moon, Mars and Earth (United States)

    Frey, Herbert


    For more than a decade we have used GRIDVIEW to help analyze topographic and related data for Mars and more recently for the Moon. Our focus has been to employ the stretching, contouring, profiling, circle-fitting and other capabilities of GRIDVIEW to search for Quasi-Circular Depressions (CTAs) in MOLA, LOLA and other topographic data, and for Circular Thin Areas (CTAs) in Mars and Moon model crustal thickness data. Both QCDs and CTAs likely represent buried or obscured impact craters not readily visible in image data. We found clear evidence for a much larger population of buried impact craters in the northern lowlands of Mars (Frey et al. 2002), suggesting that part of the Red Planet is not significantly younger than the southern highlands. Edgar and Frey (2008) found that the N(300) crater retention ages of both areas were essentially identical, a conclusion confirmed by Wyatt (unpublished data) using more recent crustal thickness data for Mars. MOLA topographic data and MOLA-derived crustal thickness data were used to both identify a large number of previously unrecognized very large impact basins (D> 1000 km) on Mars and to determine relative crater retention ages for them (Frey, 2008). The distribution of N(300) CRAs suggested most formed in a relatively short interval of time. This dating also suggested the main magnetic field of Mars disappeared during this period (Lillis et al., 2008), because only the youngest basins systematically lack a remagnetized signature. Similar QCD and CTA analysis of first Clementine (Frey, 2011) and more recently LOLA topographic and LOLA-derived crustal thickness data for the Moon (Frey et al., 2011) revealed a significantly larger population of impact basins > 300 km in diameter than previously known. N(50) CRAs suggest a two-peak distribution of ages (Frey, 2012). An improved counting process confirms the two peaks, perhaps indicating both a pre-Nectaris Early Heavy Bombardment (EHB) as well as a Late Heavy Bombardment (LHB

  4. Farewell to the Earth and the Moon -ESA's Mars Express successfully tests its instruments (United States)


    The routine check-outs of Mars Express's instruments and of the Beagle-2 lander, performed during the last weeks, have been very successful. "As in all space missions little problems have arisen, but they have been carefully evaluated and solved. Mars Express continues on its way to Mars performing beautifully", comments Chicarro. The views of the Earth/Moon system were taken on 3 July 2003 by Mars Express's High Resolution Stereo Camera (HRSC), when the spacecraft was 8 million kilometres from Earth. The image taken shows true colours; the Pacific Ocean appears in blue, and the clouds near the Equator and in mid to northern latitudes in white to light grey. The image was processed by the Instrument Team at the Institute of Planetary Research of DLR, Berlin (Germany). It was built by combining a super resolution black and white HRSC snap-shot image of the Earth and the Moon with colour information obtained by the blue, green, and red sensors of the instrument. “The pictures and the information provided by the data prove the camera is working very well. They provide a good indication of what to expect once the spacecraft is in its orbit around Mars, at altitudes of only 250-300 kilometres: very high resolution images with brilliant true colour and in 3D,” says the Principal Investigator of the HRSC, Gerhard Neukum, of the Freie Universität of Berlin (Germany). This camera will be able to distinguish details of up to 2 metres on the Martian surface. Another striking demonstration of Mars Express's instruments high performance are the data taken by the OMEGA spectrometer. Once at Mars, this instrument will provide the best map of the molecular and mineralogical composition of the whole planet, with 5% of the planetary surface in high resolution. Minerals and other compounds such as water will be charted as never before. As the Red Planet is still too far away, the OMEGA team devised an ingenious test for their instrument: to detect the Earth’s surface

  5. Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012 (United States)

    Quinn, Philip R.; Schwadron, Nathan A.; Townsend, Larry W.; Wimmer-Schweingruber, Robert F.; Case, Anthony W.; Spence, Harlan E.; Wilson, Jody K.; Joyce, Colin J.


    Radiation in the form of solar energetic particles (SEPs) presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth's protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements) is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon and from the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm-2 and 5.0 g cm-2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.

  6. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    International Nuclear Information System (INIS)

    Stanley K. Borowski; Leonard A. Dudzinski; Melissa L. McGuire


    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp ∼ 850 to 1000 s) and attractive engine thrust-to-weight ratio (∼ 3 to 10). Because only a minuscule amount of enriched 235 U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three ∼15-klb f engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH 2 ) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions


    Sato, Tatsuhiko; Nagamatsu, Aiko; Ueno, Haruka; Kataoka, Ryuho; Miyake, Shoko; Takeda, Kazuo; Niita, Koji


    Estimation of cosmic-ray doses is of great importance not only in aircrew and astronaut dosimetry but also in evaluation of background radiation exposure to public. We therefore calculated the cosmic-ray doses on Earth, Moon and Mars as well as inside spacecraft, using Particle and Heavy Ion Transport code System PHITS. The same cosmic-ray models and dose conversion coefficients were employed in the calculation to properly compare between the simulation results for different environments. It is quantitatively confirmed that the thickness of physical shielding including the atmosphere and soil of the planets is the most important parameter to determine the cosmic-ray doses and their dominant contributors. The comparison also suggests that higher solar activity significantly reduces the astronaut doses particularly for the interplanetary missions. The information obtained from this study is useful in the designs of the future space missions as well as accelerator-based experiments dedicated to cosmic-ray research. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  8. Nuclear technologies for Moon and Mars exploration

    International Nuclear Information System (INIS)

    Buden, D.


    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs

  9. Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012

    Directory of Open Access Journals (Sweden)

    Quinn Philip R.


    Full Text Available Radiation in the form of solar energetic particles (SEPs presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth’s protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER onboard the Lunar Reconnaissance Orbiter (LRO at the Moon and from the Radiation Assessment Detector (RAD on the Mars Science Laboratory (MSL during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm−2 and 5.0 g cm−2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.

  10. A Case for Developing a Ground Based Replication of the Earth, Moon and Mars Spaceflight Infrastructure (United States)

    Bradford, Robert N.; Best, Susan L.


    When the systems are developed and in place to provide the services needed to operate en route and on the Lunar and Martian surfaces, an Earth based replication will need to be in place for the safety and protection of mission success. The replication will entail all aspects of the flight configuration end to end but will not include any closed loop systems. This would replicate the infrastructure from Lunar and Martian robots, manned surface excursions, through man and unmanned terrestrial bases, through the various types of communication systems and technologies, manned and un-manned space vehicles (large and small), to Earth based systems and control centers. An Earth based replicated infrastructure will enable checkout and test of new technologies, hardware, software updates and upgrades and procedures without putting humans and missions at risk. Analysis of events, what ifs and trouble resolution could be played out on the ground to remove as much risk as possible from any type of proposed change to flight operational systems. With adequate detail, it is possible that failures could be predicted with a high probability and action taken to eliminate failures. A major factor in any mission to the Moon and to Mars is the complexity of systems, interfaces, processes, their limitations, associated risks and the factor of the unknown including the development by many contractors and NASA centers. The need to be able to introduce new technologies over the life of the program requires an end to end test bed to analyze and evaluate these technologies and what will happen when they are introduced into the flight system. The ability to analyze system behaviors end to end under varying conditions would enhance safety e.g. fault tolerances. This analysis along with the ability to mine data from the development environment (e.g. test data), flight ops and modeling/simulations data would provide a level of information not currently available to operations and astronauts. In

  11. Yield strengths of flows on the earth, Mars, and moon. [application of Bingham plastic model to lava flows (United States)

    Moore, H. J.; Arthur, D. W. G.; Schaber, G. G.


    Dimensions of flows on the earth, Mars, and moon and their topographic gradients obtained from remote measurements are used to calculate yield strengths with a view to explore the validity of the Bingham plastic model and determine whether there is a relation between yield strengths and silica contents. Other factors are considered such as the vagaries of natural phenomena that might contribute to erroneous interpretations and measurements. Comparison of yield strengths of Martian and lunar flows with terrestrial flows suggests that the Martian and lunar flows are more akin to terrestrial basalts than they are to terrestrial andesites, trachytes, and rhyolites.

  12. Astrobiology field research in Moon/Mars Analogue

    NARCIS (Netherlands)

    Foing, B.H.; Stoker, C.; Ehrenfreund, P.


    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the

  13. Hypervelocity Impact Testing of Materials for Additive Construction: Applications on Earth, the Moon, and Mars (United States)

    Ordonez, Erick; Edmunson, Jennifer; Fiske, Michael; Christiansen, Eric; Miller, Josh; Davis, Bruce Alan; Read, Jon; Johnston, Mallory; Fikes, John


    Additive Construction is the process of building infrastructure such as habitats, garages, roads, berms, etcetera layer by layer (3D printing). The National Aeronautics and Space Administration (NASA) and the United States Army Corps of Engineers (USACE) are pursuing additive construction to build structures using resources available in-situ. Using materials available in-situ reduces the cost of planetary missions and operations in theater. The NASA team is investigating multiple binders that can be produced on planetary surfaces, including the magnesium oxide-based Sorel cement; the components required to make Ordinary Portland Cement (OPC), the common cement used on Earth, have been found on Mars. The availability of OPC-based concrete on Earth drove the USACE to pursue additive construction for base housing and barriers for military operations. Planetary and military base structures must be capable of resisting micrometeoroid impacts with velocities ranging from 11 to 72km/s for particle sizes 200 micrometers or more (depending on protection requirements) as well as bullets and shrapnel with a velocity of 1.036km/s with projectiles 5.66mm diameter and 57.40mm in length, respectively.

  14. Launching to the Moon, Mars, and Beyond (United States)

    Dumbacher, Daniel L.


    The U.S. Vision for Space Exploration, announced in 2004, calls on NASA to finish constructing the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return to the Moon and go on the Mars. By exploring space, America continues the tradition of great nations who mastered the Earth, air, and sea, and who then enjoyed the benefits of increased commerce and technological advances. The progress being made today is part of the next chapter in America's history of leadership in space. In order to reach the Moon and Mars within the planned timeline and also within the allowable budget, NASA is building upon the best of proven space transportation systems. Journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. What America learns in reaching for the Moon will teach astronauts how to prepare for the first human footprints on Mars. While robotic science may reveal information about the nature of hydrogen on the Moon, it will most likely tale a human being with a rock hammer to find the real truth about the presence of water, a precious natural resource that opens many possibilities for explorers. In this way, the combination of astronauts using a variety of tools and machines provides a special synergy that will vastly improve our understanding of Earth's cosmic neighborhood.

  15. Two Moons and the Pleiades from Mars (United States)


    [figure removed for brevity, see original site] Inverted image of two moons and the Pleiades from Mars Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit recently settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. In this view, the Pleiades, a star cluster also known as the 'Seven Sisters,' is visible in the lower left corner. The bright star Aldebaran and some of the stars in the constellation Taurus are visible on the right. Spirit acquired this image the evening of martian day, or sol, 590 (Aug. 30, 2005). The image on the right provides an enhanced-contrast view with annotation. Within the enhanced halo of light is an insert of an unsaturated view of Phobos taken a few images later in the same sequence. On Mars, Phobos would be easily visible to the naked eye at night, but would be only about one-third as large as the full Moon appears from Earth. Astronauts staring at Phobos from the surface of Mars would notice its oblong, potato-like shape and that it moves quickly against the background stars. Phobos takes only 7 hours, 39 minutes to complete one orbit of Mars. That is so fast, relative to the 24-hour-and-39-minute sol on Mars (the length of time it takes for Mars to complete one rotation), that Phobos rises in the west and sets in the east. Earth's moon, by comparison, rises in the east and sets in the west. The smaller martian moon, Deimos, takes 30 hours, 12 minutes to complete one orbit of Mars. That orbital period is longer than a martian sol, and so Deimos rises, like most solar system moons, in the east and sets in the west. Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the five images that make up this composite with the panoramic camera, using the camera's broadband filter, which was designed specifically

  16. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface (United States)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.


    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  17. A Comparative Analysis of the Magnetic Field Signals over Impact Structures on the Earth, Mars and the Moon (United States)

    Isac, Anca; Mandea, Mioara; Purucker, Michael; Langlais, Benoit


    An improved description of magnetic fields of terrestrial bodies has been obtained from recent space missions, leading to a better characterization of the internal fields including those of crustal origin. One of the striking differences in their crustal magnetic field is the signature of large impact craters. A comparative analysis of the magnetic characteristics of these structures can shed light on the history of their respective planetary-scale magnetic dynamos. This has motivated us to identify impact craters and basins, first by their quasi-circular features from the most recent and detailed topographic maps and then from available global magnetic field maps. We have examined the magnetic field observed above 27 complex craters on the Earth, 34 impact basins on Mars and 37 impact basins on the Moon. For the first time, systematic trends in the amplitude and frequency of the magnetic patterns, inside and outside of these structures are observed for all three bodies. The demagnetization effects due to the impact shock wave and excavation processes have been evaluated applying the Equivalent Source Dipole forward modeling approach. The main characteristics of the selected impact craters are shown. The trends in their magnetic signatures are indicated, which are related to the presence or absence of a planetary-scale dynamo at the time of their formation and to impact processes. The low magnetic field intensity at center can be accepted as the prime characteristic of a hypervelocity impact and strongly associated with the mechanics of impact crater formation. In the presence of an active internal field, the process of demagnetization due to the shock impact is associated with post-impact remagnetization processes, generating a more complex magnetic signature.

  18. Launching to the Moon, Mars, and Beyond (United States)

    Sumrall, John P.


    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission today, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. Unlike the Apollo program of the 1960s, this phase of exploration will be a journey, not a race. In 1966, the NASA's budget was 4 percent of federal spending. Today, with 6/10 of 1 percent of the budget, NASA must incrementally develop the vehicles, infrastructure, technology, and organization to accomplish this goal. Fortunately, our knowledge and experience are greater than they were 40 years ago. NASA's goal is a return to the Moon by 2020. The Moon is the first step to America's exploration of Mars. Many questions about the Moon's history and how its history is linked to that of Earth remain even after the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment. The Moon also will serve as a training ground in several respects before embarking on the longer, more perilous trip to Mars. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit on the Ares I and a second launch to orbit the lunar lander and the Earth Departure Stage to send the lander and crew vehicle to the Moon. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on proven hardware and decades of experience derived from

  19. Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems

    International Nuclear Information System (INIS)

    Wood, Richard Thomas


    In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system. Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures

  20. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T


    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  1. Automated Spacecraft Conjunction Assessment at Mars and the Moon (United States)

    Berry, David; Guinn, Joseph; Tarzi, Zahi; Demcak, Stuart


    Conjunction assessment and collision avoidance are areas of current high interest in space operations. Most current conjunction assessment activity focuses on the Earth orbital environment. Several of the world's space agencies have satellites in orbit at Mars and the Moon, and avoiding collisions there is important too. Smaller number of assets than Earth, and smaller number of organizations involved, but consequences similar to Earth scenarios.This presentation will examine conjunction assessment processes implemented at JPL for spacecraft in orbit at Mars and the Moon.

  2. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station) (United States)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  3. "The Moon Village and Journey to Mars enable each other" (United States)

    Beldavs, Vidvuds


    with the addition of resource recovery from asteroids at industrial operations in cislunar space. Preliminary conclusions indicate that by doing more that the cost and risk of individual operations lessens. The cost and risk of the Journey to Mars will be significantly less if a parallel effort is underway with Moon Village. Moon Village is aimed at lunar exploration with a view towards enabling lunar ISRU. Success with lunar ISRU creates sources of fuel, water, and other materials required for missions to Mars. This creates a supplier- customer relationship. This economic aspect is further enhanced with space-based solar power first piloted for lunar applications then applied to terrestrial needs starting with disaster relief. The benefits of shared infrastructure are further augmented through development of industrial operations in cislunar space for asteroid and or lunar materials processing expanding the range of materials that become available for processing into products that do not have to be lifted out of the Earth's gravity well creating the basis for a space economy. The idea of an International Lunar Decade serving as a framework for coordination of international collaboration across multiple missions and fields is explored. [1] [2] [3] [4] [5] Lunar COTS: An Economical and Sustainable Approach to Reaching Mars,

  4. Supporting a Deep Space Gateway with Free-Return Earth-Moon Periodic Orbits (United States)

    Genova, A. L.; Dunham, D. W.; Hardgrove, C.


    Earth-Moon periodic orbits travel between the Earth and Moon via free-return circumlunar segments and can host a station that can provide architecture support to other nodes near the Moon and Mars while enabling science return from cislunar space.

  5. Limits to the expansion of Earth, Moon, Mars and Mercury and to changes in the gravitational constant

    International Nuclear Information System (INIS)

    McElhinny, M.W.; Taylor, S.R.; Stevenson, D.J.


    It is stated that new estimates of the palaeoradius of the Earth for the past 400 Myr from palaeomagnetic data limit possible expansion to less than 0.8%, sufficient to exclude any current theory of Earth expansion. The lunar surface has remained static for 4,000 Myr with possible expansion limited to 0.06%, the Martian surface suggests a small possible expansion of 0.6%, while the surface of Mercury supports a small contraction. Observations of Mercury, together with reasonable assumptions about its internal structure, indicate that G decreased at a rate of less than 8 x 10 -12 yr -1 , in constant mass cosmologies, and 2.5 x 10 -11 yr -1 in Dirac's multiplicative creation cosmology. (author)

  6. Highly Sideophile Element Abundance Constraints on the Nature of the Late Accretionary Histories of Earth, Moon and Mars (United States)

    Walker, R. J.; Puchtel, I. S.; Brandon, A. D.; Horan, M. F.; James, O. B.


    The highly siderophile elements (HSE) include Re, Os, Ir, Ru, Pt and Pd. These elements are initially nearly-quantitatively stripped from planetary silicate mantles during core segregation. They then may be re-enriched in mantles via continued accretion sans continued core segregation. This suite of elements and its included long-lived radiogenic isotopes systems (Re-187 (right arrow) Os-187; Pt-190 (right arrow) Os-186) can potentially be used to fingerprint the characteristics of late accreted materials. The fingerprints may ultimately be useful to constrain the prior nebular history of the dominant late accreted materials, and to compare the proportion and genesis of late accretionary materials added to the inner planets. The past ten years have seen considerable accumulation of isotopic and compositional data for HSE present in the Earth's mantle, lunar mantle and impact melt breccias, and Martian meteorites. Here we review some of these data and consider the broader implications of the compiled data.

  7. Origin of the earth and moon

    International Nuclear Information System (INIS)

    Ringwood, A.E.


    The composition of the Earth's interior and its bearing on the Earth's origin are discussed. It seems likely that the terrestrial planets formed by the accretion of solid planetisimals from the nebula of dust and gas left behind during the formation of the Sun. The scenario proposed is simpler than others. New evidence based upon a comparison of siderophile element abundances in the Earth's mantle and in the Moon imply that the Moon was derived from the Earth's mantle after the Earth's core had segregated

  8. Age of meteorites, the Moon, the Earth

    International Nuclear Information System (INIS)

    Ovchinnikova, G.V.; Levskij, L.K.


    Review of modern data on age determination of meteorites and lunar rocks and review of papers dedicted to calculations of the Earth age as well are given. Analysis of the age present values, obtained by different methods of isotopic dating has allowed to build up the global events following succession: ∼ 4.8x10 9 years ago - the beginning of dust component condensation within protosolar cloud; ∼ 4.55x10 9 year - the end of cosmic bodies accretion; (4.5-4.4)x10 9 years - differentiation of large planetray bodies (the Moon, the Mars, the Earth) with isolation of the bed type protocrust. Substance differentiation is not typical for solar system small bodies (asteroid-size bodies). Development of the magnetism of main composition (achondrites) on the surface of these bodies is their peculiarity. Both differentiation and basalt volcanism at early periods of cosmic bodies existance are initiated by exogenous factors. Duration of endogenous basalt volcanism correlates with planetary body size

  9. The origin of the moon and the early history of the earth - A chemical model. Part 1: The moon

    International Nuclear Information System (INIS)

    O'Neill, H. St.C.


    The chemical implications of a giant impact model for the origin of the moon are examined, both for the moon and for the earth. The Impactor is taken to be an approximately Mars-sized body. It is argued that the likeliest bulk chemical composition of the moon is quite similar to that of the earth's mantle, and that this composition may be explained in detail if about 80% of the moon came from the primitive earth's mantle after segregation of the earth's core. The other 20% of the moon is modelled as coming from (a) the Impactor, which is constrained to be an oxidized, probably undifferentiated body of roughly CI chondritic composition (on a volatile free basis) and (b) a late stage veneer, with a composition and oxidation state similar to that of the H-group ordinary chondrites. This latter component is the source of all the volatile elements in the moon, which failed to condense from the earth-and Impactor-derived materials; this component constitutes about 4% of the moon. It is argued that Mo may behave as a volatile element under the relatively oxidising conditions necessary for the condensation of the proto-moon. The model accounts satisfactorily for most of the siderophile elements, including Fe, Ni, Co, W, P, and Cu. The relatively well-constrained lunar abundances of V, Cr, and Mn are also accounted for; their depletion in the moon is inherited from the earth's mantle

  10. Human Space Exploration: The Moon, Mars, and Beyond (United States)

    Sexton, Jeffrey D.


    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  11. Mars via the Moon the next giant leap

    CERN Document Server

    Seedhouse, Erik


    MOMENTUM IS BUILDING for a return to the Moon. NASA’s international partners on the International Space Station are in favor of returning to the lunar surface, as are India and China. The horizon goal may be Mars, but the political, funding and the technological and medical infeasibility of such an objective means the next logical step is a return to the Moon. While much has been learned about the Moon over the years, we don’t understand its resource wealth potential and the technologies to exploit those resources have yet to be developed, but there are a number of companies that are developing these capabilities. And, with the discovery of water in the lunar polar regions, plans are in the works to exploit these resources for fuel for transportation operations in cis-lunar space and in low Earth orbit (LEO). The time has come for commercial enterprise to lead the way back to the lunar surface. Embarking on such a venture requires little in the way of new technologies. We don’t need to develop super-fas...

  12. Precession of the Earth-Moon System (United States)

    Urbassek, Herbert M.


    The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics…

  13. Plant biology in reduced gravity on the Moon and Mars. (United States)

    Kiss, J Z


    While there have been numerous studies on the effects of microgravity on plant biology since the beginning of the Space Age, our knowledge of the effects of reduced gravity (less than the Earth nominal 1 g) on plant physiology and development is very limited. Since international space agencies have cited manned exploration of Moon/Mars as long-term goals, it is important to understand plant biology at the lunar (0.17 g) and Martian levels of gravity (0.38 g), as plants are likely to be part of bioregenerative life-support systems on these missions. First, the methods to obtain microgravity and reduced gravity such as drop towers, parabolic flights, sounding rockets and orbiting spacecraft are reviewed. Studies on gravitaxis and gravitropism in algae have suggested that the threshold level of gravity sensing is around 0.3 g or less. Recent experiments on the International Space Station (ISS) showed attenuation of phototropism in higher plants occurs at levels ranging from 0.l g to 0.3 g. Taken together, these studies suggest that the reduced gravity level on Mars of 0.38 g may be enough so that the gravity level per se would not be a major problem for plant development. Studies that have directly considered the impact of reduced gravity and microgravity on bioregenerative life-support systems have identified important biophysical changes in the reduced gravity environments that impact the design of these systems. The author suggests that the current ISS laboratory facilities with on-board centrifuges should be used as a test bed in which to explore the effects of reduced gravity on plant biology, including those factors that are directly related to developing life-support systems necessary for Moon and Mars exploration. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Emotions and Habitability study in Moon Mars Analogue. (United States)

    Mertens, Alexandre; Lia Schlacht, Irene

    Euro Moon Mars mission have been conducted by students and field researchers in the Mars Desert Research Station (MDRS) a habitat installed by the Mars Society (MS) in the Utah desert. The campaign was supported by ILEWG International Lunar Exploration Working Group, ESTEC, NASA Ames, and partners. It investigated human aspects of isolation in a Mars analogue base. The project is in line with the ILEWG which coordinates several MDRS missions, and contributes to the preparation of future Mars sample return missions. The objective is to study and improve the habitat dynamics in a closed and small environment. Investigation cover different fields as emotional, sociological and psychological aspects and a food study but also habitability aspects. The study has been conducted by asking to the crew members to perform task and fill in questionnaires before, during and after the simulation. Video recovering, pictures and heart rate counting will also be used. One of the main study subject, conducted by Bernard Rimé, concerns the sharing of emotions in an isolated environ-e ment. Another is "Mars Habitability Experiment", which responsible is Irene Schlacht, will try to determine whether humans need variability of stimuli such as it happens in the natural environment -e.g. seasonal changing -to gain efficiency, reliability and well-being. This study have been conducted from February 19 to April 19 on two crews presenting different aspects that could lead to various behaviours. The first crew is made of people from different countries that don't know each other very well. On the opposite, the second crew members have the same cultural background -they come from the same country, university -and they know each other for at least six months. This allow studying how the extreme conditions of the isolation affect the crew efficiency, creativity and sanity according to its homogeneity. Report on the science and technical results, and implications for Earth-Mars comparative stud

  15. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Frissel, J.Y.; Krijnen, W.H.J.; Verwoert, M.R.; Goedhart, P.W.


    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars

  16. Dynamics of the Sun-Earth-Moon System

    Indian Academy of Sciences (India)

    The dynamics of the Sun-Earth-Moon system is discussed with special attention to the effects of. Sun's perturbations on the Moon's orbit around the Earth. Important secular effects are the re- gression of the nodes, the advance of the perigee and the increase in the Moon's mean longitude. We discuss the relationship of the ...

  17. Solubility of reduced C-O-H volatiles in basalt as a function of fCO: Implications for the early Earth, the moon, and Mars (United States)

    Armstrong, L. S.; Hirschmann, M. M.


    Magmatic C-O-H volatiles influence the evolution of planetary atmospheres and, when precipitated and stored in solidified mantles, the dynamical evolution of planetary interiors. In the case of the Earth, the fO2 of the mantle near the end of core formation should have been ~IW-2, and subsequently increased to present-day values [1]. In experiments with fO2 ≤ IW, a variety of reduced volatile species have been found dissolved in magmas, including H2, CH4, CO, Fe(CO)5 and possibly Fe(CO)62+. However, there remains significant disagreement regarding the identity and concentrations of these volatiles in natural magmas, as well as their dependencies on intensive variables (T, P, fO2, fCO, fH2)[2-6]. Previous experiments document the importance of CO-related species [2,6], but were conducted over a limited range of fCO and had potentially interfering effects from poorly controlled variations in H2O. We aim to experimentally determine the solubility of C-O-H volatiles in basaltic magmas under reduced, C-saturated conditions while minimizing water content. The relationship between volatile speciation, fO2, and fCO at 1.2 GPa and 1400°C are constrained, laying the groundwork for a more extensive study at a range of conditions relevant to the interiors of the terrestrial planets and the moon. Both MORB and a martian basalt were studied, contained in Pt-C capsules with Fe × Pt × Si metal added to generate reducing conditions and to monitor fO2. A nominal amount of H2O is unavoidable in experimental charges, but was minimized by drying capsules prior to welding. Phase compositions were determined by electron microprobe and volatile concentrations were measured by FTIR spectroscopy. In preliminary experiments with fO2 of IW-0.70 to +1.75 (corresponding to log fCO of 3.3-4.5), H2O and CO2 concentrations as determined by FTIR are 113-13283 and 12-721 ppm, respectively. Most experiments also display a small FTIR peak at 2205 cm-1, whereas the most reduced experiments lack

  18. Titan the earth-like moon

    CERN Document Server

    Coustenis, Athena


    This is the first book to deal with Titan, one of the most mysterious bodies in the solar system. The largest satellite of the giant planet Saturn, Titan is itself larger than the planet Mercury, and is unique in being the only known moon with a thick atmosphere. In addition, its atmosphere bears a startling resemblance to the Earth's, but is much colder.The American and European space agencies, NASA and ESA, have recently combined efforts to send a huge robot spacecraft to orbit Saturn and land on Titan. This book provides the background to this, the greatest deep space venture of our time, a

  19. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon

    DEFF Research Database (Denmark)

    Schiller, Martin; Bizzarro, Martin; Fernandes, Vera Assis


    Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth-Moon system. Using this approach......, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner...... into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth and the Moon reported here is a prediction of our model if the Moon-forming impact involved protoplanets or precursors that completed their accretion near...

  20. Unique Moon Formation Model: Two Impacts of Earth and After Moon's Birth (United States)

    Miura, Y.


    The Moon rocks are mixed with two impact-processes of Earth's impact breccias and airless Moon's impact breccias; discussed voids-rich texture and crust-like composition. The present model might be explained as cave-rich interior on the airless-and waterless Moon.

  1. Moon over Mauna Loa - a review of hypotheses of formation of earth's moon

    International Nuclear Information System (INIS)

    Wood, J.A.


    The present paper examines five models of lunar formation after considering the following constraints: (1) the large mass of the moon and the substantial prograde angular momentum of the earth-moon system; (2) the moon's depletion in volatile elements and iron, (3) the correspondence of oxygen isotope signatures in earth and moon, and (4) the lunar magma ocean. The models considered are: (1) capture from an independent heliocentric orbit, (2) coaccretion from a swarm of planetesimals in geocentric orbit, (3) fission from a rapidly rotating earth, (4) collisional ejection, and (5) disintegrative capture. 99 references

  2. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    Directory of Open Access Journals (Sweden)

    G W Wieger Wamelink

    Full Text Available When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant; the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  3. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants. (United States)

    Wamelink, G W Wieger; Frissel, Joep Y; Krijnen, Wilfred H J; Verwoert, M Rinie; Goedhart, Paul W


    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.


    International Nuclear Information System (INIS)

    Montgomery, M. M.


    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  5. The electrostatic environments of Mars and the Moon

    International Nuclear Information System (INIS)

    Calle, C I


    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  6. The Electrostatic Environments of Mars and the Moon (United States)

    Calle, Carlos I.


    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  7. Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN) (United States)

    Murchie, S. L.; Chabot, N. L.; Buczkowski, D.; Arvidson, R. E.; Castillo, J. C.; Peplowski, P. N.; Ernst, C. M.; Rivkin, A.; Eng, D.; Chmielewski, A. B.; Maki, J.; trebi-Ollenu, A.; Ehlmann, B. L.; Spence, H. E.; Horanyi, M.; Klingelhoefer, G.; Christian, J. A.


    The Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN) is a NASA Discovery mission proposal to explore the moons of Mars. Previous Mars-focused spacecraft have raised fundamental questions about Mars' moons: What are their origins and compositions? Why do the moons resemble primitive outer solar system D-type objects? How do geologic processes modify their surfaces? MERLIN answers these questions through a combination of orbital and landed measurements, beginning with reconnaissance of Deimos and investigation of the hypothesized Martian dust belts. Orbital reconnaissance of Phobos occurs, followed by low flyovers to characterize a landing site. MERLIN lands on Phobos, conducting a 90-day investigation. Radiation measurements are acquired throughout all mission phases. Phobos' size and mass provide a low-risk landing environment: controlled descent is so slow that the landing is rehearsed, but gravity is high enough that surface operations do not require anchoring. Existing imaging of Phobos reveals low regional slope regions suitable for landing, and provides knowledge for planning orbital and landed investigations. The payload leverages past NASA investments. Orbital imaging is accomplished by a dual multispectral/high-resolution imager rebuilt from MESSENGER/MDIS. Mars' dust environment is measured by the refurbished engineering model of LADEE/LDEX, and the radiation environment by the flight spare of LRO/CRaTER. The landed workspace is characterized by a color stereo imager updated from MER/HazCam. MERLIN's arm deploys landed instrumentation using proven designs from MER, Phoenix, and MSL. Elemental measurements are acquired by a modified version of Rosetta/APXS, and an uncooled gamma-ray spectrometer. Mineralogical measurements are acquired by a microscopic imaging spectrometer developed under MatISSE. MERLIN delivers seminal science traceable to NASA's Strategic Goals and Objectives, Science Plan, and the Decadal Survey. MERLIN's science

  8. Modeling human orthostatic responses on the Moon and on Mars. (United States)

    Beck, Paula; Tank, Jens; Gauger, Peter; Beck, Luis E J; Zirngibl, Hubert; Jordan, Jens; Limper, Ulrich


    Since manned missions to the Moon and Mars are planned, we conducted active standing tests with lunar, Martian, terrestrial, and 1.8 loads of inertial resistance (+G z ) modeled through defined parabolic flight maneuvers. We hypothesized that the cardiovascular response to active standing is proportional to the +G z load. During partial-+G z parabolic flights, 14 healthy test subjects performed active stand-up maneuvers under 1 +G z , lunar (0.16 +G z ), Martian (0.38 +G z ), and hyper inertial resistance (1.8 +G z ) while heart rate and finger blood pressure were continuously monitored. We quantified amplitudes and timing of orthostatic response immediately following standing up. The maximum early heart rate increase was 21 (SD ± 10) bpm with lunar, 23 (± 11) bpm with Martian, 34 (± 17) bpm with terrestrial +G z , and 40 (± 11) bpm hyper +G z . The time to maximum heart rate increased gradually with increasing loads of inertial resistance. The transient blood pressure reduction was most pronounced with hyper +G z but did not differ significantly between lunar and Martian +G z . The mean arterial pressure nadir was reached significantly later with Martian and lunar compared to 1 +G z . Paradoxically, the time for blood pressure to recover was shortest with terrestrial +G z . While load of inertial resistance directly affects the magnitude of the transient blood pressure reduction and heart rate response to active standing, blood pressure stabilization is most rapidly attained during terrestrial +G z . The observation might suggest that the human cardiovascular system is tuned to cope with orthostatic stress on earth.

  9. Live from the Moon ExoLab: EuroMoonMars Simulation at ESTEC 2017 (United States)

    Neklesa, A.; Foing, B. H.; Lillo, A.; Evellin, P.; Kołodziejczyk, A.; Jonglez, C.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.


    Space enthusiasts simulated the landing on the Moon having pre-landed Habitat ExoHab, ExoLab 2.0, supported by the control centre on Earth. We give here the first-hand experience from a reporter (A.N.) who joined the space crew.

  10. Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars

    CERN Document Server

    Rapp, Donald


    This book carries out approximate estimates of the costs of implementing ISRU on the Moon and Mars. It is found that no ISRU process on the Moon has much merit. ISRU on Mars can save a great deal of mass, but there is a significant cost in prospecting for resources and validating ISRU concepts. Mars ISRU might have merit, but not enough data are available to be certain. In addition, this book provides a detailed review of various ISRU technologies. This includes three approaches for Mars ISRU based on processing only the atmosphere: solid oxide electrolysis, reverse water gas shift reaction (RWGS), and absorbing water vapor directly from the atmosphere. It is not clear that any of these technologies are viable although the RWGS seems to have the best chance. An approach for combining hydrogen with the atmospheric resource is chemically very viable, but hydrogen is needed on Mars. This can be approached by bringing hydrogen from Earth or obtaining water from near-surface water deposits in the soil. Bringing hy...

  11. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship (United States)

    Genova, Anthony L.; Aldrin, Buzz


    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  12. Planetary Drilling and Resources at the Moon and Mars (United States)

    George, Jeffrey A.


    Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG

  13. The Earth, the Moon and Conservation of Momentum (United States)

    Brunt, Marjorie; Brunt, Geoff


    We consider the application of both conservation of momentum and Newton's laws to the Moon in an assumed circular orbit about the Earth. The inadequacy of some texts in applying Newton's laws is considered.

  14. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  15. MaMBA - a functional Moon and Mars Base Analog (United States)

    Heinicke, C.; Foing, B.


    Despite impressive progress in robotic exploration of celestial bodies, robots are believed to never reach the effectiveness and efficiency of a trained human. Consequently, ESA proposes to build an international Moon Village in roughly 15 years and NASA plans for the first manned mission to Mars shortly after. One of the challenges still remaining is the need for a shelter, a habitat which allows human spacefarers to safely live and work on the surface of a celestial body. Although a number of prototype habitats has been built during the last decades and inhabited for various durations (e.g. MDRS, FMARS, HI-SEAS, M.A.R.S.), these habitats are typically equipped for studies on human factors and would not function in an extraterrestrial environment. Project MaMBA (Moon and Mars Base Analog) aims to build the first functional habitat based on the lessons learned from intermediate and long duration missions at the mentioned habitats. The habitat will serve for testing technologies like life support, power systems, and interplanetary communi­cation. Special attention will be given to the develop­ment of the geoscience laboratory module. Crews will live and work inside the habitat to ensure its functionality.

  16. The evolution of the Earth-Moon system

    International Nuclear Information System (INIS)

    Finch, D.G.


    The tidally-induced couple acting on the Moon, due to friction between the oceans and their beds, is calculated as a function of the Earth-Moon separation. The function is found to be proportional to 1 +d/R 3 , and not the previously used 1/R 6 . By use of this new function it is found that the present rate of lunar recession gives an acceptable history for the system if it is assumed the Moon was initially in a close geo-stationary orbit 4 billion years ago, when perturbed by the condensation of the Earth's core. (Auth.)

  17. Non-rocket Earth-Moon transport system (United States)

    Bolonkin, Alexander


    This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.

  18. Sediments Of The Moon And Earth As End-Members For Comparative Planetology (United States)

    Basu, Abhijit; Molinaroli, Emanuela

    Processes of production, transport, deposition, lithification, and preservation of sediments of the Moon and Earth are extremely different. The differences arise primarily from the dissimilarity in the origins and sizes of the Moon and Earth. The consequence is that the Moon does not have an atmosphere, a hydrosphere (the Moon is totally dry), a biosphere (the Moon is totally life-less), a magnetosphere, and any tectonic force. Pristine rocks on the exposed surface of the Moon are principally anorthositic and basaltic, but those on the Earth are granitic (discounting suboceanic rocks). Sediments on these two bodies probably represent two end-members on rocky planetary bodies. Sediments on other rocky planetary bodies (atmosphere-free Mercury and asteroids, Venus with a thick atmosphere but possibly no water on its surface, and Mars with a currently dry surface sculptured by running water in the past) are intermediate in character. New evidence suggests that characteristics of Martian sediments may be in-between those of the Moon and Earth. For example, impacts generate most Martian sediments as on the Moon, and, Martian sediments are wind-blown to form dunes as on Earth. A comparative understanding of sediments of the Moon and Earth helps us anticipate and interpret the sedimentary record of other planetary bodies. Impact processes, large and small, have produced the sediments of the Moon. Unlike Earth, the surface of the Moon is continuously bombarded by micrometeorites and solar wind. Processes of chemical and mechanical weathering aided by biological activity produce sediments on Earth, fixing a significant amount of carbon in the solid state. Whereas solar wind produces minor chemical changes in lunar sediments, chemical weathering significantly alters and affects the character of Earth sediments. Primarily ballistic and electrostatic forces transport lunar sediments but Earth sediments are transported by air, water, and ice. Whereas Earth sediments accumulate

  19. A 3D Planetary Neocartographic Tool in Education: A Game on Virtual Moon and Mars Globes (United States)

    Hargitai, H.; Simonné-Dombóvári, E.; Gede, M.


    The paper describes the educational use of online virtual globes of Mars and the Moon. The game uses topographic globes of Mars (MOLA) and the Moon (LRO DTM) that includes IAU nomenclature + informal names. Students have to position the points described.

  20. An International Parallax Campaign to Measure Distance to the Moon and Mars (United States)

    Cenadelli, D.; Zeni, M.; Bernagozzi, A.; Calcidese, P.; Ferreira, L.; Hoang, C.; Rijsdijk, C.


    Trigonometric parallax is a powerful method to work out the distance of celestial bodies, and it was used in the past to measure the distance of the Moon, Venus, Mars and nearby stars. We set up an observation campaign for high school and undergraduate students with the purpose to measure both the Moon's and Mars' parallax. To have a large enough…

  1. Astrobiology Results from ILEWG EuroMoonMars Analogue Field Research (United States)

    Foing, Bernard H.

    . v’t Houd (8), A. Bruneau (6,9), M. Cross (6,7), V. Maivald (10), C. Orgel (6), A. Elsaesser (4), S.O.L. Direito (2,4), W.F.M. Röling (2), G.R. Davies (2); EuroGeoMars2009 Team, DOMMEX-ILEWG EuroMoonMars 2010-2013 Teams (1) ESA/ ESTEC, Postbus 299, 2200 AG Noordwik, NL; (2) Vrije Universiteit, Amsterdam, Faculty of Earth & Life Sciences, De Boelelaan 1085, 1081 HV Amsterdam, NL; (3) NASA Ames Research Centre; US; (4) Leiden Institute of Chemistry, NL; (5) Space Policy Institute, GWU, Washington D.C., USA; (6) ILEWG; (7) CPSX; (8) Cerberus Blackshore, ESIC Noordwijk, NL; (9) ENSC Bordeaux; (10) DLR, Bremen References: Foing, Stoker & Ehrenfreund (Editors, 2011) “Astrobiology field Research in Moon/Mars Analogue Environments”, Special Issue of International Journal of Astrobiology , IJA 2011, 10, vol.3. 137-305; [1] Foing B. et al. (2011) Field astrobiology research at Moon-Mars analogue site: Instruments and methods, IJA 2011, 10 (3), 141; [2] Clarke, J., Stoker, C. Concretions in exhumed & inverte channels near Hanksville Utah: implications for Mars, (IJA 2011, 10 (3), 162; [3] Thiel et al., (2011) PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. (IJA 2011, 10 (3), 177; [4] Direito et al. (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). (IJA 2011, 10 (3), 191; [5] Orzechowska, G. et al (20110 analysis of Mars Analog soils using solid Phase Microextraction, Organics solvent extraction and GCMS, (IJA 2011, 10 (3), 209; [6] Kotler et al. (2011). Analysis of mineral matrices of planetary soils analogs from the Utah Desert. (IJA 2011, 10 (3), 221; [7] Martins et al. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. (IJA 2011, 10 (3), 231; [8] Ehrenfreund et al. (2011) Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals

  2. The Ph-D project: Manned expedition to the Moons of Mars (United States)

    Singer, S. Fred


    The Ph-D (Phobos-Deimos) mission involves the transfer of six to eight men (and women), including two medical scientists, from Earth orbit to Deimos, the outer satellite of Mars. There follows a sequential program of unmanned exploration of the surface of Mars by means of some ten to twenty unmanned rover vehicles, each of which returns Mars samples to the Deimos laboratory. A two-man sortie descends to the surface of Mars to gain a direct geological perspective and develop priorities in selecting samples. At the same time, other astronauts conduct a coordinated program of exploration (including sample studies) of Phobos and Deimos. Bringing men close to Mars to control exploration is shown to have scientific and other advantages over either (i) (manned) control from the Earth, or (ii) manned operations from Mars surface. The mission is envisaged to take place after 2010, and to last about two years (including a three-to six-month stay at Deimos). Depending on then-available technology, take-off weight from Earth orbit is of the order of 300 tons. A preferred mission scheme may preposition propellants and equipment at Deimos by means of ``slow freight,'' possibly using a ``gravity boost'' from Venus. It is then followed by a ``manned express'' that conveys the astronauts more rapidly to Deimos. Both chemical and electric propulsion are used in this mission, as appropriate. Electric power is derived from solar and nuclear sources. Assuming that certain development costs can be shared with space-station programs, the incremental cost of the project is estimated as less than $40 billion (in 1998 dollars), expended over a 15-year period. The potential scientific returns are both unique and important: (i) Establishing current or ancient existence of life-forms on Mars; (ii) Understanding the causes of climate change by comparing Earth and Mars; (iii) Martian planetary history; (iv) Nature and origin of the Martian moons. Beyond the Ph-D Project, many advanced programs

  3. Developing Ultra Reliable Life Support for the Moon and Mars (United States)

    Jones, Harry W.


    Recycling life support systems can achieve ultra reliability by using spares to replace failed components. The added mass for spares is approximately equal to the original system mass, provided the original system reliability is not very low. Acceptable reliability can be achieved for the space shuttle and space station by preventive maintenance and by replacing failed units, However, this maintenance and repair depends on a logistics supply chain that provides the needed spares. The Mars mission must take all the needed spares at launch. The Mars mission also must achieve ultra reliability, a very low failure rate per hour, since it requires years rather than weeks and cannot be cut short if a failure occurs. Also, the Mars mission has a much higher mass launch cost per kilogram than shuttle or station. Achieving ultra reliable space life support with acceptable mass will require a well-planned and extensive development effort. Analysis must define the reliability requirement and allocate it to subsystems and components. Technologies, components, and materials must be designed and selected for high reliability. Extensive testing is needed to ascertain very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The systems must be designed, produced, integrated, and tested without impairing system reliability. Maintenance and failed unit replacement should not introduce any additional probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass must start soon if it is to produce timely results for the moon and Mars.

  4. Using the Moon and Mars as Giant Detectors for Strange Quark Nuggets (United States)

    Chui, Talso; Penanen, Konstantin; Strayer, Don; Banerdt, Bruce; Tepliz, Vigdor; Herrin, Eugene


    On the Earth, the detectability of small seismic signals is limited by pervasive seismic background noise, caused primarily by interactions of the atmosphere and oceans with the solid surface. Mars, with a very thin atmosphere and no ocean is expected to have a noise level at least an order of magnitude lower than the Earth, and the airless Moon is even quieter still. These pristine low-vibration environments are ideal for searching for nuggets of "strange quark matter." Strange quark matter was postulated by Edward Witten [Phys. Rev. D30, 272, 1984] as the lowest possible energy state of matter. It would be made of up, down, and strange quarks, instead of protons and neutrons made only of up and down quarks. It would have nuclear densities, and hence be difficult to detect. Micron-sized nuggets would weigh in the ton range. As suggested by de Rujula and Glashow [Nature 312 (5996): 734, 1984], a massive strange quark nugget can generate a trail of seismic waves, as it traverses a celestial body. We discuss the mission concept for deploying a network of sensitive seismometers on Mars and on the Moon for such a search.

  5. Formation and growth of embryos of the Earth-Moon system (United States)

    Ipatov, Sergei I.


    Galimov and Krivtsov [1] made computer simulations of the formation of the embryos of the Earth and the Moon as a result of contraction of a rarefied condensation. The angular momentum needed for such contraction could not be acquired during formation of the condensation from a protoplanetary disk. Using the formulas presented in [2], we obtained that the angular momentum of the present Earth-Moon system could be acquired at a collision of two rarefied condensations with a total mass not smaller than 0.1M_{e}, where M_{e} is the Earth mass. In principle, the angular momentum of the condensation needed for formation of the Earth-Moon system could be acquired by accumulation only of small objects, but for such model, the parental condensations of Venus and Mars could also get the angular momentum that was enough for formation of large satellites. Probably, the condensations that contracted and formed the embryos of the terrestrial planets other than the Earth did not collide with massive condensations, and therefore they did not get a large enough angular momentum needed to form massive satellites. The embryos formed as a result of contraction of the condensation grew by accumulation of solid planetesimals. The mass of the rarefied condensation that was a parent for the embryos of the Earth and the Moon could be relatively small (0.02M_{e} or even less), if we take into account the growth of the angular momentum of the embryos at the time when they accumulated planetesimals. There could be also the second main collision of the parental rarefied condensation with another condensation, at which the radius of the Earth's embryo condensation was smaller than the semi-major axis of the orbit of the Moon's embryo. The second main collision (or a series of similar collisions) could change the tilt of the Earth to its present value. For large enough eccentricities of planetesimals, the effective radii of proto-Earth and proto-Moon were proportional to r (where r is the

  6. Cryogenic Fluid Management Technology for Moon and Mars Missions (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.


    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  7. Main Difference with Formed Process of the Moon and Earth Minerals and Fluids (United States)

    Kato, T.; Miura, Y.


    Minerals show large and global distribution on Earth system, but small and local formation on the Moon. Fluid water is formed as same size and distribution on Earth and the Moon based on their body-systems.

  8. Analysis of a Moon outpost for Mars enabling technologies through a Virtual Reality environment (United States)

    Casini, Andrea E. M.; Maggiore, Paolo; Viola, Nicole; Basso, Valter; Ferrino, Marinella; Hoffman, Jeffrey A.; Cowley, Aidan


    The Moon is now being considered as the starting point for human exploration of the Solar System beyond low-Earth orbit. Many national space agencies are actively advocating to build up a lunar surface habitat capability starting from 2030 or earlier: according to ESA Technology Roadmaps for Exploration this should be the result of a broad international cooperation. Taking into account an incremental approach to reduce risks and costs of space missions, a lunar outpost can be considered as a test bed towards Mars, allowing to validate enabling technologies, such as water processing, waste management, power generation and storage, automation, robotics and human factors. Our natural satellite is rich in resources that could be used to pursue such a goal through a necessary assessment of ISRU techniques. The aim of this research is the analysis of a Moon outpost dedicated to the validation of enabling technologies for human space exploration. The main building blocks of the outpost are identified and feasible evolutionary scenarios are depicted, to highlight the incremental steps to build up the outpost. Main aspects that are dealt with include outpost location and architecture, as well as ISRU facilities, which in a far term future can help reduce the mass at launch, by producing hydrogen and oxygen for consumables, ECLSS, and propellant for Earth-Moon sorties and Mars journeys. A test outpost is implemented in a Virtual Reality (VR) environment as a first proof-of-concepts, where the elements are computer-based mock-ups. The VR facility has a first-person interactive perspective, allowing for specific in-depth analyses of ergonomics and operations. The feedbacks of these analyses are crucial to highlight requirements that might otherwise be overlooked, while their general outputs are fundamental to write down procedures. Moreover, the mimic of astronauts' EVAs is useful for pre-flight training, but can also represent an additional tool for failures troubleshooting

  9. Cosmic acceleration of Earth and the Moon by dark matter (United States)

    Nordtvedt, Kenneth L.


    In order to test the hypothesis that the gravitational interaction between our Galaxy's dark matter and the ordinary matter in Earth and the Moon might not fulfill the equivalence principle (universality of free fall), we consider the pertinent perturbation of the lunar orbit -- a sidereal month period range oscillation resulting from a spatially fixed polarization of the orbit. Lunar laser ranging (LLR) data can measure this sidereal perturbation to an accuracy equal to or better than its existing measurement of the synodic month period range oscillation amplitude (+/- 3 cm) which has been used for testing whether Earth and the Moon accelerate at equal rates toward the Sun. Because of the slow precession rate of the Moon's perigree (8.9 yr period), the lunar orbit is particularly sensitive to a cosmic acceleration; the LLR fit of the orbit places an upper limit of 10(exp -13) cm/sq. s for any cosmic differential acceleration between Earth (Fe) and the Moon (silicates). This is 10(exp -5) of the total galactic acceleration of the solar system, of which, it has been suggested, a large portion is produced by dark matter.

  10. Non-rocket Earth-Moon transportation system (United States)

    Bolonkin, A.

    Author suggests and researches one of his methods of flights to outer Space, described in book "Non Rocket Flights in Space", which is prepared and offered for publication. In given report the method and facilities named "Bolonkin Transport System" (BTS) for delivering of payload and people to Moon and back is presented. BTS can be used also for free trip to outer Space up at altitude 60,000 km and more. BTS can be applying as a trust system for atmospheric supersonic aircrafts, and as a free energy source. This method uses, in general, the rotary and kinetic energy of the Moon. The manuscript contains the theory and results of computation of special Project. This project uses three cables (main and two for driving of loads) from artificial material: fiber, whiskers, nanotubes, with the specific tensile strength (ratio the tensile stress to density) k=/=4*10^7 or more. The nanotubes with same and better parameters are received in scientific laboratories. Theoretical limit of nanotubes SWNT is about k=100*10^7. The upper end of the cable is connected to the Moon. The lower end of the cable is connected to an aircraft (or buoy), which flies (i.e. glides or slides) in Earth atmosphere along the planet's surface. The aircraft (and Moon) has devices, which allows the length of cables to be changed. The device would consists of a spool, motor, brake, transmission, and controller. The facility could have devices for delivering people and payloads t o the Moon and back using the suggested Transport System. The delivery devices include: containers, cables, motors, brakes, and controllers. If the aircraft is small and the cable is strong the motion of the Moon can be used to move the airplane. For example (see enclosed project), if the airplane weighs 15 tons and has an aerodynamic ratio (the lift force to the drag force) equal 5, a thrust of 3000 kg would be enough for the aircraft to fly for infinity without requiring any fuel. The aircraft could use a small turbine engine

  11. CODE STEM - Moon, Mars, and Beyond; DLESE-Powered On-Line Classroom, Phase I (United States)

    National Aeronautics and Space Administration — "CODE (COrps DEvelopment) STEM (Science, Technology, Engineering, and Math) ? Moon Mars and Beyond; DLESE-Powered On-Line Classroom" shares the excitement of...

  12. Comments on 'The origin of the Earth-Moon system'

    International Nuclear Information System (INIS)

    Savic, P.; Teleki, G.


    The main points are presented of a new hypothesis of the origin of the Earth-Moon system, developed on the basis of Savic's (1961) theory of the origin of rotation of celestial bodies. The cooling off and contraction due to gravitational attraction on vast particle systems, with the pushing out of electrons from atom shells result in a continually increasing density. Depending on the amount of mass, this pushing out can lead to the expulsion of electrons and the creation of a magnetic field by which a rotational motion is brought about. These conditions are satisfied for the Earth's mass and all larger masses. If the Earth and the Moon formed a unique body, the protoplanet, then once rotational motion had begun, the primeval spherical body must have taken the shape of a large Jacobi ellipsoid. New condensation followed, however no longer solely around the centre of the protoplanet, but also along the edge of the ellipsoid, the process leading to the creation of the dual Earth-Moon system. (Auth.)

  13. Tidal effects on Earth, Planets, Sun by far visiting moons (United States)

    Fargion, Daniele


    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  14. Short-term capture of the Earth-Moon system (United States)

    Qi, Yi; de Ruiter, Anton


    In this paper, the short-term capture (STC) of an asteroid in the Earth-Moon system is proposed and investigated. First, the space condition of STC is analysed and five subsets of the feasible region are defined and discussed. Then, the time condition of STC is studied by parameter scanning in the Sun-Earth-Moon-asteroid restricted four-body problem. Numerical results indicate that there is a clear association between the distributions of the time probability of STC and the five subsets. Next, the influence of the Jacobi constant on STC is examined using the space and time probabilities of STC. Combining the space and time probabilities of STC, we propose a STC index to evaluate the probability of STC comprehensively. Finally, three potential STC asteroids are found and analysed.

  15. Granular Materials and the Risks They Pose for Success on the Moon and Mars (United States)

    Wilkinson, R. Allen; Behringer, Robert P.; Jenkins, James T.; Louge, Michel Y.


    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to do it on the Moon and Mars as we do it on Earth. This paper brings to the fore how little these processes are understood and the millennia-long trial-and-error practices that lead to today's massive over-design, high failure rate, and extensive incremental scaling up of industrial processes because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, and what understanding is needed to greatly reduce the risks.

  16. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon (United States)

    Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.


    Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.

  17. Radiation Database for Earth and Mars Entry (United States)


    state which mainly determines its polarizability . ∆r2 = r2u− r2l is the difference between Radiation Database for Earth and Mars Entry RTO-EN-AVT...NO A← X (0,0) band in the presence of argon and nitrogen. Journal of Quantitative Spectroscopy and Radiative Transfer, 47:375–390, 1992. Radiation

  18. Venus tectonics: another Earth or another Mars

    International Nuclear Information System (INIS)

    McGill, G.E.


    The presence of presumably primordial large craters has led to the suggestion that Venus may have a thick lithosphere like that of Mars despite its similarities to Earth in size and density. However, crust and upper mantle temperatures on Venus are very likely higher than on Earth so that a dry Venus could have a lithosphere with a thickness similar to that of Earth. If a trace of volatiles is present in the mantle, the lithosphere of Venus could be thinner. Due to the absence of liquid water, erosion and deposition will be much slower on Venus than on Earth, favoring retention of primordial cratered surfaces on portions of the crust that have not been destroyed or buried by tectonic and volcanic activity. Geochemical models of solar system origin and petrological considerations suggest that K is about as abundant in Venus as in Earth. The abundance of 40 Ar in the atmosphere of Venus lies somewhere between the Earth value and one-tenth of the Earth value. Because erosional liberation of 40 Ar on Venus will be relatively inefficient, this range for 40 Ar abundance at least permits an active tectonic history, and if the 40 Ar abundance is towards the high end of the range, it may well require an active tectonic history. Thus we are not constrained to a Mars-like model of Venus tectonics by craters and possible mantle dryness; an Earth-like model is equally probable

  19. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration (United States)

    Rhatigan, Jennifer L.


    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  20. Mars Earth Return Vehicle (MERV) Propulsion Options (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike; hide


    The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.

  1. Observed tidal braking in the earth/moon/sun system (United States)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.


    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  2. ExoHab Pilot Project & Field Tests for Moon-Mars Human Laboratories (United States)

    Foing, Bernard


    outpost into an autonomous base. After a robotic sample return mission, a human presence will allow deeper research through well chosen geological samples. A polar lunar outpost can serve to prepare for a Mars outpost: system and crew safety aspects, use of local resources, operations on farside with limited communication to Earth, planetary protection protocol, astrobiology and life sciences. References: [1] Exploration Architecture Trade Report", ESA 2008. [2] Integrated Exploration Architecture", ESA, 2008. [3] 9th ILEWG International Conference on Exploration Utilization of the moon, 2007, [4] Schrunk et al , The Moon: Resources, Future Development and Colonization", 1999. [5] The Moon as a Platform for Astronomy and Space Science", B.H. Foing, ASR 14 (6), 1994. [6] Boche-Sauvan L., Foing B (2008) MSc/ESTEC report. Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14)#, S. Direito(6)#, S. Voute (18)#, A. Olmedo-Soler(17)#, T. E. Zegers(1, 18)#, D. Scheer(12)#, K. Bickert(12)#, D. Schildhammer(12)#, B. Jantscher(1, 11, 12)#, MECA Team(6)#, ExoGeoLab ILEWG ExoHab teams(1,4,11) EuroGeoMars team(1,4,5); 1)ESTEC/SRE-S Postbus 299, 2200 AG Noordwijk, NL, 2)NASA Ames , 3)Delft TU , 4)ESTEC TEC Technology Dir., 5)ESTEC HSF Human Spaceflight, 6)VU Amsterdam, 7)ESTEC Education Office, 8)FU Berlin, 9)Max Planck Goettingen, 10)Leiden/GWU , 11)ILEWG ExoHab Team, 12)Austrian Space Forum (OEWF Innsbruck); 14) Ecole de l'Air, Salons de Provence, 15) Utrecht U., 16) MECA Team, 17) Olmedo

  3. The Electrostatic Environments of the Moon and Mars: Implications for Human Missions (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.


    Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  4. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon (United States)

    Schiller, Martin; Bizzarro, Martin; Fernandes, Vera Assis


    Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth–Moon system. Using this approach, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner-Solar-System objects predominantly reflects spatial heterogeneity. Here we use the isotopic composition of the refractory element calcium to show that the nucleosynthetic variability in the inner Solar System primarily reflects a rapid change in the mass-independent calcium isotope composition of protoplanetary disk solids associated with early mass accretion to the proto-Sun. We measure the mass-independent 48Ca/44Ca ratios of samples originating from the parent bodies of ureilite and angrite meteorites, as well as from Vesta, Mars and Earth, and find that they are positively correlated with the masses of their parent asteroids and planets, which are a proxy of their accretion timescales. This correlation implies a secular evolution of the bulk calcium isotope composition of the protoplanetary disk in the terrestrial planet-forming region. Individual chondrules from ordinary chondrites formed within one million years of the collapse of the proto-Sun reveal the full range of inner-Solar-System mass-independent 48Ca/44Ca ratios, indicating a rapid change in the composition of the material of the protoplanetary disk. We infer that this secular evolution reflects admixing of pristine outer-Solar-System material into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth

  5. Frontiers of Life Sciences: The Human Exploration of the Moon and Mars (United States)

    North, Regina M.; Pellis, Neal R.


    The rapid development of the productive processes after World War II extended human settlements into new ecological niches. Advances in Life Sciences played a decisive role supporting the establishment of human presence in areas of the planet where human life could have not existed otherwise. The evolution of life support systems, and the fabrication of new materials and technologies has enabled humans to inhabit Polar Regions, ocean surfaces and depths; and to leave Earth and occupy Low Earth Orbit. By the end of the 20 th Century, stations in the Antarctic and Arctic, off shore oil platforms, submarines, and space stations had become the ultimate demonstration of human ability to engineer habitats at Earth extreme environments and outer space. As we enter the 21st Century, the next development of human settlements will occur through the exploration of the Moon, Mars, and beyond. The major risks of space exploration derive from long exposure of humans and other life systems to radiation, microgravity, isolation and confinement, dependence on artificial life support systems, and unknown effects (e.g., altered magnetic fields, ultrahigh vacuum on bacteria, fungi, etc.). Countermeasures will require a complete characterization of human and other biological systems adaptation processes. To sustain life in transit and on the surface of the Moon and Mars will require a balance of spacecraft, cargo, astronaut crews, and the use of in situ resources. Limitations on the number of crewmembers, payloads, and the barrenness of the terrain require a novel design for the capabilities needed in transit and at exploration outpost sites. The planned destinations have resources that may be accessed to produce materials, food, shelter, power, and to provide an environment compatible with successful occupation of longterm exploration sites. Once more, the advancements of Life Sciences will be essential for the design of interplanetary voyages and planetary surface operations. This

  6. A geoethical approach to the geological and astrobiological exploration and research of the Moon and Mars (United States)

    Martinez-Frias, Jesus; Horneck, Gerda; de La Torre Noetzel, Rosa; Rull, Fernando

    procedures related to the study of Lunar and Mar-tian meteorites, and also the research, taking into account this new perspective, of the Earth locations which are called terrestrial analogs. 1 UN (1967) Treaty on principles governing the activities of states in the exploration and use of outer space, including the moon and other celestial bodies Article I . U.N. Doc. A/RES/2222/(XXI) (25 Jan 1967). United Nations TIAS No. 6347. 2 Nemec, V. Nemcova, L. (2008) 33rd Inter-national Geological Congress, Oslo, August 6-14th. 3 4 Martinez-Frias, J. et al. (2009) Bolides and Meteorite Falls, Prague, May 10-15, 14-15. 5 Martinez-Frias, J. et al. (2009) EANA'09, Brussels, 12-14 October 2009. 6 Planetary Prot 7 IUCN (2008) 8 Cockell, C.S. Hor-neck, G. (2004) Space Policy 20: 291-295. 9 Cockell, C.S. Horneck, G. (2006) Space Policy 22: 256-261.

  7. Space tourism: from earth orbit to the moon (United States)

    Collins, P.

    Travel to and from the lunar surface has been known to be feasible since it was first achieved 34 years ago. Since that time there has been enormous progress in related engineering fields such as rocket propulsion, materials and avionics, and about 1 billion has been spent on lunar science and engineering research. Consequently there are no fundamental technical problems facing the development of lunar tourism - only business and investment problems. The outstanding problem is to reduce the cost of launch to low Earth orbit. Recently there has been major progress towards overturning the myth that launch costs are high because of physical limits. Several "X Prize" competitor vehicles currently in test-flight are expected to be able to perform sub-orbital flights at approximately 1/1,000 of the cost of Alan Shepard's similar flight in 1961. This activity could have started 30 years ago if space agencies had had economic rather than political objectives. A further encouraging factor is that the demand for space tourism seems potentially limitless. Starting with sub-orbital flights and growing through orbital activities, travel to the Moon will offer further unique attractions. In every human culture there is immense interest in the Moon arising from millennia of myths. In addition, bird-like flying sports, first described by Robert Heinlein, will become another powerful demand factor. Roundtrips of 1 to 2 weeks are very convenient for travel companies; and the radiation environment will permit visitors several days of surface activity without significant health risks. The paper also discusses economic aspects of lunar tourism, including the benefits it will have for those on Earth. Lunar economic development based on tourism will have much in common with economic development on Earth based on tourism: starting from the fact that many people spontaneously wish to visit popular places, companies in the tourism industry invest to sell a growing range of services to ever

  8. V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies

    International Nuclear Information System (INIS)

    Drake, M.J.; Capobianco, C.J.; Newsom, H.E.


    The abundances of V, Cr, and Mn inferred for the mantles of the Earth and Moon decrease in that order and are similar, but are distinct from those inferred for the mantles of the Eucrite Parent Body (EPB) and Shergottite Parent Body (SPB). This similarity between Earth and Moon has been used to suggest that the Moon is derived substantially or entirely from Earth mantle material following terrestrial core formation. To test this hypothesis, the authors have determined the partitioning of V, Cr, and Mn between solid iron metal, S-rich metallic liquid, and synthetic basaltic silicate liquid at 1,260 degree C and one bar pressure. The sequence of compatibility in the metallic phases is Cr > V > Mn at high oxygen fugacity and V > Cr > Mn at low oxygen fugacities. Solubilities in liquid metal always exceed solubilities in solid metal. These partition coefficients suggest that the abundances of V, Cr, and Mn do not reflect core formation in the Earth. Rather, they are consistent with the relative volatilities of these elements. The similarity in the depletion patterns of V, Cr, and Mn inferred for the mantles of the Earth and Moon is a necessary, but not sufficient, condition for the Moon to have been derived wholly or in part from the Earth's mantle

  9. Growing crops for space explorers on the moon, Mars, or in space (United States)

    Salisbury, F. B.


    An option in the long-duration exploration of space, whether on the Moon or Mars or in a spacecraft on its way to Mars or the asteroids, is to utilize a bioregenerative life-support system in addition to the physicochemical systems that will always be necessary. Green plants can use the energy of light to remove carbon dioxide from the atmosphere and add oxygen to it while at the same time synthesizing food for the space travelers. The water that crop plants transpire can be condensed in pure form, contributing to the water purification system. An added bonus is that green plants provide a familiar environment for humans far from their home planet. The down side is that such a bioregenerative life-support system--called a controlled environment life-support system (CELSS) in this paper--must be highly complex and relatively massive to maintain a proper composition of the atmosphere while also providing food. Thus, launch costs will be high. Except for resupply and removal of nonrecycleable substances, such a system is nearly closed with respect to matter but open with respect to energy. Although a CELSS facility is small compared to the Earth's biosphere, it must be large enough to feed humans and provide a suitable atmosphere for them. A functioning CELSS can only be created with the help of today's advanced technology, especially computerized controls. Needed are energy for light, possibly from a nuclear power plant, and equipment to provide a suitable environment for plant growth, including a way to supply plants with the necessary mineral nutrients. All this constitutes the biomass production unit. There must also be food preparation facilities and a means to recycle or dispose of waste materials and there must be control equipment to keep the facility running. Humans are part of the system as well as plants and possibly animals. Human brain power will often be needed to keep the system functional in spite of the best computer-driven controls. The particulars

  10. ILEWG EuroMoonMars Research, Technology, and Field Simulation Campaigns (United States)

    Foing, B. H.; Lillo, A.; Evellin, P.; Kołodziejczyk, A.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.; Maller, L.; Decadi, A.; Villa-Massone, J.; Preusterink, J.; Neklesa, A.; Barzilay, A.; Volkova, T.


    ILEWG developed since 2008, "EuroMoonMars" pilot research with a Robotic Test Bench (ExoGeoLab) and a Mobile Laboratory Habitat (ExoHab) at ESTEC. Field campaigns were e.g. in ESTEC, EAC, at Utah MDRS, Eifel, and LunAres base at Pila Poland in 2017.

  11. Turning dust to gold building a future on the Moon and Mars

    CERN Document Server

    Benaroya, Haym


    Our continued prosperity and survival as species will in part depend upon space exploration and manned settlement. This will provide resources for our industrial societies and create new opportunities and markets. This book is a journey into our potential future, as several nations today begin seriously to plan and build up their capabilites for manned space flight and settlement on the Moon and Mars.

  12. Low energy trajectories for the Moon-to-Earth space flight

    Indian Academy of Sciences (India)

    The Moon-to-Earth low energy trajectories of 'detour' type are found and studied within the frame ... km from the Earth where the Sun gravitation decreases the particle orbit perigee distance to a small value .... The solid curve in fig- ... the Moon, respectively, as is the semimajor axis .... inclination i0 = 90 .... Then, according to.

  13. Tafoni - A Llink Between Mars and Earth (United States)

    Iacob, R. H.; Iacob, C. E.


    Remarkable rock erosion structures on the planetary surface, tafoni represent an important instrument for investigating the specific environmental conditions causing such rock formations. From simple cavities to refined honeycomb or other intricate patterns, tafoni are a reflection of the complex interaction between the rock structure and the environmental factors. On the genesis of tafoni, there is no unique breakdown mechanism at work, but a multitude of physical and chemical processes developing over time. However, some of these formation mechanisms are typically predominant. Tafoni can be found on a variety of rock substrates, from sandstone and vesicular lava rocks to granite and basalt, and in a variety of environments, from wet coastal areas to the extreme dry zones of hot deserts, high plateaus or frozen lands of Antarctica. During various NASA missions, tafoni were also identified on rock formations on Mars. Comparative study of the environmental conditions leading to the formation of tafoni on Earth and Mars can help explain past and present surface erosion mechanisms on the Red Planet. The mechanisms responsible for tafoni formation on Earth include wind erosion, exfoliation, frost shattering, and, in the majority of cases, salt weathering. Microclimate variations of temperature, evaporation of salt water, disaggregation of mineral grains, as well as sandblasting, are among most common contributors that initiate the pitting of the rock surface, giving way to further development of tafoni alveoli, cavities and other erosion patterns. Dissolution of calcium carbonates and siliceous cements, or hydration of feldspars, are representative examples of tafoni erosion involving rain water, sea water or air moisture. Live organisms and biochemical processes are significant contributors to the formation and evolution of tafoni, especially in humid or water reach environments. In many instances, tafoni reflect erosion mechanism specific to environmental conditions

  14. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system (United States)

    Belbruno, Edward A.


    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  15. Radiation protection for human missions to the Moon and Mars

    International Nuclear Information System (INIS)

    Simonsen, L.C.; Nealy, J.E.


    Radiation protection assessments are performed for advanced Lunar and Mars manned missions. The Langley cosmic ray transport code and the nucleon transport code are used to quantify the transport and attenuation of galactic cosmic rays and solar proton flares through various shielding media. Galactic cosmic radiation at solar maximum and minimum, as well as various flare scenarios are considered. Propagation data for water, aluminum, liquid hydrogen, lithium hydride, lead, and lunar and Martian regolith (soil) are included. Shield thickness and shield mass estimates required to maintain incurred doses below 30 day and annual limits (as set for Space Station Freedom and used as a guide for space exploration) are determined for simple geometry transfer vehicles. On the surface of Mars, dose estimates are presented for crews with their only protection being the carbon dioxide atmosphere and for crews protected by shielding provided by Martian regolith for a candidate habitat

  16. Low energy trajectories for the Moon-to-Earth space flight

    Indian Academy of Sciences (India)

    The Moon-to-Earth low energy trajectories of `detour'type are found and studied within the frame of the MoonEarth –Sun-particle system. ... This results in the particle flight to a distance of about 1.5 million km from the Earth where the Sun gravitation decreases the particle orbit perigee distance to a small value that leads to ...

  17. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux (United States)

    Rubincam, David P.


    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  18. Evaluating predictions of ICME arrival at Earth and Mars

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Taktakishvili, A.; Pulkkinen, A.


    We present a study of interplanetary coronal mass ejection (ICME) propagation to Earth and Mars. Because of the significant space weather hazard posed by ICMEs, understanding and predicting their arrival and impact at Mars is important for current and future robotic and manned missions...... to the planet. We compare running ENLILv2.6 with coronal mass ejection (CME) input parameters from both a manual and an automated method. We analyze shock events identified at Mars in Mars Global Surveyor data in 2001 and 2003, when Earth and Mars were separated by...

  19. Venus-Earth-Mars: comparative climatology and the search for life in the solar system. (United States)

    Launius, Roger D


    Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans-all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a "runaway greenhouse theory," and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.

  20. Venus-Earth-Mars: Comparative Climatology and the Search for Life in the Solar System (United States)

    Launius, Roger D.


    Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans—all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a “runaway greenhouse theory,” and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth. PMID:25371106

  1. Venus-Earth-Mars: Comparative Climatology and the Search for Life in the Solar System

    Directory of Open Access Journals (Sweden)

    Roger D. Launius


    Full Text Available Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans—all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a “runaway greenhouse theory,” and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.

  2. Lunar paleotides and the origin of the earth-moon system

    International Nuclear Information System (INIS)

    Anderson, A.J.


    A new method for determining the early history of the Earth-Moon system is described. Called the study of lunar paleotides, it describes a method for explaining features of the remnant lunar gravity field, and the generation of the lunar mascons. A method for the determination of Earth-Moon distances compared with the radiometric ages of the maria is developed. It is shown that the Moon underwent strong anomalous gravitational tidal forces, for a duration t 6 yr, prior to the formation of the mascon surfaces. As these tidal forces had not been present at the time of the formation of the Moon, this shows that the Moon could not have been formed in orbit about the Earth. (Auth.)

  3. On Signal Modeling of Moon-Based Synthetic Aperture Radar (SAR Imaging of Earth

    Directory of Open Access Journals (Sweden)

    Zhen Xu


    Full Text Available The Moon-based Synthetic Aperture Radar (Moon-Based SAR, using the Moon as a platform, has a great potential to offer global-scale coverage of the earth’s surface with a high revisit cycle and is able to meet the scientific requirements for climate change study. However, operating in the lunar orbit, Moon-Based SAR imaging is confined within a complex geometry of the Moon-Based SAR, Moon, and Earth, where both rotation and revolution have effects. The extremely long exposure time of Moon-Based SAR presents a curved moving trajectory and the protracted time-delay in propagation makes the “stop-and-go” assumption no longer valid. Consequently, the conventional SAR imaging technique is no longer valid for Moon-Based SAR. This paper develops a Moon-Based SAR theory in which a signal model is derived. The Doppler parameters in the context of lunar revolution with the removal of ‘stop-and-go’ assumption are first estimated, and then characteristics of Moon-Based SAR imaging’s azimuthal resolution are analyzed. In addition, a signal model of Moon-Based SAR and its two-dimensional (2-D spectrum are further derived. Numerical simulation using point targets validates the signal model and enables Doppler parameter estimation for image focusing.

  4. Comprehensive NASA Cis-Lunar Earth Moon Libration Orbit Reference and Web Application (United States)

    National Aeronautics and Space Administration — This work will provide research and trajectory design analysis to develop a NASA Cis-Lunar / Earth-Moon Libration Orbit Reference and Web Application. A compendium...

  5. Solar sail trajectory design in the Earth-Moon circular restricted three body problem (United States)

    Das, Ashwati

    The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the vicinity of the Earth-Moon libration points, and lunar-centric long-term capture orbits are incorporated as target destinations to demonstrate the applicability of the general framework to varied design scanarios, each incorporating a variety of complexities and challenges. The transfers are comprised of three phases - a spiral Earth escape, a transit period, and, finally, the capture into a desirable orbit in the vicinity of the Moon. The Earth-escape phase consists of spiral trajectories constructed using three different sail steering strategies - locally optimal, on/off and velocity tangent. In the case of the Earth-libration point transfers, naturally occurring flow structures (e.g., invariant manifolds) arising from the mutual gravitational interaction of the Earth and Moon are exploited to link an Earth departure spiral with a destination orbit. In contrast, sail steering alone is employed to establish a link between the Earth-escape phase and capture orbits about the Moon due to a lack of applicable natural structures for the required connection. Metrics associated with the transfers including flight-time and the influence of operational constraints, such as occultation events, are investigated to determine the available capabilities for Earth-Moon

  6. Using Gravity Assists in the Earth-moon System as a Gateway to the Solar System (United States)

    McElrath, Tim; Lantoine, Gregory; Landau, Damon; Grebow, Dan; Strange, Nathan; Wilson, Roby; Sims, Jon


    For spacecraft departing the Earth - Moon system, lunar flybys can significantly increase the hype rbolic escape energy (C3, in km 2 /sec 2 ) for a modest increase in flight time. Within 2 months, lunar flybys can produce a C3 of 2. Over 4 - 6 months, lunar flybys alone can increase the C3 to 4.5, or they can provide for additional periapsis burns to increase the C3 from 2 -3 to 10 or more, suitable for planetary missions. A lunar flyby departure can be followed by additional ? -V (such as that efficiently provided by a low thrust system, eg. Solar Electric Propulsion (SEP)) to raise the Earth - relative velocity (at a ratio of more than 2:1) before a subsequent Earth flyby, which redirects that velocity to a more di stant target, all within not much more than a year. This paper describes the applicability of lunar flybys for different flight times and propulsi on systems, and illustrates this with instances of past usage and future possibilities. Examples discussed i nclude ISEE - 3, Nozomi, STEREO, 2018 Mars studies (which showed an 8% payload increase), and missions to Near Earth Objects (NEOs). In addition, the options for the achieving the initial lunar flyby are systematically discussed, with a view towards their p ractical use with in a compact launch period. In particular, we show that launches to geosynchronous transfer orbit (GTO) as a secondary payload provide a feasible means of obtaining a lunar flyby for an acceptable cost, even for SEP systems that cannot ea sily deliver large ? - Vs at periapsis. Taken together, these results comprise a myriad of options for increasing the mission performance, by the efficient use of lunar flybys within an acceptable extension of the flight time.

  7. PADME (Phobos And Deimos and Mars Environment): A Proposed NASA Discovery Mission to Investigate the Two Moons of Mars (United States)

    Lee, Pascal; Benna, Mehdi; Britt, Daniel; Colaprete, Anthony; Davis, Warren; Delory, Greg; Elphic, Richard; Fulsang, Ejner; Genova, Anthony; Glavin, Daniel; hide


    After 40 years of solar system exploration by spacecraft, the origin of Mars's satellites, remains vexingly unknown. There are three prevailing hypotheses concerning their origin: H1: They are captured small bodies from the outer main belt or beyond; H2: They are reaccreted Mars impact ejecta; H3: They are remnants of Mars' formation. There are many variants of these hypotheses, but as stated, these three capture the key ideas and constraints on their nature. So far, data and modeling have not allowed any one of these hypotheses to be verified or excluded. Each one of these hypotheses has important implications for the evolution of the solar system, the formation and evolution of planets and satellites, and the delivery of water and organics to Early Mars and Early Earth. Determining the origin of Phobos and Deimos is identified by the NASA and the NRC Decadal Survey as the most important science goal at these bodies.

  8. Meditations on the new space vision: The moon as a stepping stone to mars (United States)

    Mendell, W. W.


    The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity—governmental, international, or commercial—that can responsibly carry on lunar development past the exploration phase.

  9. Design Considerations and Conceptual Designs for Surface Nuclear Power Systems for the Moon and Mars

    International Nuclear Information System (INIS)

    Blessing, David L.; Kirkland, Joel


    A set of design considerations is proposed for nuclear power systems to provide power on the Moon or Mars. Setting the initial requirements is extremely important since they govern the choices that determine the final design. In addition, the choice of reactor and its operating conditions depends on details of the energy conversion and heat rejection systems, which must be studied in tandem. Refractory materials are not suitable for the primary pressure boundary for the reactor due to their susceptibility to chemical attack from particles of regolith on the Moon and Mars or by the carbon dioxide atmosphere on Mars. High nickel superalloys would be acceptable in these environments, but their limited creep strength at elevated temperatures limits reactor outlet temperature to about 1150 K or less. This temperature restriction results in the mass of a gas cooled reactor coupled to a Brayton power conversion system being somewhat lighter than that of a liquid metal-cooled reactors coupled to a Brayton power conversion system. The mass of a liquid metal-cooled reactor coupled to an advanced Stirling power conversion system would be in between that of the gas and liquid metal cooled systems which use Brayton power conversion

  10. Non-Rocket Earth-Moon Transport System (United States)

    Bolonkin, Alexander


    This paper proposes a new method and transportation system to travel to the Moon. This transportation system uses a mechanical energy transfer and requires only minimal energy so that it provides a 'Free Trip' into space. The method uses the rotary and kinetic energy of the Moon. This paper presents the theory and results of computations for the project provided Free Trips (without rockets and spend a big energy) to the Moon for six thousand people annually. The project uses artificial materials like nanotubes and whiskers that have a ratio of tensile strength to density equal 4 million meters. In the future, nanotubes will be produced that can reach a specific stress up 100 millions meter and will significantly improve the parameters of suggested project. The author is prepared to discuss the problems with serious organizations that want to research and develop these innovations.

  11. SMART-1 leaves Earth on a long journey to the Moon (United States)


    The European Space Agency’s SMART-1 was one of three payloads on Ariane Flight 162. The generic Ariane-5 lifted off from the Guiana Space Centre, Europe’s spaceport at Kourou, French Guiana, at 2014 hrs local time (2314 hrs GMT) on 27 September (01:14 Central European Summer time on 28 September). 42 minutes after launch, SMART-1 as last of the three satellites had been successfully released into a geostationary transfer orbit (654 x 35 885 km, inclined at 7 degrees to the Equator). While the other two satellites are due to manoeuvre towards geostationary orbit, the 367 kg SMART-1 will begin a much longer journey to a target ten times more distant than the geostationary orbit: the Moon. “Europe can be proud”, said ESA Director General Jean-Jacques Dordain, after witnessing the launch from ESA’s ESOC space operations centre in Darmstadt, Germany, “we have set course for the Moon again. And this is only the beginning: we are preparing to reach much further”. The spacecraft has deployed its solar arrays and is currently undergoing initial checkout of its systems under control from ESA/ESOC. This checkout will continue until 4 October and will include with the initial firing of SMART-1’s innovative ion engine. By ion drive to the Moon “Science and technology go hand in hand in this exciting mission to the Moon. The Earth and Moon have over 4 thousand million years of shared history, so knowing the Moon better will help scientists in Europe and all over the world to better understand our planet and will give them valuable new hints on how to better safeguard it” said ESA Director of Science David Southwood, following the launch from Kourou. As the first mission in the new series of Small Missions for Advanced Research in Technology, SMART-1 is mainly designed to demonstrate innovative and key technologies for future deep space science missions. The first technology to be demonstrated on SMART-1 will be Solar Electric Primary Propulsion (SEPP), a

  12. Moon-Mars simulation campaign in volcanic Eifel: Remote science support and sample analysis (United States)

    Offringa, Marloes; Foing, Bernard H.; Kamps, Oscar


    Moon-Mars analogue missions using a mock-up lander that is part of the ESA/ILEWG ExoGeoLab project were conducted during Eifel field campaigns in 2009, 2015 and 2016 (Foing et al., 2010). In the last EuroMoonMars2016 campaign the lander was used to conduct reconnaissance experiments and in situ geological scientific analysis of samples, with a payload that mainly consisted of a telescope and a UV-VIS reflectance spectrometer. The aim of the campaign was to exhibit possibilities for the ExoGeoLab lander to perform remotely controlled experiments and test its applicability in the field by simulating the interaction with astronauts. The Eifel region in Germany where the experiments with the ExoGeoLab lander were conducted is a Moon-Mars analogue due to its geological setting and volcanic rock composition. The research conducted by analysis equipment on the lander could function in support of Moon-Mars sample return missions, by providing preliminary insight into characteristics of the analyzed samples. The set-up of the prototype lander was that of a telescope with camera and solar power equipment deployed on the top, the UV-VIS reflectance spectrometer together with computers and a sample webcam were situated in the middle compartment and to the side a sample analysis test bench was attached, attainable by astronauts from outside the lander. An alternative light source that illuminated the samples in case of insufficient daylight was placed on top of the lander and functioned on solar power. The telescope, teleoperated from a nearby stationed pressurized transport vehicle that functioned as a base control center, attained an overview of the sampling area and assisted the astronauts in their initial scouting pursuits. Locations of suitable sampling sites based on these obtained images were communicated to the astronauts, before being acquired during a simulated EVA. Sampled rocks and soils were remotely analyzed by the base control center, while the astronauts

  13. Earth-type planets (Mercury, Venus, and Mars) (United States)

    Marov, M. Y.; Davydov, V. D.


    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  14. Terraced margins of inflated lava flows on Earth and Mars (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crumpler, L. S.


    When fluid basaltic lava flows are emplaced over a shallow regional slope (typically much less than one degree), the lava flows often display impressive characteristics of inflation. Here we describe a distinctive marginal characteristic that is often developed along the margins of endogenously inflated basaltic lava flows; discreet topographic levels of the emplaced lava that are here termed 'terraced margins'. Terraced margins were first noted at the distal end of the Carrizozo lava flow in central New Mexico, where they are particularly well expressed, but terraces have also been observed along some margins of the McCartys lava flow (NM), the distal end of the 1859 Mauna Loa lava flow (HI), and lava flows at Craters of the Moon (ID). Differential Global Positioning System surveys across several terraced margins reveal consistent topographic characteristics: the upper surface of each terrace level is at roughly one half the height of the sheet lobe from which it emerges; when a terrace becomes the source of an additional outbreak, the upper surface of the second terrace is at roughly one half the height of the source terrace; often a subtle topographic depression is present along the contact between a terrace and its source sheet lobe, suggesting that the terrace outflow starts at a level roughly one-third the height of the source lobe; the upper surfaces of both the source sheet lobe and associated terraces are level to within tens of centimeters across length scales of many tens to hundreds of meters, indicative of inflation of all components. The field observations will be used as the constraints for modeling of the inflation and terracing mechanisms, an effort that has only recently started. The multiple imaging data sets now available for Mars have revealed the presence of terraced margins on some lava flows on Mars. Although detailed topographic data are not currently available for the Martian examples identified so far, the presence of terraced margins for

  15. Formation of the Lunar Fossil Bulges and Its Implication for the Early Earth and Moon (United States)

    Qin, Chuan; Zhong, Shijie; Phillips, Roger


    First recognized by Laplace over two centuries ago, the Moon's present tidal-rotational bulges are significantly larger than hydrostatic predictions. They are likely relics of a former hydrostatic state when the Moon was closer to the Earth and had larger bulges, and they were established when stresses in a thickening lunar lithosphere could maintain the bulges against hydrostatic adjustment. We formulate the first dynamically self-consistent model of this process and show that bulge formation is controlled by the relative timing of lithosphere thickening and lunar orbit recession. Viable solutions indicate that lunar bulge formation was a geologically slow process lasting several hundred million years, that the process was complete about 4 Ga when the Moon-Earth distance was less than 32 Earth radii, and that the Earth in Hadean was significantly less dissipative to lunar tides than during the last 4 Gyr, possibly implying a frozen hydrosphere due to the fainter young Sun.

  16. Creating an isotopically similar Earth-Moon system with correct angular momentum from a giant impact (United States)

    Wyatt, Bryant M.; Petz, Jonathan M.; Sumpter, William J.; Turner, Ty R.; Smith, Edward L.; Fain, Baylor G.; Hutyra, Taylor J.; Cook, Scott A.; Gresham, John H.; Hibbs, Michael F.; Goderya, Shaukat N.


    The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth-Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth-Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.

  17. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits (United States)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David


    measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar

  18. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy


    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  19. Multi-Scale Particle Size Distributions of Mars, Moon and Itokawa based on a time-maturation dependent fragmentation model (United States)

    Charalambous, C. A.; Pike, W. T.


    We present the development of a soil evolution framework and multiscale modelling of the surface of Mars, Moon and Itokawa thus providing an atlas of extra-terrestrial Particle Size Distributions (PSD). These PSDs are profoundly based on a tailoring method which interconnects several datasets from different sites captured by the various missions. The final integrated product is then fully justified through a soil evolution analysis model mathematically constructed via fundamental physical principles (Charalambous, 2013). The construction of the PSD takes into account the macroscale fresh primary impacts and their products, the mesoscale distributions obtained by the in-situ data of surface missions (Golombek et al., 1997, 2012) and finally the microscopic scale distributions provided by Curiosity and Phoenix Lander (Pike, 2011). The distribution naturally extends at the magnitudinal scales at which current data does not exist due to the lack of scientific instruments capturing the populations at these data absent scales. The extension is based on the model distribution (Charalambous, 2013) which takes as parameters known values of material specific probabilities of fragmentation and grinding limits. Additionally, the establishment of a closed-form statistical distribution provides a quantitative description of the soil's structure. Consequently, reverse engineering of the model distribution allows the synthesis of soil that faithfully represents the particle population at the studied sites (Charalambous, 2011). Such representation essentially delivers a virtual soil environment to work with for numerous applications. A specific application demonstrated here will be the information that can directly be extracted for the successful drilling probability as a function of distance in an effort to aid the HP3 instrument of the 2016 Insight Mission to Mars. Pike, W. T., et al. "Quantification of the dry history of the Martian soil inferred from in situ microscopy

  20. Measuring Earth's Radiation Budget from the Vicinity of the Moon (United States)

    Swartz, W. H.; Lorentz, S. R.; Erlandson, R. E.; Cahalan, R. F.; Huang, P. M.


    We propose to measure Earth's radiation budget (integrated total and solar-reflected shortwave) using broadband radiometers and other technology demonstrated in space. The instrument is compact, autonomous, and has modest resource requirements.

  1. The origin of the moon and the early history of the earth - a chemical model. Part 2: The earth

    International Nuclear Information System (INIS)

    O'Neill, H.St.C.


    The geochemical implications for the earth of a giant impact model for the origin of the earth-moon system are discussed, using a mass balance between three components: the proto-earth, the Impactor, and a late veneer. It is argued that the proto-earth accretes from material resembling a high temperature condensate from the solar nebula. Core formation takes place under very reducing conditions, resulting in the mantle of the proto-earth being completely stripped of all elements more siderophile than Fe, and partly depleted in the barely siderophile elements V, Cr, and perhaps Si. The Impactor then collides with the proto-earth, causing vaporisation of both the Impactor and a substantial portion of the earth's mantle. Most of this material recondenses to the earth, but some forms the moon. The Impactor adds most of the complement of the siderophile elements of the present mantle in an oxidized form. The oxidation state of the mantle is set near to its present, oxidized level. Finally, the addition of a late veneer, of composition similar to that of the H-group ordinary chondrites, accounts for the complement of the highly siderophile elements of the present mantle. The model accounts at least semi-quantitatively for the siderophile element abundances of the present mantle. Implications for the composition of the earth's core are discussed; the model predicts that neither S, O, nor Si should be present in sufficient quantities to provide the required light element in the core, whose identity, therefore, remains enigmatic

  2. Solar rotation effects on the thermospheres of Mars and Earth. (United States)

    Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G


    The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

  3. Origin of the earth's moon: constraints from alkali volatile trace elements

    International Nuclear Information System (INIS)

    Kreutzberger, M.E.; Drake, M.J.; Jones, J.H.


    Although the Moon is depleted in volatile elements compared to the Earth, these depletions are not in accord with simple volatility. For example, the Cs/Rb ratios of the Earth and Moon inferred from basalts are approximately one seventh and one half of the CI ratio, respectively. Volatility considerations alone predict that the lunar Cs/Rb ratio should be equal to or lower than the terrestrial ratio if the Moon was derived entirely from Earth mantle material. Thus hypotheses such as rotational fission which invoke derivation of lunar material entirely from the Earth's mantle may be excluded. The collisional ejection hypothesis of lunar origin requires at least 18% of lunar material to be derived from a projectile with dehydrated CI composition to match the lunar Cs/Rb ratio, and 25% to 50% to match both the lunar Cs/Rb ratio and absolute concentrations of Cs and Rb. It remains to be demonstrated that this relatively large contribution of projectile material is consistent with other elemental abundances and element ratios in the Moon. (author)

  4. Extension of Earth-Moon libration point orbits with solar sail propulsion

    NARCIS (Netherlands)

    Heiligers, M.J.; Macdonald, Malcolm; Parker, Jeffrey S.


    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail

  5. Lunar Flight Study Series: Volume 4. Preliminary Investigation of the Astronautics of Earth - Moon Transits (United States)

    Braud, Nolan J.


    Preliminary information on flight profiles, velocity budgets and launch windows for Apollo and Support Vehicle flights is presented in this report. A newly conceived method of establishing a flight mechanical classification of the earth-moon transits is discussed. The results are empirical and are designed to contribute to the mission mode selection.

  6. Children's Concepts of the Shape and Size of the Earth, Sun and Moon (United States)

    Bryce, T. G. K.; Blown, E. J.


    Children's understandings of the shape and relative sizes of the Earth, Sun and Moon have been extensively researched and in a variety of ways. Much is known about the confusions which arise as young people try to grasp ideas about the world and our neighbouring celestial bodies. Despite this, there remain uncertainties about the conceptual models…

  7. "Earth, Sun and Moon": Computer Assisted Instruction in Secondary School Science--Achievement and Attitudes (United States)

    Ercan, Orhan; Bilen, Kadir; Ural, Evrim


    This study investigated the impact of a web-based teaching method on students' academic achievement and attitudes in the elementary education fifth grade Science and Technology unit, "System of Earth, Sun and Moon". The study was a quasi-experimental study with experimental and control groups comprising 54 fifth grade students attending…

  8. 7th Class Students' Opinions on Sun, Earth and Moon System (United States)

    Aydin, Suleyman


    This study is conducted to detect the students' perceptions on Sun, Moon and Earth (SME) system and define the 7th grade students' attitudes on the subject. In the study, since it was aimed to detect and evaluate the students' perceptions on some basic astronomical concepts without changing the natural conditions, a descriptive approach was…

  9. Diagrammatic Representational Constraints of Spatial Scale in Earth-Moon System Astronomy Instruction (United States)

    Taylor, Roger S.; Grundstrom, Erika D.


    Given that astronomy heavily relies on visual representations it is especially likely for individuals to assume that instructional materials, such as visual representations of the Earth-Moon system (EMS), would be relatively accurate. However, in our research, we found that images in middle-school textbooks and educational webpages were commonly…

  10. A half-century of terrestrial analog studies: From craters on the Moon to searching for life on Mars (United States)

    Léveillé, Richard


    Terrestrial analogs to the Moon and Mars have been used to advance knowledge in planetary science for over a half-century. They are useful in studies of comparative geology of the terrestrial planets and rocky moons, in astronaut training and testing of exploration technologies, and in developing hypotheses and exploration strategies in astrobiology. In fact, the use of terrestrial analogs can be traced back to the origins of comparative geology and astrobiology, and to the early phases of the Apollo astronaut program. Terrestrial analog studies feature prominently throughout the history of both NASA and the USGS' Astrogeology Research Program. In light of current international plans for a return missions to the Moon, and eventually to send sample return and manned missions to Mars, as well as the recent creation of various analog research and development programs, this historical perspective is timely.

  11. A taxonomy for the evolution of human settlements on the moon and Mars (United States)

    Roberts, Barney B.; Mandell, Humboldt C.


    A proposed structure is described for partnerships with shared interests and investments to develop the technology and approach for evolutionary surface systems for the moon and Mars. Five models are presented for cooperation with specific references to the technical evolutionary path of the surface systems. The models encompass the standard customer/provider relationship, a concept for exclusive government use, a joint venture with a government-sponsored non-SEI market, a technology joint-development approach, and a redundancy model to insure competitive pricing. The models emphasize the nonaerospace components of the settlement technologies and the decentralized nature of surface systems that make the project suitable for private industrial development by several companies. It is concluded that the taxonomy be considered when examining collaborative opportunities for lunar and Martian settlement.

  12. Developing Fabrication Technologies to Provide On Demand Manufacturing for Exploration of the Moon and Mars (United States)

    Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.


    NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.

  13. Japan's exploration of vertical holes and subsurface caverns on the Moon and Mars (United States)

    Haruyama, J.; Kawano, I.; Kubota, T.; Yoshida, K.; Kawakatsu, Y.; Kato, H.; Otsuki, M.; Watanabe, K.; Nishibori, T.; Yamamoto, Y.; Iwata, T.; Ishigami, G.; Yamada, T. T.


    Recently, gigantic vertical holes exceeding several tens of meters in diameter and depth were discovered on the Moon and Mars. Based on high-resolution image data, lunar holes and some Martian pits (called 'holes' hereafter) are probably skylights of subsurface caverns such as lava tubes or magma chambers. We are starting preparations for exploring the caverns through the vertical holes. The holes and subsurface caverns have high potential as resources for scientific studies. Various important geological and mineralogical processes could be uniquely and effectively observed inside these holes and subsurface caverns. The exposed fresh lava layers on the vertical walls of the lunar and Martian holes would provide information on volcanic eruption histories. The lava layers may also provide information on past magnetic fields of the celestial bodies. The regolith layers may be sandwiched between lava layers and may preserve volatile elements including solar wind protons that could be a clue to understanding past solar activities. Water molecules from solar winds or cometary/meteorite impacts may be stored inside the caverns because of mild temperatures there. The fresh lava materials forming the walls and floors of caverns might trap endogenic volatiles from magma eruptions that will be key materials for revealing the formation and early evolution of the Moon and Mars. Furthermore, the Martian subsurface caverns are highly expected to be life cradles where the temperatures are probably stable and that are free from ultra-violet and other cosmic rays that break chemical bonds, thus avoiding polymerization of molecules. Discovering extraterrestrial life and its varieties is one of our ultimate scientific purposes for exploring the lunar and Martian subsurface caverns. In addition to scientific interests, lunar and Martian subsurface caverns are excellent candidates for future lunar bases. We expect such caverns to have high potential due to stable temperatures; absence

  14. A mission to Mercury and a mission to the moons of Mars (United States)


    Two Advanced Design Projects were completed this academic year at Penn State - a mission to the planet Mercury and a mission to the moons of Mars (Phobos and Deimos). At the beginning of the fall semester the students were organized into six groups and given their choice of missions. Once a mission was chosen, the students developed conceptual designs. These designs were then evaluated at the end of the fall semester and combined into two separate mission scenarios. To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form two mission teams. An integration team consisting of two members from each group was formed for each mission team so that communication and exchange of information would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Lewis Research Center Advanced Projects Office. Robotic planetary missions throughout the solar system can be considered valuable precursors to human visits and test beds for innovative technology. For example, by studying the composition of the Martian moons, scientists may be able to determine if their resources may be used or synthesized for consumption during a first human visit.

  15. Fuel optimization for low-thrust Earth-Moon transfer via indirect optimal control (United States)

    Pérez-Palau, Daniel; Epenoy, Richard


    The problem of designing low-energy transfers between the Earth and the Moon has attracted recently a major interest from the scientific community. In this paper, an indirect optimal control approach is used to determine minimum-fuel low-thrust transfers between a low Earth orbit and a Lunar orbit in the Sun-Earth-Moon Bicircular Restricted Four-Body Problem. First, the optimal control problem is formulated and its necessary optimality conditions are derived from Pontryagin's Maximum Principle. Then, two different solution methods are proposed to overcome the numerical difficulties arising from the huge sensitivity of the problem's state and costate equations. The first one consists in the use of continuation techniques. The second one is based on a massive exploration of the set of unknown variables appearing in the optimality conditions. The dimension of the search space is reduced by considering adapted variables leading to a reduction of the computational time. The trajectories found are classified in several families according to their shape, transfer duration and fuel expenditure. Finally, an analysis based on the dynamical structure provided by the invariant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth-Moon and Sun-Earth is presented leading to a physical interpretation of the different families of trajectories.

  16. Our Place in Space: Exploring the Earth-Moon System and Beyond with NASA's CINDI E/PO Program (United States)

    Urquhart, M. L.; Hairston, M. R.


    Where does space begin? How far is the Moon? How far is Mars? How does our dynamic star, the Sun, affect its family of planets? All of these questions relate to exploration of our Solar System, and are also part of the Education/Public Outreach (E/PO) Program for NASA’s CINDI project, a space weather mission of opportunity. The Coupled Ion Neutral Dynamics Investigation has been flying aboard the US Air Force Communication/Navigation Outage Forecast System (C/NOFS) satellite in the upper atmosphere of the Earth since April 2008. The Earth’s ionosphere, the part of the atmosphere CINDI studies, is also in space. The CINDI E/PO program uses this fact in lessons designed to help students in middle schools and introductory astronomy classes develop a sense of their place in space. In the activity "How High is Space?" students’ start by building an 8-page scale model of the Earth’s atmosphere with 100 km/page. The peak of Mount Everest, commercial airplanes, and the tops of thunderheads all appear at the bottom of the first page of the model, with astronaut altitude -where space begins- at the top of the same sheet of paper. In "Where Would CINDI Be?" the idea of scale is further developed by modeling the Earth-Moon system to scale first in size, then in distance, using half of standard containers of play dough. With a lowest altitude of about 400 km, similar to that of the International Space Station and orbiting Space Shuttle, CINDI is close to the Earth when compared with the nearly thousand times greater distance to the Moon. Comparing and combining the atmosphere and Earth-Moon system models help reinforce ideas of scale and build student understanding of how far away the Moon actually is. These scale models have also been adapted for use in Family Science Nights, and to include the planet Mars. In this presentation, we will show how we use CINDI’s scale modeling activities and others from our broader space sciences E/PO program in formal and informal

  17. Autonomous Mars ascent and orbit rendezvous for earth return missions (United States)

    Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.


    The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.

  18. Aspects of the atmospheric surface layers on Mars and Earth

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Landberg, L.


    and mean flow on Mars is found to obey the same scaling laws as on Earth. The largest micrometeorological differences between the two atmospheres are associated with the low air density of the Martian atmosphere. Together with the virtual absence of water vapour, it reduces the importance...

  19. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars (United States)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.


    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  20. Investigations of Water-Bearing Environments on the Moon and Mars (United States)

    Mitchell, Julie

    Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water. Permanently shadowed regions (PSRs) at the lunar poles may contain substantial water ice, but radar signatures at PSRs could indicate water ice or large block populations. Mini-RF radar and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) products were used to assess block abundances where radar signatures indicated potential ice deposits. While the majority of PSRs in this study indicated large block populations and a low likelihood of water ice, one crater--Rozhdestvenskiy N--showed indirect indications of water ice in its interior. Chloride deposits indicate regions where the last substantial liquid water existed on Mars. Major ion abundances and expected precipitation sequences of terrestrial chloride brines could provide context for assessing the provenance of martian chloride deposits. Chloride minerals are most readily distinguished in the far-infrared (45+ microm), where their fundamental absorption features are strongest. Multiple chloride compositions and textures were characterized in far-infrared emission for the first time. Systematic variations in the spectra were observed; these variations will allow chloride mineralogy to be determined and large variations in texture to be constrained. In the present day, recurring slope lineae (RSL) may indicate water flow, but fresh water is not stable on Mars. However

  1. A Prototype Bucket Wheel Excavator for the Moon, Mars and Phobos (United States)

    Muff, T.; Johnson, L.; King, R.; Duke, M. B.


    Excavation of surface regolith material is the first step in processes to extract volatile materials from planetary surface regolith for the production of propellant and life support consumables. Typically, concentrations of volatiles are low, so relatively large amounts of material must be excavated. A bucket wheel excavator is proposed, which has the capability of continuous excavation, which is readily adapted to granular regolith materials as found on the Moon, in drift deposits on Mars, and probably on the surface of asteroids and satellites, such as Phobos. The bucket wheel excavator is relatively simple, compared to machines such as front end loaders. It also has the advantage that excavation forces are principally horizontal rather than vertical, which minimizes the need for excavator mass and suits it to operations in reduced gravity fields. A prototype small bucket wheel excavator has been built at approximately the scale of the rovers that are carried to Mars on the Mars Exploration Rover Mission. The prototype allows the collection of data on forces exerted and power requirements for excavation and will provide data on which more efficient designs can be based. At excavation rates in the vicinity of one rover mass of material excavated per hour, tests of the prototype demonstrate that the power required is largely that needed to operate the excavator hardware and not related strongly to the amount of material excavated. This suggests that the excavation rate can be much larger for the same excavation system mass. Work on this prototype is continuing on the details of transfer of material from the bucket wheel to an internal conveyor mechanism, which testing demonstrated to be problematic in the current design.

  2. Moon/Mars Landing Commemorative Release: Gusev Crater and Ma'adim Vallis (United States)


    On July 20, 1969, the first human beings landed on the Moon. On July 20, 1976, the first robotic lander touched down on Mars. This July 20th-- 29 years after Apollo 11 and 22 years since the Viking 1 Mars landing-- we take a look forward toward one possible future exploration site on the red planet.One of the advantages of the Mars Global Surveyor Mars Orbiter Camera (MOC) over its predecessors on the Viking and Mariner spacecraft is resolution. The ability to see-- resolve--fine details on the martian surface is key to planning future landing sites for robotic and, perhaps, human explorers that may one day visit the planet.At present, NASA is studying potential landing sites for the Mars Surveyor landers, rovers, and sample return vehicles that are scheduled to be launched in 2001, 2003, and 2005. Among the types of sites being considered for these early 21st Century landings are those with 'exobiologic potential'--that is, locations on Mars that are in some way related to the past presence of water.For more than a decade, two of the prime candidates suggested by various Mars research scientists are Gusev Crater and Ma'adim Vallis. Located in the martian southern cratered highlands at 14.7o S, 184.5o W, Gusev Crater is a large, ancient, meteor impact basin that--after it formed--was breached by Ma'adim Vallis.Viking Orbiter observations provided some evidence to suggest that a fluid--most likely, water--once flowed through Ma'adim Vallis and into Gusev Crater. Some scientists have suggested that there were many episodes of flow into Gusev Crater (as well as flow out of Gusev through its topographically-lower northwestern rim). Some have also indicated that there were times when Ma'adim Vallis, also, was full of water such that it formed a long, narrow lake.The possibility that water flowed into Gusev Crater and formed a lake has led to the suggestion that the materials seen on the floor of this crater--smooth-surfaced deposits, buried craters, and huge mesas near

  3. Simulating the Phases of the Moon Shortly after Its Formation (United States)

    Noordeh, Emil; Hall, Patrick; Cuk, Matija


    The leading theory for the origin of the Moon is the giant impact hypothesis, in which the Moon was formed out of the debris left over from the collision of a Mars sized body with the Earth. Soon after its formation, the orbit of the Moon may have been very different than it is today. We have simulated the phases of the Moon in a model for its…

  4. Mars at Opposition (United States)

    Riddle, Bob


    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  5. Permanent Habitats in Earth-Sol/Mars-Sol Orbit Positions (United States)

    Greenspon, J.

    Project Outpost is a manned Earth-Sol/Mars-Sol platform that enables permanent occupation in deep space. In order to develop the program elements for this complex mission, Project Outpost will rely primarily on existing/nearterm technology and hardware for the construction of its components. For the purposes of this study, four mission requirements are considered: 1. Outpost - Man's 1st purpose-produced effort of space engineering, in which astructure is developed/constructed in an environment completely alien to currentpractices for EVA guidelines. 2. Newton - a concept study developed at StarGate Research, for the development ofa modified Hohmann personnel orbital transport operating between Earth andMars. Newton would serve as the primary crew delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization. 3. Cruis - a concept study developed at StarGate Research, for the development of amodified Hohmann cargo orbital transport operating between Earth and Mars.Cruis would serve as the primary equipment delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization, and 4. Ares/Diana - a more conventional space platform configuration for Lunar andMars orbit is included as a construction baseline. The operations of these assetsare supported, and used for the support, of the outpost. Outpost would be constructed over a 27-year period of launch opportunities into Earth-Sol or Mars-Sol Lagrange orbit (E-S/M-S L1, 4 or 5). The outpost consists of an operations core with a self-contained power generation ability, a docking and maintenance structure, a Scientific Research complex and a Habitation Section. After achieving initial activation, the core will provide the support and energy required to operate the outpost in a 365

  6. Reducing greenhouses and the temperature history of earth and Mars (United States)

    Sagan, C.


    It has been suggested that NH3 and other reducing gases were present in the earth's primitive atmosphere, enhancing the global greenhouse effect; data obtained through isotopic archeothermometry support this hypothesis. Computations have been applied to the evolution of surface temperatures on Mars, considering various bolometric albedos and compositions. The results are of interest in the study of Martian sinuous channels which may have been created by aqueous fluvial errosion, and imply that clement conditions may have previously occurred on Mars, and may occur in the future.

  7. An Alternative view of Earth's Tectonics : The Moon's explosive origin out of SE Asia. (United States)

    Coleman, P. F.


    A lunar birth scar is typically considered untenable, under the standard paradigm (GTS-4.6-0 Ga, Giant Impact/Plate Tectonics), since it would have been erased by a combination of Wilson recycling, and erosion. This paradigm, while supported by robust, absolute dating, is still provisional, and, like all scientifc paradigms, is nonetheless open to refutation. It cannot, a priori, rule out such a scar. If empirical evidence were to be discovered, in favor of a lunar birthmark, it would have profound implications for the standard view. Coleman (2015) proposed an alternative paradigm based on an internal explosion of Proto-Earth (PE) that ejected the Moon into orbit and left coeval global signatures, such as; ocean-continent antipodality, the global geoid, origin of water, continents, trenches, fault lines, LIPs, hotspots, seamount chains, from the high TP shock/seismic waves. The abrupt deceleration also led to inertial effects of PE's crustal layers, possibly explaining subduction/obduction and fold and thrust fold belts. One major, first order, line of evidence is the actual fission signature ( 4000+ km long) where the Moon was explosively thrust tangentially (to the core) through ductile mantle (see Fig B) to escape into orbit. The proposed path, (locus Moon's center) is from (0°, 78.5°E) (Fig A), near present day India, to (+14.4°, 119°E) out of SE Asia (See Fig C). Possible evidence in favor of this path (but not limited to) include: the Indian Geoid Anomaly Low ( Moon's exhumation?), the Himalayas and Tibetan Plateau (generated by the Moon's NE collisional movement and temporary hole and mantle rebound), SE Asia with many minor plates and back arc basins ( the Moon's exit zone), the East African Rifts (EARs) form a NE-directed pull apart region (explained as a set explosive crustal fragments or "plates") moving towards this relic unconsolidated Asian sink hole (See Fig D). The existence of a fossilised lunar birth points to a recent Earth-Moon, since

  8. Drilling on the Moon and Mars: Developing the Science Approach for Subsurface Exploration with Human Crews (United States)

    Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.


    DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the

  9. On the Tidal Evolution of the Earth-Moon System: A Cosmological Model

    Directory of Open Access Journals (Sweden)

    Arbab A. I.


    Full Text Available We have presented a cosmological model for the tidal evolution of the Earth-Moon system. We have found that the expansion of the universe has immense consequences on our local systems. The model can be compared with the present observational data. The close approach problem inflicting the known tidal theory is averted in this model. We have also shown that the astronomical and geological changes of our local systems are of the order of Hubble constant.

  10. EarthMars Similarity Criteria for Martian Vehicles

    Directory of Open Access Journals (Sweden)

    Octavian TRIFU


    Full Text Available In order to select the most efficient kind of a martian exploring vehicle, the similarity criteria are deduced from the equilibrium movement in the terrestrial and martian conditions. Different invariants have been obtained for the existing (entry capsules, parachutes and rovers and potential martian exploring vehicles (lighter-than-air vehicle, airplane, helicopter and Mars Jumper. These similarity criteria, as non dimensional numbers, allow to quickly compare if such a kind of vehicles can operate in the martian environment, the movement performances, the necessary geometrical dimensions and the power consumption. Following this way of study it was concluded what vehicle is most suitable for the near soil Mars exploration. “Mars Rover” has less power consumption on Mars, but due to the rugged terrain the performances are weak. A vacuumed rigid airship is possible to fly with high performances and endurance on Mars, versus the impossibility of such a machine on the Earth. Due to very low density and the low Reynolds numbers in the Mars atmosphere, the power consumption for the martian airplane or helicopter, is substantial higher. The most efficient vehicle for the Mars exploration it seems to be a machine using the in-situ non-chemical propellants: the 95% CO2 atmosphere and the weak solar radiation. A small compressor, electrically driven by photovoltaics, compresses the gas in a storage tank, in time. If the gas is expanded through a nozzle, sufficient lift and control forces are obtained for a VTOL flight of kilometers over the martian soil, in comparison with tens of meters of the actual Mars rovers.

  11. Changing inclination of earth satellites using the gravity of the moon

    Directory of Open Access Journals (Sweden)

    Karla de Souza Torres


    Full Text Available We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its nominal semimajor axis and eccentricity using a bi-impulsive Hohmann-type maneuver. The satellite is assumed to start in a Keplerian orbit in the plane of the lunar orbit around the Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the inclination. A description of the close-approach maneuver is made in the three-dimensional space. Analytical equations based on the patched conics approach are used to calculate the variation in velocity, angular momentum, energy, and inclination of the satellite. Then, several simulations are made to evaluate the savings involved. The time required by those transfers is also calculated and shown.

  12. Effects of megascale eruptions on Earth and Mars (United States)

    Thordarson, T.; Rampino, M.; Keszthelyi, L.P.; Self, S.


    Volcanic features are common on geologically active earthlike planets. Megascale or "super" eruptions involving >1000 Gt of magma have occurred on both Earth and Mars in the geologically recent past, introducing prodigious volumes of ash and volcanic gases into the atmosphere. Here we discuss felsic (explosive) and mafi c (flood lava) supereruptions and their potential atmospheric and environmental effects on both planets. On Earth, felsic supereruptions recur on average about every 100-200,000 years and our present knowledge of the 73.5 ka Toba eruption implies that such events can have the potential to be catastrophic to human civilization. A future eruption of this type may require an unprecedented response from humankind to assure the continuation of civilization as we know it. Mafi c supereruptions have resulted in atmospheric injection of volcanic gases (especially SO2) and may have played a part in punctuating the history of life on Earth. The contrast between the more sustained effects of flood basalt eruptions (decades to centuries) and the near-instantaneous effects of large impacts (months to years) is worthy of more detailed study than has been completed to date. Products of mafi c supereruptions, signifi cantly larger than known from the geologic record on Earth, are well preserved on Mars. The volatile emissions from these eruptions most likely had global dispersal, but the effects may not have been outside what Mars endures even in the absence of volcanic eruptions. This is testament to the extreme variability of the current Martian atmosphere: situations that would be considered catastrophic on Earth are the norm on Mars. ?? 2009 The Geological Society of America.

  13. Children's Concepts of the Shape and Size of the Earth, Sun and Moon (United States)

    Bryce, T. G. K.; Blown, E. J.


    Children's understandings of the shape and relative sizes of the Earth, Sun and Moon have been extensively researched and in a variety of ways. Much is known about the confusions which arise as young people try to grasp ideas about the world and our neighbouring celestial bodies. Despite this, there remain uncertainties about the conceptual models which young people use and how they theorise in the process of acquiring more scientific conceptions. In this article, the relevant published research is reviewed critically and in-depth in order to frame a series of investigations using semi-structured interviews carried out with 248 participants aged 3-18 years from China and New Zealand. Analysis of qualitative and quantitative data concerning the reasoning of these subjects (involving cognitive categorisations and their rank ordering) confirmed that (a) concepts of Earth shape and size are embedded in a 'super-concept' or 'Earth notion' embracing ideas of physical shape, 'ground' and 'sky', habitation of and identity with Earth; (b) conceptual development is similar in cultures where teachers hold a scientific world view and (c) children's concepts of shape and size of the Earth, Sun and Moon can be usefully explored within an ethnological approach using multi-media interviews combined with observational astronomy. For these young people, concepts of the shape and size of the Moon and Sun were closely correlated with their Earth notion concepts and there were few differences between the cultures despite their contrasts. Analysis of the statistical data used Kolmogorov-Smirnov Two-Sample Tests with hypotheses confirmed at K-S alpha level 0.05; rs : p < 0.01.

  14. Evolution of the earliest mantle caused by the magmatism-mantle upwelling feedback: Implications for the Moon and the Earth (United States)

    Ogawa, M.


    The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.

  15. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond (United States)

    Boston, Penelope Jane


    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  16. AVGS, AR and D for Satellites, ISS, the Moon, Mars and Beyond (United States)

    Hintze, Geoffrey C.; Cornett, Keith G.; Rahmatipour, Michael H.; Heaton, Andrew F.; Newman, Larry E.; Fleischmann, Kevin D.; Hamby, Byron J.


    With the continuous need to rotate crew and re-supply the International Space Station (ISS) and the desire to return humans to the Moon and for the first time, place humans on Mars, NASA must develop a more robust and highly reliable capability to perform Autonomous Rendezvous and Capture (AR&C) because, unlike the Apollo missions, NASA plans to send the entire crew to the Lunar or Martian surface and must be able to dock with the Orion spacecraft upon return. In 1997, NASA developed the Video Guidance Sensor (VGS) which was flown and tested on STS-87 and STS-95. In 2001, NASA designed and built a more enhanced version of the VGS, called the Advanced Video Guidance Sensor (AVGS). The AVGS offered significant technology improvements to the precursor VGS design. This paper will describe the AVGS as it was in the DART mission of 2005 and the Orbital Express mission of 2007. The paper will describe the capabilities and design concepts of the AVGS as it was flown on the DART 2005 Mission and the DARPA Orbital Express Mission slated to fly in 2007. The paper will cover the Flight Software, problems encountered, testing for Orbital Express and where NASA is going in the future.

  17. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon


    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  18. Analogue Simulation of human and psychosocial factors for MoonMars bases (United States)

    Davidová, Lucie; Foing, Bernard


    Several courageous plans regarding future human space exploration have been proposed. Both main future targets, ESA's Moon village, as well as journey to Mars represent huge challenge for humans. Appropriate research on psychological aspects of humans in extreme conditions is needed. Analogue simulations represent valuable source of information that help us to understand how to provide an adequate support to astronauts in specific conditions of isolation and limited resources. The psychosocial investigation was designed to builds on combination of several methods based on subjective as well as objective assessments, namely observation, sociomapping, content analysis of interviews etc. Research on several simulations provided lessons learned and various insights. The attention was paid particularly to the interpersonal interactions among crew members, intragroup as well as intergroup communication, cooperation, and performance. This comprehensive approach enables early detection of hidden structures and potential insufficiencies of an astronaut team. The sociomapping of interpersonal communication as well as analysis of interviews with participants revealed insufficiencies especially in communication between the analogue astronauts and mission control. Another important finding was gain by investigation of the relationship between the astronaut crew and mission control. Astronauts low trust to mission control can have a great negative impact to the performance and well-being of astronauts. The findings of the psychosocial studies are very important for designing astronaut training and planning future mission.

  19. Overview of the Mars Sample Return Earth Entry Vehicle (United States)

    Dillman, Robert; Corliss, James


    NASA's Mars Sample Return (MSR) project will bring Mars surface and atmosphere samples back to Earth for detailed examination. Langley Research Center's MSR Earth Entry Vehicle (EEV) is a core part of the mission, protecting the sample container during atmospheric entry, descent, and landing. Planetary protection requirements demand a higher reliability from the EEV than for any previous planetary entry vehicle. An overview of the EEV design and preliminary analysis is presented, with a follow-on discussion of recommended future design trade studies to be performed over the next several years in support of an MSR launch in 2018 or 2020. Planned topics include vehicle size for impact protection of a range of sample container sizes, outer mold line changes to achieve surface sterilization during re-entry, micrometeoroid protection, aerodynamic stability, thermal protection, and structural materials selection.

  20. Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration (United States)

    Sanders, Gerald B.; Larson, William E.; Picard, Martin


    For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand

  1. RITD - Adapting Mars Entry, Descent and Landing System for Earth (United States)

    Haukka, H.; Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Finchenko, V.; Martynov, M.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.


    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface.

  2. The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond (United States)

    Boston, Penelope J.


    The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.

  3. Mars extant-life campaign using an approach based on Earth-analog habitats (United States)

    Palkovic, Lawrence A.; Wilson, Thomas J.


    The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.

  4. 21st century early mission concepts for Mars delivery and earth return (United States)

    Cruz, Manuel I.; Ilgen, Marc R.


    In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.

  5. MERI: an ultra-long-baseline Moon-Earth radio interferometer. (United States)

    Burns, J. O.

    Radiofrequency aperture synthesis, pioneered by Ryle and his colleagues at Cambridge in the 1960's, has evolved to ever longer baselines and larger arrays in recent years. The limiting resolution at a given frequency for modern ground-based very-long-baseline interferometry is simply determined by the physical diameter of the Earth. A second-generation, totally space-based VLB network was proposed recently by a group at the Naval Research Laboratory. The next logical extension of space-based VLBI would be a station or stations on the Moon. The Moon could serve as an outpost or even the primary correlator station for an extended array of space-based antennas.

  6. Converting the ISS to an Earth-Moon Transport System Using Nuclear Thermal Propulsion

    International Nuclear Information System (INIS)

    Paniagua, John; Maise, George; Powell, James


    Using Nuclear Thermal Propulsion (NTP), the International Space Station (ISS) can be placed into a cyclic orbit between the Earth and the Moon for 2-way transport of personnel and supplies to a permanent Moon Base. The ISS cycler orbit apogees 470,000 km from Earth, with a period of 13.66 days. Once a month, the ISS would pass close to the Moon, enabling 2-way transport between it and the surface using a lunar shuttle craft. The lunar shuttle craft would land at a desired location on the surface during a flyby and return to the ISS during a later flyby. At Earth perigee 7 days later at 500 km altitude, there would be 2-way transport between it and Earth's surface using an Earth shuttle craft. The docking Earth shuttle would remain attached to the ISS as it traveled towards the Moon, while personnel and supplies transferred to a lunar shuttle spacecraft that would detach and land at the lunar base when the ISS swung around the Moon. The reverse process would be carried out to return personnel and materials from the Moon to the Earth. The orbital mechanics for the ISS cycle are described in detail. Based on the full-up mass of 400 metric tons for the ISS, an ISP of 900 seconds, and a delta V burn of 3.3 km/sec to establish the orbit, 200 metric tons of liquid H-2 propellant would be required. The 200 metric tons could be stored in 3 tanks, each 8 meters in diameter and 20 meters in length. An assembly of 3 MITEE NTP engines would be used, providing redundancy if an engine were to fail. Two different MITEE design options are described. Option 1 is an 18,000 Newton, 100 MW engine with a thrust to weight ratio of 6.6/1; Option 2 is a 180,000 Newton, 1000 MW engine with a thrust to weight ratio of 23/1. Burn times to establish the orbit are ∼1 hour for the large 3 engine assembly, and 10 hours for the small 3 engine assembly. Both engines would use W-UO2 cermet fuel at ∼2750 K which has demonstrated the capability to operate for at least 50 hours in 2750 K hydrogen

  7. Basaltic caves at Craters of the Moon National Monument and Preserve as analogs for Mars (United States)

    Hinman, N. W.; Richardson, C. D.; McHenry, L.; Scott, J. R.


    Basaltic caves and lava tubes offer stable physicochemical conditions for formation of secondary minerals. Such features, putatively observed on Mars, intercept groundwater to weather country rock, leading to formation of secondary minerals. Further, caves are stable environments to search for evidence of past life, as they could offer protection from the oxidizing martian atmosphere. Searching for signs of life in a cave that could protect bio/organic compounds would preclude the need for risky drilling on Mars. Craters of the Moon National Monument (COM) offers an opportunity to study caves in Holocene iron-rich basalt flows to characterize secondary mineral deposits and search for organic compounds associated with secondary minerals; COM basalts are a good analog for martian basalts because of their high iron but other elements are higher at COM than on Mars. The Blue Dragon flow (~2.1 ka) contains the majority of the accessible caves and lava tubes. Two types of secondary mineral deposits were observed in these caves: ceiling coatings and crack or floor precipitates. Hematite, silica, and calcite comprise ceiling coatings. The crack and floor precipitates are white, efflorescent deposits in cavities along cave walls and ceilings or in localized mounds on cave floors. The secondary minerals in crack and floor precipitates are mainly thenardite and mirabilite with some minor concentrations of trona and/or burkeite. Organic compounds were found associated with the efflorescent deposits. Formation of the deposits is likely due to chemical leaching of basalt by meteoritic water. To test this, fluids collected from the ceiling and walls of the caves were analyzed. Solutions were modeled with the geochemical code, PHREEQC. The model tracked composition as water evaporated. Selected minerals were allowed to precipitate as they became oversaturated. Among the first minerals to become oversaturated were quartz and calcite, which are observed in ceiling deposits. Iron

  8. Impacts and tectonism in Earth and moon history of the past 3800 million years (United States)

    Stothers, Richard B.


    The moon's surface, unlike the Earth's, displays a comparatively clear record of its past bombardment history for the last 3800 Myr, the time since active lunar tectonism under the massive premare bombardment ended. From Baldwin's (1987) tabulation of estimated ages for a representative sample of large lunar craters younger than 3800 Ma, six major cratering episodes can be discerned. These six bombardment episodes, which must have affected the Earth too, appear to match in time the six major episodes of orogenic tectonism on Earth, despite typical resolution errors of +/- 100 Myr and the great uncertainties of the two chronologies. Since more highly resolved events during the Cenozoic and Mesozoic Eras suggest the same correlation, it is possible that large impacts have influenced plate tectonics and other aspects of geologic history, perhaps by triggering flood basalt eruptions.

  9. Is Mars a habitable environment for extremophilic microorganisms from Earth? (United States)

    Rettberg, Petra; Reitz, Guenther; Flemming, Hans-Curt; Bauermeister, Anja

    In the last decades several sucessful space missions to our neighboring planet Mars have deepened our knowledge about its environmental conditions substantially. Orbiters with intruments for remote sensing and landers with sophisticated intruments for in situ investigations resulted in a better understanding of Mars’ radiation climate, atmospheric composition, geology, and mineralogy. Extensive regions of the surface of Mars are covered with sulfate- and ferric oxide-rich layered deposits. These sediments indicate the possible existence of aqueous, acidic environments on early Mars. Similar environments on Earth harbour a specialised community of microorganisms which are adapted to the local stress factors, e.g. low pH, high concentrations of heavy metal ions, oligotrophic conditions. Acidophilic iron-sulfur bacteria isolated from such habitats on Earth could be considered as model organisms for an important part of a potential extinct Martian ecosystem or an ecosystem which might even exist today in protected subsurface niches. Acidithiobacillus ferrooxidans was chosen as a model organism to study the ability of these bacteria to survive or grow under conditions resembling those on Mars. Stress conditions tested included desiccation, radiation, low temperatures, and high salinity. It was found that resistance to desiccation strongly depends on the mode of drying. Biofilms grown on membrane filters can tolerate longer periods of desiccation than planktonic cells dried without any added protectants, and drying under anaerobic conditions is more favourable to survival than drying in the presence of oxygen. Organic compounds such as trehalose and glycine betaine had a positive influence on survival after drying and freezing. A. ferrooxidans was shown to be sensitive to high salt concentrations, ionizing radiation, and UV radiation. However, the bacteria were able to utilize the iron minerals in Mars regolith mixtures as sole energy source. The survival and growth of

  10. Mineral remains of early life on Earth? On Mars? (United States)

    Iberall, Robbins E.; Iberall, A.S.


    The oldest sedimentary rocks on Earth, the 3.8-Ga Isua Iron-Formation in southwestern Greenland, are metamorphosed past the point where organic-walled fossils would remain. Acid residues and thin sections of these rocks reveal ferric microstructures that have filamentous, hollow rod, and spherical shapes not characteristic of crystalline minerals. Instead, they resemble ferric-coated remains of bacteria. Because there are no earlier sedimentary rocks to study on Earth, it may be necessary to expand the search elsewhere in the solar system for clues to any biotic precursors or other types of early life. A study of morphologies of iron oxide minerals collected in the southern highlands during a Mars sample return mission may therefore help to fill in important gaps in the history of Earth's earliest biosphere. -from Authors

  11. Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars (United States)

    Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila


    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.

  12. Cell biology and biotechnology research for exploration of the Moon and Mars (United States)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to

  13. Dust: A major environmental hazard on the earth's moon

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Vaniman, D.; Lehnert, B.


    On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

  14. PLB, vertical tail, OMS pods above Earth with moon in distant background (United States)


    Payload bay (PLB) equipment, payloads, and experiments include remote manipulator system (RMS) stowed on port side sill longeron, Development Flight Instrument (DFI) pallet with High Capacity Heat Pipe Experiment, Special Philatelic Covers in two large storage (mail) boxes, Evaluation of Oxygen Interaction with Materials (EOIM) experiment trays, and Advanced Flexible Reusable Surface Insulation (AFRSI) blanket in foreground and Payload Flight Test Article (PFTA) behind DFI pallet. Vertical tail with orbital maneuvering system (OMS) pods at base points to Earth's cloud-covered surface with gibbous moon in distance.

  15. A flat array large telescope concept for use on the moon, earth, and in space (United States)

    Woodgate, Bruce E.


    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  16. The Biological Potential of Mars, the Early Earth, and Europa (United States)

    Jakosky, B. M.; Shock, E. L.


    The potential biomass that could have existed on Mars is constrained by the total amount of energy available to construct it. From an inventory of the available geochemical sources of energy, we estimate that, from the time of the onset of the visible geologic record 4 b.y. ago to the present, as much as 20 g/cm2 of biota could have been constructed. This is the same amount that could have been constructed from similar sources on the early Earth in only 100 m.y. This indicates that there likely was sufficient energy available to support an origin of life on Mars, but not sufficient energy to create a ubiquitous and lush biosphere. Similar calculations for Europa suggest that even less geochemical energy would have been available there.

  17. On the Nature of Earth-Mars Porkchop Plots (United States)

    Woolley, Ryan C.; Whetsel, Charles W.


    Porkchop plots are a quick and convenient tool to help mission designers plan ballistic trajectories between two bodies. Parameter contours give rise to the familiar 'porkchop' shape. Each synodic period the pattern repeats, but not exactly, primarily due to differences in inclination and non-zero eccentricity. In this paper we examine the morphological features of Earth-to-Mars porkchop plots and the orbital characteristics that create them. These results are compared to idealistic and optimized transfers. Conclusions are drawn about 'good' opportunities versus 'bad' opportunities for different mission applications.

  18. Mega-geomorphology: Mars vis a vis Earth (United States)

    Sharp, R. P.


    The areas of chaotic terrain, the giant chasma of the Valles Marineris region, the complex linear and circular depressions of Labyrinthus Noctis on Mars all suggest the possibility of large scale collapse of parts of the martian crust within equatorial and sub equatorial latitudes. It seems generally accepted that the above features are fossil, being perhaps, more than a billion years old. It is possible that parts of Earth's crust experienced similar episodes of large scale collapse sometime early in the evolution of the planet.

  19. Indirect Optimization of Three-Dimensional Multiple-Impulse Moon-to-Earth Transfers (United States)

    Shen, Hong-Xin; Casalino, Lorenzo


    This paper illustrates an indirect method to optimize multiple-impulse trajectories from circular lunar orbit to Earth. Optimization is performed in the circular restricted three-body problem, and the necessary optimality conditions are found through optimal control theory. In order to overcome the difficulty of initial adjoints estimation, a homotopic approach, which is based on an auxiliary optimization problem with known solution, is developed; this approach proves to be robust and efficient. Examples are presented for a range of lunar orbit orientations to assess the impact on velocity impulse requirements. Optimization results for trajectories with different number of impulses are also compared. The developed procedure can support fast and accurate evaluation of the transfer costs for Moon-to-Earth trajectories both in nominal conditions and for contingency plans.

  20. Designating Earth's Moon as a United Nations World Heritage Site - Permanently Protected from Commercial or Military Uses (United States)

    Steiner, R. G.


    This paper proposes that Earth's Moon, in its entirety, be designated a United Nations World Heritage Site (WHS), permanently protected from any and all commercial or military utilization and reserved exclusively for scientific and aesthetic purposes. The paper discusses: 1) the extraordinary importance of the Moon for science, culture, and religion - past, present and future; 2) the history of proposals to exploit the Moon for commercial and military purposes and the shortcomings of this colonial, exploitation paradigm; and 3) the necessity, policy mechanisms, and political dynamics of designating the Moon as a World Heritage Site, permanently protected from commercial and/or military uses. The first part of the paper discusses the extraordinary importance of the Moon as it exists today - as a scientific laboratory, a source of beauty and inspiration throughout human evolution, a source for artistic expression, and as an object that is considered sacred by many cultures. Next, the paper traces the history of specific proposals for the exploitation of the Moon for commercial and/or military purposes - including plans by the U.S. Air Force in 1959 to detonate a nuclear explosion on the Moon, proposals to strip-mine the lunar regolith for helium-3 and rocket-fuel hydrogen; construction of solar power plants to transmit energy to Earth, and proposals to use the lunar surface as a billboard upon which to project commercial advertisements visible from Earth. The profound ethical, legal, and scientific shortcomings of this exploitation paradigm are described as an emerging Extraterrestrial Manifest Destiny that we have a collective obligation to challenge and constrain. The paper proposes that space exploration be infused with an ethical commitment to compassion, reverence, conservation, and non-interference to abiotic and biotic systems alike; as opposed to the expansion and extraterrestrial imposition of the colonization, exploitation, domination, and despoliation

  1. Adapting Mars Entry, Descent and Landing System for Earth (United States)

    Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Guerrero, H.; Schmidt, W.; Haukka, H.; Finchenko, V.; Martynov, M.; Ostresko, B.; Ponomarenko, A.; Kazakovtsev, V.; Arruego, I.; Martin, S.; Siili, T.


    In 2001 - 2011 an inflatable Entry, Descent and Landing System (EDLS) for Martian atmosphere was developed by FMI and the MetNet team. This MetNet Mars Lander EDLS is used in both the initial deceleration during atmospheric entry and in the final deceleration before the semi-hard impact of the penetrator to Martian surface. The EDLS design is ingenious and its applicability to Earth's atmosphere is studied in the on-going project. In particular, the behavior of the system in the critical transonic aerodynamic (from hypersonic to subsonic) regime will be investigated. This project targets to analyze and test the transonic behavior of this compact and light weight payload entry system to Earth's atmosphere [1]. Scaling and adaptation for terrestrial atmospheric conditions, instead of a completely new design, is a favorable approach for providing a new re-entry vehicle for terrestrial space applications.

  2. On the paleo-magnetospheres of Earth and Mars (United States)

    Scherf, Manuel; Khodachenko, Maxim; Alexeev, Igor; Belenkaya, Elena; Blokhina, Marina; Johnstone, Colin; Tarduno, John; Lammer, Helmut; Tu, Lin; Guedel, Manuel


    The intrinsic magnetic field of a terrestrial planet is considered to be an important factor for the evolution of terrestrial atmospheres. This is in particular relevant for early stages of the solar system, in which the solar wind as well as the EUV flux from the young Sun were significantly stronger than at present-day. We therefore will present simulations of the paleo-magnetospheres of ancient Earth and Mars, which were performed for ˜4.1 billion years ago, i.e. the Earth's late Hadean eon and Mars' early Noachian. These simulations were performed with specifically adapted versions of the Paraboloid Magnetospheric Model (PMM) of the Skobeltsyn Institute of Nuclear Physics of the Moscow State University, which serves as ISO-standard for the Earth's magnetic field (see e.g. Alexeev et al., 2003). One of the input parameters into our model is the ancient solar wind pressure. This is derived from a newly developed solar/stellar wind evolution model, which is strongly dependent on the initial rotation rate of the early Sun (Johnstone et al., 2015). Another input parameter is the ancient magnetic dipole field. In case of Earth this is derived from measurements of the paleomagnetic field strength by Tarduno et al., 2015. These data from zircons are varying between 0.12 and 1.0 of today's magnetic field strength. For Mars the ancient magnetic field is derived from the remanent magnetization in the Martian crust as measured by the Mars Global Surveyor MAG/ER experiment. These data together with dynamo theory are indicating an ancient Martian dipole field strength in the range of 0.1 to 1.0 of the present-day terrestrial dipole field. For the Earth our simulations show that the paleo-magnetosphere during the late Hadean eon was significantly smaller than today, with a standoff-distance rs ranging from ˜3.4 to 8 Re, depending on the input parameters. These results also have implications for the early terrestrial atmosphere. Due to the significantly higher EUV flux, the

  3. Illumination Invariant Change Detection (iicd): from Earth to Mars (United States)

    Wan, X.; Liu, J.; Qin, M.; Li, S. Y.


    Multi-temporal Earth Observation and Mars orbital imagery data with frequent repeat coverage provide great capability for planetary surface change detection. When comparing two images taken at different times of day or in different seasons for change detection, the variation of topographic shades and shadows caused by the change of sunlight angle can be so significant that it overwhelms the real object and environmental changes, making automatic detection unreliable. An effective change detection algorithm therefore has to be robust to the illumination variation. This paper presents our research on developing and testing an Illumination Invariant Change Detection (IICD) method based on the robustness of phase correlation (PC) to the variation of solar illumination for image matching. The IICD is based on two key functions: i) initial change detection based on a saliency map derived from pixel-wise dense PC matching and ii) change quantization which combines change type identification, motion estimation and precise appearance change identification. Experiment using multi-temporal Landsat 7 ETM+ satellite images, Rapid eye satellite images and Mars HiRiSE images demonstrate that our frequency based image matching method can reach sub-pixel accuracy and thus the proposed IICD method can effectively detect and precisely segment large scale change such as landslide as well as small object change such as Mars rover, under daily and seasonal sunlight changes.

  4. Particle motion in atmospheric boundary layers of Mars and Earth (United States)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.


    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  5. The focusing effect of P-wave in the Moon's and Earth's low-velocity core. Analytical solution (United States)

    Fatyanov, A. G.; Burmin, V. Yu


    The important aspect in the study of the structure of the interiors of planets is the question of the presence and state of core inside them. While for the Earth this task was solved long ago, the question of whether the core of the Moon is in a liquid or solid state up to the present is debatable up to present. If the core of the Moon is liquid, then the velocity of longitudinal waves in it should be lower than in the surrounding mantle. If the core is solid, then most likely, the velocity of longitudinal waves in it is higher than in the mantle. Numerical calculations of the wave field allow us to identify the criteria for drawing conclusions about the state of the lunar core. In this paper we consider the problem of constructing an analytical solution for wave fields in a layered sphere of arbitrary radius. A stable analytic solution is obtained for the wave fields of longitudinal waves in a three-layer sphere. Calculations of the total wave fields and rays for simplified models of the Earth and the Moon with real parameters are presented. The analytical solution and the ray pattern showed that the low-velocity cores of the Earth and the Moon possess the properties of a collecting lens. This leads to the emergence of a wave field focusing area. As a result, focused waves of considerable amplitude appear on the surface of the Earth and the Moon. In the Earth case, they appear before the first PKP-wave arrival. These are so-called "precursors", which continue in the subsequent arrivals of waves. At the same time, for the simplified model of the Earth, the maximum amplitude growth is observed in the 147-degree region. For the Moon model, the maximum amplitude growth is around 180°.

  6. Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. (United States)

    Laskar, J; Gastineau, M


    It has been established that, owing to the proximity of a resonance with Jupiter, Mercury's eccentricity can be pumped to values large enough to allow collision with Venus within 5 Gyr (refs 1-3). This conclusion, however, was established either with averaged equations that are not appropriate near the collisions or with non-relativistic models in which the resonance effect is greatly enhanced by a decrease of the perihelion velocity of Mercury. In these previous studies, the Earth's orbit was essentially unaffected. Here we report numerical simulations of the evolution of the Solar System over 5 Gyr, including contributions from the Moon and general relativity. In a set of 2,501 orbits with initial conditions that are in agreement with our present knowledge of the parameters of the Solar System, we found, as in previous studies, that one per cent of the solutions lead to a large increase in Mercury's eccentricity-an increase large enough to allow collisions with Venus or the Sun. More surprisingly, in one of these high-eccentricity solutions, a subsequent decrease in Mercury's eccentricity induces a transfer of angular momentum from the giant planets that destabilizes all the terrestrial planets approximately 3.34 Gyr from now, with possible collisions of Mercury, Mars or Venus with the Earth.

  7. First simultaneous detection of terrestrial ionospheric molecular ions in the Earth's inner magnetosphere and at the Moon (United States)

    Dandouras, I.; Poppe, A. R.; Fillingim, M. O.; Kistler, L. M.; Mouikis, C. G.; Rème, H.


    First coordinated observation of escaping heavy molecular ions in the Earth's inner magnetosphere and at the Moon. Quantifying the underlying escape mechanisms is important in order to understand the long-term (billion years scale) evolution of the atmospheric composition, and in particular the evolution of the N/O ratio, which is essential for habitability. Terrestrial heavy ions, transported to the Moon, suggest also that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar regolith.

  8. Foundations for the post 2030 space economy: Cislunar and lunar infrastructure, Moon Village, Mars and planetary missions as markets. (United States)

    Beldavs, Vid; Dunlop, David; Crisafulli, Jim; Bernard, Foing


    Introduction: The International Lunar Decade (ILD)[1] is a framework for international collaboration from 2020 to 2030 to achieve the ultimate goal in space -- to open the space frontier. Key to opening a frontier is the capacity to "live off the land" through in situ resource utilization (ISRU). Activities in space will remain limited to exploration until ISRU becomes possible on an industrial scale. ISRU, the mining and use of resources on the Moon, asteroids, comets and other cosmic bodies will enable the opening of the space frontier for permanent occupancy and settlement. The capacity for ISRU creates the basis for a space economy where products and services are traded for resources, and increasingly sophisticated products can be produced from mined resources to help sustain life indefinitely. Enabling ISRU will require infrastructure - energy, transportation, and communications systems, as well as navigation, storage and other support services. However, regolith or other lunar/asteroid material will remain regolith until converted to a form useful to customers that will enable the development of markets. NASA's Mars journey, various planetary missions, and emerging operations on the lunar surface and at EML1 and EML2 will provide initial markets for ISRU. This paper will explore a scenario explaining how a self-sustaining space economy can be achieved by 2030, what kind of infrastructure will need to be developed, the role of NASA's Mars Journey in the creation of markets for ISRU, and the role of private-public partnership for financing the various building blocks of a self-sustaining space economy. Also dis-cussed will be the potential for a Moon Village to serve as a formative structure for the nucleation of elements of an emerging space economy, including its potential role as a forum for actors to play a role in the development of governance mechanisms that eventually would enable commercial and industrial development of the Moon. References: [1] Beldavs

  9. Mert Davies: Pioneer in the Use of Spacecraft to Map Earth and Mars (United States)

    Murray, B.; Augenstein, B.


    Mert Davies was one of the founding employees of the RAND Corporation in 1946, and continued that relationship until his death in 2001. He began his involvement in satellite imaging at Rand as one of about 100 researchers in Project Feedback in 1954, provided the basis for the initial US military space program. In 1957, in response to the Soviet launch of Sputnik, Mert and a small group of Rand cohorts proposed a family of recoverable reconnaissance satellites featuring spin stabilized cameras, for which he later received a patent. This work, now declassified, was for a short time considered as a basis for the Corona, America's first reconnaissance satellite Corona, although ultimately alternative technologies were employed. In addition he was looking beyond Earth quite early and in May, 1958 published an analysis of a lunar mapping satellite. The 1957 work at Rand spurred considerations of space-based geodesy and mapping. These and other early contributions were recognized in 1999 by the National Reconnaissance Office which honored him as one of the founders of national reconnaissance. He was so enthused by the opportunity developing in the mid 1960?s to explore photographically the planets that he changed careers and joined the Television Team of the Mariner probes being developed to flyby Mars in 1969 (Mariner's 6&7). His abilities and accomplishments there led directly to central roles later in the Mariner 9 Mars Orbiter mission (1971-72) as well as Mariner 10 to Mercury (1973-75) and Voyagers 1&2 (1979-89) These early flights to Mars represented unprecedented technical challenges, especially to radio communications. As a consequence, analog television systems, like that carried on the Ranger impact probe in 1964-65 or film readout technology like that used on Lunar Orbiter in 1965-66 to send back high-resolution images from the Moon were not feasible from planetary distances. In order to exploit the remarkable communication potential of the DSN, JPL

  10. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System (United States)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.


    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  11. Reducing greenhouses and the temperature history of Earth and Mars

    International Nuclear Information System (INIS)

    Sagan, C.


    The modern theory of stellar evolution implies that the Sun has increased in brightness by several tens per cent over geological time. Were all other global parameters held constant, this would imply that the mean temperature of the Earth was below the freezing point of seawater about 2 x 10 9 yr ago. There is, however, excellent geological and palaeontological evidence that there were extensive bodies of liquid water on the Earth between 3 and 4 x 10 9 yr ago. A possible solution to this puzzle is that the Earth's primitive atmosphere contained small quantities of NH 3 and other reducing gases which significantly enhanced the global 'greenhouse' effect. Cosmochemical considerations point strongly to a higher abundance of reduced constituents in the primitive than in the contemporary terrestrial atmosphere; and reduced atmospheric components such as NH 3 and CH 4 are required to understand the accumulation of prebiological organic compounds necessary for the origin of life between 3 and 4 x 10 9 yr ago. Similar arguments may apply to Mars. (author)

  12. Reducing greenhouses and the temperature history of Earth and Mars

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, C [Cornell Univ., Ithaca, N.Y. (USA). Lab. for Planetary Studies


    The modern theory of stellar evolution implies that the Sun has increased in brightness by several tens per cent over geological time. Were all other global parameters held constant, this would imply that the mean temperature of the Earth was below the freezing point of seawater about 2 x 10/sup 9/ yr ago. There is, however, excellent geological and palaeontological evidence that there were extensive bodies of liquid water on the Earth between 3 and 4 x 10/sup 9/ yr ago. A possible solution to this puzzle is that the Earth's primitive atmosphere contained small quantities of NH/sub 3/ and other reducing gases which significantly enhanced the global 'greenhouse' effect. Cosmochemical considerations point strongly to a higher abundance of reduced constituents in the primitive than in the contemporary terrestrial atmosphere; and reduced atmospheric components such as NH/sub 3/ and CH/sub 4/ are required to understand the accumulation of prebiological organic compounds necessary for the origin of life between 3 and 4 x 10/sup 9/ yr ago. Similar arguments may apply to Mars.

  13. Optimal Electromagnetic (EM) Geophysical Techniques to Map the Concentration of Subsurface Ice and Adsorbed Water on Mars and the Moon (United States)

    Stillman, D. E.; Grimm, R. E.


    Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected

  14. Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system (United States)

    Yuan, Jianping; Gao, Chen; Zhang, Junhua


    In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.

  15. Blueberries on Earth and Mars: Correlations Between Concretions in Navajo Sandstone and Terra Meridiani on Mars. (United States)

    Mahaney, W. C.; Milner, M. W.; Netoff, D.; Dohm, J.; Kalm, V.; Krinsley, D.; Sodhi, R. N.; Anderson, R. C.; Boccia, S.; Malloch, D.; Kapran, B.; Havics, A.


    Concretionary Fe-Mn-rich nodular authigenic constituents of Jurassic Navajo sandstone (moki marbles) bear a certain relationship to similar concretionary forms ('blueberries') observed on Mars. Their origin on Earth is considered to invoke variable redox conditions with underground fluids penetrating porous quartz-rich sandstone leading to precipitation of hematite and goethite-rich material from solution, generally forming around a central nucleus of fine particles of quartz and orthoclase, recently verified by XRD and SEM-EDS analyses. At the outer rim/inner nucleus boundary, bulbous lobes of fine-grained quartz often invade and fracture the outer rim armored matrix. The bulbous forms are interpreted to result from fluid explusion from the inner concretionary mass, a response to pressure changes accompanying overburden loading. Moki marbles, harder than enclosing rock, often weather out of in situ sandstone outcrops that form a surface lag deposit of varnished marbles that locally resemble desert pavement. The marbles appear morphologically similar to 'blueberries' identified on the martian surface in Terra Meridiani through the MER-1 Opportunity rover. On Earth, redox fluids responsible for the genesis of marbles may have emanated from deep in the crust (often influenced by magmatic processes). These fluids, cooling to ambient temperatures, may have played a role in the genesis of the cemented outer rim of the concretions. The low frequency of fungi filaments in the marbles, contrasts with a high occurrence in Fe-encrusted sands of the Navajo formation [1], indicating that microbial content is of secondary importance in marble genesis relative to the fluctuating influx of ambient groundwater. Nevertheless, the presence of filaments in terrestrial concretions hints at the possibility of discovering fossil/extant life on Mars, and thus should be considered as prime targets for future reconnaissance missions to Mars. 1] Mahaney, W.C., et al. (2004), Icarus, 171, 39-53.

  16. Field astrobiology research instruments and methods in moon-mars analogue site.

    NARCIS (Netherlands)

    Foing, B.H.; Stoker, C.; Zavaleta, J.; Ehrenfreund, P.; Sarrazin, P.; Blake, D.; Page, J.; Pletser, V.; Hendrikse, J.; Oliveira Lebre Direito, M.S.; Kotler, M.; Martins, Z.; Orzechowska, G.; Thiel, C.S.; Clarke, J.; Gross, J.; Wendt, L.; Borst, A.; Peters, S.; Wilhelm, M.-B.; Davies, G.R.; EuroGeoMars 2009 Team, ILEWG


    We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discuss the

  17. MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.


    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  18. LIDAR technology for measuring trace gases on Mars and Earth (United States)

    Riris, H.; Abshire, J. B.; Graham, Allan; Hasselbrack, William; Rodriguez, Mike; Sun, Xiaoli; Weaver, Clark; Mao, Jianping; Kawa, Randy; Li, Steve; Numata, Kenji; Wu, Stewart


    greenhouse gas and called for a mission to measure CO2, CO and CH4. Methane has absorptions in the mid-infrared (3.3 um) and the near infrared (1.65 um). The 3.3 um spectral region is ideal for planetary (Mars) Methane monitoring, but unfortunately is not suitable for earth monitoring since the Methane absorption lines are severely interfered with by water. The near infra-red overtones of Methane at 1.65 um are relatively free of interference from other atmospheric species and are suitable for Earth observations. The methane instrument uses Optical Parametric Generation (OPG) along with sensitive detectors to achieve the necessary sensitivity. Our instrument generates and detects tunable laser signals in the 3.3 or 1.65 um spectral regions with different detectors in order to measure methane on Earth or Mars. For Mars, the main interest in methane is its importance as a biogenic marker.

  19. Preliminary investigations on a NTP cargo shuttle for earth to moon orbit payload transfer based on a particle bed reactor

    International Nuclear Information System (INIS)

    Raepsaet, X.; Proust, E.; Gervaise, F.; Baraer, L.; Naury, S.; Linet, F.L.


    MAPS, a 3-year study program on NTP has recently been launched at CEA following the conclusions of a preliminary scoping study of an NTP system for earth to moon orbit cargo shuttle missions. This paper presents the main results of this scoping study, and gives an outline of the MAPS program. (authors). 5 figs., 11 tabs., 7 refs

  20. Preliminary investigations on a NTP cargo shuttle for earth to moon orbit payload transfer based on a particle bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raepsaet, X; Proust, E; Gervaise, F; Baraer, L; Naury, S; Linet, F L [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Bresson, C F; Coriolis, C.C. de; Bergeron, I T.A.; Bourquin, L V; Clech, L V; Devaux, L V; Chevillot, L V; Augier, E V [EAMEA, 50 - Cherbourg (France)


    MAPS, a 3-year study program on NTP has recently been launched at CEA following the conclusions of a preliminary scoping study of an NTP system for earth to moon orbit cargo shuttle missions. This paper presents the main results of this scoping study, and gives an outline of the MAPS program. (authors). 5 figs., 11 tabs., 7 refs.

  1. A Sun-Earth-Moon Activity to Develop Student Understanding of Lunar Phases and Frames of Reference (United States)

    Ashmann, Scott


    The Moon is an ever-present subject of observation, and it is a recurring topic in the science curriculum from kindergarten's basic observations through graduate courses' mathematical analyses of its orbit. How do students come to comprehend Earth's nearest neighbor? What is needed for them to understand the lunar phases and other phenomena and…

  2. Novel, Moon and Mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development. (United States)

    Manzano, Aránzazu; Herranz, Raúl; den Toom, Leonardus A; Te Slaa, Sjoerd; Borst, Guus; Visser, Martijn; Medina, F Javier; van Loon, Jack J W A


    Clinostats and Random Positioning Machine (RPM) are used to simulate microgravity, but, for space exploration, we need to know the response of living systems to fractional levels of gravity (partial gravity) as they exist on Moon and Mars. We have developed and compared two different paradigms to simulate partial gravity using the RPM, one by implementing a centrifuge on the RPM (RPM HW ), the other by applying specific software protocols to driving the RPM motors (RPM SW ). The effects of the simulated partial gravity were tested in plant root meristematic cells, a system with known response to real and simulated microgravity. Seeds of Arabidopsis thaliana were germinated under simulated Moon (0.17  g ) and Mars (0.38  g ) gravity. In parallel, seeds germinated under simulated microgravity (RPM), or at 1  g control conditions. Fixed root meristematic cells from 4-day grown seedlings were analyzed for cell proliferation rate and rate of ribosome biogenesis using morphometrical methods and molecular markers of the regulation of cell cycle and nucleolar activity. Cell proliferation appeared increased and cell growth was depleted under Moon gravity, compared with the 1  g control. The effects were even higher at the Moon level than at simulated microgravity, indicating that meristematic competence (balance between cell growth and proliferation) is also affected at this gravity level. However, the results at the simulated Mars level were close to the 1  g static control. This suggests that the threshold for sensing and responding to gravity alteration in the root would be at a level intermediate between Moon and Mars gravity. Both partial g simulation strategies seem valid and show similar results at Moon g -levels, but further research is needed, in spaceflight and simulation facilities, especially around and beyond Mars g levels to better understand more precisely the differences and constrains in the use of these facilities for the space biology community.

  3. Ultraviolet Observations of the Earth and Moon during the Juno Flyby (United States)

    Gladstone, R.; Versteeg, M. H.; Davis, M.; Greathouse, T. K.; Gerard, J. M.; Grodent, D. C.; Bonfond, B.


    We present the initial results from Juno-UVS observations of the Earth and Moon obtained during the flyby of the Juno spacecraft on 9 October 2013. Juno-UVS is an imaging spectrograph with a bandpass of 70dog-bone' shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate cross delay line detector with a solar blind UV-sensitive CsI photocathode, which makes up the instrument's focal plane. Tantalum surrounds the detector assembly to shield it from high-energy electrons. The detector electronics are located behind the detector. All other electronics are located in a box inside Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. The recent Earth flyby provided an opportunity to: 1) use observations of the lunar surface to improve flux and wavelength calibration at EUV wavelengths λ<91 nm (for which there are few stellar calibration options); 2) test the Juno spacecraft nadir-pulse system (which will be used at Jupiter to control scan mirror movements); 3) observe Earth airglow, aurora, and geocoronal emissions (for science interest); and 4) determine the effectiveness of the Ta shielding to high-energy particles (using dark observations made during Juno's passage through Earth's radiation belts). Preliminary results for each of these objectives will be presented.

  4. What would we miss if we characterized the Moon and Mars with just planetary meteorites, remote mapping, and robotic landers?. [Abstract only (United States)

    Lindstrom, M. M.


    Exploration of the Moon and planets began with telescopic studies of their surfaces, continued with orbiting spacecraft and robotic landers, and will culminate with manned exploration and sample return. For the Moon and Mars we also have accidental samples provided by impacts on their surfaces, the lunar and martian meteorites. How much would we know about the lunar surface if we only had lunar meteorites, orbital spacecraft, and robotic exploration, and not the Apollo and Luna returned samples? What does this imply for Mars? With martian meteorites and data from Mariner, Viking, and the future Pathfinder missions, how much could we learn about Mars? The basis of most of our detailed knowledge about the Moon is the Apollo samples. They provide ground truth for the remote mapping, timescales for lunar processes, and samples from the lunar interior. The Moon is the foundation of planetary science and the basis for our interpretation of the other planets. Mars is similar to the Moon in that impact and volcanism are the dominant processes, but Mars' surface has also been affected by wind and water, and hence has much more complex surface geology. Future geochemical or mineralogical mapping of Mars' surface should be able to tell us whether the dominant rock types of the ancient southern highlands are basaltic, anorthositic, granitic, or something else, but will not be able to tell us the detailed mineralogy, geochemistry, or age. Without many more martian meteorites or returned samples we will not know the diversity of martian rocks, and therefore will be limited in our ability to model martian geological evolution.

  5. Hints of Habitable Environments on Mars Challenge Our Studies of Mars-Analog Sites on Earth (United States)

    desMarais, David J


    Life as we know it requires water with a chemical activity (alpha) >or approx.0.6 and sources of nutrients and useful energy. Some biota can survive even if favorable conditions occur only intermittently, but the minimum required frequency of occurrences is poorly understood. Recent discoveries have vindicated the Mars exploration strategy to follow the water. Mars Global Surveyor s Thermal Emission Spectrometer (TES) found coarse-grained hematite at Meridiani Planum. Opportunity rover confirmed this and also found evidence of ancient sulfate-rich playa lakes and near-surface groundwater. Elsewhere, TES found evidence of evaporitic halides in topographic depressions. But alpha might not have approached 0.6 in these evaporitic sulfate- and halide-bearing waters. Mars Express (MEX) and Mars Reconnaissance Orbiter (MRO) found extensive sulfate evaporites in Meridiani and Valles Marineris. MEX found phyllosilicates at several sites, most notably Mawrth Valles and Nili Fossae. MRO's CRISM near-IR mapper extended the known diversity and geographic distribution of phyllosilicates to include numerous Noachian craters. Phyllosilicates typically occur at the base of exposed ancient rock sections or in sediments in early Hesperian craters. It is uncertain whether the phyllosilicates developed in surface or subsurface aqueous environments and how long aqueous conditions persisted. Spirit rover found remarkably pure ferric sulfate, indicating oxidation and transport of Fe and S, perhaps in fumaroles or hot springs. Spirit also found opaline silica, consistent with hydrothermal activity. CRISM mapped extensive silica deposits in the Valles Marineris region, consistent with aqueous weathering and deposition. CRISM also found ultramafic rocks and magnesite at Nili Fossae, consistent with serpentinization, a process that can sustain habitable environments on Earth. The report of atmospheric methane implies subsurface aqueous conditions. A working hypothesis is that aqueous

  6. Stationkeeping of Lissajous Trajectories in the Earth-Moon System with Applications to ARTEMIS (United States)

    Folta, D. C.; Pavlak, T. A.; Howell, K. C.; Woodard, M. A.; Woodfork, D. W.


    In the last few decades, several missions have successfully exploited trajectories near the.Sun-Earth L1 and L2 libration points. Recently, the collinear libration points in the Earth-Moon system have emerged as locations with immediate application. Most libration point orbits, in any system, are inherently unstable. and must be controlled. To this end, several stationkeeping strategies are considered for application to ARTEMIS. Two approaches are examined to investigate the stationkeeping problem in this regime and the specific options. available for ARTEMIS given the mission and vehicle constraints. (I) A baseline orbit-targeting approach controls the vehicle to remain near a nominal trajectory; a related global optimum search method searches all possible maneuver angles to determine an optimal angle and magnitude; and (2) an orbit continuation method, with various formulations determines maneuver locations and minimizes costs. Initial results indicate that consistent stationkeeping costs can be achieved with both approaches and the costs are reasonable. These methods are then applied to Lissajous trajectories representing a baseline ARTEMIS libration orbit trajectory.

  7. The problem of iron partition between Earth and Moon during simultaneous formation as a double planet system (United States)

    Cassidy, W. A.


    A planetary model is described which requires fractional vapor/liquid condensation, planet accumulation during condensation, a late start for accumulation of the Moon, and volatile accretion to the surfaces of each planet only near the end of the accumulation process. In the model, initial accumulation of small objects is helped if the agglomerating particles are somewhat sticky. Assuming that growth proceeds through this range, agglomeration continues. If the reservoir of vapor is being preferentially depleted in iron by fractional condensation, an iron-rich planetary core forms. As the temperature decreases, condensing material becomes progressively richer in silicates and poorer in iron, forming the silicate-rich mantle of an already differentiated Earth. A second center of agglomeration successfully forms near the growing Earth after most of the iron in the reservoir has been used up. The bulk composition of the Moon then is similar to the outer mantle of the accumulating Earth.

  8. Whole planet cooling and the radiogenic heat source contents of the earth and moon

    International Nuclear Information System (INIS)

    Schubert, G.; Stevenson, D.


    It is widely believed that the surface heat flows of the earth and moon provide good measures of the total amounts of radioactives in these bodies. Simple thermal evolution models, based on subsolidus whole mantle convection, indicate that this may not be the case. These models have been constructed assuming an initially hot state, but with a wide variety of choices for the parameters characterizing the rheology and convective vigor. All models are constrained to be consistent with present-day surface heat fluxes, and many of the terrestrial models are consistent with the mantle viscosities indicated by post-glacial rebound. For the earth the acceptable models give a radiogenic heat production that is only 65--85% of the surface heat output, the difference being due to secular cooling of the earth (about 50 0 --100 0 C per 10 9 years in the upper mantle). It is argued that the actual heat generation may be substantially less, since the models omit core heat, upward migration of heat sources, possible layering of the mantle, and deviations from steady convection. Geochemical models which are near to chondritic (apart from potassium depletion) are marginally consistent with surface heat flow. In the lunar models, heat generation is typically only 70--80% of the surface heat flow, even with allowance for the strong near-surface enhancement of radioactives. Despite the simplicity of the models the persistence of a significant difference between heat generation and heat output for a wide range of parameter choices indicates that this difference is real and should be incorporated in geochemical modeling of the planets

  9. Biomarkers as tracers for life on early earth and Mars (United States)

    Simoneit, B. R.; Summons, R. E.; Jahnke, L. L.


    Biomarkers in geological samples are products derived from biochemical (natural product) precursors by reductive and oxidative processes (e.g., cholestanes from cholesterol). Generally, lipids, pigments and biomembranes are preserved best over longer geological times and labile compounds such as amino acids, sugars, etc. are useful biomarkers for recent times. Thus, the detailed characterization of biomarker compositions permits the assessment of the major contributing species of extinct and/or extant life. In the case of the early Earth, work has progressed to elucidate molecular structure and carbon isotropic signals preserved in ancient sedimentary rocks. In addition, the combination of bacterial biochemistry with the organic geochemistry of contemporary and ancient hydrothermal ecosystems permits the modeling of the nature, behavior and preservation potential of primitive microbial communities. This approach uses combined molecular and isotopic analyses to characterize lipids produced by cultured bacteria (representative of ancient strains) and to test a variety of culture conditions which affect their biosynthesis. On considering Mars, the biomarkers from lipids and biopolymers would be expected to be preserved best if life flourished there during its early history (3.5-4 x 10(9) yr ago). Both oxidized and reduced products would be expected. This is based on the inferred occurrence of hydrothermal activity during that time with the concomitant preservation of biochemically-derived organic matter. Both known biomarkers (i.e., as elucidated for early terrestrial samples and for primitive terrestrial microbiota) and novel, potentially unknown compounds should be characterized.

  10. Mass Flux in the Ancient Earth-Moon System and Benign Implications for the Origin of Life on Earth (United States)

    Ryder, Graham


    The origin of life on Earth is commonly considered to have been negatively affected by intense impacting in the Hadean, with the potential for the repeated evaporation and sterilization of any ocean. The impact flux is based on scaling from the lunar crater density record, but that record has no tie to any absolute age determination for any identified stratigraphic unit older than approx. 3.9 Ga (Nectaris basin). The flux can be described in terms of mass accretion, and various independent means can be used to estimate the mass flux in different intervals. The critical interval is that between the end of essential crustal formation (approx. 4.4 Ga) and the oldest mare times (approx. 3.8 Ga). The masses of the basin-forming projectiles during Nectarian and early Imbrian times, when the last 15 of the approx.45 identified impact basins formed, can be reasonably estimated as minima. These in sum provide a minimum of 2 x 10(exp 21)g for the mass flux to the Moon during those times. If the interval was 80 million years (Nectaris 3.90 Ga, Orientale 3.82 Ga), then the flux was approx. 2 x 10(exp 13) g/yr over this period. This is higher by more than an order of magnitude than a flux curve that declines continuously and uniformly from lunar accretion to the rate inferred for the older mare plains. This rate cannot be extrapolated back increasingly into pre-Nectarian times, because the Moon would have added masses far in excess of itself in post-crust-formation time. Thus this episode was a distinct and cataclysmic set of events. There are approx. 30 pre-Nectarian basins, and they were probably part of the same cataclysm (starting at approx. 4.0 Ga?) because the crust is fairly intact, the meteoritic contamination of the pre-Nectarian crust is very low, impact melt rocks older than 3.92 Ga are virtually unknown, and ancient volcanic and plutonic rocks have survived this interval. The accretionary flux from approx. 4.4 to approx. 4.0 Ga was comparatively benign. When scaled

  11. Modulation of LISA free-fall orbits due to the Earth-Moon system

    Energy Technology Data Exchange (ETDEWEB)

    Cerdonio, Massimo; Marzari, Francesco [Department of Physics, University of Padova and INFN Padova, via Marzolo 8, I-35131 Padova (Italy); De Marchi, Fabrizio [Department of Physics, University of Trento and INFN Trento, I-38100 Povo (Trento) (Italy); De Pietri, Roberto [Department of Physics, University of Parma and INFN Parma I-43100 Parma (Italy); Jetzer, Philippe [Institute of Theoretical Physics, University of Zuerich, Winterhurerstrasse 190, 8057 Zuerich (Switzerland); Mazzolo, Giulio [Max Planck Institut fuer Gravitationsphysik, Callinstrasse 38, 30167 Hannover (Germany); Ortolan, Antonello [INFN Laboratori Nazionali di Legnaro, Viale dell' Universita 35020 Legnaro (Padova) (Italy); Sereno, Mauro, E-mail: fdemarchi@science.unitn.i [Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)


    We calculate the effect of the Earth-Moon (EM) system on the free-fall motion of LISA test masses. We show that the periodic gravitational pulling of the EM system induces a resonance with fundamental frequency 1 yr{sup -1} and a series of periodic perturbations with frequencies equal to integer harmonics of the synodic month ({approx_equal} 3.92 x 10{sup -7} Hz). We then evaluate the effects of these perturbations (up to the 6th harmonics) on the relative motions between each test mass couple, finding that they range between 3 mm and 10 pm for the 2nd and 6th harmonic, respectively. If we take the LISA sensitivity curve, as extrapolated down to 10{sup -6} Hz in Bender (2003 Class. Quantum Grav. 20 301-10), we obtain that a few harmonics of the EM system can be detected in the Doppler data collected by the LISA space mission. This suggests that the EM system gravitational near field could provide an additional crosscheck to the calibration of LISA, as extended to such low frequencies.

  12. Modulation of LISA free-fall orbits due to the Earth-Moon system

    International Nuclear Information System (INIS)

    Cerdonio, Massimo; Marzari, Francesco; De Marchi, Fabrizio; De Pietri, Roberto; Jetzer, Philippe; Mazzolo, Giulio; Ortolan, Antonello; Sereno, Mauro


    We calculate the effect of the Earth-Moon (EM) system on the free-fall motion of LISA test masses. We show that the periodic gravitational pulling of the EM system induces a resonance with fundamental frequency 1 yr -1 and a series of periodic perturbations with frequencies equal to integer harmonics of the synodic month (≅ 3.92 x 10 -7 Hz). We then evaluate the effects of these perturbations (up to the 6th harmonics) on the relative motions between each test mass couple, finding that they range between 3 mm and 10 pm for the 2nd and 6th harmonic, respectively. If we take the LISA sensitivity curve, as extrapolated down to 10 -6 Hz in Bender (2003 Class. Quantum Grav. 20 301-10), we obtain that a few harmonics of the EM system can be detected in the Doppler data collected by the LISA space mission. This suggests that the EM system gravitational near field could provide an additional crosscheck to the calibration of LISA, as extended to such low frequencies.

  13. Natural radioactivity of the rocks from the Moon and planets

    Energy Technology Data Exchange (ETDEWEB)

    Surkov, Yu.A. (AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)


    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient continent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts.

  14. Natural radioactivity of the rocks from the Moon and planets

    International Nuclear Information System (INIS)

    Surkov, Yu.A.


    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient contineent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts

  15. Size-Selective Modes of Aeolian Transport on Earth and Mars (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.; McLean, C. J.


    Aeolian sand transport is a dominant driver of surface change and dust emission on Mars. Estimates of aeolian sand transport on Earth and Mars rely on terrestrial transport models that do not differentiate between transport modes (e.g., creep vs. saltation), which limits estimates of the critical threshold for transport and the total sand flux during a transport event. A gap remains in understanding how the different modes contribute to the total sand flux. Experiments conducted at the MARtian Surface WInd Tunnel separated modes of transport for uniform and mixed grain size surfaces at Earth and Martian atmospheric pressures. Crushed walnut shells with a density of 1.0 gm/cm3 were used. Experiments resolved grain size distributions for creeping and saltating grains over 3 uniform surfaces, U1, U2, and U3, with median grain sizes of 308 µm, 721 µm, and 1294 µm, and a mixed grain size surface, M1, with median grain sizes of 519 µm. A mesh trap located 5 cm above the test bed and a surface creep trap were deployed to capture particles moving as saltation and creep. Grains that entered the creep trap at angles ≥ 75° were categorized as moving in creep mode only. Only U1 and M1 surfaces captured enough surface creep at both Earth and Mars pressure for statistically significant grain size analysis. Our experiments show that size selective transport differs between Earth and Mars conditions. The median grain size of particles moving in creep for both uniform and mixed surfaces are larger under Earth conditions. (U1Earth = 385 µm vs. U1Mars = 355 µm; M1Earth = 762 vs. M1Mars = 697 µm ). However, particles moving in saltation were larger under Mars conditions (U1Earth = 282 µm; U1Mars = 309 µm; M1Earth = 347 µm; M1Mars = 454 µm ). Similar to terrestrial experiments, the median size of surface creep is larger than the median grain size of saltation. Median sizes of U1, U2, U3 at Mars conditions for creep was 355 µm, 774 µm and 1574 µm. Saltation at Mars

  16. Radiation protection for human exploration of the moon and mars: Application of the mash code system

    International Nuclear Information System (INIS)

    Johnson, J.O.; Santoro, R.T.; Drischler, J.D.; Barnes, J.M.


    The Monte Carlo Adjoint Shielding code system -- MASH, developed for the Department of Defense for calculating radiation protection factors for armored vehicles against neutron and gamma radiation, has been used to assess the dose from reactor radiation to an occupant in a habitat on Mars. The capability of MASH to reproduce measured data is summarized to demonstrate the accuracy of the code. The estimation of the radiation environment in an idealized reactor-habitat model is reported to illustrate the merits of the adjoint Monte Carlo procedure for space related studies. The reactor radiation dose for different reactor-habitat surface configurations to a habitat occupant is compared with the natural radiation dose acquired during a 500-day Mars mission

  17. Blueberries on Earth and Mars: Some Correlations Between Andean Paleosols, Geothermal Pipes in Navajo Sandstone and Terra Meridiani on Mars (United States)

    Mahaney, W. C.; Milner, M. W.; Netoff, D. I.; Dohm, J. M.; Sodhi, R. N. S.; Aufreiter, S.; Hancock, R. G. V.; Bezada, M.; Kalm, V.; Malloch, D.


    The origin of "blueberries" on Mars and their relationship to similar concretionary forms on Earth invokes a process of variable redox conditions in underground fluids. The possible role of microorganisms in the origin of bluberries opens an avenue for biological investigations.

  18. Titanium stable isotope investigation of magmatic processes on the Earth and Moon (United States)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.


    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  19. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques (United States)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.


    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  20. Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System (B) Past, Present and Future of Small Body Science and Exploration (B0.4) (United States)

    Abell, Paul; Mazanek, Dan; Reeves, Dan; Chodas, Paul; Gates, Michele; Johnson, Lindley; Ticker, Ronald


    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human space flight missions. Today, human flight experience extends only to Low- Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human space flight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM).

  1. On the chronology of lunar origin and evolution. Implications for Earth, Mars and the Solar System as a whole (United States)

    Geiss, Johannes; Rossi, Angelo Pio


    An origin of the Moon by a Giant Impact is presently the most widely accepted theory of lunar origin. It is consistent with the major lunar observations: its exceptionally large size relative to the host planet, the high angular momentum of the Earth-Moon system, the extreme depletion of volatile elements, and the delayed accretion, quickly followed by the formation of a global crust and mantle. According to this theory, an impact on Earth of a Mars-sized body set the initial conditions for the formation and evolution of the Moon. The impact produced a protolunar cloud. Fast accretion of the Moon from the dense cloud ensured an effective transformation of gravitational energy into heat and widespread melting. A "Magma Ocean" of global dimensions formed, and upon cooling, an anorthositic crust and a mafic mantle were created by gravitational separation. Several 100 million years after lunar accretion, long-lived isotopes of K, U and Th had produced enough additional heat for inducing partial melting in the mantle; lava extruded into large basins and solidified as titanium-rich mare basalt. This delayed era of extrusive rock formation began about 3.9 Ga ago and may have lasted nearly 3 Ga. A relative crater count timescale was established and calibrated by radiometric dating (i.e., dating by use of radioactive decay) of rocks returned from six Apollo landing regions and three Luna landing spots. Fairly well calibrated are the periods ≈4 Ga to ≈3 Ga BP (before present) and ≈0.8 Ga BP to the present. Crater counting and orbital chemistry (derived from remote sensing in spectral domains ranging from γ- and x-rays to the infrared) have identified mare basalt surfaces in the Oceanus Procellarum that appear to be nearly as young as 1 Ga. Samples returned from this area are needed for narrowing the gap of 2 Ga in the calibrated timescale. The lunar timescale is not only used for reconstructing lunar evolution, but it serves also as a standard for chronologies of the

  2. Extraction of Volatiles from Regolith or Soil on Mars, the Moon, and Asteroids (United States)

    Linne, Diane; Kleinhenz, Julie; Trunek, Andrew; Hoffman, Stephen; Collins, Jacob


    NASA's Advanced Exploration Systems ISRU Technology Project is evaluating concepts to extract water from all resource types Near-term objectives: Produce high-fidelity mass, power, and volume estimates for mining and processing systems Identify critical challenges for development focus Begin demonstration of component and subsystem technologies in relevant environment Several processor types: Closed processors either partially or completely sealed during processing Open air processors operates at Mars ambient conditions In-situ processors Extract product directly without excavation of raw resource Design features Elimination of sweep gas reduces dust particles in water condensate Pressure maintained by height of soil in hopper Model developed to evaluate key design parameters Geometry: conveyor diameter, screw diameter, shaft diameter, flight spacing and pitch Operational: screw speed vs. screw length (residence time) Thermal: Heat flux, heat transfer to soil Testing to demonstrate feasibility and performance Agglomeration, clogging Pressure rise forced flow to condenser.

  3. Astrobiology in the Field: Studying Mars by Analogue Expeditions on Earth (United States)

    Conrad, Pamela G.


    We will present a strategy for how one prepares to engage in fieldwork on another planets by practicing in analogous environments on the Earth, including at Mono Lake. As an example, we will address the problem of how to study the habitability of an environment when you have no idea what kind of life might be there to exploit it. This will all be related to the upcoming launch of the Mars Science Laboratory to Mars in late November this year.

  4. Students' annotated drawings of Sun, Moon and Earth mediating teachers' professional development

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    A case study of a teacher examining her 4th graders’ conceptual understanding of factors causing day and night, seasons, and the phases of the Moon is presented. The teaching example and the data-collection are sourced from the Danish continuous professional development (CPD) project QUEST......-making model. The pre-teaching annotated drawings reveal several alternative conceptions, but based on the post-teaching drawings the teaching must be seen as rather efficient in most areas concerning challenging students’ alternative conceptions; however not in relation to the phases of the Moon. The teacher...

  5. Montgolfiere balloon missions from Mars and Titan (United States)

    Jones, Jack A.


    Montgolfieres, which are balloons that are filled with heated ambient atmospheric gas, appear promising for the exploration of Mars as well as of Saturn's moon, Titan. On Earth, Montgolfieres are also known as 'hot air balloons'. Commercial versions are typically heated by burning propane, although a number of radiant and solar-heated Montgolfieres have been flown on earth by CNES.

  6. Magnetic Fields of the Earth and Mars a Comparison and Discussion (United States)

    Taylor, Patrick T.


    In several aspects the magnetic fields of the Earth and Mars are similar but also different. In the past both bodies had planetary magnetic fields but while they Earth's field remains today the Martian ceased to operate, at some unknown time in the past, leaving this planet without a main or core field. This fact resulted in the interaction between the solar and interplanetary magnetic fields with the surfaces of these planets being very different. In addition, Mars has large crustal magnetic anomalies, nearly ten times larger than those on the Earth. Since crustal magnetic anomalies are the product of the thickness of the layer of magnetization, both the magnetizing material and the thickness of the layer of this material must be very different on Mars than Earth. Furthermore, the martian anomalies can only be produced by remanent or fossil magnetization, in contrast with the Earth where both induced and remanent magnetization are producing these anomalies. Crustal magnetic anomalies on the Earth are mainly produced by single-domain, irontitanium oxides, in the form of magnetite being the most common on Mars the main magnetic mineral(s) are unknown. The thickness of the martian magnetized layer in comparison with the Earth remains a major area for research. Determining the paleopole position for the Earth has been done by some of the earliest paleomagnetic researchers. Since we do not have oriented martian rock samples determining the paleopoles for Mars has been done by fitting a magnetization vector to individual magnetic anomalies. Several groups have worked on this problem with somewhat differing results.

  7. 'Mars-shine' (United States)


    [figure removed for brevity, see original site] 'Mars-shine' Composite NASA's Mars Exploration Rover Spirit continues to take advantage of favorable solar power conditions to conduct occasional nighttime astronomical observations from the summit region of 'Husband Hill.' Spirit has been observing the martian moons Phobos and Deimos to learn more about their orbits and surface properties. This has included observing eclipses. On Earth, a solar eclipse occurs when the Moon's orbit takes it exactly between the Sun and Earth, casting parts of Earth into shadow. A lunar eclipse occurs when the Earth is exactly between the Sun and the Moon, casting the Moon into shadow and often giving it a ghostly orange-reddish color. This color is created by sunlight reflected through Earth's atmosphere into the shadowed region. The primary difference between terrestrial and martian eclipses is that Mars' moons are too small to completely block the Sun from view during solar eclipses. Recently, Spirit observed a 'lunar' eclipse on Mars. Phobos, the larger of the two martian moons, was photographed while slipping into the shadow of Mars. Jim Bell, the astronomer in charge of the rover's panoramic camera (Pancam), suggested calling it a 'Phobal' eclipse rather than a lunar eclipse as a way of identifying which of the dozens of moons in our solar system was being cast into shadow. With the help of the Jet Propulsion Laboratory's navigation team, the Pancam team planned instructions to Spirit for acquiring the views shown here of Phobos as it entered into a lunar eclipse on the evening of the rover's 639th martian day, or sol (Oct. 20, 2005) on Mars. This image is a time-lapse composite of eight Pancam images of Phobos moving across the martian sky. The entire eclipse lasted more than 26 minutes, but Spirit was able to observe only in the first 15 minutes. During the time closest to the shadow crossing, Spirit's cameras were programmed to take images every 10 seconds. In the first three

  8. The Moon is a Planet Too: Lunar Science and Robotic Exploration (United States)

    Cohen, Barbara A.


    This slide presentation reviews some of what is known about the moon, and draws parallels between the moon and any other terrestrial planet. The Moon is a cornerstone for all rocky planets The Moon is a terrestrial body, formed and evolved similarly to Earth, Mars, Mercury, Venus, and large asteroids The Moon is a differentiated body, with a layered internal structure (crust, mantle, and core) The Moon is a cratered body, preserving a record of bombardment history in the inner solar system The Moon is an active body, experiencing moonquakes, releasing primordial heat, conducting electricity, sustaining bombardment, and trapping volatile molecules Lunar robotic missions provide early science return to obtain important science and engineering objectives, rebuild a lunar science community, and keep our eyes on the Moon. These lunar missions, both past and future are reviewed.

  9. The alkaline volcanic rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars (United States)

    Neakrase, L. D.; Lim, D. S. S.; Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Christensen, P. R.


    Idaho's Eastern Snake River Plain (ESRP) is host to extensive expressions of basaltic volcanism dominated by non evolved olivine tholeiites (NEOT) with localized occurrences of evolved lavas. Craters of the Moon National Monument (COTM) is a polygenetic lava field comprised of more than 60 lava flows emplaced during 8 eruptive periods spanning the last 15 kyrs. The most recent eruptive period (period A; 2500-2000 yr B.P.) produced flows with total alkali vs. silica classifications spanning basalt to trachyte. Coeval with the emplacement of the COTM period A volcanic pile was the emplacement of the Wapi and King's Bowl NEOT 70 km SSE of COTM along the Great Rift. Previous investigations have determined a genetic link between these two compositionally distinct volcanic centers where COTM compositions can be generated from NEOT melts through complex ascent paths and variable degrees of fractionation and assimilation of lower-middle crustal materials. The Mars Exploration Rover, Spirit, conducted a robotic investigation of Gusev crater from 2004-2010. Spirit was equipped with the Athena science payload enabling the determination of mineralogy (mini-Thermal Emission Spectrometer, Pancam multispectral camera, and Mössbauer spectrometer), bulk chemistry (Alpha Particle X-ray Spectrometer) and context (Pancam and Microscopic Imager). During sol 32 Spirit investigated an olivine basalt named Adirondack, the type specimen for a class of rock that composes much of the plains material within Gusev Crater and embays the Columbia Hills. Following the characterization of the plains material, Spirit departed the plains targeting the Columbia Hills and ascending at Husband Hill. During Spirit's ascent of Husband Hill three additional classes of volcanic rock were identified as distinct by their mini-TES spectra; Wishstone, Backstay and Irvine. These rocks are classified as tephrite, trachy-basalt and basalt, respectively, and are the first alkaline rocks observed on Mars. These

  10. Human/Automation Trade Methodology for the Moon, Mars and Beyond (United States)

    Korsmeyer, David J.


    It is possible to create a consistent trade methodology that can characterize operations model alternatives for crewed exploration missions. For example, a trade-space that is organized around the objective of maximizing Crew Exploration Vehicle (CEV) independence would have the input as a classification of the category of analysis to be conducted or decision to be made, and a commitment to a detailed point in a mission profile during which the analysis or decision is to be made. For example, does the decision have to do with crew activity planning, or life support? Is the mission phase trans-Earth injection, cruise, or lunar descent? Different kinds of decision analysis of the trade-space between human and automated decisions will occurs at different points in a mission's profile. The necessary objectives at a given point in time during a mission will call for different kinds of response with respect to where and how computers and automation are expected to help provide an accurate, safe, and timely response. In this paper, a consistent methodology for assessing the trades between human and automated decisions on-board will be presented and various examples discussed.

  11. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars (United States)

    Crumpler, L. S.


    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  12. "We Put on the Glasses and Moon Comes Closer!" Urban Second Graders Exploring the Earth, the Sun and Moon through 3D Technologies in a Science and Literacy Unit (United States)

    Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin


    This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that simulate day…

  13. Biota and biomolecules in extreme environments on Earth: implications for life detection on Mars. (United States)

    Aerts, Joost W; Röling, Wilfred F M; Elsaesser, Andreas; Ehrenfreund, Pascale


    The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids) occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces), particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars. The search for organic material and biosignatures on Mars is particularly challenging due to the hostile environment and its effect on organic compounds near the surface. In support of life detection on Mars, it is crucial to investigate analogue environments on Earth that resemble best past and present Mars conditions. Terrestrial extreme environments offer a rich source of information allowing us to determine how extreme conditions affect life and molecules associated with it. Extremophilic organisms have adapted to the most stunning conditions on Earth in environments with often unique geological and chemical features. One challenge in detecting biomarkers is to optimize extraction, since organic molecules can be low in abundance and can strongly adsorb to mineral surfaces. Methods and analytical tools in the field of life science are continuously improving. Amplification methods are very useful for the detection of low concentrations of genomic material but most other organic molecules are not prone to amplification methods. Therefore, a great deal depends on the extraction efficiency. The questions "what to look for", "where to look", and "how to look for it" require more of

  14. Biota and Biomolecules in Extreme Environments on Earth: Implications for Life Detection on Mars

    Directory of Open Access Journals (Sweden)

    Joost W. Aerts


    Full Text Available The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces, particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars. The search for organic material and biosignatures on Mars is particularly challenging due to the hostile environment and its effect on organic compounds near the surface. In support of life detection on Mars, it is crucial to investigate analogue environments on Earth that resemble best past and present Mars conditions. Terrestrial extreme environments offer a rich source of information allowing us to determine how extreme conditions affect life and molecules associated with it. Extremophilic organisms have adapted to the most stunning conditions on Earth in environments with often unique geological and chemical features. One challenge in detecting biomarkers is to optimize extraction, since organic molecules can be low in abundance and can strongly adsorb to mineral surfaces. Methods and analytical tools in the field of life science are continuously improving. Amplification methods are very useful for the detection of low concentrations of genomic material but most other organic molecules are not prone to amplification methods. Therefore, a great deal depends on the extraction efficiency. The questions “what to look for”, “where to look”, and “how to

  15. Analysis of Periodic Orbits about the Triangular Solutions of the Restricted Sum-Jupiter and Earth-Moon Problem

    Directory of Open Access Journals (Sweden)

    Sang-Young Park


    Full Text Available Using the numerical solution in the plane restricted problem of three bodies, about 490 periodic orbits are computed numerically around the L5 of Sun-Jupiter and about 1600 periodic orbits also be done around the L5 of Earth-Moon system. As period increase, the energy and the shape of periodic orbits increase around the L5 of Sun-Jupiter system. But, in Earth-Moon system, the complex shapes and dents appear around the L5 and periodic orbits intersect one another in the place where dents are shown. And there is a region that three different periodic orbits exist with the same period in this region. The regions can exist around the L5 of Sun-Jupiter system where periodic orbit can be unstable by perturbation of other force besides the gravitational force of Jupiter. These regions which is close to L5 are a ~5.12 AU and a ~5.29 AU. The Trojan asteroids that have a small eccentricity and inclination can not exist in this region.

  16. Detection of Crater Rims by Image Analysis in Very High Resolution Images of Mars, Mercury and the Moon (United States)

    Pina, P.; Marques, J. S.; Bandeira, L.


    The adaptive nature of automated crater detection algorithms permits achieving a high level of autonomous detections in different surfaces and consequently becoming an important tool in the update of crater catalogues. Nevertheless, the available approaches assume all craters as circular and only provide as output the radius and location of each crater. However, the delineation of impact craters following the local variability of the rims is also important to, among others, evaluate their degree of degradation or preservation, namely those studies related to ancient climate analysis. This contour determination is normally prepared in a manual way but can advantageously be done by image analysis methods, eliminating subjectivity and allowing large scale delineations. We have recently proposed a pair of independent approaches to tackle with this problem, one based on processing the crater image in polar coordinates [1], the other using morphological operators [2], which achieved a good degree of success on very high resolution images from Mars [3-4], but where enough room for improvement was still available. Thus, the integration of both approaches into a single one, suppressing the individual drawbacks of the previous approaches, permitted to strength the detection procedure. We describe now the novel sequence of processing that we have built and test it intensively in a wider variety of planetary surfaces, namely, those of Mars, Mercury and the Moon, using the very high resolution images provided by HiRISE, MDIS and LROC cameras. The automated delineations of the craters are compared to a ground-truth reference (manually delineated contours), so a quantitative evaluation can be performed; on a dataset constituted by more than one thousand impact craters we have obtained a global high delineation rate. The breakdown by crater size on each surface is performed. The whole processing procedure works on raster images and also delivers the output in the same image format

  17. Source-to-Sink: An Earth/Mars Comparison of Boundary Conditions for Eolian Dune Systems


    Kocurek, Gary; Ewing, Ryan C.


    Eolian dune fields on Earth and Mars evolve as complex systems within a set of boundary conditions. A source-to-sink comparison indicates that although differences exist in sediment production and transport, the systems largely converge at the dune-flow and pattern-development levels, but again differ in modes of accumulation and preservation. On Earth, where winds frequently exceed threshold speeds, dune fields are sourced primarily through deflation of subaqueous deposits as these sediments...

  18. Simulated stand tests and centrifuge training to prevent orthostatic intolerance on Earth, moon, and Mars. (United States)

    Coats, Brandon W; Sharp, M Keith


    One proposed method to overcome postflight orthostatic intolerance is for astronauts to undergo inflight centrifugation. Cardiovascular responses were compared between centrifuge and gravitational conditions using a seven-compartment cardiovascular model. Vascular resistance, heart rate, and stroke volume values were adopted from literature, while compartmental volumes and compliances were derived from impedance plethysmography of subjects (n=8) riding on a centrifuge. Three different models were developed to represent the typical male subject who completed a 10-min postflight stand test ("male finisher"), "non-finishing male" and "female" (all non-finishers). A sensitivity analysis found that both cardiac output and arterial pressure were most sensitive to total blood volume. Simulated stand tests showed that female astronauts were more susceptible to orthostatic intolerance due to lower initial blood pressure and higher pressure threshold for presyncope. Rates of blood volume loss by capillary filtration were found to be equivalent in female and male non-finishers, but four times smaller in male finishers. For equivalent times to presyncope during centrifugation as those during constant gravity, lower G forces at the level of the heart were required. Centrifuge G levels to match other cardiovascular parameters varied depending on the parameter, centrifuge arm length, and the gravity level being matched.

  19. A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus

    International Nuclear Information System (INIS)

    Wilson, L.; Lancaster Univ.; Head, J.W. III


    The silicate planets and satellites display a wide range of physical, chemical and atmospheric characteristics which may influence the nature of volcanism, a major geological process common to the evolution of the surfaces of these bodies. Consideration of the process of magma ascent and eruption from first principles allows predictions to be made concerning volcanic eruption styles and expected landforms and deposits on each planetary body. Examination of actual landforms and deposits in light of these predictions leads to a better understanding of the nature of volcanic eruption processes and outlines outstanding problems. (author)

  20. Manifold dynamics in the Earth-Moon system via isomorphic mapping with application to spacecraft end-of-life strategies (United States)

    Pontani, Mauro; Giancotti, Marco; Teofilatto, Paolo


    Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth-Moon system and in alternative multibody environments. With regard to lunar missions, exterior and interior transfers, based on the transit through the regions where the collinear libration points L1 and L2 are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is focused on the definition and use of a special isomorphic mapping for low-energy mission analysis. A convenient set of cylindrical coordinates is employed to describe the spacecraft dynamics (i.e. position and velocity), in the context of the circular restricted three-body problem, used to model the spacecraft motion in the Earth-Moon system. This isomorphic mapping of trajectories allows the identification and intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Heteroclinic connections, i.e. the trajectories that belong to both the stable and the unstable manifolds of two distinct periodic orbits, can be easily detected by means of this representation. This paper illustrates the use of isomorphic mapping for finding (a) periodic orbits, (b) heteroclinic connections between trajectories emanating from two Lyapunov orbits, the first at L1, and the second at L2, and (c) heteroclinic connections between trajectories emanating from the Lyapunov orbit at L1 and from a particular unstable lunar orbit. Heteroclinic trajectories are asymptotic trajectories that travels at zero-propellant cost. In practical situations, a modest delta-v budget is required to perform transfers along the manifolds. This circumstance implies the possibility of performing complex missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible

  1. A Hands-on Exploration of the Retrograde Motion of Mars as Seen from the Earth (United States)

    Pincelli, M. M.; Otranto, S.


    In this paper, we propose a set of activities based on the use of a celestial simulator to gain insights into the retrograde motion of Mars as seen from the Earth. These activities provide a useful link between the heliocentric concepts taught in schools and those tackled in typical introductory physics courses based on classical mechanics for…

  2. Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers (United States)

    Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara


    Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers ( provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive on…

  3. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses. (United States)

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L


    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.

  4. The effects of solar Reimers η on the final destinies of Venus, the Earth, and Mars (United States)

    Guo, Jianpo; Lin, Ling; Bai, Chunyan; Liu, Jinzhong


    Our Sun will lose sizable mass and expand enormously when it evolves to the red giant branch phase and the asymptotic giant branch phase. The loss of solar mass will push a planet outward. On the contrary, solar expansion will enhance tidal effects, and tidal force will drive a planet inward. Will our Sun finally engulf Venus, the Earth, and Mars? In the literature, one can find a large number of studies with different points of view. A key factor is that we do not know how much mass the Sun will lose at the late stages. The Reimers η can describe the efficiency of stellar mass-loss and greatly affect solar mass and solar radius at the late stages. In this work, we study how the final destinies of Venus, the Earth, and Mars can be depending on Reimers η chosen. In our calculation, the Reimers η varies from 0.00 to 0.75, with the minimum interval 0.0025. Our results show that Venus will be engulfed by the Sun and Mars will most probably survive finally. The fate of the Earth is uncertain. The Earth will finally be engulfed by the Sun while η <0.4600, and it will finally survive while η ≥ 0.4600. New observations indicate that the average Reimers η for solar-like stars is 0.477. This implies that Earth may survive finally.

  5. Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vennerstrøm, Susanne; Brain, D. A.


    and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56 degrees solar longitude so that the two planets occupied interplanetary magnetic field lines...... not only ICME events but also SEP events at Mars, with good results providing a consistent picture of the events when combined with near-Earth data....

  6. Formation of topographically inverted fluvial deposits on Earth and Mars (United States)

    Hayden, A.; Lamb, M. P.; Fischer, W. W.; Ewing, R. C.; McElroy, B. J.


    Sinuous ridges interpreted as exhumed river deposits (so-called "inverted channels") are common features on Mars that show promise for quantifying ancient martian surface hydrology. Morphological similarity of these inverted channels to river channels led to a "landscape inversion hypothesis" in which the geometries of ridges and ridge networks accurately reflect the geometries of the paleo-river channels and networks. An alternative "deposit inversion hypothesis" proposes that ridges represent eroded fluvial channel-belt deposits with channel-body geometries that may differ significantly from those of the rivers that built the deposit. To investigate these hypotheses we studied the sedimentology and morphology of inverted channels in Jurassic and Cretaceous outcrops in Utah and the Aeolis Dorsa region of Mars. Ridges in Utah extend for hundreds of meters, are tens of meters wide, and stand up to 30 meters above the surrounding plain. A thick ribbon-geometry sandstone or conglomerate body caps overbank mudstone, paleosols, and thin crevasse-splay sandstone beds. Caprock beds consist of stacked dune- to bar-scale trough cross sets, mud intraclasts, and in cases scroll bars indicating meandering. In plan view, ridge networks bifurcate; however, crosscutting relationships show that distinct sandstone channel bodies at distinct stratigraphic levels intersect at these junctions. Ridge-forming sandstone bodies have been narrowed from their original dimensions by cliff retreat and bisected by modern fluvial erosion and mass wasting. We therefore interpret the sinuous ridges in Utah as eroded remnants of channel-belt sandstone bodies formed by laterally migrating and avulsing rivers rather than channel fills - consistent with deposit inversion. If the sinuous ridges in Aeolis Dorsa also formed by deposit inversion, river widths previously interpreted under the landscape inversion hypothesis are overestimated by up to a factor of 10 and discharges by up to a factor of 100.

  7. Studies of Life on Earth are Important for Mars Exploration (United States)

    DesMarais, D. J.


    The search for evidence of the early martian environment and a martian biosphere is benefitted by diverse studies of life on Earth. Most fundamentally, origin-of-life research highlights the challenge in formulating a rigorous definition of life. Because such definitions typically list several of life's most basic properties, they also help to define those observable features that distinguish life and thus might be sought through telescopes, spacecraft, and analyses of extraterrestrial samples. Studies of prebiotic chemistry also help by defining the range of environments and processes that sustain prebiotic organic synthesis. These studies might indicate if and where prebiotic processes occur today on Earth and elsewhere. Such studies should also help to identify which localities are good candidates for the origin of life. A better understanding of the most fundamental principles by which molecules are assembled into living systems will help us to appreciate possible alternatives to the path followed by life on Earth. These perspectives will sharpen our ability to recognize exotic life and/or those environments that can sustain it.

  8. Volcano-ice interaction as a microbial habitat on Earth and Mars. (United States)

    Cousins, Claire R; Crawford, Ian A


    Volcano-ice interaction has been a widespread geological process on Earth that continues to occur to the present day. The interaction between volcanic activity and ice can generate substantial quantities of liquid water, together with steep thermal and geochemical gradients typical of hydrothermal systems. Environments available for microbial colonization within glaciovolcanic systems are wide-ranging and include the basaltic lava edifice, subglacial caldera meltwater lakes, glacier caves, and subsurface hydrothermal systems. There is widespread evidence of putative volcano-ice interaction on Mars throughout its history and at a range of latitudes. Therefore, it is possible that life on Mars may have exploited these habitats, much in the same way as has been observed on Earth. The sedimentary and mineralogical deposits resulting from volcano-ice interaction have the potential to preserve evidence of any indigenous microbial populations. These include jökulhlaup (subglacial outflow) sedimentary deposits, hydrothermal mineral deposits, basaltic lava flows, and subglacial lacustrine deposits. Here, we briefly review the evidence for volcano-ice interactions on Mars and discuss the geomicrobiology of volcano-ice habitats on Earth. In addition, we explore the potential for the detection of these environments on Mars and any biosignatures these deposits may contain.

  9. Student Mastery of the Sun-Earth-Moon System in a Flipped Classroom of Pre-service Elementary Education Students (United States)

    Larsen, Kristine


    One of the current trends in pedagogy at all levels(K-college) is the so-called ‘flipped classroom’, in which students prepare for a class meeting through self-study of the material. It is based on a rejection of the classic model of the faculty member as the ‘sage on the stage’ instead, responsibility for learning shifts to the individual student. The faculty member takes on the role of learning facilitator or mentor, and focuses the students’ learning by crafting and administering timely formative assessments (in multiple formats and applied multiple times) that aid both students and the faculty member in tracking the students’ mastery of the learning outcomes. In a flipped, freshman-only, section of SCI 111 Elementary Earth-Physical Sciences (a required introductory science course for pre-service elementary school teachers) the students learned through a combination of individual and group hands-on in-class activities, technology (including PowerPoint presentations and short videos viewed prior to attending class), in-class worksheets, and in-class discussions. Students self-differentiated in how they interacted with the available teaching materials, deciding which activities to spend the most time on based on their individual needs (based on an online quiz taken the night before the class period, and their personal self-confidence with the material). Available in-class activities and worksheets were developed by the faculty member based on student scores on the online quiz as well as personal messages submitted through the course management system the night before the class meeting. While this placed a significant burden on the faculty member in terms of course preparation, it allowed for just-in-time teaching to take place. This poster describes the results of student mastery of content centered on the sun-earth-moon system (specifically seasons, moon phases, and eclipses) as compared to traditional classroom sections.

  10. Mission analysis for the Martian Moons Explorer (MMX) mission (United States)

    Campagnola, Stefano; Yam, Chit Hong; Tsuda, Yuichi; Ogawa, Naoko; Kawakatsu, Yasuhiro


    Mars Moon eXplorer (MMX) is JAXA's next candidate flagship mission to be launched in the early 2020s. MMX will explore the Martian moons and return a sample from Phobos. This paper presents the mission analysis work, focusing on the transfer legs and comparing several architectures, such as hybrid options with chemical and electric propulsion modules. The selected baseline is a chemical-propulsion Phobos sample return, which is discussed in detail with the launch- and return-window analysis. The trajectories are optimized with the jTOP software, using planetary ephemerides for Mars and the Earth; Earth re-entry constraints are modeled with simple analytical equations. Finally, we introduce an analytical approximation of the three-burn capture strategy used in the Mars system. The approximation can be used together with a Lambert solver to quickly determine the transfer Δ v costs.

  11. Atmospheric Production of Perchlorate on Earth and Mars (United States)

    Claire, M.; Catling, D. C.; Zahnle, K. J.


    Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).

  12. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model (United States)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.


    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  13. The Search for Life on Mars - Current Knowledge, Earth Analogues, and Principal Issues (United States)

    Mumma, Michael J.


    For centuries, the planet Mars has been imagined as a possible abode for life. Serious searches for life's signatures began in the 19th century via ground-based visual astronomy that stimulated a vibrant fantasy literature but little lasting scientific knowledge. Modern scientific inquiry has emphasized the search for chemical signatures of life in the soil and rocks at the planet's surface, and via biomarker gases in the atmosphere. Today, investigations are based on high-resolution spectroscopy at Earth's largest telescopes along with planet orbiting and landed space missions. Methane has assumed central importance in these searches. Living systems produce more than 900/0 of Earth's atmospheric methane; the balance is of geochemical origin. Abundant methane is not expected in an oxidizing atmosphere such as Mars', and its presence would imply recent release - whether biological or geochemical. F or that reason, the quest for methane on Mars has been a continuing thread in the fabric of searches conducted since 1969. I will review aspects of the discovery and distribution of methane on Mars, and will mention ongoing extended searches for clues to its origin and destruction. On Earth, hydrogen (generated via serpentinization or radiolysis of water) provides an important 'fuel' for carbonate-reducing and sulphate-reducing biota (CH4 and H2S producers, respectively). Several such communities are known to reside at depth in continental domains (e.g., Lidy Hot Springs, Idaho; Witwatersrand Basin, S. Africa). If similar conditions exist in favourable locations on Mars, organisms similar to these could likely prosper there. Geologic (abiotic) production will also be mentioned, especially abiotic methane production associated with low-temperature serpentinization (e.g., terrestrial ophiolites). It is vitally important to pursue evidence for geochemical and biological production with equal vigour and intellectual weight lest unwanted and unintended bias contaminate the

  14. The feasibility and application of using gravitational energy to allow efficient travel between earth and Mars (United States)

    King, O. L.; Avvento, Gennaro J.

    This paper discusses the feasibility and application of using gravitational energy attained in a planetary swing-by to control the trajectory of an interplanetary transfer vehicle (IPTV) - establishing nonstop round trip orbits between earth and Mars. Energy supplied by the swing-by process and supplemented by minor correction burns will allow efficient nonstop round trip travel between earth and Mars. The IPTV will have all the necessary support equipment to maintain the cargo (manned/unmanned) during transit. At the planetary 'landfall' points, the IPTV will not decelerate but will perform a swing-by maneuver returning to the planet of origin. Cargo elements will either depart or dock with the IPTV at the planetary approach asymptote. This will be the only component of the system to undergo propulsive maneuvers.

  15. Origin and evolution of the atmospheres of early Venus, Earth and Mars (United States)

    Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia


    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation

  16. An integrated geophysical survey of Kilbourne Hole, southern New Mexico: Implications for near surface exploration of Mars and the Moon (United States)

    Maksim, Nisa

    Features such as the Home Plate plateau on Mars, a suspected remnant of an ancient phreatomagmatic eruption, can reveal important information about paleohydrologic conditions. The eruption intensity of a phreatomagmatic volcano is controlled mainly by the quantity of water and magma, the internal geometry of the volcano, and the depth of the interaction zone between magma and water. In order to understand the paleohydrologic conditions at the time of eruption, we must understand all the factors that influenced the phreatomagmatic event. I conducted an integrated geophysical survey, which are magnetic and gravity surveys, and a ground-penetrating radar (GPR) surveys at Kilbourne Hole, a phreatomagmatic crater in southern New Mexico. These investigations serve an analog paleo-hydrogeological study that could be conducted on Mars and the Moon with an implication for planetary exploration. These geophysical surveys are designed to delineate the internal structure of a phreatomagmatic volcano and to define the volumes and masses of volcanic dikes and excavation unit, the depth of feeder dikes, and impacted velocity of the volcanic blocks. For the gravity and magnetic surveys at Kilbourne Hole, I collected data at a total of 171 gravity survey stations and 166 magnetics survey stations. A 2D gravity and magnetic inverse model was developed jointly to map the body of the magma intrusions and the internal structure of Kilbourne Hole. A total of 6 GPR surveys lines were also completed at Kilbourne Hole to image and to define locations of pyroclastic deposits, volcanic sags and blocks, the sizes distribution of volcanic blocks, and the impact velocity of the volcanic blocks. Using the size distribution and impact velocity of volcanic blocks from our GPR data, I derived the initial gas expansion velocity and the time duration of the gas expansion phase of the Kilbourne Hole eruption. These obtained parameters (volumes, masses, and depths of the feeder dikes and the excavation

  17. Simultaneous Modeling of Gradual SEP Events at the Earth and the Mars (United States)

    Hu, J.; Li, G.


    Solar Energetic Particles (SEP) event is the number one space hazard for spacecraft instruments and astronauts' safety. Recent studies have shown that both longitudinal and radial extent of SEP events can be very significant. In this work, we use the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model to simulate gradual SEP events that have impacts upon both the Earth and the Mars. We follow the propagation of a 2D CME-driven shock. Particles are accelerated at the shock via the diffusive shock acceleration (DSA) mechanism. Transport of the escaped particles to the Earth and the Mars is then followed using a backward stochastic differential equation method. Perpendicular diffusion is considered in both the DSA and the transport process. Model results such as time intensity profile and energetic particle spectrum at the two locations are compared to understand the spatial extent of an SEP event. Observational data at the Earth and the Mars are also studied to validate the model.

  18. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse


    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  19. Habitability: Where to look for life? Halophilic habitats: Earth analogs to study Mars habitability (United States)

    Gómez, F.; Rodríguez-Manfredi, J. A.; Rodríguez, N.; Fernández-Sampedro, M.; Caballero-Castrejón, F. J.; Amils, R.


    Oxidative stress, high radiation doses, low temperature and pressure are parameters which made Mars's surface adverse for life. Those conditions found on Mars surface are harsh conditions for life to deal with. Life, as we know it on Earth, needs several requirements for its establishment but, the only "sine qua nom" element is water. Extremophilic microorganisms widened the window of possibilities for life to develop in the universe, and as a consequence on Mars. Recently reported results in extreme environments indicate the possibility of presence of "oasys" for life in microniches due to water deliquescence in salts deposits. The compilation of data produced by the ongoing missions (Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Exploration Rover Opportunity) offers a completely different view from that reported by Viking missions: signs of an early wet Mars and rather recent volcanic activity. The discovery of important accumulations of sulfates, and the existence of iron minerals like jarosite, goethite and hematite in rocks of sedimentary origin has allowed specific terrestrial models related with this type of mineralogy to come into focus. Río Tinto (Southwestern Spain, Iberian Pyritic Belt) is an extreme acidic environment, product of the chemolithotrophic activity of microorganisms that thrive in the massive pyrite-rich deposits of the Iberian Pyritic Belt. The high concentration of ferric iron and sulfates, products of the metabolism of pyrite, generate a collection of minerals, mainly gypsum, jarosite, goethite and hematites, all of which have been detected in different regions of Mars. Some particular protective environments or elements could house organic molecules or the first bacterial life forms on Mars surface. Terrestrial analogs could help us to afford its comprehension. We are reporting here some preliminary studies about endolithic niches inside salt deposits used by phototrophs for taking advantage of sheltering particular light

  20. Drastic Environmental Change on Mars: Applying the Lessons Learned on Earth (United States)

    Fairen, A.; Schulze-Makuch, D.; Irwin, L. N.


    Rapid and drastic environmental change has occurred frequently on Earth, posing a critical challenge to life. However, directional selection has overcome those challenges and driven life on our planet to ever increasing diversity and complexity. Based on our knowledge of the natural history of Earth, the effect of drastic environmental changes on a planet's biosphere can be attributed to three main factors: (1) the nature and time scale of change, (2) the composition of the biosphere prior to change, and (3) the nature of the environment following the change. Mars has undergone even larger environmental changes than Earth, from habitable conditions under which the origin of life (or transfer of life from Earth) seem plausible, to a dry and cold planet punctuated by wetter conditions. Given its planetary history, life on Mars could have retreated to a psychrophilic lifestyle in the deep subsurface or to environmental near-surface niches, such as hydrothermal regions and caves. Further, strong directional selection could have pushed putative martian life to evolve alternating cycles between active and dormant forms, as well as the innovation of new traits adapted to challenging near-surface conditions (e.g., use of H2O2 or perchlorates as antifreeze compounds).


    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. MOON MOON DEVI. Articles written in Pramana – Journal of Physics. Volume 88 Issue 5 May 2017 pp 79 Research Article. Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO) · A KUMAR A M VINOD KUMAR ABHIK JASH AJIT K MOHANTY ...

  2. Models of the Origin of the Moon; Early History of Earth and Venus (The Role of Tidal Friction in the Formation of Structure of the Planets) (United States)

    Pechernikova, G. V.; Ruskol, E. L.


    An analytical review of the two contemporary models of the origin of the Earth-Moon system in the process of solid-body accretion is presented: socalled co-accretion model and as a result of a gigantic collision with a planetarysized body (i.e. a megaimpact model). The co-accretion model may be considered as a universal mechanism of the origin of planetary satellites, that accompanies the growth of planets. We consider the conditions of this process that secure the sufficient mass and angular momentum of the protolunar disk such as macroimpacts (collisions with the bodies of asteroidal size) into the mantle of the growing Earth, the role of an lunar embryo growing on the geocentric lunar orbit, its tidal interaction with the Earth. The most difficult remains the explanation of chemical composition of the Moon. Different scenarios of megaimpact are reviewed, in which the Earth's mantle is destroyed and the protosatellite disk is filled mainly by its fragments. There is evaluated amount of energy transferred to the Earth from the evolution of lunar orbit. It is an order of magnitude lower than three main sources of the Earth's interior heat, i.e. the heat of accretion, the energy of differentiation and the heat of radioactive sources. The tidal heating of the Venus's interiors could reach 1000K by slowing its axial initial rotation, in addition to three sources mentioned above in concern of the Earth.

  3. NIMPH - Nano Icy Moons Propellant Harvester (United States)

    National Aeronautics and Space Administration — The latest Decadal Survey lists multiple sample return missions to the Moon, Mars and Jovian moons as high priority goals. In particular, a mission to Jupiter's...

  4. Bell Test over Extremely High-Loss Channels: Towards Distributing Entangled Photon Pairs between Earth and the Moon (United States)

    Cao, Yuan; Li, Yu-Huai; Zou, Wen-Jie; Li, Zheng-Ping; Shen, Qi; Liao, Sheng-Kai; Ren, Ji-Gang; Yin, Juan; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei


    Quantum entanglement was termed "spooky action at a distance" in the well-known paper by Einstein, Podolsky, and Rosen. Entanglement is expected to be distributed over longer and longer distances in both practical applications and fundamental research into the principles of nature. Here, we present a proposal for distributing entangled photon pairs between Earth and the Moon using a Lagrangian point at a distance of 1.28 light seconds. One of the most fascinating features in this long-distance distribution of entanglement is as follows. One can perform the Bell test with human supplying the random measurement settings and recording the results while still maintaining spacelike intervals. To realize a proof-of-principle experiment, we develop an entangled photon source with 1 GHz generation rate, about 2 orders of magnitude higher than previous results. Violation of Bell's inequality was observed under a total simulated loss of 103 dB with measurement settings chosen by two experimenters. This demonstrates the feasibility of such long-distance Bell test over extremely high-loss channels, paving the way for one of the ultimate tests of the foundations of quantum mechanics.

  5. The past and present Earth-Moon system: the speed of light stays steady as tides evolve. (United States)

    Williams, James G; Turyshev, Slava G; Boggs, Dale H

    Tides induce a semimajor axis rate of +38.08 ± 0.19 mm/yr, corresponding to an acceleration of the Moon's orbital mean longitude of -25.82 ± 0.13 "/cent 2 , as determined by the analysis of 43 yr of Lunar Laser Ranging (LLR) data. The LLR result is consistent with analyses made with different data spans, different analysis techniques, analysis of optical observations, and independent knowledge of tides. Plate motions change ocean shapes, and geological evidence and model calculations indicate lower rates of tidal evolution for extended past intervals. Earth rotation has long-term slowing due to tidal dissipation, but it also experiences variations for times up to about 10 5  yr due to changes in the moment of inertia. An analysis of LLR data also tests for any rate of change in either the speed of light c or apparent mean distance. The result is (-2.8 ± 3.4)×10 -12 /yr for either scale rate or -(d c /d t )/ c , or equivalently -1.0 ± 1.3 mm/yr for apparent distance rate. The lunar range does not reveal any change in the speed of light.

  6. Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars. (United States)

    Lamb, Michael P; Dietrich, William E; Aciego, Sarah M; Depaolo, Donald J; Manga, Michael


    Amphitheater-headed canyons have been used as diagnostic indicators of erosion by groundwater seepage, which has important implications for landscape evolution on Earth and astrobiology on Mars. Of perhaps any canyon studied, Box Canyon, Idaho, most strongly meets the proposed morphologic criteria for groundwater sapping because it is incised into a basaltic plain with no drainage network upstream, and approximately 10 cubic meters per second of seepage emanates from its vertical headwall. However, sediment transport constraints, 4He and 14C dates, plunge pools, and scoured rock indicate that a megaflood (greater than 220 cubic meters per second) carved the canyon about 45,000 years ago. These results add to a growing recognition of Quaternary catastrophic flooding in the American northwest, and may imply that similar features on Mars also formed by floods rather than seepage erosion.

  7. Transits of extrasolar moons around luminous giant planets (United States)

    Heller, R.


    Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (≳10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around β Pic b would have a transit depth of 1.5 × 10-3, in reach of near-future technology.

  8. Tectonic evolution of mercury; comparison with the moon

    International Nuclear Information System (INIS)

    Thomas, P.G.; Masson, P.


    With regard to the Earth or to Mars, the Moon and Mercury look like tectonicless planetary bodies, and the prominent morphologies of these two planets are due to impact and volcanic processes. Despite these morphologies, several types of tectonic activities may be shown. Statistical studies of lineaments direction indicate that Mercury, as well as the Moon, have a planet wide lineament pattern, known as a ''grid''. Statistical studies of Mercury scarps and the Moon grabens indicate an interaction between planetary lithospheric evolution and large impact basins. Detailed studies of the largest basins indicate specific tectonic motions directly or indirectly related to impacts. These three tectonic types have been compared on each planet. The first tectonic type seems to be identical for Mercury and the Moon. But the two other types seem to be different, and are consistent with the planets' thermal evolution

  9. Bedrock Canyons Carved by the Largest Known Floods on Earth and Mars (United States)

    Lamb, M. P.; Lapôtre, M. G. A.; Larsen, I. J.; Williams, R. M. E.


    The surface of Earth is a dynamic and permeable interface where the rocky crust is sculpted by ice, wind and water resulting in spectacular mountain ranges, vast depositional basins and environments that support life. These landforms and deposits contain a rich, yet incomplete, record of Earth history that we are just beginning to understand. Some of the most dramatic landforms are the huge bedrock canyons carved by catastrophic floods. On Mars, similar bedrock canyons, known as Outflow Channels, are the most important indicators of large volumes of surface water in the past. Despite their importance and now decades of observations of canyon morphology, we lack a basic understanding of how the canyons formed, which limits our ability to reconstruct flood discharge, duration and water volume. In this presentation I will summarize recent work - using mechanistic numerical models and field observations - that suggests that bedrock canyons carved by megafloods rapidly evolve to a size and shape such that boundary shear stresses just exceed that required to entrain fractured blocks of rock. The threshold shear stress constraint allows for quantitative reconstruction of the largest known floods on Earth and Mars, and implies far smaller discharges than previous methods that assume flood waters fully filled the canyons to high water marks.

  10. Ancient wet aeolian environments on Earth: clues to presence of fossil/live microorganisms on Mars (United States)

    Mahaney, William C.; Milner, Michael W.; Netoff, D. I.; Malloch, David; Dohm, James M.; Baker, Victor R.; Miyamoto, Hideaki; Hare, Trent M.; Komatsu, Goro


    Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO 3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and

  11. Mars

    CERN Document Server

    Day, Trevor


    Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.

  12. Integration of lessons from recent research for "Earth to Mars" life support systems (United States)

    Nelson, M.; Allen, J. P.; Alling, A.; Dempster, W. F.; Silverstone, S.; van Thillo, M.

    Development of reliable and robust strategies for long-term life support for mbox planetary exploration needs to be built on real-time experimentation to verify and improve system components Also critical is the incorporation of a range of viable options to handle potential short-term life system imbalances This paper revisits some of the conceptual framework for a Mars base prototype previously advanced Mars on Earth in the light of three years of experimentation by the authors in the Laboratory Biosphere further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls For example crops of sweet potatoes exceeded original Mars base prototype projections by 83 ultradwarf Apogee wheat by 27 pinto bean by 240 and cowpeas slightly exceeded anticipated dry bean yield These production levels although they may be increased with further optimization of lighting regimes environmental parameters crop density etc offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research Soil also offers several distinct advantages the capability to be created using in-situ space resources reducing reliance on consumables and imported resources and more easily recycling and

  13. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models (United States)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don


    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  14. Comparative study of ion cyclotron waves at Mars, Venus and Earth (United States)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.


    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which

  15. Is Canyon Width a Diagnostic Indicator of the Discharge of Megafloods on Earth and Mars? (United States)

    Lapotre, M. G.; Lamb, M. P.


    On Earth, large floods have carved steep-walled and amphitheater-headed canyons from the Pleistocene (e.g. Box Canyon, ID) through the Holocene (e.g. Asbyrgi Canyon, Iceland), to historic times (e.g. Canyon Lake Gorge, TX). The geologic record on Mars suggests that similar floods have carved canyons by waterfall retreat about 3.5 billion years ago, when the red planet was wetter and possibly warmer. We currently lack robust paleo-hydraulic tools to reconstruct the discharge of ancient floods, especially on Mars where sediment sizes are obscured from observation. To address this issue, we hypothesize that the width of canyon escarpment is controlled by the hydraulics of the canyon-carving flood due to focusing of the flood into the canyon head. We compiled field data from multiple canyons and floods on Earth and Mars and show that there is a correlation between estimated flood discharge and canyon headwall width. To explore what sets this relationship, we identified five important parameters using dimensional analysis: the Froude number, the ratio of backwater length to canyon length, the ratio of backwater length to flood width, the ratio of canyon width to flood width, and the topographic slope upstream of the canyon. We used the hydraulic numerical modeling suite ANUGA to simulate overland flow over different canyon geometries and flood parameters to systematically explore the relative bed shear stresses along the canyon rim as a metric for flow focusing. Results show that canyons that exceed a certain length, scaling with the hydraulic backwater length, have shear stresses at their heads that are significantly higher than near the canyon mouth. Shear stresses along the rim of the canyon sidewalls are limited, in comparison to stresses along the canyon head, when the flood width is of the order of the backwater length. Flow focusing only occurs for subcritical flow. Together, these results suggest that canyons may only grow from a perturbation that is large

  16. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth). (United States)

    Rothschild, Lynn J


    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth. © 2016 The Author(s).

  17. Earth

    CERN Document Server

    Carter, Jason


    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  18. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service (United States)

    Hornig, Andreas; Homeister, Maren


    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  19. Obliquity histories of Earth and Mars: Influence of inertial and dissipative core-mantle coupling

    International Nuclear Information System (INIS)

    Bills, B.G.


    For both the Earth and Mars, secular variations in the angular separation of the spin axis from the orbit normal are suspected of driving major climatic changes. There is considerable interest in determining the amplitude and timing of these obliquity variations. If the orientation of the orbital plane were inertially fixed, the spin axis would simply precess around the orbit at a fixed obliquity and at a uniform angular rate. The precession rate parameter depends on the principal moments of inertia and rotation rate of the perturbed body, and on the gravitational masses and semiminor axes of the perturbing bodies. For Mars, the precession rate is not well known, but probably lies in the interval 8 to 10 arcsec/year. In the rigid body case, the spin axis still attempts to precess about the instantaneous orbit normal, but now the obliquity varies. The hydrostatic figure of a planet represents a compromise between gravitation, which attempts to attain spherical symmetry, and rotation, which prefers cylindrical symmetry. Due to their higher mean densities the cores of the Earth and Mars will be more nearly spherical than the outer layers of these planets. On short time scales it is appropriate to consider the core to be an inviscid fluid. The inertial coupling provided by this mechanism is effective whenever the ellipticicy of the container exceeds the ratio of precessional to rotational rates. If the mantle were actually rigid, this would be an extremely effective type of coupling. However, on sufficiently long time scales, the mantle will deform viscously and can accommodate the motions of the core fluid. A fundamentally different type of coupling is provided by electromagnetic or viscous torques. This type of coupling is likely to be most important on longer time scales

  20. Moons a very short introduction

    CERN Document Server

    Rothery, David A


    Moons: A Very Short Introduction introduces the reader to the varied and fascinating moons of our Solar System. Beginning with the early discoveries of Galileo and others, it describes their variety of mostly mythological names, and the early use of Jupiter’s moons to establish position at sea and to estimate the speed of light. It discusses the structure, formation, and profound influence of our Moon, those of the other planets, and ends with the recent discovery of moons orbiting asteroids, whilst looking forward to the possibility of discovering microbial life beyond Earth and of finding moons of exoplanets in planetary systems far beyond our own.

  1. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support (United States)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert


    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  2. Mars

    CERN Document Server

    Payment, Simone


    This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi

  3. A Google Earth Grand Tour of the Terrestrial Planets (United States)

    De Paor, Declan; Coba, Filis; Burgin, Stephen


    Google Earth is a powerful instructional resource for geoscience education. We have extended the virtual globe to include all terrestrial planets. Downloadable Keyhole Markup Language (KML) files (Google Earth's scripting language) associated with this paper include lessons about Mercury, Venus, the Moon, and Mars. We created "grand…

  4. The Moon (United States)

    Warren, P. H.


    Oxygen isotopic data suggest that there is a genetic relationship between the constituent matter of the Moon and Earth (Wiechert et al., 2001). Yet lunar materials are obviously different from those of the Earth. The Moon has no hydrosphere, virtually no atmosphere, and compared to the Earth, lunar materials uniformly show strong depletions of even mildly volatile constituents such as potassium, in addition to N2, O2, and H2O (e.g., Wolf and Anders, 1980). Oxygen fugacity is uniformly very low ( BVSP, 1981) and even the earliest lunar magmas seem to have been virtually anhydrous. These features have direct and far-reaching implications for mineralogical and geochemical processes. Basically, they imply that mineralogical diversity and thus variety of geochemical processes are subdued; a factor that to some extent offsets the comparative dearth of available data for lunar geochemistry.The Moon's gross physical characteristics play an important role in the more limited range of selenochemical compared to terrestrial geochemical processes. Although exceptionally large (radius=1,738 km) in relation to its parent planet, the Moon is only 0.012 times as massive as Earth. By terrestrial standards, pressures inside the Moon are feeble: the upper mantle gradient is 0.005 GPa km -1 (versus 0.033 GPa km -1 in Earth) and the central pressure is slightly less than 5 GPa. However, lunar interior pressures are sufficient to profoundly influence igneous processes (e.g., Warren and Wasson, 1979b; Longhi, 1992, 2002), and in this sense the Moon more resembles a planet than an asteroid.Another direct consequence of the Moon's comparatively small size was early, rapid decay of its internal heat engine. But the Moon's thermal disadvantage has resulted in one great advantage for planetology. Lunar surface terrains, and many of the rock samples acquired from them, retain for the most part characteristics acquired during the first few hundred million years of solar system existence. The

  5. The divergent fates of primitive hydrospheric water on Earth and Mars. (United States)

    Wade, Jon; Dyck, Brendan; Palin, Richard M; Moore, James D P; Smye, Andrew J


    Despite active transport into Earth's mantle, water has been present on our planet's surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet's magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet's surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth's mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to

  6. Measurement of planetary surface composition by gamma-ray and neutron spectrometry - Preparatory studies for Mars and for the Moon by numerical simulations

    International Nuclear Information System (INIS)

    Gasnault, O.


    Gamma-ray and neutron spectrometry sets up a powerful tool of geological and geochemical characterization of planetary surfaces. This method allows to tackle some critical planet science questions: crustal and mantle compositions; ices; volcanism; alteration processes... Most of the neutrons and gamma photons result from the interactions of galactic cosmic rays with matter. The first chapter introduces the physics of these nuclear interactions in planetary soils and in detectors. Our work aims at optimizing the observations by specifying instrumental performances, and by highlighting relations between soil composition and neutron fluxes. Numerical simulations using the GEANT code from CERN support our analysis. The second chapter estimates the performances of the Germanium gamma-ray spectrometer for MARS SURVEYOR 2001. The result of simulations is compared to calibration measurements; then performances are calculated in flight configuration. The background at Mars is estimated to about 160 c/s. The instrument offers a fine sensitivity to: Fe, Mg, K, Si, Th, Cl and O. It will also be possible to measure U, Ti, H, C, S, Ca and Al. The emission lobes at the surface are calculated too. These measurements shall permit a better understanding of the Martian surface. The last chapter deals with fast neutrons [500 keV; 10 MeV] emitted by the Moon. The strong influence of oxygen is underlined. As observed by LUNAR PROSPECTOR, the integrated flux shows a pronounced dependence with regolith content in iron and titanium, allowing the mapping. The influence of the other chemical elements is quantified. A simple mathematical formula is suggested to estimate the integrated neutron flux according to soil composition. At last, a study of hydrogen effects on fast neutron flux is carried out; we examine the possibilities to quantify its abundance in the soil by this method. (author)

  7. Combustion Joining of Regolith Tiles for In-Situ Fabrication of Launch/Landing Pads on the Moon and Mars (United States)

    Ferguson, Robert E.; Shafirovich, Evgeny; Mantovani, James G.


    To mitigate dust problems during launch/landing operations in lunar and Mars missions, it is desired to build solid pads on the surface. Recently, strong tiles have been fabricated from lunar regolith simulants using high-temperature sintering. The present work investigates combustion joining of these tiles through the use of exothermic intermetallic reactions. Specifically, nickel/aluminum (1:1 mole ratio) mixture was placed in a gap between the tiles sintered from JSC-1A lunar regolith simulant. Upon ignition by a laser, a self-sustained propagation of the combustion front over the mixture occurred. Joining was improved with increasing the tile thickness from 6.3 mm to 12.7 mm. The temperatures sufficient for melting the glass phase of JSC-1A were recorded for 12.7-mm tiles, which explains the observed better joining.

  8. Forecasting Proximal Femur and Wrist Fracture Caused by a Fall to the Side during Space Exploration Missions to the Moon and Mars (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Sulkowski, C.; Ruehl, K.; Licata, A.


    The possibility of bone fracture in space is a concern due to the negative impact it could have on a mission. The Bone Fracture Risk Module (BFxRM) developed at the NASA Glenn Research Center is a statistical simulation that quantifies the probability of bone fracture at specific skeletal locations for particular activities or events during space exploration missions. This paper reports fracture probability predictions for the proximal femur and wrist resulting from a fall to the side during an extravehicular activity (EVA) on specific days of lunar and Martian exploration missions. The risk of fracture at the proximal femur on any given day of the mission is small and fairly constant, although it is slightly greater towards the end of the mission, due to a reduction in proximal femur bone mineral density (BMD). The risk of wrist fracture is greater than the risk of hip fracture and there is an increased risk on Mars since it has a higher gravitational environment than the moon. The BFxRM can be used to help manage the risk of bone fracture in space as an engineering tool that is used during mission operation and resource planning.

  9. Are we There Yet? ... Developing In-Situ Fabrication and Repair (ISFR) Technologies to Explore and Live on the Moon and Mars (United States)

    Bassler, Julie A.; Bodiford, Melanie P.; Fiske, Michael R.; Strong, Janet D.


    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center are evaluating current technologies for in situ exploration habitat and fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) program will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements. This paper will look at the current and future habitat technology applications such as the implementation of in situ environmental elements such as caves, rilles and lavatubes, the development of lunar regolith concrete and structure design and development, thin film and inflatable technologies. We will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. All ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.

  10. Reconstructing paleo-discharge from geometries of fluvial sinuous ridges on Earth and Mars (United States)

    Hayden, A.; Lamb, M. P.; Mohrig, D. C.; Williams, R. M. E.; Myrow, P.; Ewing, R. C.; Cardenas, B. T.; Findlay, C. P., III


    Sinuous, branching networks of topographic ridges resembling river networks are common across Mars, and show promise for quantifying ancient martian surface hydrology. There are two leading formation mechanisms for ridges with a fluvial origin. Inverted channels are ridges that represent casts (e.g., due to lava fill) of relict river channel topography, whereas exhumed channel deposits are eroded remnants of a more extensive fluvial deposit, such as a channel belt. The inverted channel model is often assumed on Mars; however, we currently lack the ability to distinguish these ridge formation mechanisms, motivating the need for Earth-analog study. To address this issue, we studied the extensive networks of sinuous ridges in the Ebro basin of northeast Spain. The Ebro ridges stand 3-15 meters above the surrounding plains and are capped by a cliff-forming sandstone unit 3-10 meters thick and 20-50 meters in breadth. The caprock sandstone bodies contain bar-scale cross stratification, point-bar deposits, levee deposits, and lenses of mudstone, indicating that these are channel-belt deposits, rather than casts of channels formed from lateral channel migration, avulsion and reoccupation. In plan view, ridges form segments branching outward to the north resembling a distributary network; however, crosscutting relationships indicate that ridges cross at different stratigraphic levels. Thus, the apparent network in planview reflects non-uniform exhumation of channel-belt deposits from multiple stratigraphic positions, rather than an inverted coeval river network. As compared to the inverted channel model, exhumed fluvial deposits indicate persistent fluvial activity over geologic timescales, indicating the potential for long-lived surface water on ancient Mars.

  11. Serpentinization and its implications for life on the early Earth and Mars. (United States)

    Schulte, Mitch; Blake, David; Hoehler, Tori; McCollom, Thomas


    Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.

  12. A comparative study between control strategies for a solar sailcraft in an Earth-Mars transfer (United States)

    Mainenti-Lopes, I.; Souza, L. C. Gadelha; De Sousa, Fabiano. L.


    The goal of this work was a comparative study of solar sail trajectory optimization using different control strategies. Solar sailcraft is propulsion system with great interest in space engineering, since it uses solar radiation to propulsion. So there is no need for propellant to be used, thus it can remains active throughout the entire transfer maneuver. This type of propulsion system opens the possibility to reduce the cost of exploration missions in the solar system. In its simplest configuration, a Flat Solar Sail (FSS) consists of a large and thin structure generally composed by a film fixed to flexible rods. The performance of these vehicles depends largely on the sails attitude relative to the Sun. Using a FSS as propulsion, an Earth-Mars transfer optimization problem was tackled by the algorithms GEOreal1 and GEOreal2 (Generalized Extremal Optimization with real codification). Those algorithms are Evolutionary Algorithms (AE) based on the theory of Self-Organized Criticality. They were used to optimize the FSS attitude angle so it could reach Mars orbit in minimum time. It was considered that the FSS could perform up to ten attitude maneuvers during orbital transfer. Moreover, the time between maneuvers can be different. So, the algorithms had to optimize an objective function with 20 design variables. The results obtained in this work were compared with previously results that considered constant values of time between maneuvers.

  13. Direct-to-Earth Communications with Mars Science Laboratory During Entry, Descent, and Landing (United States)

    Soriano, Melissa; Finley, Susan; Fort, David; Schratz, Brian; Ilott, Peter; Mukai, Ryan; Estabrook, Polly; Oudrhiri, Kamal; Kahan, Daniel; Satorius, Edgar


    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  14. Physics and astronomy of the Moon

    CERN Document Server

    Kopal, Zdenek


    Physics and Astronomy of the Moon focuses on the application of principles of physics in the study of the moon, including perturbations, equations, light scattering, and photometry. The selection first offers information on the motion of the moon in space and libration of the moon. Topics include Hill's equations of motion, non-solar perturbations, improved lunar ephemeris, optical and physical libration of the moon, and adjustment of heliometric observations of the moon's libration. The text then elaborates on the dynamics of the earth-moon system, photometry of the moon, and polarization of

  15. People challenges in biospheric systems for long-term habitation in remote areas, space stations, moon, and Mars expeditions. (United States)

    Allen, John


    People who participate in remote and difficult expeditions, such as the 2-year (1991-1993) Biosphere 2 experiment or a future biospheric system on Mars or other long voyages, will face individual psycho-physiological, social, and cultural value challenges. The individual psycho-physiological vectors include the lure of being a hero/heroine and pushing it to the maximum, concealment of problems with the belief that he/she can overcome the obstacle alone, as well as the difficulty of keeping intact the critical differentiation of the risks associated with the overall expedition as opposed to the experimental objectives. The social challenges occur as a group dynamic context as well as for the individual, resulting in regressions and the need to "act out" one's difficulties. Cultural areas of importance that must be taken into consideration will include esthetic, ethical, cosmological, and epistemological values. The epistemological values must involve the five methods of scientific inquiry for a comprehensive total systems project to succeed fully.

  16. Life, death and revival of debris-flow fans on Earth and Mars : fan dynamics and climatic inferences

    NARCIS (Netherlands)

    de Haas, T.|info:eu-repo/dai/nl/374023190


    Alluvial fans are ubiquitous landforms in high-relief regions on Earth and Mars. They have a semi-conical shape and are located at the transition between highlands and adjacent basins. Alluvial fans can form by a range of processes including debris flows, which are water-laden masses of soil and

  17. Tactile Earth and Space Science Materials for Students with Visual Impairments: Contours, Craters, Asteroids, and Features of Mars (United States)

    Rule, Audrey C.


    New tactile curriculum materials for teaching Earth and planetary science lessons on rotation=revolution, silhouettes of objects from different views, contour maps, impact craters, asteroids, and topographic features of Mars to 11 elementary and middle school students with sight impairments at a week-long residential summer camp are presented…

  18. Isotopic Evidence for Multi-stage Cosmic-ray Exposure Histories of Lunar Meteorites: Long Residence on the Moon and Short Transition to the Earth

    International Nuclear Information System (INIS)

    Hidaka, Hiroshi; Sakuma, Keisuke; Nishiizumi, Kunihiko; Yoneda, Shigekazu


    It is known that most lunar meteorites have complicated cosmic-ray exposure experiences on the Moon and in space. In this study, cosmic-ray irradiation histories of six lunar meteorites, Dhofar 489, Northwest Africa 032 (NWA 032), NWA 479, NWA 482, NWA 2995, and NWA 5000, were characterized from neutron-captured isotopic shifts of Sm and Gd, and from the abundances of long-lived cosmogenic radionuclides like 10 Be, 26 Al, 36 Cl, and 41 Ca. Sm and Gd isotopic data of all of six meteorites show significant isotopic shifts of 149 Sm– 150 Sm and 157 Gd– 158 Gd caused by accumulation of neutron capture reactions due to cosmic-ray irradiation, corresponding to the neutron fluences of (1.3–9.6) × 10 16 n cm −2 . In particular, very large Sm and Gd isotopic shifts of NWA 482 are over those of a lunar regolith 70002, having the largest isotopic shifts among the Apollo regolith samples, corresponding to cosmic-ray exposure duration over 800 million years in the lunar surface (2 π irradiation). Meanwhile, the concentrations of cosmogenic radionuclides for individual six meteorites show the short irradiation time less than one million years as their bodies in space (4 π irradiation). Our data also support the results of previous studies, revealing that most of lunar meteorites have long exposure ages at shallow depths on the Moon and short transit times from the Moon to the Earth.

  19. Obliquity histories of Earth and Mars: Influence of inertial and dissipative core-mantle coupling (United States)

    Bills, Bruce G.


    For both the Earth and Mars, secular variations in the angular separation of the spin axis from the orbit normal are suspected of driving major climatic changes. There is considerable interest in determining the amplitude and timing of these obliquity variations. If the orientation of the orbital plane were inertially fixed, and the planet were to act as a rigid body in it response to precessional torques, the spin axis would simply precess around the orbit at a fixed obliquity and at a uniform angular rate. The precession rate parameter depends on the principal moments of inertia and rotation rate of the perturbed body, and on the gravitational masses and semiminor axes of the perturbing bodies. For Mars, the precession rate is not well known, but probably lies in the interval 8 to 10 arcsec/year. Gravitational interactions between the planets lead to secular motions of the orbit planes. In the rigid body case, the spin axis still attempts to precess about the instantaneous orbit normal, but now the obliquity varies. The hydrostatic figure of a planet represents a compromise between gravitation, which attempts to attain spherical symmetry, and rotation, which prefers cylindrical symmetry. Due to their higher mean densities the cores of the Earth and Mars will be more nearly spherical than the outer layers of these planets. On short time scales it is appropriate to consider the core to be an inviscid fluid constrained to move with the ellipsoidal region bounded by the rigid mantle. The inertial coupling provided by this mechanism is effective whenever the ellipticicy of the container exceeds the ratio of precessional to rotational rates. If the mantle were actually rigid, this would be an extremely effective type of coupling. However, on sufficiently long time scales, the mantle will deform viscously and can accommodate the motions of the core fluid. A fundamentally different type of coupling is provided by electromagnetic or viscous torques. This type of coupling

  20. Protecting the Moon for research: ILEWG report (United States)

    Foing, Bernard H.

    We give a report on recommendations with emphasis on environment protection, and since last COSPAR from ILEWG International conferences Exploration and Utilisation of the Moon on held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration, as debated at ILEWG. ILEWG Science task group has listed priorities for scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life; sciences from a biology lunar laboratory. We discuss how to preserve Moon research potential in these areas while operating with instruments, landers, rover during a cooperative robotic village, and during the transition form lunar human outpost to permanent sustainable human base. We discuss how Moon-Mars Exploration can inspire solutions to global Earth sustained development with the trade-off of In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental and planetary protection aspects and lessons for Mars; Life sciences laboratories, and support to human exploration. Co-authors: ILEWG Task Groups on Science, Technology and Human Lunar Bases ILEWG Reference documents: -10th ILEWG Conference on Exploration and Utilisation of the Moon, NASA Lunar Ex-ploration Analysis Group-PSace Resources Roundtable, Cape Canaveral October 2008, pro-gramme online at -9th ILEWG Conference on Exploration and Utilisation of the Moon, ICEUM9 Sorrento 2007, programme online at -8th ILEWG Conference on Exploration and Utilisation of the Moon, Beijing July 2006, programme online at -The Moon and Near Earth Objects (P. Ehrenfreund , B.H. Foing, A

  1. Configuration and Dynamics of the Earth-Sun-Moon System: An Investigation into Conceptions of Deaf and Hearing Pupils. (United States)

    Roald, Ingvild; Mikalsen, Oyvind


    Reports and analyzes the day and night cycle, the seasons, and the phases of the moon as seen by Norwegian deaf pupils aged 7, 9, 11, and 17 years, and by hearing Norwegian pupils 9 years old. Among the 9-year-olds there was no difference in the inner coherence of the conceptions between deaf pupils. (Author/SAH)

  2. Ertel Potential Vorticity versus Bernoulli Streamfunction in Earth's Southern Ocean: Comparison with the Atmospheres of Earth, Mars, Jupiter and Saturn (United States)

    Dowling, Timothy E.; Stanley, Geoff; Bradley, Mary Elizabeth; Marshall, David P.


    We are working to expand the comparative planetology of vorticity-streamfunction correlations established for the atmospheres of Earth, Mars, Jupiter and Saturn to include Earth’s Antarctic Circumpolar Current (ACC), which is the only oceanic jet that encircles the planet. Interestingly, the ACC and its eddies scale like atmospheric jets and eddies on Jupiter and Saturn---the Southern Ocean is a “giant planet” with a zonal jet stream. Our input is the Southern Ocean State Estimate (SOSE; Mazloff et al 2010, J. Phys. Ocean. 40, 880-899), an optimal combination of observations and primitive-equation model that spans 2005-2010. Two hurdles not encountered in atmospheric work arise from the nonlinear equation of state of ocean water: non-zero helicity, which prevents the existence of truly neutral (analogous to adiabatic) surfaces, and the lack of a geostrophic streamfunction in general. We follow de Szoeke et al (2000, J. Phys. Ocean. 30, 2830-2852) to overcome these hurdles, regionally, by using orthobaric density as the vertical coordinate. In agreement with results for all atmospheres analyzed to date, scatter plots of Ertel potential vorticity, Q, versus Bernoulli streamfunction, B, on orthobaric density surfaces in the Southern Ocean are well correlated. The general shape of the correlation is like a hockey stick, with the “blade” corresponding to a broad horizontal region that spans the ACC, and the “handle” corresponding to shallow water. The same linear-regression Q versus B model employed for Mars is applied to the ACC (“blade”) signal. Results include that the deeper water on the equatorward side of the ACC is most prone to shear instability, and elsewhere the ACC is “supersonic” such that the net propagation of vorticity waves is eastward, not the usual westward. During the 6-year span of the SOSE data, there is a steady drift of the correlation to larger values at the top of the vertical profile, and to smaller values in the middle of

  3. Primary school children and teachers discover the nature and science of planet Earth and Mars (United States)

    Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten


    For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a

  4. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows (United States)

    Som, Sanjoy M.


    The discovery of a habitable Earth-like planet beyond our solar-system will be remembered as one of the major breakthroughs of 21st century science, and of the same magnitude as Copernicus' heliocentric model dating from the mid 16th century. The real astrobiological breakthrough will be the added results from atmospheric remote sensing of such planets to determine habitability. Atmospheres, in both concentration and composition are suggestive of processes occurring at the planetary surface and upper crust. Unfortunately, only the modern Earth's atmosphere is known to be habitable. I investigate the density and pressure of our planet's early atmosphere before the rise of oxygen 2.5 billion years ago, because our planet was very much alive microbially. Such knowledge gives us another example of a habitable atmosphere. I also investigates the atmosphere of early Mars, as geomorphic signatures on its surface are suggestive of a past where liquid water may have present in a warmer climate, conditions suitable for the emergence of life, compared with today's 6 mbar CO2-dominated atmosphere. Using tools of fluvial geomorphology, I find that the largest river-valleys on Mars do not record a signature of a sustained hydrological cycle, in which precipitation onto a drainage basin induces many cycles of water flow, substrate incision, water ponding, and return to the atmosphere via evaporation. Rather, I conclude that while episodes of flow did occur in perhaps warmer environments, those periods were short-lived and overprinted onto a dominantly cold and dry planet. For Earth, I develop a new method of investigating atmospheric density and pressure using the size of raindrop imprints, and find that raindrop imprints preserved in the 2.7 billion year old Ventersdorp Supergroup of South Africa are consistent with precipitation falling in an atmosphere of near-surface density 0.1 kg/m3, compared to a modern value of 1.2 kg/m3, further suggesting a nitrogen level of at most

  5. Mesoscale raised rim depressions (MRRDs) on Earth: A review of the characteristics, processes, and spatial distributions of analogs for Mars (United States)

    Burr, D.M.; Bruno, B.C.; Lanagan, P.D.; Glaze, L.S.; Jaeger, W.L.; Soare, R.J.; Wan, Bun Tseung J.-M.; Skinner, J.A.; Baloga, S.M.


    Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach. ?? 2008 Elsevier Ltd.

  6. Towards A Moon Village: Vision and Opportunities (United States)

    Foing, Bernard


    . Building on previous studies (EuroMoon, lunar polar lander) ESA should develop a mid-class lunar lander (affordable in cost 300 Meu class), demonstrating the expertise at system level for a platform, that could carry innovative competitive robotic payload contributed and already with advance development from member states and international or commercial partners. With teleoperations from Earth and cis-lunar orbit, this will advance progress towards the next steps of Moon Village and beyond. Recommendations: The participants encourage the design and operations of a Moon base simulation at EAC with facility and activities in the context of SpaceShip EAC, with the support of EAC, DLR, ESTEC, ISU and other partners, and collaborations with other Lunar Research Parks worldwide. It was also proposed to have an "ESTEC Moon Village pilot project" where 20 young professional in-terns could be hosted to work concurrently on various aspects (technology, science, instruments platforms, Moon base design, human factors, programmatics, outreach, community events) with links and support activities from ESTEC senior experts, and interactions with colleagues in member states, academia and industries . The workshop finalized with some hands-on experiments, organized with some students demonstrating their work on a lunar lander with tele-operated instruments and systems, and on the measuring spectra of Moon-Mars analogue minerals. The day ended with a refreshing lunar music session, and a networking event on ESTEC ESCAPE where the last informal conversations marked a great wrap up of such exciting day. Follow up Moon Village events are planned in 2016 at ESTEC, EAC and at international community venues. New means of outreach, communications and social media must be developed. You can follow Moon Village tweets, using #MoonVillage, and contribute to the virtual discussions. ESA is really looking forward to engage all stakeholders into the discussion, no matter of their background, nationality

  7. Composting on Mars or the Moon: II. Temperature feedback control with top-wise introduction of waste material and air (United States)

    Finstein, M. S.; Hogan, J. A.; Sager, J. C.; Cowan, R. M.; Strom, P. F.; Janes, H. W. (Principal Investigator)


    Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.

  8. Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on Earth? (United States)

    Schmidt, S K; Gendron, E M S; Vincent, K; Solon, A J; Sommers, P; Schubert, Z R; Vimercati, L; Porazinska, D L; Darcy, J L; Sowell, P


    Here we describe recent breakthroughs in our understanding of microbial life in dry volcanic tephra ("soil") that covers much of the surface area of the highest elevation volcanoes on Earth. Dry tephra above 6000 m.a.s.l. is perhaps the best Earth analog for the surface of Mars because these "soils" are acidic, extremely oligotrophic, exposed to a thin atmosphere, high UV fluxes, and extreme temperature fluctuations across the freezing point. The simple microbial communities found in these extreme sites have among the lowest alpha diversity of any known earthly ecosystem and contain bacteria and eukaryotes that are uniquely adapted to these extreme conditions. The most abundant eukaryotic organism across the highest elevation sites is a Naganishia species that is metabolically versatile, can withstand high levels of UV radiation and can grow at sub-zero temperatures, and during extreme diurnal freeze-thaw cycles (e.g. - 10 to + 30 °C). The most abundant bacterial phylotype at the highest dry sites sampled (6330 m.a.s.l. on Volcán Llullaillaco) belongs to the enigmatic B12-WMSP1 clade which is related to the Ktedonobacter/Thermosporothrix clade that includes versatile organisms with the largest known bacterial genomes. Close relatives of B12-WMSP1 are also found in fumarolic soils on Volcán Socompa and in oligotrophic, fumarolic caves on Mt. Erebus in Antarctica. In contrast to the extremely low diversity of dry tephra, fumaroles found at over 6000 m.a.s.l. on Volcán Socompa support very diverse microbial communities with alpha diversity levels rivalling those of low elevation temperate soils. Overall, the high-elevation biome of the Atacama region provides perhaps the best "natural experiment" in which to study microbial life in both its most extreme setting (dry tephra) and in one of its least extreme settings (fumarolic soils).

  9. Moon (Form-Origin) (United States)

    Tsiapas, Elias; Soumelidou, Despina; Tsiapas, Christos


    When the Earth was formed, it was in a state of burning heat. As time went by, temperature on the planet's surface was falling due to radiation and heat transfer, and various components (crusts) began taking solid form at the Earth's poles. The formation of crusts took place at the Earth's poles, because the stirring of burning and fluid masses on the surface of the Earth was significantly slighter there than it was on the equator. Due to centrifugal force and Coriolis Effect, these solid masses headed towards the equator; those originating from the North Pole followed a south-western course, while those originating from the South Pole followed a north-western course and there they rotated from west to east at a lower speed than the underlying burning and liquid earth, because of their lower initial linear velocity, their solid state and inertia. Because inertia is proportional to mass, the initially larger solid body swept all new solid ones, incorporating them to its western side. The density of the new solid masses was higher, because the components on the surface would freeze and solidify first, before the underlying thicker components. As a result, the western side of the initial islet of solid rocks submerged, while the east side elevated. . As a result of the above, this initial islet began to spin in reverse, and after taking on the shape of a sphere, it formed the "heart" of the Moon. The Moon-sphere, rolling on the equator, would sink the solid rocks that continued to descend from the Earth's poles. The sinking rocks partially melted because of higher temperatures in the greater depths that the Moon descended to, while part of the rocks' mass bonded with the Moon and also served as a heat-insulating material, preventing the descended side of the sphere from melting. Combined with the Earth's liquid mass that covered its emerging eastern surface, new sphere-shaped shells were created, with increased density and very powerful structural cohesion. During the

  10. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system (United States)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.


    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  11. ISS as testbed towards food production on the Moon (United States)

    Kuebler, Ulrich; Thallemer, Axel; Kern, Peter; Schwarzwaelder, Achim

    Almost all major space faring nations are presently investigating concepts for the exploration of extra terrestrial planetary bodies, including Earth's Moon and Mars. One major objective to sustain any human exploration plans will be the provision of fresh food. Even if a delivery from Earth to Moon is still possible with regular preservation techniques as for the international space station, there will be a big psychological impact from the ability to grow fresh food on a Moon Basis. Various architectural and agricultural concepts have been proposed. A comprehensive summary of the related requirements and constraints shall be presented as a baseline for further studies. One presently unknown constraint is the question of the gravity threshold for the genetic stability of plants or more specifically the level of gravity which is needed for normal growth and reproduction of plants. This paper shall focus on a roadmap towards a food production facility a planetary surface using the International Space Station as a test bed. Presented will be 1.) The concept of a Food Research Rotor for the artificial gravity facility EMCS. This Rotor shall allow the investigation into the gravity dependence of growth and reproduction of nutritionally relevant plants like radishes, tomatoes, bell peppers or lettuce. An important answer from this research could be if the Moon Gravity of 1/6g is sufficient for a vegetative food production or if additional artificial gravity is needed for a Moon Greenhouse. 2.) An inflatable demonstrator for ATV as scaled down version of a proposed planetary greenhouse

  12. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars (United States)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.


    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  13. The divergent fates of primitive hydrospheric water on Earth and Mars (United States)

    Wade, Jon; Dyck, Brendan; Palin, Richard M.; Moore, James D. P.; Smye, Andrew J.


    Despite active transport into Earth’s mantle, water has been present on our planet’s surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet’s magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet’s surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth’s mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained

  14. Paleo-hydraulic Reconstructions of Topographically Inverted River Deposits on Earth and Mars (United States)

    Hayden, A.; Lamb, M. P.; Fischer, W. W.; Ewing, R. C.; McElroy, B. J.


    River deposits are one of the keys to understanding the history of flowing water and sediment on Earth and Mars. Deposits of some ancient Martian rivers have been topographically inverted resulting in sinuous ridges visible from orbit. However, it is unclear what aspects of the fluvial deposits these ridges represent, so reconstructing paleo-hydraulics from ridge geometry is complicated. Most workers have assumed that ridges represent casts of paleo-river channels, such that ridge widths and slopes, for example, can be proxies for river widths and slopes at some instant in time. Alternatively, ridges might reflect differential erosion of extensive channel bodies, and therefore preserve a rich record of channel conditions and paleoenvironment over time. To explore these hypotheses, we examined well exposed inverted river deposits in the Jurassic Morrison and Early Cretaceous Cedar Mountain Formations across the San Rafael Swell of central Utah. We mapped features on foot and by UAV, measured stratigraphic sections and sedimentary structures to constrain deposit architecture and river paleo-hydraulics, and used field observations and drainage network analyses to constrain recent erosion. Our work partly confirms earlier work in that the local trend of the ridge axis generally parallels paleo-flow indicators. However, ridge relief is much greater than reconstructed channel depths, and ridge widths vary from zero to several times the reconstructed channel width. Ridges instead appear to record a rich history of channel lateral migration, floodplain deposition, and soil development over significant time. The ridge network is disjointed owing to active modern fluvial incision and scarp retreat. Our results suggest that ridge geometry alone contains limited quantitative information about paleo-rivers, and that stratigraphic sections and observations of sedimentary structures within ridge-forming deposits are necessary to constrain ancient river systems on Mars.

  15. Accretion and primary differentiation of Mars

    International Nuclear Information System (INIS)

    Drake, M.J.


    In collecting samples from Mars to address questions such as whether Mars accreted homogeneously or heterogeneously, how Mars segregated into a metallic core and silicate mantle, and whether Mars outgassed catastrophically coincident with accretion or more serenely on a longer timescale, we must be guided by our experience in addressing these questions for the Earth, Moon, and igneous meteorite parent bodies. A key measurement to be made on any sample returned from Mars is its oxygen isotopic composition. A single measurement will suffice to bind the SNC meteorites to Mars or demonstrate that they cannot be samples of that planet. A positive identification of Mars as the SNC parent planet will permit all that has been learned from the SNC meteorites to be applied to Mars with confidence. A negative result will perhaps be more exciting in forcing us to look for another object that has been geologically active in the recent past. If the oxygen isotopic composition of Earth and Mars are established to be distinct, accretion theory must provide for different compositions for two planets now separated by only 0.5 AU

  16. The Tethered Moon (United States)

    Zahnle, Kevin; Lupu, Roxana Elena; Dubrovolskis, A. R.


    A reasonable initial condition on Earth after the Moonforming impact is that it begins as a hot global magma ocean1,2. We therefore begin our study with the mantle as a liquid ocean with a surface temperature on the order of 3000- 4000 K at a time some 100-1000 years after the impact, by which point we can hope that early transients have settled down. A 2nd initial condition is a substantial atmosphere, 100-1000 bars of H2O and CO2, supplemented by smaller amounts of CO, H2, N2, various sulfur-containing gases, and a suite of geochemical volatiles evaporated from the magma. Third, we start the Moon with its current mass at the relevant Roche limit. The 4th initial condition is the angular momentum of the Earth-Moon system. Canonical models hold this constant, whilst some recent models begin with considerably more angular momentum than is present today. Here we present a ruthlessly simplified model of Earth's cooling magmasphere based on a full-featured atmosphere and including tidal heating by the newborn Moon. Thermal blanketing by H2O-CO2 atmospheres slows cooling of a magma ocean. Geochemical volatiles - chiefly S, Na, and Cl - raise the opacity of the magma ocean's atmosphere and slow cooling still more. We assume a uniform mantle with a single internal (potential) temperature and a global viscosity. The important "freezing point" is the sharp rheological transition between a fluid carrying suspended crystals and a solid matrix through which fluids percolate. Most tidal heating takes place at this "freezing point" in a gel that is both pliable and viscous. Parameterized convection links the cooling rate to the temperature and heat generation inside the Earth. Tidal heating is a major effect. Tidal dissipation in the magma ocean is described by viscosity. The Moon is entwined with Earth by the negative feedback between thermal blanketing and tidal heating that comes from the temperature-dependent viscosity of the magma ocean. Because of this feedback, the rate

  17. Critical Spacecraft-to-Earth Communications for Mars Exploration Rover (MER) entry, descent and landing (United States)

    Hurd, William J.; Estabrook, Polly; Racho, Caroline S.; Satorius, Edgar H.


    For planetary lander missions, the most challenging phase of the spacecraft to ground communications is during the entry, descent, and landing (EDL). As each 2003 Mars Exploration Rover (MER) enters the Martian atmosphere, it slows dramatically. The extreme acceleration and jerk cause extreme Doppler dynamics on the X-band signal received on Earth. When the vehicle slows sufficiently, the parachute is deployed, causing almost a step in deceleration. After parachute deployment, the lander is lowered beneath the parachute on a bridle. The swinging motion of the lander imparts high Doppler dynamics on the signal and causes the received signal strength to vary widely, due to changing antenna pointing angles. All this time, the vehicle transmits important health and status information that is especially critical if the landing is not successful. Even using the largest Deep Space Network antennas, the weak signal and high dynamics render it impossible to conduct reliable phase coherent communications. Therefore, a specialized form of frequency-shift-keying will be used. This paper describes the EDL scenario, the signal conditions, the methods used to detect and frequency-track the carrier and to detect the data modulation, and the resulting performance estimates.

  18. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology (United States)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)


    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  19. Flexible climate modeling systems: Lessons from Snowball Earth, Titan and Mars (United States)

    Pierrehumbert, R. T.


    Climate models are only useful to the extent that real understanding can be extracted from them. Most leading- edge problems in climate change, paleoclimate and planetary climate require a high degree of flexibility in terms of incorporating model physics -- for example in allowing methane or CO2 to be a condensible substance instead of water vapor. This puts a premium on model design that allows easy modification, and on physical parameterizations that are close to fundamentals with as little empirical ad-hoc formulation as possible. I will provide examples from two approaches to this problem we have been using at the University of Chicago. The first is the FOAM general circulation model, which is a clean single-executable Fortran-77/c code supported by auxiliary applications in Python and Java. The second is a new approach based on using Python as a shell for assembling building blocks in compiled-code into full models. Applications to Snowball Earth, Titan and Mars, as well as pedagogical uses, will be discussed. One painful lesson we have learned is that Fortran-95 is a major impediment to portability and cross-language interoperability; in this light the trend toward Fortran-95 in major modelling groups is seen as a significant step backwards. In this talk, I will focus on modeling projects employing a full representation of atmospheric fluid dynamics, rather than "intermediate complexity" models in which the associated transports are parameterized.

  20. New Moon water, exploration, and future habitation

    CERN Document Server

    Crotts, Arlin


    Explore Earth's closest neighbor, the Moon, in this fascinating and timely book and discover what we should expect from this seemingly familiar but strange, new frontier. What startling discoveries are being uncovered on the Moon? What will these tell us about our place in the Universe? How can exploring the Moon benefit development on Earth? Discover the role of the Moon in Earth's past and present; read about the lunar environment and how it could be made more habitable for humans; consider whether continued exploration of the Moon is justified; and view rare Apollo-era photos and film still

  1. The comparison of element composition of Venus, Earth, Mars, and chondrites in the light of the Mendeleev Periodic Law

    International Nuclear Information System (INIS)

    Chuburkov, Yu.T.


    The share of free neutral atoms, N 0 , for all elements in Protoplanet nebula has been determined with the account of their abundance and physico-chemical properties. The linear dependence for the ratio of nonvolatile and volatile elements in chondrites and igneous rocks of the Earth on N 0 was obtained. The Mendeleev Periodic Law was used to obtain the proof of the existence of the hypothetical process of element magnetic separation in Protoplanet nebula. To this end the concentration ratios of element-analogous with different N 0 in the matters of Venus, Earth, Mars, and chondrites were compared. The data obtained are sufficient demonstration of the existence of the hypothetical process of element magnetic separation in Protoplanet nebula. With the account of the above said, it was shown that Shergotty and Tunguska meteorites by their relative elemental composition are close to Mars and asteroids, respectively. (author)

  2. Isotopic Evidence for Multi-stage Cosmic-ray Exposure Histories of Lunar Meteorites: Long Residence on the Moon and Short Transition to the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi; Sakuma, Keisuke [Department of Earth and Planetary Sciences, Nagoya University Nagoya 464-8601 (Japan); Nishiizumi, Kunihiko [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Yoneda, Shigekazu, E-mail: [Department of Science and Engineering, National Museum of Nature and Science Tsukuba 305-0005 (Japan)


    It is known that most lunar meteorites have complicated cosmic-ray exposure experiences on the Moon and in space. In this study, cosmic-ray irradiation histories of six lunar meteorites, Dhofar 489, Northwest Africa 032 (NWA 032), NWA 479, NWA 482, NWA 2995, and NWA 5000, were characterized from neutron-captured isotopic shifts of Sm and Gd, and from the abundances of long-lived cosmogenic radionuclides like {sup 10}Be, {sup 26}Al, {sup 36}Cl, and {sup 41}Ca. Sm and Gd isotopic data of all of six meteorites show significant isotopic shifts of {sup 149}Sm–{sup 150}Sm and {sup 157}Gd–{sup 158}Gd caused by accumulation of neutron capture reactions due to cosmic-ray irradiation, corresponding to the neutron fluences of (1.3–9.6) × 10{sup 16} n cm{sup −2}. In particular, very large Sm and Gd isotopic shifts of NWA 482 are over those of a lunar regolith 70002, having the largest isotopic shifts among the Apollo regolith samples, corresponding to cosmic-ray exposure duration over 800 million years in the lunar surface (2 π irradiation). Meanwhile, the concentrations of cosmogenic radionuclides for individual six meteorites show the short irradiation time less than one million years as their bodies in space (4 π irradiation). Our data also support the results of previous studies, revealing that most of lunar meteorites have long exposure ages at shallow depths on the Moon and short transit times from the Moon to the Earth.

  3. Moon nature and culture

    CERN Document Server

    Williams, Edgar


    Long before a rocket hit the Man in the Moon in the eye in Georges Méliès's early film Le Voyage dans la Lune, the earth's lone satellite had entranced humans. We have worshipped it as a deity, believed it to cause madness, used it as a means of organizing time, and we now know that it manipulates the tides-our understanding of the moon continues to evolve. Following the moon from its origins to its rich cultural resonance in literature, art, religion, and politics, Moon provides a comprehensive account of the significance of our lunar companion. Edgar Williams explores the interdependence of

  4. Size-Frequency Distributions of Rocks on Mars and Earth Analog Sites: Implications for Future Landed Missions (United States)

    Golombeck, M.; Rapp, D.


    The size-frequency distribution of rocks and the Vicking landing sites and a variety of rocky locations on the Earth that formed from a number of geologic processes all have the general shape of simple exponential curves, which have been combined with remote sensing data and models on rock abundance to predict the frequency of boulders potentially hazardous to future Mars landers and rovers.

  5. Photosynthetic microbial mats today, on early Earth, (and on early Mars?) (United States)

    Des Marais, D. J.


    extensive, highly productive biosphere? Perhaps the substantial decline in geothermal activity during the Archean created a driver for the development of oxygenic photosynthesis. Can we further document the Archean biosphere? The pre-3.5 Ga crust of Mars records evidence of surface water and is far better preserved than the early crust of Earth. Perhaps Mars exploration will extend our understanding of emerging biospheres to even earlier periods.

  6. A Ground Penetrating Radar (GPR) Survey of KIilbourne Hole, Southern New Mexico: Implication for Paleohydrology and Near Surface Geophysical Exploration of Mars and the Moon (United States)

    Rhodes, N.; Hurtado, J. M.


    radar system. We designed the surveys to detect volcanic bombs in the shallow subsurface and to map radial variations in their sizes. Six GPR lines were extended radially in each cardinal direction from the rim of Kilbourne Hole, and, as a control, fifteen short GPR lines were performed along an accessible cliff where visible volcanic bombs and blocks are exposed. We are able to visualize 58 bombs and blocks along one of the six GPR lines within the maximum penetration depth of 2.4-3.2 m. From the resulting GPR profiles, we measured the width and the length of the bombs. The largest dimension of each bomb was plotted against distance from crater rim, and the obtained exponential relationship between bomb size and distance will be applied to a numerical model of ejecta dispersal from transient volcanic explosions to solve for Ve and Mw. This case study at Kilbourne Hole serves as a planetary analog for similar surveys that could be done on Mars and on the Moon.

  7. [The reasons for the «space» of gerontology: the impact of the movements of the Earth and Moon on the performance of the human environment]. (United States)

    Shapovalov, S N


    For future gerontological research specific interest are the research results obtained at the junction of Geophysics, astronomy, and biology, and existing links pointing to indicators of living objects with cosmophysical factors. The paper presents data on basic astronomical factors, potentially on a regular basis may cause gravitational effects on the biosphere as a living environment. Among these factors are movement of the Earth and Moon described is known in astronomy equations: the equation of the equinoxes, equation of time, as well as major perturbations from the Sun (evection, variation and annual inequality) inferred from the theory of lunar motion. Based on the amount of major perturbations from the Sun, the so-called λD-functions that are carried out to study the relationship between fluctuations of the so-called «computer time», the energy of solar radiation in the range of 605-607 nm, and the concentration of hemoglobin and red blood cells with major perturbations from the Sun. The resulting conclusion about the universal nature of the impact of the movements of the Moon and the Earth on the biosphere. The tables for the period from 01.01.2015 to 31.12.2016, with the calculated values λD functions that are potentially important for analyzing their association with temporal changes of various indicators of the body. The regularities obtained in the comparison of changes in various biomarkers with the course of values λD functions from tables, can be predictive in the study of the functioning of humans and the biosphere for astronomical periods. The research was carried out in Antarctica, where excluded the influence of artificial electromagnetic fields, st. Vostok (1998-1999) and st. Novolazarevskaya (2003-2004).

  8. Drilling Automation Tests At A Lunar/Mars Analog Site (United States)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.


    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  9. The formation of the moon (United States)

    O'Keefe, J. A., III


    Supporting evidence for the fission hypothesis for the origin of the moon is offered. The maximum allowable amount of free iron now present in the moon would not suffice to extract the siderophiles from the lunar silicates with the observed efficiency. Hence extraction must have been done with a larger amount of iron, as in the mantle of the earth, of which the moon was once a part, according to the fission hypothesis. The fission hypothesis gives a good resolution of the tektite paradox. Tektites are chemically much like products of the mantle of the earth; but no physically possible way has been found to explain their production from the earth itself. Perhaps they are a product of late, deep-seated lunar volcanism. If so, the moon must have inside it some material with a strong resemblance to the earth's mantle.

  10. Two earth years of Moessbauer studies of the surface of Mars with MIMOS II

    International Nuclear Information System (INIS)

    Klingelhoefer, G.; Morris, R. V.; De Souza, P. A.; Rodionov, D.; Schroeder, C.


    The element iron plays a crucial role in the study of the evolution of matter from an interstellar cloud to the formation and evolution of the planets. In the Solar System iron is the most abundant metallic element. It occurs in at least three different oxidation states: Fe(0) (metallic iron), Fe(II) and Fe(III). Fe(IV) and Fe(VI) compounds are well known on Earth, and there is a possibility for their occurrence on Mars. In January 2004 the USA space agency NASA landed two rovers on the surface of Mars, both carrying the Mainz Moessbauer spectrometer MIMOS II. They performed for the first time in-situ measurements of the mineralogy of the Martian surface, at two different places on Mars, Meridiani Planum and Gusev crater, respectively, the landing sites of the Mars-Exploration-Rovers (MER) Opportunity and Spirit. After about two Earth years or one Martian year of operation the Moessbauer (MB) spectrometers on both rovers have acquired data from more than 150 targets (and more than thousand MB spectra) at each landing site. The scientific measurement objectives of the Moessbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these iron-bearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe 2+ , Fe 3+ , and Fe 6+ ), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the Moessbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels. The Moessbauer spectrometer on Opportunity at Meridiani Planum, identified eight Fe-bearing phases: jarosite (K,Na,H3O

  11. Cratering record in the inner solar system: Implications for earth

    International Nuclear Information System (INIS)

    Barlow, N.G.


    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters

  12. Roles of Clathrate Hydrates in Crustal Heating and Volatile Storage/Release on Earth, Mars, and Beyond (United States)

    Kargel, J. S.; Beget, J.; Furfaro, R.; Prieto-Ballesteros, O.; Palmero-Rodriguez, J. A.


    Clathrate hydrates are stable through much of the Solar System. These materials and hydrate-like amorphous associations of water with N2, CO, CH4, CO2, O2 and other molecules could, in fact, constitute the bulk of the non-rock components of some icy satellites, comets, and Kuiper Belt Objects. CO2 clathrate is thermodynamically stable at the Martian South Pole surface and could form a significant fraction of both Martian polar caps and icy permafrost distributed across one-third of the Martian surface. CH4 clathrate is the largest clathrate material in Earth's permafrost and cold seafloor regions, and it may be a major volatile reservoir on Mars, too. CO2 clathrate is less abundant on Earth but it might store most of Mars' CO2 inventory and thus may be one of the critical components in the climate system of that planet, just as CH4 clathrate is for Earth. These ice-like phases not only store biologically, geologically, and climatologically important gases, but they also are natural thermal insulators. Thus, they retard the conductive flow of geothermal heat, and thick accumulations of them can modify geotherms, cause brines to exist where otherwise they would not, and induce low-grade metamorphism of upper crustal rocks underlying the insulating bodies. This mechanism of crustal heating may be especially important in assisting hydrogeologic activity on Mars, gas-rich carbonaceous asteroids, icy satellites, and Kuiper Belt Objects. These worlds, compared to Earth, are comparatively energy starved and frozen but may partly make up for their deficit of joules by having large accumulations of joule-conserving hydrates. Thick, continuous layers of clathrate may seal in gases and produce high gas fugacities in aquifers underlying the clathrates, thus producing gas-rich reservoirs capable of erupting violently. This may have happened repeatedly in Earth history, with global climatic consequences for abrupt climate change. We have hypothesized that such eruptions may have

  13. Special Exhibit on Meteorites and Minerals Associated with the Origin of Life on Earth or Mars (United States)

    Bruner, R. B.


    This exhibit has been shown at eight conferences: 2014 Gordon Origin of Life, 2014 8th International Mars, 2015 2nd Mars2020 L S, 2016 Gordon Origin of Life, 2016 Biosignature, 2016 European Astrobiology, 2017 Exomars 2020 L S, 2017 AbSciCon.

  14. Risk Factors and Predictors of Significant Chondral Surface Change From Primary to Revision Anterior Cruciate Ligament Reconstruction: A MOON and MARS Cohort Study. (United States)

    Magnussen, Robert A; Borchers, James R; Pedroza, Angela D; Huston, Laura J; Haas, Amanda K; Spindler, Kurt P; Wright, Rick W; Kaeding, Christopher C; Allen, Christina R; Anderson, Allen F; Cooper, Daniel E; DeBerardino, Thomas M; Dunn, Warren R; Lantz, Brett A; Mann, Barton; Stuart, Michael J; Albright, John P; Amendola, Annunziato; Andrish, Jack T; Annunziata, Christopher C; Arciero, Robert A; Bach, Bernard R; Baker, Champ L; Bartolozzi, Arthur R; Baumgarten, Keith M; Bechler, Jeffery R; Berg, Jeffrey H; Bernas, Geoffrey A; Brockmeier, Stephen F; Brophy, Robert H; Bush-Joseph, Charles A; Butler, J Brad; Campbell, John D; Carey, James L; Carpenter, James E; Cole, Brian J; Cooper, Jonathan M; Cox, Charles L; Creighton, R Alexander; Dahm, Diane L; David, Tal S; Flanigan, David C; Frederick, Robert W; Ganley, Theodore J; Garofoli, Elizabeth A; Gatt, Charles J; Gecha, Steven R; Giffin, James Robert; Hame, Sharon L; Hannafin, Jo A; Harner, Christopher D; Harris, Norman Lindsay; Hechtman, Keith S; Hershman, Elliott B; Hoellrich, Rudolf G; Hosea, Timothy M; Johnson, David C; Johnson, Timothy S; Jones, Morgan H; Kamath, Ganesh V; Klootwyk, Thomas E; Levy, Bruce A; Ma, C Benjamin; Maiers, G Peter; Marx, Robert G; Matava, Matthew J; Mathien, Gregory M; McAllister, David R; McCarty, Eric C; McCormack, Robert G; Miller, Bruce S; Nissen, Carl W; O'Neill, Daniel F; Owens, Brett D; Parker, Richard D; Purnell, Mark L; Ramappa, Arun J; Rauh, Michael A; Rettig, Arthur C; Sekiya, Jon K; Shea, Kevin G; Sherman, Orrin H; Slauterbeck, James R; Smith, Matthew V; Spang, Jeffrey T; Svoboda, Steven J; Taft, Timothy N; Tenuta, Joachim J; Tingstad, Edwin M; Vidal, Armando F; Viskontas, Darius G; White, Richard A; Williams, James S; Wolcott, Michelle L; Wolf, Brian R; York, James J


    Articular cartilage health is an important issue following anterior cruciate ligament (ACL) injury and primary ACL reconstruction. Factors present at the time of primary ACL reconstruction may influence the subsequent progression of articular cartilage damage. Larger meniscus resection at primary ACL reconstruction, increased patient age, and increased body mass index (BMI) are associated with increased odds of worsened articular cartilage damage at the time of revision ACL reconstruction. Case-control study; Level of evidence, 3. Subjects who had primary and revision data in the databases of the Multicenter Orthopaedics Outcomes Network (MOON) and Multicenter ACL Revision Study (MARS) were included. Reviewed data included chondral surface status at the time of primary and revision surgery, meniscus status at the time of primary reconstruction, primary reconstruction graft type, time from primary to revision ACL surgery, as well as demographics and Marx activity score at the time of revision. Significant progression of articular cartilage damage was defined in each compartment according to progression on the modified Outerbridge scale (increase ≥1 grade) or >25% enlargement in any area of damage. Logistic regression identified predictors of significant chondral surface change in each compartment from primary to revision surgery. A total of 134 patients were included, with a median age of 19.5 years at revision surgery. Progression of articular cartilage damage was noted in 34 patients (25.4%) in the lateral compartment, 32 (23.9%) in the medial compartment, and 31 (23.1%) in the patellofemoral compartment. For the lateral compartment, patients who had >33% of the lateral meniscus excised at primary reconstruction had 16.9-times greater odds of progression of articular cartilage injury than those with an intact lateral meniscus ( P < .001). For the medial compartment, patients who had <33% of the medial meniscus excised at the time of the primary reconstruction

  15. Wet Mars, Dry Mars (United States)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.


    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.

  16. NASA Mars Conference

    International Nuclear Information System (INIS)

    Reiber, D.B.


    Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space

  17. Moons of the solar system from giant Ganymede to dainty Dactyl

    CERN Document Server

    Hall III, James A


    This book captures the complex world of planetary moons, which are more diverse than Earth's sole satellite might lead you to believe. New missions continue to find more of these planetary satellites, making an up to date guide more necessary than ever.  Why do Mercury and Venus have no moons at all? Earth's  Moon, of course, is covered in the book with highly detailed maps. Then we move outward to the moons of Mars, then on to many of the more notable asteroid moons, and finally to a list of less-notable ones. All the major moons of the gas giant planets are covered in great detail, while the lesser-known satellites of these worlds are also touched on.  Readers will learn of the remarkable trans-Neptunian Objects – Pluto, Eris, Sedna, Quaoar –including many of those that have been given scant attention in the literature. More than just objects to read about, the planets' satellites provide us with important information about the history of the solar system. Projects to help us learn more abo...

  18. The key to Mars, Titan and beyond?

    International Nuclear Information System (INIS)

    Zubrin, R.M.


    This paper discusses the use of nuclear rockets using indigenous Mars propellants for future missions to Mars and Titan, which would drastically reduce the mass and cost of the mission while increasing its capability. Special attention is given to the CO2-powered nuclear rocket using indigenous Martian fuel (NIMF) vehicle for hopping around on Mars. If water is available on Mars, it could make a NIMF propellant yielding an exhaust velocity of 3.4 km/sec, good enough to allow a piloted NIMF spacecraft to ascent from the surface of Mars and propel itself directly to LEO; if water is available on Phobos, a NIMF spacecraft could travel to earth orbit and then back to Phobos or Mars without any additional propellant from earth. One of the many exciting missions beyond Mars that will be made possible by NIMF technology is the exploration of Saturn's moon Titan. A small automated NIMF Titan explorer, with foldout wings and a NERVA (Nuclear Engine for Rocket Vehicle Applications) engine, is proposed

  19. The mobile GeoBus outreach project: hands-on Earth and Mars activities for secondary schools in the UK (United States)

    Robinson, Ruth; Pike, Charlotte; Roper, Kathryn


    GeoBus ( is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary schools by providing teaching resources that are not readily available to educators, to inspire young learners by incorporating new science research outcomes in teaching activities, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Just under 35,000 pupils have been involved in practical hands-on Earth science learning activities since the project began in 2012, including many in remote and disadvantaged regions. The resources that GeoBus brings to schools include all the materials and equipment needed to run 50 - 80 minute workshops, and half- or whole-day Enterprise Challenges and field excursions. Workshops are aimed at a class of up to 30 pupils and topics include minerals, rocks, fossils, geological time, natural resources, climate change, volcanoes, earthquakes, and geological mapping. As with all GeoBus activities, the inclusion of equipment and technology otherwise unavailable to schools substantially increases the engagement of pupils in workshops. Field excursions are increasingly popular, as many teachers have little or no field trainng and feel unable to lead this type of activity. The excursions comprise half or full day sessions for up to 30 pupils and are tailored to cover the local geology or geomorphology. Enterprise Challenge are half or full day sessions for up to 100 pupils. Topics include "Journey to Mars", "Scotland's Rocks", "Drilling for Oil", and "Renewable Energy". Both of the energy Enterprise Challenges were designed to incorporates ideas and

  20. A Planetary Park system for the Moon and beyond (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  1. Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars (United States)

    Horgan, Briony; Scudder, Noel; Rampe, Elizabeth; Rutledge, Alicia


    Soil crystallinity is largely determined by leaching rates, as high leaching rates favor the rapid precipitation of short order or poorly-crystalline phases like the aluminosilicate allophane. High leaching rates can occur due to high precipitation rates, seasonal monsoons, or weathering of glass, but are also caused by the rapid onset of seasonal melting of snow and ice in cold environments. Thus, cold climate soils are commonly dominated by poorly crystalline phases, which mature into kaolin minerals over time. Thus, we hypothesize that, in some contexts, soils with high abundances of poorly crystalline phases could indicate formation under cold climatic conditions. This model could be helpful in interpreting the poorly-constrained paleoclimate of ancient Mars, as the crystallinity of ancient soils and soil-derived sediments appears to be highly variable in time and space. While strong signatures of crystalline phyllosilicates have been identified in possible ancient paleosols on Mars, Mars Science Laboratory rover investigations of diverse ancient sediments at Gale Crater has shown that they can contain very high abundances (40-50 wt%) of poorly crystalline phases. We hypothesize that these poorly crystalline phases could be the result of weathering by ice/snow melt, perhaps providing support for sustained cold climates on early Mars punctuated by more limited warm climates. Furthermore, such poorly crystalline soils could be highly fertile growth media for future human exploration and colonization on Mars. To test this hypothesis, we are currently using rover-like instrumentation to investigate the mineralogy and chemistry of weathering products generated by snow and ice melt in a Mars analog alpine environment: the glaciated Three Sisters volcanic complex in central Oregon. Alteration in this glacial environment generates high abundances of poorly crystalline phases, many of which have compositions distinct from those identified in previous terrestrial

  2. MAVEN-Measured Meteoritic Ions on Mars - Tracers of Lower Ionosphere Processes With and Without Analogues On Earth (United States)

    Benna, M.; Grebowsky, J. M.; Collinson, G.; Plane, J. M. C.; Mitchell, D.; Srivastava, N.


    MAVEN observations of meteoritic metal ion populations during "deep dip" campaigns at Mars have revealed unique non-Earth like behavior that are not yet understood. These deep dip campaigns (6 so far) consisted each of more than a score of repeated orbits through the Martian molecular-ion-dominated lower ionosphere, whose terrestrial parallel (Earth's E-region) has been rather sparcely surveyed in situ by sounding rockets. In regions of weak Mars magnetic fields, MAVEN found ordered exponentially decreasing metal ion concentrations above the altitude of peak meteor ablation. Such an ordered trend has never been observed on Earth. Isolated anomalous high-altitude layers in the metal ion are also encountered, typically on deep dip campaigns in the southern hemisphere where large localized surface remanent magnetic fields prevail. The source of these anomalous layers is not yet evident, although the occurrences of some high-altitude metal ion enhancements were in regions with measured perturbed magnetic fields, indicative of localized electrical currents. Further investigation shows that those currents are also sometimes associated with superthermal/energetic electron bursts offering evidence that that impact ionization of neutral metal populations persisting at high altitudes are the source of metal ion enhancement - a rather difficult assumption to accept far above the ablation region where the metal neutrals are deposited. The relationship of the anomalous layers to the coincident electron populations as well as to the orientation of the magnetic fields which can play a role in the neutral wind generated ion convergences as on Earth is investigated.

  3. Origin of the Moon Unveiled by its Heavy Iron Isotope Composition (United States)

    Poitrasson, F.; Halliday, A. N.; Lee, D.; Levasseur, S.; Teutsch, N.


    The origin of the Moon has long been of interest and although the Giant Impact theory is currently the preferred explanation, unequivocal supporting evidence has been lacking. We have measured the iron isotope compositions of Shergotty-Nakhla-Chassigny meteorites and eucrites thought to come from Mars and Vesta, as well as samples from the Moon and the mafic Earth using high precision plasma source mass spectrometry. The mean iron isotope composition of the lunar samples, expressed in the conventional delta notation (d57Fe/54Fe) with respect to the IRMM-14 isotopic standard, is heavier (0.221 per mil (0.041: one standard deviation, 10 samples)) than those of the Earth (0.119 per mil (0.044, 7 samples)), which themselves are heavier than Martian meteorites (0.009 per mil (0.024, 6 samples)) and the eucrites measured (0.033 per mil (0.038, 7 samples)). Student's t-test calculations show that the Moon and Earth means are different from each other and from those of the other planetary bodies at >99% level of significance. The iron isotope compositions show no simple relationship with planetary heliocentric position, mantle oxygen fugacity, volatile content, or planet size. Similarly, these results do not support an origin of the Moon through co-accretion with the Earth, or as a fragment ejected from the Earth's mantle, or as another planet captured by the early Earth. In contrast, these data can be explained if the Earth, and especially the Moon, went through partial vaporisation and condensation leading to kinetic iron isotopic fractionation. Our data are also consistent with the suggested levels of enrichment of refractory elements for the bulk Earth and Moon. These new iron isotope results thus provide strong support for the origin of the Moon through a giant impact between the proto-Earth and another planet. Raleigh kinetic fractionation calculations indicate that only 1% loss of the current Fe budget of the Moon is required to explain its heavier isotopic

  4. Studying Antarctic Ordinary Chondrite (OC) and Miller Range (MIL) Nakhlite Meteorites to Assess Carbonate Formation on Earth and Mars (United States)

    Evans, Michael Ellis

    Carbonates are found in meteorites collected from Antarctica. The stable isotope composition of these carbonates records their formation environment on either Earth or Mars. The first research objective of this dissertation is to characterize the delta18O and delta 13C values of terrestrial carbonates formed on Ordinary Chondrites (OCs) collected in regions near known martian meteorites. The second objective is to characterize the delta18O and delta13C values of martian carbonates from Nakhlites collected from the Miller Range (MIL). The third objective is to assess environmental changes on Mars since the Noachian period. The OCs selected had no pre-terrestrial carbonates so any carbonates detected are presumed terrestrial in origin. The study methodology is stepped extraction of CO2 created from phosphoric acid reaction with meteorite carbonate. Stable isotope results show that two distinct terrestrial carbonate species (Ca-rich and Fe/Mg-rich) formed in Antarctica on OCs from a thin-film of meltwater containing dissolved CO2. Carbon isotope data suggests the terrestrial carbonates formed in equilibrium with atmospheric CO2 delta 13C = -7.5‰ at >15°C. The wide variation in delta 18O suggests the carbonates did not form in equilibrium with meteoric water alone, but possibly formed from an exchange of oxygen isotopes in both water and dissolved CO2. Antarctica provides a model for carbonate formation in a low water/rock ratio, near 0°C environment like modern Mars. Nakhlite parent basalt formed on Mars 1.3 billion years ago and the meteorites were ejected by a single impact approximately 11 million years ago. They traveled thru space before eventually falling to the Earth surface 10,000-40,000 years ago. Nakhlite samples for this research were all collected from the Miller Range (MIL) in Antarctica. The Nakhlite stable isotope results show two carbonate species (Ca-rich and Fe/Mg-rich) with a range of delta18O values that are similar to the terrestrial OC

  5. Exploration of the Moon to Enable Lunar and Planetary Science (United States)

    Neal, C. R.


    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  6. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.


    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  7. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.


    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  8. Chemical Alteration of Soils on Earth as a Function of Precipitation: Insights Into Weathering Processes Relevant to Mars (United States)

    Amundson, R.; Chadwick, O.; Ewing, S.; Sutter, B.; Owen, J.; McKay, C.


    Soils lie at the interface of the atmosphere and lithosphere, and the rates of chemical and physical processes that form them hinge on the availability of water. Here we quantify the effect of these processes on soil volume and mass in different rainfall regimes. We then use the results of this synthesis to compare with the growing chemical dataset for soils on Mars in order to identify moisture regimes on Earth that may provide crude analogues for past Martian weathering conditions. In this synthesis, the rates of elemental gains/losses, and corresponding volumetric changes, were compared for soils in nine soil chronosequences (sequences of soils of differing ages) - sequences formed in climates ranging from ~1 to ~4500 mm mean annual precipitation (MAP). Total elemental chemistry of soils and parent materials were determined via XRF, ICP-MS, and/or ICP-OES, and the absolute elemental gains or losses (and volume changes) were determined by normalizing data to an immobile index element. For the chronosequences examined, the initial stages of soil formation (103^ to 104^ yr), regardless of climate, generally show volumetric expansion due to (1) reduction in bulk density by biological/physical turbation, (2) addition of organic matter, (3) accumulation of water during clay mineral synthesis, and/or (4) accumulation of atmospheric salts and dust. Despite large differences in parent materials (basalt, sandstone, granitic alluvium), there was a systematic relationship between long-term (105^ to 106^ yr) volumetric change and rainfall, with an approximate cross-over point between net expansion (and accumulation of atmospheric solutes and dust) and net collapse (net losses of Si, Al, and alkaline earths and alkali metals) between approximately 20 and 100 mm MAP. Recently published geochemical data of soils at Gusev Crater (Gellert et al. 2004. Science 305:829), when normalized to Ti, show apparent net losses of Si and Al that range between 5 and 50% of values relative to

  9. Alteration of immature sedimentary rocks on Earth and Mars. Recording Aqueous and Surface-atmosphere Processes

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Kenneth M. [Brown Univ., Providence, RI (United States); Mustard, John F. [Brown Univ., Providence, RI (United States); Salvatore, Mark R. [Arizona State Univ., Mesa, AZ (United States)


    The rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. Moreover, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previous and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water–rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water–rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. These results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.

  10. Moon Phase as a Context for Teaching Scale Factor (United States)

    Wallace, Ann; Dickerson, Daniel; Hopkins, Sara


    The Sun and the Moon are our most visible neighbors in space, yet their distance and size relative to the Earth are often misunderstood. Science textbooks fuel this misconception because they regularly depict linear images of Moon phases without respect to the actual sizes of the Sun, Earth, and Moon, nor their correlated distances from one…

  11. Bow shock studies at Mercury, Venus, Earth, and Mars with applications to the solar-planetary interaction problem

    International Nuclear Information System (INIS)

    Slavin, J.A.


    A series of bow shock studies conducted for the purpose of investigating the interaction between the solar wind and the terrestrial planets is presented. Toward this end appropriate modeling techniques have been developed and applied to the bow wave observations at Venus, Earth, and Mars. For Mercury the measurements are so few in number that no accurate determination of shock shape was deemed possible. Flow solutions generated using the observed bow wave surface as a boundary condition in a single fluid variable obstacle shape gasdynamic model produced excellent fits to the measured width and shape of the earth's magnetosheath. This result and the observed ordering of shock shape and position by upstream sonic Mach number provide strong support for the validity of the gasdynamic approximation. At Mercury the application of earth type models to the individual Mariner 10 boundry crossings has led to the determination of an effective planetary magnetic moment of 6+-2 x 10 22 G-cm 3 . Consistent with the presence of a small terrestrial style magnetosphere, southward interplanetary magnetic fields were found to significantly reduce the solar wind stand-off distance most probably through the effects of dayside magnetic reconnection. For Venus the low altitude solar wind flow field derived from gasdynamic modeling of bow shock location and shape indicates that a fraction of the incident streamlines are absorbed by the neutral atmosphere near the ionopause; approximately 1% and 8%, respectively, in the solar maximum Pioneer Venus and solar minimum Venera measurements. Accordingly, it appears that cometary processes must be included in model calculations of the solar wind flow about Venus. At Mars the moderate height of the gasdynamic solar wind-obstacle interface and the weakness of the Martian ionosphere/atmosphere are found to be incompatible with a Venus type interaction

  12. Thermal Protection for Mars Sample Return Earth Entry Vehicle: A Grand Challenge for Design Methodology and Reliability Verification (United States)

    Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.


    Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.



    Wang, Jingjing


    Foolish Moon is a product design for Chinese young adults who come to big Chinese cities to fight for their dreams to help them to slow down, to think more, to be practical and patient under the influence of fast culture which makes people eager to quick success. It has two physical parts, a moon phase clock anda work journal book, and three functions: 1) a new time experience of slow, stable and circular; 2) to encourage people to write down their goals and plans; 3) to make time capsules to...

  14. Precursor life science experiments and closed life support systems on the Moon (United States)

    Rodriguez, A.; Paille, C.; Rebeyre, P.; Lamaze, B.; Lobo, M.; Lasseur, C.

    Nowadays the Moon is not only a scientific exploration target but also potentially also a launch pad for deeper space exploration. Establishing an extended human presence on the Moon could reduce the cost of further space exploration, and gather the technical and scientific experience that would make possible the next steps of space exploration, namely manned-missions to Mars. To enable the establishment of such a Moon base, a reliable and regenerative life support system (LSS) is required: without any recycling of metabolic consumables (oxygen, water and food), a 6-person crew during the course of one year would require a supply of 12t from Earth (not including water for hygiene purposes), with a prohibitive associated cost! The recycling of consumables is therefore mandatory for a combination of economic, logistical and also safety reasons. Currently the main regenerative technologies used, namely water recycling in the ISS, are physical-chemical but they do not solve the issue of food production. In the European Space Agency, for the last 15 years, studies are being performed on several life support topics, namely in air revitalisation, food, water and waste management, contaminants, monitoring and control. Ground demonstration, namely the MELiSSA Pilot Plant and Concordia Station, and simulation studies demonstrated the studies feasibility and the recycling levels are promising. To be able to build LSS in a Moon base, the temperature amplitude, the dust and its 14-day night, which limits solar power supply, should be regarded. To reduce these technical difficulties, a landing site should be carefully chosen. Considering the requirements of a mission to the Moon and within the Aurora programme phase I, a preliminary configuration for a regenerative LSS can be proposed as an experiment for a precursor mission to the Moon. An overview of the necessary LSS to a Moon base will be presented, identifying Moon?s specific requirements and showing preliminary

  15. Earth analogs for Martian life - Microbes in evaporites, a new model system for life on Mars (United States)

    Rothschild, Lynn J.


    It is suggested that 'oases' in which life forms may persist on Mars could occur, by analogy with terrestrial cases, in (1) rocks, as known in endolithic microorganisms, (2) polar ice caps, as seen in snow and ice algae, and (3) volcanic regions, as witnessed in the chemoautotrophs which live in ocean-floor hydrothermal vents. Microorganisms, moreover, have been known to survive in salt crystals, and it has even been shown that organisms can metabolize while encrusted in evaporites. Evaporites which may occur on Mars would be able to attenuate UV light, while remaining more transparent to the 400-700 nm radiation useful in photosynthesis. Suggestions are made for the selection of Martian exobiological investigation sites.

  16. sanghoon moon

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. SANGHOON MOON. Articles written in Journal of Genetics. Volume 96 Issue 6 December 2017 pp 1041-1046 Research article. Genome-based exome sequencing analysis identifies GYG1, DIS3L and DDRGK1 are associated with myocardial infarction in Koreans · JI-YOUNG LEE ...

  17. The Earth's revolution, Moon phase, Syzygy astronomy events, their effect in disturbances of the Earth's geomagnetic field, and the ``Magnetic Storm Double Time Method'' for predicting the occurrence time, magnitude and epicenter location of earthquakes (United States)

    Chen, I. W.


    An increasing number of geomagnetic observation stations were established and operated in China since 1966 to the 1980s (and until present), effectively covering a large area of the nation. Close relativity between magnetic storms and earthquakes, as well as close relativity between the regional differences of magnetic disturbance recorded by these stations and the epicenter location of earthquakes, was discovered and observed by Tie-zheng Zhang during1966 - 1969. On such basis during 1969/1970, Zhang developed the “Magnetic Storm Double Time Method” for predicting the occurrence time, magnitude and epicenter location of EQs. By this method,.Zhang successfully predicted the Yunnan Tonghai Ms7.7 EQ Jan. 5, 1970 (occurrence date only), the Bohai ML5.2 EQ, Feb. 12, 1970 and other EQs, including the Haicheng Ms7.3 EQ Feb. 4, 1975, and the Tangshan Ms7.8 EQ July 28, 1976. On the basis of this method, Z.P. Shen developed the “Geomagnetic Deflection Angle Double Time Method” in 1970, and later developed the “Magnetic Storm - Moon Phase Double Time Method” in 1990s. With this method, Shen is able to predict the occurrence dates of most of the strongest EQs Ms37.5 on the Earth since 1991. Zhang also discovered that strong EQs often correspond with a number of sets of magnetic storms. Z.Q. Ren discovered close relativity exists between Syzygy astronomy events and such sets of magnetic storm as well as the occurrence dates of strong EQs. Computerized calculation of historical magnetic storm and EQ data proves the effectiveness of this method. Over 3,000 days of geomagnetic isoline images are computer processed by the Author from over 400,000 geomagnetic field data obtained by Zhang from over 100 geomagnetic observation stations during 1966 - 1984. Clear relativity is shown between the Earth’s revolution, Moon phases, Syzygy astronomy events related to the Earth, and their disturbance effect on the Earth’s geomagnetic field and the occurrence of EQs.

  18. Rare Earth Elements as Potential Biosignatures on Mars in SuperCam Time Resolved Laser Fluorescence Spectroscopy Data (United States)

    Ollila, A.; Beyssac, O.; Sharma, S. K.; Misra, A. K.; Clegg, S. M.; Gauthier, M.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lanza, N.


    The rare earth elements (REE, La to Lu) are a group of elements with similar chemical properties that are generally present in geologic materials at trace concentrations. REEs may be concentrated via processes such as igneous fractional crystallization in accessory minerals, e.g. apatite, zircon, and titanite. Additionally, however, concentrations of REE may serve to identify regions of high astrobiological interest. For example, Fe-oxyhydroxide deposits in hydrothermal vent systems and biologically related manganese nodules may be enriched in REEs. REEs have not been measured in situ on Mars, therefore their prevalence and distribution on Mars is as yet unknown, except as observed in martian meteorites. SuperCam is a survey instrument that will analyze materials around the Mars 2020 rover using a variety of spectral techniques including laser-induced breakdown spectroscopy (LIBS), Raman, VIS-IR, and time-resolved laser fluorescence (TRLF) spectroscopy. Recently, the SuperCam Engineering Development Unit was tested at the Los Alamos National Laboratory for its capabilities to detect REEs in minerals using TRLF spectroscopy. While this instrument was not designed to precisely replicate the flight model, the spectral resolution and light transmission was sufficient to obtain TRLF spectra on a number of minerals demonstrating a variety of REE luminescent centers. These include apatite (Sm3+, Nd3+, Eu3+, Dy3+), fluorite (Ho3+, Sm3+, Dy3+, Nd3+), and zircon (Er3+, Pr3+, Nd3+). Future work includes expanding this suite to include minerals associated with biological activities, for example Mn-oxides (desert varnish and manganese nodules), hydrothermal Fe-oxides, and stromatolite-associated carbonates. In this way and in combination with its other techniques, SuperCam may direct the rover team to perform further analyses of similar samples by the in situ chemical and mineralogical suite of instruments, or aid in prioritization for sample return.

  19. MOA-2011-BLG-262Lb: A sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic Bulge

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Batista, V. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bond, I. A.; Ling, C. H. [Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745 (New Zealand); Bennett, C. S. [Department of Physics, Massachussets Institute of Technology, Cambridge, MA 02139 (United States); Suzuki, D.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Beaulieu, J.-P. [UPMC-CNRS, UMR 7095, Institut d' Astrophysique de Paris, 98bis Boulevard Arago, F-75014 Paris (France); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Donatowicz, J. [Technische Universität Wien, Wieder Hauptst. 8-10, A-1040 Vienna (Austria); Bozza, V. [Dipartimento di Fisica, Università di Salerno, Via Ponte Don Melillo 132, I-84084 Fisciano (Italy); Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A., E-mail: [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; PLANET Collaboration; μFUN Collaboration; OGLE Collaboration; RoboNet Collaboration; and others


    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M {sub host} ∼ 4 Jupiter masses hosting a sub-Earth mass moon. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M{sub L} π{sub rel} where M{sub L} is the lens system mass and π{sub rel} is the lens-source relative parallax. If the lens system is nearby (large π{sub rel}), then M{sub L} is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, μ{sub rel} = 19.6 ± 1.6 mas yr{sup –1}, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, there is an alternate solution that has a lower proper motion and fits the data almost as well. This solution is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of M{sub host}=0.12{sub −0.06}{sup +0.19} M{sub ⊙} and m{sub comp}=18{sub −10}{sup +28} M{sub ⊕}, at a projected separation of a{sub ⊥}=0.84{sub −0.14}{sup +0.25} AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.

  20. Habitability & Astrobiology Research in Mars Terrestrial Analogues (United States)

    Foing, Bernard


    We performed a series of field research campaigns (ILEWG EuroMoonMars) in the extreme Utah desert relevant to Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL), or Moon geochemistry (SMART-1, LRO). We shall give an update on the sample analysis in the context of habitability and astrobiology. Methods & Results: In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station, near Hanksville Utah, a suite of instruments and techniques [A, 1, 2, 9-11] including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [1-9] to new measurements from 2010-2013 campaigns [10-12] relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. Keywords: field analogue research, astrobiology, habitability, life detection, Earth-Moon-Mars, organics References [A] Foing, Stoker & Ehrenfreund (Editors, 2011) "Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International

  1. Soil and crop management experiments in the Laboratory Biosphere: An analogue system for the Mars on Earth ® facility (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil

  2. What Will We Actually Do On the Moon? (United States)

    Sherwood, Brent


    Descriptions are provided for eleven specific, representative lunar activity scenarios selected from among hundreds that arose in 2006 from the NASA-sponsored development of a "global lunar strategy." The scenarios are: pave for dust control; establish a colony of continuously active robots; kitchen science; designer biology; tend the machinery; search for pieces of ancient Earth; build simple observatories that open new wavelength regimes; establish a virtual real-time network to enable public engagement; institute a public-private lunar development corporation; rehearse planetary protection protocols for Mars; and expand life and intelligence beyond Earth through settlement of the Moon. Evocative scenarios such as these are proposed as a communications tool to help win public understanding and support of the Vision for Space Exploration.

  3. Continuous Planetary Polar Observation from Hybrid Pole-Sitters at Venus, Earth, and Mars

    NARCIS (Netherlands)

    Heiligers, M.J.; van den Oever (student TUDelft), Tom; Ceriotti, M.; Mulligan, P.; McInnes, CR


    A pole-sitter is a satellite that is stationed along the polar axis of the Earth, or any other planet, to generate a continuous, hemispherical view of the planet’s polar regions. In order to maintain such a vantage point, a low-thrust propulsion system is required to counterbalance the gravitational

  4. Biota and biomolecules in extreme environments on Earth: implications for life detection on Mars.

    NARCIS (Netherlands)

    Aerts, J.W.; Roling, W.F.M.; Elsaesser, A.; Ehrenfreund, P.


    The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids) occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the

  5. RITD — Adapting Mars Entry, Descent and Landing System for Earth (United States)

    Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Haukka, H.; Finchenko, V.; Martynov, M.; Ostresko, B.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.; Siili, T.


    The EDLS applicability to Earth’s atmosphere is studied by the EU/RITD project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry.

  6. Moons Around Saturn (United States)


    This series of 10 Hubble Space Telescope images captures several small moons orbiting Saturn. Hubble snapped the five pairs of images while the Earth was just above the ring plane and the Sun below it. The telescope captured a pair of images every 97 minutes as it circled the Earth. Moving out from Saturn, the visible rings are: the broad C Ring, the Cassini Division, and the narrow F Ring.The first pair of images shows the large, bright moon Dione, near the middle of the frames. Two smaller moons, Pandora (the brighter one closer to Saturn) and Prometheus, appear as if they're touching the F Ring. In the second frame, Mimas emerges from Saturn's shadow and appears to be chasing Prometheus.In the second image pair, Mimas has moved towards the tip of the F Ring. Rhea, another bright moon, has just emerged from behind Saturn. Prometheus, the closest moon to Saturn, has rounded the F Ring's tip and is approaching the planet. The slightly larger moon Epimetheus has appeared.The third image pair shows Epimetheus, as a tiny dot just beyond the tip of the F Ring. Prometheus is in the lower right corner. An elongated clump or arc of debris in the F ring is seen as a slight brightening on the far side of this thin ring.In the fourth image pair, Epimetheus, in the lower right corner, streaks towards Saturn. The long ring arc can be seen in both frames.The fifth image pair again captures Mimas, beyond the tip of the F Ring. The same ring arc is still visible.In addition to the satellites, a pair of stars can be seen passing behind the rings, appearing to move towards the lower left due to Saturn's motion across the sky.The images were taken Nov. 21, 1995 with Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space

  7. Where on Earth can we find Mars? Characterization of an Aeolian Analogue in Northwestern Argentina (United States)

    Favaro, E. A.; Hugenholtz, C.; Barchyn, T.


    The Puna Plateau of northwestern Argentina is as a promising analogue for Martian aeolian processes owing to its altitude, low atmospheric pressure, aridity, and widespread granular and bedrock aeolian features. The study was conducted in and surrounding the area known as the Campo de Piedra Pómez - a prominent expanse of wind-carved ignimbrite in Argentina's Catamarca Province. To interpret the evolution of this unique laboratory, which is limited by its isolated location and dearth of in situ measurements, we investigated contemporary aeolian sediment transport through a combination of modeled meteorological data, satellite imagery, field measurements, and sediment traps. Our objective is to utilize modeled meteorological data, satellite imagery, and field measurements and samples to characterize the aeolian environment here to base analogue studies. Satellite imagery from Terra MODIS, GeoEye, and Ikonos indicate recent large-scale aeolian sediment transport events and migration of gravel in the region. A prominent, region-wide sediment transport event on 14 August 2015 coincided with synoptic-scale pressure patterns indicating a strong Zonda (Foehn) winds. Sediment traps and marbles provide additional evidence of wind-driven transport of sand and gravel. Yet, despite the body of evidence for sediment transport on the Puna Plateau, modeled wind data from the European Center for Midrange Weather Forecasting suggest wind rarely attains the speeds necessary to initiate sediment transport. This disconnect is reminiscent of the Martian Saltation Paradox which suggested winds on Mars were incapable of mobilizing sediment, despite widespread evidence from rover, lander, and satellite observations. This raises questions about: (i) the suitability of modeled wind data for characterizing aeolian processes on both planets, and (ii) the possibility that most geomorphic work is conducted in extreme, but infrequent events in this region (possibly analogous to Mars). We

  8. Inverted stream channels in the Western Desert of Egypt: Synergistic remote, field observations and laboratory analysis on Earth with applications to Mars (United States)

    Zaki, Abdallah S.; Pain, Colin F.; Edgett, Kenneth S.; Giegengack, Robert


    Inverted relief landforms occur in numerous regions on Mars, ranging in age from Noachian to more recent Amazonian periods (channel features on Earth form, and the geologic records they preserve in arid settings, can yield insights into the development of inverted landforms on Mars. Inverted channel landforms in the Western Desert of Egypt are well represented across an area of ∼27,000 km2. We investigated inverted channel features at seven sites using remotely-sensed data, field observations, and lab analysis. Inverted channel features in the Western Desert record fluvial environments of differing scales and ages. They developed mainly via inversion of cemented valley floor sediment, but there is a possibility that inverted fluvial landforms in the Dakhla Depression might have been buried, lithified, and exhumed. A few examples, in the southeastern part of the Western Desert, record, instead, a resistance to erosion caused by surface armouring of uncemented valley floor sediment. We show that the grain-size distribution for investigated and reviewed inverted channels is highly variable, with boulders that are commonly 0.35 - 1 m in size; large particles provide high porosity that influences the cementation mechanism. The studied inverted channel sediments are mainly cemented with ferricrete, calcrete, gypcrete, and silcrete. Inverted channels are valuable for the reconstruction of paleoclimate cycles or episodes on Earth and Mars; observations from the Western Desert, when offered as analogs, add to the growing list of Earth examples that provide suites of observables relevant to reconstruction of paleoenvironmental conditions on Mars.

  9. Protecting the Planets from Biological Contamination: The Strange Case of Mars Exploration (United States)

    Rummel, J. D.; Conley, C. A.


    Beyond the Earth's Moon, Mars is the most studied and to some the most compelling target in the solar system. Mars has the potential to have its own native life, and it has environments that appear quite capable of supporting Earth life. As such, Mars is subject to policies intended to keep Earth organisms from growing on Mars, and missions to Mars are controlled to ensure that we know that no Mars life gets to Earth onboard a returning spacecraft. It seems odd, then, that Mars is also the planet on which we have crashed the most (the Moon still owns the overall title), and is still the only body that has had positive results from a life-detection experiment soft-landed on its surface. Mars has very little water, yet it snows on Mars and we have seen regular night-time frosts and near-surface ice on more than half of the planet. Despite strong UV insolation, Mars also has regular dust storms and winds that can cover spacecraft surfaces with dust that itself may be poisonous, but also can protect microbial life from death by UV light. In spite of surface features and minerals that provide ample evidence of surface water in the past, on today's Mars only relatively short, thin lines that lengthen and retract with the seasons provide a hint that there may be water near the surface of Mars today, but the subsurface is almost totally unexplored by instruments needed to detect water, itself. In the face of these contradictions, the implementation of planetary protection requirements to prevent cross contamination has to proceed with the best available knowledge, and in spite of sometimes substantial costs to spacecraft development and operations. In this paper we will review the status of Mars as a potential (hopefully not inadvertent) abode for life, and describe the measures taken in the past and the present to safeguard the astrobiological study of Mars, and project the requirements for Mars planetary protection in a possible future that involves both sample return

  10. Sun, Moon and Earthquakes (United States)

    Kolvankar, V. G.


    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  11. Extreme Halophiles and Carbon Monoxide: Looking Through Windows at Earth's Past and Towards a Future on Mars (United States)

    King, G.


    Carbon monoxide, which is ubiquitous on Earth, is the 2nd most abundant molecule in the universe. Members of the domain Bacteria have long been known to oxidize it, and activities of CO oxidizers in soils have been known for several decades to contribute to tropospheric CO regulation. Nonetheless, the diversity of CO oxidizers and their evolutionary history remain largely unknown. A molybdenum-dependent dehydrogenase (Mo-CODH) couples CO oxidation by most terrestrial and marine bacteria to either O2 or nitrate. Molybdenum dependence, the requirement for O2 and previous phylogenetic inferences have all supported a relatively late evolution for "aerobic" CO oxidation, presumably after the Great Oxidation Event (GOE) about 2.3 Gya. Although conundrums remain, recent discoveries suggest that Mo-CODH might have evolved before the GOE, and prior to the Bacteria-Archaea split. New phylogenetic analyses incorporating sequences from extremely halophilic CO-oxidizing Euryarchaeota isolated from salterns in the Atacama Desert, brines on Hawai`i and from the Bonneville Salt Flat suggest that Mo-CODH was present in an ancestor shared by Bacteria and Archaea. This observation is consistent with results of phylogenetic histories of genes involved in Mo-cofactor synthesis, and findings by others that Mo-nitrogenase was likely active > 3 Gya. Thus, analyses of Mo-dependent CO oxidizers provide a window on the past by raising questions about the availability of Mo and non-O2 electron acceptors. Extremely halophilic CO oxidizers also provide insights relevant for understanding the potential for extraterrestrial life. CO likely occurred at high concentrations in Mars' early atmosphere, and it occurs presently at about 800 ppm. At such high concentrations, CO represents one of the most abundant energy sources available for near-surface regolith. However, use of CO by an extant or transplanted Mars microbiota would require tolerance of low water potentials and high salt concentrations

  12. Striped aeolian bedforms: a novel longitudinal pattern observed in ripples and megaripples on Earth and Mars (United States)

    Gough, T. R.; Hugenholtz, C.; Barchyn, T.; Martin, R. L.


    Striped aeolian bedforms (SABs) are a previously undocumented longitudinal pattern consisting of streamwise corridors of ripples or megaripples separated by corridors containing smaller bedforms. Similar patterns of spanwise variations in bed texture and/or bed topography are observed in water flumes. SABs have been observed in satellite imagery at sites in Peru, Iran, California, the Puna region of northwestern Argentina, and on Mars. The spanwise periodicity varies from automated image-based grain size analysis, we found that median grain size was larger on the ripples and megaripples than on the intervening corridors containing smaller bedforms. This result is consistent with fluvial stripes, for which it is suggested that instability-driven streamwise vortices produce lateral sediment transport and sorting. We found no consistent evidence upwind of the SAB patterns to indicate topographic seeding is necessary. Therefore, we hypothesize that SABs are a self-organized bedform pattern that develops from secondary (lateral) transport of sediment in mixed sediment deposits. We also hypothesize that the development and maintenance of SABs requires unimodal wind regimes.

  13. Biomedical Aspects of Lunar and Mars Exploration Missions (United States)

    Charles, John B.


    Recent long-range planning for exploration-class missions has emphasized the need for anticipating the medical and human factors aspects of such expeditions. Missions returning Americans to the moon for stays of up to 6 months at a time will provide the opportunity to demonstrate the means to function safely and efficiently on another planet. Details of mission architectures are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mars, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stresses will come from environmental factors such as prolonged exposure to radiation, weightlessness en route to Mars and then back to Earth, and low gravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must be considered. The role of such risk-modifying influences as artificial gravity and improved propulsion technologies to shorten round-trip time will also be discussed. Results of planning for assuring human health and performance will be presented.

  14. Absolute band structure determination on naturally occurring rutile with complex chemistry: Implications for mineral photocatalysis on both Earth and Mars (United States)

    Li, Yan; Xu, Xiaoming; Li, Yanzhang; Ding, Cong; Wu, Jing; Lu, Anhuai; Ding, Hongrui; Qin, Shan; Wang, Changqiu


    Rutile is the most common and stable form of TiO2 that ubiquitously existing on Earth and other terrestrial planets like Mars. Semiconducting mineral such as rutile-based photoredox reactions have been considered to play important roles in geological times. However, due to the inherent complexity in chemistry, the precision determination on band structure of natural rutile and the theoretical explanation on its solar-driven photochemistry have been hardly seen yet. Considering the multiple minor and trace elements in natural rutile, we firstly obtained the single-crystal crystallography, mineralogical composition and defects characteristic of the rutile sample by using both powder and single crystal X-ray diffraction, electron microprobe analysis and X-ray photoelectron spectroscopy. Then, the band gap was accurately determined by synchrotron-based O K-edge X-ray absorption and emission spectra, which was firstly applied to natural rutile due to its robustness on compositions and defects. The absolute band edges of the rutile sample was calculated by considering the electronegativity of the atoms, band gap and point of zero charge. Besides, after detecting the defect energy levels by photoluminescence spectra, we drew the schematic band structure of natural rutile. The band gap (2.7 eV) of natural rutile was narrower than that of synthetic rutile (3.0 eV), and the conduction and valence band edges of natural rutile at pH = pHPZC were determined to be -0.04 V and 2.66 V (vs. NHE), respectively. The defect energy levels located at nearly the middle position of the forbidden band. Further, we used theoretical calculations to verify the isomorphous substitution of Fe and V for Ti gave rise to the distortion of TiO6 octahedron and created vacancy defects in natural rutile. Based on density functional theory, the narrowed band gap was interpreted to the contribution of Fe-3d and V-3d orbits, and the defect energy state was formed by hybridization of O-2p and Fe/V/Ti-3d

  15. Toward a mineral physics reference model for the Moon's core. (United States)

    Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei


    The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.

  16. Fluvial geomorphology on Earth-like planetary surfaces: A review. (United States)

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P


    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  17. From earth to Mars: sex differences and their implications for musculoskeletal health. (United States)

    Mark, Saralyn


    Historically, most diagnostic and treatment modalities have been based on a male model. Osteoporosis is one of the few diseases in which there has been sex-based research and treatment bias in favor of women. As such, it is not known whether treatments developed for women will be efficacious for men. Similarly, scientists are just beginning to research whether sex-based differences in musculoskeletal health exist with extended space travel. Both women and men lose muscle and bone with extended space travel, but the low numbers of female astronauts combined with a lack of discrete data make it challenging to accurately pinpoint sex-based differences. More data collection is needed to ensure that the musculoskeletal health of astronauts is better managed both on earth and in space.

  18. Annual review of earth and planetary sciences. Volume 8

    International Nuclear Information System (INIS)

    Donath, F.A.; Stehli, F.G.; Wetherill, G.W.


    Papers are presented on the geochemistry of evaporitic lacustrine deposits, the deformation of mantle rocks, the dynamics of sudden stratospheric warmings, the equatorial undercurrent, geomorphological processes on planetary surfaces, and rare earth elements in petrogenetic studies of igneous systems. Consideration is also given to evolutionary patterns in early Cenozoic animals, the origin and evolution of planetary atmospheres, the moons of Mars, and refractory inclusions in the Allende meteorite

  19. Stability of Basalt plus Anhydrite plus Calcite at HP-HT: Implications for Venus, the Earth and Mars (United States)

    Martin, A. M.; Righter, K.; Treiman, A. H.


    "Canali" observed at Venus surface by Magellan are evidence for very long melt flows, but their composition and origin remain uncertain. The hypothesis of water-rich flow is not reasonable regarding the temperature at Venus surface. The length of these channels could not be explained by a silicate melt composition but more likely, by a carbonate-sulfate melt which has a much lower viscosity (Kargel et al 1994). One hypothesis is that calcite CaCO3 and anhydrite CaSO4 which are alteration products of basalts melted during meteorite impacts. A famous example recorded on the Earth (Chicxulub) produced melt and gas rich in carbon and sulfur. Calcite and sulfate evaporites are also present on Mars surface, associated with basalts. An impact on these materials might release C- and S-rich melt or fluid. Another type of planetary phenomenon (affecting only the Earth) might provoke a high pressure destabilization of basalt+anhydrite+calcite. Very high contents of C and S are measured in some Earth s magmas, either dissolved or in the form of crystals (Luhr 2008). As shown by the high H content and high fO2 of primary igneous anhydrite-bearing lavas, the high S content in their source may be explained by subduction of an anhydrite-bearing oceanic crust, either directly (by melting followed by eruption) or indirectly (by release of S-rich melt or fluid that metasomatize the mantle) . Calcite is a major product of oceanic sedimentation and alteration of the crust. Therefore, sulfate- and calcite-rich material may be subducted to high pressures and high temperatures (HP-HT) and release S- and C-rich melts or fluids which could influence the composition of subduction zone lavas or gases. Both phenomena - meteorite impact and subduction - imply HP-HT conditions - although the P-T-time paths are different. Some HP experimental/theoretical studies have been performed on basalt/eclogite, calcite and anhydrite separately or on a combination of two. In this study we performed piston

  20. MoonNEXT: A European Mission to the Moon (United States)

    Carpenter, J. D.; Koschny, D.; Crawford, I.; Falcke, H.; Kempf, S.; Lognonne, P.; Ricci, C.; Houdou, B.; Pradier, A.


    rover, if shown to be feasible, would provide mobility for geochemical measurements, which is essential if geological units are to be examined in context. In the region around the South pole of the Moon investigations into excavated material related to the Aitken basin will require mobility to access the blocky ejecta fields associated with ~100m diameter craters. Mobility could also provide a means for the deployment of a network of short period seismometers for studies of regolith properties and the meteorite flux. The separation of the rover from the lander would provide a baseline for radio interferometry, which could provide the first ever image of the sky at wavelengths inaccessible from the Earth. MoonNEXT and the International Lunar Network In early 2008 NASA presented the concept of the International Lunar Network (ILN) this would comprise a network of several landers, provided by various countries and international agencies, which would be distributed at various locations across the surface of the Moon. Each of these landers would include a package for making geophysical measurements and their combined data set would provide detail on the internal structure and history of the Moon which is only possible through a globally distributed network. The proposed landing site, scientific instrument package and mission timescale for MoonNEXT mean that it is well suited as a European node to the ILN. Summary and Conclusions MoonNEXT is an ESA mission to the Lunar South Pole. MoonNEXT prepares the way for future exploration activities through technology demonstratin and characterisation of the landing site and its environment. In addition MoonNEXT addresses fundamental science questions relating to geophysics, geochemistry and the lunar environment. As a stand alone mission MoonNEXT provides a valuable step in the exploration and understanding of the Moon. This mission is also potentially an important European contribution to the International Lunar Network.

  1. Differentiation of crusts and cores of the terrestrial planets: lessons for the early Earth

    International Nuclear Information System (INIS)

    Solomon, S.C.


    It now appears probable that all of the terrestrial planets underwent some form of global chemical differentiation to produce crusts, mantles, and cores of variable relative mass fractions. There is direct seismic evidence for a crust on the Moon, and indirect evidence for distinct crusts on Mars and Venus. Substantial portions of these crusts have been in place since the time that heavy bombardment of the inner solar system ceased approximately 4 Ga ago. There is direct evidence for a sizeable core on Mars, indirect evidence for one on Mercury, and bounds on a possible small core for the Moon. Core formation is an important heat source confined to times prior to 4 Ga ago for Mercury and the Earth, but was not closely linked to crustal formation on the Moon nor, apparently, on Mars. The tectonic and volcanic histories of the surfaces of the terrestrial planets Moon, Mars, and Mercury can be used, with simple thermal history models, to restrict the earliest chemical differentiation to be shallow (outer 200-400 km) for the first two bodies and much more extensive for Mercury. Extension of these models to an Earth-size planet leads to the prediction of a hot and vigorously convecting mantle with an easily deformable crust immediately following core formation, and of the gradual development of a lithosphere and of plates with some lateral rigidity in Late Archean-Proterzoic times. (Auth.)

  2. Proposal for revisions of the United Nations Moon Treaty (United States)

    Fernandes, Vera; Abreu, Neyda; Fritz, J.; Knapmeyer, Martin; Smeenk, Lisa; Ten Kate, Inge; Trüninger, Monica

    During this new 2010-decade, it will be imperative to reconsider the effectiveness of the current United Nations (U.N.) Moon Treaty (c.1979). Amendments are necessary to underline the mandatory human stewardship of this fragile planetary body of our Solar System, indispensible to life on Earth. After the very successful Apollo and Luna missions to the Moon (ending in 1976), which brought a wide array of data (samples, surface and orbital experiments), the Moon lost its exploratory attraction in favor of other programs, such as the International Space Station and potential human exploration of Mars. However, since the mid-90's, the enthusiasm for the Moon has been revived, which resulted in several space agencies worldwide (NASA, ESA, ISRO, JAXA, and the Chinese Space Agency) having made great efforts to re-start ex-ploratory and scientific campaigns even though budgetary changes may delay the process. As a result, a wide array of peoples and their interests are put together in each mission planned to reach the Moon (e.g., orbiters and landers). Up to now, mission plans focus on technical requirements and the desires of scientists and engineers, but hardly any other aspects. Field specialists on issues regarding the social, economic, political, cultural, ethical and environmen-tal impacts of Moon exploration and colonization have had little to no involvement in current and past lunar missions. However, these fields would provide different and essential points of view regarding the planning of lunar missions. Moreover, recent documents written by the scientific community, such as "The Scientific Context for Exploration of the Moon: Final Re-port" Committee on the Scientific Context for Exploration of the Moon, National Research Council (2007), or the recent (summer 2009) White Papers for the National Research Council Planetary Science Decadal Survey 2011-2020, do not seem to leave space for a multidisciplinary approach regarding the future lunar exploration either

  3. Histograms Constructed from the Data of 239-Pu Alpha-Activity Manifest a Tendency for Change in the Similar Way as at the Moments when the Sun, the Moon, Venus, Mars and Mercury Intersect the Celestial Equator

    Directory of Open Access Journals (Sweden)

    Kharakoz D. P.


    Full Text Available Earlier, the shape of histograms of the results of measurements obtained in processes of different physical nature had been shown to be determined by cosmophysical factors. Appearance of histograms of a similar shape is repeated periodically: these are the near-a-day, near-27-days and annual periods of increased probability of the similar shapes. There are two distinctly distinguished near-a-day periods: the sidereal-day (1,436 minutes and solar-day (1,440 minutes ones. The annual periods are represented by three sub-periods: the "calendar" (365 average solar days, "tropical" (365 days 5 hours and 48 minutes and "sidereal" (365 days 6 hours and 9 minutes ones. The tropical year period indicates that fact that histogram shape depends on the time elapsed since the spring equinox.The latter dependence is studied in more details in this work. We demonstrate that the appearance of similar histograms is highly probable at the same time count off from the moments of equinoxes, independent from the geographic location where the measurements had been performed: in Pushchino, Moscow Region (54 deg NL, 37 deg EL, and in Novolazarevskaya, Antarctic (70 deg SL, 11 deg EL. The sequence of the changed histogram shapes observed at the spring equinoxes was found to be opposite to that observed at the autumnal equinoxes. As the moments of equinoxes are defined by the cross of the celestial equator by Sun, we also studied that weather is not the same as observed at the moments when the celestial equator was crossed by other celestial bodies - the Moon, Venus, Mars and Mercury. Let us, for simplicity, refer to these moments as a similar term "planetary equinoxes". The regularities observed at these "planetary equinoxes" had been found to be the same as in the case of true solar equinoxes. In this article, we confine ourselves to considering the phenomenological observations only; their theoretical interpretation is supposed to be subject of further studies.

  4. The moon as a stepping stone for a spacefaring civilization (United States)

    Multhaup, K.


    After Columbia In early 2004, U.S. president George Bush introduced the Vision for Space Exploration (VSE). Conceived in the aftermath of the Columbia tragedy, it called for NASA to first return astronauts to the moon by 2020 and then send crews to Mars and beyond thereafter. Bush's plan has once again enlivened the long-lasting discussion of manned spaceflight vs. robotic exploration. Also, the plan to use the moon as a stepping stone has come under scrutiny and is being debated. Alternate approaches minimizing or deleting manned lunar exploration in the frame of the VSE were proposed. Fig. 1 A composite manned spacecraft departing Earth orbit en route to the moon. Image: NASA. In order to assess the value of us going back to the moon, it is necessary to debate without bias the meaning of human spaceflight in general and to discuss the role of science in future efforts. Lunar disenchantment Whithin the scientific community, manned exploration programs are put into question time and again. It is demanded that in light of supposedly immense costs any endeavour concerning this matter shall be justified by an indisputable scientific return — and in current debates, scientific value is not recognized in such a way that funding appears well-invested. It is lamented that funds are drawn from what is considered real science. In the past, robotic exploration has opended our eyes to the many wonders of the solar system. Through the eyes of Cassini , Mars Express, and other successful spacecraft, we have seen exotic landscapes—yet on second sight, some appeared all too familiar. BepiColombo will fly to Mercury to unravel its mysteries and the Jovian system may receive a new earthly visitor in the not too distant future. By means of machines like Spirit and Opportunity, we have roamed the surfaces of Mars—without actually ever setting foot there. Therefore, the question is often asked, "Why send crews?" Fig. 2 The upcoming Lunar Reconnisance Orbiter (LRO) as it circles

  5. Mars: The Viking Discoveries. (United States)

    French, Bevan M.

    This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…

  6. In-Situ Resource Utilization for further exploration of the Moon (United States)

    Thakore, B.; Pohajsky, S.

    In-Situ Resource Utilization ISRU is the concept of living off the land Initially proposed in the mid 20th Century many experts have suggested that ISRU is an important enabler for the expansion of humanity beyond the confines of limited resources on Earth However even today ISRU remains a relatively underdeveloped and under--demonstrated in current exploration roadmaps This paper summarizes the proposals of an interdisciplinary study carried out by 27 students from 17 different countries at the International Space University The study reviewed the past and present ISRU techniques and related robotic technologies in the context of complementing the Moon and Mars exploration scenarios of the major space faring countries The economic viability and benefits of ISRU are examined together with the regulatory ethical and cultural aspects of space resource utilisation The renewed opportunities for moon exploration have rekindled interest in ISRU as an enabling technology It is important to assess both the tangible and intangible benefits of this technology in order to evaluate the technical and economic feasibility of adopting it in support of human exploration of the Moon Mars and beyond

  7. The Brick Moon (United States)


    Science fiction writers, like Jules Verne in France and Edward Everett Hale in America, had discovered one of the most vital elements in the formula for space travel-a fertile imagination. The first known proposal for a marned-satellite appears in a story by Hale entitled 'The Brick Moon' published in 1899. The story involved a group of young Bostonians who planned to put an artificial satellite into polar orbit for sailors to use to determine longitude accurately and easily. They planned to send a brick satellite into orbit because the satellite would have to withstand fire very well. The Satellite's 37 inhabitants signaled the Earth in morse code by jumping up and down on the outside of the satellite.

  8. Physical Properties and Seasonal Behavior of H2O, HDO, CO2 and Trace Gases on Mars: Quantitative Mapping from Earth-Based Observatories (United States)

    Novak, Robert E.; Mumma, Michael J.


    Since 1997, we have used high-resolution (R greater than 40000) spectrometers on ground based-telescopes to study molecules that have astrobiological significance in Mars' atmosphere. We have used the NASA-IRTF, Keck II, and VLT telescopes in the 1.0-5.0 micron range. The spectrometer is set at a wavelength to detect specific molecules. Spectral/spatial images are produced. Extracts from these images provide column densities centered at latitude/longitude locations (resolution 400km at sub-Earth point). We have mapped the O2 singlet-Delta emission (a proxy for ozone), HDO, and H2O for seasonal dates throughout the Martian year. Previously undiscovered isotopic bands of CO2 have been identified along with isotopic forms of CO. We are searching for other molecules that have astrobiological importance and have successfully measured methane in Mars' atmosphere.

  9. Moon Prospective Energy and Material Resources

    CERN Document Server


    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration.   In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon’s prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative optio...

  10. The humanation of Mars (United States)

    David, L. W.

    Early developments related to human excursions to Mars are examined, taking into account plans considered by von Braun, and the 'ambitious goal of a manned flight to Mars by the end of the century', proposed at the launch of Apollo 11. In response to public reaction, plans for manned flights to Mars in the immediate future were given up, and unmanned reconnaissance of Mars was continued. An investigation is conducted concerning the advantages of manned exploration of Mars in comparison to a study by unmanned space probes, and arguments regarding a justification for interplanetary flight to Mars are discussed. Attention is given to the possibility to consider Mars as a 'back-up' planet for preserving earth life, an international Mars expedition as a world peace project, the role of Mars in connection with resource utilization considerations, and questions of exploration ethics.

  11. Seeding life on the moons of the outer planets via lithopanspermia. (United States)

    Worth, R J; Sigurdsson, Steinn; House, Christopher H


    Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1-2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment.

  12. Earth's radiation belts

    International Nuclear Information System (INIS)

    Moslehi Fard, M.


    The theory of trapped particles in a magnetic field of approximated dipole is described completely in the first part. Second part contains experimental results. The mechanism of radiation belt source ''albedo neutrons'' and also types of dissipation mechanism about radiation belt is explained. The trapped protons and electrons by radiation belt is discussed and the life-time of trapped particles are presented. Finally the magnetic fields of Moon, Venus, Mars, and Saturn, measured by passengers Mariner 4,10 and pioneer 10,11 are indicated. The experimental and theoretical results for the explanation of trapped plasma around the earth which is looked like two internal and external belt have almost good correspondence

  13. MW-Class Electric Propulsion System Designs for Mars Cargo Transport (United States)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee


    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  14. Water and cheese from the lunar desert: Abundances and accessibility of H, C, and N on the Moon (United States)

    Haskin, L. A.


    The Moon has been underrated as a source of H, N, C, and other elements essential to support life and to provide fuel for rockets. There is enough of these elements in each cubic meter of typical lunar soil to provide a substantial lunch for two, if converted to edible forms. The average amount of C per square meter of the lunar surface to a depth of 2 m is some 35 percent of the average amount per square meter tied up in living organisms on Earth. The water equivalent of H in the upper 2 m of the regolith averages at least 1.3 million liters per square kilometer. Mining of H from a small fraction of the regolith would provide all the rocket fuel needed for thousands of years. These elements can be removed from the soil by heating it to high temperature. Some favor the unproven resources of Phobos, Deimos, or near-Earth asteroids instead of the Moon as a source of extraterrestrial material for use in space, or Mars over the Moon as a site for habitation, partly on the basis that the chemical elements needed for life support and propellant are readily abundant on those bodies, but not on the Moon. Well, the Moon is not as barren of H, C, and N as is commonly perceived. In fact, the elements needed for life support and for rocket fuel are plentiful there, although the ore grades are low. Furthermore, the proximity of the Moon and consequent lower cost of transportation and shorter trip and communication times favor that body as the logical site for early acquisition of resources and extraterrestrial living.

  15. Art on the Moon?

    DEFF Research Database (Denmark)

    Lee, Rosemary; Minch, Manuel


    Manuel Minch launched Internet Moon Gallery in 2016 with the intention of exploring new modes of creating and engaging with digital art. This article is the result of a collaborative conversation between Manuel Minch and Rosemary Lee, which has evolved from their work together on the exhibition...... “Memory Palace”, launched on Internet Moon Gallery on the full moon, May 2017....

  16. Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth (United States)

    Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.


    Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to

  17. More Saturnian Moons (United States)


    , with the Wide Field Imager (WFI) , a 67-million pixel digital camera that is installed at the 2.2-m MPG/ESO Telescope at ESO's La Silla Observatory (Chile). When analyzing the many images in a sky area near the location of the planet Saturn, Brett Gladman (who works for the "Centre National de Recherche Scientifique (CNRS)", France) realized that two faint, moving objects seen near the brilliant glare of Saturn might well be hitherto unknown satellites of that planet. Follow-up observations On September 23 and 24, Brett Gladman and his colleague JJ Kavelaars were observing at the Canada-France-Hawaii 3.5-m telescope on Mauna Kea (Hawaii, USA). In a more extensive search, they were again able to image the two objects first discovered at La Silla. They also detected two more candidates, also announced on an IAU Circular today [2]. Working as fast as the images came off the telescope, they immediately alerted other teams of astronomers about these discoveries. Additional, confirming observations soon came from (Rhiannon) Lynne Allen (University of Michigan, USA) at the 2.4-m MDM telescope (Arizona, USA), Carl W. Hergenrother and Steve Larson at the 1.5-m telescope of the Steward Observatory (Arizona, USA), as well as Alain Doressoundiram and Jorge Romon at the ESO 3.58-m New Technology Telescope (NTT) on La Silla. The orbits Orbital calculations by Brian Marsden ( IAU Minor Planet Center, Smithsonian Astrophysical Observtory, USA) proved that these objects cannot be foreground asteroids (minor planets). Although it is currently not yet possible to completely disprove that these are comets that happen to pass near Saturn, previous experience shows that this is extremely unlikely. Several months of continued observations will still be required to compute highly accurate orbits of these objects. This must be accomplished before the planet disappears behind the Sun in March 2001 (as seen from the Earth). Saturn's "irregular" moons The computations show that these moons are of

  18. Ancient sun: fossil record in the earth, moon and meteorites. Proceedings of the Conference, Boulder, CO, October 16-19, 1979

    International Nuclear Information System (INIS)

    Pepin, R.O.; Eddy, J.A.; Merrill, R.B.


    Papers are presented concerning theories of solar variability and their consequences for luminosity, particle emission and magnetic field changes within the past 4.5 billion years, and on the records of such solar behavior in lunar, meteoritic and terrestrial materials. Specific topics include the neutrino luminosity of the sun, the relation of sunspots to the terrestrial climate of the past 100 years, solar modulation of galactic cosmic rays, the historical record of solar activity, C-14 variations in terrestrial and marine reservoirs, and solar particle fluxes as indicated by track, thermoluminescence and solar wind measurements in lunar rocks. Attention is also given to the spin-down of the solar interior through circulation currents and fluid instabilities, grain surface exposure models in planetary regoliths, rare gases in the solar wind, nitrogen isotopic variations in the lunar regolith, the influence of solar UV radiation on climate, and the pre-main sequence evolution of the sun and evidence of the primordial solar wind in the electromagnetic induction heating of the asteroids and moon

  19. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds (United States)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; hide


    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  20. Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture (United States)

    Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble


    A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.

  1. Moon. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Polytechnic Univ. of Bucharest (Romania). Candida Oancea Inst.


    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration. In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon's prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative options and solutions. It is a useful source of condensed information for specialists involved in current and impending Moon-related activities and a good starting point for young researchers. (orig.)

  2. Astrobiological aspects of Mars and human presence: pros and cons. (United States)

    Horneck, G


    After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with

  3. Mars Sample Return Landed with Red Dragon (United States)

    Stoker, Carol R.; Lemke, Lawrence G.


    A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged

  4. Is Mars Dead and Does it Matter: The Crucial Scientific Importance of a Lifeless Mars (United States)

    Fries, M.; Conrad, P. G.; Steele, A.


    The quest for signatures of ancient and/or present-day life on Mars is an important driving force in modern Mars science and exploration. The reasons for this have been spelled out in detail elsewhere, such as in the 2013-2022 Planetary Science decadal survey. We do not question the importance of the search for life, but would like to expound on the inverse case. Namely, if Mars is lifeless then it is one of the most astrobiologically important locales in the Solar System and is worthy of detailed and thorough investigation as such. At present we are aware of only one place in the universe that hosts biology, the Earth. Arguably one of the most important aspects of understanding life is the quandary of how life arose, and considerable work has been done on understanding this question. However, progress has been hampered by the fact that the conditions that facilitated the rise of life on Earth are almost completely lost; they have been overprinted by biological activity, altered by our oxygen- and water-rich modern environment, and physically destroyed by crustal recycling. None of these effects are present on a lifeless Mars. Whereas on a "living" Mars any habitable environment would be colonized and altered, a lifeless Mars should retain preserved environments - either planetary-scale or microenvironments - which preserve a record of the original physiochemical conditions suitable for the origin of life on a terrestrial planet. No other world has the same potential to preserve this record; Mercury, the Moon, Phobos and Deimos do not show signs of ever being habitable, Venus has a surface that has been mercilessly thermally altered and is difficult to access, and even the Earth itself has been extensively altered. Ceres is uncertain in this respect as that world is unlikely to ever have hosted a significant atmosphere and its potential status as an early ocean world is still debated. The irony here is that a Mars free of life is a unique and scientifically

  5. Boundary conditions for the formation of the Moon

    NARCIS (Netherlands)

    Reuver, Maarten; de Meijer, R. J.; ten Kate, I. L.; van Westrenen, W.

    Recent measurements of the chemical and isotopic composition of lunar samples indicate that the Moon's bulk composition shows great similarities with the composition of the silicate Earth. Moon formation models that attempt to explain these similarities make a wide variety of assumptions about the

  6. Space exercise and Earth benefits. (United States)

    Macias, Brandon R; Groppo, Eli R; Eastlack, Robert K; Watenpaugh, Donald E; Lee, Stuart M C; Schneider, Suzanne M; Boda, Wanda L; Smith, Scott M; Cutuk, Adnan; Pedowitz, Robert A; Meyer, R Scott; Hargens, Alan R


    The detrimental impact of long duration space flight on physiological systems necessitates the development of exercise countermeasures to protect work capabilities in gravity fields of Earth, Moon and Mars. The respective rates of physiological deconditioning for different organ systems during space flight has been described as a result of data collected during and after missions on the Space Shuttle, International Space Station, Mir, and bed rest studies on Earth. An integrated countermeasure that simulates the body's hydrostatic pressure gradient, provides mechanical stress to the bones and muscles, and stimulates the neurovestibular system may be critical for maintaining health and well being of crew during long-duration space travel, such as a mission to Mars. Here we review the results of our studies to date of an integrated exercise countermeasure for space flight, lower body negative pressure (LBNP) treadmill exercise, and potential benefits of its application to athletic training on Earth. Additionally, we review the benefits of Lower Body Positive Pressure (LBPP) exercise for rehabilitation of postoperative patients. Presented first are preliminary data from a 30-day bed rest study evaluating the efficacy of LBNP exercise as an integrated exercise countermeasure for the deconditioning effects of microgravity. Next, we review upright LBNP exercise as a training modality for athletes by evaluating effects on the cardiovascular system and gait mechanics. Finally, LBPP exercise as a rehabilitation device is examined with reference to gait mechanics and safety in two groups of postoperative patients.

  7. Impact landing ends SMART-1 mission to the Moon (United States)


    lunar science at a time when the exploration of the Moon is once again getting the world’s interest” said Bernard Foing, ESA SMART-1 Project Scientist. “The measurements by SMART-1 call into question the theories concerning the Moon’s violent origin and evolution,” he added. The Moon may have formed from the impact of a Mars-size asteroid with the Earth 4500 million years ago. “SMART-1 has mapped large and small impact craters, studied the volcanic and tectonic processes that shaped the Moon, unveiled the mysterious poles, and investigated sites for future exploration,” Foing concluded. “ESA’s decision to extend the SMART-1 scientific mission by a further year ( it was initially planned to last only six months around the Moon) allowed the instrument scientists to extensively use a number of innovative observing modes at the Moon,” added Gerhard Schwehm, ESA’s SMART-1 Mission Manager. In addition to plain nadir observations (looking down on the ‘vertical’ line for lunar surveys), they included targeted observations, moon-spot pointing and ‘push-broom’ observations (a technique SMART-1 used to obtain colour images). “This was tough work for the mission planners, but the lunar data archive we are now building is truly impressive.” “SMART-1 has been an enormous success also from a technological point of view,” said Giuseppe Racca, ESA SMART-1 Project Manager. The major goal of the mission was to test an ion engine (solar electric propulsion) in space for the first time for interplanetary travel, and capture a spacecraft into orbit around another celestial body, in combination with gravity assist manoeuvres. SMART-1 also tested future deep-space communication techniques for spacecraft, techniques to achieve autonomous spacecraft navigation, and miniaturised scientific instruments, used for the first time around the Moon. “It is a great satisfaction to see how well the mission achieved its technological objectives, and did great lunar

  8. Origin of the Earth–Moon system

    Indian Academy of Sciences (India)

    However, during the course of time some incon- sistencies of the impact hypothesis have surfaced. It is not the ... At the same time, there are some important differences between the composition of the Earth and that of ... primitive carbonaceous chondrites but to a much lesser degree. At first glance, depletion of the Moon in ...

  9. Environmental Effects on Volcanic Eruptions:From Deep Ocean to Deep Space. Chapter 3. Volcanism and Ice Interactions on Earth and Mars. Chapter 3 (United States)

    Chapman, Mary G.; Allen, Carlton C.; Gudmundsson, Magnus T.; Gulick, Virginia C.; Jakobsson, Sveinn P.; Lucchitta, Baerbel K.; Skilling, Ian P.; Waitt, Richard B.


    CONCLUSION Volcano/ice interactions produce meltwater. Meltwater can enter the groundwater cycle and under the influence of hydrothermal systems, it can be later discharged to form channels and valleys or cycled upward to melt permafrost. Water or ice-saturated ground can erupt into phreatic craters when covered by lava. Violent mixing of meltwater and volcanic material and rapid release can generate lahars or jokulhlaups, that have the ability to freight coarse material, great distances downslope from the vent. Eruption into meltwater generate unique appearing edifices, that are definitive indicators of volcano/ice interaction. These features are hyaloclastic ridges or mounds and if capped by lava, tuyas. On Earth, volcano/ice interactions are limited to alpine regions and ice-capped polar and temperate regions. On Mars, where precipitation may be an ancient phenomenon, these interactions may be limited to areas of ground ice accumulation or the northern lowlands where water may have ponded fairly late in martian history. The recognition of features caused by volcano/ice interactions could provide strong constraints for the history of volatiles on Mars.

  10. Extremophiles: Link between earth and astrobiology

    Directory of Open Access Journals (Sweden)

    Stojanović Dejan B.


    Full Text Available Astrobiology studies the origin, evolution, distribution and future of life in the universe. The most promising worlds in Solar system, beyond Earth, which may harbor life are Mars and Jovian moon Europa. Extremophiles are organisms that thrive on the edge of temperature, hypersalinity, pH extremes, pressure, dryness and so on. In this paper, some extremophile cyanobacteria have been discussed as possible life forms in a scale of astrobiology. Samples were taken from solenetz and solonchak types of soil from the Vojvodina region. The main idea in this paper lies in the fact that high percentage of salt found in solonchak and solonetz gives the possibility of comparison these types of soil with 'soil' on Mars, which is also rich in salt.

  11. Mars in this century: The Olympia Project (United States)

    Hyde, Roderick A.; Ishikawa, Muriel Y.; Wood, Lowell L.

    Manned exploration of the inner solar system, typified by a manned expedition of Mars, this side of the indefinite future involves fitting a technical peg into the political hole. If Apollo-level resources are assumed unavailable for such exploratory programs, then non-Apollo means and methods must be employed, involving greater technical and human risks, or else such exploration must be deferred indefinitely. Sketched here is an example of such a relatively high risk alternative, one which could land men on Mars in the next decade, and return them to earth. Two of its key features are a teleoperated rocket fuel generating facility on the lunar surface and an interplanetary mission staging space station at L4, which would serve to enable a continuing solar system exploratory program, with annual mission commencements to points as distant as the Jovian moons. The estimated cost to execute this infrastructure building manned Mars mission is $3 billion, with follow on missions estimated to cost no more than $1 billion each.

  12. How, when and where Life will begin on another planet after Earth by Duky’s Theory (United States)

    Deol, Satveer; Singh Nafria, Amritpal


    Our Sun is a Red Giant Star and in distant future it will engulf Mercury, Venus and probably Earth and Mars. This paper shows that in distant future due to increasing size & luminosity of the Sun life will begin on one of the planet after 1 duky’s Unit. 1 duky's Unit is the time from now to the time when Mercury would get merged in Sun. At that time Venus would be first planet & due to closeness to Sun, its upper atmosphere would get heated up by solar wind. In a continuous process the clouds of sulfuric acid would escape its gravity. Eventually it would get drifted off into space and it become Mercury twin. On Earth after few million years moisture in air would become very good to trap infra red radiation. As it will warms up, oceans would evaporate even more & in few million years it would get covered with blanket of water vapours. Due to increasing temperature & pressure, volcanoes on Earth would become active then volcanic eruption would blast billions of tons of sulfur high into atmosphere there sulfur would mix with water vapors & form conc. Sulfuric acids. In a continuous process of few more million years whole Earth would get covered with sulphuric acids cloud. As Earth’s moon is receding away from Earth, so before 1 DU, Moon will have been gone away from Earth. As a result it would get started slow down one spin about 1 million year. These would lead to massive outpouring of CO2 & other greenhouse gasses. At that Earth would become Venus Twin. Now it's Mars turn, according to scientists after 50 millions years from now phobo will crash onto the surface of Mars. When that would happen, Mars would have one moon like Earth. This collision would be so hard & strong that phobo would get totally immersed in the surface of Mars as a results it's possible that Mars would get tilted at about 23.5 degree. Due to collision molten lava would come out. When temperature & pressure would rise then water ice would become water. When water would get enriched with

  13. Strategic Implications of Human Exploration of Near-Earth Asteroids (United States)

    Drake, Bret G.


    The current United States Space Policy [1] as articulated by the White House and later confirmed by the Congress [2] calls for [t]he extension of the human presence from low-Earth orbit to other regions of space beyond low-Earth orbit will enable missions to the surface of the Moon and missions to deep space destinations such as near-Earth asteroids and Mars. Human exploration of the Moon and Mars has been the focus of numerous exhaustive studies and planning, but missions to Near-Earth Asteroids (NEAs) has, by comparison, garnered relatively little attention in terms of mission and systems planning. This paper examines the strategic implications of human exploration of NEAs and how they can fit into the overall exploration strategy. This paper specifically addresses how accessible NEAs are in terms of mission duration, technologies required, and overall architecture construct. Example mission architectures utilizing different propulsion technologies such as chemical, nuclear thermal, and solar electric propulsion were formulated to determine resulting figures of merit including number of NEAs accessible, time of flight, mission mass, number of departure windows, and length of the launch windows. These data, in conjunction with what we currently know about these potential exploration targets (or need to know in the future), provide key insights necessary for future mission and strategic planning.

  14. First MARS Outpost: Development Considerations and Concepts (United States)

    Bell, L.


    The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research and design study that is exploring near and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. This presentation highlights planning considerations and design concepts for establishing a first settlement on Mars. The outpost would support surface missions lasting up to about 500 days and would serve as the initial stage of a larger and continuously operational development which would utilize Mars resources to be less reliant on materials from Earth. Key elements of this first stage mission development sequence include a new heavy-lift Earth-to-orbit launch vehicle; a plasma- drive Mars transit vehicle; habitat modules for crews in transit to and from Mars; "hard" and "inflatable" surface habitats and laboratories; a mobile power unit; a spacecraft to assist orbital assembly; and vehicles to lift crews off the Mars surface and land them safely back on Earth from LEO. SICSA's space development approach differs in fundamental ways from conventional NASA-sponsored initiatives. First, virtually all baseline planning assumptions are influenced by the private sector-driven nature of an approach that aims to avoid all possible reliance upon government financing, agendas and schedules. In this regard, any involvements with NASA or the space agencies of other countries would be premised upon mutual public-corporate partnership benefits rather than upon federal contract awards, management and control. Another potential difference relates to program philosophy. Unlike Apollo Program "sprint" missions which culminated with footprints and flagpoles on the Moon, the aim is to realize sustainable and continuing planetary exploration and development progress. This goal can be advanced through approaches that

  15. Apollo 11 Moon Landing (United States)


    The crowning achievement for the Saturn V rocket came when it launched Apollo 11 astronauts, Neil Armstrong, Edwin (Buzz) Aldrin, and Michael Collins, to the Moon in July 1969. In this photograph, astronaut Aldrin takes his first step onto the surface of the Moon.

  16. The Moon's near side megabasin and far side bulge

    CERN Document Server

    Byrne, Charles


    Since Luna and Lunar Orbiter photographed the far side of the Moon, the mysterious dichotomy between the face of the Moon as we see it from Earth and the side of the Moon that is hidden has puzzled lunar scientists. As we learned more from the Apollo sample return missions and later robotic satellites, the puzzle literally deepened, showing asymmetry of the crust and mantle, all the way to the core of the Moon. This book summarizes the author’s successful search for an ancient impact feature, the Near Side Megabasin of the Moon and the extensions to impact theory needed to find it. The implications of this ancient event are developed to answer many of the questions about the history of the Moon.

  17. The Moon: Resources, Future Development and Colonization (United States)

    Schrunk, David; Sharpe, Burton; Cooper, Bonnie; Thangavelu, Madhu


    This unique, visionary and innovative book describes how the Moon could be colonised and developed as a platform for science, industrialization and exploration of our Solar System and beyond. Thirty years ago, the world waited with baited breath to watch history in the making, as man finally stepped onto the moon's surface. In the last few years, there has been growing interest in the idea of a return to the moon. This book describes the reasons why we should now start lunar development and settlement, and how this goal may be accomplished. The authors, all of whom are hugely experienced space scientists, consider the rationale and steps necessary for establishing permanent bases on the Moon. Their innovative and scientific-based analysis concludes that the Moon has sufficient resources for large-scale human development. Their case for development includes arguments for a solar-powered electric grid and railroad, creation of a utilities infrastructure, habitable facilities, scientific operations and the involvement of private enterprise with the public sector in the macroproject. By transferring and adapting existing technologies to the lunar environment, the authors argue that it will be possible to use lunar resources and solar power to build a global lunar infrastructure embracing power, communication, transportation, and manufacturing. This will support the migration of increasing numbers of people from Earth, and realization of the Moon's scientific potential. As an inhabited world, the Moon is an ideal site for scientific laboratories dedicated to geosciences, astronomy and life sciences, and most importantly, it would fulfil a role as a proving ground and launch pad for future Solar System exploration. The ten chapters in this book go beyond the theoretical and conceptual. With vision and foresight, the authors offer practical means for establishing permanent bases on the Moon. The book will make fascinating and stimulating reading for students in

  18. The Sodium Tail of the Moon (United States)

    Matta, M.; Smith, S.; Baumgardner, J.; Wilson, J.; Martinis, C.; Mendillo, M.


    During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping "hot" component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.

  19. Drop Height and Volume Control the Mobility of Long-Runout Landslides on the Earth and Mars (United States)

    Johnson, Brandon C.; Campbell, Charles S.


    Long-runout landslides are landslides with volumes of 105 m3 or more, which move much farther from their source than expected. The observation that Martian landslides are generally less mobile than terrestrial landslides offers important evidence regarding the mechanism responsible for the high mobility of long-runout landslides. Here we simulate landslides as granular flow using a soft-particle discrete element model. We show that while surface gravity plays a negligible role, observed differences in fall height naturally reproduce the observed differences in mobility of Martian and terrestrial landslides. We also demonstrate that landslides on Iapetus may fit this trend. Our simulations do not include any fluid and indicate that a mechanism similar to acoustic fluidization can explain the high mobility of long-runout landslides. This implies that long-runout landslides on Mars should not be considered as evidence for ice, saturated clays, or liquid water.

  20. Constraining Controls on the Emplacement of Long Lava Flows on Earth and Mars Through Modeling in ArcGIS (United States)

    Golder, K.; Burr, D. M.; Tran, L.


    Regional volcanic processes shaped many planetary surfaces in the Solar System, often through the emplacement of long, voluminous lava flows. Terrestrial examples of this type of lava flow have been used as analogues for extensive martian flows, including those within the circum-Cerberus outflow channels. This analogy is based on similarities in morphology, extent, and inferred eruptive style between terrestrial and martian flows, which raises the question of how these lava flows appear comparable in size and morphology on different planets. The parameters that influence the areal extent of silicate lavas during emplacement may be categorized as either inherent or external to the lava. The inherent parameters include the lava yield strength, density, composition, water content, crystallinity, exsolved gas content, pressure, and temperature. Each inherent parameter affects the overall viscosity of the lava, and for this work can be considered a subset of the viscosity parameter. External parameters include the effusion rate, total erupted volume, regional slope, and gravity. To investigate which parameter(s) may control(s) the development of long lava flows on Mars, we are applying a computational numerical-modelling to reproduce the observed lava flow morphologies. Using a matrix of boundary conditions in the model enables us to investigate the possible range of emplacement conditions that can yield the observed morphologies. We have constructed the basic model framework in Model Builder within ArcMap, including all governing equations and parameters that we seek to test, and initial implementation and calibration has been performed. The base model is currently capable of generating a lava flow that propagates along a pathway governed by the local topography. At AGU, the results of model calibration using the Eldgá and Laki lava flows in Iceland will be presented, along with the application of the model to lava flows within the Cerberus plains on Mars. We then

  1. Introduction to EGU session "Lunar Science and Exploration Towards Moon Village" (United States)

    Foing, Bernard


    flown in the last international lunar decade (SMART-1, Kaguya, Chang'Eal1 &2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE). Chinese Chang'E 3 lander and Yutu rover, and upcoming 2017 other landers from 2017 (GLXP, Chang'E 4 & 5, SLIM, Luna , LRP) will constitute a Robotic Village on the Moon. A number of MoonVillage talks and/or interactive jam sessions have been conducted at International workshops and symposia 2016. Moon Village Workshops were held at ESA centres: they were held with senior experts as well as Young ESA professionals to discuss general topics and specific issues ( habitat design, technology, science and precursor missions; public and stakeholder engagement) . Many workshops were complemented with ILEWG EuroMoonMars simulation campaigns. Moon Village Workshops or Jam sessions were also conducted at international symposia or in collaboration with specific universities or institutes. The PS2.2 session will include invited and contributed talks as well as a panel discussion and interactive posters with short oral introduction. Acknowledgements We thank Prof J. Woerner (ESA DG) for energizing the concept of MoonVillage. We thank co-conveners of MoonVillage Workshops and ILEWG EuroMoonMars field campaigns in 2016 (including C. Jonglez, V.Guinet, M.Monnerie, A. Kleinschneider, A. Kapoglou, A. Kolodziejczyk, M. Harasymczuk, I. Schlacht, C. Heinicke, D. Esser, M.Grulich, T. Siruguet, H.Vos, M.Mirino, D.Sokolsky, J.Blamont) and participants to these events. We thank A.Cowley, C. Haigneré, P. Messina, G. Ortega, S.Cristoforetti, ESA colleagues involved in MoonVillage related activities. We thank colleagues from ILEWG, Young Lunar Explorers, the International Lunar Decade Group, the Moon Village Association and Moon Village Support Groups and "MoonVillagers" at large. [1] Jan Wörner, Driving #MoonVillage (IAC 2015, Jerusalem); [2]http

  2. Geochemical Constraints on the Size of the Moon-Forming Giant Impact (United States)

    Piet, Hélène; Badro, James; Gillet, Philippe


    Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.

  3. Quick trips to Mars

    International Nuclear Information System (INIS)

    Hornung, R.


    The design of a Mars Mission Vehicle that would have to be launched by two very heavy lift launch vehicles is described along with plans for a mission to Mars. The vehicle has three nuclear engine for rocket vehicle application (NERVA) boosters with a fourth in the center that acts as a dual mode system. The fourth generates electrical power while in route, but it also helps lift the vehicle out of earth orbit. A Mars Ascent Vehicle (MAV), a Mars transfer vehicle stage, and a Mars Excursion Vehicle (MEV) are located on the front end of this vehicle. Other aspects of this research including aerobraking, heat shielding, nuclear thermal rocket engines, a mars mission summary, closed Brayton cycle with and without regeneration, liquid hydrogen propellant storage, etc. are addressed

  4. Cars on Mars (United States)

    Landis, Geoffrey A.


    Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.

  5. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon (United States)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.


    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial

  6. Water and Life on Mars (United States)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)


    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Although the Viking results may indicate that Mars has no life today, there is direct geomorphological evidence that, in the past, Mars had large amounts of liquid water on its surface - possibly due to a thicker atmosphere. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils.

  7. Lunar Limb Observatory: An Incremental Plan for the Utilization, Exploration, and Settlement of the Moon (United States)

    Lowman, Paul. D., Jr.


    This paper proposes a comprehensive incremental program, Lunar Limb Observatory (LLO), for a return to the Moon, beginning with robotic missions and ending with a permanent lunar settlement. Several recent technological developments make such a program both affordable and scientifically valuable: robotic telescopes, the Internet, light-weight telescopes, shared- autonomy/predictive graphics telerobotic devices, and optical interferometry systems. Reasons for focussing new NASA programs on the Moon include public interest, Moon-based astronomy, renewed lunar exploration, lunar resources (especially helium-3), technological stimulus, accessibility of the Moon (compared to any planet), and dispersal of the human species to counter predictable natural catastrophes, asteroidal or cometary impacts in particular. The proposed Lunar Limb Observatory would be located in the crater Riccioli, with auxiliary robotic telescopes in M. Smythii and at the North and South Poles. The first phase of the program, after site certification, would be a series of 5 Delta-launched telerobotic missions to Riccioli (or Grimaldi if Riccioli proves unsuitable), emplacing robotic telescopes and carrying out surface exploration. The next phase would be 7 Delta-launched telerobotic missions to M. Smythii (2 missions), the South Pole (3 missions), and the North Pole (2 missions), emplacing robotic telescopes to provide continuous all-sky coverage. Lunar base establishment would begin with two unmanned Shuttle/Fitan-Centaur missions to Riccioli, for shelter emplacement, followed by the first manned return, also using the Shuttle/Fitan-Centaur mode. The main LLO at Riccioli would then be permanently or periodically inhabited, for surface exploration, telerobotic rover and telescope operation and maintenance, and support of Earth-based student projects. The LLO would evolve into a permanent human settlement, serving, among other functions, as a test area and staging base for the exploration

  8. Plutonian Moon confirmed (United States)

    In late February, two separate observations confirmed the 1978 discovery by U.S. Naval Observatory scientist James W. Christy of a moon orbiting the planet Pluto. According to the U.S. Naval Observatory, these two observations were needed before the International Astronomical Society (IAS) would officially recognize the discovery.Two types of observations of the moon, which was named Charon after the ferryman in Greek mythology who carried the dead to Pluto's realm, were needed for confirmation: a transit, in which the moon passes in front of Pluto, and an occultation, in which the moon passes behind the planet. These two phenomena occur only during an 8-year period every 124 years that had been calculated to take place during 1984-1985. Both events were observed in late February.

  9. Could the early environment of Mars have supported the development of life? (United States)

    Mckay, Christopher P.; Stoker, Carol R.


    The environment of Mars and its correlation to the origin of life on earth are examined. Evidence of liquid water and nitrogen on early Mars is discussed. The similarities between the early Mars and early earth environments are described.

  10. Lunar and Planetary Science XXXV: Moon and Mercury (United States)


    The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.

  11. On the Moon the apollo journals

    CERN Document Server

    Heiken, Grant


    Public interest in the first lunar landing transcended political, economic and social borders – the world was briefly united by the courage of the crew, and the wonder of the accomplishment. Prompted by the rivalry of the Cold War, Apollo 11 and the five missions that subsequently landed on the Moon were arguably the finest feats of exploration in human history. But these were more than exercises in ‘flags and footprints’, because the missions involved the crews making geological field trips on a low gravity site while wearing pressure suits, carrying life-support systems on their backs and working against an unforgiving time line. The missions delivered not only samples of moonrock, but also hard-learned lessons for how to work on the surface of another planet, and this experience will be crucial to planning the resumption of the human exploration of the Moon and going on to Mars.

  12. Life on Mars (United States)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)


    Although the Viking results may indicate that Mars has no life today, the possibility exists that Mars may hold the best record of the events that led to the origin of life. There is direct geomorphological evidence that in the past Mars had large amounts of liquid water on its surface. Atmospheric models would suggest that this early period of hydrological activity was due to the presence of a thick atmosphere and the resulting warmer temperatures. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. If Mars did maintain a clement environment for longer than it took for life to originate on Earth, then the question of the origin of life on Mars follows naturally.

  13. Low Cost Mars Sample Return Utilizing Dragon Lander Project (United States)

    Stoker, Carol R.


    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.

  14. Taking Europe To The Moon (United States)


    orbits surveying areas of the moon's surface rarely documented in previous missions. The data now being received back from Prospector strongly suggests the presence of the suspected volatiles (water ice?). Understandably the presence of billions-of-years-old frozen water in proximity to Euromoon's planned landing site would provide a tremendous boost for the implementation of the EuroMoon project now in its 10th month of study. The in-situ analysis of such rare substances will provide an invaluable scientific window back in time (the Moon is believed to have been formed over 3.5 billion years ago from elements of the earth's mantel). The water's constituent elements of hydrogen and oxygen have also the possibility of offering an essentially free supply of rocket propellant and oxygen for exploitation during future activities. EuroMoon is the only mission being studied that can investigate this ice in-situ, while the US satellite will remain in a orbit. The mission is particularly challenging because of the required landing precision (within 100 m2) in terrain varying between +6 km and -5 km in altitude. Achieving the required pinpoint touchdown capability would allow the future exploitation of other interesting sites. One such site is the 6 km-high Malapert Mountain, 120 km from the pole from which the Earth can always be seen thus allowing continuous communications with the home planet for any future outpost in the region. The 'Peak of Eternal Light' (described above) is in direct view of Malapert, the twin peaks offer the tantalising possibility of both of uninterrupted power and communications. Euromoon can be seen as be the initial step in founding the first extraterrestrial outpost, founding the infrastructure for a 'robotic village' controlled by a 'virtual community' of Earth-based operators using telescience. This would indeed mark the beginning of an expansion of the human domain beyond Earth without the risk or cost of manned space travel. This concept also

  15. Exploring Regolith Depth and Cycling on Mars (United States)

    Fassett, C.; Needham, D. H.; Watters, W. A.; Hundal, C.


    Regolith or loose sediment is ubiquitous on the surface of Mars, but our understanding of how this fragmental layer forms and evolves with time is limited. In particular, how regolith thickness varies spatially on Mars is not well known. A common perspective is to start from the canonical model for lunar regolith, which is not unreasonable, given that both Mars and the Moon are heavily cratered surfaces. However, this lunar-like paradigm is not supported by observations of Mars from recent missions. On Mars, bedrock exposures are more common and bedrock is generally closer to the surface than on the Moon, and the processes modifying the regolith differ substantially on the two bodies. Moreover, boulders on the Moon have much shorter lifetimes than on Mars, so boulders are much less common on the lunar surface. The sediment transport processes infilling craters differs dramatically on these two bodies as well. On Mars, fine-grained sediment is efficiently transported (advectively) by wind and trapped in craters rapidly after they form. Lateral transport of lunar regolith is comparatively inefficient and dominated by slow impact-driven (diffusive) transport of regolith. The goal of this contribution is to discuss observational constraints on Mars' regolith depth, and to place observations into a model for Mars landform evolution and regolith cycle. Our operating hypothesis is that the inter-crater surface on Mars is comparatively starved of fine-grained sediment (compared to the Moon), because transport and trapping of fines in craters out-competes physical weathering. Moreover, thick sedimentary bodies on Mars often get (weakly) cemented and lithified due to interactions with fluids, even in the most recent, Amazonian epoch. This is consistent with what is observed at the MER and MSL landing sites and what is known from the SNC meteorites.

  16. Faxing Structures to the Moon: Freeform Additive Construction System (FACS) (United States)

    Howe, A. Scott; Wilcox, Brian; McQuin, Christopher; Townsend, Julie; Rieber, Richard; Barmatz, Martin; Leichty, John


    Using the highly articulated All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility system as a precision positioning tool, a variety of print head technologies can be used to 3D print large-scale in-situ structures on planetary surfaces such as the moon or Mars. In effect, in the same way CAD models can be printed in a 3D printer, large-scale structures such as walls, vaults, domes, berms, paving, trench walls, and other insitu derived elements can be FAXed to the planetary surface and built in advance of the arrival of crews, supplementing equipment and materials brought from earth. This paper discusses the ATHLETE system as a mobility / positioning platform, and presents several options for large-scale additive print head technologies, including tunable microwave "sinterator" approaches and in-situ concrete deposition. The paper also discusses potential applications, such as sintered-in-place habitat shells, radiation shielding, road paving, modular bricks, and prefabricated construction components.

  17. Solar System Moons Discovery and Mythology

    CERN Document Server

    Blunck, Jürgen


    Starting from Mars outward this concise handbook provides thorough information on the satellites of the planets in the solar system. Each chapter begins with a section on the discovery and the naming of the planet's satellites or rings. This is followed by a section presenting the historic sources of those names. The book contains tables with the orbital and physical parameters of all satellites and is illustrated throughout with modern photos of the planets and their moons as well as historical and mythological drawings. The Cyrillic transcriptions of the satellite names are provided in a register. Readers interested in the history of astronomy and its mythological backgrounds will enjoy this beautiful volume.

  18. Fossilized microorganisms from the Emperor Seamounts: implications for the search for a subsurface fossil record on Earth and Mars. (United States)

    Ivarsson, M; Lausmaa, J; Lindblom, S; Broman, C; Holm, N G


    We have observed filamentous carbon-rich structures in samples drilled at 3 different seamounts that belong to the Emperor Seamounts in the Pacific Ocean: Detroit (81 Ma), Nintoku (56 Ma), and Koko Seamounts (48 Ma). The samples consist of low-temperature altered basalts recovered from all 3 seamounts. The maximum depth from which the samples were retrieved was 954 meters below seafloor (mbsf). The filamentous structures occur in veins and fractures in the basalts, where they are attached to the vein walls and embedded in vein-filling minerals like calcite, aragonite, and gypsum. The filaments were studied with a combination of optical microscopy, environmental scanning electron microscopy (ESEM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Minerals were identified by a combination of optical microscopy, X-ray diffraction, Raman spectrometry, and energy dispersive spectrometry on an environmental scanning electron microscope. Carbon content of the filaments ranges between approximately 10 wt % and approximately 50 wt % and is not associated with carbonates. These results indicate an organic origin of the carbon. The presence of C(2)H(4), phosphate, and lipid-like molecules in the filaments further supports a biogenic origin. We also found microchannels in volcanic glass enriched in carbon (approximately 10-40 wt %) compatible with putative microbial activity. Our findings suggest new niches for life in subseafloor environments and have implications for further exploration of the subseafloor biosphere on Earth and beyond.

  19. Structure of the moon's surface

    CERN Document Server

    Fielder, Gilbert


    Structure of the Moon's Surface aims to assemble and marshal relevant matter, and to produce a largely unprejudiced text which brings lunar studies up to date and stresses the importance of certain features of the Moon which have frequently been disregarded in the past, largely because of lack of knowledge about them. The book contains 14 chapters organized into two parts. Part I reviews and summarizes important physical problems. These include the liberations of the moon; height determinations of points of the moon's surface; the figure of the moon; and the moon's temperature and atmosphere.

  20. Origin of the Moon new concept geochemistry and dynamics

    CERN Document Server

    Galimov, Erik M


    The origin of the Moon remains an unsolved problem of the planetary science. Researchers engaged in celestial dynamics, geophysics, and geochemistry are still discussing various models of creation of our closest cosmic neighbour. The most popular scenario, the impact hypothesis involving a collision early in the Earth's history, has been substantially challenged by the new data. The birth and development of a planet-moon system always play a role in the formation of an entire planetary system around our Sun or around another star. This way, the story of our Moon acquires broader ramifications

  1. Atmospheric modeling of Mars CH4 subsurface clathrates releases mimicking SAM and 2003 Earth-based detections (United States)

    Pla-García, J.; Rafkin, S. C.


    The aim of this work is to establish the amount of mixing during all martian seasons to test whether CH4 releases inside or outside of Gale crater are consistent with MSL-SAM observations. Several modeling scenarios were configured, including instantaneous and steady releases, both inside and outside the crater. A simulation to mimic the 2003 Earth-based detections (Mumma et al. 2009 or M09) was also performed. In the instantaneous release inside Gale experiments, Ls270 was shown to be the faster mixing season when air within and outside the crater was well mixed: all tracer mass inside the crater is diluted after just 8 hours. The mixing of near surface crater air with the external environment in the rest of the year is potentially rapid but slower than Ls270.In the instantaneous release outside Gale (NW) experiment, in just 12 hours the CH4 that makes it to the MSL landing location is diluted by six orders of magnitude. The timescale of mixing in MRAMS experiments is on the order of 1 sol regardless of season. The duration of the CH4 peak observed by SAM is 100 sols. Therefore there is a steady release inside the crater, or there is a very large magnitude steady release outside the crater. In the steady release Gale experiments, CH4 flux rate from ground is 1.8 kg m-2 s-1 (derived from Gloesener et al. 2017 clathrates fluxes) and it is not predictive. In these experiments, 200 times lower CH4 values detected by SAM are modeled around MSL location. There are CH4 concentration variations of orders of magnitude depending on the hour, so timing of SAM measurements is important. With a larger (but further away) outside crater release area compared to inside, similar CH4 values around MSL are modeled, so distance to source is important. In the steady experiments mimicking M09 detection release area, only 12 times lower CH4 values detected by SAM are modeled around MSL. The highest value in the M09 modeled scenario (0.6 ppbv) is reached in Ls270. This value is the

  2. Plume Mitigation for Mars Terminal Landing: Soil Stabilization Project (United States)

    National Aeronautics and Space Administration — A sustained human presence on the Moon, Mars, or other celestial bodies, will require numerous disciplines to create technologies, solve current known...

  3. Lunar Solar Power System Driven Human Development of the Moon and Resource-Rich Exploration of the Inner Solar System (United States)

    Criswell, D. R.


    available that can build fundamentally new infrastructure from the common silicate materials of asteroids and the moons of Mars. Commercial power can be beamed from the Moon to ion-propelled rockets and to industrial facilities throughout the inner solar systems (6, 7). The LSP System can establish the Earth and the Moon as a two-planet economy. Lunar and cis-lunar industry will grow through profitable activities. Exploration of the inner solar system can stage, at marginal cost, from the Moon and cis-lunar space rather than the surface of Earth. 1. World Energy Council (2000) Energy for Tomorrow's World - Acting Now!, 175pp., Atalink Projects Ltd, London. 2. Criswell, David R. (2001) Lunar Solar Power System: Industrial Research, Development, and Demonstration, Session 1.2.2: Hydroelectricity, Nuclear Energy and New Renewables, 18th World Energy Congress. [] 3. Strong, Marice (2001) Where on Earth are We Going?, (See p. 351-352), 419pp., Random House (forward by Kofi Annan) 4. Criswell, D. R. And R. D. Waldron (1993), "International lunar base and the lunar-based power system to supply Earth with electric power," Acta Astronautica, 29, No. 6: 469-480. 5. Criswell, D. R. (1998), Lunar Solar Power: Lunar unit processes, scales, and challenges, 6 p.p. (ms), ExploSpace: Workshop on Space Exploration and Resources Exploitation, European Space Agency, Cagliari, Sardinia, (October 20 - 22). 6. Criswell, D. R. (1999), Commercial lunar solar power and sustainable growth of the two-planet economy, Proc. Third International Working Group on Lunar Exploration and Exploitation, Solar System Research, Vol. 33, #5, 356-362, Moscow, (October 11-14). 7. Criswell, D.R. 2000 (October) Commercial power for Earth and lunar industrial development, 7pp., 51st Congress of the International Astronautical Federation (IAF). (Rio de Janeiro, Brazil). Paper #IAA-00-IAA.13.2.06.

  4. Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign (United States)

    McVay, Eric S.; Jones, Christopher A.; Merrill, Raymond G.


    Human exploration missions to Mars or other destinations in the solar system require large quantities of propellant to enable the transportation of required elements from Earth's sphere of influence to Mars. Current and proposed launch vehicles are incapable of launching all of the requisite mass on a single vehicle; hence, multiple launches and in-space aggregation are required to perform a Mars mission. This study examines the potential of reusable chemical propulsion stages based in cis-lunar space to meet the transportation objectives of the Evolvable Mars Campaign and identifies cis-lunar propellant supply requirements. These stages could be supplied with fuel and oxidizer delivered to cis-lunar space, either launched from Earth or other inner solar system sources such as the Moon or near Earth asteroids. The effects of uncertainty in the model parameters are evaluated through sensitivity analysis of key parameters including the liquid propellant combination, inert mass fraction of the vehicle, change in velocity margin, and change in payload masses. The outcomes of this research include a description of the transportation elements, the architecture that they enable, and an option for a campaign that meets the objectives of the Evolvable Mars Campaign. This provides a more complete understanding of the propellant requirements, as a function of time, that must be delivered to cis-lunar space. Over the selected sensitivity ranges for the current payload and schedule requirements of the 2016 point of departure of the Evolvable Mars Campaign destination systems, the resulting propellant delivery quantities are between 34 and 61 tonnes per year of hydrogen and oxygen propellant, or between 53 and 76 tonnes per year of methane and oxygen propellant, or between 74 and 92 tonnes per year of hypergolic propellant. These estimates can guide future propellant manufacture and/or delivery architectural analysis.

  5. The low energy particle detector SLED ( approx equal 30 keV-3. 2 MeV) and its performance on the Phobos mission to Mars and its moons

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland) Space Technology Ireland Ltd., Maynooth (Ireland)); Afonin, V.V.; Gringauz, K.I. (AN SSSR, Moscow (USSR). Inst. Kosmicheskikh Issledovanij); Keppler, E.; Kirsch, E.; Richter, A.; Witte, M. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.)); O' Sullivan, D.; Thompson, A. (Dublin Inst. for Advanced Studies (Ireland)); Somogyi, A.J.; Szabo, L.; Varga, A. (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics)


    A low energy particle detector system (SLED) is described which was designed to measure the flux densities of electrons and ions in the energy range from {proportional to}30 keV to a few MeV in (a) the varying solar aspect angles and temperatures pertaining during the Cruise Phase of the Phobos Mission and (b) in the low temperature environment (reaching -25deg C) pertaining during Mars Encounter. Representative data illustrating the excellent functioning of SLED during both phases of the mission are presented. (orig.).

  6. The low energy particle detector SLED (≅30 keV-3.2 MeV) and its performance on the Phobos mission to Mars and its moons

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.; Afonin, V.V.; Gringauz, K.I.; O'Sullivan, D.; Thompson, A.; Somogyi, A.J.; Szabo, L.; Varga, A.


    A low energy particle detector system (SLED) is described which was designed to measure the flux densities of electrons and ions in the energy range from ∝30 keV to a few MeV in (a) the varying solar aspect angles and temperatures pertaining during the Cruise Phase of the Phobos Mission and (b) in the low temperature environment (reaching -25deg C) pertaining during Mars Encounter. Representative data illustrating the excellent functioning of SLED during both phases of the mission are presented. (orig.)

  7. The Moon Challenge (United States)

    Fitzsimmons, Pat; Leddy, Diana; Johnson, Lindy; Biggam, Sue; Locke, Suzan


    This article describes a first-grade research project that incorporates trade books and challenges misconceptions. Educators see the power of their students' wonder at work in their classrooms on a daily basis. This wonder must be nourished by students' own experiences--observing the moon on a crystal clear night--as well as by having…

  8. Santa and the Moon

    NARCIS (Netherlands)

    Barthel, P.

    This article reflects on the use of illustrations of the Moon in images of Santa Claus, on Christmas gift-wrapping paper and in children's books, in two countries which have been important in shaping the image of Santa Claus and his predecessor Sinterklaas: the USA and the Netherlands. The

  9. The moon's origins

    International Nuclear Information System (INIS)

    Boss, P.; Benz, W.


    Planet formation theory is recalled. The different existing hypothesis on the moon's origins are reviewed also to see how much they are compatible with the planet formation theory. Up to now, the giant impact model seems to be the only model to satisfy all the constraints. Computerized simulation results have been presented in colloquiums and their scenarios are recalled [fr

  10. "PROCESS and UVolution: photochemistry experiments in Low Earth Orbit": investigation of the photostability of organic and mineral material exposed to Mars surface UV radiation conditions (United States)

    Stalport, Fabien; Guan, Yuan Yong; Noblet, Audrey; Coll, Patrice; Szopa, Cyril; Macari, Frederique; Person, Alain; Chaput, Didier; Raulin, Francois; Cottin, Hervé

    The harsh martian environment could explain the lack of organics and minerals such as car-bonates by destroying them: i) no organic molecule has been found at the two different landing sites of the Viking landers within the detection limits of the instruments onboard, ii) to date, no large deposits of carbonates have been detected and their detection is specific of local ar-eas and in very low amounts. In this context several experimental and numerical modelling studies were led to evaluate the possibility for the destruction or evolution of the organics and carbonates under the martian surface environmental conditions. The presence of UV radiation has been proposed to explain the photodecomposition of such material. This is the reason why, to investigate the nature, abundance, and stability of organic and mineral material that could survive under such environmental conditions, we exposed in low Earth orbit organic molecules and carbonates (also biominerals) with martian relevance to solar UV radiation ¿ 200 nm, in the frame of the experiment UVolution, onboard the BIOPAN ESA module which was set outside a Russian Foton automated capsule and exposed to space condition during 12 days in September 2007, and the experiment PROCESS (hervé peux tu rajouter quelques infos sur le temps exact d'exposition stp) which was set outside the International Space Station (ISS). Here, we present results with regard to the impact of solar UV radiation on the targeted molecules. Preliminary results indicate that that no organic sample seems to resist to the solar UV radiation if directly exposed to it. Conversely our results show that the exposed carbonates seem to be stable to the solar UV radiation if directly exposed to it. Moreover, the stability of the biominerals strengthens the interest to explore deeper their potential as life records at Mars. Hence they should be considered as primary targets for in situ analyses during future missions.

  11. Shallow transient liquid water environments on present-day mars, and their implications for life (United States)

    Jones, Eriita G.


    The identification and characterisation of subsurface liquid water environments on Mars are of high scientific interest. Such environments have the potential to support microbial life, and, more broadly, to develop our understanding of the habitability of planets and moons beyond Earth. Given our current state of knowledge of life on Earth, three pre-requisites are necessary for an environment to be considered 'habitable' and therefore capable of supporting terrestrial-like life: energy, biogenic elements, and liquid water with a sufficiently high water activity. The surface of Mars today is predominately cold and dry, and any liquid water exposed to the atmosphere will vaporise or freeze on timescales of hours to days. These conditions have likely persisted for much of the last 10 million years, and perhaps longer. Despite this, briny liquid water flows (Recurrent Slope Linea) have been observed in a number of locations in the present-day. This review examines evidence from the Phoenix Lander (2008) and the Mars Science Laboratory (2012-current), to assess the occurrence of habitable conditions in the shallow Martian regolith. It will be argued that shallow, transient, liquid water brines are potentially habitable by microbial life, are likely a widespread occurrence on Mars, and that future exploration aimed at finding present-day habitable conditions and potential biology should 'follow the salt'.

  12. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration (United States)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.


    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  13. Experience the Moon (United States)

    Ortiz-Gil, A.; Benacchio, L.; Boccato, C.


    The Moon is, together with the Sun, the very first astronomical object that we experience in our life. As this is an exclusively visual experience, people with visual impairments need a different mode to experience it too. This statement is especially true when events, such as more and more frequent public observations of sky, take place. This is the reason why we are preparing a special package for visual impaired people containing three brand new items: 1. a tactile 3D Moon sphere in Braille with its paper key in Braille. To produce it we used imaging data obtained by NASA's mission Clementine, along with free image processing and 3D rendering software. In order to build the 3D small scale model funding by Europlanet and the Italian Ministry for Research have been used. 2. a multilingual web site for visually impaired users of all ages, on basic astronomy together with an indepth box about the Moon; 3. a book in Braille with the same content of the Web site mentioned above. All the items will be developed with the collaboration of visually impaired people that will check each step of the project and support their comments and criticism to improve it. We are going to test this package during the next International Observe the Moon Night event. After a first testing phase we'll collect all the feedback data in order to give an effective form to the package. Finally the Moon package could be delivered to all those who will demand it for outreach or educational goals.

  14. World Wind 3D Earth Viewing (United States)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom


    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at

  15. Moon-bevægelsen

    DEFF Research Database (Denmark)

    Pedersen, René Dybdal


    Moon-bevægelsen er det populære navn for religionen "Family Federation for World peace and Unification", som også tidligere kaldte sig "Unification Church". Moon-bevægelsen ser sig selv som den sande kristne kirke. Til forskel fra mange andre kristne kirker mener Moon-bevægelsen, at Gud ønskede...

  16. Building Virtual Mars (United States)

    Abercrombie, S. P.; Menzies, A.; Goddard, C.


    Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.

  17. Hands On Earth Science. (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  18. Impact of Utilizing Photos and Deimos as Waypoints for Mars Human Surface Missions (United States)

    Cianciolo, Alicia D.; Brown, Kendall


    Phobos and Deimos, the moons of Mars, are interesting exploration destinations that offer extensibility of the Asteroid Redirect Mission (ARM) technologies. Solar Electric Propulsion (SEP), asteroid rendezvous and docking, and surface operations can be used to land on and explore the moons of Mars. The close Mars vicinity of Phobos and Deimos warrant examining them as waypoints, or intermediate staging orbits, for Mars surface missions. This paper outlines the analysis performed to determine the mass impact of using the moons of Mars both as an intermediate staging point for exploration as well as for in-situ recourse utilization, namely propellant, to determine if the moons are viable options to include in the broader Mars surface exploration architecture.

  19. An Accelerated Development, Reduced Cost Approach to Lunar/Mars Exploration Using a Modular NTR-Based Space Transportation System (United States)

    Borowski, S.; Clark, J.; Sefcik, R.; Corban, R.; Alexander, S.


    The results of integrated systems and mission studies are presented which quantify the benefits and rationale for developing a common, modular lunar/Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. At present NASA's Exploration Program Office (ExPO) is considering chemical propulsion for an 'early return to the Moon' and NTR propulsion for the more demanding Mars missions to follow. The time and cost to develop these multiple systems are expected to be significant. The Nuclear Propulsion Office (NPO) has examined a variety of lunar and Mars missions and heavy lift launch vehicle (HLLV) options in an effort to determine a 'standardized' set of engine and stage components capable of satisfying a wide range of Space Exploration Initiative (SEI) missions. By using these components in a 'building block' fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured. For NASA's 'First Lunar Outpost' (FLO) mission, an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to translunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.5 m length, and 66 t LH2 capacity. The NTR utilizes a UC-ZrC-graphite 'composite' fuel with a specific impulse (Isp) capability of approximately 900 s and an engine thrust-to-weight ratio of approximately 4.3. By extending the size and LH2 capacity of the lunar NTR stage to approximately 20 m and 96 t, respectively, a single launch Mars cargo vehicle capable of delivering approximately 50 t of surface payload is possible. Three 50 klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle applications would be used to configure the Mars piloted vehicle for a mission as early as 2010. The paper describes the features of the 'common

  20. 'Endurance' Courtesy of Mars Express (United States)


    NASA's Mars Exploration Rover Opportunity used its panoramic camera to capture this false-color image of the interior of 'Endurance Crater' on the rover's 188th martian day (Aug. 4, 2004). The image data were relayed to Earth by the European Space Agency's Mars Express orbiter. The image was generated from separate frames using the cameras 750-, 530- and 480-nanometer filters.

  1. Mars Sample Return Architecture Overview (United States)

    Edwards, C. D.; Vijendran, S.


    NASA and ESA are exploring potential concepts for a Sample Retrieval Lander and Earth Return Orbiter that could return samples planned to be collected and cached by the Mars 2020 rover mission. We provide an overview of the Mars Sample Return architecture.

  2. Radio Astronomy on and Around the Moon (United States)

    Falcke, Heino; Klein Wolt, Mark; Ping, Jinsong; Chen, Linjie


    The exploration of remote places on other planets has now become a major goal in current space flight scenarios. On the other hand, astronomers have always sought the most remote and isolated sites to place their observatories and to make their most precise and most breath taking discoveries. Especially for radio astronomy, lunar exploration offers a complete new window to the universe. The polar region and the far-side of the moon are acknowledged as unique locations for a low-frequency radio telescope providing scientific data at wavelengths that cannot be obtained from the Earth nor from single satellites. Scientific areas to be covered range from radio surveys, to solar-system studies, exo-planet detection, and astroparticle physics. The key science area, however, is the detection and measurement of cosmological 21 cm hydrogen emission from the still unexplored dark ages of the universe. Developing a lunar radio facility can happen in steps and may involve small satellites, rover-based radio antennas, of free- flying constellations around the moon. A first such step could be the Netherlands-Chinese Long Wavelength Explorer (NCLE), which is supposed to be launched in 2018 as part of the ChangE’4 mission to the moon-earth L2 point.

  3. Formation, habitability, and detection of extrasolar moons. (United States)

    Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Emeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I


    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.

  4. Life sciences on the moon (United States)

    Horneck, G.

    Despite of the fact that the lunar environment lacks essential prerequisites for supporting life, lunar missions offer new and promising opportunities to the life sciences community. Among the disciplines of interest are exobiology, radiation biology, ecology and human physiology. In exobiology, the Moon offers an ideal platform for studies related to the understanding of the principles, leading to the origin, evolution and distribution of life. These include the analysis of lunar samples and meteorites in relatively pristine conditions, radioastronomical search for other planetary systems or Search for Extra-Terrestrial Intelligence (SETI), and studies on the role of radiation in evolutionary processes and on the environmental limits for life. For radiation biology, the Moon provides an unique laboratory with built-in sources for optical as well as ionising radiation to investigate the biological importance of the various components of cosmic and solar radiation. Before establishing a lunar base, precursor missions will provide a characterisation of the radiation field, determination of depth dose distributions in different absorbers, the installation of a solar flare alert system, and a qualification of the biological efficiency of the mixed radiation environment. One of the most challenging projects falls into the domain of ecology with the establishment for the first time of an artificial ecosystem on a celestial body beyond the Earth. From this venture, a better understanding of the dynamics regulating our terrestrial biosphere is expected. It will also serve as a precursor of bioregenerative life support systems for a lunar base. The establishment of a lunar base with eventually long-term human presence will raise various problems in the fields of human physiology and health care, psychology and sociology. Protection guidelines for living in this hostile environment have to be established.

  5. Planetary Dynamos: Investigations of Saturn and Ancient Mars

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Sabine [University of Toronto


    Magnetic field observations by spacecraft missions have provided vital information on planetary dynamos. The four giant planets as well as Earth, Mercury and Ganymede have observable magnetic fields generated by active dynamos. In contrast, Moon and Mars only have remanent crustal fields from dynamo action in their early histories. A variety of magnetic field morphologies and intensities can be found in the solar system. We have found that some of the differences between planetary magnetic fields can be explained as the result of the presence of boundary thermal variations or stably-stratified layers. In this talk, I will discuss how dynamos are affected by these complications and discuss the implications for Mars’ magnetic dichotomy and Saturn’s extremely axisymmetric magnetic field.

  6. Exploring the Moon

    CERN Document Server

    Harland, David M


    David Harland opens with a review of the robotic probes, namely the Rangers which returned television before crashing into the Moon, the Surveyors which ''soft landed'' in order to investigate the nature of the surface, and the Lunar Orbiters which mapped prospective Apollo landing sites. He then outlines the historic landing by Apollo 11 in terms of what was discovered, and how over the next several missions the program was progressively geared up to enable the final three missions each to spend three days on comprehensive geological investigations. He concludes with a review of the robotic spacecraft that made remote-sensing observations of the Moon. Although aimed at the enthusiast, and can be read as an adventure in exploration, the book develops the scientific theme of lunar geology, and therefore will be of use as background reading for undergraduate students of planetary sciences. In addition, with the prospect of a resumption of human missions, it will help journalists understand what Apollo achieved ...

  7. Terrestrial Analogs to Mars (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.


    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  8. Towards a Moon Village : Community Workshops Highlights (United States)

    Foing, Bernard H.


    A series of Moon Village Workshops were organised at ESTEC and at ILEWG community events in 2015 and 2016. They gathered a multi-disciplinary group of professionals from all around the world to discuss their ideas about the concept of a Moon Village, the vision of ESA's Director General (DG) Jan Woerner of a permanent lunar base within the next decades [1]. Three working groups focused on 1) Moon Habitat Design; 2) science and technology potentials of the Moon Village, and 3) engaging stake-holders [2-3]. Their results and recommendations are presented in this abstract. The Moon Habitat Design group identified that the lunar base design is strongly driven by the lunar environment, which is characterized by high radiation, meteoroids, abrasive dust particles, low gravity and vacuum. The base location is recommended to be near the poles to provide optimized illumination conditions for power generation, permanent communication to Earth, moderate temperature gradients at the surface and interesting subjects to scientific investigations. The abundance of nearby available resources, especially ice at the dark bottoms of craters, can be exploited in terms of In-Situ Resources Utilization (ISRU). The identified infrastructural requirements include a navigation, data- & commlink network, storage facilities and sustainable use of resources. This involves a high degree of recycling, closed-loop life support and use of 3D-printing technology, which are all technologies with great potential for terrestrial spin-off applications. For the site planning of the Moon Village, proven ideas from urban planning on Earth should be taken into account. A couple of principles, which could improve the quality of a long-term living milieu on the Moon, are creating spacious environments, visibility between interior and exterior spaces, areas with flora, such as gardens and greenhouses, establishing a sustainable community and creating social places for astronauts to interact and relax. The

  9. Planned Environmental Microbiology Aspects of Future Lunar and Mars Missions (United States)

    Ott, C. Mark; Castro, Victoria A.; Pierson, Duane L.


    With the establishment of the Constellation Program, NASA has initiated efforts designed similar to the Apollo Program to return to the moon and subsequently travel to Mars. Early lunar sorties will take 4 crewmembers to the moon for 4 to 7 days. Later missions will increase in duration up to 6 months as a lunar habitat is constructed. These missions and vehicle designs are the forerunners of further missions destined for human exploration of Mars. Throughout the planning and design process, lessons learned from the International Space Station (ISS) and past programs will be implemented toward future exploration goals. The standards and requirements for these missions will vary depending on life support systems, mission duration, crew activities, and payloads. From a microbiological perspective, preventative measures will remain the primary techniques to mitigate microbial risk. Thus, most of the effort will focus on stringent preflight monitoring requirements and engineering controls designed into the vehicle, such as HEPA air filters. Due to volume constraints in the CEV, in-flight monitoring will be limited for short-duration missions to the measurement of biocide concentration for water potability. Once long-duration habitation begins on the lunar surface, a more extensive environmental monitoring plan will be initiated. However, limited in-flight volume constraints and the inability to return samples to Earth will increase the need for crew capabilities in determining the nature of contamination problems and method of remediation. In addition, limited shelf life of current monitoring hardware consumables and limited capabilities to dispose of biohazardous trash will drive flight hardware toward non-culture based methodologies, such as hardware that rapidly distinguishes biotic versus abiotic surface contamination. As missions progress to Mars, environmental systems will depend heavily on regeneration of air and water and biological waste remediation and

  10. How Apollo Flew to the Moon

    CERN Document Server

    Woods, W. David


    Out of the technological battlefield of World War II came a team of gifted German engineers and designers who developed the vengeance weapon, the V-2, which evolved into the peaceful, powerful Saturn V rocket to take men to the Moon. David Woods tells the exciting story, starting from America’s post war astronautical research facilities, that used the V-2 for the development of the robust, resilient and reliable Saturn V launcher. He describes the initial launches through manned orbital spaceflights, comprehensively detailing each step, including computer configuration, the role of ground control, trajectory planning, lunar orbiting, separation of the lander, walking and working on the Moon, retrieval of the lunar astronauts and returning to Earth in this massive technical accomplishment.

  11. To the Moon on a Shoestring (United States)

    Mortensen, T. F.; Rasmussen, S.


    The Euroluna Team is one of the around 30 teams competing in the Google Lunar X PRIZE Competition. The goal of the competition is to be the first team to successfully land a vehicle on the Moon, drive 500 m, and send video of the drive back to Earth. The Euroluna Team was formed in 2007, and the first flight hardware was acquired in 2010. Euroluna is financed privately with small funds. We have not received any external financial support. Therefore we have made an effort to keep all investments low. This has resulted in a design that uses new technologies and old technologies in a new way. Components are largely based on the Cubesat family and an ion thruster is being used for propulsion. A special strategy for landing on the Moon is under development. Special software of own design is being used for simulation of trajectories and energy consumption.

  12. Accretion and early evolution of Earth

    DEFF Research Database (Denmark)

    Saji, Nikitha Susan

    in solar system materials is found to be related to selective thermal processing of dust in the early nebula given the correlation observed for these eects with Fe-peak neutron-rich isotope anomalies, whose origin is attributed to distinct nucleosnythetic sites other than classical s-, r- or p......-sized dust, of which the early protoplanetary disk is initially composed of, coalesce over the course of several millions of years to form the precursors to planets that make up the solar system today. The final assembly of Earth-like planets is complete only after a protracted latestage evolution...... that extends over at least 100 Myr, characterized by violent collisions between Mars- to Moon-sized planetary embryos. Evidence for the many details of solar system evolution - such as the diverse stellar sources that contributed material to solar system bodies to what role disk processes and late...

  13. George and the blue moon

    CERN Document Server

    Hawking, Lucy


    George and his best friend, Annie have been selected as junior astronauts - part of a programme that trains up young people for a trip to Mars in the future. This is everything they've ever wanted - they get to be a part of up-to-the minute space discoveries and meet a bunch of new friends who are as fascinated by the universe as they are. But when they arrive at space camp, George and Annie quickly learn that strange things are happening - on Earth as well as up in our skies. Mysterious space missions are happening in secret, and the astronaut training they're undertaking gets scarier and scarier . . . The fifth adventure in this series by Lucy and Stephen Hawking - also containing up-to-the-minute scientific facts and information by the world's leading scientists.

  14. Definition of Physical Height Systems for Telluric Planets and Moons (United States)

    Tenzer, Robert; Foroughi, Ismael; Sjöberg, Lars E.; Bagherbandi, Mohammad; Hirt, Christian; Pitoňák, Martin


    In planetary sciences, the geodetic (geometric) heights defined with respect to the reference surface (the sphere or the ellipsoid) or with respect to the center of the planet/moon are typically used for mapping topographic surface, compilation of global topographic models, detailed mapping of potential landing sites, and other space science and engineering purposes. Nevertheless, certain applications, such as studies of gravity-driven mass movements, require the physical heights to be defined with respect to the equipotential surface. Taking the analogy with terrestrial height systems, the realization of height systems for telluric planets and moons could be done by means of defining the orthometric and geoidal heights. In this case, however, the definition of the orthometric heights in principle differs. Whereas the terrestrial geoid is described as an equipotential surface that best approximates the mean sea level, such a definition for planets/moons is irrelevant in the absence of (liquid) global oceans. A more natural choice for planets and moons is to adopt the geoidal equipotential surface that closely approximates the geometric reference surface (the sphere or the ellipsoid). In this study, we address these aspects by proposing a more accurate approach for defining the orthometric heights for telluric planets and moons from available topographic and gravity models, while adopting the average crustal density in the absence of reliable crustal density models. In particular, we discuss a proper treatment of topographic masses in the context of gravimetric geoid determination. In numerical studies, we investigate differences between the geodetic and orthometric heights, represented by the geoidal heights, on Mercury, Venus, Mars, and Moon. Our results reveal that these differences are significant. The geoidal heights on Mercury vary from - 132 to 166 m. On Venus, the geoidal heights are between - 51 and 137 m with maxima on this planet at Atla Regio and Beta

  15. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit (United States)

    Romero, P.; Pablos, B.; Barderas, G.


    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  16. The Gravitation of the Moon Plays Pivotal Roles in the Occurrence of the Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Ryotaro Wake


    Full Text Available Acute myocardial infarction (AMI is a social burden. However, being able to predict AMI could lead to prevention. A previous study showed only the relation between the lunar phase and the occurrence of AMI, but the period it takes for the moon to orbit around the earth and the period of the lunar phase differ. This study investigated the effect of the gravitation of the moon on AMI. Data was comprised of 1369 consecutive patients with first AMI at 5 hospitals from October, 1984 to December, 1997. The universal gravitation of the moon was calculated and compared to the earth onset time of AMI. Universal gravitation of the moon was derived by G*m/d2 (G: universal gravitation constant, m: the mass of the moon, d: the distance between the center of the moon and the center of the earth. The relationship between m/d2 and the cases of AMI was determined. There was an increase in cases, when there is a distance of more than 399864 km from the center of the earth to the center of the moon. The gravitation of more than 399864 km was determined to be weaker gravitation. It is confirmed that the number of AMI patients significantly increases at weaker gravitation periods in this multicenter trial. In conclusion, these results suggest that the gravitation of the moon may have an influence on the occurrence of AMI.

  17. Student Moon Observations and Spatial-Scientific Reasoning (United States)

    Cole, Merryn; Wilhelm, Jennifer; Yang, Hongwei


    Relationships between sixth grade students' moon journaling and students' spatial-scientific reasoning after implementation of an Earth/Space unit were examined. Teachers used the project-based Realistic Explorations in Astronomical Learning curriculum. We used a regression model to analyze the relationship between the students' Lunar Phases Concept Inventory (LPCI) post-test score variables and several predictors, including moon journal score, number of moon journal entries, student gender, teacher experience, and pre-test score. The model shows that students who performed better on moon journals, both in terms of overall score and number of entries, tended to score higher on the LPCI. For every 1 point increase in the overall moon journal score, participants scored 0.18 points (out of 20) or nearly 1% point higher on the LPCI post-test when holding constant the effects of the other two predictors. Similarly, students who increased their scores by 1 point in the overall moon journal score scored approximately 1% higher in the Periodic Patterns (PP) and Geometric Spatial Visualization (GSV) domains of the LPCI. Also, student gender and teacher experience were shown to be significant predictors of post-GSV scores on the LPCI in addition to the pre-test scores, overall moon journal score, and number of entries that were also significant predictors on the LPCI overall score and the PP domain. This study is unique in the purposeful link created between student moon observations and spatial skills. The use of moon journals distinguishes this study further by fostering scientific observation along with skills from across science, technology, engineering, and mathematics disciplines.

  18. When Moons Collide (United States)

    Rufu, Raluca; Aharonson, Oded


    Impacts between two orbiting satellites is a natural consequence of Moon formation. Mergers between moonlets are especially important for the newly proposed multiple-impact hypothesis as these moonlets formed from different debris disks merge together to form the final Moon. However, this process is relevant also for the canonical giant impact, as previous work shows that multiple moonlets are formed from the same debris disk.The dynamics of impacts between two orbiting bodies is substantially different from previously heavily studied planetary-sized impacts. Firstly, the impact velocities are smaller and limited to, thus heating is limited. Secondly, both fragments have similar mass therefore, they would contribute similarly and substantially to the final satellite. Thirdly, this process can be more erosive than planetary impacts as the velocity of ejected material required to reach the mutual Hill sphere is smaller than the escape velocity, altering the merger efficiency. Previous simulations show that moonlets inherit different isotopic signatures from their primordial debris disk, depending on the parameters of the collision with the planet. We therefore, evaluate the degree of mixing in moonlet-moonlet collisions in the presence of a planetary gravitational field, using Smooth Particle Hydrodynamics (SPH). Preliminary results show that the initial thermal state of the colliding moonlets has only a minor influence on the amount of mixing, compared to the effects of velocity and impact angle over their likely ranges. For equal mass bodies in accretionary collisions, impact angular momentum enhances mixing. In the hit-and-run regime, only small amounts of material are transferred between the bodies therefore mixing is limited. Overall, these impacts can impart enough energy to melt ~15-30% of the mantle extending the magma ocean phase of the final Moon.

  19. The Topography of Mars: Understanding the Surface of Mars Through the Mars Orbiter Laser Altimeter (United States)

    Derby, C. A.; Neumann, G. A.; Sakimoto, S. E.


    The Mars Orbiter Laser Altimeter has been orbiting Mars since 1997 and has measured the topography of Mars with a meter of vertical accuracy. This new information has improved our understanding of both the surface and the interior of Mars. The topographic globe and the labeled topographic map of Mars illustrate these new data in a format that can be used in a classroom setting. The map is color shaded to show differences in elevation on Mars, presenting Mars with a different perspective than traditional geological and geographic maps. Through the differences in color, students can see Mars as a three-dimensional surface and will be able to recognize features that are invisible in imagery. The accompanying lesson plans are designed for middle school science students and can be used both to teach information about Mars as a planet and Mars in comparison to Earth, fitting both the solar system unit and the Earth science unit in a middle school curriculum. The lessons are referenced to the National Benchmark standards for students in grades 6-8 and cover topics such as Mars exploration, the Mars Orbiter Laser Altimeter, resolution and powers of 10, gravity, craters, seismic waves and the interior structure of a planet, isostasy, and volcanoes. Each lesson is written in the 5 E format and includes a student content activity and an extension showing current applications of Mars and MOLA data. These activities can be found at Funding for this project was provided by the Maryland Space Grant Consortium and the MOLA Science Team, Goddard Space Flight Center.