WorldWideScience

Sample records for earth mass planets

  1. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    , i.e. it is much easier to detect high mass planets in close orbits. With these two methods it is hard to detect planets in an exo-solar system with a structure similar to our own solar system; specifically, it is hard to detect Earth-like planets in Earth-like orbits. It is presently unknown how...... to the time duration of the signal, not the signal amplitude, rendering it critical to sample ongoing events very densely in time to detect Earth-mass planets. The lower limit of planet mass that will give rise to a signal is set by the angular size of the source which illuminates the lensing system. It can...... be shown that in the crowded fields where microlensing is observed, the primary obstacle for detecting Earth-mass planets is the crowding, rendering it hard to extract accurate photometry from faint sources at seeing limited resolutions. As all the sources tend to be at approximately the same distance...

  2. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    be shown that in the crowded fields where microlensing is observed, the primary obstacle for detecting Earth-mass planets is the crowding, rendering it hard to extract accurate photometry from faint sources at seeing limited resolutions. As all the sources tend to be at approximately the same distance......, but the photometric ability and stability has not been addressed in the literature. To this end, modifications to the traditional procedure for reducing CCD images is presented along with a discussion of how to optimally utilise lucky imaging, specifically for microlensing observations, by combining...

  3. An Earth-mass planet orbiting α Centauri B.

    Science.gov (United States)

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  4. Microlensing Discovery of an Earth-Mass Planet

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    What do we know about planet formation around stars that are so light that they cant fuse hydrogen in their cores? The new discovery of an Earth-mass planet orbiting what is likely a brown dwarf may help us better understand this process.Planets Around Brown Dwarfs?Comparison of the sizes of the Sun, a low-mass star, a brown dwarf, Jupiter, and Earth. [NASA/JPL-Caltech/UCB]Planets are thought to form from the material inprotoplanetary disks around their stellar hosts. But the lowest-mass end of the stellar spectrum brown dwarfs, substellar objects so light that they straddle the boundary between planet and star will have correspondingly light disks. Do brown dwarfs disks typically have enough mass to form Earth-mass planets?To answer this question, scientists have searched for planets around brown dwarfs with marginal success. Thus far, only four such planets have been found and these systems may not be typical, since they were discovered via direct imaging. To build a more representative sample, wed like to discover exoplanets around brown dwarfs via a method that doesnt rely on imaging the faint light of the system.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]Lensed Light as a GiveawayConveniently, such a method exists and its recently been used to make a major discovery! The planet OGLE-2016-BLG-1195Lb was detected as a result of a gravitational microlensing event that was observed both from the ground and from space.The discovery of a planet via microlensing occurs when the light of a distant source star is magnified by a passing foreground star hosting a planet. The light curve of the source shows a distinctive magnification signature as a result of the gravitational lensing from the foreground star, and the gravitational field of the lensing stars planet can add its own detectable blip to the curve.OGLE-2016-BLG-1195LbThe magnification curve of OGLE-2016-BLG-1195

  5. Formation and Detection of Earth Mass Planets around Low Mass Stars

    OpenAIRE

    Montgomery, Ryan; Laughlin, Greg

    2009-01-01

    We investigate an in-situ formation scenario for Earth-mass terrestrial planets in short-period, potentially habitable orbits around low-mass stars (M_star < 0.3 M_sun). We then investigate the feasibility of detecting these Earth-sized planets. Our simulations of terrestrial planet formation follow the growth of planetary embryos in an annular region around a fiducial M7 primary. Our simulations couple a semi-analytic model to a full N-body integration to follow the growth from ~3x10^21 g to...

  6. Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star

    Science.gov (United States)

    Barry, Richard K.; Muraki, Y.; Han, C.; Bennett, D. P.; Gaudi, B. S.

    2011-01-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of mp = 10.4 +/- M(Earth) and orbits a star of Mstar = 0.56 +/- 0.09 M(Sun) at a semi-major axis of a = 3.2 + 1.9/-0.5 AU, and an orbital period of 7.6 +7.7/-1.5 yrs. The planet and host star mass measurements are due to the measurement of the microlensing parallax effect. This measurement was primarily due to the orbital motion of the Earth, but the analysis also demonstrates the capability measure micro lensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a failed gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets

  7. Detection of Earth-mass and Super-Earth Trojan Planets Using Transit Timing Variation Method

    CERN Document Server

    Haghighipour, Nader; Hinse, Tobias C

    2013-01-01

    We have carried out an extensive study of the possibility of the detection of Earth-mass and super-Earth Trojan planets using transit timing variation method with the Kepler space telescope. We have considered a system consisting of a transiting Jovian-type planet in a short period orbit, and determined the induced variations in its transit timing due to an Earth-mass/super-Earth Trojan planet. We mapped a large section of the phase space around the 1:1 mean-motion resonance and identified regions corresponding to several other mean-motion resonances where the orbit of the planet would be stable. We calculated TTVs for different values of the mass and orbital elements of the transiting and perturbing bodies as well as the mass of central star, and identified orbital configurations of these objects (ranges of their orbital elements and masses) for which the resulted TTVs would be within the range of the variations of the transit timing of Kepler's planetary candidates. Results of our study indicate that in gen...

  8. Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star

    CERN Document Server

    Muraki, Y; Bennett, D P; Suzuki, D; Monard, L A G; Street, R; Jorgensen, U G; Kundurthy, P; Skowron, J; Becker, A C; Albrow, M D; Fouque, P; Heyrovsky, D; Barry, R K; Beaulieu, J -P; Wellnitz, D D; Bond, I A; Sumi, T; Dong, S; Gaudi, B S; Bramich, D M; Dominik, M; Abe, F; Botzler, C S; Freeman, M; Fukui, A; Furusawa, K; Hayashi, F; Hearnshaw, J B; Hosaka, S; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Ling, C H; Makita, S; Masuda, K; Matsubara, Y; Miyake, N; Nishimoto, K; Ohnishi, K; Perrott, Y C; Rattenbury, N J; Saito, To; Skuljan, L; Sullivan, D J; Sweatman, W L; Tristram, P J; Wada, K; Yock, P C M; Christie, G W; DePoy, D L; Gorbikov, E; Gould, A; Kaspi, S; Lee, C -U; Mallia, F; Maoz, D; McCormick, J; Moorhouse, D; Natusch, T; Park, B -G; Pogge, R W; Polishook, D; Shporer, A; Thornley, G; Yee, J C; Allan, A; Browne, P; Horne, K; Kains, N; Snodgrass, C; Steele, I; Tsapras, Y; Batista, V; Bennett, C S; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A; Corrales, R; Coutures, Ch; Dieters, S; Prester, D Dominis; Donatowicz, J; Greenhill, J; Kubas, D; Marquette, J -B; Martin, R; Menzies, J; Sahu, K C; Waldman, I; Zub, A Williams M; Bourhrous, H; Matsuoka, Y; Nagayama, T; Oi, N; Randriamanakoto, Z; Bozza, V; Burgdorf, M J; Novati, S Calchi; Dreizler, S; Finet, F; Glitrup, M; Harpsoe, K; Hinse, T C; Hundertmark, M; Liebig, C; Maier, G; Mancini, L; Mathiasen, M; Rahvar, S; Ricci, D; Scarpetta, G; Skottfelt, J; Surdej, J; Southworth, J; Wambsganss, J; Zimmer, F; Udalski, A; Poleski, R; Wyrzykowski, L; Ulaczyk, K; Szymanski, M K; Kubiak, M; Pietrzynski, G; Soszynski, I

    2011-01-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of m_p = 10.4 +- 1.7 Earth masses and orbits a star of mass M_* = 0.56 +- 0.09 Solar masses at a semi-major axis of a = 3.2 (+1.9 -0.5) AU and an orbital period of P = 7.6 (+7.7 -1.5} yrs. The planet and host star mass measurements are enabled by the measurement of the microlensing parallax effect, which is seen primarily in the light curve distortion due to the orbital motion of the Earth. But, the analysis also demonstrates the capability to measure microlensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a "failed" gas giant. This and future microlensing detections will test planet formation theory predictions regarding the preval...

  9. Reevaluating the feasibility of ground-based Earth-mass microlensing planet detections

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Kil; Park, Hyuk; Han, Cheongho; Hwang, Kyu-Ha; Shin, In-Gu; Choi, Joon-Young, E-mail: cheongho@astroph.chungbuk.ac.kr [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of)

    2014-05-10

    An important strength of the microlensing method to detect extrasolar planets is its high sensitivity to low-mass planets. However, many believe that microlensing detections of Earth-mass planets from ground-based observation would be difficult because of limits set by finite-source effects. This view comes from the previous estimation of planet detection probability based on the fractional deviation of planetary signals; however, a proper probability estimation is required when considering the source brightness, which is directly related to the photometric precision. In this paper, we reevaluate the feasibility of low-mass planet detections by considering photometric precision for different populations of source stars. From this, we find that the contribution of improved photometric precision to the planetary signal of a giant-source event is large enough to compensate for the decrease in magnification excess caused by finite-source effects. As a result, we conclude that giant-source events are suitable targets for Earth-mass planet detections with significantly higher detection probability than events involved with source stars of smaller radii, and we predict that Earth-mass planets could be detected by prospective high-cadence surveys.

  10. The Detection of Earth-mass Planets around Active Stars: The Mass of Kepler-78b

    CERN Document Server

    Hatzes, Artie P

    2014-01-01

    Kepler-78b is a transiting Earth-mass planet in an 8.5 hr orbit discovered by the Kepler Space Mission. We performed an analysis of the published radial velocity measurements for Kepler-78 in order to derive a refined measurement for the planet mass. Kepler-78 is an active star and radial velocity variations due to activity were removed using a Floating Chunk Offset (FCO) method where an orbital solution was made to the data by allowing the velocity offsets of individual nights to vary. We show that if we had no a priori knowledge of the transit period the FCO method used as a periodogram would still have detected Kepler-78b in the radial velocity data. It can thus be effective at finding unknown short-period signals in the presence of significant activity noise. Using the FCO method while keeping the ephemeris and orbital phase fixed to the photometric values and using only data from nights where 6-10 measurements were taken results in a K-amplitude of 1.34 +/- 0.25 m/s. a planet mass of 1.31 +/- 0.24 M_Eart...

  11. Star Masses and Star-Planet Distances for Earth-like Habitability.

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ < M < 1.04 M⊙, and the range for planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  12. Star Masses and Star-Planet Distances for Earth-like Habitability

    Science.gov (United States)

    2017-01-01

    Abstract This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability—Habitable zone—Anthropic—Red dwarfs—Initial mass function. Astrobiology 17, 61–77. PMID:28103107

  13. Star Masses and Star-Planet Distances for Earth-like Habitability

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙.

  14. The HARPS search for southern extra-solar planets. XVII. Super-Earth and Neptune-mass planets in multiple planet systems HD47186 and HD181433

    CERN Document Server

    Bouchy, F; Lovis, C; Udry, S; Benz, W; Bertaux, J-L; Delfosse, X; Mordasini, C; Pepe, F; Queloz, D; Ségransan, D

    2008-01-01

    This paper reports on the detection of two new multiple planet systems around solar-like stars HD47186 and HD181433. The first system includes a hot Neptune of 22.78 M_Earth at 4.08-days period and a Saturn of 0.35 M_Jup at 3.7-years period. The second system includes a Super-Earth of 7.5 M_Earth at 9.4-days period, a 0.64 M$_Jup at 2.6-years period as well as a third companion of 0.54 M_Jup with a period of about 6 years. These detections increase to 20 the number of close-in low-mass exoplanets (below 0.1 M_Jup) and strengthen the fact that 80% of these planets are in a multiple planetary systems.

  15. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    Science.gov (United States)

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-06

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere.

  16. EPIC212521166 b: a Neptune-mass planet with Earth-like density

    CERN Document Server

    Osborn, H P; Barros, S C C; Armstrong, D J; Santos, N C; Hojjatpanah, S; Demangeon, O; Adibekyan, V; Almenara, J M; Barrado, D; Bayliss, D; Boisse, I; Bouchy, F; Brown, D J A; Deleuil, M; Mena, E Delgado; Hébrard, G; Kirk, J; King, G W; Lam, K W F; Lillo-Box, J; Louden, T M; Lovis, C; Marmier, M; McCormac, J; Pollacco, D; Sousa, S G; Udry, S; Walker, S R

    2016-01-01

    We report the discovery of the exoplanet EPIC212521166 b from K2 photometry orbiting on a 13.8637d period around an old, metal-poor K3 dwarf star. A joint analysis of K2 photometry and high-precision RVs from HARPS reveals it to have a radius of 2.6$\\pm 0.1 R_{\\oplus}$ and a mass of 18.3$\\pm 2.8 M_{\\oplus}$, making it the most massive planet with a sub-Neptune radius (i.e. mini-Neptune) yet found. When accounting for compression, the resulting Earth-like density is best fit by a $0.2M_{\\oplus}$ hydrogen atmosphere over an $18M_{\\oplus}$ Earth-like core, although the planet could also have significant water content. At 0.1AU, even taking into account the old stellar age of $8 \\pm 3$ Gyr, the planet is unlikely to have been significantly affected by EUV evaporation or tides. However the planet likely disc-migrated to its current position making the lack of a thick H$_2$ atmosphere puzzling. With a V-band magnitude of 11.9 it is particularly amenable to follow-up observations, making EPIC-1166 b a rare and extre...

  17. The Stability of the Orbits of Earth-mass Planets in and near the Habitable Zones of Known Exoplanetary Systems

    CERN Document Server

    Jones, B W; Sleep, P N; Underwood, David R

    2003-01-01

    We have shown that Earth-mass planets could survive in variously restricted regions of the habitable zones (HZs) of most of a sample of nine of the 93 main-sequence exoplanetary systems confirmed by May 2003. In a preliminary extrapolation of our results to the other systems, we estimate that roughly a third of the 93 systems might be able to have Earth-mass planets in stable, confined orbits somewhere in their HZs. Clearly, these systems should be high on the target list for exploration for terrestrial planets. We have reached this conclusion by launching putative Earth-mass planets in various orbits and following their fate with a mixed-variable symplectic integrator.

  18. Managing Planet Earth.

    Science.gov (United States)

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  19. A Detailed Model Grid for Solid Planets from 0.1 through 100 Earth Masses

    CERN Document Server

    Zeng, Li

    2013-01-01

    This paper describes a new grid for the mass-radius relation of 3-layer exoplanets within the mass range of 0.1 through 100 Earth Masses. The 3 layers are: Fe (epsilon iron), MgSiO3 (including both the perovskite phase, post-perovskite phase, and its dissociation at ultra-high pressures), and H2O (including Ices Ih, III, V, VI, VII, X, and the superionic phase along the melting curve). We discuss the current state of knowledge about the equations of state (EOS) that influence these calculations and the improvements used in the new grid. For the 2-layer model, we demonstrate the utility of contours on the mass-radius diagrams. Given the mass and radius input, these contours can be used to quickly determine the important physical properties of a planet including its p0 (central pressure), p1/p0 (core-mantle boundary pressure over central pressure), CMF (core mass fraction) or CRF (core radius fraction). For the 3-layer model, a curve segment on the ternary diagram represents all possible relative mass proportio...

  20. The NASA-UC Eta-Earth Program: II. A Planet Orbiting HD 156668 with a Minimum Mass of Four Earth Masses

    CERN Document Server

    Howard, Andrew W; Marcy, Geoffrey W; Fischer, Debra A; Wright, Jason T; Henry, Gregory W; Isaacson, Howard; Valenti, Jeff A; Anderson, Jay; Piskunov, Nikolai E

    2010-01-01

    We report the discovery of HD 156668b, an extrasolar planet with a minimum mass of M_P sin i = 4.15 M_Earth. This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 d. The Doppler semi-amplitude of this planet, K = 1.89 m/s, is among the lowest ever detected, on par with the detection of GJ 581e using HARPS. A longer period (P ~ 2.3 yr), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0....

  1. Accretion and Evolution of ~2.5 Earth-mass Planets with Voluminous H/He Envelopes

    CERN Document Server

    Bodenheimer, Peter

    2014-01-01

    Formation of planets in the Neptune size range with low-mass, but voluminous, H_2/He gaseous envelopes is modeled by detailed numerical simulations according to the core-nucleated accretion scenario. Formation locations ranging from 0.5 to 4 AU from a star of 1 solar mass are considered. The final planets have heavy-element cores of 2.2--2.5 Earth masses and envelopes in the range 0.037--0.16 Earth masses. After the formation process, which lasts 2 Myr or less, the planets evolve at constant mass up to an age of several Gyr. For assumed equilibrium temperatures of 250, 500, and 1000 K, their calculated final radii are compared with those observed by the Kepler spacecraft. For the particular case of Kepler-11 f, we address the question whether it could have formed in situ or whether migration from a formation location farther out in the disk is required.

  2. The NASA-UC Eta-Earth Program: III. A Super-Earth orbiting HD 97658 and a Neptune-mass planet orbiting Gl 785

    CERN Document Server

    Howard, Andrew W; Marcy, Geoffrey W; Fischer, Debra A; Wright, Jason T; Henry, Gregory W; Isaacson, Howard; Valenti, Jeff A; Anderson, Jay; Piskunov, Nikolai E

    2010-01-01

    We report the discovery of planets orbiting two bright, nearby early K dwarf stars, HD 97658 and Gl 785. These planets were detected by Keplerian modelling of radial velocities measured with Keck-HIRES for the NASA-UC Eta-Earth Survey. HD 97658 b is a close-in super-Earth with minimum mass Msini = 8.2 +/- 1.2 M_Earth, orbital period P = 9.494 +/- 0.005 d, and an orbit that is consistent with circular. Gl 785 b is a Neptune-mass planet with Msini = 21.6 +/- 2.0 M_Earth, P = 74.39 +/- 0.12 d, and orbital eccentricity 0.30 +/- 0.09. Photometric observations with the T12 0.8 m automatic photometric telescope at Fairborn Observatory show that HD 97658 is photometrically constant at the radial velocity period to 0.09 mmag, supporting the existence of the planet.

  3. Influence of Sudden Change of Solar Mass in the PN Stage on the Orbit of Earth-Like Planet

    Indian Academy of Sciences (India)

    Yunfeng Zhu; Caijuan Pan; Dasheng Pan; Hongqiang Huang; Zhi-Fu Chen

    2014-09-01

    Assuming that the terminated mass is confined within the range 0.4551-0.5813⊙ when the sun is going to evolve into a white dwarf, the velocity of the sun projecting the shell in the PN stage is much greater than the revolving velocity of the earth-like planet, therefore, we think that the solar mass change is instantaneous.

  4. Searching for Earth-mass planets around $\\alpha$ Centauri: precise radial velocities from contaminated spectra

    CERN Document Server

    Bergmann, Christoph; Hearnshaw, John B; Wittenmyer, Robert A; Wright, Duncan J

    2014-01-01

    This work is part of an ongoing project which aims to detect terrestrial planets in our neighbouring star system $\\alpha$ Centauri using the Doppler method. Owing to the small angular separation between the two components of the $\\alpha$ Cen AB binary system, the observations will to some extent be contaminated with light coming from the other star. We are accurately determining the amount of contamination for every observation by measuring the relative strengths of the H-$\\alpha$ and NaD lines. Furthermore, we have developed a modified version of a well established Doppler code that is modelling the observations using two stellar templates simultaneously. With this method we can significantly reduce the scatter of the radial velocity measurements due to spectral cross-contamination and hence increase our chances of detecting the tiny signature caused by potential Earth-mass planets. After correcting for the contamination we achieve radial velocity precision of $\\sim 2.5\\,\\mathrm{m\\,s^{-1}}$ for a given night...

  5. Earth and Terrestrial Planet Formation

    CERN Document Server

    Jacobson, Seth A

    2015-01-01

    The growth and composition of Earth is a direct consequence of planet formation throughout the Solar System. We discuss the known history of the Solar System, the proposed stages of growth and how the early stages of planet formation may be dominated by pebble growth processes. Pebbles are small bodies whose strong interactions with the nebula gas lead to remarkable new accretion mechanisms for the formation of planetesimals and the growth of planetary embryos. Many of the popular models for the later stages of planet formation are presented. The classical models with the giant planets on fixed orbits are not consistent with the known history of the Solar System, fail to create a high Earth/Mars mass ratio, and, in many cases, are also internally inconsistent. The successful Grand Tack model creates a small Mars, a wet Earth, a realistic asteroid belt and the mass-orbit structure of the terrestrial planets. In the Grand Tack scenario, growth curves for Earth most closely match a Weibull model. The feeding zon...

  6. On the migration-induced resonances in a system of two planets with masses in the Earth mass range

    CERN Document Server

    Papaloizou, J C B

    2005-01-01

    We investigate orbital resonances expected to arise when a system of two planets, with masses in the range 1-4 Earth masses, undergoes convergent migration while embedded in a section of gaseous disc where the flow is laminar. We consider surface densities corresponding to 0.5-4 times that expected for a minimum mass solar nebula at 5.2 AU. Using hydrodynamic simulations we find that when the configuration is such that convergent migration occurs the planets can become locked in a first order commensurability for which the period ratio is (p+1)/p with p being an integer and migrate together maintaining it for many orbits. Relatively rapid convergent migration as tends to occur for disparate masses, results in commensurabilities with p larger than 2. However, in these cases the dynamics is found to have a stochastic character. When the convergent migration is slower, such as occurs in the equal mass case, lower p commensurabilities such as 3:2 are attained which show much greater stability. In one already know...

  7. Formation of Super-Earth Mass Planets at 125-250 AU from a Solar-type Star

    CERN Document Server

    Kenyon, S J

    2015-01-01

    We investigate pathways for the formation of icy super-Earth mass planets orbiting at 125-250 AU around a 1 solar mass star. An extensive suite of coagulation calculations demonstrates that swarms of 1 cm to 10 m planetesimals can form super-Earth mass planets on time scales of 1-3 Gyr. Collisional damping of 0.01-100 cm particles during oligarchic growth is a highlight of these simulations. In some situations, damping initiates a second runaway growth phase where 100-3000 km protoplanets grow to super-Earth sizes. Our results establish the initial conditions and physical processes required for in situ formation of super-Earth planets at large distances from the host star. For nearby dusty disks in HD 107146, HD 202628, and HD 207129, ongoing super-Earth formation at 80-150 AU could produce gaps and other structures in the debris. In the solar system, forming a putative planet X at a 1000 AU) requires a modest (very massive) protosolar nebula.

  8. Exotic Earths: Forming Habitable Worlds with Giant Planet Migration

    CERN Document Server

    Raymond, S N; Sigurdsson, S; Raymond, Sean N.; Mandell, Avi M.; Sigurdsson, Steinn

    2006-01-01

    Close-in giant planets (e.g. ``Hot Jupiters'') are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth mass planets also form interior to the migrating Jovian planet, analogous to recently-discovered ``Hot Earths''. Very water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the Habitable Zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  9. Exotic Earths: forming habitable worlds with giant planet migration.

    Science.gov (United States)

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  10. The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti

    Science.gov (United States)

    Astudillo-Defru, N.; Díaz, R. F.; Bonfils, X.; Almenara, J. M.; Delisle, J.-B.; Bouchy, F.; Delfosse, X.; Forveille, T.; Lovis, C.; Mayor, M.; Murgas, F.; Pepe, F.; Santos, N. C.; Ségransan, D.; Udry, S.; Wünsche, A.

    2017-09-01

    Exoplanet surveys have shown that systems with multiple low-mass planets on compact orbits are common. Except for a few cases, however, the masses of these planets are generally unknown. At the very end of the main sequence, host stars have the lowest mass and hence offer the largest reflect motion for a given planet. In this context, we monitored the low-mass (0.13 M⊙) M dwarf YZ Cet (GJ 54.1, HIP 5643) intensively and obtained radial velocities and stellar-activity indicators derived from spectroscopy and photometry, respectively. We find strong evidence that it is orbited by at least three planets in compact orbits (POrb = 1.97, 3.06, 4.66 days), with the inner two near a 2:3 mean-motion resonance. The minimum masses are comparable to the mass of Earth (M sin i = 0.75 ± 0.13, 0.98 ± 0.14, and 1.14 ± 0.17 M⊕), and they are also the lowest masses measured by radial velocity so far. We note the possibility for a fourth planet with an even lower mass of M sin i = 0.472 ± 0.096 M⊕ at POrb = 1.04 days. An n-body dynamical model is used to place further constraints on the system parameters. At 3.6 parsecs, YZ Cet is the nearest multi-planet system detected to date. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 180.C-0886(A), 183.C-0437(A), and 191.C-0873(A) at Cerro La Silla (Chile).Radial velocity data (Table B.4) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/L11

  11. The Mt John University Observatory Search For Earth-mass Planets In The Habitable Zone Of Alpha Centauri

    CERN Document Server

    Endl, M; Hearnshaw, J; Barnes, S I; Wittenmyer, R A; Ramm, D; Kilmartin, P; Gunn, F; Brogt, E

    2014-01-01

    The "holy grail" in planet hunting is the detection of an Earth-analog: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analog around one of the stars in the immediate solar neighborhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the alpha Centauri system using the Hercules spectrograph at the 1-m McLellan telescope at Mt John University Observatory (MJUO) in New Zealand. The goal of our project is to obtain such a large number of radial velocity measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past years, we have collected more than 45,000 spectra for both stars combined. These data are currently processed ...

  12. Evolution of Earth Like Planets

    Science.gov (United States)

    Monroy-Rodríguez, M. A.; Vega, K. M.

    2017-07-01

    In order to study and explain the evolution of our own planet we have done a review of works related to the evolution of Earth-like planets. From the stage of proto-planet to the loss of its atmosphere. The planetary formation from the gas and dust of the proto-planetary disk, considering the accretion by the process of migration, implies that the material on the proto-planet is very mixed. The newborn planet is hot and compact, it begins its process of stratification by gravity separation forming a super dense nucleus, an intermediate layer of convective mantle and an upper mantle that is less dense, with material that emerges from zones at very high pressure The surface with low pressure, in this process the planet expands and cools. This process also releases gas to the surface, forming the atmosphere, with the gas gravitationally bounded. The most important thing for the life of the planet is the layer of convective mantle, which produces the magnetic field, when it stops the magnetic field disappears, as well as the rings of van allen and the solar wind evaporates the atmosphere, accelerating the evolution and cooling of the planet. In a natural cycle of cataclysms and mass extinctions, the solar system crosses the galactic disk every 30 million years or so, the increase in the meteorite fall triggers the volcanic activity and the increase in the release of CO2 into the atmosphere reaching critical levels (4000 billion tons) leads us to an extinction by overheating that last 100 000 years, the time it takes CO2 to sediment to the ocean floor. Human activity will lead us to reach critical levels of CO2 in approximately 300 years.

  13. MOA-2012-BLG-505Lb: A Super-Earth-mass Planet That Probably Resides in the Galactic Bulge

    Science.gov (United States)

    Nagakane, M.; Sumi, T.; Koshimoto, N.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Suzuki, D.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Matsuo, T.; Muraki, Y.; Ohnishi, K.; Ranc, C.; Saito, To.; Sharan, A.; Shibai, H.; Sullivan, D. J.; Tristram, P. J.; Yamada, T.; Yonehara, A.; MOA Collaboration

    2017-07-01

    We report the discovery of a super-Earth-mass planet in the microlensing event MOA-2012-BLG-505. This event has the second shortest event timescale of t E = 10 ± 1 days where the observed data show evidence of a planetary companion. Our 15 minute high cadence survey observation schedule revealed the short subtle planetary signature. The system shows the well known close/wide degeneracy. The planet/host-star mass ratio is q = 2.1 × 10-4 and the projected separation normalized by the Einstein radius is s = 1.1 or 0.9 for the wide and close solutions, respectively. We estimate the physical parameters of the system by using a Bayesian analysis and find that the lens consists of a super-Earth with a mass of {6.7}-3.6+10.7 {M}\\oplus orbiting around a brown dwarf or late-M-dwarf host with a mass of {0.10}-0.05+0.16 {M}⊙ with a projected star-planet separation of {0.9}-0.2+0.3 {au}. The system is at a distance of 7.2 ± 1.1 kpc, i.e., it is likely to be in the Galactic bulge. The small angular Einstein radius (θ E = 0.12 ± 0.02 mas) and short event timescale are typical for a low-mass lens in the Galactic bulge. Such low-mass planetary systems in the Bulge are rare because the detection efficiency of planets in short microlensing events is relatively low. This discovery may suggest that such low-mass planetary systems are abundant in the Bulge and currently on-going high cadence survey programs will detect more such events and may reveal an abundance of such planetary systems.

  14. A Scientometric Prediction of the Discovery of the First Potentially Habitable Planet with a Mass Similar to Earth

    CERN Document Server

    Arbesman, Samuel

    2010-01-01

    The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Here we develop a novel metric of habitability for discovered planets, and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet, and highlights the the usefulness of predictive scientometric techniques to understand the pace of scientific...

  15. The stability of tightly-packed, evenly-spaced systems of Earth-mass planets orbiting a Sun-like star

    Science.gov (United States)

    Obertas, Alysa; Van Laerhoven, Christa; Tamayo, Daniel

    2017-09-01

    Many of the multi-planet systems discovered to date have been notable for their compactness, with neighbouring planets closer together than any in the Solar System. Interestingly, planet-hosting stars have a wide range of ages, suggesting that such compact systems can survive for extended periods of time. We have used numerical simulations to investigate how quickly systems go unstable in relation to the spacing between planets, focusing on hypothetical systems of Earth-mass planets on evenly-spaced orbits (in mutual Hill radii). In general, the further apart the planets are initially, the longer it takes for a pair of planets to undergo a close encounter. We recover the results of previous studies, showing a linear trend in the initial planet spacing between 3 and 8 mutual Hill radii and the logarithm of the stability time. Investigating thousands of simulations with spacings up to 13 mutual Hill radii reveals distinct modulations superimposed on this relationship in the vicinity of first and second-order mean motion resonances of adjacent and next-adjacent planets. We discuss the impact of this structure and the implications on the stability of compact multi-planet systems. Applying the outcomes of our simulations, we show that isolated systems of up to five Earth-mass planets can fit in the habitable zone of a Sun-like star without close encounters for at least 109 orbits.

  16. The NASA-UC-UH Eta-Earth program. IV. A low-mass planet orbiting an M dwarf 3.6 PC from Earth

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fischer, Debra A.; Boyajian, Tabetha S. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Muirhead, Philip S.; Becker, Juliette C. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Boulevard, Box 9501, Nashville, TN 37209 (United States); Von Braun, Kaspar [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Wright, Jason T. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Johnson, John Asher [Center for Planetary Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-10-10

    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msin i = 5.35 ± 0.75 M {sub ⊕}, orbital period P = 11.4433 ± 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ∼0.1 mmag, thus supporting the existence of the planet. We detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H and K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = –0.22, [Fe/H] = –0.32). We measure a stellar radius of 0.3863 ± 0.0021 R {sub ☉} based on interferometry from CHARA.

  17. The NASA-UC-UH Eta-Earth Program: IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth

    CERN Document Server

    Howard, Andrew W; Fischer, Debra A; Isaacson, Howard; Muirhead, Philip S; Henry, Gregory W; Boyajian, Tabetha S; von Braun, Kaspar; Becker, Juliette C; Wright, Jason T; Johnson, John Asher

    2014-01-01

    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msini = 5.35 $\\pm$ 0.75 M$_\\oplus$, orbital period P = 11.4433 $\\pm$ 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ~0.1 mmag, thus supporting the existence of the planet. We detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H & K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = -0.22, [Fe/H] = -0.32). We measure a stellar radius of 0.3863 $\\pm$ 0.0021 R$_\\odot$ based on interferometry from CHARA.

  18. The NASA-UC-UH ETA-Earth Program. IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth

    Science.gov (United States)

    Howard, Andrew W.; Marcy, Geoffrey W.; Fischer, Debra A.; Isaacson, Howard; Muirhead, Philip S.; Henry, Gregory W.; Boyajian, Tabetha S.; von Braun, Kaspar; Becker, Juliette C.; Wright, Jason T.; Johnson, John Asher

    2014-10-01

    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msin i = 5.35 ± 0.75 M ⊕, orbital period P = 11.4433 ± 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ~0.1 mmag, thus supporting the existence of the planet. We detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H & K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = -0.22, [Fe/H] = -0.32). We measure a stellar radius of 0.3863 ± 0.0021 R ⊙ based on interferometry from CHARA. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawaii, the University of California, and NASA.

  19. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to Earth.

    Directory of Open Access Journals (Sweden)

    Samuel Arbesman

    Full Text Available BACKGROUND: The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. METHODOLOGY/PRINCIPAL FINDINGS: Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. CONCLUSIONS/SIGNIFICANCE: Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

  20. The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD 20794, HD 85512, and HD 192310

    Science.gov (United States)

    Pepe, F.; Lovis, C.; Ségransan, D.; Benz, W.; Bouchy, F.; Dumusque, X.; Mayor, M.; Queloz, D.; Santos, N. C.; Udry, S.

    2011-10-01

    Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. Aims: The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Methods: Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year. For each star we recorded 50 data points spread over the observing season. The data points consist of three nightly observations with a total integration time of 10 min each and are separated by two hours. This is an observational strategy adopted to minimize stellar pulsation and granulation noise. Results: We present the first results of this ambitious program. The radial-velocity data and the orbital parameters of five new and one confirmed low-mass planets around the stars HD 20794, HD 85512, and HD 192310 are reported and discussed, among which is a system of three super-Earths and one that harbors a 3.6 M⊕-planet at the inner edge of the habitable zone. Conclusions: This result already confirms previous indications that low-mass planets seem to be very frequent around solar-type stars and that this may occur with a frequency higher than 30%. Based on observations made with the HARPS instrument on ESO's 3.6 m telescope at the La Silla Observatory in the frame of the HARPS-Upgrade GTO program ID 086.C-0230.Tables 7-9 (RV data) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A58

  1. Chemical composition of Earth-like planets

    CERN Document Server

    Ronco, M P; Marboeuf, U; Alibert, Y; de Elía, G C; Guilera, O M

    2015-01-01

    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.

  2. Citizens of Planet Earth

    DEFF Research Database (Denmark)

    Frisk, Kristian

    2015-01-01

    The inability of the nation-state system to handle contemporary environmental issues comprehensively has spurred greater cooperation between religious and secular civil society actors. An empirical analysis of the Alliance of Religions and Conservation (ARC) contributes to knowledge about this pr...... (2010a) have termed Terrapolitan Earth Religion....

  3. Earth: A Ringed Planet?

    Science.gov (United States)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  4. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Wilson, Gregory S.; Backlund, Peter W.

    1991-01-01

    The NASA program described is an international study to predict changes in the earth's environment by means of multidisciplinary remote sensing from satellites. An international consortium dedicates satellites with advanced sensors to data collection, and a data processing system is described to collect and analyze a large amount of terrestrial data. The program requires international multidisciplinary involvement to collect and interpret the data and thereby manage and preserve the global environment.

  5. The Earth: A Changing Planet

    Science.gov (United States)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    text: We describe a didactic unit that rises from our own living impression about our experience on the planet. Most of us feel the Earth to be a very static place. Rocks don't easily move and most landscapes always look the same over time. Anyone would say (the same way most scientists believed until the beginning of the last century) that our planet has always remained unchanged, never transformed. But then, all of a sudden, as a misfortune for so many humans, natural hazards appear on the scene: an earthquake causing so many disasters, a tsunami carrying away everything in its path, an eruption that can destroy huge surrounding areas but also bring new geographical relief. Science cannot remain oblivious to these events, we must wonder beyond. What does an earthquake mean? Why does it happen? What about an eruption? If it comes from the inside, what can we guess from it? Researching about all of these events, scientists have been able to arrive to some important knowledge of the planet itself: It has been possible to theorize about Earth's interior. It has also been confirmed that the planet has not always been the quiet and stable place we once thought. Continents, as Wegener supposed, do move about and the Tectonic Plates Theory, thanks to the information obtained through earthquakes and eruption, can provide some interesting explanations. But how do we know about our planet's past? How can we prove that the Earth has always been moving and that its surface changes? The Earth's rocks yield the answer. Rocks have been the only witnesses throughout millions of years, since the planet first came to existence. Let's learn how to read them… Shouldn't we realize that rocks are to Geology what books are to History? This discursive process has been distributed in four learning sequences: 1. Land is not as solid nor firm as it would seem, 2. The Earth planet: a puzzle, 3. The rocks also recycle , 4. Field trip to "Sant Miquel del Fai". The subjects take about 30

  6. An Earth-sized planet with an Earth-like density

    DEFF Research Database (Denmark)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W.

    2013-01-01

    significantly larger than the Earth. Recently, the planet Kepler-78b was discovered(8) and found to have a radius of only 1.16R(circle plus). Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth...

  7. The Search for Extrasolar Earth-like planets

    CERN Document Server

    Seager, S

    2003-01-01

    The search for extrasolar Earth-like planets is underway. Over 100 extrasolar giant planets are known to orbit nearby sun-like stars, including several in multiple-planet systems. These planetary systems are stepping stones for the search for Earth-like planets; the technology development, observational strategies, and science results can all be applied to Earth-like planets. Stars much less massive than the sun the most common stars in our Galaxy are being monitored for the gravitational influence of Earth-like planets. Although Earth-like planets orbiting sun-like stars are much more difficult to detect, space missions are being built to detect them indirectly due to their effects on the parent star and to quantify fundamental factors such as terrestrial planet frequency, size distribution, and mass distribution. Extremely ambitious space programs are being developed to directly detect Earth-like planets orbiting sun-like stars, and must tackle the immense technological challenge of blocking out the light o...

  8. Dynamical constraints on outer planets in super-Earth systems

    Science.gov (United States)

    Read, Matthew J.; Wyatt, Mark C.

    2016-03-01

    This paper considers secular interactions within multi-planet systems. In particular, we consider dynamical evolution of known planetary systems resulting from an additional hypothetical planet on an eccentric orbit. We start with an analytical study of a general two-planet system, showing that a planet on an elliptical orbit transfers all of its eccentricity to an initially circular planet if the two planets have comparable orbital angular momenta. Application to the single super-Earth system HD 38858 shows that an additional hypothetical planet below current radial velocity (RV) constraints with M sini = 3-10 M⊕, semi-major axis 1-10 au and eccentricity 0.2-0.8 is unlikely to be present from the eccentricity that would be excited in the known planet (albeit cyclically). However, additional planets in proximity to the known planet could stabilize the system against secular perturbations from outer planets. Moreover, these additional planets can have an M sini below RV sensitivity and still affect their neighbours. For example, application to the two super-Earth system 61 Vir shows that an additional hypothetical planet cannot excite high eccentricities in the known planets, unless its mass and orbit lie in a restricted area of parameter space. Inner planets in HD 38858 below RV sensitivity would also modify conclusions above about excluded parameter space. This suggests that it may be possible to infer the presence of additional stabilizing planets in systems with an eccentric outer planet and an inner planet on an otherwise suspiciously circular orbit. This reinforces the point that the full complement of planets in a system is needed to assess its dynamical state.

  9. An Earth-sized planet with an Earth-like density.

    Science.gov (United States)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  10. An Earth-sized planet with an Earth-like density

    OpenAIRE

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David Winslow; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S.; Buchhave, Lars A.; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F. M.; Gettel, Sara; Harutyunyan, Avet

    2013-01-01

    Recent analyses1–4 of data from the NASA Kepler spacecraft5 have established that planets with radii within 25 per cent of Earth’s (R⊕) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars1. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined6,7 ar...

  11. ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) - A possible expert-system based cooperative effort to hunt for planets of Earth mass and below

    CERN Document Server

    Dominik, M; Allan, A; Rattenbury, N J; Tsapras, Y; Snodgrass, C; Bode, M F; Burgdorf, M J; Fraser, S N; Kerins, E; Mottram, C J; Steele, I A; Street, R A; Wheatley, P J; Wyrzykowski, L

    2008-01-01

    (abridged) The technique of gravitational microlensing is currently unique in its ability to provide a sample of terrestrial exoplanets around both Galactic disk and bulge stars, allowing to measure their abundance and determine their distribution with respect to mass and orbital separation. In order to achieve these goals in reasonable time, a well-coordinated effort involving a network of either 2m or 4 x 1m telescopes at each site is required. It could lead to the first detection of an Earth-mass planet outside the Solar system, and even planets less massive than Earth could be discovered. From April 2008, ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) is planned to provide a platform for a three-step strategy of survey, follow-up, and anomaly monitoring. As an expert system embedded in eSTAR (e-Science Telescopes for Astronomical Research), ARTEMiS will give advice on the optimal targets to be observed at any given time, and will also alert on deviations from ordinary microlensing l...

  12. Uncovering the Chemistry of Earth-like Planets

    Science.gov (United States)

    Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.

    2015-12-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  13. The HARPS search for southern extra-solar planets XI. Super-Earths (5 & 8 M_Earth) in a 3-planet system

    CERN Document Server

    Udry, S; Delfosse, X; Forveille, T; Mayor, M; Perrier, C; Bouchy, F; Lovis, C; Pepe, F; Queloz, D; Bertaux, J -L

    2007-01-01

    This Letter reports on the detection of two super-Earth planets in the Gl581 system, already known to harbour a hot Neptune. One of the planets has a mass of 5 M_Earth and resides at the ``warm'' edge of the habitable zone of the star. It is thus the known exoplanet which most resembles our own Earth. The other planet has a 7.7 M_Earth mass and orbits at 0.25 AU from the star, close to the ``cold'' edge of the habitable zone. These two new light planets around an M3 dwarf further confirm the formerly tentative statistical trend for i) many more very low-mass planets being found around M dwarfs than around solar-type stars and ii) low-mass planets outnumbering Jovian planets around M dwarfs.

  14. Kepler Mission to Detect Earth-like Planets

    Science.gov (United States)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  15. Characterizing Earth-like Planets with Terrestrial Planet Finder

    CERN Document Server

    Seager, S; Turner, E L

    2002-01-01

    For the first time in human history the possibility of detecting and studying Earth-like planets is on the horizon. Terrestrial Planet Finder (TPF), with a launch date in the 2015 timeframe, is being planned by NASA to find and characterize planets in the habitable zones of nearby stars. The mission Darwin from ESA has similar goals. The motivation for both of these space missions is the detection and spectroscopic characterization of extrasolar terrestrial planet atmospheres. Of special interest are atmospheric biomarkers--such as O2, O3, H2O, CO and CH4--which are either indicative of life as we know it, essential to life, or can provide clues to a planet's habitability. A mission capable of measuring these spectral features would also obtain sufficient signal-to-noise to characterize other terrestrial planet properties. For example, physical characteristics such as temperature and planetary radius can be constrained from low- resolution spectra. In addition, planet characteristics such as weather, rotation...

  16. Radius and Structure models for the First Super-Earth Planet

    OpenAIRE

    Valencia, Diana; Sasselov, Dimitar D.; O'Connell, Rirchard J.

    2006-01-01

    With improving methods and surveys, the young field of extrasolar planets has recently expanded into a qualitatively new domain - terrestrial (mostly rocky) planets. The first such planets were discovered during the past year, judging by their measured masses of less than 10 Earth-masses ($M_{\\oplus}$) or Super-Earths. They are introducing a novel physical regime that has not been explored before as such planets do not exist in our Solar System. Their composition can be either completely terr...

  17. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  18. The Formation and Dynamics of Super-Earth Planets

    CERN Document Server

    Haghighipour, Nader

    2013-01-01

    Super-Earths, objects slightly larger than Earth and slightly smaller than Uranus, have found a special place in exoplanetary science. As a new class of planetary bodies, these objects have challenged models of planet formation at both ends of the spectrum and have triggered a great deal of research on the composition and interior dynamics of rocky planets in connection to their masses and radii. Being relatively easier to detect than an Earth-sized planet at 1 AU around a G star, super-Earths have become the focus of worldwide observational campaigns to search for habitable planets. With a range of masses that allows these objects to retain moderate atmospheres and perhaps even plate tectonics, super-Earths may be habitable if they maintain long-term orbits in the habitable zones of their host stars. Given that in the past two years a few such potentially habitable super-Earths have in fact been discovered, it is necessary to develop a deep understanding of the formation and dynamical evolution of these obje...

  19. Tidal effects on Earth, Planets, Sun by far visiting moons

    Science.gov (United States)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  20. Methane Planets and their Mass-Radius Relation

    CERN Document Server

    Helled, Ravit; Vos, Eran

    2015-01-01

    Knowledge of both the mass and radius of an exoplanet allows us to estimate its mean density, and therefore, its composition. Exoplanets seem to fill a very large parameter space in terms of mass and composition, and unlike the solar-system's planets, exoplanets also have intermediate masses (~5-50 M_Earth) with various densities. In this letter, we investigate the behavior of the Mass-Radius relation for methane (CH_4) planets and show that when methane planets are massive enough (M_planet > ~15 M_Earth) the methane can dissociate and lead to a differentiated planet with a carbon core, a methane envelope, and a hydrogen atmosphere. The contribution of a rocky core to the behavior of CH_4 planet is considered as well. We also develop interior models for several detected intermediate-mass planets that could, in principle, be methane/methane-rich planets. The example of methane planets emphasizes the complexity of the Mass-Radius relation and the challenge in inferring the planetary composition uniquely.

  1. Polar Views of Planet Earth.

    Science.gov (United States)

    Brochu, Michel

    1983-01-01

    In August, 1981, National Aeronautics and Space Administration launched Dynamics Explorer 1 into polar orbit equipped with three cameras built to view the Northern Lights. The cameras can photograph aurora borealis' faint light without being blinded by the earth's bright dayside. Photographs taken by the satellite are provided. (JN)

  2. International Conference and Advanced School Planet Earth

    CERN Document Server

    Jeltsch, Rolf; Pinto, Alberto; Viana, Marcelo

    2015-01-01

    The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing planetary problems and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters, and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has increased to the point where it influences the global climate, impacts the ability of the planet to feed itself and threatens the stability of these systems. Issues such as climate change, sustainability, man-made disasters, control of diseases and epidemics, management of resources, risk analysis, and global integration have come to the fore. Written...

  3. Transits of Earth-Like Planets

    CERN Document Server

    Kaltenegger, L

    2009-01-01

    Transmission spectroscopy of Earth-like exoplanets is a potential tool for habitability screening. Transiting planets are present-day "Rosetta Stones" for understanding extrasolar planets because they offer the possibility to characterize giant planet atmospheres and should provide an access to biomarkers in the atmospheres of Earth-like exoplanets, once they are detected. Using the Earth itself as a proxy we show the potential and limits of the transiting technique to detect biomarkers on an Earth-analog exoplanet in transit. We quantify the Earths cross section as a function of wavelength, and show the effect of each atmospheric species, aerosol, and Rayleigh scattering. Clouds do not significantly affect this picture because the opacity of the lower atmosphere from aerosol and Rayleigh losses dominates over cloud losses. We calculate the optimum signal-to-noise ratio for spectral features in the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star and also M stars, for a 6.5-m telesco...

  4. Positioning and applications for planet earth

    NARCIS (Netherlands)

    Verhagen, S.; Retscher, G.; Santos, M.C.; Ding, X.L.; Gao, Y.; Jin, S.G.

    2009-01-01

    GNSS, InSAR and LIDAR are identified as important techniques when it comes to monitoring and remote sensing of our planet Earth and its atmosphere. In fact, these techniques can be considered as key elements of the Global Geodetic Observing System. Examples of applications are: environmental

  5. Positioning and applications for planet earth

    NARCIS (Netherlands)

    Verhagen, S.; Retscher, G.; Santos, M.C.; Ding, X.L.; Gao, Y.; Jin, S.G.

    2009-01-01

    GNSS, InSAR and LIDAR are identified as important techniques when it comes to monitoring and remote sensing of our planet Earth and its atmosphere. In fact, these techniques can be considered as key elements of the Global Geodetic Observing System. Examples of applications are: environmental monitor

  6. How photos of planets reach the earth

    Directory of Open Access Journals (Sweden)

    C. Roos

    1983-03-01

    Full Text Available The way in which photos of planets are transmitted to the earth is discussed. Problems that may arise during transmission are mentioned and a method to detect and correct errors is discussed. This is a survey article and the aim was not to give a rigorous mathematical explanation.

  7. International Conference and Advanced School Planet Earth

    CERN Document Server

    Jeltsch, Rolf; Pinto, Alberto; Viana, Marcelo

    2015-01-01

    The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing problems of an economic and social nature and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global economic and social challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters, and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has developed highly complex systems, including economic and financial systems; the World Wide Web; frameworks for resource management, transportation, energy production and utilization; health care delivery, and social organizations. This development has increased to the point where it impacts the stability and ...

  8. Low-mass planets in nearly inviscid disks: Numerical treatment

    CERN Document Server

    Kley, Wilhelm; Kolb, Stefan M; Benitez-Llambay, Pablo; Masset, Frederic

    2012-01-01

    Embedded planets disturb the density structure of the ambient disk and gravitational back-reaction will induce possibly a change in the planet's orbital elements. The accurate determination of the forces acting on the planet requires careful numerical analysis. Recently, the validity of the often used fast orbital advection algorithm (FARGO) has been put into question, and special numerical resolution and stability requirements have been suggested. In this paper we study the process of planet-disk interaction for small mass planets of a few Earth masses, and reanalyze the numerical requirements to obtain converged and stable results. One focus lies on the applicability of the FARGO-algorithm. Additionally, we study the difference of two and three-dimensional simulations, compare global with local setups, as well as isothermal and adiabatic conditions. We study the influence of the planet on the disk through two- and three-dimensional hydrodynamical simulations. To strengthen our conclusions we perform a detai...

  9. The Magnetic Field of Planet Earth

    DEFF Research Database (Denmark)

    Hulot, G.; Finlay, Chris; Constable, C. G.

    2010-01-01

    The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks h...... yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole.......The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... observations have been made possible from space, leading to the possibility of observing the Earth’s magnetic field in much more details than was previously possible. The progressive increase in computer power was also crucial, leading to advanced ways of handling and analyzing this considerable corpus of data...

  10. Refining Mass Measurements of Kepler Planets with Keck/HIRES.

    Science.gov (United States)

    Isaacson, Howard T.; Marcy, Geoffrey W.; Howard, Andrew

    2015-12-01

    We present improved radial velocity mass measurements from Keck/HIRES for exoplanets detected by NASA’s Kepler Mission. Since Kepler’s launch 6 years ago, ~30 planetary systems have been monitored with radial velocities, resulting in measured masses for many planets between 1.0 and 4.0 Earth radii. The resulting planet masses have been used to determine the transition between planets with a rocky interior and those with a lower density interior which requiring significant H/He atmospheres. We provide updated masses and densities for those planets published in Marcy et al (2014) based on two additional observing seasons with HIRES of the Kepler field. These radial velocities also reveal non-transiting planets in systems with previously found transiting planets. One such system has a non-transiting planet with a period between two transiting planets, providing a constraint on the co-planarity of the system. Finally, we provide an updated mass-radius relation, showing the distinction between planets that must have a substantial iron-silicate interior, and those requiring significant contributions from volatiles such as hydrogen and helium.

  11. The Earth is a Planet Too!

    Science.gov (United States)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  12. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    CERN Document Server

    Marcy, Geoffrey W; Howard, Andrew W; Rowe, Jason F; Jenkins, Jon M; Bryson, Stephen T; Latham, David W; Howell, Steve B; Gautier, Thomas N; Batalha, Natalie M; Rogers, Leslie A; Ciardi, David; Fischer, Debra A; Gilliland, Ronald L; Kjeldsen, Hans; Christensen-Dalsgaard, Jørgen; Huber, Daniel; Chaplin, William J; Basu, Sarbani; Buchhave, Lars A; Quinn, Samuel N; Borucki, William J; Koch, David G; Hunter, Roger; Caldwell, Douglas A; Van Cleve, Jeffrey; Kolbl, Rea; Weiss, Lauren M; Petigura, Erik; Seager, Sara; Morton, Timothy; Johnson, John Asher; Ballard, Sarah; Burke, Chris; Cochran, William D; Endl, Michael; MacQueen, Phillip; Everett, Mark E; Lissauer, Jack J; Ford, Eric B; Torres, Guillermo; Fressin, Francois; Brown, Timothy M; Steffen, Jason H; Charbonneau, David; Basri, Gibor S; Sasselov, Dimitar D; Winn, Joshua; Sanchis-Ojeda, Roberto; Christiansen, Jessie; Adams, Elisabeth; Henze, Christopher; Dupree, Andrea; Fabrycky, Daniel C; Fortney, Jonathan J; Tarter, Jill; Holman, Matthew J; Tenenbaum, Peter; Shporer, Avi; Lucas, Philip W; Welsh, William F; Orosz, Jerome A; Bedding, T R; Campante, T L; Davies, G R; Elsworth, Y; Handberg, R; Hekker, S; Karoff, C; Kawaler, S D; Lund, M N; Lundkvist, M; Metcalfe, T S; Miglio, A; Aguirre, V Silva; Stello, D; White, T R; Boss, Alan; Devore, Edna; Gould, Alan; Prsa, Andrej; Agol, Eric; Barclay, Thomas; Coughlin, Jeff; Brugamyer, Erik; Mullally, Fergal; Quintana, Elisa V; Still, Martin; hompson, Susan E; Morrison, David; Twicken, Joseph D; Désert, Jean-Michel; Carter, Josh; Crepp, Justin R; Hébrard, Guillaume; Santerne, Alexandre; Moutou, Claire; Sobeck, Charlie; Hudgins, Douglas; Haas, Michael R; Robertson, Paul; Lillo-Box, Jorge; Barrado, David

    2014-01-01

    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities for all of the transiting planets (41 of 42 have a false-positive probability under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than 3X the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify 6 planets with densities above 5 g/cc, suggesting a mostly rocky interior f...

  13. Dynamical Constraints on Outer Planets in Super-Earth Systems

    OpenAIRE

    Read, Matthew J.; Wyatt, Mark C.

    2015-01-01

    This paper considers secular interactions within multi-planet systems. In particular we consider dynamical evolution of known planetary systems resulting from an additional hypothetical planet on an eccentric orbit. We start with an analytical study of a general two-planet system, showing that a planet on an elliptical orbit transfers all of its eccentricity to an initially circular planet if the two planets have comparable orbital angular momenta. Application to the single Super-Earth system...

  14. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, Gijs D.; Pascucci, Ilaria [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Apai, Dániel [Department of Astronomy, The University of Arizona, Tucson, AZ 85721, USA. (United States)

    2015-01-10

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.

  15. Atmospheric tides in Earth-like planets

    CERN Document Server

    Auclair-Desrotour, Pierre; Mathis, Stéphane

    2016-01-01

    Atmospheric tides can strongly affect the rotational dynamics of planets. In the family of Earth-like planets, such as Venus, this physical mechanism coupled with solid tides makes the angular velocity evolve over long timescales and determines the equilibrium configurations of their spin. Contrary to the solid core, the atmosphere is submitted to both tidal gravitational potential and insolation flux coming from the star. The complex response of the gas is intrinsically linked to its physical properties. This dependence has to be characterized and quantified to study the large variety of extrasolar planetary systems. We develop a theoretical global model where radiative losses, which are predominant in slowly rotating atmospheres, are taken into account. We analytically compute the tidal perturbation of pressure, density, temperature and velocity field from which we deduce the expressions of atmospheric Love numbers and tidal torque exerted by the star. The dynamics of atmospheric tides depends on the freque...

  16. Mathematical models and methods for planet Earth

    CERN Document Server

    Locatelli, Ugo; Ruggeri, Tommaso; Strickland, Elisabetta

    2014-01-01

    In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.

  17. A rocky planet transiting a nearby low-mass star

    Science.gov (United States)

    Berta-Thompson, Zachory K.; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R.; Dittmann, Jason; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michael; Jehin, Emmanuel; Stark, Antony; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christoph; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno; Udry, Stéphane; Wunsche, Anael

    2015-12-01

    Results from Kepler indicate that M dwarfs host, on average, at least 1.4 planets between 0.5 and 1.5 Earth radii per star. Yet, the closest small planets known to transit M dwarfs have been too distant to allow Doppler measurements of their masses or spectroscopic studies of their atmospheres. Here, we announce a new planet discovered by the MEarth-South observatory, an Earth-size planet transiting an M dwarf that is only 12 pc away. The density of the planet, determined from radial velocity observations with HARPS, is consistent with an Earth-like rock/iron composition. With an equilibrium temperature of 530K (assuming a Bond albedo of 0.3), this planet is cooler than most other rocky planets with measured densities. Although too hot to be habitable, it is cool enough that it may have retained a substantial atmosphere over its lifetime. Thanks to the star's proximity and its diminutive size of only 1/5th the radius of the Sun, this new world likely provides the first opportunity for our community to spectroscopically examine the atmosphere of a terrestrial exoplanet. We estimate that JWST could secure high signal-to-noise spectra of the planet's atmosphere, both in transmission during transit and in emission at secondary eclipse.

  18. Atmospheric Mass Loss During Planet Formation

    CERN Document Server

    Schlichting, Hilke; Yalinewich, Almog

    2014-01-01

    We quantify the atmospheric mass loss during planet formation by examining the contributions to atmospheric loss from both giant impacts and planetesimal accretion. Giant impacts cause global motion of the ground. Using analytic self-similar solutions and full numerical integrations we find (for isothermal atmospheres with adiabatic index ($\\gamma=5/3$) that the local atmospheric mass loss fraction for ground velocities $v_g \\sqrt{2} \\rho_0 (\\pi h R)^{3/2}$ (25~km for the current Earth), are able to eject all the atmosphere above the tangent plane of the impact site, which is $h/2R$ of the whole atmosphere, where $h$, $R$ and $\\rho_0$ are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 2) Smaller impactors, but above $m>4 \\pi \\rho_0 h^3$ (1~km for the current Earth) are only able to eject a fraction of the atmospheric mass above the tangent plane. We find that the most efficient impactors (per unit impactor mass) for atmospheric loss are planetesimals just above...

  19. A rocky planet transiting a nearby low-mass star

    CERN Document Server

    Berta-Thompson, Zachory K; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-01-01

    M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun -- are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the plane...

  20. An extrasolar planetary system with three Neptune-mass planets.

    Science.gov (United States)

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  1. Atmospheric tides in Earth-like planets

    Science.gov (United States)

    Auclair-Desrotour, P.; Laskar, J.; Mathis, S.

    2017-07-01

    Context. Atmospheric tides can strongly affect the rotational dynamics of planets. In the family of Earth-like planets, which includes Venus, this physical mechanism coupled with solid tides makes the angular velocity evolve over long timescales and determines the equilibrium configurations of their spin. Aims: Unlike the solid core, the atmosphere of a planet is subject to both tidal gravitational potential and insolation flux coming from the star. The complex response of the gas is intrinsically linked to its physical properties. This dependence has to be characterized and quantified for application to the wide variety of extrasolar planetary systems. Methods: We develop a theoretical global model where radiative losses, which are predominant in slowly rotating atmospheres, are taken into account. We analytically compute the perturbation of pressure, density, temperature, and velocity field caused by a thermogravitational tidal perturbation. From these quantities, we deduce the expressions of atmospheric Love numbers and tidal torque exerted on the fluid shell by the star. The equations are written for the general case of a thick envelope and the simplified one of a thin isothermal atmosphere. Results: The dynamics of atmospheric tides depends on the frequency regime of the tidal perturbation: the thermal regime near synchronization and the dynamical regime characterizing fast-rotating planets. Gravitational and thermal perturbations imply different responses of the fluid, i.e. gravitational tides and thermal tides, which are clearly identified. The dependence of the torque on the tidal frequency is quantified using the analytic expressions of the model for Earth-like and Venus-like exoplanets and is in good agreement with the results given by global climate models (GCM) simulations.Introducing dissipative processes such as radiation regularizes the tidal response of the atmosphere, otherwise it is singular at synchronization. Conclusions: We demonstrate the

  2. Nicolaus Copernicus - Making the Earth a Planet

    Science.gov (United States)

    Gingerich, Owen; MacLachlan, James

    2005-06-01

    Born in Poland in 1473, Nicolaus Copernicus launched a quiet revolution. No scientist so radically transformed our understanding of our place in the universe as this curious bishop's doctor and church official. In his quest to discover a beautiful and coherent system to describe the motions of the planets, Copernicus placed the sun in the center of the system and made the earth a planet traveling around the sun. Today it is hard to imagine our solar system any other way, but for his time Copernicus's idea was earthshaking. In 1616 the church banned his book Revolutions because it contradicted the accepted notion that God placed Earth in the center of the universe. Even though those who knew of his work considered his idea dangerous, Revolutions remained of interest only to other scientists for many years. It took almost two hundred years for his concept of a sun-centered system to reach the general public. None the less, what Copernicus set out in his remarkable text truly revolutionized science. For this, Copernicus, a quiet doctor who made a tremendous leap of imagination, is considered the father of the Scientific Revolution.

  3. Mass Extinctions in Earth's History

    Science.gov (United States)

    Ward, P. D.

    2002-12-01

    Mass extinctions are short intervals of elevated species death. Possible causes of Earth's mass extinctions are both external (astronomical) and internal (tectonic and biotic changes from planetary mechanisms). Paleontologists have identified five "major" mass extinctions (>50 die-off in less than a million years) and more than 20 other minor events over the past 550 million years. Earlier major extinction events undoubtedly also occurred, but we have no fossil record; these were probably associated with, for example, the early heavy bombardment that cleared out the solar system, the advent of oxygen in the atmosphere, and various "snowball Earth" events. Mass extinctions are viewed as both destructive (species death ) and constructive, in that they allow evolutionary innovation in the wake of species disappearances. From an astrobiological perspective, mass extinctions must be considered as able both to reduce biodiversity and even potentially end life on any planet. Of the five major mass extinctions identified on Earth, only one (the Cretaceous/Tertiary event 65 million years ago that famously killed off the dinosaurs ) is unambiguously related to the impact of an asteroid or comet ( 10-km diameter). The Permian/Triassic (250 Myr ago) and Triassic/Jurassic (202 Myr ago) events are now the center of debate between those favoring impact and those suggesting large volume flooding by basaltic lavas. The final two events, Ordovician (440 Myr ago) and Devonian (370 Myr ago) have no accepted causal mechanisms.

  4. The Heavy Element Masses of Extrasolar Giant Planets, Revealed

    CERN Document Server

    Miller, Neil

    2011-01-01

    We investigate a population of transiting planets that receive relatively modest stellar insolation and for which the heating mechanism that inflates hot Jupiters does not appear to be significantly active. Using the observed transit radius as a constraint and assuming that the unknown heating mechanism is not a heating source, we use structure and thermal evolution models to infer the amount of heavy elements within each of these planets. There is a correlation between the stellar metallicity and the mass of heavy elements in its transiting planet(s). It appears that all giant planets posses a minimum of $\\sim$ 10-15 Earth masses of heavy elements, with planets around metal-rich stars having larger heavy element masses. This relationship provides an important constraint on planet formation and planetesimal accretion, and suggests large amounts of heavy elements within planetary H/He envelopes. We suggest that the observed correlation can soon also be applied to inflated planets, such that the interior heavy ...

  5. Accurate, Empirical Radii and Masses of Planets with Gaia Parallaxes

    CERN Document Server

    Stassun, Keivan G; Gaudi, B Scott

    2016-01-01

    We present new, empirical measurements of the radii of 132 stars that host transiting planets. These stellar radii are determined using only direct observables---the bolometric flux at Earth, the stellar effective temperature, and the parallax newly provided by the Gaia first data release---and thus are virtually model independent, extinction being the only free parameter. We also determine each star's mass using our newly determined radius and the stellar density, itself a virtually model independent quantity from the previously published transit analysis. The newly determined stellar radii and masses are in turn used to re-determine the transiting planet radii and masses, once again using only direct observables. The uncertainties on the stellar radii and masses are typically 7% and 25%, respectively, and the resulting uncertainties on the planet radii and masses are 8% and 20%, respectively. These accuracies are generally larger than the previously published model-dependent precisions of 5% and 6% on the p...

  6. An Earth-sized planet with an Earth-like density

    CERN Document Server

    Pepe, Francesco; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-01-01

    Kepler-78 (KIC 8435766) was identified by Sanchis-Ojeda et al. (2013) as harbouring a transiting planet of 1.16 times the size of the Earth and an orbital period of only 8.5 hours. While the exquisite Kepler photometry was able to determine its radius and period, the mass of the planet (and thus its mean density) remained unconstrained in the absence of precise radial-velocity measurements. Here we present an accurate mass measurement of Kepler-78b using the HARPS-N spectrograph, recently installed on the Telescopio Nazionale Galileo (INAF) at the Roque de los Muchachos Observatory, La Palma, Spain. These new data yield a mass of 1.86 Earth masses. The resulting mean density of the planet is 5.57 grams per cubic centimetre, which is similar to that of the Earth and implies a composition of iron and rock. Kepler-78b, which orbits a Sun-like star called Kepler 78 located in the Cygnus constellation at a distance of about 400 light years from us, is now the smallest exoplanet for which both the mass and radius a...

  7. Geodynamics and Rate of Volcanism on Massive Earth-like Planets

    CERN Document Server

    Kite, Edwin S; Gaidos, Eric

    2008-01-01

    We provide estimates of volcanism versus time for planets with Earth-like composition and masses from 0.25 to 25 times Earth, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. Here we show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets can have higher rates of melting than their plate tectonic counterparts early in their thermal evolution, but melting shuts down after a few Gyr; (4) plate tectonics may not operate on high mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessa...

  8. Disk Accretion Onto High-Mass Planets

    CERN Document Server

    Lubow, S H; Artymowicz, P

    1999-01-01

    We analyze the nonlinear, two-dimensional response of a gaseous, viscous protoplanetary disk to the presence of a planet of one Jupiter mass (1 M_J) and greater that orbits a 1 solar mass star by using the ZEUS hydrodynamics code with high resolution near the planet's Roche lobe. The planet is assumed to be in a circular orbit about the central star and is not allowed to migrate. A gap is formed about the orbit of the planet, but there is a nonaxisymmetric flow through the gap and onto the planet. The gap partitions the disk into an inner (outer) disk that extends inside (outside) the planet's orbit. For a 1 M_J planet and typical disk parameters, the accretion through the gap onto the planet is highly efficient. For typical disk parameters, the mass doubling time scale is less than 10^5 years, considerably shorter than the disk lifetime. Following shocks near the L1 and L2 Lagrange points, disk material enters the Roche lobe in the form of two gas streams. Shocks occur within the Roche lobe as the gas stream...

  9. Earthlearningidea for the International Year of the Planet Earth

    Science.gov (United States)

    King, Chris; Kennett, Peter; Devon, Elizabeth

    2007-01-01

    Earthlearningidea will use the opportunity of the International Year of Planet Earth (2008) to publish on the internet a new Earthlearningidea each week for use in classrooms that have few resources. The International Year of Planet Earth (IYPE) was proclaimed by the United Nations for 2008, with the activities extending from 2007-2009. IYPE has a…

  10. A rocky planet transiting a nearby low-mass star.

    Science.gov (United States)

    Berta-Thompson, Zachory K; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-11-12

    M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.

  11. Prevalence of Earth-size Planets Orbiting Sun-like Stars

    Science.gov (United States)

    Petigura, Erik Ardeshir

    2015-04-01

    In this thesis, I explore two topics in exoplanet science. The first is the prevalence of Earth-size planets in the Milky Way Galaxy. To determine the occurrence of planets having different sizes, orbital periods, and other properties, I conducted a survey of extrasolar planets using data collected by NASA's Kepler Space Telescope. This project involved writing new algorithms to analyze Kepler data, finding planets, and conducting follow-up work using ground-based telescopes. I found that most stars have at least one planet at or within Earth's orbit and that 26% of Sun-like stars have an Earth-size planet with an orbital period of 100 days or less. The second topic is the connection between the properties of planets and their host stars. The precise characterization of exoplanet hosts helps to bring planet properties like mass, size, and equilibrium temperature into sharper focus and probes the physical processes that form planets. I studied the abundance of carbon and oxygen in over 1000 nearby stars using optical spectra taken by the California Planet Search. I found a large range in the relative abundance of carbon and oxygen in this sample, including a handful of carbon-rich stars. I also developed a new technique called SpecMatch for extracting fundamental stellar parameters from optical spectra. SpecMatch is particularly applicable to the relatively faint planet-hosting stars discovered by Kepler.

  12. Terrestrial planets and water delivery around low-mass stars

    Science.gov (United States)

    Dugaro, A.; de Elía, G. C.; Brunini, A.; Guilera, O. M.

    2016-11-01

    Context. Theoretical and observational studies suggest that protoplanetary disks with a wide range of masses could be found around low-mass stars. Aims: We analyze planetary formation processes in systems without gas giants around M3- and M0-type stars of 0.29 M⊙ and 0.5 M⊙, respectively. In particular, we assume disks with masses of 5% and 10% of the mass of the star. Our study focuses on the formation of terrestrial-like planets and water delivery in the habitable zone (HZ). Methods: First, we use a semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Then, a N-body code is used to analyze the last giant impact phase after the gas dissipation. Results: For M3-type stars, five planets with different properties are formed in the HZ. These planets have masses of 0.072 M⊕, 0.13 M⊕ (two of them), and 1.03 M⊕, and have water contents of 5.9%, 16.7%, 28.6%, and 60.6% by mass, respectively. Then, the fifth planet formed in the HZ is a dry world with 0.138 M⊕. For M0-type stars, four planets are produced in the HZ with masses of 0.28 M⊕, 0.51 M⊕, 0.72 M⊕, and 1.42 M⊕, and they have water contents of 26.7%, 45.8%, 68%, and 50.5% by mass, respectively. Conclusions: M3- and M0-type stars represent targets of interest for the search of exoplanets in the HZ. In fact, the Mars-mass planets formed around M3-type stars could maintain habitable conditions in their early histories. Thus, the search for candidates around young M3-type stars could lead to the detection of planets analogous to early Mars. Moreover, Earth-mass planets should also be discovered around M3-type stars and, sub- and super-Earths should be detected around M0-type stars. Such planets are very interesting since they could maintain habitable conditions for very long.

  13. Extrasolar Giant Planet in Earth-like Orbit

    Science.gov (United States)

    1999-07-01

    companion . iota Hor b has an orbital period of 320 days. From this period, the known mass of the central star (1.03 solar masses) and the amplitude of the velocity changes, a mass of at least 2.26 times that of planet Jupiter is deduced for the planet. It revolves around the host star in a somewhat elongated orbit (the eccentricity is 0.16). If it were located in our own solar system, this orbit would stretch from just outside the orbit of Venus (at 117 million km or 0.78 Astronomical Units from the Sun) to just outside the orbit of the Earth (the point farthest from the Sun, at 162 million km or 1.08 Astronomical Units) The new giant planet is thus moving in an orbit not unlike that of the Earth. In fact, of all the planets discovered so far, the orbit of iota Hor b is the most Earth-like. Also, with a spectral type of G0 V , its host star is quite similar to the Sun (G2 V). iota Hor b is, however, at least 720 times more massive than the Earth and it is probably more similar to planet Jupiter in our own solar system. While the radial velocity technique described above only determines a minimum value for the planet's mass, an analysis of the velocity with which the star turns around its own axis suggests that the true mass of iota Hor b is unlikely to be much higher. A difficult case Natural phenomena with periods near one solar year always present a particular challenge to astronomers. This is one of the reasons why it has been necessary to observe the iota Hor system for such a long time to be absolutely sure about the present result. First, special care must be taken to verify that the radial velocity variations found in the data are not an artefact of the Earth's movement around the Sun. In any case, the effect of this movement on the measurements must be accurately accounted for; it reaches about ± 30 km/sec over one year, i.e. much larger than the effect of the new planet. In the present case of iota Hor , this was thoroughly tested and any residual influence of

  14. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  15. The Search for other Earths: limits on the giant planet orbits that allow habitable terrestrial planets to form

    OpenAIRE

    Raymond, Sean N.

    2006-01-01

    Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the late stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor potentially habitable, Earth-like planets. We present results of 460 N-body simulations of terrestrial a...

  16. Migration of Earth-size planets in 3D radiative discs

    CERN Document Server

    Lega, E; Bitsch, B; Morbidelli, A

    2014-01-01

    In this paper, we address the migration of small mass planets in 3D radiative disks. Indeed, migration of small planets is known to be too fast inwards in locally isothermal conditions. However, thermal effects could reverse its direction, potentially saving planets in the inner, optically thick parts of the protoplanetary disc. This effect has been seen for masses larger than 5 Earth masses, but the minimum mass for this to happen has never been probed numerically, although it is of crucial importance for planet formation scenarios. We have extended the hydro-dynamical code FARGO to 3D, with thermal diffusion. With this code, we perform simulations of embedded planets down to 2 Earth masses. For a set of discs parameters for which outward migration has been shown in the range of $[5, 35]$ Earth masses, we find that the transition to inward migration occurs for masses in the range $[3, 5]$ Earth masses. The transition appears to be due to an unexpected phenomenon: the formation of an asymmetric cold and dense...

  17. On the equilibrium rotation of Earth-like extra-solar planets

    CERN Document Server

    Correia, Alexandre C M; Laskar, Jacques

    2008-01-01

    The equilibrium rotation of tidally evolved "Earth-like" extra-solar planets is often assumed to be synchronous with their orbital mean motion. The same assumption persisted for Mercury and Venus until radar observations revealed their true spin rates. As many of these planets follow eccentric orbits and are believed to host dense atmospheres, we expect the equilibrium rotation to differ from the synchronous motion. Here we provide a general description of the allowed final equilibrium rotation states of these planets, and apply this to already discovered cases in which the mass is lower than twelve Earth-masses. At low obliquity and moderate eccentricity, it is shown that there are at most four distinct equilibrium possibilities, one of which can be retrograde. Because most presently known "Earth-like" planets present eccentric orbits, their equilibrium rotation is unlikely to be synchronous.

  18. A decreased probability of habitable planet formation around low-mass stars

    CERN Document Server

    Raymond, Sean N; Meadows, Victoria

    2007-01-01

    Smaller terrestrial planets ( 0.3 Earth mass habitable planets decreases for low-mass stars for every realistic combination of parameters. This "habitable fraction" is small for stellar masses below a mass in the interval 0.5 to 0.8 Solar masses, depending on disk parameters, an interval that excludes most M stars. Radial mixing and therefore water delivery are inefficient in lower-mass disks commonly found around low-mass stars, such that terrestrial planets in the habitable zones of most low-mass stars are likely to be small and dry.

  19. Mass-Radius Relation for Rocky Planets based on PREM

    CERN Document Server

    Zeng, Li; Jacobsen, Stein

    2015-01-01

    Several small dense exoplanets are now known, inviting comparisons to Earth and Venus. Such comparisons require translating their masses and sizes to composition models of evolved multi-layer-interior planets. Such theoretical models rely on our understanding of the Earth's interior, as well as independently derived equations of state (EOS), but have so far not involved direct extrapolations from Earth's seismic model -PREM. In order to facilitate more detailed compositional comparisons between small exoplanets and the Earth, we derive here a semi-empirical mass-radius relation for two-layer rocky planets based on PREM: ${\\frac{R}{R_\\oplus}} = (1.07-0.21\\cdot \\text{CMF})\\cdot (\\frac{M}{M_\\oplus})^{1/3.7}$, where CMF stands for Core Mass Fraction. It is applicable to 1$\\sim$8 M$_{\\oplus}$ and CMF of 0.0$\\sim$0.4. Applying this formula to Earth and Venus and several known small exoplanets with radii and masses measured to better than $\\sim$30\\% precision gives a CMF fit of $0.26\\pm0.07$.

  20. Dynamical Constraints on Outer Planets in Super-Earth Systems

    CERN Document Server

    Read, Matthew J

    2015-01-01

    This paper considers secular interactions within multi-planet systems. In particular we consider dynamical evolution of known planetary systems resulting from an additional hypothetical planet on an eccentric orbit. We start with an analytical study of a general two-planet system, showing that a planet on an elliptical orbit transfers all of its eccentricity to an initially circular planet if the two planets have comparable orbital angular momenta. Application to the single Super-Earth system HD38858 shows that an additional hypothetical planet below current radial velocity (RV) constraints with {\\textit{Msini}}=3-10M$_\\oplus$, semi-major axis 1-10au and eccentricity 0.2-0.8 is unlikely to be present from the eccentricity that would be excited in the known planet (albeit cyclically). However, additional planets in proximity to the known planet could stabilise the system against secular perturbations from outer planets. Moreover these additional planets can have an {\\textit{Msini}} below RV sensitivity and sti...

  1. Earth-type planets (Mercury, Venus, and Mars)

    Science.gov (United States)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  2. UN declares 2008 "International Year of Planet Earth"

    Institute of Scientific and Technical Information of China (English)

    Ted Nield

    2006-01-01

    @@ The United Nations General Assembly meeting in New York has proclaimed the year 2008 to be the United Nations International Year of Planet Earth. The Year's activities will span the three years 2007-2009.

  3. Earth-type planets (Mercury, Venus, and Mars)

    Science.gov (United States)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  4. Prevalence of Earth-size Planets Orbiting Sun-like Stars

    CERN Document Server

    Petigura, Erik Ardeshir

    2015-01-01

    In this thesis, I explore two topics in exoplanet science. The first is the prevalence of Earth-size planets in the Milky Way Galaxy. To determine the occurrence of planets having different sizes, orbital periods, and other properties, I conducted a survey of extrasolar planets using data collected by NASA's Kepler Space Telescope. This project involved writing new algorithms to analyze Kepler data, finding planets, and conducting follow-up work using ground-based telescopes. I found that most stars have at least one planet at or within Earth's orbit and that 26% of Sun-like stars have an Earth-size planet with an orbital period of 100 days or less. The second topic is the connection between the properties of planets and their host stars. The precise characterization of exoplanet hosts helps to bring planet properties like mass, size, and equilibrium temperature into sharper focus and probes the physical processes that form planets. I studied the abundance of carbon and oxygen in over 1000 nearby stars using ...

  5. The search for life on Earth and other planets.

    Science.gov (United States)

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.

  6. Our Mission to Planet Earth: A guide to teaching Earth system science

    Science.gov (United States)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  7. The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters

    CERN Document Server

    Howard, Andrew W; Johnson, John Asher; Fischer, Debra A; Wright, Jason T; Isaacson, Howard; Valenti, Jeff A; Anderson, Jay; Lin, Doug N C; Ida, Shigeru; 10.1126/science.1194854

    2010-01-01

    The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days) based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power law mass distribution fitted to our measurements, df/dlogM = 0.39M^-0.48, predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.

  8. The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters.

    Science.gov (United States)

    Howard, Andrew W; Marcy, Geoffrey W; Johnson, John Asher; Fischer, Debra A; Wright, Jason T; Isaacson, Howard; Valenti, Jeff A; Anderson, Jay; Lin, Doug N C; Ida, Shigeru

    2010-10-29

    The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days), based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power-law mass distribution fitted to our measurements, df/dlogM = 0.39 M(-0.48), predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.

  9. Planet Host Stars: Mass, Age and Kinematics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We determine the mass, age and kinematics of 51 extra-solar planet host stars. The results are then used to search for signs of connection of the data with metallicity and to investigate the population nature. We find that the increase in mean metallicity with stellar mass is similar to that in normal field stars, so it seems unsuitable to use this relation as a constraint on the theory of planet formation. The age and kinematic distributions seem to favour the metallicity of extra-solar planet host stars being initial. Although the kinematic data of these stars indicate their origin from two populations - the thin and the thick disks, kinematics may not help in the maintenance of the planet around the host. Stars with planets, brown dwarfs or stellar companions are sorted into three groups and re-investigated separately for their formation mechanism. The main results indicate that stars with M2 < 25MJ have [Fe/H] > -0.1 and a wide period range, but there are no other differences.Thus, there does not seem to be any physically distinguishable characteristics among the three star groups.

  10. Mass-Radius Relation for Rocky Planets Based on PREM

    Science.gov (United States)

    Zeng, Li; Sasselov, Dimitar D.; Jacobsen, Stein B.

    2016-03-01

    Several small dense exoplanets are now known, inviting comparisons to Earth and Venus. Such comparisons require translating their masses and sizes to composition models of evolved multi-layer interior planets. Such theoretical models rely on our understanding of the Earth’s interior, as well as independently derived equations of state, but so far have not involved direct extrapolations from Earth’s seismic model: the Preliminary Reference Earth Model (PREM). To facilitate more detailed compositional comparisons between small exoplanets and the Earth, we derive here a semi-empirical mass-radius relation for two-layer rocky planets based on PREM, \\frac{R}{{R}\\oplus }=(1.07-0.21\\cdot {CMF})\\cdot {≤ft(\\frac{M}{{M}\\oplus }\\right)}1/3.7, where CMF stands for core mass fraction. It is applicable to 1 ˜ 8 M⊕ and a CMF of 0.0 ˜ 0.4. Applying this formula to Earth and Venus and several known small exoplanets with radii and masses measured to better than ˜30% precision gives a CMF fit of 0.26 ± 0.07.

  11. Climate Stability of Habitable Earth-like Planets

    CERN Document Server

    Menou, Kristen

    2014-01-01

    The carbon-silicate cycle regulates the atmospheric $CO_2$ content of terrestrial planets on geological timescales through a balance between the rates of $CO_2$ volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric $CO_2$ content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.

  12. Climate stability of habitable Earth-like planets

    Science.gov (United States)

    Menou, Kristen

    2015-11-01

    The carbon-silicate cycle regulates the atmospheric CO2 content of terrestrial planets on geological timescales through a balance between the rates of CO2 volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric CO2 content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.

  13. A Google Earth Grand Tour of the Terrestrial Planets

    Science.gov (United States)

    De Paor, Declan; Coba, Filis; Burgin, Stephen

    2016-01-01

    Google Earth is a powerful instructional resource for geoscience education. We have extended the virtual globe to include all terrestrial planets. Downloadable Keyhole Markup Language (KML) files (Google Earth's scripting language) associated with this paper include lessons about Mercury, Venus, the Moon, and Mars. We created "grand…

  14. A Google Earth Grand Tour of the Terrestrial Planets

    Science.gov (United States)

    De Paor, Declan; Coba, Filis; Burgin, Stephen

    2016-01-01

    Google Earth is a powerful instructional resource for geoscience education. We have extended the virtual globe to include all terrestrial planets. Downloadable Keyhole Markup Language (KML) files (Google Earth's scripting language) associated with this paper include lessons about Mercury, Venus, the Moon, and Mars. We created "grand…

  15. Eyes on Planet Earth! Exploring Your Local Watershed

    Science.gov (United States)

    Smith, Michael J.; Southard, John B.

    2003-01-01

    The American Geological Institute is helping teachers and geoscientists to emphasize the importance of inquiry and active investigation of the world around by selecting "Eyes on Planet Earth: Monitoring Our Changing World" as the theme of this year's Earth Science Week. The activity on the back of this month's poster insert, "Monitoring the…

  16. Using Dynamical Models to Predict the Terrestrial-Mass Free-Floating Planet Population

    Science.gov (United States)

    Barclay, Thomas; Quintana, Elisa V.

    2016-10-01

    In the classical picture of planet formation, planets form within circumstellar disks as a product of star formation. The material in the disk either forms into a planet, remains bound to the star, falls into the star, or is ejected from the system. We explore the properties of this ejected material using N-body simulations of the late stages of terrestrial planet formation. We find that in planetary systems like ours (with Jupiter and Saturn) about half the ejected material is in bodies less massive than the Moon and half is in bodies more massive than Mars. No planets more massive than half an Earth-mass, however, were ejected, primarily because most of the ejections occur before the timescales needed to grow an Earth-mass body. Without giant planets present in the system, very little material is ever ejected. We predict that future space-borne microlensing searches for free-floating terrestrial-mass planets, such as WFIRST, will discover large numbers of Mars-mass planets but will not make significant detections of Earth-mass planets.

  17. Un-Earth-like interiors of the Earth-like planets

    Science.gov (United States)

    Shim, S. H. D.; Nisr, C.; Pagano, M.; Chen, H.; Ko, B.; Noble, S.; Leinenweber, K. D.; Young, P.; Desch, S. J.

    2015-12-01

    A number of exoplanets have been described as "Earth-like" planets (or even exo-earths) based on the mass-radius relations. Yet, significant variations have been documented in elemental abundances of planet-hosting stars, which will result in very different structures and processes in the interiors of rocky exoplanets. Recent data suggest that the Mg/Si ratio can be as small as less than 1 and as large as more than 2, opening the possibilities for the upper mantles to be dominated by pyroxene and olivine, respectively, and the lower mantles to be dominated by bridgmanite and ferropericlase, respectively. The changes in mineralogy will alter key properties, such as discontinuity structures (and therefore scale of mantle mixing), viscosity, and volatiles storage, of the mantle. Partial melting of such mantles would result in different compositions of the crusts, affecting the tectonics. However, the prediction should be made carefully because oxygen fugacity and contents of volatiles can change the mineralogy even for the same bulk composition. In extremely reducing proto-planetary disks, carbides will form instead of oxides and silicates, and become main constituents of planets in the system. Because carbides have high thermal conductivity and low thermal expansivity, internal heat transport of such planets may be dominated by conduction and mantle mixing would be much more limited than that of the Earth. However, the behaviors and properties of carbides need to be understood better at high pressure and high temperature. Some rocky exoplanets may have very thick layers of water and other icy materials. Interactions between ice (or fluid) and rock at extreme conditions would be the key to understand dynamics and habitability of such exoplanets.

  18. Temperate Earth-sized planets transiting a nearby ultracool dwarf star.

    Science.gov (United States)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-12

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them--ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  19. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    Science.gov (United States)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2017-01-01

    Stellar-like objects with effective temperatures of 2700K and below are referred to as “ultracool dwarfs”1. This heterogeneous group includes both extremely low-mass stars and brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15% of the stellar-like objects in the vicinity of the Sun2. Based on the small masses and sizes of their protoplanetary disks3,4, core-accretion theory for ultracool dwarfs predicts a large, but heretofore undetected population of close-in terrestrial planets5, ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich Earth-sized planets7. Here we report the discovery of three short-period Earth-sized planets transiting an ultracool dwarf star 12 parsecs away using data collected by the TRAPPIST8 telescope as part of an ongoing prototype transit survey9. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star10. Eleven orbits remain possible for the third planet based on our data, the most likely resulting in an irradiation significantly smaller than Earth's. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system. PMID:27135924

  20. Two Earth-sized planets orbiting Kepler-20.

    Science.gov (United States)

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  1. Planet Earth: Can Other Planets Tell Us Where We Are Going?

    Science.gov (United States)

    Cherif, Abour H.; Adams, Gerald E.

    1994-01-01

    Makes comparisons between the Earth and other planets to suggest a possible vehicle for predicting the effects of human-made or natural disasters on our Earth. Also included are brief discussions of the following topics: (1) the atmosphere and greenhouse effect; (2) alterations of the biosphere; (3) climate and climatic change; (4) the water…

  2. Two Earth-sized planets orbiting Kepler-20

    CERN Document Server

    Fressin, Francois; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Desert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew W; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-01-01

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R Earth), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth (0.87R Earth), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative...

  3. How Do Earth-Sized, Short-Period Planets Form?

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Matching theory to observation often requires creative detective work. In a new study, scientists have used a clever test to reveal clues about the birth of speedy, Earth-sized planets.Former Hot Jupiters?Artists impression of a hot Jupiter with an evaporating atmosphere. [NASA/Ames/JPL-Caltech]Among the many different types of exoplanets weve observed, one unusual category is that of ultra-short-period planets. These roughly Earth-sized planets speed around their host stars at incredible rates, with periods of less than a day.How do planets in this odd category form? One popular theory is that they were previously hot Jupiters, especially massive gas giants orbiting very close to their host stars. The close orbit caused the planets atmospheres to be stripped away, leaving behind only their dense cores.In a new study, a team of astronomers led by Joshua Winn (Princeton University) has found a clever way to test this theory.Planetary radius vs. orbital period for the authors three statistical samples (colored markers) and the broader sample of stars in the California Kepler Survey. [Winn et al. 2017]Testing MetallicitiesStars hosting hot Jupiters have an interesting quirk: they typically have metallicities that are significantly higher than an average planet-hosting star. It is speculated that this is because planets are born from the same materials as their host stars, and hot Jupiters require the presence of more metals to be able to form.Regardless of the cause of this trend, if ultra-short-period planets are in fact the solid cores of former hot Jupiters, then the two categories of planets should have hosts with the same metallicity distributions. The ultra-short-period-planet hosts should therefore also be weighted to higher metallicities than average planet-hosting stars.To test this, the authors make spectroscopic measurements and gather data for a sample of stellar hosts split into three categories:64 ultra-short-period planets (orbital period shorter than a

  4. Kepler-68: Three Planets, One With a Density Between That of Earth and Ice Giants

    CERN Document Server

    Gilliland, Ronald L; Rowe, Jason F; Rogers, Leslie; Torres, Guillermo; Fressin, Francois; Lopez, Eric D; Buchhave, Lars A; Christensen-Dalsgaard, Joergen; Desert, Jean-Michel; Isaacson, Howard; Jenkins, Jon M; Lissauer, Jack L; Chaplin, William J; Basu, Sarbani; Metcalfe, Travis S; Elsworth, Yvonne; Handberg, Rasmus; Hekker, Saskia; Huber, Daniel; Karoff, Christoffer; Kjeldsen, Hans; Lund, Mikkel N; Lundkvist, Mia; Miglio, Andrea; Charbonneau, David; Ford, Eric B; Fortney, Jonathan J; Haas, Michael R; Howard, Andrew W; Howell, Steve B; Ragozzine, Darin; Thompson, Susan E

    2013-01-01

    NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68. Follow-up Doppler measurements have established the mass of the innermost planet and revealed a third jovian-mass planet orbiting beyond the two transiting planets. Kepler-68b, in a 5.4 day orbit has mass 8.3 +/- 2.3 Earth, radius 2.31 +/- 0.07 Earth radii, and a density of 3.32 +/- 0.92 (cgs), giving Kepler-68b a density intermediate between that of the ice giants and Earth. Kepler-68c is Earth-sized with a radius of 0.953 Earth and transits on a 9.6 day orbit; validation of Kepler-68c posed unique challenges. Kepler-68d has an orbital period of 580 +/- 15 days and minimum mass of Msin(i) = 0.947 Jupiter. Power spectra of the Kepler photometry at 1-minute cadence exhibit a rich and strong set of asteroseismic pulsation modes enabling detailed analysis of the stellar interior. Spectroscopy of the star coupled with asteroseismic modeling of the multiple pulsation modes yield precise measurements of stellar properties, notably Teff = ...

  5. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    Science.gov (United States)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  6. Climate variations on Earth-like circumbinary planets

    Science.gov (United States)

    Popp, Max; Eggl, Siegfried

    2017-04-01

    The discovery of planets orbiting double stars at close distances has sparked increasing scientific interest in determining whether Earth-analogues can remain habitable in such environments and how their atmospheric dynamics is influenced by the rapidly changing insolation. In this work we present results of the first three-dimensional numerical experiments of a water-rich planet orbiting a double star. We find that the periodic forcing of the atmosphere has a noticeable impact on the planet's climate. Signatures of the forcing frequencies related to the planet's as well as to the binary's orbital periods are present in a variety of climate indicators such as temperature and precipitation, making the interpretation of potential observables challenging. However, for Earth-like greenhouse gas concentrations, the variable forcing does not change the range of insolation values allowing for habitable climates substantially.

  7. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    Science.gov (United States)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  8. Climate variations on Earth-like circumbinary planets.

    Science.gov (United States)

    Popp, Max; Eggl, Siegfried

    2017-04-06

    The discovery of planets orbiting double stars at close distances has sparked increasing scientific interest in determining whether Earth-analogues can remain habitable in such environments and how their atmospheric dynamics is influenced by the rapidly changing insolation. In this work we present results of the first three-dimensional numerical experiments of a water-rich planet orbiting a double star. We find that the periodic forcing of the atmosphere has a noticeable impact on the planet's climate. Signatures of the forcing frequencies related to the planet's as well as to the binary's orbital periods are present in a variety of climate indicators such as temperature and precipitation, making the interpretation of potential observables challenging. However, for Earth-like greenhouse gas concentrations, the variable forcing does not change the range of insolation values allowing for habitable climates substantially.

  9. Radius and Structure models for the First Super-Earth Planet

    CERN Document Server

    Valencia, D; O'Connell, R J; Valencia, Diana; Sasselov, Dimitar D.; Connell, Rirchard J. O'

    2006-01-01

    With improving methods and surveys, the young field of extrasolar planets has recently expanded into a qualitatively new domain - terrestrial (mostly rocky) planets. The first such planets were discovered during the past year, judging by their measured masses of less than 10 Earth-masses ($M_{\\oplus}$) or Super-Earths. They are introducing a novel physical regime that has not been explored before as such planets do not exist in our Solar System. Their composition can be either completely terrestrial or harbour an extensive ocean (water and ices) above a rocky core. We model the structure and properties of the first Super-Earth (mass $\\sim$ 7.5 $M_{\\oplus}$) discovered in 2005, illustrating the possibilities in composition and providing radius evaluations in view of future detection of similar planets by transits. We find that a threshold in radius exists for which larger values indicate that a Super-Earth most certainly has an extensive water content. In the case of GJ876d this threshold is at about 12000 km....

  10. Tidal Downsizing Model. III. Planets from sub-Earths to Brown Dwarfs: structure and metallicity preferences

    CERN Document Server

    Nayakshin, Sergei

    2015-01-01

    We present improved population synthesis calculations in the context of the Tidal Downsizing (TD) hypothesis for planet formation. Our models provide natural explanations and/or quantitative match to exoplanet observations in the following categories: (i) most abundant planets being super-Earths; (ii) cores more massive than $\\sim 5-15 M_\\oplus$ are enveloped by massive metal-rich atmospheres; (iii) the frequency of occurrence of close-in gas giant planets correlates strongly with metallicity of the host star; (iv) no such correlation is found for sub-Neptune planets; (v) presence of massive cores in giant planets; (vi) the composition of gas giant planets is over-abundant in metals compared to their host stars; (vii) this over-abundance decreases with planet's mass, as observed; (viii) a deep valley in the planet mass function between masses of $\\sim 10-20 M_\\oplus$ and $\\sim 100 M_\\oplus$. We provide a number of observational predictions distinguishing the model from Core Accretion: (a) composition of the m...

  11. Biosignatures from Earth-Like Planets Around M Dwarfs

    CERN Document Server

    Segura, A; Meadows, V; Cohen, M; Scalo, J; Crisp, D; Butler, R A H; Tinetti, G; Segura, Antigona; Kasting, James F.; Meadows, Victoria; Cohen, Martin; Scalo, John; Crisp, David; Butler, Rebecca A.H.; Tinetti, Giovana

    2005-01-01

    Coupled one-dimensional photochemical-climate calculations have been performed for hypothetical Earth-like planets around M dwarfs. Visible, near-infrared and thermal-infrared synthetic spectra of these planets were generated to determine which biosignature gases might be observed by a future, space-based telescope. Our star sample included two observed active M dwarfs, AD Leo and GJ 643, and three quiescent model stars. The spectral distribution of these stars in the ultraviolet generates a different photochemistry on these planets. As a result, the biogenic gases CH4, N2O, and CH3Cl have substantially longer lifetimes and higher mixing ratios than on Earth, making them potentially observable by space-based telescopes. On the active M-star planets, an ozone layer similar to Earth's was developed that resulted in a spectroscopic signature comparable to the terrestrial one. The simultaneous detection of O2 (or O3) and a reduced gas in a planet's atmosphere has been suggested as strong evidence for life. Planet...

  12. Biosignatures from Earth-like planets around M dwarfs.

    Science.gov (United States)

    Segura, Antígona; Kasting, James F; Meadows, Victoria; Cohen, Martin; Scalo, John; Crisp, David; Butler, Rebecca A H; Tinetti, Giovanna

    2005-12-01

    Coupled one-dimensional photochemical-climate calculations have been performed for hypothetical Earth-like planets around M dwarfs. Visible/near-infrared and thermal-infrared synthetic spectra of these planets were generated to determine which biosignature gases might be observed by a future, space-based telescope. Our star sample included two observed active M dwarfs-AD Leo and GJ 643-and three quiescent model stars. The spectral distribution of these stars in the ultraviolet generates a different photochemistry on these planets. As a result, the biogenic gases CH4, N2O, and CH3Cl have substantially longer lifetimes and higher mixing ratios than on Earth, making them potentially observable by space-based telescopes. On the active M-star planets, an ozone layer similar to Earth's was developed that resulted in a spectroscopic signature comparable to the terrestrial one. The simultaneous detection of O2 (or O3) and a reduced gas in a planet's atmosphere has been suggested as strong evidence for life. Planets circling M stars may be good locations to search for such evidence.

  13. The Mass of Kepler-93b and The Composition of Terrestrial Planets

    CERN Document Server

    Dressing, Courtney D; Dumusque, Xavier; Gettel, Sara; Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stephane; Affer, Laura; Bonomo, Aldo S; Buchhave, Lars A; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F M; Harutyunyan, Avet; Haywood, Raphaelle D; Johnson, John Asher; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David F; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Segransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Chris

    2014-01-01

    Kepler-93b is a 1.478 +/- 0.019 Earth radius planet with a 4.7 day period around a bright (V=10.2), astroseismically-characterized host star with a mass of 0.911+/-0.033 solar masses and a radius of 0.919+/-0.011 solar radii. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02+/-0.68 Earth masses. The corresponding high density of 6.88+/-1.18 g/cc is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1-6 Earth masses, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 Earth masses: All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also co...

  14. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    Science.gov (United States)

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  15. The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    CERN Document Server

    Melendez, Jorge; Bean, Jacob L; Ramirez, Ivan; Asplund, Martin; Dreizler, Stefan; Yan, Hong-Liang; Shi, Jian-Rong; Lind, Karin; Ferraz-Mello, Sylvio; Galarza, Jhon Yana; Santos, Leonardo dos; Spina, Lorenzo; Maia, Marcelo Tucci; Alves-Brito, Alan; Monroe, TalaWanda; Casagrande, Luca

    2016-01-01

    [Methods]. We obtained high-precision radial velocities with HARPS on the ESO 3.6 m telescope and determined precise stellar elemental abundances (~0.01 dex) using MIKE spectra on the Magellan 6.5m telescope. [Results]. Our data indicate the presence of a planet with a minimum mass of 26 Earth masses around the solar twin HIP 68468. The planet is a super-Neptune, but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 Gyr) and the abundance ratio [Y/Mg] (6.4 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic c...

  16. The Occurrence of Earth-Like Planets Around Other Stars

    CERN Document Server

    Farr, Will M; Aldridge, Chris; Stroud, Kirsty

    2014-01-01

    The quantity $\\eta_\\oplus$, the number density of planets per star per logarithmic planetary radius per logarithmic orbital period at one Earth radius and one year period, describes the occurrence of Earth-like extrasolar planets. Here we present a measurement of $\\eta_\\oplus$ from a parameterised forward model of the (correlated) period-radius distribution and the observational selection function in the most recent (Q17) data release from the Kepler satellite. We find $\\eta_\\oplus = 3.9_{-1.6}^{+2.2}\\%$ (90% CL). We conclude that each star hosts $3.83_{-0.62}^{+0.76}$ planets with $P \\lesssim 3 \\mathrm{yr}$ and $R \\gtrsim 0.2 R_\\oplus$. Our empirical model for false-positive contamination is consistent with the dominant source being background eclipsing binary stars. The distribution of planets we infer is consistent with a highly-stochastic planet formation process producing many correlated, fractional changes in planet sizes and orbits.

  17. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    Science.gov (United States)

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  18. Objective Earth, a planet to discover

    Science.gov (United States)

    Borel, G.

    2003-04-01

    Objective Earth is an innovative project part of the "Swiss Virtual Campus", a federal program launched and financially supported by the Swiss University Conference and the Swiss Universities. Objective Earth is an online course devised for first year university students in Geosciences, but is also ideal for people who need or want to broaden their knowledge in Earth Sciences (biologists, civil engineers, high school teachers, etc.). The course is multilingual (English, German, French). The disciplines are integrated in a global approach to the "Earth System," the educational focus is on understanding all the important processes and their interactions in the global context. The pedagogical effort has been placed upon the global understanding of the main processes and their interactions. Our goal is for students to develop the ability to apply their knowledge in a comprehensive way to tackle definite geological problems. Thus, very particular attention has been put on the contextualization of the learning, combining didactically the academic notions and the practical situations. By the study of a thematic context, we intend to deliberately connect the phenomena described by the different disciplines of the geosciences (geology, geography, geophysics, mineralogy) to the way they physically occur in nature. Pages that are delivered to the user are assembled at run-time by the system. Information resources are stored and managed in XML which is the ideal format for structured-documents. Furthermore, using XML, the course structure can be processed separately from the content and re-used in other areas. This technical choice also offers a great flexibility for future developments.

  19. Kepler Planet Masses and Eccentricities from TTV Analysis

    CERN Document Server

    Hadden, Sam

    2016-01-01

    We conduct a uniform analysis of the transit timing variations (TTVs) of 145 planets from 55 Kepler multiplanet systems to infer planet masses and eccentricities. Eighty of these planets do not have previously reported mass and eccentricity measurements. We employ two complementary methods to fit TTVs: Markov chain Monte Carlo simulations based on N-body integration and an analytic fitting approach. Mass measurements of 49 planets, including 12 without previously reported masses, meet our criterion for classification as robust. Using mass and radius measurements, we infer the masses of planets' gaseous envelopes for both our TTV sample as well as transiting planets with radial velocity observations. Insight from analytic TTV formulae allows us to partially circumvent degeneracies inherent to inferring eccentricities from TTV observations. We find that planet eccentricities are generally small, typically a few percent, but in many instances are non-zero.

  20. Spectral fingerprints of Earth-like planets around FGK stars.

    Science.gov (United States)

    Rugheimer, Sarah; Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-03-01

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.

  1. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    CERN Document Server

    Gillon, Michael; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valerie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Gagliuffi, Daniella Bardalez; Magain, Pierre; Queloz, Didier

    2016-01-01

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as ultracool dwarfs. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disk, there should be a large but hitherto undetected population of terrestrial planets orbiting them - ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain poss...

  2. The earth as a planet - Paradigms and paradoxes

    Science.gov (United States)

    Anderson, D. L.

    1984-01-01

    The independent growth of the various branches of the earth sciences in the past two decades has led to a divergence of geophysical, geochemical, geological, and planetological models for the composition and evolution of a terrestrial planet. Evidence for differentiation and volcanism on small planets and a magma ocean on the moon contrasts with hypotheses for a mostly primitive, still undifferentiated, and homogeneous terrestrial mantle. In comparison with the moon, the earth has an extraordinarily thin crust. The geoid, which should reflect convection in the mantle, is apparently unrelated to the current distribution of continents and oceanic ridges. If the earth is deformable, the whole mantle should wander relative to the axis of rotation, but the implications of this are seldom discussed. The proposal of a mantle rich in olivine violates expectations based on evidence from extraterrestrial sources. These and other paradoxes force a reexamination of some long-held assumptions.

  3. Science cases for the OWL Earth-like planet imager and spectrograph (EPICS)

    Science.gov (United States)

    Beuzit, J.-L.; Gratton, R.; Kasper, M.; Desidera, S.; Kerber, F.; Rahoui, F.; Mouillet, D.; Rouan, D.; Turatto, M.; Feldt, M.; Schmid, H.-M.; Stam, D.; Selsis, F.; Hubin, N.; Vérinaud, C.

    The extreme contrast in mass and luminosity between the extra-solar planets and their host stars make detailed studies of these planets very challenging. In particular, direct observations of extra-solar planets is still beyond the capabilities of the currently available instrumentation, save for perhaps a few extreme cases of very young and massive planets at large distances from the central star. While progress in instrumentation might allow significant progress in detection capabilities either with the 8 and 10-m ground-based telescopes (Planet Finder instruments on the VLT and Gemini) or with the next generation space telescope (JWST), imaging of extra-solar planets over a wide range of parameters, and possibly down to terrestrial planets, will require extremely large ground-based telescopes like OWL or dedicated space instrumentation (TPF or Darwin for instance). We outline here the scientific objectives of EPICS, the OWL Earth-like Planet Imager and Spectrograph, summarize the corresponding high level requirements, present the foreseen observing modes and give a first estimate of its performance.

  4. The mass of dwarf planet Eris.

    Science.gov (United States)

    Brown, Michael E; Schaller, Emily L

    2007-06-15

    The discovery of dwarf planet Eris was followed shortly by the discovery of its satellite, Dysnomia, but the satellite orbit, and thus the system mass, was not known. New observations with the Keck Observatory and the Hubble Space Telescopes show that Dysnomia has a circular orbit with a radius of 37,350 +/- 140 (1-sigma) kilometers and a 15.774 +/- 0.002 day orbital period around Eris. These orbital parameters agree with expectations for a satellite formed out of the orbiting debris left from a giant impact. The mass of Eris from these orbital parameters is 1.67 x 10(22) +/- 0.02 x 10(22) kilograms, or 1.27 +/- 0.02 that of Pluto.

  5. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    Science.gov (United States)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  6. Spectral Fingerprints of Earth-like Planets Around FGK Stars

    CERN Document Server

    Rugheimer, Sarah; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2012-01-01

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff = 4250K to Teff = 7000K in 250K intervals. We model the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1AU equivalent distance from the VIS to IR (0.4 {\\mu}m - 20 {\\mu}m) to compare detectability of features in different wavelength ranges in accordance with JWST and future design concepts to characterize exo-Earths. We also explore the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere concentrating on detectable atmospheric features that indicate habitability on Earth, namely: H2O, O3, CH4, N2O and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O and CH3Cl whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase, is a lower surface temperature of the planet du...

  7. Ranges of Atmospheric Mass and Composition of Super Earth Exoplanets

    CERN Document Server

    Elkins-Tanton, L

    2008-01-01

    Terrestrial-like exoplanets may obtain atmospheres from three primary sources: Capture of nebular gases, degassing during accretion, and degassing from subsequent tectonic activity. Here we model degassing during accretion to estimate the range of atmospheric mass and composition on exoplanets ranging from 1 to 30 Earth masses. We use bulk compositions drawn from primitive and differentiated meteorite compositions. Degassing alone can create a wide range of masses of planetary atmospheres, ranging from less than a percent of the planet's total mass up to ~6 mass% of hydrogen, ~20 mass% of water, and/or ~5 mass% of carbon compounds. Hydrogen-rich atmospheres can be outgassed as a result of oxidizing metallic iron with water, and excess water and carbon can produce atmospheres through simple degassing. As a byproduct of our atmospheric outgassing models we find that modest initial water contents (10 mass% of the planet and above) create planets with deep surface liquid water oceans soon after accretion is compl...

  8. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  9. Making other Earths: Dynamical Simulations of Terrestrial Planet Formation and Water Delivery

    CERN Document Server

    Raymond, S N; Lunine, J I; Raymond, Sean N.; Quinn, Thomas R.; Lunine, Jonathan I.

    2003-01-01

    We present results from 42 simulations of late stage planetary accretion, focusing on the delivery of volatiles (primarily water) to the terrestrial planets. Our simulations include both planetary "embryos" (defined as Moon to Mars sized protoplanets) and planetesimals, assuming that the embryos formed via oligarchic growth. We investigate volatile delivery as a function of Jupiter's mass, position and eccentricity, the position of the snow line, and the density (in solids) of the solar nebula. In all simulations, we form 1-4 terrestrial planets inside 2 AU, which vary in mass and volatile content. In 42 simulations we have formed 43 planets between 0.8 and 1.5 AU, including 11 "habitable" planets between 0.9 and 1.1 AU. These planets range from dry worlds to "water worlds" with 100+ oceans of water (1 ocean = 1.5x10^24 g), and vary in mass between 0.23 and 3.85 Earth masses. There is a good deal of stochastic noise in these simulations, but the most important parameter is the planetesimal mass we choose, whi...

  10. Water-rich planets: How habitable is a water layer deeper than on Earth?

    Science.gov (United States)

    Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.

    2016-10-01

    Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.

  11. An Earth-Like Planet in GJ 832 System

    CERN Document Server

    Satyal, S; Musielak, Z E

    2016-01-01

    Stability of planetary orbits around GJ 832 star system, which contains inner (GJ 832c) and outer (GJ 832b) planets, is investigated numerically and the detailed phase-space analysis are performed. The stability of the system is de?ned in terms of its lifetime, which is its survival time during the orbital integration period, and the maximum eccentricity, emax attained by the orbits during the evolution processes. A special emphasis is given to the existence of stable orbits for an Earth-like planet that is injected between the inner and outer planets. Thus, numerical simulations are performed for three and four bodies in elliptical orbits (or circular for special cases), and a large number of initial conditions that covers the whole phase-space of the existing bodies are used. The results presented in the phase-space maps for GJ 832c indicates the least deviation of the eccentricity from its nominal value, which is then used to determine its inclination regime. Also, the Earth-like planet displays stable orb...

  12. An international approach to Mission to Planet Earth

    Science.gov (United States)

    Lawrence, Robert M.; Sadeh, Willy Z.; Tsygichko, Viktor N.

    1992-01-01

    The new international political constellation resulting from the disintegration of the Soviet Union opens up unique opportunities for cooperation in the space arena. Precedents since 1955 indicate a pervasive interest in mutual cooperation to use military reconnaissance and surveillance satellites for space observations to enforce treaty verification and compliance. One of the avenues that offer immediate prospects for fruitful cooperation is the incorporation of the military reconnaissance and surveillance satellite capabilities of both U.S. and Russia into the Mission to Planet Earth. Formation of a United Nations Satellite (UNSAT) fleet drawn from the American and Russian space assets is proposed. The role of UNSAT is to provide world wide monitoring of both military and enviromental activities under the umbrella of the Mission to Planet Earth.

  13. The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    Science.gov (United States)

    Meléndez, Jorge; Bedell, Megan; Bean, Jacob L.; Ramírez, Iván; Asplund, Martin; Dreizler, Stefan; Yan, Hong-Liang; Shi, Jian-Rong; Lind, Karin; Ferraz-Mello, Sylvio; Galarza, Jhon Yana; dos Santos, Leonardo; Spina, Lorenzo; Maia, Marcelo Tucci; Alves-Brito, Alan; Monroe, TalaWanda; Casagrande, Luca

    2017-01-01

    Context. More than two thousand exoplanets have been discovered to date. Of these, only a small fraction have been detected around solar twins, which are key stars because we can obtain accurate elemental abundances especially for them, which is crucial for studying the planet-star chemical connection with the highest precision. Aims: We aim to use solar twins to characterise the relationship between planet architecture and stellar chemical composition. Methods: We obtained high-precision (1 m s-1) radial velocities with the HARPS spectrograph on the ESO 3.6 m telescope at La Silla Observatory and determined precise stellar elemental abundances ( 0.01 dex) using spectra obtained with the MIKE spectrograph on the Magellan 6.5 m telescope. Results: Our data indicate the presence of a planet with a minimum mass of 26 ± 4 Earth masses around the solar twin HIP 68468. The planet is more massive than Neptune (17 Earth masses), but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 ± 0.8 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet candidate discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 ± 0.4 Gyr) and the abundance ratio [Y/Mg] (6.4 ± 0.8 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic chemical evolution. We determined a nonlocal thermodynamic equilibrium Li abundance of 1.52 ± 0.03 dex, which is four times higher than what would be expected for the age of HIP 68468. The older age is also supported by the low log () (-5.05) and low jitter (existence of the planets that are indicated by our data and to better constrain the nature of the planetary system

  14. Dynamical corotation torques on low-mass planets

    CERN Document Server

    Paardekooper, Sijme-Jan

    2014-01-01

    We study torques on migrating low-mass planets in locally isothermal discs. Previous work on low-mass planets generally kept the planet on a fixed orbit, after which the torque on the planet was measured. In addition to these static torques, when the planet is allowed to migrate it experiences dynamical torques, which are proportional to the migration rate and whose sign depends on the background vortensity gradient. We show that in discs a few times more massive than the Minimum Mass Solar Nebula, these dynamical torques can have a profound impact on planet migration. Inward migration can be slowed down significantly, and if static torques lead to outward migration, dynamical torques can take over, taking the planet beyond zero-torque lines set by saturation of the corotation torque in a runaway fashion. This means the region in non-isothermal discs where outward migration is possible can be larger than what would be concluded from static torques alone.

  15. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    Science.gov (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  16. Below One Earth Mass: The Detection, Formation, and Properties of Subterrestrial Worlds

    CERN Document Server

    Sinukoff, E; Scuderi, L; Gaidos, E

    2013-01-01

    The Solar System includes two planets --- Mercury and Mars --- significantly less massive than Earth, and all evidence indicates that planets of similar size orbit many stars. In fact, one of the first exoplanets to be discovered is a lunar-mass planet around a millisecond pulsar. Novel classes of exoplanets have inspired new ideas about planet formation and evolution, and these "sub-Earths" should be no exception: they include planets with masses between Mars and Venus for which there are no Solar System analogs. Advances in astronomical instrumentation and recent space missions have opened the sub-Earth frontier for exploration: the Kepler mission has discovered dozens of confirmed or candidate sub-Earths transiting their host stars. It can detect Mars-size planets around its smallest stellar targets, as well as exomoons of comparable size. Although the application of the Doppler method is currently limited by instrument stability, future spectrographs may detect equivalent planets orbiting close to nearby ...

  17. Alien Earth: Glint observations of a remote planet

    Science.gov (United States)

    Barry, Richard K.; Deming, L. Drake

    2011-11-01

    We give a preliminary report on a multi-wavelength study of specular reflections from the oceans and clouds of Earth. We use space-borne observations from a distance sufficient to ensure that light rays reflected from all parts of Earth are closely parallel, as they will be when studying exoplanets. We find that the glint properties of Earth in this far-field vantage point are surprising - in the sense that some of the brightest reflections are not from conventional ocean-glints, but appear to arise from cirrus cloud crystals. The Earth observations discussed here were acquired with the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope on the Deep Impact (DI) spacecraft during the Extrasolar Planet Observation and Characterization (EPOCh) investigation.

  18. The transmission spectrum of Earth-size transiting planets

    CERN Document Server

    Ehrenreich, D; Etangs, A L; Vidal-Madjar, A; Selsis, F; Ehrenreich, David; Tinetti, Giovanna; Etangs, Alain Lecavelier Des; Vidal-Madjar, Alfred; Selsis, Franck

    2005-01-01

    A variety of terrestrial planets with different physical parameters and exotic atmospheres might plausibly exist outside our Solar System, waiting to be detected by the next generation of space-exploration missions. Some of these planets might transit their parent star. We present here the first study of atmospheric signatures of transiting Earth-size exoplanets. We focus on a limited number of significant examples, for which we discuss the detectability of some of the possible molecules present in their atmospheres, such as water, carbon dioxide, ozone or molecular oxygen. To this purpose, we developed a model to simulate transmission spectra of Earth-size exoplanets from the ultraviolet to the near infrared. According to our calculations, the signatures of planetary atmospheres represent an absorption of a few parts-per-million (ppm) in the stellar flux. The atmospheres of a few Earth-like planets can be detected with a 30-40m telescope. The detection of the extensive atmospheres of tens of small satellites...

  19. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    DEFF Research Database (Denmark)

    Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.

    2014-01-01

    a rocky composition. We identify six planets with densities above 5 g cm–3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He......, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets...

  20. The Leonard Award Address: On the Difficulties of Making Earth-Like Planets

    Science.gov (United States)

    Taylor, Stuart Ross

    1999-05-01

    Here I discuss the series of events that led to the formation and evolution of our planet to examine why the Earth is unique in the solar system. A multitude of factors are involved. These begin with the initial size and angular momentum of the fragment that separated from a molecular cloud. These are crucial in determining whether a planetary system or a double star develops from the resulting nebula. Another requirement is that there must be an adequate concentration of heavy elements to provide the two percent 'rock' and 'ice' components of the original nebula. An essential step in forming rocky planets in the inner nebula is loss of gas and depletion of volatile elements due to early solar activity, that is linked to the mass of the central star. The lifetime of the gaseous nebula controls the formation of gas giants. In our system, fine timing was needed to form the gas giant, Jupiter before the gas in the nebula was depleted. Although Uranus and Neptune eventually formed cores large enough to capture gas, they missed out and ended as ice giants The early formation of Jupiter is responsible for the existence of the asteroid belt (and our supply of meteorites) and the small size of Mars while the gas giant now acts as a gravitational shield for the terrestrial planets. The Earth and the other inner planets accreted long after the giant planets in a gas-free inner nebula from volatile-depleted planetesimals that were probably already differentiated into metallic cores and silicate mantles. The accumulation of the Earth from such planetesimals was essentially a stochastic process, accounting for the differences among the four rocky inner planets including the startling contrast between those two apparent twins, Earth and Venus. Impact history and accretion of a few more or less planetesimals were apparently crucial. The origin of the Moon by a single massive impact with a body larger than Mars accounts for the obliquity (and its stability) and spin of the Earth

  1. Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.

    Science.gov (United States)

    Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-09-02

    Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.

  2. Occurrence and core-envelope structure of 1--4x Earth-size planets around Sun-like stars

    CERN Document Server

    Marcy, Geoffrey W; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-01-01

    Small planets, 1-4x the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R_e planets with orbital periods under 100 days, and 11% have 1-2 R_e planets that receive 1-4x the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 AU, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R_e show that the smallest of them, R < 1.5 R_e, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: rho = 2.32 + 3.19 R/R_e [g/cc]. ...

  3. Exploring the Relationship Between Planet Mass and Atmospheric Metallicity for Cool Giant Planets

    Science.gov (United States)

    Thomas, Nancy H.; Wong, Ian; Knutson, Heather; Deming, Drake; Desert, Jean-Michel; Fortney, Jonathan J.; Morley, Caroline; Kammer, Joshua A.; Line, Michael R.

    2016-10-01

    Measurements of the average densities of exoplanets have begun to help constrain their bulk compositions and to provide insight into their formation locations and accretionary histories. Current mass and radius measurements suggest an inverse relationship between a planet's bulk metallicity and its mass, a relationship also seen in the gas and ice giant planets of our own solar system. We expect atmospheric metallicity to similarly increase with decreasing planet mass, but there are currently few constraints on the atmospheric metallicities of extrasolar giant planets. For hydrogen-dominated atmospheres, equilibrium chemistry models predict a transition from CO to CH4 below ~1200 K. However, with increased atmospheric metallicity the relative abundance of CH4 is depleted and CO is enhanced. In this study we present new secondary eclipse observations of a set of cool (planet mass and atmospheric metallicity as predicted by the core accretion models and observed in our solar system.

  4. Trapping planets in an evolving protoplanetary disk: preferred time, locations and planet mass

    CERN Document Server

    Baillié, Kévin; Pantin, Éric

    2016-01-01

    Planet traps are necessary to prevent forming planets from falling onto their host star by type I migration. Surface mass density and temperature gradient irregularities favor the apparition of traps and deserts. Such features are found at the dust sublimation lines and heat transition barriers. We study how planets may remain trapped or escape as they grow and as the disk evolves. We model the temporal viscous evolution of a protoplanetary disk by coupling its dynamics, thermodynamics, geometry and composition. The resulting mid-plane density and temperature profiles allow the modeling of the interactions of such an evolving disk with potential planets, even before the steady state is reached. We follow the viscous evolution of a MMSN and compute the Lindblad and corotation torques that such a disk would exert on potential planets of various masses located within the planetary formation region. We determine the position of planet traps and deserts in relationship with the sublimation lines, shadowed regions ...

  5. On the possibility of Earth-type habitable planets in the 55 Cancri system.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Franck, S; Bounama, C

    2003-01-01

    We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions.

  6. The Runaway Greenhouse Effect on Earth and other Planets

    Science.gov (United States)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  7. Dynamically hot Super-Earths from outer giant planet scattering

    CERN Document Server

    Huang, Chelsea X; Deibert, Emily

    2016-01-01

    The hundreds of multiple planetary systems discovered by the Kepler mission are typically observed to reside in close-in ($\\lesssim0.5$ AU), low-eccentricity, and low-inclination orbits. We run N-body experiments to study the effect that unstable outer ($\\gtrsim1$ AU) giant planets, whose end orbital configurations resemble those in the Radial Velocity population, have on these close-in multiple Super-Earth systems. Our experiments show that the giant planets greatly reduce the multiplicity of the inner Super-Earths and the surviving population can have large eccentricities ($e\\gtrsim0.3$) and inclinations ($i\\gtrsim20^\\circ$) at levels that anti-correlate with multiplicity. Consequently, this model predicts the existence of a population of dynamically hot single-transiting planets with typical eccentricities and inclinations in the ranges of $\\sim 0.2-0.5$ and $\\sim 10^\\circ-40^\\circ$. We show that these results can explain the following observations: (i) the recent eccentricity measurements of Kepler super-...

  8. Instability of mass transfer in a planet-star system

    CERN Document Server

    Jia, Shi

    2016-01-01

    We show that the angular momentum exchange mechanism governing the evolution of mass transferring binary stars does not apply to Roche-lobe filling planets, because most of the angular momentum of the mass transferring stream is absorbed by the host star. Apart from a correction for the difference in specific angular momentum of the stream and the centre of mass of the planet, the orbit does not expand much on Roche-lobe overflow. We explore the conditions for dynamically unstable Roche-lobe overflow as a function of planet mass and mass and radius (age) of host star and equation of state of planet. For a Sun-like host, gas giant planets in a range of mass and entropy can undergo dynamical mass transfer. Examples of the evolution of the mass transfer process are given. Dynamic mass transfer of rocky planets depend somewhat sensitively on equation of state used. Silicate planets in the range $1 M_{\\oplus} mass transfer before set...

  9. Orbital migration of giant planets induced by gravitationally unstable gaps: the effect of planet mass

    CERN Document Server

    Cloutier, Ryan

    2013-01-01

    It has been suggested that long-period giant planets, such as HD 95086b and HR 8799bcde, may have formed through gravitational instability of protoplanetary discs. However, self-gravitating disc-satellite interaction can lead to the formation of a gravitationally unstable gap. Such an instability significantly affects the orbital migration of gap-opening perturbers in massive discs. We use 2D hydrodynamical simulations to examine the role of planet mass on the gravitational stability of gaps and its impact on orbital migration. We consider giant planets with planet-to-star mass ratio q=0.0003 to q=0.003, in a self-gravitating disc with disc-to-star mass ratio M_d/M_*=0.08, aspect ratio h=0.05, and Keplerian Toomre parameter Q = 1.5 at 2.5 times the planet's initial orbital radius. Fixed-orbit simulations show that all planet masses we consider open gravitationally unstable gaps, but the instability is stronger and develops sooner with increasing planet mass. The disc-on-planet torques typically become more po...

  10. Formation and composition of planets around very low mass stars

    CERN Document Server

    Alibert, Yann

    2016-01-01

    The recent detection of planets around very low mass stars raises the question of the formation, composition and potential habitability of these objects. We use planetary system formation models to infer the properties, in particular their radius distribution and water content, of planets that may form around stars ten times less massive than the Sun. Our planetary system formation and composition models take into account the structure and evolution of the protoplanetary disk, the planetary mass growth by accretion of solids and gas, as well as planet-planet, planet-star and planet-disk interactions. We show that planets can form at small orbital period in orbit about low mass stars. We show that the radius of the planets is peaked at about 1 rearth and that they are, in general, volatile rich especially if proto-planetary discs orbiting this type of stars are long-lived. Close-in planets orbiting low-mass stars similar in terms of mass and radius to the ones recently detected can be formed within the framewo...

  11. Discovery of Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star

    Science.gov (United States)

    Jehin, Emmanuel; Gillon, Michael; Lederer, Susan M.; Delrez, Laetitia; De Wit, Julien; Burdanov, Artem; Van Grootel, Valerie; Burgasser, Adam; Triaud, Amaury; Demory, Brice-Olivier; hide

    2016-01-01

    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0+/-0.5-type dwarf star at a distance of 12.0+/-0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system.

  12. Discovery of temperate Earth-sized planets transiting a nearby ultracool dwarf star

    Science.gov (United States)

    Jehin, Emmanuel; Gillon, Michael; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam; Triaud, Amaury; Demory, Brice-Olivier; Queloz, Didier

    2016-10-01

    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0±0.5-type dwarf star at a distance of 12.0±0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system.

  13. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  14. Fast Rise of "Neptune-Size" Planets (4-8 R_Earth) from P~10 to ~250 days -- Statistics of Kepler Planet Candidates Up to ~0.75 AU

    CERN Document Server

    Dong, Subo

    2013-01-01

    We infer period (P) and size (R_p) distribution of Kepler transiting planet candidates with R_p> 1 R_Earth and P10 days, the planet frequency dN_p/d logP for "Neptune-size" planets (R_p = 4-8 R_Earth) increases with period as \\propto P^{0.7\\pm0.1}. In contrast, dN_p/dlogP for Super-Earth-Size (2-4 R_Earth) as well as Earth-size (1-2 R_Earth) planets are consistent with a nearly flat distribution as a function of period (\\propto P^{0.11\\pm0.05}) and \\propto P^{-0.10\\pm0.12}, respectively), and the normalizations are remarkably similar (within a factor of ~ 1.5). The shape of the distribution function is found to be not sensitive to changes in selection criteria of the sample. The implied nearly flat or rising planet frequency at long period appears to be in tension with the sharp decline at ~100 days in planet frequency for low mass planets (planet mass m_p < 30 M_Earth) recently suggested by the HARPS survey.

  15. Investigating the free-floating planet mass by Euclid observations

    CERN Document Server

    Hamolli, Lindita; De Paolis, Francesco; Nucita, Achille A

    2016-01-01

    The detection of anomalies in gravitational microlensing events is nowadays one of the main goals among the microlensing community. In the case of single-lens events, these anomalies can be caused by the finite source effects, that is when the source disk size is not negligible, and by the Earth rotation around the Sun (the so-called parallax effect). The finite source and parallax effects may help to define the mass of the lens, uniquely. Free-floating planets (FFPs) are extremely dim objects, and gravitational microlensing provides at present the exclusive method to investigate these bodies. In this work, making use of a synthetic population algorithm, we study the possibility of detecting the finite source and parallax effects in simulated microlensing events caused by FFPs towards the Galactic bulge, taking into consideration the capabilities of the space-based Euclid telescope. We find a significant efficiency for detecting the parallax effect in microlensing events with detectable finite source effect, ...

  16. Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars

    Science.gov (United States)

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169

  17. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    NARCIS (Netherlands)

    Marcy, G.W.; et al., [Unknown; Hekker, S.

    2014-01-01

    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements,

  18. Limits of photosynthesis in extrasolar planetary systems for earth-like planets.

    Science.gov (United States)

    Franck, S; von Bloh, W; Bounama, C; Steffen, M; Schonberner, D; Schellnhuber, H J

    2001-01-01

    We present a general modeling scheme for investigating the possibility of photosynthesis-based life on extrasolar planets. The scheme focuses on the identification of the habitable zone in main-sequence-star planetary systems with planets of Earth mass and size. Our definition of habitability is based on the long-term possibility of photosynthetic biomass production as a function of mean planetary surface temperature and atmospheric CO2-content. All the astrophysical, climatological, biogeochemical, and geodynamic key processes involved in the generation of photosynthesis-driven life conditions are taken into account. Implicitly, a co-genetic origin of the central star and the orbiting planet is assumed. The numerical solution of an advanced geodynamic model yields realistic look-up diagrams for determining the limits of photosynthesis in extrasolar planetary systems, assuming minimum CO2 levels set by the demand of C4 photosynthesis.

  19. Instability of mass transfer in a planet-star system

    Science.gov (United States)

    Jia, Shi; Spruit, H. C.

    2017-02-01

    We show that the angular momentum exchange mechanism governing the evolution of mass-transferring binary stars does not apply to Roche lobe filling planets, because most of the angular momentum of the mass-transferring stream is absorbed by the host star. Apart from a correction for the difference in specific angular momentum of the stream and the centre of mass of the planet, the orbit does not expand much on Roche lobe overflow. We explore the conditions for dynamically unstable Roche lobe overflow as a function of planetary mass and mass and radius (age) of host star and equation of state of planet. For a Sun-like host, gas giant planets in a range of mass and entropy can undergo dynamical mass transfer. Examples of the evolution of the mass transfer process are given. Dynamic mass transfer of rocky planets depends somewhat sensitively on equation of state used. Silicate planets in the range 1 mass transfer before settling to slow overflow when their mass drops to less than 1 M⊕.

  20. Correlation between the Earth's Magnetic Field and the Gravitational Mass of the Outer Core

    OpenAIRE

    De Aquino, Fran

    2013-01-01

    The theory accepted today for the origin of the Earth's magnetic field is based on convection currents created in the Earth's outer core due to the rotational motion of the planet Earth around its own axis. In this work, we show that the origin of the Earth's magnetic field is related to the gravitational mass of the outer core.

  1. Auroral phenomenology and magnetospheric processes earth and other planets

    CERN Document Server

    Keiling, Andreas; Bagenal, Fran; Karlsson, Tomas

    2013-01-01

    Published by the American Geophysical Union as part of the Geophysical Monograph Series. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the diffe

  2. Mg/Si Mineralogical Ratio of Low-Mass Planet Hosts. Correction for the NLTE Effects

    Science.gov (United States)

    Adibekyan, V.; Gonçalves da Silva, H. M.; Sousa, S. G.; Santos, N. C.; Delgado Mena, E.; Hakobyan, A. A.

    2017-09-01

    Mg/Si and Fe/Si ratios are important parameters that control the composition of rocky planets. In this work we applied non-LTE correction to the Mg and Si abundances of stars with and without planets to confirm/reject our previous findings that [Mg/Si] atmospheric abundance is systematically higher for Super-Earth/Neptune-mass planet hosts than stars without planets. Our results show that the small differences of stellar parameters observed in these two groups of stars are not responsible for the already reported difference in the [Mg/Si] ratio. Thus, the high [Mg/Si] ratio of Neptunian hosts is probably related to the formation efficiency of these planets in such environments.

  3. Three dimensional presentation of the Earth and planets using Dagik Earth

    Science.gov (United States)

    Saito, A.; Tsugawa, T.

    2013-12-01

    Dagik Earth is a portable, scalable and affordable three-dimensional digital globe system to present the scientific data of the Earth and planets. It has been developed in the collaboration of Kyoto University, NICT, Shizuoka University, National Museum of Nature and Science, Tokyo, Shizuoka Science Museum and others. It uses a spherical or hemispherical screen to project data and images using normal PC and PC projectors. The minimum size is 8cm and the largest size is 8m in diameter. The three-dimensional presentation is the only way to present the correct shape on the Earth while any two-dimensional map formats distort the shape. Furthermore it helps audience to understand the scale size and phenomena of the Earth and planets in an intuitive way. The Dagik Earth project provides the software of the 3D projection to the science museums and school teachers for the educational purpose. Because the same system can be used in museums and schools, several science museums are worked as a hub of the school teachers' training on the earth and planetary science class with Dagik Earth. International collaboration with Taiwan, Thailand, and other countries is in progress. In the presentation, we introduce the system of Dagik Earth and the activities using it in the collaboration among museums, universities and research institutes.

  4. Modeling the surface temperature of Earth-like planets

    CERN Document Server

    Vladilo, G; Murante, G; Filippi, L; Provenzale, A

    2015-01-01

    We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface Energy Balance Model complemented by: radiative-convective atmospheric column calculations, a set of physically-based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (epsilon >= 45^o). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ~5K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5 <= Omega/Omega_o <= 2, 0.75 <= S/S_o <= 1.25, 0.3 <= p/(1 bar) <= 10, and 0.5 <= R/R_o <= 2, respectively. The ESTM has an extremely l...

  5. Extending the Planetary Mass Function to Earth Mass by Microlensing at Moderately High Magnification

    CERN Document Server

    Abe, Fumio; Barnard, Ellen; Baudrey, Julie; Botzler, Christine; Douchin, Dimitri; Freeman, Matthew; Larsen, Patricia; Niemiec, Anna; Perrott, Yvette; Philpott, Lydia; Rattenbury, Nicholas; Yock, Philip

    2013-01-01

    A measurement by microlensing of the planetary mass function of planets with masses ranging from 5M_E to 10M_J and orbital radii from 0.5 to 10 AU was reported recently. A strategy for extending the mass range down to (1-3)M_E is proposed here. This entails monitoring the peaks of a few tens of microlensing events with moderately high magnifications with 1-2m class telescopes. Planets of a few Earth masses are found to produce deviations of ~ 5% to the peaks of microlensing light curves with durations ~ (0.7-3)hr in events with magnification ~ 100 if the projected separation of the planet lies in the annular region (0.85-1.2)r_E. Similar deviations are produced by Earth mass planets in the annular region (0.95-1.05)r_E. It is possible that sub-Earths could be detected very close to the Einstein ring if they are sufficiently abundant, and also planetary systems with more than one low mass planet.

  6. International Year of Planet Earth - Activities and Plans in Mexico

    Science.gov (United States)

    Alaniz-Alvarez, S.; Urrutia-Fucugauchi, J.

    2007-12-01

    IYPE started as a joint initiative by UNESCO and IUGS with participation of several geosciences organizations, and has developed into a major program in geosciences with inclusion of national committees. In this presentation we focus on current activities and plans in our country, and in the international activities. IYPE activities have concentrated in publications and organization of conferences and meetings. A book series on Earth Science Experiments for Children has been defined, with the first books published on "Atmospheric Pressure and Free Fall of Objects" and "Light and Colors". Following books are on "Standing on Archimedes" and "Foucault and the Climate". Books are distributed free to school children, with more than 10,000 copies given of first volume. Other publications include the special issues of El Faro science magazine edited by the National University, with last issue published and distributed electronically and in hard copies this August. Special events include Conference of IYPE Executive Director presented during the International Day of Science Museums in late May in Science Museum Universum. This was followed by a Planet Earth Week in the University. Current plans include an electronic open-access publication, additional publications of the Planet Earth series, articles and special issues in journals and magazines, and events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Life. The metropolitan area of Mexico City, with around 20 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes translation into Spanish of IYPE publications and the participation in programs and activities. In addition to activities in the different countries, we consider that IYPE should result in initiatives for

  7. Extending Whole-earth Tectonics To The Terrestrial Planets

    Science.gov (United States)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  8. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    CERN Document Server

    Marley, Mark S; Cushing, Michael; Ackerman, Andrew S; Fortney, Jonathan J; Freedman, Richard

    2012-01-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planet...

  9. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    Science.gov (United States)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  10. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    Science.gov (United States)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  11. Giant Planet Occurrence in the Stellar Mass-Metallicity Plane

    CERN Document Server

    Johnson, John Asher; Howard, Andrew W; Crepp, Justin R

    2010-01-01

    Correlations between stellar properties and the occurrence rate of exoplanets can be used to inform the target selection of future planet search efforts and provide valuable clues about the planet formation process. We analyze a sample of 1194 stars drawn from the California Planet Survey targets to determine the empirical functional form describing the likelihood of a star harboring a giant planet as a function of its mass and metallicity. Our stellar sample ranges from M dwarfs with masses as low as 0.2 Msun to intermediate-mass subgiants with masses as high as 1.9 Msun. In agreement with previous studies, our sample exhibits a planet-metallicity correlation at all stellar masses; the fraction of stars that harbor giant planets scales as f \\propto 10^{1.2 [Fe/H]}. We can rule out a flat metallicity relationship among our evolved stars (at 98% confidence), which argues that the high metallicities of stars with planets is not likely due to convective envelope ``pollution.'' Our data also rule out a constant p...

  12. The rotation of planets hosting atmospheric tides: from Venus to habitable super-earths

    CERN Document Server

    Auclair-Desrotour, Pierre; Mathis, Stéphane; Correia, Alexandre

    2016-01-01

    The competition between the torques induced by solid and thermal tides drives the rotational dynamics of Venus-like planets and super-Earths orbiting in the habitable zone of low-mass stars. The tidal responses of the atmosphere and telluric core are related to their respective physical properties and strongly depend on the tidal frequency. The resulting torque determines the possible equilibrium states of the planet's spin. We compute here an analytic expression for the total tidal torque exerted on a Venus-like planet. This expression is used to characterize the equilibrium rotation of the body. Close to the star, the solid tide dominates. Far from it, the thermal tide drives the rotational dynamics of the planet. The transition regime corresponds to the habitable zone, where prograde and retrograde equilibrium states appear. We demonstrate the strong impact of the atmospheric properties and of the rheology of the solid part on the rotational dynamics of Venus-like planets, highlighting the key role played ...

  13. MOA 2011-BLG-028Lb: a Neptune-mass Microlensing Planet in the Galactic Bulge

    CERN Document Server

    Skowron, J; Poleski, R; Kozłowski, S; Szymański, M K; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Pietrzyński, G; Soszyński, I; Abe, F; Bennett, D P; Bhattacharya, A; Bond, I A; Freeman, M; Fukui, A; Hirao, Y; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Ohnishi, K; Rattenbury, N; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Yonehara, A; Dominik, M; Jørgensen, U G; Bozza, V; Harpsøe, K; Hundertmark, M; Skottfelt, J

    2015-01-01

    We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baade's Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the "microlens parallax" effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the ...

  14. New worlds on the horizon: Earth-sized planets close to other stars.

    Science.gov (United States)

    Gaidos, Eric; Haghighipour, Nader; Agol, Eric; Latham, David; Raymond, Sean; Rayner, John

    2007-10-12

    The search for habitable planets like Earth around other stars fulfills an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of Earth but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.

  15. New Worlds on the Horizon: Earth-Sized Planets Close to Other Stars

    CERN Document Server

    Gaidos, Eric; Agol, Eric; Latham, David; Raymond, Sean; Rayner, John

    2007-01-01

    The search for habitable planets like Earth around other stars fulfils an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of the Earth, but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.

  16. New Worlds on the Horizon: Earth-Sized Planets Close to Other Stars

    Science.gov (United States)

    Gaidos, Eric; Haghighipour, Nader; Agol, Eric; Latham, David; Raymond, Sean; Rayner, John

    2007-10-01

    The search for habitable planets like Earth around other stars fulfills an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of Earth but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.

  17. Then Why Do They Call Earth the Blue Planet?

    Science.gov (United States)

    2005-01-01

    While the most common photographs of Earth taken from space show the planet covered in blue water, NASA has managed to produce detailed color images, using satellite imagery, that show the remarkable variation of colors that actually make up the oceanic surface. An ocean s color is determined by the interaction of surface waters with sunlight, and surface waters can contain any number of different particles and dissolved substances, which could then change the color. Then Why Do They Call Earth the Blue Planet? The particles are mostly phytoplankton, the microscopic, single-celled ocean plants that are the primary food source for much marine life. Remote detection of phytoplankton provides information about the uptake and cycling of carbon by the ocean through photosynthesis, as well as the overall health of the water. Inorganic particles and substances dissolved in the water also affect its color, particularly in coastal regions. Satellite images can be used to calculate the concentrations of these materials in surface waters, as well as the levels of biological activity. The satellites allow a global view that is not available from ship or shore. NASA s orbiting satellites offer a unique vantage point for studying the oceans. By resolving the biological, chemical, and physical conditions in surface waters, they have allowed the oceanographic community to make huge leaps in its understanding of oceanographic processes on regional and global fronts. The study of ocean color, in particular, has been integral in helping researchers understand the natural and human-induced changes in the global environment and establishing the role of the oceans in the biochemical cycles of elements that influence the climate and the distribution of life on Earth.

  18. High-resolution simulations of the final assembly of Earth-like planets 1: terrestrial accretion and dynamics

    CERN Document Server

    Raymond, S N; Lunine, J I; Raymond, Sean N.; Quinn, Thomas; Lunine, Jonathan I.

    2005-01-01

    The final stage in the formation of terrestrial planets consists of the accumulation of ~1000-km ``planetary embryos'' and a swarm of billions of 1-10 km ``planetesimals.'' During this process, water-rich material is accreted by the terrestrial planets via impacts of water-rich bodies from beyond roughly 2.5 AU. We present results from five high-resolution dynamical simulations. These start from 1000-2000 embryos and planetesimals, roughly 5-10 times more particles than in previous simulations. Each simulation formed 2-4 terrestrial planets with masses between 0.4 and 2.6 Earth masses. The eccentricities of most planets were ~0.05, lower than in previous simulations, but still higher than for Venus, Earth and Mars. Each planet accreted at least the Earth's current water budget. We demonstrate several new aspects of the accretion process: 1) The feeding zones of terrestrial planets change in time, widening and moving outward. Even in the presence of Jupiter, water-rich material from beyond 2.5 AU is not accret...

  19. Optical Images of an Exosolar Planet 25 Light Years from Earth

    Energy Technology Data Exchange (ETDEWEB)

    Kalas, P; Graham, J R; Chiang, E; Fitzgerald, M P; Clampin, M; Kite, E S; Stapelfeldt, K; Krist, J

    2008-11-12

    Fomalhaut is a bright star 7.7 parsec (25 light years) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star, and within 18 AU of the dust belt. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 {micro}m is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 {micro}m and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 {micro}m.

  20. Optical Images of an Exosolar Planet 25 Light-Years from Earth

    Science.gov (United States)

    Clampin, Mark

    2008-01-01

    Fomalhaut is a bright star 7.7 parsec (25 light year) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate. Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star, and within 18 All of the dust belt. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 micron flux is also consistent with that of a planet with mass a few limes that of Jupiter. The brightness at 0.6 microns and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 microns.

  1. Optical Images of an Exosolar Planet 25 Light Years from Earth

    Science.gov (United States)

    Kalas, Paul; Graham, James R.; Chiang, Eugene; Fitzgerald, Michael P.; Clampin, Mark; Kite, Edwin S.; Stapelfeldt, Karl; Marois, Christian; Krist, John

    2008-01-01

    Fomalhaut is a bright star 7.7 parsecs (25 light years) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star and 18 AU from the dust belt, matching predictions. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 m is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 micron and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 micron.

  2. No large population of unbound or wide-orbit Jupiter-mass planets

    Science.gov (United States)

    Mróz, Przemek; Udalski, Andrzej; Skowron, Jan; Poleski, Radosław; Kozłowski, Szymon; Szymański, Michał K.; Soszyński, Igor; Wyrzykowski, Łukasz; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2017-08-01

    Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions as well as wide-field surveys, but these studies are incomplete for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis of 474 microlensing events found an excess of ten very short events (1-2 days)—more than known stellar populations would suggest—indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories and surveys of young clusters. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010-15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1-2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories.

  3. THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Dressing, Courtney D.; Charbonneau, David; Dumusque, Xavier; Gettel, Sara; Latham, David W.; Buchhave, Lars A.; Johnson, John Asher; Lopez-Morales, Mercedes [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pepe, Francesco; Udry, Stéphane; Lovis, Christophe [Observatoire Astronomique de l' Université de Genève, 51 ch. des Maillettes, 1290 Versoix (Switzerland); Collier Cameron, Andrew; Haywood, Raphaëlle D. [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews Fife KY16 9SS (United Kingdom); Molinari, Emilio; Cosentino, Rosario; Fiorenzano, Aldo F. M.; Harutyunyan, Avet [INAF - Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, E-38712 Breña Baja (Spain); Affer, Laura [INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90124 Palermo (Italy); Bonomo, Aldo S. [INAF - Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Figueira, Pedro, E-mail: cdressing@cfa.harvard.edu [Centro de Astrofìsica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); and others

    2015-02-20

    Kepler-93b is a 1.478 ± 0.019 R {sub ⊕} planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 M {sub ☉} and a radius of 0.919 ± 0.011 R {sub ☉}. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M {sub ⊕}. The corresponding high density of 6.88 ± 1.18 g cm{sup –3} is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M {sub ⊕}, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses >6 M {sub ⊕}. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M {sub ⊕} planets.

  4. The International Year of Planet Earth: Evaluation and Perspectives

    Science.gov (United States)

    de Mulder, Eduardo

    2010-05-01

    The International Year of Planet Earth (IYPE) was initiated by the International Union of Geological Sciences (IUGS) and UNESCO and has been active in the period 2007-2009. The IYPE was proclaimed by the General Assembly of the United Nations for 2008. The International Year aims to raise public and political awareness of the relevance of the Earth sciences for society and in particular to use such knowledge more effectively in decision making to contribute to safer, healthier and more prosperous societies around the world. Following UN proclamation the IYPE Corporation was developed and 80 countries and regions joined the initiative by creating National IYPE Committees. The IYPE Science program focused on 10 themes: groundwater, health, climate, hazards, natural resources, (meg)cities, soils, oceans, deep Earth and life. But IYPE's aims and ambitions were most prominently addressed through its extensive and successful outreach program. This presentation reviews its activities from an international perspective. New initiatives that emerged from the IYPE legacy will be presented.

  5. Origin and Ubiquity of Short-Period Earth-like Planets: Evidence for the Sequential-Accretion Theory of Planet Formation

    CERN Document Server

    Zhou, J L; Lin, D N C; Nagasawa, M

    2005-01-01

    The formation of gas giant planets is assumed to be preceded by the emergence of solid cores in the conventional sequential-accretion paradigm. This hypothesis implies that the presence of earth-like planets can be inferred from the detection of gas giants. A similar prediction cannot be made with the gravitational instability (hereafter GI) model which assumes that gas giants (hereafter giants) formed from the collapse of gas fragments analogous to their host stars. We propose an observational test for the determination of the dominant planet-formation channel. Based on the sequential-accretion (hereafter SA) model, we identify several potential avenues which may lead to the prolific formation of a population of close-in earth-mass ($M_\\oplus$) planets (hereafter close-in earths) around stars with 1) short-period or 2) solitary eccentric giants and 3) systems which contain intermediate-period resonant giants. In contrast, these close-in earths are not expected to form in systems where giants originated rapid...

  6. Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes

    Science.gov (United States)

    Stassun, Keivan G.; Collins, Karen A.; Gaudi, B. Scott

    2017-03-01

    We present empirical measurements of the radii of 116 stars that host transiting planets. These radii are determined using only direct observables—the bolometric flux at Earth, the effective temperature, and the parallax provided by the Gaia first data release—and thus are virtually model independent, with extinction being the only free parameter. We also determine each star’s mass using our newly determined radius and the stellar density, a virtually model independent quantity itself from previously published transit analyses. These stellar radii and masses are in turn used to redetermine the transiting-planet radii and masses, again using only direct observables. The median uncertainties on the stellar radii and masses are 8% and 30%, respectively, and the resulting uncertainties on the planet radii and masses are 9% and 22%, respectively. These accuracies are generally larger than previously published model-dependent precisions of 5% and 6% on the planet radii and masses, respectively, but the newly determined values are purely empirical. We additionally report radii for 242 stars hosting radial-velocity (non-transiting) planets, with a median achieved accuracy of ≈2%. Using our empirical stellar masses we verify that the majority of putative “retired A stars” in the sample are indeed more massive than ∼1.2 {M}ȯ . Most importantly, the bolometric fluxes and angular radii reported here for a total of 498 planet host stars—with median accuracies of 1.7% and 1.8%, respectively—serve as a fundamental data set to permit the re-determination of transiting-planet radii and masses with the Gaia second data release to ≈3% and ≈5% accuracy, better than currently published precisions, and determined in an entirely empirical fashion.

  7. The Maximal Runaway Temperature of Earth-like Planets

    CERN Document Server

    Shaviv, Nir J; Wehrse, Rainer

    2012-01-01

    We generalize the problem of the semi-gray model to cases in which a non-negligible fraction of the stellar radiation falls on the long-wavelength range, and/or that the planetary long-wavelength emission penetrates into the transparent short wavelength domain of the absorption. Second, applying the most general assumptions and independently of any particular properties of an absorber, we show that the greenhouse effect saturates and any Earth-like planet has a maximal temperature which depends on the type of and distance to its main-sequence star, its albedo and the primary atmospheric components which determine the cutoff frequency below which the atmosphere is optically thick. For example, a hypothetical convection-less planet similar to Venus, that is optically thin in the visible, could have at most a surface temperature of 1200-1300K irrespective of the nature of the greenhouse gas. We show that two primary mechanisms are responsible for the saturation of the runaway greenhouse effect, depending on the ...

  8. Cosmic Rays in Magnetospheres of the Earth and other Planets

    CERN Document Server

    Dorman, Lev

    2009-01-01

    This monograph describes the behaviour of cosmic rays in the magnetosphere of the Earth and of some other planets. Recently this has become an important topic both theoretically, because it is closely connected with the physics of the Earth’s magnetosphere, and practically, since cosmic rays determine a significant part of space weather effects on satellites and aircraft. The book contains eight chapters, dealing with – The history of the discovery of geomagnetic effects caused by cosmic rays and their importance for the determination of the nature of cosmic rays or gamma rays – The first explanations of geomagnetic effects within the framework of the dipole approximation of the Earth’s magnetic field – Trajectory computations of cutoff rigidities, transmittance functions, asymptotic directions, and acceptance cones in the real geomagnetic field taking into account higher harmonics – Cosmic ray latitude-longitude surveys on ships, trains, tracks, planes, balloons and satellites for determining the...

  9. Habitability and Multistability in Earth-like Planets

    CERN Document Server

    Lucarini, Valerio; Boschi, Robert; Kirk, Edilbert; Iro, Nicolas

    2013-01-01

    We explore the potential multistability of the climate for a planet around the habitable zone. We focus on conditions reminiscent to those of the Earth system, but our investigation aims at presenting a general methodology for dealing with exoplanets. We provide a thorough analysis of the non-equilibrium thermodynamical properties of the climate system and explore, using a a flexible climate model, how such properties depend on the energy input of the parent star, on the infrared atmospheric opacity, and on the rotation rate. It is possible to reproduce the multi-stability properties reminiscent of the paleoclimatologically relevant snowball (SB) - warm (W) conditions. We then study the thermodynamics of the W and SB states, clarifying the role of the hydrological cycle in shaping the irreversibility and the efficiency of the W states, and emphasizing the extreme diversity of the SB states, where dry conditions are realized. Thermodynamics provides the clue for studying the tipping points of the system and le...

  10. Carbon trading, climate change, environmental sustainability and saving planet Earth

    Science.gov (United States)

    Yim, W. W.

    2009-12-01

    Carbon trading namely the reduction of future carbon dioxide levels has been widely touted as a solution needed to counter the problem of climate change. However, there are enormous risks involved as the measure tackles only one of the causes of climate change and may prove to be ineffective. This presentation highlights ten points relevant to the discussion on carbon trading, climate change, environmental sustainability and saving planet Earth for increasing public awareness. They include: (1) Climate has changed throughout Earth’s history. (2) The present level of about 388 parts per million level of carbon dioxide in the atmosphere has already exceeded the maximum level of the past 800,000 years. This value is obtained from air bubbles trapped within the ice in Antarctica but the consequence of further increases remains uncertain. (3) Earth scientists do not have an overwhelming consensus on whether carbon trading alone is an effective measure in mitigating climate change. (4) The present state of the Earth’s demise is largely the result of human actions including population growth and the mismanagement of the Earth. (5) The latest evidence on sea-level changes in the South China Sea a far-field region unaffected by glacial isostatic readjustment is not in support of a ‘rapid’ rate of future sea-level rise through global warming. (6) Volcanic eruptions have an important role in driving the Earth’s climate. Examples of temperature lowering as well as abnormally wet and dry years can both be found in the instrumental record. (7) Humans have drastically modified the ‘natural’ water cycle. This is however not a well recognized cause of climate change compared to the emission of greenhouse gases through fossil fuel consumption. (8) The bulk (~75%) of the rise in mean annual temperature of about 1oC observed at the Hong Kong Observatory Station since record began in 1884 is best explained by the thermal heat island effect. (9) No evidence has been found

  11. The International Year of Planet Earth (2007-2009):Earth Sciences for Society

    Institute of Scientific and Technical Information of China (English)

    Eduardo F.J.de Mulder; Ted Nield; Edward Derbyshire

    2006-01-01

    Natural disasters like the 2004 tsunami bear graphic testimony to the Earth's incredible power. More effective use of geoscientific knowledge can save lives and protect property. Such knowledge also enables us to satisfy, in a sustainable manner,the growing need for Earth's resources by an expanding human population. Such knowledge is readily available in the practical experience and publications of some half a million Earth scientists all over the world, a professional community that is ready and willing to contribute to a safer, healthier and wealthier society if called upon by politicians and decision makers. Professional guidance by Earth scientists is available in many aspects of everyday life including, for example, identification of the best areas for urban expansion, sites to avoid for waste disposal, the location of new underground fresh water resources, and where certain toxic agents implicated in Earth-related diseases may be located, etc.The International Year of Planet Earth (2007-2009) aims to build on existing knowledge and make it more available for the improvement of everyday life, especially in the less developed countries, as expressed in the Year's subtitle: Earth sciences for Society. Ambitious outreach and science programmes constitute the backbone of the International Year, now politically endorsed by all 191 member states of the United Nations Organisation which has proclaimed 2008, the central year of the triennium, as the UN Year of Planet Earth. This paper describes who is behind the initiative,how it will work, and how the political process leading to United Nations proclamation proceeded. It also describes the financial and organisational aspects of the International Year, sets out the commitments necessary for the realization of the Year's ambitions by all nations, and explains how the raising of US$ 20 million will be approached.

  12. MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Cushing, Michael [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Ackerman, Andrew S. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Freedman, Richard, E-mail: Mark.S.Marley@NASA.gov, E-mail: dsaumon@lanl.gov, E-mail: michael.cushing@utoledo.edu, E-mail: andrew.ackerman@nasa.gov, E-mail: jfortney@ucolick.org, E-mail: freedman@darkstar.arc.nasa.gov [SETI Institute and NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)

    2012-08-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Some studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here, we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike some previous studies, we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are not unusual but rather follow previously recognized trends, including a gravity dependence on the temperature of the L to T spectral transition-some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to whether or not we include the H- and the K-band spectrum in our analysis. Solutions for planets c and d are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that, like in L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present an exploratory evolution calculation that accounts for this effect. Finally we recompute the bolometric luminosity of all three planets.

  13. The twin sister planets Venus and Earth why are they so different?

    CERN Document Server

    Malcuit, Robert J

    2014-01-01

    This book explains how it came to be that Venus and Earth, while very similar in chemical composition, zonation, size and heliocentric distance from the Sun, are very different in surface environmental conditions. It is argued here that these differences can be accounted for by planetoid capture processes and the subsequent evolution of the planet-satellite system. Venus captured a one-half moon-mass planetoid early in its history in the retrograde direction and underwent its "fatal attraction scenario" with its satellite (Adonis). Earth, on the other hand, captured a moon-mass planetoid (Luna) early in its history in prograde orbit and underwent a benign estrangement scenario with its captured satellite.

  14. Prevalence of Earth-size planets orbiting Sun-like stars.

    Science.gov (United States)

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  15. Mission to Planet Earth. Strategic enterprise plan, 1995-2000

    Science.gov (United States)

    1995-01-01

    Mission to Planet Earth (MTPE) provides long-term understanding of the earth system needed to protect and improve our environment, now and for future generations. This MTPE Strategic Enterprise Plan states how NASA intends to meet its responsibility to the Nation for developing a long-term, integrated program of environmental observation in support of informed decision-making. This plan implements the NASA Strategic Plan for the MTPE Enterprise; it is the first version of a rolling 5-year plan that will be updated annually. It is consistent with the interagency program developed by the Committee on Environment and Natural Resources of the National Science and Technology Council and implemented in large part through the U.S. Global Change Research Program. This report consists of the following sections: (1) introduction; (2) scientific foundation; (3) mission (destination and purposes); (4) principle of operation (ethical and quality assurance standards); (5) customer base (to ensure that the right products and services are delivered); (6) internal and external assessments; (7) assumptions; (8) goals, objectives, and strategies; (9) linkages to other strategic enterprises; and (10) summary.

  16. Mission to Planet Earth. Strategic enterprise plan, 1995-2000

    Science.gov (United States)

    1995-05-01

    Mission to Planet Earth (MTPE) provides long-term understanding of the earth system needed to protect and improve our environment, now and for future generations. This MTPE Strategic Enterprise Plan states how NASA intends to meet its responsibility to the Nation for developing a long-term, integrated program of environmental observation in support of informed decision-making. This plan implements the NASA Strategic Plan for the MTPE Enterprise; it is the first version of a rolling 5-year plan that will be updated annually. It is consistent with the interagency program developed by the Committee on Environment and Natural Resources of the National Science and Technology Council and implemented in large part through the U.S. Global Change Research Program. This report consists of the following sections: (1) introduction; (2) scientific foundation; (3) mission (destination and purposes); (4) principle of operation (ethical and quality assurance standards); (5) customer base (to ensure that the right products and services are delivered); (6) internal and external assessments; (7) assumptions; (8) goals, objectives, and strategies; (9) linkages to other strategic enterprises; and (10) summary.

  17. An Earth-sized planet in the habitable zone of a cool star.

    Science.gov (United States)

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  18. An Earth-sized Planet in the Habitable Zone of a Cool Star

    CERN Document Server

    Quintana, Elisa V; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-01-01

    The quest for Earth-like planets represents a major focus of current exoplanet research. While planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surface. We present the detection of Kepler-186f, a 1.11+\\-0.14 Earth radius planet that is the outermost of five planets - all roughly Earth-sized - that transit a 0.47+\\-0.05 Rsun star. The intensity and spectrum of the star's radiation places Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and H2O at its surface, then some of this H2O is likely to be in liquid form.

  19. What is the Mass of a Gap-opening Planet?

    Science.gov (United States)

    Dong, Ruobing; Fung, Jeffrey

    2017-02-01

    High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h, and to constrain the quantity Mp2/α, where Mp is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10‑3, the derived planet masses in all cases are roughly between 0.1 and 1 MJ.

  20. Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets

    Science.gov (United States)

    Barnes, J. R.; Jenkins, J. S.; Jones, H. R. A.; Rojo, P.; Arriagada, P.; Jordán, A.; Minniti, D.; Tuomi, M.; Jeffers, S. V.; Pinfield, D.

    2013-04-01

    We present radial velocity results from our Red Optical Planet Survey (ROPS), aimed at detecting low-mass planets orbiting mid-late M dwarfs. The ˜10 ms-1 precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms-1 using our novel deconvolution technique, we are limited only by the (≤10 ms-1) stability of atmospheric lines. Rocky planet frequencies of η⊕ = 0.3-0.7 lead us to expect high planet yields, enabling determination of η⊕ for the uncharted mid-late M dwarfs with modest surveys.

  1. Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets

    Directory of Open Access Journals (Sweden)

    Minniti D.

    2013-04-01

    Full Text Available We present radial velocity results from our Red Optical Planet Survey (ROPS, aimed at detecting low-mass planets orbiting mid-late M dwarfs. The ∼10 ms−1 precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms−1 using our novel deconvolution technique, we are limited only by the (≤10 ms−1 stability of atmospheric lines. Rocky planet frequencies of η⊕ = 0.3−0.7 lead us to expect high planet yields, enabling determination of η⊕ for the uncharted mid-late M dwarfs with modest surveys.

  2. The Mass-Radius Relation Between 60 Exoplanets Smaller than 4 Earth Radii

    CERN Document Server

    Weiss, Lauren M

    2013-01-01

    We study the masses and radii of 60 exoplanets smaller than 4 Earth radii with orbital periods shorter than 100 days. We find a nearly linear mass-radius relation: M/M_E= 3.17 (R/R_E)^0.87, which is a shallower power-law index than in many previous mass-radius relations. The RMS of planet masses to this fit is 3.9 Earth masses, and our best fit has reduced chi squared = 3.1, indicating a diversity in planet compositions below 4 Earth radii. Fitting density vs. radius with a polynomial, we find planet density = 11.50 - 5.97 (R/R_E) + 0.84 (R/R_E)^2. The mass-radius and mass-density relations reflect that planet density decreases as radius increases, indicating that larger exoplanets have a significant fraction of volatiles by volume (such as H/He envelopes). Exoplanets have densities comparable to that of Earth at R = 1.5 R_E, indicating likely rocky compositions among planets smaller than 1.5 Earth radii. The scaling of the mass-radius relationship for exoplanets smaller than 1.5 Earth radii is not well-const...

  3. Fu Ori outbursts and the planet-disc mass exchange

    CERN Document Server

    Nayakshin, Sergei

    2011-01-01

    It has been recently proposed that giant protoplanets migrating inward through the disc more rapidly than they contract could be tidally disrupted when they fill their Roche lobes ~ 0.1 AU away from their parent protostars. Here we consider the process of mass and angular momentum exchange between the tidally disrupted planet and the surrounding disc in detail. We find that the planet's adiabatic mass-radius relation and its ability to open a deep gap in the disc determine whether the disruption proceeds as a sudden runaway or a balanced quasi-static process. In the latter case the planet feeds the inner disc through its Lagrangian L1 point like a secondary star in a stellar binary system. As the planet loses mass it gains specific angular momentum and normally migrates in the outward direction until the gap closes. Numerical experiments show that planet disruption outbursts are preceded by long "quiescent" periods during which the disc inward of the planet is empty. The hole in the disc is created when the p...

  4. Prevalence of Earth-size planets orbiting Sun-like stars

    CERN Document Server

    Petigura, Erik A; Marcy, Geoffrey W

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size (1-2 Earth-radii) and receive comparable levels of stellar energy to that of Earth (within a factor of four). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that $11\\pm4%$ of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to $\\sim200$ d. Extrapolating, one finds $5.7^{+1.7}_{-2.2}%$ of Sun-like s...

  5. Two Transiting Earth-size Planets Near Resonance Orbiting a Nearby Cool Star

    CERN Document Server

    Petigura, Erik A; Crossfield, Ian J M; Howard, Andrew W; Deck, Katherine M; Ciardi, David R; Sinukoff, Evan; Allers, Katelyn N; Best, William M J; Liu, Michael C; Beichman, Charles A; Isaacson, Howard; Hansen, Brad M S; Lépine, Sébastien

    2015-01-01

    Discoveries from the prime Kepler mission demonstrated that small planets (< 3 Earth-radii) are common outcomes of planet formation. While Kepler detected many such planets, all but a handful orbit faint, distant stars and are not amenable to precise follow up measurements. Here, we report the discovery of two small planets transiting EPIC-206011691, a bright (K = 9.4) M0 dwarf located 65$\\pm$6 pc from Earth. We detected the transiting planets in photometry collected during Campaign 3 of NASA's K2 mission. Analysis of transit light curves reveals that the planets have small radii compared to their host star, 2.60 $\\pm$ 0.14% and 3.15 $\\pm$ 0.20%, respectively. We obtained follow up NIR spectroscopy of \\epic to constrain host star properties, which imply planet sizes of 1.59 $\\pm$ 0.43 Earth-radii and 1.92 $\\pm$ 0.53 Earth-radii, respectively, straddling the boundary between high-density, rocky planets and low-density planets with thick gaseous envelopes. The planets have orbital periods of 9.32414 days and...

  6. A path to the detection of Earth-type planets (Jean Dominique Cassini Medal Lecture)

    Science.gov (United States)

    Mayor, Michel

    2016-04-01

    "How many planets in the Milky Way?", "How many planets similar to our Earth?" On the last twenty years, significant results have been obtained in the domain of extrasolar planets. More than two thousand planets have characterized orbits, for several hundred of them their radii are known. We have discovered an amazing diversity of planetary systems. These observations have revealed the importance of new physical process to be taken into account for the formation and evolution of planetary systems. The synergy between ground-based radial velocity measurements and the detection of transiting planets have permitted exciting possibilities to characterize planets. Already we have the possibility to get clues on the internal composition of exoplanets and their atmosphere. Do we have the instrumental capabilities to detect and study planets as Earth analogues? What are the intruments in development and their scientific goals.

  7. Scientists Plot Search For Earth--Like Planets

    Institute of Scientific and Technical Information of China (English)

    Andrew; Quinn; 金月芹

    1999-01-01

    1999年5月22日清晨,在Internet上读到此文,兴奋异常。遥望那无垠的、群星闪烁的夜空,人类很早就在思考:Are we alone in the universe?许多科幻小说中描写的外星人,更点燃了人类的想象。人们在无法解开金字塔的建造之谜时,仰望太空,猜测那是外星人在地球上留下的杰作;人们在惊叹UFO的神秘行踪时,也翘首天际,设想那是外星人在向我们暗递的“秋波”!今天,人类的科技终于驶入了一个新时代,能够更精确更清晰更自信地去探求茫茫宇宙里的奥秘。这篇报道的第一句就足以让我们欣喜: Somewhere,in a star system porhaps not so far away,lies a″ pale bluedot″which could be a planet much like Earth. 在这个淡蓝色的小点(pale blue dot)上也许就生活着人类的邻居。美国的一群科学家们上周就聚首在位于加州的NASA(国家航空和航天局)researchcenter,这次科学聚会就被称为The″Pale Blue Dot″Conference!再过10年,一个名为Terrestrial Planet Finder的宇宙望远镜将投入使用,届时,它将提供比目前的哈勃望远镜清晰100倍的图象。 美国亚利桑那州的的一位天文学家这样断言: Life on earth is by no means the only kind of life that can exist. 在即将过去的20世纪,人类登上了月球,失望地发现,那里除了环形山?

  8. Gravitational mechanism of active life of the Earth, planets and satellites

    Science.gov (United States)

    Barkin, Yury

    2010-05-01

    From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial

  9. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bagnulo, S. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Kowalski, P. M. [GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam (Germany); Shulyak, D. V. [Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Sterzik, M. F., E-mail: l.fossati@open.ac.uk, E-mail: C.A.Haswell@open.ac.uk, E-mail: M.R.Patel@open.ac.uk, E-mail: r.busuttil@open.ac.uk, E-mail: sba@arm.ac.uk, E-mail: kowalski@gfz-potsdam.de, E-mail: denis.shulyak@gmail.com, E-mail: msterzik@eso.org [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-09-20

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for {approx}8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10{sup 2} (10{sup 4}) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M{sub Sun} white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  10. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    Science.gov (United States)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  11. CO2 condensation is a serious limit to the deglaciation of Earth-like planets

    Science.gov (United States)

    Turbet, Martin; Forget, Francois; Leconte, Jeremy; Charnay, Benjamin; Tobie, Gabriel

    2017-10-01

    It is widely believed that the carbonate-silicate cycle is the main agent, through volcanism, to trigger deglaciations by CO2 greenhouse warming on Earth and on Earth-like planets when they get in a frozen state. Here we use a 3D Global Climate Model to simulate the ability of planets initially completely frozen to escape from glaciation episodes by accumulating enough gaseous CO2. The model includes CO2 condensation and sublimation processes and the water cycle. We find that planets with Earth-like characteristics (size, mass, obliquity, rotation rate, etc.) orbiting a Sun-like star may never be able to escape from a glaciation era, if their orbital distance is greater than ∼1.27 Astronomical Units (Flux pressures ( 0.6), this critical limit could occur at a significantly lower equivalent distance (or higher insolation). For each possible configuration, we show that the amount of CO2 that can be trapped in the polar caps depends on the efficiency of CO2 ice to flow laterally as well as its gravitational stability relative to subsurface water ice. We find that a frozen Earth-like planet located at 1.30 AU of a Sun-like star could store as much as 1.5, 4.5 and 15 bars of dry ice at the poles, for internal heat fluxes of 100, 30 and 10 mW m-2, respectively. But these amounts are in fact lower limits. For planets with a significant water ice cover, we show that CO2 ice deposits should be gravitationally unstable. They get buried beneath the water ice cover in geologically short timescales of ∼104 yrs, mainly controlled by the viscosity of water ice. CO2 would be permanently sequestered underneath the water ice cover, in the form of CO2 liquids, CO2 clathrate hydrates and/or dissolved in subglacial water reservoirs (if any). This would considerably increase the amount of CO2 trapped and further reduce the probability of deglaciation.

  12. A Venus-Mass Planet Orbiting a Brown Dwarf: Missing Link between Planets and Moons

    CERN Document Server

    Udalski, A; Han, C; Gould, A; Kozlowski, S; Skowron, J; Poleski, R; Soszyński, I; Pietrukowicz, P; Mróz, P; Szymański, M K; Wyrzykowski, Ł; Ulaczyk, K; Pietrzyński, G; Shvartzvald, Y; Maoz, D; Kaspi, S; Gaudi, B S; Hwang, K -H; Choi, J -Y; Shin, I -G; Park, H; Bozza, V

    2015-01-01

    The co-planarity of solar-system planets led Kant to suggest that they formed from an accretion disk, and the discovery of hundreds of such disks around young stars as well as hundreds of co-planar planetary systems by the {\\it Kepler} satellite demonstrate that this formation mechanism is extremely widespread. Many moons in the solar system, such as the Galilean moons of Jupiter, also formed out of the accretion disks that coalesced into the giant planets. We report here the discovery of an intermediate system OGLE-2013-BLG-0723LB/Bb composed of a Venus-mass planet orbiting a brown dwarf, which may be viewed either as a scaled down version of a planet plus star or as a scaled up version of a moon plus planet orbiting a star. The latter analogy can be further extended since they orbit in the potential of a larger, stellar body. For ice-rock companions formed in the outer parts of accretion disks, like Uranus and Callisto, the scaled masses and separations of the three types of systems are similar, leading us ...

  13. The role of dynamics on the habitability of an Earth-like planet

    CERN Document Server

    Pilat-Lohinger, E

    2015-01-01

    From the numerous detected planets outside the Solar system, no terrestrial planet comparable to our Earth has been discovered so far. The search for an Exo-Earth is certainly a big challenge which may require the detections of planetary systems resembling our Solar system in order to find life like on Earth. However, even if we find Solar system analogues, it is not certain that a planet in Earth position will have similar circumstances as those of Earth. Small changes in the architecture of the giant planets can lead to orbital perturbations which may change the conditions of habitability for a terrestrial planet in the habitable zone (HZ). We present a numerical investigation where we first study the motion of test-planets in a particular Jupiter-Saturn configuration for which we can expect strong gravitational perturbations on the motion at Earth position according to a previous work. In this study, we show that these strong perturbations can be reduced significantly by the neighboring planets of Earth. I...

  14. Fast migration of low-mass planets in radiative discs

    Science.gov (United States)

    Pierens, A.

    2015-12-01

    Low-mass planets are known to undergo Type I migration and this process must have played a key role during the evolution of planetary systems. Analytical formulae for the disc torque have been derived assuming that the planet evolves on a fixed circular orbit. However, recent work has shown that in isothermal discs, a migrating protoplanet may also experience dynamical corotation torques that scale with the planet drift rate. The aim of this study is to examine whether dynamical corotation torques can also affect the migration of low-mass planets in non-isothermal discs. We performed 2D radiative hydrodynamical simulations to examine the orbital evolution outcome of migrating protoplanets as a function of disc mass. We find that a protoplanet can enter a fast migration regime when it migrates in the direction set by the entropy-related horseshoe drag and when the Toomre stability parameter is less than a threshold value below which the horseshoe region contracts into a tadpole-like region. In that case, an underdense trapped region appears near the planet, with an entropy excess compared to the ambient disc. If the viscosity and thermal diffusivity are small enough so that the entropy excess is conserved during migration, the planet then experiences strong corotation torques arising from the material flowing across the planet orbit. During fast migration, we observe that a protoplanet can pass through the zero-torque line predicted by static torques. We also find that fast migration may help in disrupting the mean-motion resonances that are formed by convergent migration of embryos.

  15. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard

    2012-01-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color

  16. Could We Detect Molecular Oxygen in the Atmosphere of a Transiting Extra-Solar Earth-Like Planet?

    CERN Document Server

    Webb, J K; Webb, John K.; Wormleaton, Imma

    2001-01-01

    Although the extra-solar planets discovered so far are of the giant, gaseous, type, the increased sensitivity of future surveys will result in the discovery of lower mass planets. The detection of O2 in the atmosphere of a rocky extra-solar planet would be a potential indicator of a life. In this paper we address the specific issue of whether we would be able to detect the O2 A-band absorption feature in the atmosphere of a planet similar to the Earth, if it were in orbit around a nearby star. Our method is empirical, in that we use observations of the Earth's O2 A-band, with a simple geometric modification for a transiting extra-solar planet, allowing for limb-darkening of the host star. We simulate the spectrum of the host star with the superposed O2 A-band absorption of the transiting planet, assuming a spectral resolution of 7 km/s (typical of current echelle spectrographs), for a range of spectral signal-to-noise ratios. The main result is that we could reliably detect the O2 A-band of the transiting pla...

  17. Models of Polarized Light from Oceans and Atmospheres of Earth-like Extrasolar Planets

    CERN Document Server

    McCullough, P R

    2006-01-01

    Specularly reflected light, or glint, from an ocean surface may provide a useful observational tool for studying extrasolar terrestrial planets. Detection of sea-surface glints would differentiate ocean-bearing terrestrial planets, i.e. those similar to Earth, from other terrestrial extrasolar planets. The brightness and degree of polarization of both sea-surface glints and atmospheric Rayleigh scattering are strong functions of the phase angle of the extrasolar planet. We modify analytic expressions for the bi-directional reflectances previously validated by satellite imagery of the Earth to account for the fractional linear polarization of sea-surface reflections and of Rayleigh scattering in the atmosphere. We compare our models with Earth's total visual light and degree of linear polarization as observed in the ashen light of the Moon, or Earthshine. We predict the spatially-integrated reflected light and its degree of polarization as functions of the diurnal cycle and orbital phase of Earth and Earth-lik...

  18. A CONTINUUM OF PLANET FORMATION BETWEEN 1 AND 4 EARTH RADII

    Energy Technology Data Exchange (ETDEWEB)

    Schlaufman, Kevin C., E-mail: kschlauf@mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-02-01

    It has long been known that stars with high metallicity are more likely to host giant planets than stars with low metallicity. Yet the connection between host star metallicity and the properties of small planets is only just beginning to be investigated. It has recently been argued that the metallicity distribution of stars with exoplanet candidates identified by Kepler provides evidence for three distinct clusters of exoplanets, distinguished by planet radius boundaries at 1.7 R{sub ⨁} and 3.9 R{sub ⨁}. This would suggest that there are three distinct planet formation pathways for super-Earths, mini-Neptunes, and giant planets. However, as I show through three independent analyses, there is actually no evidence for the proposed radius boundary at 1.7 R{sub ⨁}. On the other hand, a more rigorous calculation demonstrates that a single, continuous relationship between planet radius and metallicity is a better fit to the data. The planet radius and metallicity data therefore provides no evidence for distinct categories of small planets. This suggests that the planet formation process in a typical protoplanetary disk produces a continuum of planet sizes between 1 R{sub ⨁} and 4 R{sub ⨁}. As a result, the currently available planet radius and metallicity data for solar-metallicity F and G stars give no reason to expect that the amount of solid material in a protoplanetary disk determines whether super-Earths or mini-Neptunes are formed.

  19. Maximum number of habitable planets at the time of Earth's origin: new hints for panspermia?

    Science.gov (United States)

    von Bloh, Werner; Franck, Siegfried; Bounama, Christine; Schellnhuber, Hans-Joachim

    2003-04-01

    New discoveries have fuelled the ongoing discussion of panspermia, i.e. the transport of life from one planet to another within the solar system (interplanetary panspermia) or even between different planetary systems (interstellar panspermia). The main factor for the probability of interstellar panspermia is the average density of stellar systems containing habitable planets. The combination of recent results for the formation rate of Earth-like planets with our estimations of extrasolar habitable zones allows us to determine the number of habitable planets in the Milky Way over cosmological time scales. We find that there was a maximum number of habitable planets around the time of Earth's origin. If at all, interstellar panspermia was most probable at that time and may have kick-started life on our planet.

  20. Reestablishing Kepler_s first two laws for planets from the non_stationary Earth

    CERN Document Server

    Hsiang, W Y; Yao, H; Lee, P S

    2014-01-01

    The Earth itself is not stationary but keeps revolving, and its motion further satisfies the law of equal area according to the heliocentric doctrine. That satisfaction can be used to construct the mathematical relationships between the planet_Sun and Earth_Sun distances. The law of equal area for planets can hence be reestablished naturally from the moving Earth using the observed angular speed of a planet over the Sun. Furthermore, for the periodicity of a planet to the Sun, the distance from each planet to the Sun may be expressed as an angular periodic function. By coordinating with the observed data, this periodic distance function depicts an exact elliptical path. Here, we apply relatively simple mathematical skills to illustrate the invariant forms of planetary motions and indicate the key factors used to analyze the motions in complicated planetary systems.

  1. Photometric Follow-up Observations of the Transiting Neptune-Mass Planet GJ 436b

    CERN Document Server

    Shporer, Avi; Winn, Joshua N; Holman, Matthew J; Latham, David W; Pont, Frederic; Esquerdo, Gilbert A

    2008-01-01

    This paper presents multi-band photometric follow-up observations of the Neptune-mass transiting planet GJ 436b, consisting of 5 new ground-based transit light curves obtained in May 2007. Together with one already published light curve we have at hand a total of 6 light curves, spanning 29 days. The analysis of the data yields an orbital period P = 2.64386+-0.00003 days, mid-transit time T_c [HJD] =2454235.8355+-0.0001, planet mass M_p = 23.1+-0.9 M_{\\earth} = 0.073+-0.003 M_{Jup}, planet radius R_p = 4.2+-0.2 R_{\\earth} = 0.37+-0.01 R_{Jup} and stellar radius R_s = 0.45+-0.02 R_{\\sun}. Our typical precision for the mid transit timing for each transit is about 30 seconds. We searched the data for a possible signature of a second planet in the system through transit timing variations (TTV) and variation of the impact parameter. The analysis could not rule out a small, of the order of a minute, TTV and a long-term modulation of the impact parameter, of the order of +0.2 year^{-1}.

  2. The atmospheres of the earth and the other planets: Origin, evolution and composition

    Science.gov (United States)

    Levine, Joel S.

    1988-01-01

    The current understanding of the composition, chemistry, and structure of the atmospheres of the other planets and the origin, early history, and evolution of the earth's atmosphere is reviewed. The information on the atmospheres of the other planets is based on the successful Mariner, Viking, Pioneer, and Voyager missions to these planets. The information on the origin, early history, and evolution of the atmosphere, which is somewhat speculative, is largely based on numerical studies with geochemical and photochemical models.

  3. Terrestrial planet formation in the presence of migrating super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Izidoro, André; Morbidelli, Alessandro [University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, Laboratoire Lagrange, BP 4229, F-06304 Nice Cedex 4 (France); Raymond, Sean N., E-mail: izidoro.costa@gmail.com, E-mail: morbidelli@oca.eu, E-mail: rayray.sean@gmail.com [CNRS and Université de Bordeaux, Laboratoire d' Astrophysique de Bordeaux, UMR 5804, F-33270 Floirac (France)

    2014-10-10

    Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrate inward through a disk of planetary embryos and planetesimals embedded in a gaseous disk. We tested a wide range of migration speeds and configurations. Fast-migrating super-Earths (τ{sub mig} ∼ 0.01-0.1 Myr) only have a modest effect on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone are extremely volatile-rich and are therefore probably not Earth-like.

  4. Constraining the mass of the planet(s) sculpting a disk cavity

    CERN Document Server

    Canovas, H; Zurlo, A; Wahhaj, Z; Schreiber, M R; Vigan, A; Villaver, E; Olofsson, J; Meeus, G; Ménard, F; Caceres, C; Cieza, L A; Garufi, A

    2016-01-01

    2MASS J16042165-2130284 (hereafter J1604) is a pre-transitional disk with different gap sizes in the mm-sized (~79 au) and $\\mu$m-sized (~63 au) dust particles. The $^{12}$CO emission shows a ~30 au cavity. This radial structure suggests that giant planets are interacting with the disk. We aim to observationally constrain the masses and location of plausible giant planets inside the cavity of J1604, and compare our results with previous predictions from hydrodynamical models describing planet-disk interactions. We observed J1604 with VLT/SPHERE in pupil-stabilized mode, obtaining $YJHK$- band images. The dataset was processed exploiting the ADI technique with dedicated algorithms to maximize the sensitivity of our observations. Our observations reach an exquisite contrast of $\\Delta K, H ~12$ mag from 0.15" to 0.80" ($~22$ to 115 au), but no planet candidate is detected. The disk is directly imaged in scattered light in all the near infrared bands (from $Y$ to $K$). The disk has a red color, which indicates t...

  5. Coagulation calculations of icy planet formation around 0.1-0.5 M {sub ☉} stars: Super-Earths from large planetesimals

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 201 JFB, Salt Lake City, UT 84112 (United States)

    2014-01-01

    We investigate formation mechanisms for icy super-Earth-mass planets orbiting at 2-20 AU around 0.1-0.5 M {sub ☉} stars. A large ensemble of coagulation calculations demonstrates a new formation channel: disks composed of large planetesimals with radii of 30-300 km form super-Earths on timescales of ∼1 Gyr. In other gas-poor disks, a collisional cascade grinds planetesimals to dust before the largest planets reach super-Earth masses. Once icy Earth-mass planets form, they migrate through the leftover swarm of planetesimals at rates of 0.01-1 AU Myr{sup –1}. On timescales of 10 Myr to 1 Gyr, many of these planets migrate through the disk of leftover planetesimals from semimajor axes of 5-10 AU to 1-2 AU. A few percent of super-Earths might migrate to semimajor axes of 0.1-0.2 AU. When the disk has an initial mass comparable with the minimum-mass solar nebula, scaled to the mass of the central star, the predicted frequency of super-Earths matches the observed frequency.

  6. The International Year of Planet Earth: Lessons learned.

    Science.gov (United States)

    de Mulder, E. F.; Janoschek, W. R.

    2007-12-01

    In 2001, the International Union of Geological Sciences (IUGS) developed an initiative to launch an International Year of Planet Earth (IYPE). This was followed up directly by UNESCO's Earth Science Division. As politicians, decision makers, the media and the public at large were chosen as the main targets, obtaining a proclamation by the General Assembly of the United Nations was crucial. Not only did the beauty and usefulness of Geosciences have to be demonstrated, but also the potential of the timely use of Geoscientific knowledge to minimise loss of life and property, e.g. during the Tsunami and Katrina disasters, had to be made crystal clear. Some of the lessons learned during the preparation for the IYPE (2007-2009) may be summarized as follows. - Support from scientific organisations: from the onset very positive, many joining as Founding or Associate Partners. - Individual geoscientists: some were sceptical, many (very) positive. - UN diplomats: the major natural disasters in 2004-2005 helped trigger their support throughout the UN proclamation process; so-called small countries proved to be more open-minded in lodging this initiative in the UN Agenda. - Politicians: Support for UN proclamations must be decided at the Ministerial level. This procedure may consume considerable time and cannot be influenced from outside. - National Committees: UN proclamation strongly stimulated the creation of National Committees for the IYPE; on August 31st they number 48 with a potential to reach 60 or more. Most of the actions planned at national level comprise outreach activities. - Fundraising: Significant funds have already been raised by National IYPE Committees. Fundraising for international events and to bolster the infrastructure of the International Year have proved to be more difficult. - Patrons, Goodwill Ambassadors, and Senior Advisors have proved to be essential in promoting the ambitions of the IYPE and in the vital process of fundraising. - Good examples

  7. What is Next? Linking all Samples of Planet Earth.

    Science.gov (United States)

    Wyborn, L. A.; Lehnert, K.; Klump, J. F.; Arko, R. A.; Cox, S. J. D.; Devaraju, A.; Elger, K.; Murphy, F.; Fleischer, D.

    2016-12-01

    The process of sampling, observing and analyzing physical samples is not unique to the geosciences. Physical sampling (taking specimens) is a fundamental strategy in many natural sciences, typically to support ex-situ observations in laboratories with the goal of characterizing real-world entities or populations. Observations and measurements are made on individual specimens and their derived samples in various ways, with results reported in research publications. Research on an individual sample is often published in numerous articles, based on multiple, potentially unrelated research programs conducted over many years. Even high-volume Earth observation datasets are proxies of real world phenomena and require calibration by measurements made on position located, well described physical samples. Unique, persistent web-compatible identifiers for physical objects and related sampling features are required to ensure their unambiguous citation and connection to related datasets through web identifiers. Identifier systems have been established within specific domains (e.g., bio, geo, hydro) or different sectors (e.g., museums, government agencies, universities), including the International Geo Sample Number (IGSN) in the geosciences, which has been used for rock, fossil, mineral, soil, regolith, fluid, plant and synthetic materials. IGSNs are issued through a governance system that ensures they are globally unique. Each IGSN directs to a digital representation of the physical object via the Handle.net global resolver system, the same system used for resolving DOI. To enable the unique identification of all samples on Planet Earth and of data derived from them, the next step is to ensure IGSNs can either be integrated with comparable identifier systems in other domains/sectors, or introduced into domains that do not have a viable system. A registry of persistent identifier systems for physical samples would allow users to choose which system best suits their needs. Such

  8. The Now Frontier. Pioneer to Jupiter. Man Links Earth and Planets. Issue No. 1-5.

    Science.gov (United States)

    1973

    This packet of space science instructional materials includes five issues related to the planet Jupiter. Each issue presents factual material about the planet, diagramatic representations of its movements and positions relative to bright stars or the earth, actual photographs and/or tables of data collected relevant to Pioneer 10, the spacecraft…

  9. A Direct Path to Finding Earth-Like Planets

    Science.gov (United States)

    Heap, Sara R.; Linder, Don J.

    2009-01-01

    As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.

  10. A Direct Path to Finding Earth-Like Planets

    Science.gov (United States)

    Heap, Sara R.; Linder, Don J.

    2009-01-01

    As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.

  11. Jupiter and Planet Earth. [planetary and biological evolution and natural satellites

    Science.gov (United States)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included.

  12. Mission to Planet Earth: A program to understand global environmental change

    Science.gov (United States)

    1994-01-01

    A description of Mission to Planet Earth, a program to understand global environmental change, is presented. Topics discussed include: changes in the environment; global warming; ozone depletion; deforestation; and NASA's role in global change research.

  13. Revised Masses and Densities of the Planets around Kepler-10

    CERN Document Server

    Weiss, Lauren M; Isaacson, Howard T; Agol, Eric; Marcy, Geoffrey W; Rowe, Jason F; Kipping, David; Fulton, Benjamin J; Lissauer, Jack J; Howard, Andrew W; Fabrycky, Daniel

    2016-01-01

    Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b (K10b), and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c (K10c). Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014-2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that K10b (Rp=1.47 Re) has mass 3.72$\\pm$0.42 Me and density 6.46$\\pm$0.73 g/cc. Modeling the interior of K10b as an iron core overlaid with a silicate mantle, we find that the iron core constitutes 0.17$\\pm$0.11 of the planet mass. For K10c (Rp=2.35 Re) we measure Mp=13.98$\\pm$1.79 Me and $\\rho$=5.94$\\pm$0.76 g/cc, significantly lower than the mass computed in Dumusque et al. (2014, 17.2$\\pm$1.9 Me). Internal compositional modeling reveals that at leas...

  14. Fast migration of low-mass planets in radiative discs

    CERN Document Server

    Pierens, Arnaud

    2015-01-01

    Low-mass planets are known to undergo Type I migration and this process must have played a key role during the evolution of planetary systems. Analytical formulae for the disc torque have been derived assuming that the planet evolves on a fixed circular orbit. However, recent work has shown that in isothermal discs, a migrating protoplanet may also experience dynamical corotation torques that scale with the planet drift rate. The aim of this study is to examine whether dynamical corotation torques can also affect the migration of low-mass planets in non-isothermal discs. We performed 2D radiative hydrodynamical simulations to examine the orbital evolution outcome of migrating protoplanets as a function of disc mass. We find that a protoplanet can enter a fast migration regime when it migrates in the direction set by the entropy-related horseshoe drag and when the Toomre stability parameter is less than a threshold value below which the horseshoe region contracts into a tadpole-like region. In that case, an un...

  15. A super-Earth transiting a nearby low-mass star

    CERN Document Server

    Charbonneau, David; Irwin, Jonathan; Burke, Christopher J; Nutzman, Philip; Buchhave, Lars A; Lovis, Christophe; Bonfils, Xavier; Latham, David W; Udry, Stephane; Murray-Clay, Ruth A; Holman, Matthew J; Falco, Emilio E; Winn, Joshua N; Queloz, Didier; Pepe, Francesco; Mayor, Michel; Delfosse, Xavier; Forveille, Thierry

    2009-01-01

    A decade ago, the detection of the first transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres. As such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies and microlensing have uncovered a population of planets with minimum masses of 1.9-10 times the Earth's mass (M_Earth), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b, but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55 M_Earth and a radius 2.68 times Earth's radius (R_Earth), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We fi...

  16. KEPLER-68: THREE PLANETS, ONE WITH A DENSITY BETWEEN THAT OF EARTH AND ICE GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gilliland, Ronald L. [Department of Astronomy, and Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Rowe, Jason F.; Henze, Christopher E.; Lissauer, Jack J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Rogers, Leslie [California Institute of Technology, Pasadena, CA 91125 (United States); Torres, Guillermo; Fressin, Francois; Desert, Jean-Michel [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lopez, Eric D. [University of California, Santa Cruz, CA 95064 (United States); Buchhave, Lars A. [Niels Bohr Institute, Copenhagen University (Denmark); Christensen-Dalsgaard, Jorgen; Handberg, Rasmus [Stellar Astrophysics Centre, Department of Physics and Astronomy, DK-8000 Aarhus C (Denmark); Jenkins, Jon M. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Chaplin, William J.; Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Basu, Sarbani [Department of Astronomy, Yale University, 260 Whitney Ave., New Haven, CT 06511 (United States); Metcalfe, Travis S. [White Dwarf Research Corporation, Boulder, CO 80301 (United States); Hekker, Saskia, E-mail: gillil@stsci.edu [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam, Science Park 904 (Netherlands); and others

    2013-03-20

    NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68. Follow-up Doppler measurements have established the mass of the innermost planet and revealed a third Jovian-mass planet orbiting beyond the two transiting planets. Kepler-68b, in a 5.4 day orbit, has M{sub P}=8.3{sup +2.2}{sub -2.4} M{sub Circled-Plus }, R{sub P}=2.31{sup +0.06}{sub -0.09} R{sub Circled-Plus }, and {rho}{sub P}=3.32{sup +0.86}{sub -0.98} g cm{sup -3}, giving Kepler-68b a density intermediate between that of the ice giants and Earth. Kepler-68c is Earth-sized, with a radius R{sub P}=0.953{sup +0.037}{sub -0.042} R{sub Circled-Plus} and transits on a 9.6 day orbit; validation of Kepler-68c posed unique challenges. Kepler-68d has an orbital period of 580 {+-} 15 days and a minimum mass of M{sub P}sin i = 0.947 {+-} 0.035M{sub J} . Power spectra of the Kepler photometry at one minute cadence exhibit a rich and strong set of asteroseismic pulsation modes enabling detailed analysis of the stellar interior. Spectroscopy of the star coupled with asteroseismic modeling of the multiple pulsation modes yield precise measurements of stellar properties, notably T{sub eff} = 5793 {+-} 74 K, M{sub *} = 1.079 {+-} 0.051 M{sub Sun }, R{sub *} = 1.243 {+-} 0.019 R{sub Sun }, and {rho}{sub *} = 0.7903 {+-} 0.0054 g cm{sup -3}, all measured with fractional uncertainties of only a few percent. Models of Kepler-68b suggest that it is likely composed of rock and water, or has a H and He envelope to yield its density {approx}3 g cm{sup -3}.

  17. Terrestrial Planet Formation in the Presence of Migrating Super-earths

    CERN Document Server

    Izidoro, André; Raymond, Sean N

    2014-01-01

    Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrates inward through a disk of planetary embryos and planetesimals embedded in a gaseous disk. We tested a wide range of migration speeds and configurations. Fast-migrating super-Earths ($\\tau_{mig} \\sim$0.01-0.1 Myr) only have a modest effect on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly-migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone a...

  18. Most 1.6 Earth-Radius Planets are not Rocky

    CERN Document Server

    Rogers, Leslie A

    2014-01-01

    The Kepler Mission, combined with ground based radial velocity follow-up and dynamical analyses of transit timing variations, has revolutionized the observational constraints on sub-Neptune-size planet compositions. The results of an extensive Kepler follow-up program including multiple Doppler measurements for 22 planet-hosting stars (Marcy et al. 2014) more than doubles the population of sub-Neptune-sized transiting planets that have radial velocity mass constraints. This unprecedentedly large and homogeneous sample of planets with both mass and radius constraints opens the possibility of a statistical study of the underlying population of planet compositions. We focus on the intriguing transition between rocky exoplanets (comprised of iron and silicates) and planets with voluminous layers of volatiles (H/He and astrophysical ices). Applying a hierarchical bayesian statistical approach to the sample of Kepler transiting sub-Neptune planets with Keck radial velocity follow-up, we constrain the fraction of cl...

  19. Searching for Earth-like planets in this solar system and beyond

    Science.gov (United States)

    Stofan, E. R.

    2014-12-01

    Earth sits in a narrow habitable zone, and its future habitability depends on the actions of those who inhabit the planet today. Earth's complex climate reflects interactions between its interior, surface, oceans, biosphere, atmosphere and its star - our sun. Studying the climates of other planets around our sun - Mars, Venus and Titan - can help us better understand the processes that control climate here on Earth. These three bodies provide compelling targets for future study as we explore beyond our solar system to find Earth-like worlds around other stars.

  20. The Earth as a Distant Planet A Rosetta Stone for the Search of Earth-Like Worlds

    CERN Document Server

    Vázquez, M; Montañés Rodríguez, P

    2010-01-01

    Is the Earth, in some way, special? Or is our planet but one of the millions of other inhabited planets within our galaxy? This is an exciting time to be asking this old question, because for the first time in history, the answer is within reach. In The Earth as a Distant Planet, the authors set themselves as external observers of our Solar System from an astronomical distance. From that perspective, the authors describe how the Earth, the third planet in distance to the central star, can be catalogued as having its own unique features and as capable of sustaining life. The knowledge gained from this original perspective is then applied to the ongoing search for planets outside the solar system, or exoplanets. Since the discovery in 1992 of the first exoplanet, the number of known planets has increased exponentially. Ambitious space missions are already being designed for the characterization of their atmospheres and to explore the possibility that they host life. The exploration of Earth and the rest of the ...

  1. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    Science.gov (United States)

    Podlewska-Gaca, E.; Szuszkiewicz, E.

    2014-03-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analogue (1 M⊕), a super-Earth (4 M⊕) and a gas giant (one Jupiter mass). The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following questions: will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? More in general, how will the presence of the gas giant affect the evolution of the two low-mass planets? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed in a previous investigation and confirmed here. In this work we add a gas giant on the most external orbit of the system in such a way that its differential migration is convergent with the low-mass planets. We show that the result of this set-up is the speeding up of the migration of the super-Earth and, after that, all three planets become locked in a triple mean-motion resonance. However, this resonance is not maintained due to the low-mass planet eccentricity excitation, a fact that leads to close encounters between planets and eventually to the ejection from the internal orbits of one or both low-mass planets. We have observed that the ejected low-mass planets can leave the system, fall into a star or become the external planet relative to the gas giant. In our simulations the latter situation has been observed for the super-Earth. It follows from the results presented here that the presence of a Jupiter-like planet

  2. Doppler spectroscopy as a path to the detection of Earth-like planets.

    Science.gov (United States)

    Mayor, Michel; Lovis, Christophe; Santos, Nuno C

    2014-09-18

    Doppler spectroscopy was the first technique used to reveal the existence of extrasolar planetary systems hosted by solar-type stars. Radial-velocity surveys led to the detection of a rich population of super-Earths and Neptune-type planets. The numerous detected systems revealed a remarkable diversity. Combining Doppler measurements with photometric observations of planets transiting their host stars further provides access to the planet bulk density, a first step towards comparative exoplanetology. The development of new high-precision spectrographs and space-based facilities will ultimately lead us to characterize rocky planets in the habitable zone of our close stellar neighbours.

  3. Learning to Map the Earth and Planets using a Google Earth - based Multi-student Game

    Science.gov (United States)

    De Paor, D. G.; Wild, S. C.; Dordevic, M.

    2011-12-01

    We report on progress in developing an interactive geological and geophysical mapping game employing the Google Earth, Google Moon, and Goole Mars virtual globes. Working in groups of four, students represent themselves on the Google Earth surface by selecting an avatar. One of the group drives to each field stop in a model vehicle using game-like controls. When they arrive at a field stop and get out of their field vehicle, students can control their own avatars' movements independently and can communicate with one another by text message. They are geo-fenced and receive automatic messages if they wander off target. Individual movements are logged and stored in a MySQL database for later analysis. Students collaborate on mapping decisions and submit a report to their instructor through a Javascript interface to the Google Earth API. Unlike real mapping, students are not restricted by geographic access and can engage in comparative mapping on different planets. Using newly developed techniques, they can also explore and map the sub-surface down to the core-mantle boundary. Virtual specimens created with a 3D scanner, Gigapan images of outcrops, and COLLADA models of mantle structures such as subducted lithospheric slabs all contribute to an engaging learning experience.

  4. The use of transit timing to detect terrestrial-mass extrasolar planets.

    Science.gov (United States)

    Holman, Matthew J; Murray, Norman W

    2005-02-25

    Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations.

  5. 3D climate simulations of an Earth-like circumbinary planet

    Science.gov (United States)

    Popp, Max; Eggl, Siegfried

    2017-04-01

    Planets orbiting close binary-star systems experience strong variations in insolation that are due to the non-trivial evolution of the distance between the planet and the two stars. Previous studies have suggested that these variations in insolation could influence the habitability of Earth-like circumbinary planets. In contrast to previous work using one-dimensional models that lack important climate dynamics, we performed for the first time simulations of a hypothetical Earth-like circumbinary planet with a three-dimensional atmospheric general circulation model coupled to an analytical orbital propagator. We choose a Kepler-35-like setup without the gas-giant that is present in the actual system in order to investigate the effects of the variable total solar irradiance (TSI) originating from the double star on the planet's climate. For fixed CO2 concentrations we find that an aqua-planet (a fully water-covered planet) can maintain a habitable climate at TSI values similar to those an identical planet receives orbiting our sun. The variations in TSI have, however, various effects on the climate of the planet. Signatures of these periodic variations are clearly visible in important climate indicators such as surface temperature and precipitation. Moreover, the periodic forcing leads to a cooling of the mean climate, especially in cold climate regimes.

  6. Understanding our Changing Planet: NASA's Earth Science Enterprise

    Science.gov (United States)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  7. 3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars

    CERN Document Server

    Godolt, M; Hamann-Reinus, A; Kitzmann, D; Kunze, M; Langematz, U; von Paris, P; Patzer, A B C; Rauer, H; Stracke, B

    2015-01-01

    The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planet's host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars upon the climate of Earth-like extrasolar planets and their potential habitability by applying a 3D Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results o...

  8. Fomalhaut's Debris Disk and Planet: Constraining the Mass of Formalhaut B from Disk Morphology

    Science.gov (United States)

    Chiang, E.; Kite, E.; Kalas, P.; Graham, J. R.; Clampin, M.

    2008-01-01

    Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass M(sub pl) 101.5AU, and an orbital eccentricity e(sub pl) = 0.11 - 0.13. These conclusions are independent of Fom b's photometry. To not disrupt the disk, a greater mass for Fom b demands a smaller orbit farther removed from the disk; thus, future astrometric measurement of Fom b's orbit, combined with our model of planet-disk interaction, can be used to determine the mass more precisely. The inner edge of the debris disk at a approximately equals 133AU lies at the periphery of Fom b's chaotic zone, and the mean disk eccentricity of e approximately equals 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of approximately 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to approximately 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fomalhaut b's nominal space velocity does not bear this out, but the astrometric uncertainties are difficult to quantify. Even if the apsidal misalignment proves real, our calculated upper mass limit of 3 M(sub J) still holds. Parent bodies are evacuated from mean

  9. V-type Near-Earth asteroids: dynamics, close encounters and impacts with terrestrial planets

    CERN Document Server

    Galiazzo, M A; Bancelin, D

    2016-01-01

    Asteroids colliding with planets vary in composition and taxonomical type. Among Near-Earth Asteroids (NEAs) are the V-types, basaltic asteroids that are classified via spectroscopic observations. In this work, we study the probability of V-type NEAs colliding with Earth, Mars and Venus, as well as the Moon. We perform a correlational analysis of possible craters produced by V-type NEAs. To achieve this, we performed numerical simulations and statistical analysis of close encounters and impacts between V-type NEAs and the terrestrial planets over the next 10 Myr. We find that V-type NEAs can indeed have impacts with all the planets, the Earth in particular, at an average rate of once per 12 Myr. There are four candidate craters on Earth that were likely caused by V-type NEAs.

  10. Prospects for Improving the Masses of Minor Planets

    Science.gov (United States)

    2007-09-01

    1)Ceres and (4) Vesta , a study was done (Hilton 2008) to determine if there were any encounters between now and Dawn’s arrival at these two minor...be perturbed by Ceres or Vesta by enough to change the semi-major axis by 10−5 AU. Although developed for the improvement of the masses of Ceres and... Vesta , the techniques developed for finding these encounters are general and may be applied to the mass determination of any massive minor planet. All

  11. Evolutionary Analysis of Gaseous Sub-Neptune-Mass Planets with MESA

    CERN Document Server

    Chen, Howard

    2016-01-01

    Sub-Neptune-sized exoplanets represent one of the most common types of planets in the Milky Way, yet many of their properties are unknown. Here, we present a prescription to adapt the capabilities of the stellar evolution toolkit Modules for Experiments in Stellar Astrophysics (MESA) to model sub-Neptune mass planets with H/He envelopes. With the addition of routines treating the planet core luminosity, heavy element enrichment, atmospheric boundary condition, and mass loss due to hydrodynamic winds, the evolutionary pathways of planets with diverse starting conditions are more accurately constrained. Using these dynamical models, we construct mass-composition relationships of planets from 1 to 400 $M_{\\oplus}$ and investigate how mass-loss impacts their composition and evolution history. We demonstrate that planet radii are typically insensitive to the evolution pathway that brought the planet to its instantaneous mass, composition and age, with variations from hysteresis. We find that planet envelope mass l...

  12. Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets

    Science.gov (United States)

    Fossati, L.; Erkaev, N. V.; Lammer, H.; Cubillos, P. E.; Odert, P.; Juvan, I.; Kislyakova, K. G.; Lendl, M.; Kubyshkina, D.; Bauer, S. J.

    2017-02-01

    Stimulated by the discovery of a number of close-in low-density planets, we generalise the Jeans escape parameter taking hydrodynamic and Roche lobe effects into account. We furthermore define Λ as the value of the Jeans escape parameter calculated at the observed planetary radius and mass for the planet's equilibrium temperature and considering atomic hydrogen, independently of the atmospheric temperature profile. We consider 5 and 10 M⊕ planets with an equilibrium temperature of 500 and 1000 K, orbiting early G-, K-, and M-type stars. Assuming a clear atmosphere and by comparing escape rates obtained from the energy-limited formula, which only accounts for the heating induced by the absorption of the high-energy stellar radiation, and from a hydrodynamic atmosphere code, which also accounts for the bolometric heating, we find that planets whose Λ is smaller than 15-35 lie in the "boil-off" regime, where the escape is driven by the atmospheric thermal energy and low planetary gravity. We find that the atmosphere of hot (i.e. Teq ⪆ 1000 K) low-mass (Mpl ⪅ 5 M⊕) planets with Λmass (Mpl ⪅ 10 M⊕) planets with Λmass and maximum radius and can be used to predict the presence of aerosols and/or constrain planetary masses, for example.

  13. A sub-Saturn Mass Planet, MOA-2009-BLG-319Lb

    CERN Document Server

    Miyake, N; Dong, Subo; Street, R; Mancini, L; Gould, A; Bennett, D P; Tsapras, Y; Yee, J C; Albrow, M D; Bond, I A; Fouque, P; Browne, P; Han, C; Snodgrass, C; Finet, F; Furusawa, K; Harpsoe, K; Allen, W; Hundertmark, M; Freeman, M; Suzuki, D; Abe, F; Botzler, C S; Douchin, D; Fukui, A; Hayashi, F; Hearnshaw, J B; Hosaka, S; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A; Lin, W; Ling, C H; Makita, S; Masuda, K; Matsubara, Y; Muraki, Y; Nagayama, T; Nishimoto, K; Ohnishi, K; Perrott, Y C; Rattenbury, N; Saito, To; Skuljan, L; Sullivan, D J; Sweatman, W L; Tristram, P J; Wada, K; Yock, P C M; Bolt, G; Bos, M; Christie, G W; DePoy, D L; Drummond, J; Gal-Yam, A; Gaudi, B S; Gorbikov, E; Higgins, D; Janczak, K -H Hwang J; Kaspi, S; Lee, C -U; Koo, J -R; lowski, S Koz; Lee, Y; Mallia, F; Maury, A; Maoz, D; McCormick, J; Monard, L A G; Moorhouse, D; Mu~noz, J A; Natusch, T; Ofek, E O; Pogge, R W; Polishook, D; Santallo, R; Shporer, A; Spector, O; Thornley, G; Allan, A; Bramich, D M; Horne, K; Kains, N; Steele, I; Bozza, V; Burgdorf, M J; Novati, S Calchi; Dominik, M; Dreizler, S; Glitrup, M; Hessman, F V; Hinse, T C; Jorgensen, U G; Liebig, C; Maier, G; Mathiasen, M; Rahvar, S; Ricci, D; Scarpetta, G; Skottfelt, J; Southworth, J; Surdej, J; Wambsganss, J; Zimmer, F; Batista, V; Beaulieu, J P; Brillant, S; Cassan, A; Cole, A; Corrales, E; Coutures, Ch; Dieters, S; Greenhill, J; Kubas, D; Menzies, J

    2015-01-01

    We report the gravitational microlensing discovery of a sub-Saturn mass planet, MOA-2009-BLG-319Lb, orbiting a K or M-dwarf star in the inner Galactic disk or Galactic bulge. The high cadence observations of the MOA-II survey discovered this microlensing event and enabled its identification as a high magnification event approximately 24 hours prior to peak magnification. As a result, the planetary signal at the peak of this light curve was observed by 20 different telescopes, which is the largest number of telescopes to contribute to a planetary discovery to date. The microlensing model for this event indicates a planet-star mass ratio of q = (3.95 +/- 0.02) x 10^{-4} and a separation of d = 0.97537 +/- 0.00007 in units of the Einstein radius. A Bayesian analysis based on the measured Einstein radius crossing time, t_E, and angular Einstein radius, \\theta_E, along with a standard Galactic model indicates a host star mass of M_L = 0.38^{+0.34}_{-0.18} M_{Sun} and a planet mass of M_p = 50^{+44}_{-24} M_{Earth}...

  14. Modeling the globally-integrated spectral variability of the Archean Earth: The purple planet

    Science.gov (United States)

    Palle, E.; Sanroma, E.; Parenteau, M. N.; Kiang, N. Y.; Gutierrez-Navarro, A. M.; Lopez, R.; Montañes-Rodríguez, P.

    2014-03-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. But the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3 Gyr ago. At that time, one of the more widespread life forms on the planet were purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and bacteria concentration/ distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  15. Spectropolarimetric signatures of Earth-like extrasolar planets

    NARCIS (Netherlands)

    Stam, D.M.

    2007-01-01

    We present results of numerical simulations of flux F and degree of polarization P of light that is reflected by Earth–like extrasolar planets orbiting solar type stars. Our results are presented as functions of the wavelength (from 0.3 to 1.0 μm, with 0.001 μm spectral resolution) and as functions

  16. Modeling the Entry of Micrometeoroids into the Atmospheres of Earth-like Planets

    Science.gov (United States)

    Pevyhouse, A. R.; Kress, M. E.

    2011-01-01

    The temperature profiles of micrometeors entering the atmospheres of Earth-like planets are calculated to determine the altitude at which exogenous organic compounds may be released. Previous experiments have shown that flash-heated micrometeorite analogs release organic compounds at temperatures from roughly 500 to 1000 K [1]. The altitude of release is of great importance because it determines the fate of the compound. Organic compounds that are released deeper in the atmosphere are more likely to rapidly mix to lower altitudes where they can accumulate to higher abundances or form more complex molecules and/or aerosols. Variables that are explored here are particle size, entry angle, atmospheric density profiles, spectral type of the parent star, and planet mass. The problem reduces to these questions: (1) How much atmosphere does the particle pass through by the time it is heated to 500 K? (2) Is the atmosphere above sufficient to attenuate stellar UV such that the mixing timescale is shorter than the photochemical timescale for a particular compound? We present preliminary results that the effect of the planetary and particle parameters have on the altitude of organic release.

  17. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S.; Sasselov, D. [Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Kaltenegger, L., E-mail: srugheimer@cfa.harvard.edu [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States)

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  18. Kepler-62: A five-planet system with planets of 1.4 and 1.6 Earth radii in the Habitable Zone

    CERN Document Server

    Borucki, W J; Fressin, F; Kaltenegger, L; Rowe, J; Isaacson, H; Fischer, D; Batalha, N; Lissauer, J J; Marcy, G W; Fabrycky, D; Désert, J -M; Bryson, S T; Barclay, T; Bastien, F; Boss, A; Brugamyer, E; Buchhave, L A; Burke, Chris; Caldwell, D A; Carter, J; Charbonneau, D; Crepp, J R; Christensen-Dalsgaard, J; Christiansen, J L; Ciardi, D; Cochran, W D; DeVore, E; Doyle, L; Dupree, A K; Endl, M; Everett, M E; Ford, E B; Fortney, J; Gautier, T N; Geary, J C; Gould, A; Haas, M; Henze, C; Howard, A W; Howell, S B; Huber, D; Jenkins, J M; Kjeldsen, H; Kolbl, R; Kolodziejczak, J; Latham, D W; Lee, B L; Lopez, E; Mullally, F; Orosz, J A; Prsa, A; Quintana, E V; Sanchez-Ojeda, R; Sasselov, D; Seader, S; Shporer, A; Steffen, J H; Still, M; Tenenbaum, P; Thompson, S E; Torres, G; Twicken, J D; Welsh, W F; Winn, J N; 10.1126/science.1234702

    2013-01-01

    We present the detection of five planets -- Kepler-62b, c, d, e, and f -- of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii, orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4 and 267.3 days, respectively. The outermost planets (Kepler-62e & -62f) are super-Earth-size (1.25 < planet radius/earth radius < 2.0) planets in the habitable zone (HZ) of their host star, receiving 1.2 +- 0.2 and 0.41 +- 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 Gyr suggest that both planets could be solid: either with a rocky composition or composed of mostly solid water in their bulk.

  19. A 1.9 Earth Radius Rocky Planet and the Discovery of a Non-transiting Planet in the Kepler-20 System

    Science.gov (United States)

    Buchhave, Lars A.; Dressing, Courtney D.; Dumusque, Xavier; Rice, Ken; Vanderburg, Andrew; Mortier, Annelies; Lopez-Morales, Mercedes; Lopez, Eric; Lundkvist, Mia S.; Kjeldsen, Hans; Affer, Laura; Bonomo, Aldo S.; Charbonneau, David; Collier Cameron, Andrew; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaëlle D.; Johnson, John Asher; Latham, David W.; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Pepe, Francesco; Phillips, David F.; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris

    2016-12-01

    Kepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own solar system. A transition from rocky to gaseous planets with a planetary transition radius of ˜1.6 {R}\\oplus has recently been proposed by several articles in the literature. Kepler-20b ({R}p ˜ 1.9 {R}\\oplus ) has a size beyond this transition radius; however, previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of three of the planets in the Kepler-20 system that are facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star ({M}\\star = 0.948+/- 0.051 {M}⊙ and {R}\\star = 0.964+/- 0.018 {R}⊙ ). Kepler-20b is a {1.868}-0.034+0.066 {R}\\oplus planet in a 3.7 day period with a mass of {9.70}-1.44+1.41 {M}\\oplus , resulting in a mean density of {8.2}-1.3+1.5 {{g}} {{cm}}-3, indicating a rocky composition with an iron-to-silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of {19.96}-3.61+3.08 {M}\\oplus and an orbital period of ˜34 days in the gap between Kepler-20f (P ˜ 11 days) and Kepler-20d (P ˜ 78 days). Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofísica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  20. A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, Jonathan J.; Nettelmann, Nadine [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Mordasini, Christoph [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA (United States); Greene, Thomas P.; Zahnle, Kevin, E-mail: jfortney@ucolick.org [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA (United States)

    2013-09-20

    We perform modeling investigations to aid in understanding the atmospheres and composition of small planets of ∼2-4 Earth radii, which are now known to be common in our Galaxy. GJ 1214b is a well-studied example whose atmospheric transmission spectrum has been observed by many investigators. Here we take a step back from GJ 1214b to investigate the role that planetary mass, composition, and temperature play in impacting the transmission spectra of these low-mass low-density (LMLD) planets. Under the assumption that these planets accrete modest hydrogen-dominated atmospheres and planetesimals, we use population synthesis models to show that predicted metal enrichments of the H/He envelope are high, with metal mass fraction Z{sub env} values commonly 0.6-0.9, or ∼100-400+ times solar. The high mean molecular weight of such atmospheres (μ ≈ 5-12) would naturally help to flatten the transmission spectrum of most LMLD planets. The high metal abundance would also provide significant condensible material for cloud formation. It is known that the H/He abundance in Uranus and Neptune decreases with depth, and we show that atmospheric evaporation of LMLD planets could expose atmospheric layers with gradually higher Z{sub env}. However, values of Z{sub env} close to solar composition can also arise, so diversity should be expected. Photochemically produced hazes, potentially due to methane photolysis, are another possibility for obscuring transmission spectra. Such hazes may not form above T{sub eq} of ∼800-1100 K, which is testable if such warm, otherwise low mean molecular weight atmospheres are stable against atmospheric evaporation. We find that available transmission data are consistent with relatively high mean molecular weight atmospheres for GJ 1214b and 'warm Neptune' GJ 436b. We examine future prospects for characterizing GJ 1214b with Hubble and the James Webb Space Telescope.

  1. Gas giant planets as dynamical barriers to inward-migrating super-Earths

    CERN Document Server

    Izidoro, Andre; Morbidelli, Alessandro; Hersant, Franck; Pierens, Arnaud

    2015-01-01

    Planets of 1-4 times Earth's size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. In fact, the Solar System is particularly outstanding in its lack of "hot super-Earths" (or "mini-Neptunes"). These planets -- or their building blocks -- may have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. Here, we use a suite of dynamical simulations to show that gas giant planets act as barriers to the inward migration of super-Earths initially placed on more distant orbits. Jupiter's early formation may have prevented Uranus and Neptune (and perhaps Saturn's core) from becoming hot super-Earths. Our model predicts that the populations of hot super-Earth systems and Jupiter-like planets should be anti-correlated: gas giants (especially if they form early) should be rare in systems with many hot super-Earths. Testing this prediction will constitute a crucial assessment of the validity of the migration hypothesis for the origin of close-in supe...

  2. Elementary School Teachers’ Conceptions of the Planet Earth and Gravity. Implications for Science Education

    Directory of Open Access Journals (Sweden)

    María Teresa Fernández Nistal

    2008-11-01

    Full Text Available This study examines 80 elementary school teachers’ conceptions of the Planet Earth’s shape and the reference system determined by gravity. The information was collected through a semi-structured interview. A qualitative analysis of the answers identified four conceptions: a The planet earth has an undefined shape; b the planet earth is spherical in shape, in the interior of which the people live; c the earth is spherical and the people live around the spherical surface oriented in an absolute system of reference, and d scientific conception. The teachers’ frequency distribution in diverse conceptions showed that almost half of the teachers (49% held alternative conceptions, the rest of the teachers maintained the scientific conception. The results offered relevant information for designing teachers’ courses using a constructivist approach.

  3. Geoneutrinos and Hydridic Earth (or primordially Hydrogen-Rich Planet)

    CERN Document Server

    Bezrukov, L

    2014-01-01

    Geoneutrino is a new channel of information about geochemical composition of the Earth. We alnalysed here the following problem. What statistics do we need to distinguish between predictions of Bulk Silicate Earth model and Hydridic Earth model for Th/U signal ratio? We obtained the simple formula for estimation of error of Th/U signal ratio. Our calculations show that we need more than $22 kt \\cdot year$ exposition for Gran-Sasso underground laboratory and Sudbury Neutrino Observatory. We need more than $27 kt \\cdot year$ exposition for Kamioka site in the case of stopping of all Japanese nuclear power plants.

  4. Tidal Effects of Passing Planets and Mass Extinctions

    CERN Document Server

    Fargion, D; Fargion, Daniele; Dar, Arnon

    1998-01-01

    Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past 600 My as documented in the geological records.

  5. Beyond Kepler: Direct Imaging of Earth-like Planets

    Science.gov (United States)

    Belikov, Ruslan

    2012-01-01

    Is there another Earth out there? Is there life on it? People have been asking these questions for over two thousand years, and we finally stand on the verge of answering them. The Kepler space telescope is NASA's first mission designed to study Earthlike exoplanets (exo-Earths), and it will soon tell us how often exo-Earths occur in the habitable zones of their stars. The next natural step after Kepler is spectroscopic characterization of exo-Earths, which would tell us whether they possess an atmosphere, oxygen, liquid water, as well as other biomarkers. In order to do this, directly imaging an exo-Earth may be necessary (at least for Sun-like stars). Directly imaging an exo-Earth is challenging and likely requires a flagship-size optical space telescope with an unprecedented imaging system capable of achieving contrasts of 1(exp 10) very close to the diffraction limit. Several coronagraphs and external occulters have been proposed to meet this challenge and are in development. After first overviewing the history and current state of the field, my talk will focus on the work proceeding at the Ames Coronagraph Experiment (ACE) at the NASA Ames Research Center, where we are developing the Phase Induced Amplitude Apodization (PIAA) coronagraph in a collaboration with JPL. PIAA is a powerful technique with demonstrated aggressive performance that defines the state of the art at small inner working angles. At ACE, we have achieved contrasts of 2(exp -8) with an inner working angle of 2 lambda/D and 1(exp -6) at 1.4 lambda/D. On the path to exo-Earth imaging, we are also pursuing a smaller telescope concept called EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), which was recently selected for technology development (Category III) by NASA's Explorer program. EXCEDE will do fundamental science on debris disks as well as serve as a technological and scientific pathfinder for an exo-Earth imaging mission.

  6. Signals from the planets, via the Sun to the Earth

    Science.gov (United States)

    Solheim, J.-E.

    2013-12-01

    The best method for identification of planetary forcing of the Earth's climate is to investigate periodic variations in climate time series. Some natural frequencies in the Earth climate system seem to be synchronized to planetary cycles, and amplified to a level of detection. The response by the Earth depends on location, and in global averaged series, some planetary signals may be below detection. Comparing sea level rise with sunspot variations, we find phase variations, and even a phase reversal. A periodogram of the global temperature shows that the Earth amplifies other periods than observed in sunspots. A particular case is that the Earth amplifies the 22 yr Hale period, and not the 11 yr Schwabe period. This may be explained by alternating peak or plateau appearance of cosmic ray counts. Among longer periods, the Earth amplifies the 60 yr planetary period and keeps the phase during centennials. The recent global warming may be interpreted as a rising branch of a millennium cycle, identified in ice cores and sediments and also recorded in history. This cycle peaks in the second half of this century, and then a 500 yr cooling trend will start. An expected solar grand minimum due to a 200 yr cycle will introduce additional cooling in the first part of this century.

  7. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    Science.gov (United States)

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-03

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.

  8. Gas Giant Planets as Dynamical Barriers to Inward-Migrating Super-Earths

    Science.gov (United States)

    Morbidelli, Alessandro; Izidoro da Costa, Andre; Raymond, Sean

    2015-08-01

    Planets of 1-4 times Earth’s size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. In fact, the Solar System is particularly outstanding in its lack of “hot super-Earths” (or “mini-Neptunes”). These planets —or their building blocks—may have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. Here, we use a suite of dynamical simulations to show that gas giant planets act as barriers to the inward migration of super-Earths initially placed on more distant orbits. Jupiter’s early formation may have prevented Uranus and Neptune (and perhaps Saturn’s core) from becoming hot super-Earths. Our model predicts that the populations of hot super-Earth systems and Jupiter-like planets should be anti-correlated: gas giants (especially if they form early) should be rare in systems with many hot super-Earths. Testing this prediction will constitute a crucial assessment of the validity of the migration hypothesis for the origin of close-in super-Earths.

  9. UV Surface Environment of Earth-like Planets Orbiting FGKM Stars Through Geological Evolution

    CERN Document Server

    Rugheimer, S; Kaltenegger, L; Sasselov, D

    2015-01-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars at the 1AU equivalent distance for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present day levels at 2.0 Gyr ago, 0.8 Gyr ago and modern Earth (Following Kaltenegger et al. 2007). In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth-Sun levels. A pre-biotic Earth orbiting GJ...

  10. Note to Energy Source of Tsunami Earthquake on the Planet Earth

    Science.gov (United States)

    Nakamura, S.

    2012-04-01

    Note to Energy Source of Tsunami Earthquake on the Planet Earth Shigehisa Nakamura Kyoto University, Japan This note concerns to an energyy source of tsunami earthquake. In the case of the earthquake on 11 March 2011, a satellite monitoring by the Geographic Survey Institute informed some spcific pattern of the earth surface displacements just around tothe epicenter of the interested earthquake. The monitoring pattern shows that the pattern of the earth surface displacements must be understood well when the earth surface as a part of the spherical earth crusts with a physical property of a visco-plastic material rather than with a solid plate consisted by rigid material made by the products of the magma in the planet earth. This means that the pattern was appared in a short time of only several minutes, say, two or three munutes after the seismic shock was happened. The pattern of the displacement shows as if it was for a pattern of a visco-plastic fluid flowing to the pit hole force for the at the epicenter out of a conduit of the magma in order to return to the mother magma flow under the spherical crust of the planet earth. This pattern is raising us to find an updateddd model after an advanced reserarch as soon as possible in order to realize what should be a reasonable energy source to see the tsunami earthquake.

  11. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    Science.gov (United States)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  12. Measuring the mass of solar system planets using pulsar timing

    CERN Document Server

    Champion, D J; Manchester, R N; Edwards, R T; Backer, D C; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Coles, W; Demorest, P B; Ferdman, R D; Folkner, W M; Hotan, A W; Kramer, M; Lommen, A N; Nice, D J; Purver, M B; Sarkissian, J M; Stairs, I H; van Straten, W; Verbiest, J P W; Yardley, D R B

    2010-01-01

    High-precision pulsar timing relies on a solar-system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2)E-4 Msun, being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate m...

  13. There might be giants: unseen Jupiter-mass planets as sculptors of tightly-packed planetary systems

    CERN Document Server

    Hands, T O

    2015-01-01

    The limited completeness of the Kepler sample for planets with orbital periods $\\gtrsim$ 1 yr leaves open the possibility that exoplanetary systems may host undetected giant planets. Should such planets exist, their dynamical interactions with the inner planets may prove vital in sculpting the final orbital configurations of these systems. Using an $N$-body code with additional forces to emulate the effects of a protoplanetary disc, we perform simulations of the assembly of compact systems of super-Earth-mass planets with unseen giant companions. The simulated systems are analogous to Kepler-11 or Kepler-32 in that they contain 4 or 5 inner super-Earths, but our systems also contain longer-period giant companions which are unlikely to have been detected by Kepler. We find that giant companions tend to break widely-spaced, first-order mean-motion resonances, allowing the inner planets to migrate into tighter resonances. This leads to more compact architectures and increases the occurrence rate of Laplace reson...

  14. Ogle-2012-blg-0724lb: A Saturn Mass Planet Around an M-dwarf

    Science.gov (United States)

    Hirao, Y.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Suzuki, D.; Koshimoto, N.; Abe, F.; Asakura, Y.; Bhattacharya, A.

    2016-01-01

    We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high-cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio q = (1.58 +/- 0.15) x 10(exp -3). By conducting a Bayesian analysis, we estimate that the host star is an M dwarf with a mass of M(sub L) = 0.29(+0.33/-0.16) solar mass located at D(sub L) = 6.7(+1.1/-1.2) kpc away from the Earth and the companion's mass is m(sub P) = 0.47(+0.54/-0.26) M(Jup). The projected planet- host separation is a falsum = 1.6(+0.4/-0.3) AU. Because the lens-source relative proper motion is relatively high, future highresolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M dwarf, and such systems are commonly detected by gravitational microlensing. This adds another example of a possible pileup of sub-Jupiters (0.2 less than m(sub P)/M(sub Jup) less than 1) in contrast to a lack of Jupiters (approximately 1-2 M(sub Jup)) around M dwarfs, supporting the prediction by core accretion models that Jupiter-mass or more massive planets are unlikely to form around M dwarfs.

  15. A population of planetary systems from Kepler data that are characterized by short-period, Earth-sized planets

    Science.gov (United States)

    Steffen, Jason H.; Coughlin, Jeffrey

    2017-01-01

    From an analysis of the Quarter 1-17 Kepler planet candidate catalog we compare systems with single transiting planets to systems with multiple transiting planets. We find a distinct population of exoplanetary systems that is characterized by short-period, Earth sized planets. This difference in system architecture likely indicates a different branch in the system's formation or dynamical evolution relative to the typical Kepler system. We estimate that at least 17% of systems containing a hot Earth planet are members of this population. When we account for detection efficiency, these systems occur with a frequency similar to the hot Jupiters.

  16. The naked planet Earth: Most essential pre-requisite for the origin and evolution of life

    Directory of Open Access Journals (Sweden)

    S. Maruyama

    2013-03-01

    To satisfy the tight conditions to make the Earth habitable, the formation mechanism of primordial Earth is an important factor. At first, a ‘dry Earth’ must be made through giant impact, followed by magma ocean to float nutrient-enriched primordial continents (anorthosite + KREEP. Late bombardment from asteroid belt supplied water to make 3–5 km thick ocean, and not from icy meteorites from Kuiper belt beyond cool Jupiter. It was essential to meet the above conditions that enabled the Earth as a habitable planet with evolved life forms. The tight constraints that we evaluate for birth and evolution of life on Earth would provide important guidelines for planetary scientists hunting for life in the exo-solar planets.

  17. Discovery of the distant cool sub-Neptune mass planet OGLE 2005-BLG-390Lb by microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, J P; Bennett, D P; Fouque, P; Williams, A; Dominik, M; Jorgensen, U G; Kubas, D; Cassan, A; Coutures, C; Greenhill, J; Hill, K; Menzies, J; Sackett, P D; Albrow, M; Brillant, S; Caldwell, J R; Calitz, J J; Cook, K H; Corrales, E; Desort, M; Dieters, S; Dominis, D; Donatowicz, J; Hoffman, M; Kane, S; Marquette, J B; Martin, R; Meintjes, P; Pollard, K; Sahu, K; Vinter, C; Wambsganss, J; Woller, K; Horne, K; Steele, I; Bramich, D M; Burgdorf, M; Snodgrass, C; Bode, M; Udalski, A; Szymanski, M K; Kubiak, M; Wieckowski, T; Pietrzynski, G; Soszynski, I; Szewczyk, O; Wyrzykowski, L; Paczynski, B; Abe, F; Bond, I A; Britton, T R; Gilmore, A C; Hearnshaw, J B; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A V; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okada, C; Ohnishi, K; Rattenbury, N J; Sako, T; Sato, S; Sasaki, M; Sekiguchi, T; Sullivan, D J; Tristram, P J; Yock, P M; Yoskioka, T

    2005-11-07

    The favoured theoretical explanation for planetary systems formation is the core-accretion model in which solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars, the most common stars of our Galaxy, this model favours the formation of Earth- to Neptune-mass planets in a few million years with orbital sizes of 1 to 10 AU, which is consistent with the small number of detections of giant planets with M-dwarf host stars. More than 170 extrasolar planets have been discovered so far with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not previously been detected at separations of more than 0.15 AU from normal stars. Here we report the discovery of a 5.5{sub -2.7}{sup +5.5} Earthmass planetary companion at a separation of 2.6{sub -0.6}{sup +1.5}AU from a 0.22{sub -0.11}{sup +0.21} M{sub e} M-dwarf star, which is the lens star for gravitational microlensing event OGLE 2005-BLG-390. This is the lowest mass ever reported for an extrasolar planet orbiting a main sequence star, although the error bars overlap those for the mass of GJ876d. Our detection suggests that such cool, sub-Neptune mass planets may be common than gas giant planets, as predicted by the core accretion theory.

  18. Hot super-Earths and giant planet cores from different migration histories

    CERN Document Server

    Cossou, Christophe; Hersant, Franck; Pierens, Arnaud

    2014-01-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several $M_\\oplus$ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones...

  19. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Izidoro, A.; Winter, O. C. [UNESP, Univ. Estadual Paulista - Grupo de Dinâmica Orbital and Planetologia, Guaratinguetá, CEP 12.516-410, São Paulo (Brazil); Haghighipour, N. [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Tsuchida, M., E-mail: izidoro@feg.unesp.br, E-mail: nader@ifa.hawaii.edu [UNESP, Univ. Estadual Paulista, DCCE-IBILCE, São José do Rio Preto, CEP 15.054-000, São Paulo (Brazil)

    2014-02-10

    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.

  20. OGLE-2012-BLG-0950Lb: The Possible First Planet Mass Measurement from Only Microlens Parallax and Lens Flux

    CERN Document Server

    Koshimoto, N; Beaulieu, J P; Sumi, T; Bennett, D P; Bond, I A; Rattenbury, N; Fukui, A; Batista, V; Marquette, J B; Brillant, S; Abe, F; Asakura, Y; Bhattacharya, A; Freeman, M; Hirao, Y; Itow, Y; Li, M C A; Ling, C H; Masuda, K; Matsubara, Y; Matsuo, T; Muraki, Y; Ohnishi, K; Oyokawa, H; Saito, To; Sharan, A; Shibai, H; Sullivan, D J; Suzuki, D; Tristram, P J; Yonehara, A; Kozlowski, S; Pietrukowicz, P; Poleski, R; Skowron, J; Soszynski, I; Szymanski, M K; Ulaczyk, K; Wyrzykowski, L

    2016-01-01

    We report the discovery of a microlensing planet OGLE-2012-BLG-0950Lb with the planet/host mass ratio of $q = 2 \\times 10^{-4}$. A long term distortion detected in both MOA and OGLE light curve can be explained by the microlens parallax due to the Earth's orbital motion around the Sun. Although the finite source effect is not detected, we obtain the lens flux by the high resolution Keck AO observation. Combining the microlens parallax and the lens flux reveal the nature of the lens: a planet with mass of $M_{p} = 35^{+17}_{-9} M_{Earth}$ is orbiting around a M-dwarf with mass of $M_{h} = 0.56^{+0.12}_{-0.16} M_{Sun}$ with a planet-host projected separation of $r_{proj} =2.7^{+0.6}_{-0.7}$ AU located at $D_{L} = 3.0^{+0.8}_{-1.1}$ kpc from us. This is the first mass measurement from only microlens parallax and the lens flux without the finite source effect. The long term distortion can also be explained by the source orbital motion (xallarap) which is suspicious but not ruled out. These models can be distingui...

  1. A Population of planetary systems characterized by short-period, Earth-sized planets

    Science.gov (United States)

    Steffen, Jason H.; Coughlin, Jeffrey L.

    2016-01-01

    We analyze data from the Quarter 1–17 Data Release 24 (Q1–Q17 DR24) planet candidate catalog from NASA’s Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (≳17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters. PMID:27790984

  2. A Population of planetary systems characterized by short-period, Earth-sized planets.

    Science.gov (United States)

    Steffen, Jason H; Coughlin, Jeffrey L

    2016-10-25

    We analyze data from the Quarter 1-17 Data Release 24 (Q1-Q17 DR24) planet candidate catalog from NASA's Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined ([Formula: see text]17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.

  3. A population of planetary systems characterized by short-period, Earth-sized planets

    CERN Document Server

    Steffen, Jason H

    2016-01-01

    We analyze data from the Quarter 1-17 Data Release 24 (Q1--Q17 DR24) planet candidate catalog from NASA's Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a distinct population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly one-day orbital period. We estimate that at least 24 of the 144 systems we examined (>~17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.

  4. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    DEFF Research Database (Denmark)

    Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.

    2014-01-01

    a rocky composition. We identify six planets with densities above 5 g cm–3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He...

  5. The persistence of oceans on Earth-like planets: insights from the deep-water cycle

    CERN Document Server

    Schaefer, Laura

    2015-01-01

    In this paper we present a series of models for the deep water cycle on super-Earths experiencing plate tectonics. The deep water cycle can be modeled through parameterized convection models coupled with a volatile recycling model. The convection of the silicate mantle is linked to the volatile cycle through the water-dependent viscosity. Important differences in surface water content are found for different parameterizations of convection. Surface oceans are smaller and more persistent for single layer convection, rather than convection by boundary layer instability. Smaller planets have initially larger oceans but also return that water to the mantle more rapidly than larger planets. Super-Earths may therefore be less habitable in their early years than smaller planets, but their habitability (assuming stable surface conditions), will persist much longer.

  6. Astrometric Detection of Earthlike Planets

    CERN Document Server

    Shao, Michael; Catanzarite, Joseph H; Edberg, Stephen J; Leger, Alain; Malbet, Fabien; Queloz, Didier; Muterspaugh, Matthew W; Beichman, Charles; Fischer, Debra A; Ford, Eric; Olling, Robert; Kulkarni, Shrinivas; Unwin, Stephen C; Traub, Wesley

    2009-01-01

    Astrometry can detect rocky planets in a broad range of masses and orbital distances and measure their masses and three-dimensional orbital parameters, including eccentricity and inclination, to provide the properties of terrestrial planets. The masses of both the new planets and the known gas giants can be measured unambiguously, allowing a direct calculation of the gravitational interactions, both past and future. Such dynamical interactions inform theories of the formation and evolution of planetary systems, including Earth-like planets. Astrometry is the only technique technologically ready to detect planets of Earth mass in the habitable zone (HZ) around solar-type stars within 20 pc. These Earth analogs are close enough for follow-up observations to characterize the planets by infrared imaging and spectroscopy with planned future missions such as the James Webb Space Telescope (JWST) and the Terrestrial Planet Finder/Darwin. Employing a demonstrated astrometric precision of 1 microarcsecond and a noise ...

  7. The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems

    CERN Document Server

    Lovis, C; Mayor, M; Udry, S; Benz, W; Bertaux, J -L; Bouchy, F; Correia, A C M; Laskar, J; Curto, G Lo; Mordasini, C; Pepe, F; Queloz, D; Santos, N C

    2010-01-01

    Context. Low-mass extrasolar planets are presently being discovered at an increased pace by radial velocity and transit surveys, opening a new window on planetary systems. Aims. We are conducting a high-precision radial velocity survey with the HARPS spectrograph which aims at characterizing the population of ice giants and super-Earths around nearby solar-type stars. This will lead to a better understanding of their formation and evolution, and yield a global picture of planetary systems from gas giants down to telluric planets. Methods. Progress has been possible in this field thanks in particular to the sub-m/s radial velocity precision achieved by HARPS. We present here new high-quality measurements from this instrument. Results. We report the discovery of a planetary system comprising at least five Neptune-like planets with minimum masses ranging from 12 to 25 M_Earth, orbiting the solar-type star HD 10180 at separations between 0.06 and 1.4 AU. A sixth radial velocity signal is present at a longer perio...

  8. AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Campante, T. L.; Davies, G. R.; Chaplin, W. J.; Handberg, R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Barclay, T.; Huber, D.; Burke, C. J.; Quintana, E. V. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Swift, J. J. [Department of Astronomy and Department of Planetary Science, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Adibekyan, V. Zh. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Cochran, W. [Department of Astronomy and McDonald Observatory, The University of Texas at Austin, TX 78712-1205 (United States); Isaacson, H. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Bedding, T. R. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Ragozzine, D. [Department of Physics and Space Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Riddle, R. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Baranec, C. [Institute for Astronomy, University of Hawai' i at Mānoa, Hilo, HI 96720-2700 (United States); Basu, S., E-mail: campante@bison.ph.bham.ac.uk [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2015-02-01

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.

  9. Making Nature's Wisdom Public: The Affirmation of Planet Earth as a Living Organism.

    Science.gov (United States)

    Cohen, Michael J.

    Planet Earth is a living organism that preserves and regenerates itself and shares information with humans through sensations, feelings, and actions. After early humans migrated from their tropical origins to colder climates, they developed technologies to impose their tropical memories on their new surroundings and lost touch with their ancient…

  10. Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers

    Science.gov (United States)

    Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara

    2014-01-01

    Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers (http://pioneeringmars.org) provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive on…

  11. Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers

    Science.gov (United States)

    Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara

    2014-01-01

    Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers (http://pioneeringmars.org) provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive…

  12. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  13. Habitable Zones for Earth-Like Planets in the 47UMa Planetary System

    Science.gov (United States)

    Ji, Jianghui; Liu, Lin

    The Habitable zones are usually believed to be appropriate environment for terrestrial planets that can provide the liquid-water, subtle temperature, atmosphere components of CO2, H2O, and N2 [Kasting et al., Icarus 101 (1993) 108], supporting the development and biological evolution of life on their surfaces. In this work [see an accompanied paper, Ji et al., Astrophysical Journal 631 (2005) 1191 for details], we investigated the dynamical architecture of 47 UMa with the planetary configuration of the best-fit orbital solutions by Fischer et al. [Astrophysical Journal 586 (2003) 1394], to study the existence of the Earth-like planets in the region for 0.05 AU ≤ a ≤ 2.0 AU for 47 UMa by numerical simulations. In the study, we found that the “hot Earths” at 0.05 AU ≤ a ≤ 0.4 AU can dynamically survive at least for 1 Myr. The Earth-like planets can eventually remain in the system for 10 Myr at the areas involved in mean motion resonance (MMR) (e.g., 3:2 MMR and 9:5 MMR) with the inner companion. Moreover, we showed that the 2:1 and 3:1 resonances could be marginally stable, but the 5:2 MMR is unstable. In a dynamical sense, we point out that the most possible candidate habitable environment is that the Earth-like planets may bear the orbits of 0.8 AU ≤ a ≤ 1.0 AU and 1.0 AU ≤ a ≤ 1.30 AU (except 5:2 MMR) for relatively lower eccentricities. We also conducted similar studies in other multi-planet systems and found the potential existence of the Earth-like planets in habitable zones.

  14. A man from planet earth a scientific novel

    CERN Document Server

    Genta, Giancarlo

    2016-01-01

    Sometime in the not-too-distant future ... unbeknownst to Earth, the Galaxy is home to a number of spacefaring societies. This confederation enforces a strict protocol forbidding any contact with civilizations that have not yet achieved both a substantial spacefaring capability and sufficient maturity to control the technology explosion before triggering their own extinction.   While this policy is intended to only bring in peaceful new members, matters change entirely when the confederation is threatened by some unknown entity - is the menace real or imagined?  The confederation decides to break with the rules and sends a delegate to Earth to hire one of the supposedly belligerent Earthlings to investigate and to revive the confederation’s long-unused starfleet. The Earthman agrees, but demands a high price: should he succeed, the confederation will have to accept Earth as a new member. As the threat becomes ever more acute, the question soon becomes which mission will prove harder - saving the confedera...

  15. Migration then assembly: Formation of Neptune mass planets inside 1~AU

    CERN Document Server

    Hansen, Brad M S

    2011-01-01

    We demonstrate that the observed distribution of 'Hot Neptune'/'Super-Earth' systems is well reproduced by a model in which planet assembly occurs in situ, with no significant migration. This is achieved only if the amount of mass in rocky material is 50--100 M_{\\oplus} interior to 1 AU, so significant radial migration of material is likely still required, but it must occur earlier than the final assembly stages. The model not only reproduces the general distribution of mass versus period, but also the detailed statistics of multiple planet systems in the sample. We furthermore demonstrate that cores of this size are also likely to meet the criterion to gravitationally capture gas from the nebula, although accretion is rapidly limited by the opening of gaps in the gas disk. If the mass growth is limited by this tidal truncation, then the scenario sketched here naturally produces Neptune-mass objects with substantial components of both rock and gas, as is observed. The quantitative expectations of this scenari...

  16. OGLE-2012-BLG-0724Lb: A Saturn-mass Planet around an M-dwarf

    CERN Document Server

    Hirao, Y; Sumi, T; Bennett, D P; Bond, I A; Rattenbury, N; Suzuki, D; Koshimoto, N; Abe, F; Asakura, Y; Bhattacharya, A; Freeman, M; Fukui, A; Itow, Y; Li, M C A; Ling, C H; Masuda, K; Matsubara, Y; Matsuo, T; Muraki, Y; Nagakane, M; Ohnishi, K; Oyokawa, H; Saito, To; Sharan, A; Shibai, H; Sullivan, D J; Tristram, P J; Yonehara, A; Poleski, R; Skowron, J; Mróz, P; Szymański, M K; Kozłowski, S; Pietrukowicz, P; Soszyński, I; Wyzykowski, Ł; Ulaczyk, K

    2016-01-01

    We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio $q=(1.58\\pm0.15)\\times10^{-3}$. By conducting a Bayesian analysis, we estimate that the host star is an M-dwarf star with a mass of $M_{\\rm L}=0.29_{-0.16}^{+0.33} \\ M_{\\odot}$ located at $D_{\\rm L}=6.7_{-1.2}^{+1.1} \\ {\\rm kpc}$ away from the Earth and the companion's mass is $m_{\\rm P}=0.47_{-0.26}^{+0.54} \\ M_{\\rm Jup}$. The projected planet-host separation is $a_{\\perp}=1.6_{-0.3}^{+0.4} \\ {\\rm AU}$. Because the lens-source relative proper motion is relatively high, future high resolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an ...

  17. The Dharma Planet Survey of Low-mass and Habitable Rocky Planets around Nearby Solar-type Stars

    Science.gov (United States)

    Ge, Jian; Ma, Bo; Jeram, Sarik; Sithajan, Sirinrat; Singer, Michael; Muterspaugh, Matthew W.; Varosi, Frank; Schofield, Sidney; Liu, Jian; Kimock, Benjamin; Powell, Scott; Williamson, Michael W.; Herczeg, Aleczander; Grantham, Jim; Stafford, Greg; Hille, Bruce; Rosenbaum, Gary; Savage, David; Bland, Steve; Hoscheidt, Joseph; Swindle, Scott; Waidanz, Melanie; Petersen, Robert; Grieves, Nolan; Zhao, Bo; Cassette, Anthony; Chun, Andrew; Avner, Louis; Barnes, Rory; Tan, Jonathan C.; Lopez, Eric; Dai, Ruijia

    2017-01-01

    The Dharma Planet Survey (DPS) aims to monitor ~150 nearby very bright FGK dwarfs (most of them brighter than V=7) during 2016-2019 using the TOU optical very high resolution spectrograph (R~100,000, 380-900nm) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. Operated in high vacuum (measurement precision for bright survey targets. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The discovery of a Neptune mass planet and early survey results will be announced.

  18. CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454

    Energy Technology Data Exchange (ETDEWEB)

    Vanderburg, Andrew; Montet, Benjamin T.; Johnson, John Asher; Buchhave, Lars A.; Zeng, Li; Latham, David W.; Angus, Ruth; Bieryla, Allyson; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Pepe, Francesco; Udry, Stéphane; Lovis, Christophe [Observatoire Astronomique de l' Université de Genève, 51 chemin des Maillettes, CH-1290 Versoix (Switzerland); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Molinari, Emilio; Boschin, Walter [INAF-Fundación Galileo Galilei, Rambla José Ana Fernández Pérez, 7, E-38712 Breña Baja (Spain); Matthews, Jaymie M. [University of British Columbia, Vancouver, BC V6T1Z1 (Canada); Cameron, Chris [Cape Breton University, 1250 Grand Lake Road, Sydney NS B1P 6L2 (Canada); Law, Nicholas [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Bowler, Brendan P. [California Institute of Technology, Pasadena, CA 91125 (United States); Baranec, Christoph, E-mail: avanderburg@cfa.harvard.edu [University of Hawai' i at Mānoa, Hilo, HI 96720 (United States); and others

    2015-02-10

    We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =–0.16 ± 0.08 and has a radius R {sub *} = 0.716 ± 0.024 R {sub ☉} and mass M {sub *} = 0.775 ± 0.027 M {sub ☉}. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of R{sub p} = 2.53 ± 0.18 R {sub ⊕}. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M {sub ⊕} planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.

  19. 10 years with Planet Earth essence in the primary school children drawings

    Science.gov (United States)

    D'Addezio, Giuliana

    2016-04-01

    "10 years with Planet Earth" is the title of the 2016 INGV calendar for primary schools representing the review of a project conceived as support and complement of 15 years long INGV dissemination activities with schools. We realized 10 calendars together with and for primary schools, every year with a subject related to a World in constant evolution. Earthquakes, volcanic eruptions, tsunami waves, magnetic storms and other phenomena are manifestations of the complexity and dynamicity, which began more than four billion years ago and never halted. Since the Earth originated to the first presence of water, life and oxygen, the Cambrian explosion of species, the domain of dinosaurs, the great extinctions and glaciations, the surface of our planet experiences continents collisions, mountains and oceans formation and life forms emerging and disappearing. Every year we have launched a competition asking children to send drawings on themes chosen to stimulate learning about Earth Sciences and Planet Earth dynamics. We intended to raise awareness on issues as water resources availability, protection against natural disasters and control of environmental degradation. For each competition, we chose the most significant drawings to be included in the yearly calendar about the Earth. The authors of drawings were awarded by scientists, journalists, artists and science communicators and even by a minister. Besides the competitions, these drawings depict their own impressions and reflections, providing an opportunity to illustrate the children's point of view. From drawings and texts arise a great consideration and respect for the Planet, raising hopes that similar initiatives can contribute to increase the knowledge of the Earth and of the fragile human ecosystem in the hearts and minds of future active citizens. The project was made possible thanks to the teachers and to the wonderful students of more than 200 schools that sent about 10,000 drawings that have intrigued

  20. 3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars

    Science.gov (United States)

    Godolt, M.; Grenfell, J. L.; Hamann-Reinus, A.; Kitzmann, D.; Kunze, M.; Langematz, U.; von Paris, P.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2015-06-01

    The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface, since life as we know it needs liquid water at least during a part of its life cycle. The potential presence of liquid water on a planetary surface depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planet's host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars (F, G, and K-type stars) upon the climate of Earth-like extrasolar planets and their potential habitability by applying a state-of-the-art three-dimensional (3D) Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances (and corresponding orbital periods) where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results obtained have been compared to those of a one-dimensional (1D) radiative convective climate model to investigate the approximation of global mean 3D results by those of 1D models. The different stellar spectral energy distributions lead to different surface temperatures and due to ozone heating to very different vertical temperature structures. As previous 1D studies we find higher surface temperatures for the Earth-like planet around the K-type star, and lower temperatures for the planet around the F-type star compared to an Earth-like planet around the Sun. However, this effect is more pronounced in the 3D model results than in the 1D model because the 3D model accounts for feedback processes such as the ice-albedo and the water vapor feedback. Whether the

  1. The HARPS search for southern extra-solar planets XXXV. Super-Earths around the M-dwarf neighbors Gl433 and Gl667C

    CERN Document Server

    Delfosse, X; Forveille, T; Udry, S; Mayor, M; Bouchy, F; Gillon, M; Lovis, C; Neves, V; Pepe, F; Perrier, C; Queloz, D; Santos, N C; Ségransan, D

    2012-01-01

    M dwarfs have been found to often have super-Earth planets with short orbital periods. Such stars are thus preferential targets in searches for rocky or ocean planets in the solar neighbourhood. In a recent paper (Bonfils et al. 2011), we announced the discovery of respectively 1 and 2 low mass planets around the M1.5V stars Gl433 and Gl667C. We found those planets with the HARPS spectrograph on the ESO~3.6-m telescope at La Silla Observatory, from observations obtained during the Guaranteed Time Observing program of that instrument. We have obtained additional HARPS observations of those two stars, for a total of respectively 67 and 179 Radial Velocity measurements for Gl433 and Gl667C, and present here an orbital analysis of those extended data sets and our main conclusion about both planetary systems. One of the three planets, Gl667Cc, has a mass of only M2.sin(i)~4.25 M_earth and orbits in the central habitable zone of its host star. It receives just 10% less stellar energy from Gl667C than the Earth rece...

  2. Vulcan Planets: Inside-Out Formation of the Innermost Super-Earths

    CERN Document Server

    Chatterjee, Sourav

    2014-01-01

    The compact multi-transiting systems discovered by Kepler challenge traditional planet formation theories. These fall into two broad classes: (1) formation further out followed by migration; (2) formation in situ from a disk of gas and planetesimals. In the former, an abundance of resonant chains is expected, which the Kepler data do not support. In the latter, required disk mass surface densities may be too high. A recently proposed mechanism hypothesizes that planets form in situ at the pressure trap associated with the dead-zone inner boundary (DZIB) where radially drifting "pebbles" accumulate. This scenario predicts planet masses ($M_p$) are set by the gap-opening process that then leads to DZIB retreat, followed by sequential, inside-out planet formation (IOPF). For typical disk accretion rates, IOPF predictions for $M_p$, $M_p$ versus orbital radius $r$, and planet-planet separations are consistent with observed systems. Here we investigate the IOPF prediction for how the masses, $M_{p,1}$, of the inne...

  3. The earth as a living planet: Human-type diseases in the earthquake preparation process

    CERN Document Server

    Contoyiannis, Y F; Eftaxias, K

    2013-01-01

    The new field of complex systems supports the view that a number of systems arising from disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative features that are intriguingly similar. The earth is a living planet where many complex systems run perfectly without stopping at all. The earthquake generation is a fundamental sign that the earth is a living planet. Recently, analyses have shown that human-brain-type disease appears during the earthquake generation process. Herein, we show that human-heart-type disease appears during the earthquake preparation of the earthquake process. The investigation is mainly attempted by means of critical phenomena, which have been proposed as the likely paradigm to explain the origins of both heart electric fluctuations and fracture induced electromagnetic fluctuations. We show that a time window of the damage evolution within the heterogeneous Earth's crust and the healthy heart's electrical action present the characteristic feat...

  4. The Mass-Metallicity Relation for Giant Planets

    CERN Document Server

    Thorngren, Daniel P; Lopez, Eric D

    2015-01-01

    Exoplanet discoveries of recent years have provided a great deal of new data for studying the bulk compositions of giant planets. Here we identify 38 transiting giant planets ($20 M_\\oplus 50 M_\\oplus$) suggest significant amounts of heavy elements in H/He envelopes, rather than cores, such that metal-enriched giant planet atmospheres should be the rule.

  5. Planet Within a Planet: Rotation of the Inner Core of Earth

    Science.gov (United States)

    Su; Dziewonski; Jeanloz

    1996-12-13

    The time dependence of the orientation of Earth's inner core relative to the mantle was determined using a recently discovered 10-degree tilt in the axis of symmetry of the inner core's seismic-velocity anisotropy. Two methods of analyzing travel-time variations for rays traversing the inner core, on the basis of 29 years of data from the International Seismological Centre (1964-1992), reveal that the inner core appears to rotate about 3 degrees per year faster than the mantle. An anomalous variation in inner-core orientation from 1969 to 1973 coincides in time with a sudden change ("jerk") in the geomagnetic field.

  6. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    Science.gov (United States)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  7. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high resolution observations

    CERN Document Server

    Rosotti, Giovanni P; Booth, Richard A; Clarke, Cathie J

    2016-01-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submm continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about two. To this end we perform multi-fluid gas and dust simulations of discs containing low mass planets, generating simulated observations at $1.65 \\mu$m, $10 \\mu$m and $850 \\mu$m. We show that the minimum planet mass that produces a detectable signature is $\\sim 15 M_\\oplus$: this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of $\\sim 20 M_\\oplus$ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outward of the planet and a reduction in the vicinity of the planet. These features are in stea...

  8. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    Science.gov (United States)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  9. Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star

    CERN Document Server

    Van Grootel, V; Valencia, D; Madhusudhan, N; Dragomir, D; Howe, A R; Burrows, A S; Demory, B -O; Deming, D; Ehrenreich, D; Lovis, C; Mayor, M; Pepe, F; Queloz, D; Scuflaire, R; Seager, S; Segransan, D; Udry, S

    2014-01-01

    Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass ($M_*=0.77\\pm0.05\\,M_{\\odot}$) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-HIRES radial velocities, and MOST and Spitzer photometry. HD 97658 b is a massive ($M_P=7.55^{+0.83}_{-0.79} M_{\\oplus}$) and large ($R_{P} = 2.247^{+0.098}_{-0.095} R_{\\oplus}$ at 4.5 $\\mu$m) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, by at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the kno...

  10. The most conserved genome segments for life detection on Earth and other planets.

    Science.gov (United States)

    Isenbarger, Thomas A; Carr, Christopher E; Johnson, Sarah Stewart; Finney, Michael; Church, George M; Gilbert, Walter; Zuber, Maria T; Ruvkun, Gary

    2008-12-01

    On Earth, very simple but powerful methods to detect and classify broad taxa of life by the polymerase chain reaction (PCR) are now standard practice. Using DNA primers corresponding to the 16S ribosomal RNA gene, one can survey a sample from any environment for its microbial inhabitants. Due to massive meteoritic exchange between Earth and Mars (as well as other planets), a reasonable case can be made for life on Mars or other planets to be related to life on Earth. In this case, the supremely sensitive technologies used to study life on Earth, including in extreme environments, can be applied to the search for life on other planets. Though the 16S gene has become the standard for life detection on Earth, no genome comparisons have established that the ribosomal genes are, in fact, the most conserved DNA segments across the kingdoms of life. We present here a computational comparison of full genomes from 13 diverse organisms from the Archaea, Bacteria, and Eucarya to identify genetic sequences conserved across the widest divisions of life. Our results identify the 16S and 23S ribosomal RNA genes as well as other universally conserved nucleotide sequences in genes encoding particular classes of transfer RNAs and within the nucleotide binding domains of ABC transporters as the most conserved DNA sequence segments across phylogeny. This set of sequences defines a core set of DNA regions that have changed the least over billions of years of evolution and provides a means to identify and classify divergent life, including ancestrally related life on other planets.

  11. Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution

    CERN Document Server

    Veras, Dimitri; Gaensicke, Boris T; Redfield, Seth; Georgakarakos, Nikolaos; Bowler, Alex B; Lloyd, Maximillian J S

    2016-01-01

    We know that planetary systems are just as common around white dwarfs as around main sequence stars. However, self-consistently linking a planetary system across these two phases of stellar evolution through the violent giant branch poses computational challenges, and previous studies restricted architectures to equal-mass planets. Here, we remove this constraint and perform over 450 numerical integrations over a Hubble time (14 Gyr) of packed planetary systems with unequal-mass planets. We characterize the resulting trends as a function of planet order and mass. We find that intrusive radial incursions in the vicinity of the white dwarf become less likely as the dispersion amongst planet masses increases. The orbital meandering which may sustain a sufficiently dynamic environment around a white dwarf to explain observations is more dependent on the presence of terrestrial-mass planets than any variation in planetary mass. Triggering unpacking or instability during the white dwarf phase is comparably easy for...

  12. A Closely-Packed System of Low-Mass, Low-Density Planets Transiting Kepler-11

    CERN Document Server

    Lissauer, Jack J; Ford, Eric B; Borucki, William J; Fressin, Francois; Marcy, Geoffrey W; Orosz, Jerome A; Rowe, Jason F; Torres, Guillermo; Welsh, William F; Batalha, Natalie M; Bryson, Stephen T; Buchhave, Lars A; Caldwell, Douglas A; Carter, Joshua A; Charbonneau, David; Christiansen, Jessie L; Cochran, William D; Desert, Jean-Michel; Dunham, Edward W; Fanelli, Michael N; Fortney, Jonathan J; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Koch, David G; Latham, David W; Lopez, Eric; McCauliff, Sean; Miller, Neil; Morehead, Robert C; Quintana, Elisa V; Ragozzine, Darin; Sasselov, Dimitar; Short, Donald R; Steffen, Jason H

    2011-01-01

    When an extrasolar planet passes in front of its star (transits), its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star that reveal six transiting planets, five with orbital periods between 10 and 47 days plus a sixth one with a longer period. The five inner planets are among the smallest whose masses and sizes have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end o...

  13. Mapping Earth-analogs from Photometric Variability: Spin-Orbit Tomography for Planets in Inclined Orbits

    CERN Document Server

    Fujii, Yuka

    2012-01-01

    Aiming at obtaining detailed information of surface environment of Earth-analogs, Kawahara & Fujii 2011 proposed an inversion technique of annual scattered light curves named the spin-orbit tomography (SOT), which enables one to sketch a 2-dimensional albedo map from annual variation of the disk-integrated scattered light, and demonstrated the method with a planet in a face-on orbit. We extend it to be applicable to general geometric configurations, including low-obliquity planets like the Earth in inclined orbits. We simulate light curves of the Earth in an inclined orbit in three photometric bands (0.4-0.5um, 0.6-0.7um, and 0.8-0.9um) and show that the distribution of clouds, snow, and continents are retrieved with the aid of the SOT. We also demonstrate the SOT by applying it to an upright Earth, a tidally-locked Earth, and Earth-analogs with ancient continental configurations. The inversion is model-independent in the sense that we do not assume specific albedo models when mapping the surface, and hen...

  14. Transiting Planets with LSST II. Period Detection of Planets Orbiting 1 Solar Mass Hosts

    CERN Document Server

    Jacklin, Savannah R; Pepper, Joshua; Stassun, Keivan G

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) will photometrically monitor ~1 billion stars for ten years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al. (2015), LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5 to 20 d. We find that typical LSST observations will be able to reliably detect Hot Jupiters with periods shorter than ~3 d. At the same time, we find that the LSST deep drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 d.

  15. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations

    Science.gov (United States)

    Rosotti, Giovanni P.; Juhasz, Attila; Booth, Richard A.; Clarke, Cathie J.

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ˜15 M⊕: this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ˜20 M⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  16. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations.

    Science.gov (United States)

    Rosotti, Giovanni P; Juhasz, Attila; Booth, Richard A; Clarke, Cathie J

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ∼15 M⊕: this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ∼20 M⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  17. The Stability of Hydrogen-Rich Atmospheres of Earth-Like Planets

    Science.gov (United States)

    Zahnle, Kevin

    2016-01-01

    Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydro- dynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than 1.6 Earth radii.

  18. Coronal Mass Ejections: From Sun to Earth

    Science.gov (United States)

    Patsourakos, S.

    2016-06-01

    Coronal Mass Ejections (CMEs) are gigantic expulsions of magnetized plasmas from the solar corona into the interplanetary (IP) space. CMEs spawn ~ 1015 gr of mass and reach speeds ranging between several hundred to a few thousand km/s (e.g., Gopalswamy et al. 2009; Vourlidas et al. 2010). It takes 1-5 days for a CME to reach Earth. CMEs are one of the most energetic eruptive manifestations in the solar system and are major drivers of space weather via their magnetic fields and energetic particles, which are accelerated by CME-driven shocks. In this review we give a short account of recent, mainly observational, results on CMEs from the STEREO and SDO missions which include the nature of their pre-eruptive and eruptive configurations and the CME propagation from Sun to Earth. We conclude with a discussion of the exciting capabilities in CME studies that will soon become available from new solar and heliospheric instrumentation.

  19. VULCAN PLANETS: INSIDE-OUT FORMATION OF THE INNERMOST SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sourav [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Tan, Jonathan C., E-mail: sourav.chatterjee@northwestern.edu, E-mail: jt@astro.ufl.edu [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States)

    2015-01-10

    The compact multi-transiting systems discovered by Kepler challenge traditional planet formation theories. These fall into two broad classes: (1) formation further out followed by migration and (2) formation in situ from a disk of gas and planetesimals. In the former, an abundance of resonant chains is expected, which the Kepler data do not support. In the latter, required disk mass surface densities may be too high. A recently proposed mechanism hypothesizes that planets form in situ at the pressure trap associated with the dead-zone inner boundary (DZIB) where radially drifting ''pebbles'' accumulate. This scenario predicts planet masses (M{sub p} ) are set by the gap-opening process that then leads to DZIB retreat, followed by sequential, inside-out planet formation (IOPF). For typical disk accretion rates, IOPF predictions for M{sub p} , M{sub p} versus orbital radius r, and planet-planet separations are consistent with observed systems. Here we investigate the IOPF prediction for how the masses, M{sub p,} {sub 1}, of the innermost (''Vulcan'') planets vary with r. We show that for fiducial parameters, M {sub p,} {sub 1} ≅ 5.0(r/0.1 AU) M {sub ⊕}, independent of the disk's accretion rate at time of planet formation. Then, using Monte Carlo sampling of a population of these innermost planets, we test this predicted scaling against observed planet properties, allowing for intrinsic dispersions in planetary densities and Kepler's observational biases. These effects lead to a slightly shallower relation M{sub p,} {sub 1}∝r {sup 0.9} {sup ±} {sup 0.2}, which is consistent with M{sub p,} 1∝r {sup 0.7} {sup ±} {sup 0.2} of the observed Vulcans. The normalization of the relation constrains the gap-opening process, favoring relatively low viscosities in the inner dead zone.

  20. False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth.

    Science.gov (United States)

    Reinhard, Christopher T; Olson, Stephanie L; Schwieterman, Edward W; Lyons, Timothy W

    2017-04-01

    Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth-oxygen (O2), ozone (O3), and methane (CH4). We suggest that the canonical O2-CH4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O2/O3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures-Oxygen-Methane-Ozone-Exoplanets-Planetary habitability. Astrobiology 17, 287-297.

  1. An engineering research and technology program for an evolving, multi-decade Mission to Planet Earth

    Science.gov (United States)

    Sadin, Stanley R.; Johnston, Gordon I.; Hudson, Wayne R.

    1991-01-01

    A study is presented that examines the technological needs of future systems, surveys current and planned activities and highlights significant accomplishments in the research and technology program of the multidecade Mission to Planet Earth (MTPE). Consideration is given to recent program redirection in MTPE, the initiation of the high performance computing and communications program and the potential impact on the technology programs. The technology set is divided into three subsets covering information, observation, and infrastructure technologies.

  2. Origin and Ubiquity of Short-Period Earth-like Planets: Evidence for the Sequential-Accretion Theory of Planet Formation

    OpenAIRE

    Zhou, J. L.; Aarseth, S. J.; Lin, D. N. C.; Nagasawa, M.

    2005-01-01

    The formation of gas giant planets is assumed to be preceded by the emergence of solid cores in the conventional sequential-accretion paradigm. This hypothesis implies that the presence of earth-like planets can be inferred from the detection of gas giants. A similar prediction cannot be made with the gravitational instability (hereafter GI) model which assumes that gas giants (hereafter giants) formed from the collapse of gas fragments analogous to their host stars. We propose an observation...

  3. Plans for living on a restless planet sets NASA's solid Earth agenda

    Science.gov (United States)

    Solomon, S. C.; Baker, V. R.; Bloxham, J.; Booth, J.; Donnellan, A.; Elachi, C.; Evans, D.; Rignot, E.; Burbank, D.; Chao, B. F.; Chave, A.; Gillespie, A.; Herring, T.; Jeanloz, R.; LaBrecque, J.; Minster, B.; Pitman, W. C., III; Simons, M.; Turcotte, D. L.; Zoback, M. L.

    2003-01-01

    What are the most important challenges facing solid Earth science today and over the next two decades? And what is the best approach for NASA, in partnership with other agencies, to address these challenges? A new report, living on a restless planet, provides a blueprint for answering these questions. The top priority for a new spacecraft mission in the area of solid earth science over the next 5 years, according to this report, is a satellite dedicated to interferometric synthetic aperture radar(inSAR).

  4. Reconstructing the photometric light curves of Earth as a planet along its history

    CERN Document Server

    Sanromá, Esther

    2011-01-01

    By utilizing satellite-based estimations of the distribution of clouds, we have studied the Earth's large-scale cloudiness behavior according to latitude and surface types (ice, water, vegetation and desert). These empirical relationships are used here to reconstruct the possible cloud distribution of historical epochs of the Earth's history such as the Late Cretaceous (90 Ma ago), the Late Triassic (230 Ma ago), the Mississippian (340 Ma ago), and the Late Cambrian (500 Ma ago), when the landmass distributions were different from today's. With this information, we have been able to simulate the globally-integrated photometric variability of the planet at these epochs. We find that our simple model reproduces well the observed cloud distribution and albedo variability of the modern Earth. Moreover, the model suggests that the photometric variability of the Earth was probably much larger in past epochs. This large photometric variability could improve the chances for the difficult determination of the rotation...

  5. ISY Mission to Planet Earth Conference: A planning meeting for the International Space Year

    Science.gov (United States)

    Meyerson, Harvey

    1991-01-01

    A major theme was the opportunity offered by the International Space Year (ISY) to initiate a long-term program of Earth observation mission coordination and worldwide data standardization. The challenge is immense and extremely time critical. A recommendation was made to inventory the capabilities of Earth observing spacecraft scheduled during the next decade. The ISY effort to strengthen coordination and standardization should emphasize global issues, and also regional initiatives of particular relevance to developing nations. The concepts of a Global Information System Test (GIST) was accepted and applied to specific issues of immediate concern. The importance of ISY Earth observation initiatives extending beyond research to include immediate and direct applications for social and economic development was stressed. Several specific Mission to Planet Earth proposals were developed during the Conference. A mechanism was set up for coordinating participation of the national space agencies or equivalent bodies.

  6. Transfer of Life-Bearing Meteorites from Earth to Other Planets

    CERN Document Server

    Hara, Tetsuya; Kajiura, Daigo

    2012-01-01

    The probability is investigated that the meteorites originating on Earth are transferred to other planets in our Solar System and to extra solar planets. We take the collisional Chicxulub crater event, and material that was ejected as an example of Earth-origin meteors. If we assume the appropriate size of the meteorites as 1cm in diameter, the number of meteorites to reach the exoplanet system (further than 20 ly) would be much greater than one. We have followed the ejection and capture rates estimated by Melosh (2003) and the discussion by Wallis and Wickramasinghe (2004). If we consider the possibility that the fragmented ejecta (smaller than 1cm) are accreted to comets and other icy bodies, then buried fertile material could make the interstellar journey throughout Galaxy. If life forms inside remain viable, this would be evidence of life from Earth seeding other planets. We also estimate the transfer velocity of the micro-organisms in the interstellar space. In some assumptions, it could be estimated tha...

  7. Quantifying the tailward motion of reconnecting flux ropes at magnetopauses of Earth and other planets

    Science.gov (United States)

    Cassak, P.; Doss, C.; Palmroth, M.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Dorelli, J.

    2015-12-01

    Flux ropes caused by magnetic reconnection commonly form at the dayside magnetopauses of Earth and other planets, such as Mercury and Jupiter. They are convected tailward due to their interaction with the solar wind and as the result of reconnection. The leading model for their tailward propagation speed at Earth's magnetopause has been described using boundary layer physics (Cowley and Owen, Planet. Space Sci., 37, 1461, 1989). We revisit this topic, noting that during times when the reconnection at both X-lines bracketing the flux ropes remain active, there should be consistency with the scaling laws of asymmetric magnetic reconnection with a flow shear. The convection speed of an isolated reconnecting X-line as a function of arbitrary upstream plasma parameters, including the reconnecting magnetic fields, densities, and upstream flow in the plane of the fields, was recently calculated analytically and tested with two-fluid simulations (Doss et al., J. Geophys. Res., submitted). Here, we present fully electromagnetic kinetic particle-in-cell simulations of local asymmetric reconnection with a flow shear that confirm the prediction in collisionless plasmas relevant to planetary magnetospheres. It is notable that the X-line convects even for sub-Alfvenic flow shear and can reconnect even for flow speeds exceeding twice the magnetosheath Alfven speed, which counters previous models. The application of these results for flux rope motion in global magnetospheric simulations of Earth is discussed, as are applications to the magnetospheres of other planets.

  8. Formation of close in Super-Earths \\& Mini-Neptunes: Required Disk Masses \\& Their Implications

    CERN Document Server

    Schlichting, Hilke E

    2014-01-01

    Recent observations by the {\\it Kepler} space telescope have led to the discovery of more than 4000 exoplanet candidates consisting of many systems with Earth- to Neptune-sized objects that reside well inside the orbit of Mercury, around their respective host stars. How and where these close-in planets formed is one of the major unanswered questions in planet formation. Here we calculate the required disk masses for {\\it in situ} formation of the {\\it Kepler} planets. We find that, if close-in planets formed as {\\it isolation masses}, then standard gas-to-dust ratios yield corresponding gas disks that are gravitationally unstable for a significant fraction of systems, ruling out such a scenario. We show that the maximum width of a planet's accretion region in the absence of any migration is $2 v_{esc}/\\Omega$, where $v_{esc}$ is the escape velocity of the planet and $\\Omega$ the Keplerian frequency and use it to calculate the required disk masses for {\\it in situ} formation with giant impacts. Even with giant...

  9. Building a Dashboard of the Planet with Google Earth and Earth Engine

    Science.gov (United States)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  10. Mass constraint for a planet in a protoplanetary disk from the gap width

    CERN Document Server

    Kanagawa, Kazuhiro D; Tanaka, Hidekazu; Tanigawa, Takayuki; Takeuchi, Taku; Tsukagoshi, Takashi; Momose, Munetake

    2016-01-01

    A giant planet creates a gap in a protoplanetary disk, which might explain the observed gaps in protoplanetary disks. The width and depth of the gaps depend on the planet mass and disk properties. We have performed two--dimensional hydrodynamic simulations for various planet masses, disk aspect ratios and viscosities, to obtain an empirical formula for the gap width. The gap width is proportional to the square root of the planet mass, -3/4 power of the disk aspect ratio and -1/4 power of the viscosity. This empirical formula enables us to estimate the mass of a planet embedded in the disk from the width of an observed gap. We have applied the empirical formula for the gap width to the disk around HL~Tau, assuming that each gap observed by ALMA observations is produced by planets, and discussed the planet masses within the gaps. The estimate of planet masses from the gap widths is less affected by the observational resolution and dust filtration than that from the gap depth.

  11. Human impact on the planet: an earth system science perspective and ethical considerations

    Science.gov (United States)

    Williams, Richard S.

    2002-01-01

    natural and human history to stop further degradation of Earth?s ecosystems and extinction of its biota? The fate of the biosphere, including humanity, depends on a reaffirmation by all humans of all cultures and religions of the global importance of a planet-wide conservation of the Earth?s biotic heritage. For the world?s religions it means elevation of stewardship of the Earth to a moral imperative and a goal of complete preservation of the Earth?s biotic inheritance, one which is based on a Do No Harm ethic.

  12. On the Mass-Period Distributions and Correlations of Extrasolar Planets

    CERN Document Server

    Jiang, Ing-Guey; Chang, Yen-Chang; Hung, Wen-Liang

    2007-01-01

    In addition to fitting the data of 233 extra-solar planets with power laws, we construct a correlated mass-period distribution function of extrasolar planets, as the first time in this field. The algorithm to generate a pair of positively correlated beta-distributed random variables is introduced and used for the construction of correlated distribution functions. We investigate the mass-period correlations of extrasolar planets both in the linear and logarithm spaces, determine the confidence intervals of the correlation coefficients, and confirm that there is a positive mass-period correlation for the extrasolar planets. In addition to the paucity of massive close-in planets, which makes the main contribution on this correlation, there are other fine structures for the data in the mass-period plane.

  13. Earth Stewardship: An initiative by the Ecological Society of America to foster engagement to sustain Planet Earth

    Science.gov (United States)

    Chapin, F. Stuart; Pickett, S.T.A.; Power, Mary E.; Collins, Scott L.; Baron, Jill S.; Inouye, David W.; Turner, Monica G.

    2017-01-01

    The Ecological Society of America (ESA) has responded to the growing commitment among ecologists to make their science relevant to society through a series of concerted efforts, including the Sustainable Biosphere Initiative (1991), scientific assessment of ecosystem management (1996), ESA’s vision for the future (2003), Rapid Response Teams that respond to environmental crises (2005), and the Earth Stewardship Initiative (2009). During the past 25 years, ESA launched five new journals, largely reflecting the expansion of scholarship linking ecology with broader societal issues. The goal of the Earth Stewardship Initiative is to raise awareness and to explore ways for ecologists and other scientists to contribute more effectively to the sustainability of our planet. This has occurred through four approaches: (1) articulation of the stewardship concept in ESA publications and Website, (2) selection of meeting themes and symposia, (3) engagement of ESA sections in implementing the initiative, and (4) outreach beyond ecology through collaborations and demonstration projects. Collaborations include societies and groups of Earth and social scientists, practitioners and policy makers, religious and business leaders, federal agencies, and artists and writers. The Earth Stewardship Initiative is a work in progress, so next steps likely include continued nurturing of these emerging collaborations, advancing the development of sustainability and stewardship theory, improving communication of stewardship science, and identifying opportunities for scientists and civil society to take actions that move the Earth toward a more sustainable trajectory.

  14. Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M dwarfs

    CERN Document Server

    Rugheimer, S; Segura, A; Linsky, J; Mohanty, S

    2015-01-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with $T_{eff}$ = 2300K to $T_{eff}$ = 3800K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1AU equivalent distance and show spectra from the VIS to IR (0.4$\\mu$m - 20$\\mu$m) to compare detectability of features in different wavelength ranges with JWST and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely: H$_2$O, O$_3$, CH$_4$, N$_2$O and CH$_3$Cl. To observe signatures of life - O$_2$/O$_3$ in combination with reducing species like CH$_4$, we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O$_2$ spectral feature at 0.76$\\mu$m is increasingly difficult to detect in reflected light of later M dwarfs due to low stellar flux in ...

  15. Minimum Core Masses for Giant Planet Formation With Realistic Equations of State and Opacities

    CERN Document Server

    Piso, Ana-Maria A; Murray-Clay, Ruth A

    2014-01-01

    Giant planet formation by core accretion requires a core that is sufficiently massive to trigger runaway gas accretion in less that the typical lifetime of protoplanetary disks. We explore how the minimum required core mass, M_crit, depends on a non-ideal equation of state and on opacity changes due to grain growth, across a range of stellocentric distances from 5-100 AU. This minimum M_crit applies when planetesimal accretion does not substantially heat the atmosphere. Compared to an ideal gas polytrope, the inclusion of molecular hydrogen (H_2) dissociation and variable occupation of H_2 rotational states increases M_crit. Specifically, M_crit increases by a factor of ~2 if the H_2 spin isomers, ortho- and parahydrogen, are in thermal equilibrium, and by a factor of ~2-4 if the ortho-to-para ratio is fixed at 3:1. Lower opacities due to grain growth reduce M_crit. For a standard disk model around a Solar mass star, we calculate M_crit ~ 8 M_Earth at 5 AU, decreasing to ~5 M_Earth at 100 AU, for a realistic ...

  16. Check-Up of Planet Earth at the Turn of the Millennium: Anticipated New Phase in Earth Sciences

    Science.gov (United States)

    Kaufman, Y. J.; Ramanathan, V.

    1998-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-AM) will repeat Langley's experiment, but for the entire planet, thus pioneering calibrated spectral observations from space. Conceived in response to real environmental problems, EOS-AM, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-AM can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment.

  17. The habitable zone of Earth-like planets with different levels of atmospheric pressure

    CERN Document Server

    Vladilo, Giovanni; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio

    2013-01-01

    As a contribution to the study of the habitability of extrasolar planets, we implemented a 1-D Energy Balance Model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p=1/3 bar to p=3 bar. At low pressure, the habitability is...

  18. An ancient extrasolar system with five sub-Earth-size planets

    CERN Document Server

    Campante, T L; Swift, J J; Huber, D; Adibekyan, V Zh; Cochran, W; Burke, C J; Isaacson, H; Quintana, E V; Davies, G R; Aguirre, V Silva; Ragozzine, D; Riddle, R; Baranec, C; Basu, S; Chaplin, W J; Christensen-Dalsgaard, J; Metcalfe, T S; Bedding, T R; Handberg, R; Stello, D; Brewer, J M; Hekker, S; Karoff, C; Kolbl, R; Law, N M; Lundkvist, M; Miglio, A; Rowe, J F; Santos, N C; Van Laerhoven, C; Arentoft, T; Elsworth, Y P; Fischer, D A; Kawaler, S D; Kjeldsen, H; Lund, M N; Marcy, G W; Sousa, S G; Sozzetti, A; White, T R

    2015-01-01

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the Universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2+/-1.0 Gyr for the host star, indicating that Kepler-444 formed when the Universe was less than 20% of i...

  19. The Atmospheres of Earth-like Planets after Giant Impact Events

    CERN Document Server

    Lupu, R E; Marley, Mark S; Schaefer, Laura; Fegley, Bruce; Morley, Caroline; Cahoy, Kerri; Freedman, Richard; Fortney, Jonathan J

    2014-01-01

    It is now understood that the accretion of terrestrial planets naturally involves giant collisions, the moon-forming impact being a well known example. In the aftermath of such collisions the surface of the surviving planet is very hot and potentially detectable. Here we explore the atmospheric chemistry, photochemistry, and spectral signatures of post-giant-impact terrestrial planets enveloped by thick atmospheres consisting predominantly of CO2, and H2O. The atmospheric chemistry and structure are computed self-consistently for atmospheres in equilibrium with hot surfaces with composition reflecting either the bulk silicate Earth (which includes the crust, mantle, atmosphere and oceans) or Earth's continental crust. We account for all major molecular and atomic opacity sources including collision-induced absorption. We find that these atmospheres are dominated by H2O and CO2, while the formation of CH4, and NH3 is quenched due to short dynamical timescales. Other important constituents are HF, HCl, NaCl, an...

  20. Increased insolation threshold for runaway greenhouse processes on Earth like planets

    CERN Document Server

    Leconte, Jérémy; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-01-01

    Because the solar luminosity increases over geological timescales, Earth climate is expected to warm, increasing water evaporation which, in turn, enhances the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can "runaway" until all the oceans are evaporated. Through increases in stratospheric humidity, warming may also cause oceans to escape to space before the runaway greenhouse occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated with unidimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of Earth's climate. Here we use a 3D global climate model to show that the threshold for the runaway greenhouse is about 375 W/m$^2$, significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmo...

  1. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    Science.gov (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  2. On-sky Doppler performance of TOU optical very high-resolution spectrograph for detecting low-mass planets

    Science.gov (United States)

    Ge, Jian; Ma, Bo; Sithajan, Sirinrat; Singer, Michael A.; Powell, Scott; Varosi, Frank; Zhao, Bo; Schofield, Sidney; Liu, Jian; Grieves, Nolan; Cassette, Anthony; Avner, Louis; Jakeman, Hali; Muterspaugh, Matthew; Williamson, Michael; Barnes, Rory

    2016-08-01

    The TOU robotic, compact very high resolution optical spectrograph (R=100,000, 0.38-0.9 microns) has been fully characterized at the 2 meter Automatic Spectroscopy Telescope (AST) at Fairborn Observatory in Arizona during its pilot survey of 12 bright FGK dwarfs in 2015. This instrument has delivered sub m/s Doppler precision for bright reference stars (e.g., 0.7 m/s for Tau Ceti over 60 days) with 5-30 min exposures and 0.7 m/s long-term instrument stability, which is the best performance among all of the known Doppler spectrographs to our knowledge. This performance was achieved by maintaining the instrument in a very high vacuum of 1 micron torr and about 0.5 mK (RMS) long-term temperature stability through an innovative close-loop instrument bench temperature control. It has discovered a 21 Earth-mass planet (P=43days) around a bright K dwarf and confirmed three super-Earth planetary systems, HD 1461, 190360 and HD 219314. This instrument will be used to conduct the Dharma Planet Survey (DPS) in 2016-2019 to monitor 100 nearby very bright FGK dwarfs (most of them brighter than V=8) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. With very high RV precision and high cadence ( 100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The survey also provides the largest single homogenous high precision RV sample of nearby stars for studying low mass planet populations and constraining various planet formation models. Instrument on-sky performance is summarized.

  3. Transfer of Meteorites from Earth to the Interesting Objects within the Solar System and the Extrasolar Planets

    Science.gov (United States)

    Hara, T.; Takagi, T.; Kajiura, D.

    2010-10-01

    The probability is investigated that meteorites of Earth origin are transferred to the interesting objects which are supposed to have seas under the icy surface such as Enceladus, Europa, Ceres and dwarf planet Eris and the extrasolar planets. We take the ejection process in collision, such as the Chicxulub crater event, from Earth. If we assume the appropriate size of meteorites as 1cm in diameter, the number of meteorites reaching the interesting objects and the extrasolar planet system could be much greater than one. So we should consider the panspermia theories more seriously as organisms disperse.

  4. Operating an Improved HAT Network to Discover and Characterize Many Planets, from Super-Earths to Super-Jupiters, Transiting Bright Stars

    Science.gov (United States)

    Bakos, Gaspar

    OBJECTIVES The primary objective of this program is to discover many new extrasolar planets that transit stars bright enough to allow in-depth follow-up studies. This program will focus, in particular, on exploring the large, but poorly studied, populations of long period planets as well as Neptunes and super Earths transiting bright stars. We will also provide accurate initial characterization of the newly discovered exoplanets. METHODS We will accomplish these research objectives by continuing the operation of the highly efficient and successful HATNet project in the period of 2013-2016, exploiting its unique capabilities to discover long period as well as small transiting planets. We also propose to replace our inexpensive front-illuminated CCDs with high quality back-illuminated CCDs so as to achieve 1 millimagnitude photometry at 9 minute cadence over a wide field of view for the brightest stars, as demonstrated by a recent experiment. The CCD upgrade, new observing techniques, and highly optimized reduction of the data will increase HATNet's current efficiency towards finding Neptune-sized planets by a factor of 8. With 38 transiting planets published to date, including two of the five well-characterized Neptune-mass planets, and having received more than 750 citations to date, HATNet is one of the world leaders in their discovery. Without further funding HATNet operations will cease. Our team has established a very well working machinery (equipment, personnel, follow-up tools, and expertise) which represents a significant, and highly cost- efficient investment by NASA. The specific methods and techniques we will use are now fully developed, and include: automated monitoring of all bright stars in selected 8x8 degree star fields; identifying candidate transiting planets based on these observations; and conducting follow-up spectroscopic and photometric observations to confirm and characterize those candidates which are real transiting planets. SIGNIFICANCE

  5. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke [University of Vienna, Institute for Astrophysics, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at [Institute for Astronomy and NASA Astrobiology Institute, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  6. Astrometric Constraints on the Masses of Long-period Gas Giant Planets in the TRAPPIST-1 Planetary System

    Science.gov (United States)

    Boss, Alan P.; Weinberger, Alycia J.; Keiser, Sandra A.; Astraatmadja, Tri L.; Anglada-Escude, Guillem; Thompson, Ian B.

    2017-09-01

    Transit photometry of the M8V dwarf star TRAPPIST-1 (2MASS J23062928-0502285) has revealed the presence of at least seven planets with masses and radii similar to that of Earth, orbiting at distances that might allow liquid water to be present on their surfaces. We have been following TRAPPIST-1 since 2011 with the CAPSCam astrometric camera on the 2.5 m du Pont telescope at the Las Campanas Observatory in Chile. In 2016, we noted that TRAPPIST-1 lies slightly farther away than previously thought, at 12.49 pc, rather than 12.1 pc. Here, we examine 15 epochs of CAPSCam observations of TRAPPIST-1, spanning the five years from 2011 to 2016, and obtain a revised trigonometric distance of 12.56 ± 0.12 pc. The astrometric data analysis pipeline shows no evidence for a long-period astrometric wobble of TRAPPIST-1. After proper motion and parallax are removed, residuals at the level of ±1.3 mas remain. The amplitude of these residuals constrains the masses of any long-period gas giant planets in the TRAPPIST-1 system: no planet more massive than ∼4.6 M Jup orbits with a 1 year period, and no planet more massive than ∼1.6 M Jup orbits with a 5 year period. Further refinement of the CAPSCam data analysis pipeline, combined with continued CAPSCam observations, should either detect any long-period planets, or put an even tighter constraint on these mass upper limits.

  7. Wavefront error correction and Earth-like planet detection by Self-Coherent Camera in space

    CERN Document Server

    Galicher, R; Rousset, G

    2008-01-01

    In the context of exoplanet detection, the performance of coronagraphs is limited by wavefront errors. To efficiently correct for these aberrations with a deformable mirror, it is mandatory to measure them using the science detector with a very high accuracy. The Self-Coherent Camera which is based on light incoherence between star and its environment enables an estimation of these wavefront errors. That estimation is directly derived from the encoded speckles in the science image. This avoids differential errors due to beam separation and non common optics. Earth-like planet detection is demonstrated by numerical simulations under realistic assumptions for a space telescope. The Self-Coherent Camera is an attractive technique for future space telescopes. It is also one of the techniques under investigation for the E-ELT planet finder so-called EPICS.

  8. Two planets around Kapteyn's star : a cold and a temperate super-Earth orbiting the nearest halo red-dwarf

    CERN Document Server

    Anglada-Escudé, Guillem; Tuomi, Mikko; Zechmeister, Mathias; Jenkins, James S; Ofir, Aviv; Dreizler, Stefan; Gerlach, Enrico; Marvin, Chris J; Reiners, Ansgar; Jeffers, Sandra V; Butler, R Paul; Vogt, Steven S; Amado, Pedro J; Rodríguez-López, Cristina; Berdiñas, Zaira M; Morin, Julian; Crane, Jeff D; Shectman, Stephen A; Thompson, Ian B; Díaz, Mateo; Rivera, Eugenio; Sarmiento, Luis F; Jones, Hugh R A

    2014-01-01

    Exoplanets of a few Earth masses can be now detected around nearby low-mass stars using Doppler spectroscopy. In this paper, we investigate the radial velocity variations of Kapteyn's star, which is both a sub-dwarf M-star and the nearest halo object to the Sun. The observations comprise archival and new HARPS, HIRES and PFS Doppler measurements. Two Doppler signals are detected at periods of 48 and 120 days using likelihood periodograms and a Bayesian analysis of the data. Using the same techniques, the activity indicies and archival ASAS-3 photometry show evidence for low-level activity periodicities of the order of several hundred days. However, there are no significant correlations with the radial velocity variations on the same time-scales. The inclusion of planetary Keplerian signals in the model results in levels of correlated and excess white noise that are remarkably low compared to younger G, K and M dwarfs. We conclude that Kapteyn's star is most probably orbited by two super-Earth mass planets, on...

  9. Prospects for detecting the Rossiter-McLaughlin effect of Earth-like planets: the test case of TRAPPIST-1b and c

    Science.gov (United States)

    Cloutier, Ryan; Triaud, Amaury H. M. J.

    2016-11-01

    The Rossiter-McLaughlin effect is the principal method of determining the sky-projected spin-orbit angle (β) of transiting planets. Taking the example of the recently discovered TRAPPIST-1 system, we explore how ultracool dwarfs facilitate the measurement of the spin-orbit angle for Earth-sized planets by creating an effect that can be an order of magnitude more ample than the Doppler reflex motion caused by the planet if the star is undergoing rapid rotation. In TRAPPIST-1's case we expect the semi-amplitudes to be 40-50 m s-1 for the known transiting planets. Accounting for stellar jitter expected for ultracool dwarfs and instrumental noise, and assuming radial velocity precisions both demonstrated and anticipated for upcoming near-infrared spectrographs, we quantify the observational effort required to measure the planets' masses and spin-orbit angles. We conclude that if the planetary system is well-aligned then β can be measured to a precision of ≲10° if the spectrograph is stable at the level of 2 m s-1. We also investigate the measure of Δβ, the mutual inclination, when multiple transiting planets are present in the system. Lastly, we note that the rapid rotation rate of many late M-dwarfs will amplify the Rossiter-McLaughlin signal to the point where variations in the chromatic Rossiter-McLaughlin effect from atmospheric absorbers should be detectable.

  10. Mass-Radius Relations and Core-Envelope Decompositions of Super-Earths and Sub-Neptunes

    CERN Document Server

    Howe, Alex R; Verne, Wesley

    2014-01-01

    Many exoplanets have been discovered with radii of 1-4 Earth radii, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are "sub-Neptunes" likely to have significant hydrogen-helium envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, hydrogen-helium envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both "Earth-like" rock-iron cores and pure ice cores, and find that the nece...

  11. Observed properties of extrasolar planets.

    Science.gov (United States)

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  12. The Earth as a living planet: human-type diseases in the earthquake preparation process

    Science.gov (United States)

    Contoyiannis, Y. F.; Potirakis, S. M.; Eftaxias, K.

    2013-01-01

    The new field of complex systems supports the view that a number of systems arising from disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative features that are intriguingly similar. The Earth is a living planet where many complex systems run perfectly without stopping at all. The earthquake generation is a fundamental sign that the Earth is a living planet. Recently, analyses have shown that human-brain-type disease appears during the earthquake generation process. Herein, we show that human-heart-type disease appears during the earthquake preparation of the earthquake process. The investigation is mainly attempted by means of critical phenomena, which have been proposed as the likely paradigm to explain the origins of both heart electric fluctuations and fracture-induced electromagnetic fluctuations. We show that a time window of the damage evolution within the heterogeneous Earth's crust and the healthy heart's electrical action present the characteristic features of the critical point of a thermal second-order phase transition. A dramatic breakdown of critical characteristics appears in the tail of the fracture process of heterogeneous system and the injured heart's electrical action. Analyses by means of Hurst exponent and wavelet decomposition further support the hypothesis that a dynamical analogy exists between the geological and biological systems under study.

  13. Thermal Evolution of Terrestrial Planets: Earth, Mars, Size, Temperature, Tectonics, and Deep Volatile Cycling

    Science.gov (United States)

    Lenardic, A.; Hero, J.; McGovern, P. J., Jr.

    2014-12-01

    Recent efforts to constrain the thermal evolution of the Martian lithosphere suggest that the ratio of mantle heat production to heat loss, termed the Urey ratio, on Mars may be greater than unity at present (or in Mars' recent past). For comparison, the present day Earth value is 0.33. These estimates fly in the face of conventional wisdom that a smaller planet like Mars should have cooled faster than the Earth - and certainly should not be heating up at present. We perform a sensitivity analysis, using a thermal history modeling approach, to asses the relative effects of changing planetary size, mode of tectonics, and nature of deep volatile cycling (focussing on water). Our results indicate that differences in the nature of volatile cycling (degassing vs regassing over time) can outweigh the effects of size and tectonic mode in determining the thermal state of a planet. Mars models in which degassing dominates can give Urey ratios that exceed unity. Earth models in which regassing dominates over degassing in the later geologic stages of evolution lead to lower Urey ratio values.

  14. The Earth as a living planet: human-type diseases in the earthquake preparation process

    Directory of Open Access Journals (Sweden)

    Y. F. Contoyiannis

    2013-01-01

    Full Text Available The new field of complex systems supports the view that a number of systems arising from disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative features that are intriguingly similar. The Earth is a living planet where many complex systems run perfectly without stopping at all. The earthquake generation is a fundamental sign that the Earth is a living planet. Recently, analyses have shown that human-brain-type disease appears during the earthquake generation process. Herein, we show that human-heart-type disease appears during the earthquake preparation of the earthquake process. The investigation is mainly attempted by means of critical phenomena, which have been proposed as the likely paradigm to explain the origins of both heart electric fluctuations and fracture-induced electromagnetic fluctuations. We show that a time window of the damage evolution within the heterogeneous Earth's crust and the healthy heart's electrical action present the characteristic features of the critical point of a thermal second-order phase transition. A dramatic breakdown of critical characteristics appears in the tail of the fracture process of heterogeneous system and the injured heart's electrical action. Analyses by means of Hurst exponent and wavelet decomposition further support the hypothesis that a dynamical analogy exists between the geological and biological systems under study.

  15. A Laboratory Demonstration of the Capability to Image an Earth-like Extrasolar Planet

    Science.gov (United States)

    Trauger, John T.; Wesley, A. Traub

    2007-01-01

    The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 times 10-10 times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 times 10-10 times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 times 10-10. This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.

  16. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura [INAF-Trieste Astronomical Observatory, Trieste (Italy); Provenzale, Antonello [Institute of Atmospheric Sciences and Climate-CNR, Torino (Italy); Ferri, Gaia; Ragazzini, Gregorio, E-mail: vladilo@oats.inaf.it [Department of Physics, University of Trieste, Trieste (Italy)

    2013-04-10

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  17. Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star

    Energy Technology Data Exchange (ETDEWEB)

    Van Grootel, V.; Gillon, M.; Scuflaire, R. [Institut d' Astrophysique et de Géophysique, Université de Liège, 17 Allée du 6 Août, B-4000 Liège (Belgium); Valencia, D. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4 (Canada); Madhusudhan, N.; Demory, B.-O.; Queloz, D. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Dragomir, D. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr. Suite 102, Goleta, CA 93117 (United States); Howe, A. R.; Burrows, A. S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Deming, D. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Ehrenreich, D.; Lovis, C.; Mayor, M.; Pepe, F.; Segransan, D.; Udry, S. [Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, CH-1290 Sauverny (Switzerland); Seager, S., E-mail: valerie.vangrootel@ulg.ac.be [Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2014-05-01

    Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass (M {sub *} = 0.77 ± 0.05 M {sub ☉}) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-High Resolution Echelle Spectrometer (Keck-HIRES) radial velocities and Microvariability and Oscillations of STars (MOST) and Spitzer photometry. HD 97658 b is a massive (M{sub P}=7.55{sub −0.79}{sup +0.83} M{sub ⊕}) and large (R{sub P}=2.247{sub −0.095}{sup +0.098}R{sub ⊕} at 4.5 μm) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, of at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for upcoming space missions such as the Transiting Exoplanet Survey Satellite (TESS), the Characterizing Exoplanet Satellite (CHEOPS), the Planetary Transits and Oscillations of stars (PLATO), and the James Webb Space Telescope to characterize thoroughly its structure and atmosphere.

  18. Two cultures are better than one: Earth sciences and Art for a better planet sustainability

    Science.gov (United States)

    Lanza, Tiziana; Rubbia, Giuliana; Negrete, Aquiles

    2015-04-01

    Climate change, pollution, desertification, natural hazard, animals' extinction are some of the problems we face every day. Very often Science and Technology are charged of the solutions while Art is intended mainly for entertainment. Are we sure this is the right attitude? "Technology is a queer thing. It brings you gifts with one hand, and stabs you in the back with the other", says C.P.Snow, author of a milestone book on the Two Cultures, namely Sciences and Humanities. If Science can drive to a rigorous knowledge of the Earth speaking to people's mind, Technology is Science in action. When individuals act very often the reasons behind their actions are linked to their education, values, sense of beauty, presence or absence of feelings, all things pertaining to the emotional sphere of humans usually addressed by humanistic culture. But if in one hand, Science and Technology cannot be left alone to solve the impelling problems that are deteriorating not only our planet resources but also our quality of life, on the other hand the humanistic culture can find a powerful ally in scientific culture for re-awakening in everybody the sense of beauty, values and respect for the planet. To know Earth is to love Earth, since nature is in itself a work of Art. Earth sciences dig out all the secrets that make our planet a unique place in the Universe we know. Every single phenomena can be seen then in a double face value. An Aurora, for instance, can inspire poetry for its beauty and colors but always remains the result of the interaction between the solar wind and the Earth magnetic field. And, most important, an Aurora will never inspire negative feelings. To make our part in creating a common field between Art and Earth sciences, we have created a blog and a related FaceBook page to collect, browsing the web, all the experiences in this trend, to find out that many scientists and artists are already working in this direction as a final and enjoyable surprise.

  19. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    CERN Document Server

    Podlewska-Gaca, Edyta

    2013-01-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analog, a super-Earth and a gas giant. The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following question: Will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed. In this work we add a gas giant on the most external orbit of the system in such a way that its different...

  20. Jupiter-like planets as dynamical barriers to inward-migrating super-Earths: a new understanding of the origin of Uranus and Neptune and predictions for extrasolar planetary systems

    Science.gov (United States)

    Morbidelli, Alessandro; Izidoro Da Costa, Andre'; Raymond, Sean

    2014-11-01

    Planets of 1-4 times Earth's size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. These ``hot super-Earths'' (or ``mini-Neptunes''), or their building blocks, might have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. The Solar System is statistically unusual in its lack of hot super-Earths. Here, we use a suite of dynamical simulations to show that gas-giant planets act as barriers to the inward migration of super-Earths initially placed on more distant orbits. Jupiter's early formation may have prevented Uranus and Neptune (and perhaps Saturn's core) from becoming hot super-Earths. It may actually have been crucial to the very formation of Uranus and Neptune. In fact, the large spin obliquities of these two planets argue that they experienced a stage of giant impacts from multi-Earth mass planetary embryos. We show that the dynamical barrier offered by Jupiter favors the mutual accretion of multiple migrating planetary embryos, favoring the formation of a few massive objects like Uranus and Neptune. Our model predicts that the populations of hot super-Earth systems and Jupiter-like planets should be anti-correlated: gas giants (especially if they form early) should be rare in systems with many hot super-Earths. Testing this prediction will constitute a crucial assessment of the validity of the migration hypothesis for the origin of close-in super-Earths.

  1. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    Science.gov (United States)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  2. SALT observations of the chromospheric activity of transiting planet hosts: mass-loss and star-planet interactions★

    Science.gov (United States)

    Staab, D.; Haswell, C. A.; Smith, Gareth D.; Fossati, L.; Barnes, J. R.; Busuttil, R.; Jenkins, J. S.

    2017-04-01

    We measured the chromospheric activity of the four hot Jupiter hosts WASP-43, WASP-51/HAT-P-30, WASP-72 and WASP-103 to search for anomalous values caused by the close-in companions. The Mount Wilson Ca II H & K S-index was calculated for each star using observations taken with the Robert Stobie Spectrograph at the Southern African Large Telescope. The activity level of WASP-43 is anomalously high relative to its age and falls among the highest values of all known main-sequence stars. We found marginal evidence that the activity of WASP-103 is also higher than expected from the system age. We suggest that for WASP-43 and WASP-103 star-planet interactions (SPI) may enhance the Ca II H & K core emission. The activity levels of WASP-51/HAT-P-30 and WASP-72 are anomalously low, with the latter falling below the basal envelope for both main-sequence and evolved stars. This can be attributed to circumstellar absorption due to planetary mass-loss, though absorption in the interstellar medium may contribute. A quarter of known short-period planet hosts exhibit anomalously low activity levels, including systems with hot Jupiters and low-mass companions. Since SPI can elevate and absorption can suppress the observed chromospheric activity of stars with close-in planets, their Ca II H & K activity levels are an unreliable age indicator. Systems where the activity is depressed by absorption from planetary mass-loss are key targets for examining planet compositions through transmission spectroscopy.

  3. Remote Sensing Data Analytics for Planetary Science with PlanetServer/EarthServer

    Science.gov (United States)

    Rossi, Angelo Pio; Figuera, Ramiro Marco; Flahaut, Jessica; Martinot, Melissa; Misev, Dimitar; Baumann, Peter; Pham Huu, Bang; Besse, Sebastien

    2016-04-01

    Planetary Science datasets, beyond the change in the last two decades from physical volumes to internet-accessible archives, still face the problem of large-scale processing and analytics (e.g. Rossi et al., 2014, Gaddis and Hare, 2015). PlanetServer, the Planetary Science Data Service of the EC-funded EarthServer-2 project (#654367) tackles the planetary Big Data analytics problem with an array database approach (Baumann et al., 2014). It is developed to serve a large amount of calibrated, map-projected planetary data online, mainly through Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS) (e.g. Rossi et al., 2014; Oosthoek et al., 2013; Cantini et al., 2014). The focus of the H2020 evolution of PlanetServer is still on complex multidimensional data, particularly hyperspectral imaging and topographic cubes and imagery. In addition to hyperspectral and topographic from Mars (Rossi et al., 2014), the use of WCPS is applied to diverse datasets on the Moon, as well as Mercury. Other Solar System Bodies are going to be progressively available. Derived parameters such as summary products and indices can be produced through WCPS queries, as well as derived imagery colour combination products, dynamically generated and accessed also through OGC Web Coverage Service (WCS). Scientific questions translated into queries can be posed to a large number of individual coverages (data products), locally, regionally or globally. The new PlanetServer system uses the the Open Source Nasa WorldWind (e.g. Hogan, 2011) virtual globe as visualisation engine, and the array database Rasdaman Community Edition as core server component. Analytical tools and client components of relevance for multiple communities and disciplines are shared across service such as the Earth Observation and Marine Data Services of EarthServer. The Planetary Science Data Service of EarthServer is accessible on http://planetserver.eu. All its code base is going to be available on GitHub, on

  4. Free oscillations of the earth-like planets in the presence of magnetic field

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2005-12-01

    Full Text Available   we study the free oscillations of a non-rotating earth-like planet in the presence of a force free magnetic field. The model consists of a solid inner core, a liquid outer core and a solid mantle which is spherically symmetric. The lagrangian displacements are decomposed into scaloidal, poloidal and toroidal components using a gauged version of Helmholtz theorem. These components are identified, with P- , g and t- modes, respectively. The normal modes of the model are determined using a Rayleigh-Ritz variational technique. The consequence of the presence of the solid parts and the magnetic field is the emergence of pure t- oscillations. The magnetic field, in addition to exciting t- modes, couples the everpresent p- and g -modes together. As an application of the model, the real seismic data of the earth is used to calculate eigenvalues and eigenvectors for different modes.

  5. The mass of planet GJ676A b from ground-based astrometry: A planetary system with two mature gas giants suitable for direct imaging

    CERN Document Server

    Sahlmann, J; Ségransan, D; Astudillo-Defru, N; Bonfils, X; Delfosse, X; Forveille, T; Hagelberg, J; Curto, G Lo; Pepe, F; Queloz, D; Udry, S; Zimmerman, N T

    2016-01-01

    GJ676A is an M0 dwarf hosting both gas-giant and super-Earth-type planets discovered with radial-velocity measurements. Using FORS2/VLT, we obtained position measurements of the star in the plane of the sky that tightly constrain its astrometric reflex motion caused by the super-Jupiter planet `b` in a 1052-day orbit. This allows us to determine the mass of this planet to $M_\\mathrm{b} = 6.7^{+1.8}_{-1.5}\\,M_\\mathrm{J}$, which is $\\sim$40 \\% higher than the minimum mass inferred from the radial-velocity orbit. Using new HARPS radial-velocity measurements, we improve upon the orbital parameters of the inner low-mass planets `d` and `e` and we determine the orbital period of the outer giant planet `c` to $P_\\mathrm{c}=7340$ days under the assumption of a circular orbit. The preliminary minimum mass of planet `c` is $M_\\mathrm{c} \\sin i = 6.8\\,M_\\mathrm{J}$ with an upper limit of $\\sim$$39\\,M_\\mathrm{J}$ that we set using NACO/VLT high-contrast imaging. We also determine precise parallaxes and relative proper mo...

  6. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  7. MASSIVE: A Bayesian analysis of giant planet populations around low-mass stars

    CERN Document Server

    Lannier, J; Lagrange, A M; Borgniet, S; Rameau, J; Schlieder, J E; Gagné, J; Bonavita, M A; Malo, L; Chauvin, G; Bonnefoy, M; Girard, J H

    2016-01-01

    Direct imaging has led to the discovery of several giant planet and brown dwarf companions. These imaged companions populate a mass, separation and age domain (mass>1MJup, orbits>5AU, age2MJup might be independent from the mass of the host star.

  8. Coupled thermo-orbital evolution of tidally-evolved Earth-like planets

    Science.gov (United States)

    Behounkova, Marie; Walterova, Michaela; Cadek, Ondrej; Tobie, Gabriel; Choblet, Gael

    2016-10-01

    Progress in detection techniques of exoplanets inspired increasing number of studies focused on their internal dynamics and evolution. The detection methods tend to favor the discovery of short-period exoplanets, that are predicted to get rapidly tidally locked. During the locking process planets despin and a significant amount of tidal heating may contribute to the thermal budget of the planet. Moreover, tidally locked exoplanets exhibit large surface temperature contrasts between sub-stellar and anti-stellar sides due to uneven insolation which influence the convection pattern and cooling of the planet. Here, we will present the evolution of tidally locked Earth-like exoplanets using numerical tool Antigone (Behounkova et al., 2010, 2011) coupling long-term internal evolution, tidal dissipation (taking into account Maxwell or Andrade rheology) and uneven insolation pattern. For constant orbital parameters, we will focus on numerical simulation of the heat transfer in exoEarths for various rheological properties of planet and various values of spin-orbit resonance, semi-major axis, eccentricity and luminosity of star. In the case of effective heat transfer, our results suggest that the melting is mainly observed within the upper part of the mantle for tidal heating lower than 100TW . For tidal heating higher than 100TW, the melt is produced also within the deep part of the mantle and degree-2 convection is enhanced due to tidal heating pattern. For large tidal heating (larger than 1000TW), global melting is observed and temperature field is homogenized due to global melting, the heat transfer is mainly due to melt extraction and advection is suppressed. We will further present first results of coupled orbital-internal evolution of planets without companion using numerical model of orbital evolution with realistic (Maxwell or Andrade) rheology (Walterova et al., in prep). We will concentrate on the capture into the spin-orbit resonance. Special attention will be

  9. Rotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets

    Science.gov (United States)

    Cowan, Nicolas B.; Robinson, Tyler; Livengood, Timothy A.; Deming, Drake; Agol, Eric; A'Hearn, Michael F.; Charbonneau, David; Lisse, Carey M.; Meadows, Victoria S.; Seager, Sara; Shields, Aomawa L.; Wellnitz, Dennis D.

    2011-04-01

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  10. The formation of systems with closely spaced low-mass planets and the application to Kepler-36

    CERN Document Server

    Paardekooper, Sijme-Jan; Kley, Willy

    2013-01-01

    The Kepler-36 system consists of two planets that are spaced unusually close together, near the 7:6 mean motion resonance. While it is known that mean motion resonances can easily form by convergent migration, Kepler-36 is an extreme case due to the close spacing and the relatively high planet masses of 4 and 8 times that of the Earth. In this paper, we investigate whether such a system can be obtained by interactions with the protoplanetary disc. These discs are thought to be turbulent and exhibit density fluctuations which might originate from the magneto-rotational instability. We adopt a realistic description for stochastic forces due to these density fluctuations and perform both long term hydrodynamical and N-body simulations. Our results show that planets in the Kepler-36 mass range can be naturally assembled into a closely spaced planetary system for a wide range of migration parameters in a turbulent disc similar to the minimum mass solar nebula. The final orbits of our formation scenarios tend to be...

  11. Galactic cosmic rays on extrasolar Earth-like planets I. Cosmic ray flux

    CERN Document Server

    Grießmeier, J -M; Stadelmann, A; Grenfell, J L; Atri, D

    2015-01-01

    (abridged abstract) Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields, especially in the case of planets more massive than Earth (super-Earths). Planetary magnetic fields, however, constitute one of the shielding layers that protect the planet against cosmic-ray particles. In particular, a weak magnetic field results in a high flux of Galactic cosmic rays that extends to the top of the planetary atmosphere. We wish to quantify the flux of Galactic cosmic rays to an exoplanetary atmosphere as a function of the particle energy and of the planetary magnetic moment. We numerically analyzed the propagation of Galactic cosmic-ray particles through planetary magnetospheres. We evaluated the efficiency of magnetospheric shielding as a function of the particle energy (in the range 16 MeV $\\le$ E $\\le$ 524 GeV) and as a function of the planetary magnetic field strength (in the range 0 ${M}_\\oplus$ $\\le$ {M} $\\le$ 10 ${M}_\\oplus$). Combined with the flux outside the planeta...

  12. Differentiation of crusts and cores of the terrestrial planets - Lessons for the early earth

    Science.gov (United States)

    Solomon, S. C.

    1980-01-01

    The extent and mechanisms of global differentiation and the early thermal and tectonic histories of the terrestrial planets are surveyed in order to provide constraints on the first billion years of earth history. Indirect and direct seismic evidence for crusts on the moon, Mars and Venus is presented, and it is pointed out that substantial portions of these crusts have been in place since the cessation of heavy bombardment of the inner solar system four billion years ago. Evidence for sizable cores on Mars and Mercury and a small core on the moon is also discussed, and the heat involved in core formation is pointed out. Examination of the volcanic and tectonic histories of planets lacking plate tectonics indicates that core formation was not closely linked to crust formation on the moon or Mars, with chemical differentiation restricted to shallow regions, and was much more extensive on Mercury. Extension of these considerations to the earth results in a model of a hot and vigorously convecting mantle with an easily deformable crust immediately following core formation, and the gradual development of a lithosphere and plates.

  13. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

    CERN Document Server

    Jones, M I; Brahm, R; Wittenmyer, R A; Olivares, F E; Melo, C H F; Rojo, P; Jordán, A; Drass, H; Butler, R P; Wang, L

    2016-01-01

    CONTEXT. Exoplanet searches have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. AIMS. During the past six years, we have conducted a radial velocity follow-up program of 166 giant stars, to detect substellar companions, and characterizing their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions, and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. METHODS. Using FEROS and CHIRON spectra, we have computed precision radial velocities and we have derived atmospheric and physical parameters for all of our targets. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we have detected the presence of several substellar companions. RESULTS. We present four new planetary systems around the giant stars HIP8541, HIP74890...

  14. The Power of the Crowd: An Up Close and Personal Perspective on Planet Earth.

    Science.gov (United States)

    Abdalati, W.

    2015-12-01

    The space-based view of Earth has changed the way we look at our home planet, providing a perspective on the Earth as a system that can only be realized when viewed from a distance. Throughout my career as a researcher, including 2 years as NASA Chief Scientist, this "power of perspective" has been a tool through which I have engaged both colleagues and the public. These capabilities have transformed our understanding of climate and weather phenomena, ecosystem dynamics, changes in the cryosphere, and much more, through their macro-scale look at the various, highly complex components of the Earth system. But within these domains, there is a tremendous amount of small-scale variability that, if appropriately observed, can reveal new information about how elements within the Earth system work in ways that can directly impact people's lives. Consequently, there is a different power in this additional local perspective: it is one fueled by up-close and personal data collection. Through their engagement and commitment, citizen scientists are providing valuable data as well as personalized experience in the collection of those data. This presentation will include video clips that show a diverse set of citizen science projects in North America and worldwide, illustrating this scientifically useful combination of local and global. Such projects engage citizens and scientists alike in efforts to understand the world in which we live.

  15. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    Science.gov (United States)

    Freilich, Michael

    2016-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  16. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    Science.gov (United States)

    Freilich, Michael

    2017-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  17. Orbital Stability of Multi-Planet Systems: Behavior at High Masses

    CERN Document Server

    Morrison, Sarah J

    2016-01-01

    In the coming years, high contrast imaging surveys are expected to reveal the characteristics of the population of wide-orbit, massive, exoplanets. To date, a handful of wide planetary mass companions are known, but only one such multi-planet system has been discovered: HR8799. For low mass planetary systems, multi-planet interactions play an important role in setting system architecture. In this paper, we explore the stability of these high mass, multi-planet systems. While empirical relationships exist that predict how system stability scales with planet spacing at low masses, we show that extrapolating to super-Jupiter masses can lead to up to an order of magnitude overestimate of stability for massive, tightly packed systems. We show that at both low and high planet masses, overlapping mean motion resonances trigger chaotic orbital evolution, which leads to system instability. We attribute some of the difference in behavior as a function of mass to the increasing importance of second order resonances at h...

  18. Magnetodynamo Lifetimes for Rocky, Earth-Mass Exoplanets with Contrasting Mantle Convection Regimes

    CERN Document Server

    van Summeren, Joost; Conrad, Clinton P

    2013-01-01

    We used a thermal model of an iron core to calculate magnetodynamo evolution in Earth-mass rocky planets to determine the sensitivity of dynamo lifetime and intensity to planets with different mantle tectonic regimes, surface temperatures, and core properties. The heat flow at the core-mantle boundary (CMB) is derived from numerical models of mantle convection with a viscous/pseudo-plastic rheology that captures the phenomenology of plate-like tectonics. Our thermal evolution models predict a long-lived (~8 Gyr) field for Earth and similar dynamo evolution for Earth-mass exoplanets with plate tectonics. Both elevated surface temperature and pressure-dependent mantle viscosity reduce the CMB heat flow but produce only slightly longer-lived dynamos (~8-9.5 Gyr). Single-plate ("stagnant lid") planets with relatively low CMB heat flow produce long-lived (~10.5 Gyr) dynamos. These weaker dynamos can cease for several billions of years and subsequently reactivate due to the additional entropy production associated ...

  19. Prospects for detecting the Rossiter-McLaughlin effect of Earth-like planets: the test case of TRAPPIST-1b and c

    CERN Document Server

    Cloutier, Ryan

    2016-01-01

    The Rossiter-McLaughlin effect is the principal method of determining the sky-projected spin--orbit angle ($\\beta$) of transiting planets. Taking the example of the recently discovered TRAPPIST-1 system, we explore how ultracool dwarfs facilitate the measurement of the spin--orbit angle for Earth-sized planets by creating an effect that can be an order of magnitude more ample than the Doppler reflex motion caused by the planet if the star is undergoing rapid rotation. In TRAPPIST-1's case we expect the semi-amplitudes of the Rossiter-McLaughlin effect to be $40-50$ m/s for the known transiting planets. Accounting for stellar jitter expected for ultracool dwarfs, instrumental noise, and assuming radial velocity precisions both demonstrated and anticipated for upcoming near-infrared spectrographs, we quantify the observational effort required to measure the planets' masses and spin--orbit angles. We conclude that if the planetary system is well-aligned then $\\beta$ can be measured to a precision of $\\lesssim 10...

  20. The "Week Of Planet Earth" Italy Discovering Geosciences: a More Informed Society is a More Engaged Society.

    Science.gov (United States)

    Seno, S.; Coccioni, R.

    2016-12-01

    The "Week of Planet Earth" (www.settimanaterra.org) is a science festival that involves the whole of the Italian Regions: founded in 2012, it has become the largest event of Italian Geosciences and one of the biggest European science festivals. During a week in October several locations distributed throughout the Country are animated by events, called "Geoeventi", to disseminate geosciences to the masses and deliver science education by means of a wide range of activities: hiking, walking in city and town centers, open-door at museums and research centers, guided tours, exhibitions, educational and experimental workshops for children and young people, music and art performances, food and wine events, lectures, conferences, round tables. Universities and colleges, research centers, local Authorities, cultural and scientific associations, parks and museums, professionals organize the Geoeventi. The festival aims at bringing adults and young people to Geosciences, conveying enthusiasm for scientific research and discoveries, promoting sustainable cultural tourism, aware of environmental values and distributed all over Italy. The Geoeventi shed light both on the most spectacular and on the less known geological sites, which are often a stone's throw from home. The Week of Planet Earth is growing year after year: the 2016 edition proposes 310 Geoeventi, 70 more than in 2015. The number of places involved in the project also increased and rose from 180 in 2015 to 230 in 2016. This initiative, that is also becoming a significant economic driver for many small companies active in the field of science divulgation, is analyzed, evaluated and put in a transnational network perspective.

  1. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    Science.gov (United States)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  2. A relook on using the Earth Similarity Index for searching habitable zones around solar and extrasolar planets

    Science.gov (United States)

    Biswas, S.; Shome, A.; Raha, B.; Bhattacharya, A. B.

    2017-01-01

    To study the distribution of Earth-like planets and to locate the habitable zone around extrasolar planets and their known satellites, we have emphasized in this paper the consideration of Earth similarity index (ESI) as a multi parameter quick assessment of Earth-likeness with a value between zero and one. Weight exponent values for four planetary properties have been taken into account to determine the ESI. A plot of surface ESI against the interior ESI exhibits some interesting results which provide further information when confirmed planets are examined. From the analysis of the available catalog and existing theory, none of the solar planets achieves an ESI value greater than 0.8. Though the planet Mercury has a value of 0.6, Mars exhibits a value between 0.6 and 0.8 and the planet Venus shows a value near 0.5. Finally, the locations of the habitable zone around different type of stars are critically examined and discussed.

  3. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    Science.gov (United States)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi

    2017-02-01

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m1 ≪ m0 and m1 ≪ m2. In addition to the gravity for point masses, we examine the importance of the short-range forces, and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.

  4. Exploring an Earth-sized neighbor: ground-based transmission spectroscopy of GJ1132b, a rocky planet transiting a small nearby M-dwarf

    Science.gov (United States)

    Diamond-Lowe, Hannah; Berta-Thompson, Zachory K.; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth R.; Dittmann, Jason

    2017-01-01

    The terrestrial planets of the Solar System are rocky worlds that did not accrete envelopes of hydrogen and helium, but instead possess thin secondary atmospheres, or no atmosphere at all. Until recently, most exoplanet atmospheric studies have centered around hot Jupiters, for which high planet-to-star radius ratios and short orbital periods allowed for observable transmission spectra. Now we have the opportunity to probe the atmosphere of a small, rocky exoplanet. GJ1132b has a radius of 1.2 Earth radii and a mass of 1.6 Earth masses, and orbits an M-dwarf 12 parsecs away. Determining the composition of GJ1132b's atmosphere is essential to understanding the nature of atmospheric evolution on terrestrial planets. We observed five transits of GJ1132b using the Magellan Clay telescope with the LDSS3C multi-object spectrograph. We compare the transit depth of GJ1132b in wavelength bins ranging from 0.65 -- 1.04 microns to infer whether or not GJ1132b has maintained its primordial hydrogen-dominated atmosphere. Should we find evidence of a hydrogen-dominated atmosphere, this would imply that a terrestrial planet is able to accrete and retain a low mean-molecular weight atmosphere from the planetary nebula. Coupled with recent UV spectra of the host star, our results can clarify the process of atmospheric escape on terrestrial worlds, with implications for formation histories of M-dwarf planets and the potential for habitability in these systems. If instead GJ1132b possesses a low mean-molecular weight atmosphere, we look to future observations with JWST and the ground-based extremely large telescopes to characterize its atmosphere.This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program. This work was made possible by a grant from the John Templeton Foundation.

  5. Check-Up of Planet Earth at the Turn of the Millennium Anticipated New Phase in Earth Sciences

    Science.gov (United States)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite named recently "Terra" (by Ms. Sasha Jones, a 17 year old student in St. Louis, MO) will repeat Langley's experiment, but for the entire planet, thus pioneering calibrated spectral observations from space. Conceived in response to real environmental problems, EOS-AM, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-AM can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In this talk I shall a give a historical perspective for the need for this expensive mission, give examples of the science that we anticipate to achieve using Terra measurements and describe this exciting mission.

  6. Celebration of the International Year of Planet Earth in Canada: A Work in Progress

    Science.gov (United States)

    Nowlan, G. S.; Boyd, J. D.; Reimer, J.

    2009-05-01

    The International Year of Planet Earth (IYPE, 2007-2009) has been the inspiration for a variety of projects across Canada. Local events, including speaker series and educational programs in Earth sciences have taken place in several parts of the country in 2008-09. Most Canadian conferences for Earth scientists have developed programs reflecting IYPE in 2008 and 2009. The Walcott Conference, celebrating the 100th anniversary of the discovery of the Burgess Shale fauna, to be held in Banff in August 2009 has sponsorship from IYPE. All these projects have served to raise the local and national profile of IYPE and provide learning opportunities for many Canadians. The Canadian National Committee for IYPE developed the theme WHERE, which is an acronym for Water, Hazards, Energy, Resources and Environment. The tag line is Where on Earth? Where in Canada? Proposals for projects were sought nationally for projects that would leave a legacy following the completion of IYPE. The initial proposals were recast into a program of consolidated projects and funds were sought to support them, mainly from the private sector. Already completed are 32 fact sheets on mineral and energy resources and a poster on the resources required to build and run a snowmobile. There are several projects in various states of completion at the time of writing: these are showcased at www.EarthSciencesCanada.com and are intended to form a legacy that will last for years to come. Other projects were funded directly by local agencies to celebrate IYPE; an example is new signage in Alberta Provincial Parks funded by the Alberta Geological Survey. The WHERE Challenge asks Canadians aged 10-14 to answer two simple questions: What on Earth is in your stuff and where on Earth does it come from? Thousands of students are expected to enter this contest by the end of February by telling a story about the Earth resources required to build everyday objects. The story can be told in any medium and the more

  7. A super-Earth-sized planet orbiting in or near the habitable zone around Sun-like star

    CERN Document Server

    Barclay, Thomas; Howell, Steve B; Rowe, Jason F; Huber, Daniel; Isaacson, Howard; Jenkins, Jon M; Kolbl, Rea; Marcy, Geoffrey W; Quintana, Elisa V; Still, Martin; Twicken, Joseph D; Bryson, Stephen T; Borucki, William J; Caldwell, Douglas A; Ciardi, David; Clarke, Bruce D; Christiansen, Jessie L; Coughlin, Jeffrey L; Fischer, Debra A; Li, Jie; Haas, Michael R; Hunter, Roger; Lissauer, Jack J; Mullally, Fergal; Sabale, Anima; Seader, Shawn E; Smith, Jeffrey C; Tenenbaum, Peter; Uddin, AKM Kamal; Thompson, Susan E

    2013-01-01

    We present the discovery of a super-earth-sized planet in or near the habitable zone of a sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the three-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.1%. The inner planet, Kepler-69b, has a radius of 2.24+/-0.4 Rearth and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-size object with a radius of 1.7+/-0.3 Rearth and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 +/- 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth ...

  8. The CRIRES Search for Planets Around the Lowest-Mass Stars. II. No Giant Planet Orbiting VB10

    CERN Document Server

    Bean, Jacob L; Hartman, Henrik; Nilsson, Hampus; Reiners, Ansgar; Dreizler, Stefan; Henry, Todd J; Wiedemann, Guenter

    2009-01-01

    We present radial velocities of the very low-mass star VB10 obtained over a time span of 0.61 yr as part of an ongoing search for planets around stars at the end of the main sequence. The radial velocities were measured from high-resolution near-infrared spectra obtained using the CRIRES instrument on the VLT with an ammonia gas cell. The typical internal precision of the measurements is 10 m/s. These data do not exhibit significant variability and are essentially constant at a level consistent with the measurement uncertainties. Therefore, we do not detect the radial velocity variations of VB10 expected due to the presence of an orbiting giant planet similar to that recently proposed by Pravdo and Shaklan based on apparent astrometric perturbations. In addition, we do not confirm the ~1 km/s radial velocity variability of the star tentatively detected by Zapatero Osorio and colleagues with lower precision measurements. Our measurements rule out planets with M > 3 M_Jup and the orbital period and inclination ...

  9. MINERVA-Red: A telescope dedicated to the discovery of planets orbiting the nearest low-mass stars

    Science.gov (United States)

    Sliski, David; Blake, Cullen; Johnson, John A.; Plavchan, Peter; Wittenmyer, Robert A.; Eastman, Jason D.; Barnes, Stuart; Baker, Ashley

    2017-01-01

    Results from Kepler and ground-based exoplanet surveys suggest that M-dwarfs host numerous small sized planets. Additionally, the discovery of the Earth-sized exoplanets orbiting Proxima Centauri and Trappist 1 demonstrate that these stars can host terrestrial planets in their habitable zones. Since low-mass stars are intrinsically faint at optical wavelengths, obtaining 1 m/s Doppler resolution to detect their planetary companions remains a challenge for instruments designed for sun-like stars. We describe a novel, high-cadence approach aimed at detecting and characterizing planets orbiting the closest low-mass stars to the Sun. MINERVA-Red is an echelle spectrograph optimized for the 'deep red', between 800 nm and 900 nm, where M-dwarfs are brightest. The spectrograph will be temperature controlled at 20C +/- 10mk and in a vacuum chamber which maintains a pressure below 0.01 mbar while using a Fabry-Perot etalon and U/Ne lamp for wavelength calibration. The spectrometer will operate with a robotic, 0.7-meter telescope at Mt. Hopkins, Arizona. We expect first light in 2017.

  10. Measurement of planet masses with transit timing variations due to synodic "chopping" effects

    CERN Document Server

    Deck, Katherine M

    2014-01-01

    Gravitational interactions between planets in transiting exoplanetary systems lead to variations in the times of transit that are diagnostic of the planetary masses and the dynamical state of the system. Here we show that synodic "chopping" contributions to these transit timing variations (TTVs) can be used to uniquely measure the masses of planets without full dynamical analyses involving direct integration of the equations of motion. We present simple analytic formulae for the chopping signal, which are valid (generally <10% error) for modest eccentricities e <~ 0.1. Importantly, these formulae primarily depend on the mass of the perturbing planet, and therefore the chopping signal can be used to break the mass/free-eccentricity degeneracy which can appear for systems near first order mean motion resonances. Using a harmonic analysis, we apply these TTV formulae to a number of Kepler systems which had been previously analyzed with full dynamical analyses. We show that when chopping is measured, the ma...

  11. Revisiting rho 1 Cancri e: A New Mass Determination Of The Transiting super-Earth

    CERN Document Server

    Endl, Michael; Cochran, William D; MacQueen, Phillip J; Brugamyer, Erik J; Caldwell, Caroline; Wittenmyer, Robert A; Barnes, Stuart I; Gullikson, Kevin

    2012-01-01

    We present a mass determination for the transiting super-Earth rho 1 Cancri e based on nearly 700 precise radial velocity (RV) measurements. This extensive RV data set consists of data collected by the McDonald Observatory planet search and published data from Lick and Keck observatories (Fischer et al. 2008). We obtained 212 RV measurements with the Tull Coude Spectrograph at the Harlan J. Smith 2.7 m Telescope and combined them with a new Doppler reduction of the 131 spectra that we have taken in 2003-2004 with the High-Resolution-Spectrograph (HRS) at the Hobby-Eberly Telescope (HET) for the original discovery of rho 1 Cancri e. Using this large data set we obtain a 5-planet Keplerian orbital solution for the system and measure an RV semi-amplitude of K = 6.29 +/- 0.21 m/s for rho 1 Cnc e and determine a mass of 8.37 +/- 0.38 M_Earth. The uncertainty in mass is thus less than 5%. This planet was previously found to transit its parent star (Winn et al. 2011, Demory et al. 2011), which allowed them to estima...

  12. The Microlensing Planet Finder: Completing the Census of Extrasolar Planets in the Milky Way

    OpenAIRE

    Bennett, D. P.; Bond, I.; Cheng, E.; Friedman, S.; Garnavich, P.; Gaudi, B.; Gilliland, R.; Gould, A.; Greenhouse, M.; Griest, K.; Kimble, R.; Lunine, J.; Mather, J.; Minniti, D.; Niedner, M.

    2004-01-01

    The Microlensing Planet Finder (MPF) is a proposed Discovery mission that will complete the first census of extrasolar planets with sensitivity to planets like those in our own solar system. MPF will employ a 1.1m aperture telescope, which images a 1.3 sq. deg. field-of-view in the near-IR, in order to detect extrasolar planets with the gravitational microlensing effect. MPF's sensitivity extends down to planets of 0.1 Earth masses, and MPF can detect Earth-like planets at all separations fro...

  13. International Year of Planet Earth - Accomplishments, Activities, Challenges and Plans in Mexico

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Alaniz-Alvarez, S.

    2009-12-01

    The International Year of Planet Earth started as a joint initiative by UNESCO and IUGS with the participation of several geosciences organizations, and developed into a major international geosciences program for the triennium 2007-2009, with the inclusion and participation of national and regional committees. In this presentation we focus on current activities and plans in our country and the participation in international activities. Mexican community has been part of international programs since the International Geophysical Year, continuing through its participation in other programs, e.g., Upper Mantle, Geodynamics, Lithosphere, IHY, IPY and eGY. IYPE activities have concentrated in publications, OneGeology, radio/TV programs, organization of conferences, meetings and outreach events. A book series on Earth Science Experiments for Children has been edited, with first books published on “Atmospheric Pressure and Free Fall of Objects”, “Light and Colors”, “Standing on Archimedes”, “Foucault and Climate” and “Earth and its Waves “. Books are distributed to schools, with tens of thousand copies distributed nationwide and new editions underway. Other publications include leaflets, books and special El Faro issues (edited by the National University) and articles in other journals. In 2007 the AGU Joint Assembly with international participation from US, Canada, Europe and Latin America was held in Acapulco. Current plans include an electronic open-access journal, additional publications of the Planet Earth series, articles and special issues in journals and magazines, plus events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Biodiversity. Mexico City metropolitan area, with > 22 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management

  14. PlanetServer/EarthServer: Big Data analytics in Planetary Science

    Science.gov (United States)

    Pio Rossi, Angelo; Oosthoek, Jelmer; Baumann, Peter; Beccati, Alan; Cantini, Federico; Misev, Dimitar; Orosei, Roberto; Flahaut, Jessica; Campalani, Piero; Unnithan, Vikram

    2014-05-01

    Planetary data are freely available on PDS/PSA archives and alike (e.g. Heather et al., 2013). Their exploitation by the community is somewhat limited by the variable availability of calibrated/higher level datasets. An additional complexity of these multi-experiment, multi-mission datasets is related to the heterogeneity of data themselves, rather than their volume. Orbital - so far - data are best suited for an inclusion in array databases (Baumann et al., 1994). Most lander- or rover-based remote sensing experiment (and possibly, in-situ as well) are suitable for similar approaches, although the complexity of coordinate reference systems (CRS) is higher in the latter case. PlanetServer, the Planetary Service of the EC FP7 e-infrastructure project EarthServer (http://earthserver.eu) is a state-of-art online data exploration and analysis system based on the Open Geospatial Consortium (OGC) standards for Mars orbital data. It provides access to topographic, panchromatic, multispectral and hyperspectral calibrated data. While its core focus has been on hyperspectral data analysis through the OGC Web Coverage Processing Service (Oosthoek et al., 2013; Rossi et al., 2013), the Service progressively expanded to host also sounding radar data (Cantini et al., this volume). Additionally, both single swath and mosaicked imagery and topographic data are being added to the Service, deriving from the HRSC experiment (e.g. Jaumann et al., 2007; Gwinner et al., 2009) The current Mars-centric focus can be extended to other planetary bodies and most components are general purpose ones, making possible its application to the Moon, Mercury or alike. The Planetary Service of EarthServer is accessible on http://www.planetserver.eu References: Baumann, P. (1994) VLDB J. 4 (3), 401-444, Special Issue on Spatial Database Systems. Cantini, F. et al. (2014) Geophys. Res. Abs., Vol. 16, #EGU2014-3784, this volume Heather, D., et al.(2013) EuroPlanet Sci. Congr. #EPSC2013-626 Gwinner, K

  15. The Orbit and Mass of the Third Planet in the Kepler-56 System

    CERN Document Server

    Otor, Oderah Justin; Johnson, John Asher; Charbonneau, David; Collier-Cameron, Andrew; Howard, Andrew W; Isaacson, Howard; Latham, David W; Lopez-Morales, Mercedes; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Pepe, Francesco; Piotto, Giampaolo; Phillips, David F; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris

    2016-01-01

    While the vast majority of multiple-planet systems have their orbital angular momentum axes aligned with the spin axis of their host star, Kepler-56 is an exception: its two transiting planets are coplanar yet misaligned by at least 40 degrees with respect to their host star. Additional follow-up observations of Kepler-56 suggest the presence of a massive, non-transiting companion that may help explain this misalignment. We model the transit data along with Keck/HIRES and HARPS-N radial velocity data to update the masses of the two transiting planets and infer the physical properties of the third, non-transiting planet. We employ a Markov Chain Monte Carlo sampler to calculate the best-fitting orbital parameters and their uncertainties for each planet. We find the outer planet has a period of 1002 $\\pm$ 5 days and minimum mass of 5.61 $\\pm$ 0.38 Jupiter masses. We also place a 95% upper limit of 0.80 m/s/yr on long-term trends caused by additional, more distant companions.

  16. On the probability of the collision of a Mars-sized planet with the Earth to form the Moon

    CERN Document Server

    Dvorak, Rudolf; Maindl, Thomas I

    2015-01-01

    The problem of the formation of the Moon is still not explained satisfactorily. While it is a generally accepted scenario that the last giant impact on Earth between some 50 to 100 million years after the starting of the formation of the terrestrial planets formed our natural satellite, there are still many open questions like the isotopic composition which is identical for these two bodies. In our investigation we will not deal with these problems of chemical composition but rather undertake a purely dynamical study to find out the probability of a Mars-sized body to collide with the Earth shortly after the formation of the Earth-like planets. For that we assume an additional massive body between Venus and Earth, respectively Earth and Mars which formed there at the same time as the other terrestrial planets. We have undertaken massive n-body integrations of such a planetary system with 4 inner planets (we excluded Mercury but assumed one additional body as mentioned before) for up to tens of millions of yea...

  17. Building Terrestrial Planets

    CERN Document Server

    Morbidelli, Alessandro; O`brien, David P; Raymond, Sean N; Walsh, Kevin J; 10.1146/annurev-earth-042711-105319

    2012-01-01

    This paper reviews our current understanding of terrestrial planets formation. The focus is on computer simulations of the dynamical aspects of the accretion process. Throughout the chapter, we combine the results of these theoretical models with geochemical, cosmochemical and chronological constraints, in order to outline a comprehensive scenario of the early evolution of our Solar System. Given that the giant planets formed first in the protoplanetary disk, we stress the sensitive dependence of the terrestrial planet accretion process on the orbital architecture of the giant planets and on their evolution. This suggests a great diversity among the terrestrial planets populations in extrasolar systems. Issues such as the cause for the different masses and accretion timescales between Mars and the Earth and the origin of water (and other volatiles) on our planet are discussed at depth.

  18. Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D)

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Joseph R.; Fischer, Debra A.; Wang, Ji; Margossian, Charles; Brewer, John M.; Giguere, Matthew J. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Agol, Eric [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Deck, Katherine M. [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Rogers, Leslie A. [Department of Astronomy and Division of Geological and Planetary Sciences, California Institute of Technology, MC249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gazak, J. Zachary [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Holman, Matthew J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jek, Kian J.; Omohundro, Mark R.; Winarski, Troy; Lintott, Chris; Simpson, Robert [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Lynn, Stuart; Parrish, Michael [Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States); Schawinski, Kevin [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich (Switzerland); Schwamb, Megan E., E-mail: joseph.schmitt@yale.edu [Institute of Astronomy and Astrophysics, Academia Sinica: 11F Astronomy-Mathematics Building, National Taiwan University. No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); and others

    2014-11-10

    We report the discovery of one newly confirmed planet (P = 66.06 days, R {sub P} = 2.68 ± 0.17 R {sub ⊕}) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R {sub P} = 2.15 ± 0.10 R {sub ⊕}) and Kepler-289-c (P = 125.85 days, R {sub P} = 11.59 ± 0.10 R {sub ⊕}), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (∼1.3%), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∼1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M {sub *} = 1.08 ± 0.02 M {sub ☉}, R {sub *} = 1.00 ± 0.02 R {sub ☉}, and T {sub eff} = 5990 ± 38 K. The middle planet's large TTV amplitude (∼5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M {sub ⊕}, 4.0 ± 0.9M {sub ⊕}, and M = 132 ± 17 M {sub ⊕}, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm{sup –3} for a planet of its mass, requiring a substantial H/He atmosphere of 2.1{sub −0.3}{sup +0.8}% by mass, and joins a growing population of low-mass, low-density planets.

  19. Tracing the Ingredients for a Habitable Earth from Interstellar Space through Planet Formation

    CERN Document Server

    Bergin, Edwin A; Ciesla, Fred; Hirschmann, Marc M; Li, Jie

    2015-01-01

    We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites and terrestrial planets; we include an updated estimate for the Bulk Silicate Earth (C/N = 49.0 +/- 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macro-molecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ~1-12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonac...

  20. Stars Influence on the Earth in Maya Culture: Stars and Planets in Maya Culture

    Directory of Open Access Journals (Sweden)

    Emanuel George Oprea

    2015-11-01

    Full Text Available The Mesoamerican Culture of Maya’s was one of the ancient and advanced cultures of the American continent and they influenced other Amerindian peoples. The life of Maya people, of the Earth itself and of the Universe is set and constructed around Maya Calendar and has a cyclic character as a direct influence of the stars. Many centuries the Western civilization with the its linear Calendar had not accepted the ideas of the possible influence of the stars and planets to peoples lives. The end of the last century and the beginning of XXI’s had started to demonstrate the opposite. The present work tries to show the process of meeting and intersection of the ancient ideas of Maya civilization and some of new ideas from the modern sciences.

  1. Tracing the ingredients for a habitable earth from interstellar space through planet formation.

    Science.gov (United States)

    Bergin, Edwin A; Blake, Geoffrey A; Ciesla, Fred; Hirschmann, Marc M; Li, Jie

    2015-07-21

    We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites, and terrestrial planets; we include an updated estimate for the bulk silicate Earth (C/N = 49.0 ± 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macromolecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ∼1-12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonaceous chondrites or comets. During planetary formation, we explore scenarios leading to further volatile loss and associated C/N variations owing to core formation and atmospheric escape. Key processes include relative enrichment of nitrogen in the atmosphere and preferential sequestration of carbon by the core. The high C/N bulk silicate Earth ratio therefore is best satisfied by accretion of thermally processed objects followed by large-scale atmospheric loss. These two effects must be more profound if volatile sequestration in the core is effective. The stochastic nature of these processes hints that the surface/atmospheric abundances of biosphere-essential materials will likely be variable.

  2. Forming Close-in Earth-like Planets via a Collision-Merger Mechanism in Late-stage Planet Formation

    CERN Document Server

    Ji, Jianghui; Tinney, C G

    2010-01-01

    The large number of exoplanets found to orbit their host stars in very close orbits have significantly advanced our understanding of the planetary formation process. It is now widely accepted that such short-period planets cannot have formed {\\em in situ}, but rather must have migrated to their current orbits from a formation location much farther from their host star. In the late stages of planetary formation, once the gas in the proto-planetary disk has dissipated and migration has halted, gas-giants orbiting in the inner disk regions will excite planetesimals and planetary embryos, resulting in an increased rate of orbital crossings and large impacts. We present the results of dynamical simulations for planetesimal evolution in this later stage of planet formation. We find that a mechanism is revealed by which the collision-merger of planetary embryos can kick terrestrial planets directly into orbits extremely close to their parent stars.

  3. The Origin of the Most Part of Water on the Earth, and the Reason why there is More Water on the Earth than on the other Terrestrial Planets

    OpenAIRE

    2015-01-01

    The origin of water on the Earth, and the reason why there is more liquid water on the Earth than on the other terrestrial planets of the Solar System is not completely understood. Here we show that these facts are related to a water vapor cloud formed by the vaporization of part of an ice belt that was formed in the beginning of the Solar System.

  4. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Szulágyi, J.; Morbidelli, A.; Crida, A. [University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, Laboratoire Lagrange, F-06304, Nice (France); Masset, F., E-mail: jszulagyi@oca.eu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2014-02-20

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

  5. Hubble Space Telescope search for the transit of the Earth-mass exoplanet Alpha Centauri Bb

    CERN Document Server

    Demory, Brice-Olivier; Queloz, Didier; Seager, Sara; Gilliland, Ronald; Chaplin, William J; Proffitt, Charles; Gillon, Michael; Guenther, Maximilian N; Benneke, Bjoern; Dumusque, Xavier; Lovis, Christophe; Pepe, Francesco; Segransan, Damien; Triaud, Amaury; Udry, Stephane

    2015-01-01

    Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterisation of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet Alpha Centauri Bb with the Hubble Space Telescope (HST). We observed Alpha Centauri B twice in 2013 and 2014 for a total of 40 hours. We achieve a precision of 115 ppm per 6-s exposure time in a highly-saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of Alpha Centauri Bb with the orbital parameters published in the literature at 96.6% confidence. We find in our data a single transit-like event that could be associated to another Earth-size planet in the system, on a longer period orbit. Our program demonstrates the ability of HST to obtain consistent, hi...

  6. Primordial Planet Formation

    CERN Document Server

    Schild, Rudolph E

    2010-01-01

    Recent spacecraft observations exploring solar system properties impact standard paradigms of the formation of stars, planets and comets. We stress the unexpected cloud of microscopic dust resulting from the DEEP IMPACT mission, and the existence of molten nodules in STARDUST samples. And the theory of star formation does not explain the common occurrence of binary and multiple star systems in the standard gas fragmentation scenario. No current theory of planet formation can explain the iron core of the earth, under oceans of water. These difficulties are avoided in a scenario where the planet mass objects form primordially and are today the baryonic dark matter. They have been detected in quasar microlensing and anomalous quasar radio brightening bursts. The primordial planets often concentrate together to form a star, with residual matter seen in pre-stellar accretion discs around the youngest stars. These primordial planet mass bodies were formed of hydrogen-helium, aggregated in dense clumps of a trillion...

  7. FORMATION OF CLOSE IN SUPER-EARTHS AND MINI-NEPTUNES: REQUIRED DISK MASSES AND THEIR IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, Hilke E., E-mail: hilke@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2014-11-01

    Recent observations by the Kepler space telescope have led to the discovery of more than 4000 exoplanet candidates consisting of many systems with Earth- to Neptune-sized objects that reside well inside the orbit of Mercury around their respective host stars. How and where these close-in planets formed is one of the major unanswered questions in planet formation. Here, we calculate the required disk masses for in situ formation of the Kepler planets. We find that if close-in planets formed as isolation masses, then standard gas-to-dust ratios yield corresponding gas disks that are gravitationally unstable for a significant fraction of systems, ruling out such a scenario. We show that the maximum width of a planet's accretion region in the absence of any migration is 2v {sub esc}/Ω, where v {sub esc} is the escape velocity of the planet and Ω is the Keplerian frequency, and we use it to calculate the required disk masses for in situ formation with giant impacts. Even with giant impacts, formation without migration requires disk surface densities in solids at semi-major axes of less than 0.1 AU of 10{sup 3}-10{sup 5} g cm{sup –2}, implying typical enhancements above the minimum-mass solar nebular (MMSN) by at least a factor of 20. Corresponding gas disks are below but not far from the gravitational stability limit. In contrast, formation beyond a few AU is consistent with MMSN disk masses. This suggests that the migration of either solids or fully assembled planets is likely to have played a major role in the formation of close-in super-Earths and mini-Neptunes.

  8. A 1.9 Earth radius rocky planet and the discovery of a non-transiting planet in the Kepler-20 system

    CERN Document Server

    Buchhave, Lars A; Dumusque, Xavier; Rice, Ken; Vanderburg, Andrew; Mortier, Annelies; Lopez-Morales, Mercedes; Lopez, Eric; Lundkvist, Mia S; Kjeldsen, Hans; Affer, Laura; Bonomo, Aldo S; Charbonneau, David; Cameron, Andrew Collier; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F M; Harutyunyan, Avet; Haywood, Raphaëlle D; Johnson, John Asher; Latham, David W; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Pepe, Francesco; Phillips, David F; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris

    2016-01-01

    Kepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own Solar System. A transition from rocky to gaseous planets with a planetary transition radius of ~1.6 REarth has recently been proposed by several publications in the literature (Rogers 2015;Weiss & Marcy 2014). Kepler-20b (Rp ~ 1.9 REarth) has a size beyond this transition radius, however previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of three of the planets in the Kepler-20 system facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star (MStar = 0.948+-0.051 Msun and Rstar = 0.964+-0.018 Rsun). Kepler-20b is a 1.868+0.066-0.034 REarth planet in a 3.7 day period with a mass o...

  9. Q & A with Kathleen M. Reilly, Author of "Planet Earth: 25 Environmental Projects You Can Build Yourself"

    Science.gov (United States)

    Curriculum Review, 2008

    2008-01-01

    This article presents an interview with Kathleen M. Reilly, author of "Planet Earth: 25 Environmental Projects You Can Build Yourself." Environmental awareness needs to begin in childhood, and, through this book, Kathleen M. Reilly encourages children to learn about ecology and ecosystems to begin conservation early in their lives. Children ages 9…

  10. Planet Earth, Humans, Gravity and Their Connection to Natural Medicine-Essence from a 5000 Yrs Old Ancient Pedagogy

    Science.gov (United States)

    Lakshmanan, S.; Monsanto, C.; Radjendirane, B.

    2015-12-01

    According to the Ancient Indian Science, the fundamental constituents of planet earth are the five elements (Solid, Liquid, Heat, Air and Akash (subtlest energy field)). The same five elements constitute the human body. The Chinese and many other native traditions have used their deep understanding of these elements to live in balance with the planet. David Suzuki has elaborated on this key issue in his classic book, The Legacy: "Today we are in a state of crisis, and we must join together to respond to that crisis. If we do so, Suzuki envisions a future in which we understand that we are the Earth and live accordingly. All it takes is imagination and a determination to live within our, and the planet's, means". Gravity, the common force that connects both the body and earth plays a major role in the metabolism as well as the autonomous function of different organs in the body. Gravity has a direct influence on the fruits and vegetables that are grown on the planet as well. As a result, there is a direct relationship among gravity, food and human health. My talk will cover the missing link between the Earth's Gravity and the human health. A new set of ancient axioms will be used to address this and many other issues that are remain as "major unsolved problems" linking modern Geophysical and Health sciences.

  11. Mass measurement of a single unseen star and detection efficiency to low mass planets for OGLE 2007-BLG-050

    CERN Document Server

    Batista, V; Gould, A; Beaulieu, J P; Cassan, A; Christie, G W; Han, C; Udalski, A; Allen, W; De Poy, D L; Gal-Yam, A; Gaudi, B S; Johnson, B; Kaspi, S; Lee, C U; Maoz, D; McCormick, J; McGreer, I; Monard, B; Natusch, T; Ofek, E; Park, B -G; Pogge, R W; Polishook, D; Shporer, A; Albrow, M D; Bennett, D P; Brillant, S; Bode, M; Bramich, D M; Burgdorf, M; Caldwell, J A R; Calitz, H; Cole, A; Cook, K H; Coutures, Ch; Dieters, S; Dominik, M; Prester, D Dominis; Donatowicz, J; Fouqué, P; Greenhill, J; Hoffman, M; Horne, K; Jørgensen, U G; Kains, N; Kane, S; Kubas, D; Marquette, J B; Martin, R; Meintjes, P; Menzies, J; Pollard, K R; Sahu, K C; Snodgrass, C; Steele, I; Tsapras, Y; Wambsganss, J; Williams, A; Zub, M; Wyrzykowski, Ł; Kubiak, M; Szymański, M K; Pietrzyński, G; Soszyński, I; Szewczyk, O; Ulaczyk, K; Abe, F; Bond, I A; Fukui, A; Furusawa, K; Hearnshaw, J B; Holderness, S; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A; Lin, W; Ling, C H; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Nagaya, M; Ohnishi, K; Okumura, T; Perrott, Y C; Rattenbury, N; Saito, To; Sako, T; Skuljan, L; Sullivan, D; Sumi, T; Sweatman, W L; Tristram, P J; Yock, P C M

    2009-01-01

    We analyze OGLE-2007-BLG-050, a high magnification microlensing event ($A\\sim 432$) whose peak occurred on 2 May, 2007, with pronounced finite-source and parallax effects. We compute planet detection efficiencies for this event in order to determine its sensitivity to the presence of planets around the lens star. Both finite-source and parallax effects permit a measurement of the angular Einstein radius $\\theta_{\\rm E}=0.48\\pm 0.01$ mas and the parallax $\\pi_{\\rm E}=0.12\\pm 0.03$, leading to an estimate of the lens mass $M=0.50\\pm0.14 M_{\\odot}$ and its distance to the observer $D_L=5.5\\pm0.4$ \\rm{kpc}. This is only the second determination of a reasonably precise ($<30%$) mass estimate for an isolated unseen object, using any method. This allows us to calculate the planetary detection efficiency in physical units $(r_\\perp,m_p)$, where $r_\\perp$ is the projected planet-star separation and $m_p$ is the planet mass. When computing planet detection efficiency, we did not find any planetary signature and our ...

  12. The Lick-Carnegie Exoplanet Survey: Gliese 687b: A Neptune-Mass Planet Orbiting a Nearby Red Dwarf

    CERN Document Server

    Burt, Jennifer; Butler, R Paul; Hanson, Russell; Meschiari, Stefano; Rivera, Eugenio J; Henry, Gregory W; Laughlin, Gregory

    2014-01-01

    Precision radial velocities from the Automated Planet Finder and Keck/HIRES reveal an M*sin(i) =18 +/- 2 Earth mass planet orbiting the nearby M3V star GJ 687. This planet has an orbital period, P = 38.14 days, and a low orbital eccentricity. Our Stromgren b and y photometry of the host star suggests a stellar rotation signature with a period of P = 60 days. The star is somewhat chromospherically active, with a spot filling factor estimated to be several percent. The rotationally{induced 60-day signal, however, is well-separated from the period of the radial velocity variations, instilling confidence in the interpretation of a Keplerian origin for the observed velocity variations. Although GJ 687b produces relatively little specific interest in connection with its individual properties, a compelling case can be argued that it is worthy of remark as an eminently typical, yet at a distance of 4.52 pc, a very nearby representative of the galactic planetary census. The detection of GJ 687b indicates that the APF...

  13. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    Science.gov (United States)

    Ballmer, Maxim; Wiethoff, Tobias

    2016-04-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show „inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on the flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the

  14. Primary school children and teachers discover the nature and science of planet Earth and Mars

    Science.gov (United States)

    Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten

    2016-04-01

    For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on http://www.expeditionmundus.org. Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a

  15. From Planet Earth to Society: a new dynamics in Portugal about Geosciences Education and Outreach

    Science.gov (United States)

    Silva, Elizabeth; Abreu Sá, Artur; José Roxo, Maria

    2013-04-01

    Since the United Nations General Assembly declared the year 2008 as the International Year of Planet Earth (IYPE), during the triennium 2007-2009, under the motto Earth Sciences for Society, many impacts and changes were generated among the Portuguese society. Today is possible to say that those were due to the work of the Portuguese National Committee for the IYPE. After 2009, the Portuguese National Commission for UNESCO created the Portuguese National Committee for the International Programme of Geosciences (IGCP) with the main goal to continue the work done during the IYPE. Among those activities, a Workshop entitled "InFormation in Context" was organized by the UNESCO NatCom - Portugal, in collaboration with the IGCP National Committee and the National Public Television (RTP). This activity was created to reach specially journalists, aiming to give them more information in context, related to Earth matters, mainly related to natural hazards and Climate Change. It is essential that society knows its degree of vulnerability to the occurrence of extreme natural phenomena, which are the basis of natural catastrophes, with serious social and economic consequences. Thus, it is crucial the development of a culture of prevention and precaution, which hinges on a correct information, based in scientific knowledge on causes and consequences of extreme natural phenomena. At the same time, it is necessary the implementation of mitigation and adaptation measures, based on the analysis and cartography of risks, and in an effective monitoring process. During these workshops particular emphasis was given to the need to inform and educate the society in general, and students in particular, to the reality of living in a dynamic planet. Particular importance was given to natural hazards, such as those resulting from earthquakes landslides, floods, droughts, heat and cold waves and storms, which are those with the greatest potential danger in Portugal. An informed society is a

  16. Final Masses of Giant Planets II: Jupiter Formation in a Gas-Depleted Disk

    CERN Document Server

    Tanigawa, Takayuki

    2015-01-01

    Firstly, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing an empirical formula for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamical simulations. The shallow disk gaps cannot terminate growth of giant planets. For planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, rather than their gaps. The insufficient gas supply compared with the rapid gas capture causes a depletion of the gas surface density even at the outside of the gap, which can create an inner hole in the protoplanetary disk. Our model can also predict the depleted gas surface density in the inner hole for a given planet mass. Secondly, our findings are applied to the formation of our solar system. For the formation of Jupiter, a very low-mass gas disk with a few or several Jupiter masses is required at the beginning of its gas capture because of the non-sto...

  17. Korean-Japanese Planet Search Program: Substellar Companions around Intermediate-Mass Giants

    CERN Document Server

    Omiya, Masashi; Izumiura, Hideyuki; Lee, Byeong-Cheol; Sato, Bun'ei; Kim, Kang-Min; Yoon, Tae Seog; Kambe, Eiji; Yoshida, Michitoshi; Masuda, Seiji; Toyota, Eri; Urakawa, Seitaro; Takada-Hidai, Masahide

    2011-01-01

    A Korean-Japanese planet search program has been carried out using the 1.8m telescope at Bohyunsan Optical Astronomy Observatory (BOAO) in Korea, and the 1.88m telescope at Okayama Astrophysical Observatory (OAO) in Japan to search for planets around intermediate-mass giant stars. The program aims to show the properties of planetary systems around such stars by precise Doppler survey of about 190 G or K type giants together with collaborative surveys of the East-Asian Planet Search Network. So far, we detected two substellar companions around massive intermediate-mass giants in the Korean-Japanese planet search program. One is a brown dwarf-mass companion with 37.6 $M_{\\mathrm{J}}$ orbiting a giant HD 119445 with 3.9 $M_{\\odot}$, which is the most massive brown dwarf companion among those found around intermediate-mass giants. The other is a planetary companion with 1.8 $M_{\\mathrm{J}}$ orbiting a giant star with 2.4 $M_{\\odot}$, which is the lowest-mass planetary companion among those detected around giant s...

  18. Highlights and impacts of the International Year of Planet Earth in Hungary

    Science.gov (United States)

    Szarka, László; Ádám, József; Brezsnyánszky, Károly; Haas, János; Kakas, Kristóf; Koppán, András.

    2010-05-01

    IYPE activities of various geo-science associations, universities, research institutes and private companies in Hungary (www.foldev.hu) have been successfully coordinated by the Hungarian National Committee, which was established by the Hungarian Academy of Sciences, the UNESCO- and the IUGS National Committees. The National Launch Event (April 17, 2008) was followed with a four-days long "Earth Science Fair" at the Hungarian Natural History Museum in Budapest. The IYPE was even briefly reviewed in the Hungarian Parliament. The Science Festival, organized annually by the Hungarian Academy of Sciences, in 2008 had a special IYPE-inspired slogan: "Science for the Habitable Earth", where lectures were held about the modern content of the Greek Classical Elements ("earth", "water", "air" and "fire", that is energy) and about the Humanity. In 2008/2009 numerous publications (including the Hungarian version of the IYPE booklet series, under the title GEO-FIFIKA, the Természet Világa special issue in February 2009, the IYPE number of Földrajzi Közlemények (Geographical Communications), and the "Geological Map of Hungary for Tourists" were produced. Throughout the country, symposia (e.g. HUNGEO 2008, ELGI 100, MÁFI 140, Geotourism Symposium in October 2009), several contests (Hungarian Television "Delta", Élet és Tudomány on the occasion of the UN year, and the annual contests starting in 2007 at Miskolc University), film shows (e.g., the movie "Another Planet") and other performances (e.g. End of the Ice Age in Hungarian Natural History Museum) were organized, with modest but increasing media coverage. The worldwide premier of the Planet Earth TV took place in Hungary, on the occasion of the IAGA 11th Scientific Assembly (August 23-30, 2009, www.iaga2009sopron.hu). One of our conferences ("Earth and Heaven - Geology and Theology") pointed out that there should be no conflict between science and religion, either in the fields of Earth's history or evolution

  19. Increased insolation threshold for runaway greenhouse processes on Earth-like planets.

    Science.gov (United States)

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-12

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.

  20. The Earth Microbiome Project and modeling the planets microbial potential (Invited)

    Science.gov (United States)

    Gilbert, J. A.

    2013-12-01

    The understanding of Earth's climate and ecology requires multiscale observations of the biosphere, of which microbial life are a major component. However, to acquire and process physical samples of soil, water and air that comprise the appropriate spatial and temporal resolution to capture the immense variation in microbial dynamics, would require a herculean effort and immense financial resources dwarfing even the most ambitious projects to date. To overcome this hurdle we created the Earth Microbiome Project, a crowd-sourced effort to acquire physical samples from researchers around the world that are, importantly, contextualized with physical, chemical and biological data detailing the environmental properties of that sample in the location and time it was acquired. The EMP leverages these existing efforts to target a systematic analysis of microbial taxonomic and functional dynamics across a vast array of environmental parameter gradients. The EMP captures the environmental gradients, location, time and sampling protocol information about every sample donated by our valued collaborators. Physical samples are then processed using a standardized DNA extraction, PCR, and shotgun sequencing protocol to generate comparable data regarding the microbial community structure and function in each sample. To date we have processed >17,000 samples from 40 different biomes. One of the key goals of the EMP is to map the spatiotemporal variability of microbial communities to capture the changes in important functional processes that need to be appropriately expressed in models to provide reliable forecasts of ecosystem phenotype across our changing planet. This is essential if we are to develop economically sound strategies to be good stewards of our Earth. The EMP recognizes that environments are comprised of complex sets of interdependent parameters and that the development of useful predictive computational models of both terrestrial and atmospheric systems requires

  1. Volatile Delivery to Planets from Water-rich Planetesimals around Low Mass Stars

    CERN Document Server

    Ciesla, Fred J; Pascucci, Ilaria; Apai, Daniel

    2015-01-01

    Most models of volatile delivery to accreting terrestrial planets assume that the carriers for water are similar in water content to the carbonaceous chondrites in our Solar System. Here we suggest that the water content of primitive bodies in many planetary systems may actually be much higher, as carbonaceous chondrites have lost some of their original water due to heating from short-lived radioisotopes that drove parent body alteration. Using N-body simulations, we explore how planetary accretion would be different if bodies beyond the water line contained a water mass fraction consistent with chemical equilibrium calculations, and more similar to comets, as opposed to the more traditional water-depleted values. We apply this model to consider planet formation around stars of different masses and identify trends in the properties of Habitable Zone planets and planetary system architecture which could be tested by ongoing exoplanet census data collection. Comparison of such data with the model predicted tren...

  2. The problem of iron partition between Earth and Moon during simultaneous formation as a double planet system

    Science.gov (United States)

    Cassidy, W. A.

    1984-01-01

    A planetary model is described which requires fractional vapor/liquid condensation, planet accumulation during condensation, a late start for accumulation of the Moon, and volatile accretion to the surfaces of each planet only near the end of the accumulation process. In the model, initial accumulation of small objects is helped if the agglomerating particles are somewhat sticky. Assuming that growth proceeds through this range, agglomeration continues. If the reservoir of vapor is being preferentially depleted in iron by fractional condensation, an iron-rich planetary core forms. As the temperature decreases, condensing material becomes progressively richer in silicates and poorer in iron, forming the silicate-rich mantle of an already differentiated Earth. A second center of agglomeration successfully forms near the growing Earth after most of the iron in the reservoir has been used up. The bulk composition of the Moon then is similar to the outer mantle of the accumulating Earth.

  3. Bioremediation at a global scale: from the test tube to planet Earth.

    Science.gov (United States)

    de Lorenzo, Víctor; Marlière, Philippe; Solé, Ricard

    2016-09-01

    Planet Earth's biosphere has evolved over billions of years as a balanced bio-geological system ultimately sustained by sunpower and the large-scale cycling of elements largely run by the global environmental microbiome. Humans have been part of this picture for much of their existence. But the industrial revolution started in the XIX century and the subsequent advances in medicine, chemistry, agriculture and communications have impacted such balances to an unprecedented degree - and the problem has nothing but exacerbated in the last 20 years. Human overpopulation, industrial growth along with unsustainable use of natural resources have driven many sites and perhaps the planetary ecosystem as a whole, beyond recovery by spontaneous natural means, even if the immediate causes could be stopped. The most conspicuous indications of such a state of affairs include the massive change in land use, the accelerated increase in the levels of greenhouse gases, the frequent natural disasters associated to climate change and the growing non-recyclable waste (e.g. plastics and recalcitrant chemicals) that we release to the Environment. While the whole planet is afflicted at a global scale by chemical pollution and anthropogenic emissions, the ongoing development of systems and synthetic biology, metagenomics, modern chemistry and some key concepts from ecological theory allow us to tackle this phenomenal challenge and propose large-scale interventions aimed at reversing and even improving the situation. This involves (i) identification of key reactions or processes that need to be re-established (or altogether created) for ecosystem reinstallation, (ii) implementation of such reactions in natural or designer hosts able to self-replicate and deliver the corresponding activities when/where needed in a fashion guided by sound ecological modelling, (iii) dispersal of niche-creating agents at a global scale and (iv) containment, monitoring and risk assessment of the whole process.

  4. A giant cloud of hydrogen escaping the warm Neptune-mass planet GJ 436b

    Science.gov (United States)

    Ehrenreich, David

    2015-12-01

    Exoplanets in extreme irradiation environments, close to their parent stars, could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss has been observed during the past 12 years for hot gas giants, as large (~10%) ultraviolet absorption signals during transits. Meanwhile, no confident detection have been obtained for lower-mass planets, which are most likely to be significantly affected by atmospheric escape. In fact, hot rocky planets observed by Corot and Kepler might have lost all of their atmosphere, having begun as Neptune-like. The signature of this loss could be observed in the ultraviolet, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical. I will report on new Hubble observations of the Neptune-mass exoplanet GJ 436b, around which an extended atmosphere has been tentatively detected in 2014. The new data reveal that GJ 436b has huge transit depths of 56.3±3.5% in the hydrogen Lyman-alpha line, far beyond the 0.69% optical transit depth, and even far beyond mass loss signatures observed at the same wavelength from more irradiated gas giants. We infer from this repeated observations that the planet is surrounded and trailed by a large exospheric cloud of hydrogen, shaped as a giant comet, much bigger than the star. We estimate a mass-loss rate, which today is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past. This 16-sigma detection opens exciting perspectives for the atmospheric characterization of low-mass and moderately-irradiated exoplanets, a large number of which will be detected by forthcoming transit surveys.

  5. The mass function of primordial rogue planet MACHOs in quasar nano-lensing

    NARCIS (Netherlands)

    Schild, R.E; Nieuwenhuizen, T.M.; Gibson, C.H.

    2012-01-01

    The recent Sumi et al (2010 Astrophys. J. 710 1641; 2011 Nature 473 349) detection of free roaming planet mass MACHOs in cosmologically significant numbers recalls their original detection in quasar microlening studies (Colley and Schild 2003 Astrophys. J. 594 97; Schild R E 1996 Astrophys. J. 464

  6. Interior phase transformations and mass-radius relationships of silicon-carbon planets

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Hugh F. [CSIRO Materials Science and Engineering, Parkville, Victoria 3052 (Australia); Militzer, Burkhard, E-mail: hughfw@gmail.com [Department of Earth and Planetary Science and Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-09-20

    Planets such as 55 Cancri e orbiting stars with a high carbon-to-oxygen ratio may consist primarily of silicon and carbon, with successive layers of carbon, silicon carbide, and iron. The behavior of silicon-carbon materials at the extreme pressures prevalent in planetary interiors, however, has not yet been sufficiently understood. In this work, we use simulations based on density functional theory to determine high-pressure phase transitions in the silicon-carbon system, including the prediction of new stable compounds with Si{sub 2}C and SiC{sub 2} stoichiometry at high pressures. We compute equations of state for these silicon-carbon compounds as a function of pressure, and hence derive interior structural models and mass-radius relationships for planets composed of silicon and carbon. Notably, we predict a substantially smaller radius for SiC planets than in previous models, and find that mass radius relationships for SiC planets are indistinguishable from those of silicate planets. We also compute a new equation of state for iron. We rederive interior models for 55 Cancri e and are able to place more stringent restrictions on its composition.

  7. Two Jupiter-Mass Planets Orbiting HD 154672 and HD 205739

    CERN Document Server

    Lopez-Morales, Mercedes; Fischer, Debra A; Minniti, Dante; Shectman, Stephen A; Takeda, Genya; Adams, Fred C; Wright, Jason T; Arriagada, Pamela

    2008-01-01

    We report the detection of the first two planets from the N2K Doppler planet search program at the Magellan telescopes. The first planet has a mass of M sin i = 4.96 M_Jup and is orbiting the G3 IV star HD154672 with an orbital period of 163.9 days. The second planet is orbiting the F7 V star HD205739 with an orbital period of 279.8 days and has a mass of M sin i = 1.37 M_Jup. Both planets are in eccentric orbits, with eccentricities e = 0.61 and e = 0.27, respectively. Both stars are metal rich and appear to be chromospherically inactive, based on inspection of their Ca II H and K lines. Finally, the best Keplerian model fit to HD205739b shows a trend of 0.0649 m/s/day, suggesting the presence of an additional outer body in that system.

  8. Characterizing K2 Planet Discoveries: A Super-Earth Transiting the Bright K Dwarf HIP 116454

    OpenAIRE

    Vanderburg, A.; Montet, BT; Johnson, JA; Buchhave, LA; Zeng, L.; Pepe, F.; Cameron, AC; Latham, DW; Molinari, E.; Udry, S.; Lovis, C; Matthews, JM; Cameron, C; Law, N; Bowler, BP

    2015-01-01

    We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =–0.16 ± 0.08 and has a radius R = 0.716 ± 0.024 R ☉ and mass M = 0.775 ± 0.027 M ☉. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Eng...

  9. Impact of {\\eta}earth on the capabilities of affordable space missions to detect biosignatures on extrasolar planets

    CERN Document Server

    Leger, Alain; Malbet, Fabien; Labadie, Lucas; Absil, Olivier

    2015-01-01

    We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation flying interferometers with 4 x 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a function of {\\eta}earth. When Kepler gives its final estimation for {\\eta}earth, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, {\\eta}earth = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ~1.5 relevant planets, and the interferometer ~14...

  10. Constraining the mass of the planet(s) sculpting a disk cavity. The intriguing case of 2MASS J16042165-2130284

    Science.gov (United States)

    Canovas, H.; Hardy, A.; Zurlo, A.; Wahhaj, Z.; Schreiber, M. R.; Vigan, A.; Villaver, E.; Olofsson, J.; Meeus, G.; Ménard, F.; Caceres, C.; Cieza, L. A.; Garufi, A.

    2017-01-01

    Context. The large cavities observed in the dust and gas distributions of transition disks may be explained by planet-disk interactions. At 145 pc, 2MASS J16042165-2130284 (J1604) is a 5-12 Myr old transitional disk with different gap sizes in the mm- and μm-sized dust distributions (outer edges at 79 and at 63 au, respectively). Its 12CO emission shows a 30 au cavity. This radial structure suggests that giant planets are sculpting this disk. Aims: We aim to constrain the masses and locations of plausible giant planets around J1604. Methods: We observed J1604 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT), in IRDIFS_EXT, pupil-stabilized mode, obtaining YJH-band images with the integral field spectrograph (IFS) and K1K2-band images with the Infra-Red Dual-beam Imager and Spectrograph (IRDIS). The dataset was processed exploiting the angular differential imaging (ADI) technique with high-contrast algorithms. Results: Our observations reach a contrast of ΔK,ΔYH 12 mag from 0".15 to 0".80 ( 22 to 115 au), but no planet candidate is detected. The disk is directly imaged in scattered light at all bands from Y to K, and it shows a red color. This indicates that the dust particles in the disk surface are mainly ≳0.3 μm-sized grains. We confirm the sharp dip/decrement in scattered light in agreement with polarized light observations. Comparing our images with a radiative transfer model we argue that the southern side of the disk is most likely the nearest. Conclusions: This work represents the deepest search yet for companions around J1604. We reach a mass sensitivity of ≳2-3 MJup from 22 to 115 au according to a hot start scenario. We propose that a brown dwarf orbiting inside of 15 au and additional Jovian planets at larger radii could account for the observed properties of J1604 while explaining our lack of detection. Based on observations made with the VLT, program 095.C-0673(A).The reduced images (FITS

  11. The runaway Greenhouse revisited: it's "theoretically possible for an Earth-like planet at 1 AU", plus implications for more diverse planets

    Science.gov (United States)

    Goldblatt, C.; Zahnle, K. J.; Crisp, D.; Robinson, T. D.

    2013-12-01

    For water-vapour rich atmospheres, there is an asymptotic limit on thermal emission to space. If more sunlight is absorbed than this limit, energy balance is no longer possible and runaway heating occurs, evaporating the ocean and sterilizing the planet en route. Here, we present recently published work (Goldblatt et al., 2013) which was the first full re-evaluation of the problem since classic 1980's era work (e.g. Watson et al., 1984; Abe & Matsui, 1988; Kasting, 1988). With modern molecular absorption databases and a line-by-line resolution model, we find that the thermal limit is lower than previous estimates (282Wm-2, down from 310Wm-2) and that much more sunlight is absorbed by a steam atmosphere (294Wm-2, up from 222Wm-2). The immediate implication is that a cloud-free moist atmosphere on Earth would cause a runaway greenhouse. Triggering it would simply be a matter of sufficient heating, with around 30,000ppmv being sufficient in our most Earth-like model. This is substantially different than previous calculations, where weak solar absorption meant that a higher solar flux was required. Our published calculations are for the limit of clear-skies; any clouds would reduce both the thermal radiation emitted and the solar radiation absorbed, so clouds could make the runaway greenhouse either more or less likely. It can be shown that and excess of cloud reflection over cloud greenhouse is required to maintain temperate climate on Earth today - but how clouds will change in a warming atmosphere is far from clear. Work in progress (and hopefully ready by December!) on cloudy runaway greenhouse models will hopefully constrain this better. Wider implications for planetary stability will also be discussed. For example, water-world planets, with minimal background gas in the atmosphere may be highly susceptible to runaway greenhouses (heating Europa might take it directly from a snowball to a runaway). High CO2 levels after previous Snowball Earth events did not

  12. Planet Hunters VII. Discovery of a New Low-Mass, Low-Density Planet (PH3 c) Orbiting Kepler-289 with Mass Measurements of Two Additional Planets (PH3 b and d)

    CERN Document Server

    Schmitt, Joseph R; Deck, Katherine M; Rogers, Leslie A; Gazak, J Zachary; Fischer, Debra A; Wang, Ji; Holman, Matthew J; Jek, Kian J; Margossian, Charles; Omohundro, Mark R; Winarski, Troy; Brewer, John M; Giguere, Matthew J; Lintott, Chris; Lynn, Stuart; Parrish, Michael; Schawinski, Kevin; Schwamb, Megan E; Simpson, Robert; Smith, Arfon M

    2014-01-01

    We report the discovery of one newly confirmed planet ($P=66.06$ days, $R_{\\rm{P}}=2.68\\pm0.17R_\\oplus$) and mass determinations of two previously validated Kepler planets, Kepler-289 b ($P=34.55$ days, $R_{\\rm{P}}=2.15\\pm0.10R_\\oplus$) and Kepler-289-c ($P=125.85$ days, $R_{\\rm{P}}=11.59\\pm0.10R_\\oplus$), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a $1:2:4$ Laplace resonance. The outer planet has very deep ($\\sim1.3%$), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young ($\\sim1$ Gyr as determined by isochrones and gyrochronology), Sun-like star with $M_*=1.08\\pm0.02M_\\odot$, $R_*=1.00\\pm0.02R_\\odot$, and $T_{\\rm{eff}}=5990\\pm38$ K. The middle planet's large TTV amplitude ($\\sim5$ hours) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allo...

  13. Taxonomy of the extrasolar planet.

    Science.gov (United States)

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  14. Derivation of the Mass Distribution of Extrasolar Planets with MAXLIMA - a Maximum Likelihood Algorithm

    CERN Document Server

    Zucker, S W; Zucker, Shay; Mazeh, Tsevi

    2001-01-01

    We construct a maximum-likelihood algorithm - MAXLIMA, to derive the mass distribution of the extrasolar planets when only the minimum masses are observed. The algorithm derives the distribution by solving a numerically stable set of equations, and does not need any iteration or smoothing. Based on 50 minimum masses, MAXLIMA yields a distribution which is approximately flat in log M, and might rise slightly towards lower masses. The frequency drops off very sharply when going to masses higher than 10 Jupiter masses, although we suspect there is still a higher mass tail that extends up to probably 20 Jupiter masses. We estimate that 5% of the G stars in the solar neighborhood have planets in the range of 1-10 Jupiter masses with periods shorter than 1500 days. For comparison we present the mass distribution of stellar companions in the range of 100--1000 Jupiter masses, which is also approximately flat in log M. The two populations are separated by the "brown-dwarf desert", a fact that strongly supports the id...

  15. Crustal decoupling and mantle dynamics on Venus: implications for Earth-like planets

    Science.gov (United States)

    Ghail, Richard

    2013-04-01

    (intraplate) continental interiors. The higher background heat flux results in a higher incidence of intraplate volcanism than on Earth, in a relatively random distribution that mirrors the near-random distribution of impact craters and results in the observed mean surface age. While these conditions occur on Venus in basaltic crust because of its extreme surface conditions, it offers insight into mantle dynamics beneath Pangaea or an Earth-like planet entirely covered by continental crust. An ESA M-class mission, EnVision, is proposed to undertake InSAR measurements at Venus to determine rates of ground displacement in order to distinguish between these two models.

  16. Water loss from Earth-sized planets in the habitable zones of ultracool dwarfs: Implications for the planets of TRAPPIST-1

    CERN Document Server

    Bolmont, Emeline; Owen, James E; Ribas, Ignasi; Raymond, Sean N; Leconte, Jérémy; Gillon, Michael

    2016-01-01

    Ultracool dwarfs (UCD) encompass the population of extremely low mass stars (later than M6-type) and brown dwarfs. Because UCDs cool monotonically, their habitable zone (HZ) sweeps inward in time. Assuming they possess water, planets found in the HZ of UCDs have experienced a runaway greenhouse phase too hot for liquid water prior to entering the HZ. It has been proposed that such planets are desiccated by this hot early phase and enter the HZ as dry, inhospitable worlds. Here we model the water loss during this pre-HZ hot phase taking into account recent upper limits on the XUV emission of UCDs and using 1D radiation-hydrodynamic simulations. We address the whole range of UCDs but also focus on the planets b, c and d recently found around the $0.08~M_\\odot$ dwarf TRAPPIST-1. Despite assumptions maximizing the FUV-photolysis of water and the XUV-driven escape of hydrogen, we find that planets can retain significant amounts of water in the HZ of UCDs, with a sweet spot in the $0.04$-$0.06~M_\\odot$ range. With ...

  17. The Search for Planet Nine

    Science.gov (United States)

    Brown, Michael E.; Batygin, Konstantin

    2016-10-01

    We use an extensive suite of numerical simulations to constrain the mass and orbit of Planet Nine, and we use these constraints to begin the search for this newly proposed planet in new and in archival data. Here, we compare our simulations to the observed population of aligned eccentric high semimajor axis Kuiper belt objects and determine which simulation parameters are statistically compatible with the observations. We find that only a narrow range of orbital elements can reproduce the observations. In particular, the combination of semimajor axis, eccentricity, and mass of Planet Nine strongly dictates the semimajor axis range of the orbital confinement of the distant eccentric Kuiper belt objects. Allowed orbits, which confine Kuiper belt objects with semimajor axis beyond 380 AU, have perihelia roughly between 150 and 350 AU, semimajor axes between 380 and 980 AU, and masses between 5 and 20 Earth masses. Orbitally confined objects also generally have orbital planes similar to that of the planet, suggesting that the planet is inclined approximately 30 degrees to the ecliptic. We compare the allowed orbital positions and estimated brightness of Planet Nine to previous and ongoing surveys which would be sensitive to the planet's detection and use these surveys to rule out approximately two-thirds of the planet's orbit. Planet Nine is likely near aphelion with an approximate brightness of 22hours. We discuss the state of our current and archival searches for this newly predicted planet.

  18. Extrasolar planets : - From gaseous giant planets to rocky planets. - Steps towards the detection of life biomarkers.

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Today, great efforts are made to detect Earth-mass rocky planets in the so-called habitable zone of their host stars. What are the difficulties, the instrumental projects  and the already detected interesting systems ?

  19. Mapping Clouds and Terrain of Earth-like Planets from Photometric Variability

    CERN Document Server

    Kawahara, Hajime

    2011-01-01

    We develop an inversion technique of annual scattered light curves to sketch a two-dimensional albedo map of exoplanets. As a test-bed for future observations of extrasolar terrestrial planets, we apply this mapping technique to simulated light curves of a mock Earth-twin. A primary feature in recovered albedo maps traces the annual mean distribution of clouds. To extract information of other surface types, we attempt to reduce the cloud signal by taking difference of two bands. We find that the inversion of reflectivity difference between 0.8-0.9 and 0.4-0.5 micron bands roughly recover the continental distribution, except for high latitude regions persistently covered with clouds and snow. The inversion of the reflectivity difference across the red edge (0.8-0.9 and 0.6-0.7 micron) emphasizes the vegetation features near the equator. The planetary obliquity and equinox can be estimated simultaneously with the mapping under the presence of clouds. We conclude that the photometric variability of the scattered...

  20. Intense Gamma-Ray Flashes Above Thunderstorms on the Earth and Other Planets

    Science.gov (United States)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons have been observed with space-borne detectors in Earth orbit. They are expected to be present on other planets that exhibit lightning. The terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi- GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly- Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic "runaway avalanche" electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. They have generated considerable observational and theoretical interest in recent years. This talk will give an overview of the all of the space-borne observations of TGFs that have been made thus far. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms

  1. Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets

    CERN Document Server

    Schaefer, L

    2009-01-01

    We used chemical equilibrium and chemical kinetic calculations to model chemistry of the volatiles released by heating different types of carbonaceous, ordinary and enstatite chondritic material as a function of temperature and pressure. Our results predict the composition of atmospheres formed by outgassing during accretion of the Earth and other terrestrial planets. Outgassing of CI and CM carbonaceous chondritic material produces H2O-rich (steam) atmospheres in agreement with the results of impact experiments. However, outgassing of other types of chondritic material produces atmospheres dominated by other gases. Outgassing of ordinary (H, L, LL) and high iron enstatite (EH) chondritic material yields H2-rich atmospheres with CO and H2O being the second and third most abundant gases. Outgassing of low iron enstatite (EL) chondritic material gives a CO-rich atmosphere with H2, CO2, and H2O being the next most abundant gases. Outgassing of CV carbonaceous chondritic material gives a CO2-rich atmosphere with ...

  2. Combining Kepler and HARPS Occurrence Rates to Infer the Period-Mass-Radius Distribution of Super-Earths/Sub-Neptunes

    CERN Document Server

    Wolfgang, A

    2011-01-01

    The ongoing High Accuracy Radial velocity Planet Search (HARPS) has found that 30-50% of GK dwarfs in the solar neighborhood host planets with sub-Neptune masses in orbits of P < 50 days. At first glance, this overall occurrence rate seems inconsistent with the planet frequency measured during Q0-Q2 of the Kepler Mission, whose 1,235 detected planetary candidates imply that ~ 15% of main sequence dwarfs harbor short-period planets with R_pl < 4 R_Earth. A rigorous comparison between the two surveys is difficult, however, as they observe different stellar populations and measure different planetary properties. Here we report the results of a Monte Carlo study that can account for this discrepancy via plausible distributions of planetary compositions. We find that a population concurrently consisting of (1) dense silicate-iron planets and (2) low-density gas-dominated worlds provides a natural fit to the current data. In this scenario, the fraction of dense planets decreases with increasing mass, from f_r...

  3. XUV-driven mass loss from extrasolar giant planets orbiting active stars

    Science.gov (United States)

    Chadney, J. M.; Galand, M.; Unruh, Y. C.; Koskinen, T. T.; Sanz-Forcada, J.

    2015-04-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars - ɛ Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star's X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale the EUV regions of the solar spectrum based upon stellar X-ray emission. This new method produces an outcome in terms of the planet's neutral upper atmosphere very similar to that obtained using a detailed coronal model of the host star. Our results indicate that in planets subjected to radiation from active stars, the transition from Jeans escape to a regime of hydrodynamic escape at the top of the atmosphere occurs at larger orbital distances than for planets around low activity stars (such as the Sun).

  4. MASSIVE: A Bayesian analysis of giant planet populations around low-mass stars

    Science.gov (United States)

    Lannier, J.; Delorme, P.; Lagrange, A. M.; Borgniet, S.; Rameau, J.; Schlieder, J. E.; Gagné, J.; Bonavita, M. A.; Malo, L.; Chauvin, G.; Bonnefoy, M.; Girard, J. H.

    2016-12-01

    Context. Direct imaging has led to the discovery of several giant planet and brown dwarf companions. These imaged companions populate a mass, separation and age domain (mass >1 MJup, orbits > 5 AU, age planetary formation models. Methods: We observed 58 young and nearby M-type dwarfs in L'-band with the VLT/NaCo instrument and used angular differential imaging algorithms to optimize the sensitivity to planetary-mass companions and to derive the best detection limits. We estimate the probability of detecting a planet as a function of its mass and physical separation around each target. We conduct a Bayesian analysis to determine the frequency of substellar companions orbiting low-mass stars, using a homogenous sub-sample of 54 stars. Results: We derive a frequency of for companions with masses in the range of 2-80 MJup, and % for planetary mass companions (2-14 MJup), at physical separations of 8 to 400 AU for both cases. Comparing our results with a previous survey targeting more massive stars, we find evidence that substellar companions more massive than 1 MJup with a low mass ratio Q with respect to their host star (Q 2 MJup might be independent from the mass of the host star.

  5. Interactive Mapping of the Planets: An Online Activity Using the Google Earth Platform

    Science.gov (United States)

    Osinski, G. R.; Gilbert, A.; Harrison, T. N.; Mader, M. M.; Shankar, B.; Tornabene, L. L.

    2013-12-01

    With funding from the Natural Sciences and Engineering Research Council of Canada's PromoScience program and support from the Department of Earth Sciences at The University of Western Ontario, the Centre for Planetary Science and Exploration (CPSX) has developed a new web-based initiative called Interactive Mapping of the Planets (IMAPS). Additional components include in person school visits to deliver inquiry-based workshops, week-long summer camps, and pre-prepared impact rock lending kits, all framed around the IMAPS activity. IMAPS will is now in beta testing mode and will be demonstrated in this session. The general objective of the online activity is for participants to plan and design a rover mission to Mars based on a given mission goal - e.g., to find evidence for past water flow. The activity begins with participants receiving image-analysis training to learn about the different landforms on Mars and which ones are potentially caused by water flow. They then need to pass a short test to show they can consistently identify Martian landforms. From there, the participants choose a landing site and plan a traverse - utilizing the free Google Earth plug-in - and taking into account factors such as hazards and their sites of interest. A mission control blog will provide updates on the status of their mission and a 'choose your rover' option provides the opportunity to unlock more advanced rovers by collaborating with other scientists and rating their missions. Indeed, evaluation of missions will be done using a crowd-sourcing method. In addition to being fully accessible online, CPSX will also target primary- and secondary-school grades in which astronomy and space science is taught. Teachers in K-12 classrooms will be able to sign-up for the activity ahead of time in order to receive a workshop package, which will guide them on how to use the IMAPS online activity with their class. Teachers will be able to set up groups for their classroom so that they can

  6. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    Science.gov (United States)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  7. Mars - an escaping planet?

    CERN Document Server

    Dvorak, R

    2005-01-01

    The chaotic behaviour of the motion of the planets in our Solar System is well established. Numerical experiments with a modified Solar System consisting of a more massive Earth have shown, that for special values of an enlargement factor K around 5 the dynamical state of a truncated planetary system (excluding Mercury and the outer planets Uranus and Neptune) is highly chaotic. On the contrary for values of the mass of the Earth up to the mass of Saturn no irregular dynamical behaviour was observed. We extended our investigations to the complete planetary system and showed, that this chaotic window found before still exists. Tests in different 'Solar Systems' showed that only including Jupiter and Saturn with their actual masses together with a 'massive' Earth (between 4 and 6 times more massive) destabilize the orbit of Mars so that even escapes from the system are possible.

  8. "Urban Fossils": a project enabling reflections concerning human impact on planet Earth.

    Science.gov (United States)

    Lozar, Francesca; Delfino, Massimo; Magagna, Alessandra; Ferrero, Elena; Cirilli, Francesca; Bernardi, Massimo; Giardino, Marco

    2016-04-01

    -Piemonte and the Regional Museum of Natural History of Torino; starting from autumn 2015, it is hosted by several Italian museums of Natural History. Since many of the "urban fossils" are ephemeral and doomed to destruction at "catastrophic" events (eg. maintenance of roads and sidewalks), a virtual collection (www.progeopiemonte.it) will preserve in time their photographs, allowing and promoting continue discussion on aspects of paleontology generally neglected outside the academia, such as ichnology and taphonomy, and on the traces that we, humans, will leave on planet Earth and will ultimately be buried in the Anthropocene rocks. "Urban Fossils" is therefore an ongoing project, with a great interdisciplinary value, that represents an opportunity for both geoscientists and society to become more conscious of their role and responsibility in everyday life activities.

  9. Planets around Low-mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    Science.gov (United States)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (gsim1 M Jup) around 122 newly identified nearby (lsim40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M ⊙) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M Jup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M Jup; L0+2-1; 120 ± 20 AU), GJ 3629 B (64+30-23 M Jup; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M Jup; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M Jup; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M Jup planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M Jup range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M Jup) companions to single M dwarfs between 10-100 AU is 2.8+2.4-1.5%. Altogether we find that giant planets, especially massive ones, are rare

  10. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Tamura, Motohide, E-mail: bpbowler@caltech.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions

  11. On the effects of the evolution of microbial mats and land plants on the Earth as a planet. Photometric and spectroscopic light curves of paleo-Earths

    CERN Document Server

    Sanromá, E; García-Muñoz, A

    2013-01-01

    Understanding the spectral and photometric variability of the Earth and the rest of the Solar System planets has become of the utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non- uniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most probably the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of the Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produce detectabl...

  12. On the protection of extrasolar Earth-like planets around K/M stars against galactic cosmic rays

    CERN Document Server

    Grießmeier, J M; Grenfell, J L; Lammer, H; Motschmann, U; 10.1016/j.icarus.2008.09.015

    2009-01-01

    Previous studies have shown that extrasolar Earth-like planets in close-in habitable zones around M-stars are weakly protected against galactic cosmic rays (GCRs), leading to a strongly increased particle flux to the top of the planetary atmosphere. Two main effects were held responsible for the weak shielding of such an exoplanet: (a) For a close-in planet, the planetary magnetic moment is strongly reduced by tidal locking. Therefore, such a close-in extrasolar planet is not protected by an extended magnetosphere. (b) The small orbital distance of the planet exposes it to a much denser stellar wind than that prevailing at larger orbital distances. This dense stellar wind leads to additional compression of the magnetosphere, which can further reduce the shielding efficiency against GCRs. In this work, we analyse and compare the effect of (a) and (b), showing that the stellar wind variation with orbital distance has little influence on the cosmic ray shielding. Instead, the weak shielding of M star planets can...

  13. Estimates of the Planet Yield from Ground-Based High-Contrast Imaging Observations as a Function of Stellar Mass

    CERN Document Server

    Crepp, Justin R

    2011-01-01

    We use Monte Carlo simulations to estimate the number of extrasolar planets that are directly detectable in the solar-neighborhood using current and forthcoming high-contrast imaging instruments. Our calculations take into account the important factors that govern the likelihood for imaging a planet, including the statistical properties of nearby stars, correlations between star and planet properties, observational effects, and selection criteria. We consider several different ground-based surveys and express the resulting yields as a function of stellar mass. Selecting targets based on their youth and visual brightness, we find that strong correlations between star mass and planet properties are required to reproduce high-contrast imaging results to date. Using the most recent empirical findings for the occurrence rate of planets from RV surveys, our simulations indicate that extrapolation of the Doppler planet population to separations accessible to high-contrast instruments provides excellent agreement bet...

  14. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    Science.gov (United States)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  15. Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance

    Science.gov (United States)

    André, Mats

    2015-12-01

    This is a review of the mass balance of planet Earth, intended also for scientists not usually working with space physics or geophysics. The discussion includes both outflow of ions and neutrals from the ionosphere and upper atmosphere, and the inflow of meteoroids and larger objects. The focus is on ions with energies less than tens of eV originating from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We have invented a technique to observe low-energy ions based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the ion density and the outward flux in large volumes in the magnetosphere. The global outflow is of the order of 1026 ions s-1. This is a significant fraction of the total number outflow of particles from Earth, and changes plasma processes in near-Earth space. We compare order of magnitude estimates of the mass outflow and inflow for planet Earth and find that they are similar, at around 1 kg s-1 (30 000 ton yr-1). We briefly discuss atmospheric and ionospheric outflow from other planets and the connection to evolution of extraterrestrial life.

  16. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    Science.gov (United States)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  17. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  18. Swansong Biospheres: The biosignatures of inhabited earth-like planets nearing the end of their habitable lifetimes

    Science.gov (United States)

    O'Malley-James, Jack T.; Greaves, Jane S.; Raven, John A.; Cockell, Charles S.

    2014-01-01

    The biosignatures of life on Earth are not fixed, but change with time as environmental conditions change and life living within those environments adapts to the new conditions. A latitude-based climate model, incorporating orbital parameter variations, was used to simulate conditions on the far-future Earth as the Sun enters the late main sequence. Over time, conditions increasingly favour a unicellular microbial biosphere, which can persist for a maximum of 2.8 Gyr from present. The biosignature changes associated with the likely biosphere changes are evaluated using a biosphere-atmosphere gas exchange model and their detectability is discussed. As future Earth-like exoplanet discoveries could be habitable planets nearing the end of their habitable lifetimes, this helps inform the search for the signatures of life beyond Earth

  19. The Earth as an extrasolar planet: The vegetation spectral signature today and during the last Quaternary climatic extrema

    CERN Document Server

    Arnold, Luc; Brewer, Simon

    2009-01-01

    The so-called Vegetation Red-Edge (VRE), a sharp increase in the reflectance around $700 nm$, is a characteristic of vegetation spectra, and can therefore be used as a biomarker if it can be detected in an unresolved extrasolar Earth-like planet integrated reflectance spectrum. Here we investigate the potential for detection of ve