Sample records for earth fault experiments

  1. Full Scale Earth Fault Experiments on 10 kV laboratory network with comparative Measurements on Conventional CT's and VT's

    DEFF Research Database (Denmark)

    Sørensen, Stefan; Nielsen, Hans Ove; Bak-Jensen, Birgitte


    In this paper we present a result of a full scale earth fault carried out on the 10 kV research/laboratory distribution network at Kyndbyvaerket Denmark in May 2001. The network is compensated through a Petersen-Coil and current and voltage measurements were measured on conventional current...

  2. How Faults Shape the Earth. (United States)

    Bykerk-Kauffman, Ann


    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  3. Update: San Andreas Fault experiment (United States)

    Christodoulidis, D. C.; Smith, D. E.


    Satellite laser ranging techniques are used to monitor the broad motion of the tectonic plates comprising the San Andreas Fault System. The San Andreas Fault Experiment, (SAFE), has progressed through the upgrades made to laser system hardware and an improvement in the modeling capabilities of the spaceborne laser targets. Of special note is the launch of the Laser Geodynamic Satellite, LAGEOS spacecraft, NASA's only completely dedicated laser satellite in 1976. The results of plate motion projected into this 896 km measured line over the past eleven years are summarized and intercompared.

  4. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments. (United States)

    Kilgore, Brian D


    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  5. LHC Accelerator Fault Tracker - First Experience

    CERN Document Server

    Apollonio, Andrea; Roderick, Chris; Schmidt, Ruediger; Todd, Benjamin; Wollmann, Daniel


    Availability is one of the key performance indicators of LHC operation, being directly correlated with integrated luminosity production. An effective tool for availability tracking is a necessity to ensure a coherent capture of fault information and relevant dependencies on operational modes and beam parameters. At the beginning of LHC Run 2 in 2015, the Accelerator Fault Tracking (AFT) tool was deployed at CERN to track faults or events affecting LHC operation. Information derived from the AFT is crucial for the identification of areas to improve LHC availability, and hence LHC physics production. For the 2015 run, the AFT has been used by members of the CERN Availability Working Group, LHC Machine coordinators and equipment owners to identify the main contributors to downtime and to understand the evolution of LHC availability throughout the year. In this paper the 2015 experience with the AFT for availability tracking is summarised and an overview of the first results as well as an outlook to future develo...

  6. A simulation of the San Andreas fault experiment (United States)

    Agreen, R. W.; Smith, D. E.


    The San Andreas fault experiment (Safe), which employs two laser tracking systems for measuring the relative motion of two points on opposite sides of the fault, has been simulated for an 8-yr observation period. The two tracking stations are located near San Diego on the western side of the fault and near Quincy on the eastern side; they are roughly 900 km apart. Both will simultaneously track laser reflector equipped satellites as they pass near the stations. Tracking of the Beacon Explorer C spacecraft has been simulated for these two stations during August and September for 8 consecutive years. An error analysis of the recovery of the relative location of Quincy from the data has been made, allowing for model errors in the mass of the earth, the gravity field, solar radiation pressure, atmospheric drag, errors in the position of the San Diego site, and biases and noise in the laser systems. The results of this simulation indicate that the distance of Quincy from San Diego will be determined each year with a precision of about 10 cm. Projected improvements in these model parameters and in the laser systems over the next few years will bring the precision to about 1-2 cm by 1980.

  7. Fault-tolerant Control of Unmanned Underwater Vehicles with Continuous Faults: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Qian Liu


    Full Text Available A novel thruster fault diagnosis and accommodation method for open-frame underwater vehicles is presented in the paper. The proposed system consists of two units: a fault diagnosis unit and a fault accommodation unit. In the fault diagnosis unit an ICMAC (Improved Credit Assignment Cerebellar Model Articulation Controllers neural network information fusion model is used to realize the fault identification of the thruster. The fault accommodation unit is based on direct calculations of moment and the result of fault identification is used to find the solution of the control allocation problem. The approach resolves the continuous faulty identification of the UV. Results from the experiment are provided to illustrate the performance of the proposed method in uncertain continuous faulty situation.

  8. Characteristics of earth faults in power systems with a compensated or an unearthed neutral

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, S.; Lehtonen, M. [VTT Energy, Espoo (Finland); Antila, E. [ABB Transmit Oy (Finland); Stroem, J. [Espoo Electricity Co (Finland); Ingman, S. [Vaasa Electricity Co (Finland)


    The most common fault type in the electrical distribution networks is the single phase to earth fault. For instance in the Nordic countries, about 80 % of all faults are of this type. To develop the protection and fault location systems, it is important to obtain real case data of disturbances and faults which occurred in the networks. Therefore, data of fault occurrences have been recorded and analyzed in the medium voltage distribution networks (20 kV) at two substations, of which one has an isolated and the other a compensated neutral. In the occurring disturbances, the traces of phase currents and neutral currents in the beginning of two feeder and the traces of phase voltages and neutral voltage from the voltage measuring bay were recorded. In addition to the measured data, other information of the fault occurrences was also collected (data of the line, cause and location of permanent faults and so on)

  9. The effect of earth fault protection practices on the frequency of outages in MV lines

    Energy Technology Data Exchange (ETDEWEB)

    Nikander, A.; Lakervi, E. [Tampere Univ. of Technology (Finland)


    In this presentation methods to improve extinction of the earth fault arc in the medium voltage network and reducing the short interruptions to customers are discussed. Earth fault distance estimation with permanent faults and determination of the key parameters of the compensated system are also studied. The three essential targets of this study are the following: An economic principle to improve fault arc extinction without a reclosing function is introduced. This novel compensation and protection practice is tested in one rural distribution network The selective functioning of the active current based earth fault protection was ensured by simulations and field tests. The influence of the star point impedance to the number of short interruptions is discussed. The determination of the key parameters of a compensated distribution system by utilizing the simulated and measured data is introduced. The earth fault distance estimation by rearranging the affected feeder into a closed ring over an adjacent feeder, is studied. This method was also tested in one rural distribution network. In the latter part of the chapter different methods to improve extinction of the earth fault arc in the medium voltage network and reducing the short interruptions to customers are discussed. The disadvantages of the rapid autoreclosing functions to customers are studied. Then the influence of star point impedance on the number of short interruptions is discussed. Finally, the feasibility of utilizing shunt circuit-breakers in the Finnish MV networks to extinguish the arc, is studied

  10. Study on Track to Earth Insulation Defect Fault Location Method in Urban Mass Transit


    LIAO Hong-mei; WU Yu-ling; ZHANG Dong-liang; LI Guo-xin


    With the urban mass transit operating, due to the impact of natural and human factors, track to earth insulation defect will occur. Keeping track to earth resistance is an effective method of preventing stray current. When track to earth insulation defect occurs, the track to earth potential of the point will be nearly changed to zero.  We present the track to earth insulation defect fault location method based on the feature. And the method was simulated and analyzed, the results show the fa...

  11. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults (United States)

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.


    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  12. Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust?

    International Nuclear Information System (INIS)

    Kattenhorn, Simon A.; Pollard, David D.


    Normal faults growing in the Earth's crust are subject to the effects of an increasing frictional resistance to slip caused by the increasing lithostatic load with depth. We use three-dimensional (3-D) boundary element method numerical models to evaluate these effects on planar normal faults with variable elliptical tip line shapes in an elastic solid. As a result of increasing friction with depth, normal fault slip maxima for a single slip event are skewed away from the fault center toward the upper fault tip. There is a correspondingly greater propagation tendency at the upper tip. However, the tall faults that would result from such a propagation tendency are generally not observed in nature. We show how mechanical interaction between laterally stepping fault segments significantly competes with the lithostatic loading effect in the evolution of a normal fault system, promoting lateral propagation and possibly segment linkage. Resultant composite faults are wider than they are tall, resembling both 3-D seismic data interpretations and previously documented characteristics of normal fault systems. However, this effect may be greatly complemented by the influence of a heterogeneous stratigraphy, which can control fault nucleation depth and inhibit fault propagation across the mechanical layering. Our models demonstrate that although lithostatic loading may be an important control on fault evolution in relatively homogeneous rocks, the contribution of lithologic influences and mechanical interaction between closely spaced, laterally stepping faults may predominate in determining the slip behavior and propagation tendency of normal faults in the Earth's crust. (c) 1999 American Geophysical Union

  13. Subband Coding, Wavelet Packet and Prony Analysis of Simulated and Measured Earth Faults on Compensated 10 kV Power Distribution Network

    DEFF Research Database (Denmark)

    Sørensen, Stefan; Nielsen, Hans Ove


    This paper deals with the subband coding (wavelet multiresolution analysis) and Wavelet packet signal processing tool on corrected PSCAD/EMTD® simulations and some results of a full scale earth fault experiment carried out on the Petersen-Coil compensated 10 kV research/laboratory distribution...

  14. The San Andreas fault experiment. [gross tectonic plates relative velocity (United States)

    Smith, D. E.; Vonbun, F. O.


    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  15. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System (United States)

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven


    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  16. A method for detection and location of high resistance earth faults

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, S.; Lehtonen, M. [VTT Energy, Espoo (Finland); Antila, E. [ABB Transmit Oy (Finland)


    In the first part of this presentation, the theory of earth faults in unearthed and compensated power systems is briefly presented. The main factors affecting the high resistance fault detection are outlined and common practices for earth fault protection in present systems are summarized. The algorithms of the new method for high resistance fault detection and location are then presented. These are based on the change of neutral voltage and zero sequence currents, measured at the high voltage / medium voltage substation and also at the distribution line locations. The performance of the method is analyzed, and the possible error sources discussed. Among these are, for instance, switching actions, thunder storms and heavy snow fall. The feasibility of the method is then verified by an analysis based both on simulated data, which was derived using an EMTP-ATP simulator, and by real system data recorded during field tests at three substations. For the error source analysis, some real case data recorded during natural power system events, is also used

  17. Response of faults to climate-driven changes in ice and water volumes on Earth's surface. (United States)

    Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios


    Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.

  18. The Earth isn't flat: The (large) influence of topography on geodetic fault slip imaging. (United States)

    Thompson, T. B.; Meade, B. J.


    While earthquakes both occur near and generate steep topography, most geodetic slip inversions assume that the Earth's surface is flat. We have developed a new boundary element tool, Tectosaur, with the capability to study fault and earthquake problems including complex fault system geometries, topography, material property contrasts, and millions of elements. Using Tectosaur, we study the model error induced by neglecting topography in both idealized synthetic fault models and for the cases of the MW=7.3 Landers and MW=8.0 Wenchuan earthquakes. Near the steepest topography, we find the use of flat Earth dislocation models may induce errors of more than 100% in the inferred slip magnitude and rake. In particular, neglecting topographic effects leads to an inferred shallow slip deficit. Thus, we propose that the shallow slip deficit observed in several earthquakes may be an artefact resulting from the systematic use of elastic dislocation models assuming a flat Earth. Finally, using this study as an example, we emphasize the dangerous potential for forward model errors to be amplified by an order of magnitude in inverse problems.

  19. Impact of Apparent Reactance Injected by TCSR on Distance Relay in Presence Phase to Earth Fault

    Directory of Open Access Journals (Sweden)

    Mohamed Zellagui


    Full Text Available This research paper presents the impact study of apparent reactance injected by series Flexible AC Transmission System (FACTS i.e. Thyristor Controlled Series Reactor (TCSR on the measured impedance of a 400 kV single electrical transmission line in the presence of phase to earth fault with fault resistance. The study deals with an electrical transmission line of Eastern Algerian transmission networks at Group Sonelgaz (Algerian Company of Electrical compensated by TCSR connected at midpoint of the transmission line. This compensator used to inject voltage and reactive power is controlled by TCSR. The simulations results investigate the three impacts of the apparent reactance injected by TCSR (XTCSR on transmission line protected by distance relay protection. The impacts concern the active and reactive power, the line impedance (reactance and resistance, and the short circuit parameters (symmetrical currents, line currents, symmetrical voltages and line voltages as well as the measured impedance by relay (resistance and reactance in the presence of earth fault These impacts are investigated in order to improve the performances of distance relay protection. More the impact of XTCSR by three TCSR for cases studies is presented.

  20. Resurvey of site stability quadrilaterals, Otay Mountain and Quincy, California. [San Andreas fault experiment (United States)

    Scholz, C. H.


    Trilateration quadrilaterals established across two faults near the San Andreas Fault Experiment laser/satellite ranging sites were resurveyed after four years. No evidence of significant tectonic motion was found.

  1. Earth Observations: Experiences from Various Communication Strategies (United States)

    Lilja Bye, Bente


    With Earth observations and the Group of Earth Observations as the common thread, a variety of communication strategies have been applied showcasing the use of Earth observations in geosciences such as climate change, natural hazards, hydrology and more. Based on the experiences from these communication strategies, using communication channels ranging from popular articles in established media, video production, event-based material and social media, lessons have been learned both with respect to the need of capacity, skills, networks, and resources. In general it is not difficult to mobilize geoscientists willing to spend some time on outreach activities. Time for preparing and training is however scarce among scientists. In addition, resources to cover the various aspects of professional science outreach is far from abundant. Among the challenges is the connection between the scientific networks and media channels. Social media competence and capacity are also issues that needs to be addressed more explicitly and efficiently. An overview of the experiences from several types of outreach activities will be given along with some input on possible steps towards improved communication strategies. Steady development of science communication strategies continuously integrating trainging of scientists in use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community.

  2. Transformation of fault slip modes in laboratory experiments (United States)

    Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim


    Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random

  3. Virtual synchrotron experiments for deep Earth studies (United States)

    Jackson, J. M.; Alp, E. E.; Zhao, J.; Alatas, A.; Sturhahn, W.


    National facilities offer one-of-a-kind opportunities to apply state-of-the-art experimental techniques to the pressing scientific problems of today. Yet, few students are able to experience research projects at national facilities due to limited accessibility caused in part by limited involvement in the local academic institution, constrained working areas at the experimental stations, and/or travel costs. We present a virtual and remote beam-line for deep Earth mineral physics studies using nuclear resonant and inelastic x-ray scattering methods at Sector 3 of the Advanced Photon Source at Argonne National Laboratory. Off-site students have the capability of controlling their measurements via secure internet connections and webcams. Students can access a 'view only mode' for ease of interaction and safety-control. More experienced users have exclusive control of the experiment and can remotely change variables within the experimental setup.

  4. Experience in PSA fault tree modularization at the ASCO NPP

    International Nuclear Information System (INIS)

    Nos Llorens, V.; Frances Urmeneta, M.; Fraig Sureda, J.


    Probabilistic Safety Analysis (PSA) is a basic tool in decision-making for the optimization of back fittings, procedures and maintenance practices. ASCO NPP PSA was developed with a high level of detail in the models. This required considerable computer resources (long running time) to carry out the quantification. The quantification time had therefore to be flexible to allow continuous evaluation of the impact on the estimation and reduction of risk in the plant, and also to facilitate post-PSA applications. The most suitable way of achieving this flexibility was by compacting and reducing the detailed fault trees of the project by means of a modularization process. The purpose of the paper is to present the practical experience acquired with modularization carried out in the UTE UNITEC-INYPSA-EMPRESARIOS AGRUPADOS framework and the method applied, the support computer programs devised and their degree of effectiveness. (Author)

  5. Viscoelastic-gravitational deformation by a rectangular thrust fault in a layered earth

    International Nuclear Information System (INIS)

    Rundle, J.B.


    Previous papers in this series have been concerned with developing the numerical techniques required for the evaluation of vertical displacements which are the result of thrust faulting in a layered, elastic-gravitational earth model. This paper extends these methods to the calculation of fully time-dependent vertical surface deformation from a rectangular, dipping thrust fault in an elastic-gravitational layer over a viscoelastic-gravitational half space. The elastic-gravitational solutions are used together with the correspondence principle of linear viscoelasticity to give the solution in the Laplace transform domain. The technique used here to invert the displacements into the time domain is the Prony series technique, wherein the transformed solution is fit to the transformed representation of a truncated series of decaying exponentials. Purely viscoelastic results obtained are checked against results found previously using a different inverse transform method, and agreement is excellent. A series of results are obtained for a rectangular, 30 0 dipping thrust fault in an elastic-gravitational layer over viscoelastic-gravitational half space. Time-dependent displacements are calculated out to 50 half space relaxation times tau/sub a/, or 100 Maxwell times 2tau/sub m/ = tau/sub a/. Significant effects due to gravity are shown to exist in the solutions as early as several tau/sub a/. The difference between the purely viscoelastic solution and the viscoelastic-gravitational solutions grows as time progresses. Typically, the solutions with gravity reach an equilibrium value after 10--20 relaxation times, when the purely viscoelastic solutions are still changing significantly. Additionally, the length scaling which was apparent in the purely viscoelastic problem breaks down in the viscoelastic-gravitational problem

  6. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.


    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  7. Thermal Field Indicator for Identifying Active Faults and its Instability From Laboratory Experiments (United States)

    Ma, J.; Liu, L.; Liu, P.; Ma, S.


    The relationship between the thermal filed and strain field during deformation of faults is the physical basis to clarify whether satellite infrared information and the ground temperature field can be used to study fault activity. This study attempts to discuss these problems by experiments in the laboratory. The two-direction servo-control system was used to load on the samples with compressional and extensional en echelon faults. An infrared thermal image system and a contact-type thermometer recorded synchronously variations of the bright temperature field of infrared radiation and temperature field during deformation of the rock specimens. A digital CCD camera and a soft ware based on the digital speckle correlation method (DSCM) was utilized to capture images and to analyze them, yielding processes of displacement and strain fields. The experimental result shows as follows: 1 The temperature is highest at the jog area of the compressional en echelon faults, whereas that is lowest at the extensional en echelon faults prior to failure of the jog area. The record by DSCM displays that the mean strain of the jog area is largest for the compressional en echelon faults, while that is smallest for the extensional en echelon faults. These mean that the temperature field has clear responses to the opposite stress states at the jog areas of two kinds of en echelon faults, providing an indicator for determining whether the fault segment has slid. 2 The en echelon faults experience two deformation stages from stress building up and fault propagating at the jog area to unstable sliding along the fault. Correspondingly the mechanism of heating-up is turned from strain heating into frictional heating. Three kinds of phenomena have been observed at the jog area and its vicinity during the stage of transformation. They are temperature drop, fast fluctuation of temperature, and pulses of temperature rising, respectively. Mechanism of these phenomena is discussed. 3 These

  8. Automated Fault Detection for DIII-D Tokamak Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.L.; Scoville, J.T.; Johnson, R.D.; Hyatt, A.W.; Lee, J.


    An automated fault detection software system has been developed and was used during 1999 DIII-D plasma operations. The Fault Identification and Communication System (FICS) executes automatically after every plasma discharge to check dozens of subsystems for proper operation and communicates the test results to the tokamak operator. This system is now used routinely during DIII-D operations and has led to an increase in tokamak productivity.

  9. Work Optimization Predicts Accretionary Faulting: An Integration of Physical and Numerical Experiments (United States)

    McBeck, Jessica A.; Cooke, Michele L.; Herbert, Justin W.; Maillot, Bertrand; Souloumiac, Pauline


    We employ work optimization to predict the geometry of frontal thrusts at two stages of an evolving physical accretion experiment. Faults that produce the largest gains in efficiency, or change in external work per new fault area, ΔWext/ΔA, are considered most likely to develop. The predicted thrust geometry matches within 1 mm of the observed position and within a few degrees of the observed fault dip, for both the first forethrust and backthrust when the observed forethrust is active. The positions of the second backthrust and forethrust that produce >90% of the maximum ΔWext/ΔA also overlap the observed thrusts. The work optimal fault dips are within a few degrees of the fault dips that maximize the average Coulomb stress. Slip gradients along the detachment produce local elevated shear stresses and high strain energy density regions that promote thrust initiation near the detachment. The mechanical efficiency (Wext) of the system decreases at each of the two simulated stages of faulting and resembles the evolution of experimental force. The higher ΔWext/ΔA due to the development of the first pair relative to the second pair indicates that the development of new thrusts may lead to diminishing efficiency gains as the wedge evolves. The numerical estimates of work consumed by fault propagation overlap the range calculated from experimental force data and crustal faults. The integration of numerical and physical experiments provides a powerful approach that demonstrates the utility of work optimization to predict the development of faults.

  10. The Earth Radiation Budget (ERB) experiment (United States)

    Jacobowitz, H.; Stowe, L. L.; Hickey, J. R.


    The radiation budget of the earth on both synoptic and planetary scales by simultaneous measurement of incoming solar radiation and outgoing earth reflected (shortwave) and emitted (longwave) radiation was determined. Both fixed wide angle sampling of terrestrial fluxes at the satellite altitude, and scanned narrow-angle sampling of the radiance components, dependent on angle are used to determine outgoing radiation. Measurements of radiation are obtained in 22 different optical channels.

  11. From experiment to design -- Fault characterization and detection in parallel computer systems using computational accelerators (United States)

    Yim, Keun Soo

    This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of

  12. Application of higher harmonics in protection against single-phase earth faults in resonant grounded cable networks of medium voltage


    Vinokurova, T. Yu.; Dobryagina, O. A.; Shagurina, E. S.; Shuin, V. A.


    Protections based by higher harmonics absolute measurements the zero sequence currents of the protected object connections against single-phase earth faults in resonant grounded cable networks of medium voltage industrial and urban energy supply systems have been widely applied in Russia since the late 60s of the 20th century. However, some operational problems connected with sufficient selectivity and sensitivity of these protection devices appeared with time. Sensitivity and selectivity of ...

  13. Clouds and the Earth's Radiant Energy System (CERES) experiment (United States)

    Cooper, John E.; Barkstrom, Bruce R.; Kopia, Leonard P.


    The Clouds and the Earth's Radiant Energy System (CERES) experiment will play a major role in NASA's planned multi-instrument multi-satellite Earth Observing System (EOS) program to observe and study the total Earth System on a global scale. The CERES experiment will provide EOS with a consistent data base of accurately known fields of radiation and of clouds; and will investigate the important question of the impact of clouds upon the radiative energy flow through the earth-atmosphere system. The CERES instruments will be an improved version of the Earth Radiation Budget Experiment (ERBE) broadband scanning radiometer instruments flown by NASA in the 1980s. This paper describes the CERES experiment approach and the current CERES instrument design status.

  14. Invention and Application of Synthetic Experiment System of Machine Equipment Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU


    Full Text Available All kinds of faults were engendered during machine equipment working process. Diagnosing them accurately has important significance in actual production. The invention and manufacturing of the synthetic experiment system of machine equipment fault diagnosis filled in the blank of this kind of experiment equipment in China and obtained national practical new type patent. By the motor speed regulation system, machine equipment fault imitation system, measuring and monitoring system and analysis and diagnosis system of the synthetic experiment system, students can regulate motor speed arbitrarily, imitate multi-kinds of machine equipment parts fault, collect the signals of acceleration, speed, displacement, force and temperature and make multi-kinds of time field, frequency field and figure analysis. The application of the synthetic experiment system in our university’s teaching practice has obtained good effect on fostering professional eligibility in measuring, monitoring and fault diagnosis of machine equipment. If the systematic software was installed in portable computer, user can fulfill measuring, monitoring, signal processing and fault diagnosis on multi- kinds of field machine equipment conveniently. In this paper, the three dimensions waterfall spectrum matrix analysis was made on two compact mesh gears. Energy attenuation analysis was made on vibration signal. Wavelet analysis was made on bearing fault.

  15. Experiences of pathways, outcomes and choice after severe traumatic brain injury under no-fault versus fault-based motor accident insurance. (United States)

    Harrington, Rosamund; Foster, Michele; Fleming, Jennifer


    To explore experiences of pathways, outcomes and choice after motor vehicle accident (MVA) acquired severe traumatic brain injury (sTBI) under fault-based vs no-fault motor accident insurance (MAI). In-depth qualitative interviews with 10 adults with sTBI and 17 family members examined experiences of pathways, outcomes and choice and how these were shaped by both compensable status and interactions with service providers and service funders under a no-fault and a fault-based MAI scheme. Participants were sampled to provide variation in compensable status, injury severity, time post-injury and metropolitan vs regional residency. Interviews were recorded, transcribed and thematically analysed to identify dominant themes under each scheme. Dominant themes emerging under the no-fault scheme included: (a) rehabilitation-focused pathways; (b) a sense of security; and (c) bounded choices. Dominant themes under the fault-based scheme included: (a) resource-rationed pathways; (b) pressured lives; and (c) unknown choices. Participants under the no-fault scheme experienced superior access to specialist rehabilitation services, greater surety of support and more choice over how rehabilitation and life-time care needs were met. This study provides valuable insights into individual experiences under fault-based vs no-fault MAI. Implications for an injury insurance scheme design to optimize pathways, outcomes and choice after sTBI are discussed.

  16. Characterization of earthquake fault by borehole experiments; Koseinai sokutei ni yoru jishin danso no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Miyazaki, T.; Nishizawa, O.; Kuwahara, Y.; Kiguchi, T. [Geological Survey of Japan, Tsukuba (Japan)


    A borehole was excavated to penetrate the Nojima fault at the Hirabayashi area, to investigate the underground structures of the fault by observation of the cores and well logging. The borehole was excavated from 74.6m east of the fault surface. Soil is of granodiorite from the surface, and fault clay at a depth in a range from 624.1 to 625.1m. Observation of the cores, collected almost continuously, indicates that the fault fracture zone expands in a depth range from 557 to 713.05m. The well logging experiments are natural potential, resistivity, density, gamma ray, neutron, borehole diameter, microresistivity and temperature. They are also for DSI- and FMI-observation, after expansion of the borehole. The well logging results indicate that resistivity, density and elastic wave velocity decrease as distance from fault clay increases, which well corresponds to the soil conditions. The BHTV and FMI analyses clearly detect the fault clay demarcations, and show that elastic wave velocity and BHTV results differ at above and below the fault. 3 refs., 3 figs.

  17. Characterizations of the Earth Radiation Budget Experiment (ERBE) scanning radiometers (United States)

    Lee, Robert B., III; Barkstrom, Bruce R.; Avis, Lee M.; Halyo, Nesim; Gibson, Michael A.


    NASA's Earth Radiation Budget Experiment employs the Earth Radiation Budget Satellite and the NOAA 9 and 10 spacecraft to obtain absolute measurements of incoming solar radiation, shortwave earth-reflected solar radiation, and longwave earth-emitted radiation, using both scanning and nonscanning radiometers. Each of the three remote-sensing spacecraft carry narrow FOV scanning radiometers whose detection sensors are thermistor bolometers. Attention is presently given to the calibration models and methods employed in characterizing the scanning radiometers' output signals; the design features of the scanners and flight calibration systems are presented.

  18. The Earth is flat when personally significant experiences with the sphericity of the Earth are absent. (United States)

    Carbon, Claus-Christian


    Participants with personal and without personal experiences with the Earth as a sphere estimated large-scale distances between six cities located on different continents. Cognitive distances were submitted to a specific multidimensional scaling algorithm in the 3D Euclidean space with the constraint that all cities had to lie on the same sphere. A simulation was run that calculated respective 3D configurations of the city positions for a wide range of radii of the proposed sphere. People who had personally experienced the Earth as a sphere, at least once in their lifetime, showed a clear optimal solution of the multidimensional scaling (MDS) routine with a mean radius deviating only 8% from the actual radius of the Earth. In contrast, the calculated configurations for people without any personal experience with the Earth as a sphere were compatible with a cognitive concept of a flat Earth. 2010 Elsevier B.V. All rights reserved.

  19. Designing Fault-Injection Experiments for the Reliability of Embedded Systems (United States)

    White, Allan L.


    This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.

  20. Effects of healing on the seismogenic potential of carbonate fault rocks : Experiments on samples from the Longmenshan Fault, Sichuan, China

    NARCIS (Netherlands)

    Chen, Jianye; Verberne, Berend A.; Spiers, Christopher J.


    Fault slip and healing history may crucially affect the fault seismogenic potential in the earthquake nucleation regime. Here we report direct shear friction tests on simulated gouges derived from a carbonate fault breccia, and from a clay/carbonate fault-core gouge, retrieved from a surface

  1. Investigation of the synthetic experiment system of machine equipment fault diagnosis (United States)

    Liu, Hongyu; Xu, Zening; Yu, Xiaoguang


    The invention and manufacturing of the synthetic experiment system of machine equipment fault diagnosis filled in the blank of this kind of experiment equipment in China and obtained national practical new type patent. By the motor speed regulation system, machine equipment fault imitation system, measuring and monitoring system and analysis and diagnosis system of the synthetic experiment system, students can regulate motor speed arbitrarily, imitate multi-kinds of machine equipment parts fault, collect the signals of acceleration, speed, displacement, force and temperature and make multi-kinds of time field, frequency field and figure analysis. The application of the synthetic experiment system in our university's teaching practice has obtained good effect on fostering professional eligibility in measuring, monitoring and fault diagnosis of machine equipment. The synthetic experiment system has the advantages of short training time, quick desirable result and low test cost etc. It suits for spreading in university extraordinarily. If the systematic software was installed in portable computer, user can fulfill measuring, monitoring, signal processing and fault diagnosis on multi-kinds of field machine equipment conveniently. Its market foreground is very good.

  2. Minimizing student’s faults in determining the design of experiment through inquiry-based learning (United States)

    Nilakusmawati, D. P. E.; Susilawati, M.


    The purpose of this study were to describe the used of inquiry method in an effort to minimize student’s fault in designing an experiment and to determine the effectiveness of the implementation of the inquiry method in minimizing student’s faults in designing experiments on subjects experimental design. This type of research is action research participants, with a model of action research design. The data source were students of the fifth semester who took a subject of experimental design at Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University. Data was collected through tests, interviews, and observations. The hypothesis was tested by t-test. The result showed that the implementation of inquiry methods to minimize of students fault in designing experiments, analyzing experimental data, and interpret them in cycle 1 students can reduce fault by an average of 10.5%. While implementation in Cycle 2, students managed to reduce fault by an average of 8.78%. Based on t-test results can be concluded that the inquiry method effectively used to minimize of student’s fault in designing experiments, analyzing experimental data, and interpreting them. The nature of the teaching materials on subject of Experimental Design that demand the ability of students to think in a systematic, logical, and critical in analyzing the data and interpret the test cases makes the implementation of this inquiry become the proper method. In addition, utilization learning tool, in this case the teaching materials and the students worksheet is one of the factors that makes this inquiry method effectively minimizes of student’s fault when designing experiments.

  3. Astronaut Edward Gibson trains with Earth Resources Experiments Package (United States)


    Scientist-Astronaut Edward G. Gibson, Skylab 4 science pilot, turns on a switch on the control box of the S190B camera, one of the components of the Earth Resources Experiments Package (EREP). The single lens Earth Terrain Camera takes five-inch photographs. Behind Gibson is the stowed suits of Astronaut Gerald P. Carr, commander for the third manned mission. The exercise took place in the Orbital Workshop one-G trainer at JSC.

  4. Novel methods for earth fault management in medium voltage distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Nikander, A.; Jaerventausta, P. [Tampere Univ. of Technology (Finland)


    Customers have become less and less tolerable against even short interruptions of supply. Rapid autoreclosures are especially harmful for those commercial and private customers who have equipment which will be disturbed by these under half second interruptions. Mainly due to increasing use of distribution automation (eg. remote controlled switching devices, fault detectors, computational fault location) the average interruption period per customer has been reduced. Simultaneously the amount of equipment sensitive to short voltage break or dip has increased. Therefore reducing the number of the interruptions has become a more essential target

  5. Fault structure, stress, or pressure control of the seismicity in shale? Insights from a controlled experiment of fluid-induced fault reactivation (United States)

    De Barros, Louis; Daniel, Guillaume; Guglielmi, Yves; Rivet, Diane; Caron, Hervé; Payre, Xavier; Bergery, Guillaume; Henry, Pierre; Castilla, Raymi; Dick, Pierre; Barbieri, Ernesto; Gourlay, Maxime


    Clay formations are present in reservoirs and earthquake faults, but questions remain on their mechanical behavior, as they can vary from ductile (aseismic) to brittle (seismic). An experiment, at a scale of 10 m, aims to reactivate a natural fault by fluid pressure in shale materials. The injection area was surrounded by a dense monitoring network comprising pressure, deformation, and seismicity sensors, in a well-characterized geological setting. Thirty-two microseismic events were recorded during several injection phases in five different locations within the fault zone. Their computed magnitude ranged between -4.3 and -3.7. Their spatiotemporal distribution, compared with the measured displacement at the injection points, shows that most of the deformation induced by the injection is aseismic. Whether the seismicity is controlled by the fault architecture, mineralogy of fracture filling, fluid, and/or stress state is then discussed. The fault damage zone architecture and mineralogy are of crucial importance, as seismic slip mainly localizes on the sealed-with-calcite fractures which predominate in the fault damage zone. As no seismicity is observed in the close vicinity of the injection areas, the presence of fluid seems to prevent seismic slips. The fault core acts as an impermeable hydraulic barrier that favors fluid confinement and pressurization. Therefore, the seismic behavior seems to be strongly sensitive to the structural heterogeneity (including permeability) of the fault zone, which leads to a heterogeneous stress response to the pressurized volume.

  6. The Capacity for Compaction Weakening in Fault Gouge in Nature and Experiment (United States)

    Faulkner, D.; Boulton, C. J.; Sanchez Roa, C.; Den Hartog, S. A. M.; Bedford, J. D.


    As faults form in low permeability rocks, the compaction of fault gouge can lead to significant pore-fluid pressure increases. The pore pressure increase results from the collapse of the porosity through shear-enhanced compaction and the low hydraulic diffusivity of the gouge that inhibits fluid flow. In experiments, the frictional properties of clay-bearing fault gouges are significantly affected by the development of locally high pore-fluid pressures when compaction rates are high due to fast displacement rates or slip in underconsolidated materials. We show how the coefficient of friction of fault gouges sheared at different slip velocities can be explained with a numerical model that is constrained by laboratory measurements of contemporaneous changes in permeability and porosity. In nature, for compaction weakening to play an important role in earthquake nucleation (and rupture propagation), a mechanism is required to reset the porosity, i.e., maintain underconsolidated gouge along the fault plane. We use the observations of structures within the principal slip zone of the Alpine Fault in New Zealand to suggest that cyclic fluidization of the gouge occurs during coseismic slip, thereby resetting the gouge porosity prior to the next seismic event. Results from confined laboratory rotary shear measurements at elevated slip rates appear to support the hypothesis that fluidization leads to underconsolidation and, thus, to potential weakening by shear-enhanced compaction-induced pore-fluid pressurization.

  7. The Earth Is Flat when Personally Significant Experiences with the Sphericity of the Earth Are Absent (United States)

    Carbon, Claus-Christian


    Participants with personal and without personal experiences with the Earth as a sphere estimated large-scale distances between six cities located on different continents. Cognitive distances were submitted to a specific multidimensional scaling algorithm in the 3D Euclidean space with the constraint that all cities had to lie on the same sphere. A…

  8. Spectral evaluation of Earth geopotential models and an experiment ...

    Indian Academy of Sciences (India)

    and an experiment on its regional improvement for geoid modelling. B Erol. Department of Geomatics Engineering, Civil Engineering Faculty,. Istanbul Technical University, Maslak 34469, Istanbul, Turkey. e-mail: As the number of Earth geopotential models (EGM) grows with the increasing number of data ...

  9. Model experiments related to outdoor propagation over an earth berm

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo


    A series of scale model experiments related to outdoor propagation over an earth berm is described. The measurements are performed with a triggered spark source. The results are compared with data from an existing calculation model based upon uniform diffraction theory. Comparisons are made...

  10. Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments

    NARCIS (Netherlands)

    Niemeijer, André|info:eu-repo/dai/nl/370832132; Marone, Chris; Elsworth, Derek

    Slide-hold-slide friction experiments are reported on fault gouges of salt and salt-muscovite mixtures to investigate the effects of fluids and phyllosilicates on strength gain. Healing rates of salt gouges in the presence of saturated brine are an order of magnitude higher than dry salt and

  11. Application of and experience with the SAPs on fault analysis and PSA

    International Nuclear Information System (INIS)

    Petty, I.C.


    This paper presents some of the important experiences that NII has gained in its use of the fault analysis SAPs since their introduction in 1992. In particular it addresses the principles and techniques which lie behind the application of PSA, and emphasizes the role of ALARP. (author)

  12. Slip localization and fault weakening as a consequence of fault gouge strengthening — Insights from laboratory experiments (United States)

    Giger, Silvio B.; Cox, Stephen F.; Tenthorey, Eric


    A laboratory study of simulated quartz gouges was conducted to investigate how solution transfer processes influence the mechanical behaviour of fault wear products at high temperature, hydrothermal conditions. Experiments were performed under nominally dry conditions, as well as in the presence of an aqueous pore fluid, at elevated temperatures (500 to 927 °C), and at effective confining pressure conditions ( σ2' = σ3' = 100 MPa) to simulate, on a laboratory timescale, processes that may be important in fluid-active fault zones at depth in the continental crust. The mechanical data and microstructural analysis indicate that the kinetics of solution transfer processes can exert a fundamental control on the mechanical behaviour of fault wear products. It is found that, at nominally dry conditions, gouges deform by cataclastic creep and distributed shear, with strength and microstructures being relatively unaffected by temperature. At moderately chemically reactive, hydrothermal conditions (500-600 °C, coarse grain size, or fast deformation rate), the presence of a reactive pore fluid slightly reduces the shear strength with respect to dry conditions. However, at highly chemically reactive, hydrothermal conditions (600-927 °C, small grain size, and slow deformation rate), rapid porosity reduction is accommodated by dissolution-precipitation processes. Deformation under such conditions results in a fast increase of grain contact area and the development of cohesive bonds between adjacent particles, which in turn inhibits cataclastic granular flow. With increasing displacement and compaction of the quartz gouge, there is a sudden transition from distributed cataclastic flow, to slip localization at the interface between the gouge and one of the forcing blocks. This deformation mode switch is associated with dramatic weakening (up to 50% drop in shear resistance, and changes in the apparent coefficient of friction from > 0.7 to ≈ 0.4). Stress drop occurs over

  13. The Earth System Science Education Experience: Personal Vignettes (United States)

    Ruzek, M.; Aron, J.; Maranto, G.; Reider, D.; Wake, C.


    Colleges and universities across the country and around the world have embraced the Earth system approach to gain deeper understanding of the interrelationships of processes that define the home planet. The Design Guide for Undergraduate Earth System Science Education, a product of the NASA/USRA Earth System Science Education for the 21st Century Program (ESSE 21), represents a synthesis of community understanding of the content and process of teaching and learning about Earth as a system. The web-based Design Guide serves faculty from multiple disciplines who wish to adopt an ESS approach in their own courses or programs. Illustrating the nine topical sections of the Design Guide are a series of short vignettes telling the story of how ESS is being used in the classroom, how ESS has contributed to institutional change and personal professional development, how ESS is being implemented at minority serving institutions, and the impact of ESS education on student research. Most vignettes are written from a personal perspective and reflect a direct experience with Earth System Science Education. Over forty vignettes have been assembled aiming to put a face on the results of the systemic reform efforts of the past fifteen years of the ESSE programs, documenting the sometimes intangible process of education reform to be shared with those seeking examples of ESS education. The vignettes are a vital complement to the Design Guide sections, and are also available as a separate collection on the Design Guide and ESSE 21 web sites.

  14. Earth

    CERN Document Server

    Carter, Jason


    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  15. Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment (United States)

    Wielicki, Bruce A.; Barkstrom, Bruce R.; Harrison, Edwin F.; Lee, Robert B., III; Smith, G. Louis; Cooper, John E.


    Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities.

  16. Clouds and the Earth's Radiant Energy System (CERES) - An Earth Observing System experiment (United States)

    Wielicki, Bruce A.; Barkstrom, Bruce R.


    An overview is presented of the CERES experiment that is designed not only to monitor changes in the earth's radiant energy system and cloud systems but to provide these data with enough accuracy and simultaneity to examine the critical climate/cloud feedback mechanisms which may play a major role in determining future changes in the climate system. CERES will estimate not only the flow of radiation at the top of the atmosphere, but also more complete cloud properties that will permit determination of radiative fluxes within the atmosphere and at the surface. The CERES radiation budget data is also planned for utilization in a wide range of other Earth Observing System interdisciplinary science investigations, including studies of land, biological, ocean and atmospheric processes.

  17. The viscous and frictional strength of faults in experiment and nature (United States)

    Heilbronner, Renee; Pec, Matej; Stunitz, Holger


    flow) and temperature (indicating a viscous components) but only weakly on strain rate. Whether the fault rocks are comparatively strong or weak depends on which criterion is use to describe strength. For example, our experiments show that the flow stresses increase for increasing confining pressure. At the same time, the friction coefficient (τ / σn) decreases. In other words: with respect to the sustained flow stress, faults are 'Pc-strengthening' with respect to the friction coefficient, they are 'Pc-weakening'. To extrapolate our experimental data to nature and to compare them to friction experiments, we present our results in terms of equivalent viscosity describing the deformation of a thin volume of material, and in terms of the friction coefficient describing the displacement along a 'thick' fault surface. We present a simple conceptual model for the temporal and spatial evolution of the geometry or topology of the weak slip zones, and the interplay between viscous and brittle behavior of faults at all scales.

  18. Ring-fault activity at subsiding calderas studied from analogue experiments and numerical modeling (United States)

    Liu, Y. K.; Ruch, J.; Vasyura-Bathke, H.; Jonsson, S.


    Several subsiding calderas, such as the ones in the Galápagos archipelago and the Axial seamount in the Pacific Ocean have shown a complex but similar ground deformation pattern, composed of a broad deflation signal affecting the entire volcanic edifice and of a localized subsidence signal focused within the caldera. However, it is still debated how deep processes at subsiding calderas, including magmatic pressure changes, source locations and ring-faulting, relate to this observed surface deformation pattern. We combine analogue sandbox experiments with numerical modeling to study processes involved from initial subsidence to later collapse of calderas. The sandbox apparatus is composed of a motor driven subsiding half-piston connected to the bottom of a glass box. During the experiments the observation is done by five digital cameras photographing from various perspectives. We use Photoscan, a photogrammetry software and PIVLab, a time-resolved digital image correlation tool, to retrieve time-series of digital elevation models and velocity fields from acquired photographs. This setup allows tracking the processes acting both at depth and at the surface, and to assess their relative importance as the subsidence evolves to a collapse. We also use the Boundary Element Method to build a numerical model of the experiment setup, which comprises contracting sill-like source in interaction with a ring-fault in elastic half-space. We then compare our results from these two approaches with the examples observed in nature. Our preliminary experimental and numerical results show that at the initial stage of magmatic withdrawal, when the ring-fault is not yet well formed, broad and smooth deflation dominates at the surface. As the withdrawal increases, narrower subsidence bowl develops accompanied by the upward propagation of the ring-faulting. This indicates that the broad deflation, affecting the entire volcano edifice, is primarily driven by the contraction of the

  19. NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner offsets determination (United States)

    Avis, Lee M.; Paden, Jack; Lee, Robert B., III; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert S.; Tolson, Carol J.; Bolden, William C.


    The Earth Radiation Budget Experiment (ERBE) instruments are designed to measure the components of the radiative exchange between the Sun, Earth and space. ERBE is comprised of three spacecraft, each carrying a nearly identical set of radiometers: a three-channel narrow-field-of-view scanner, a two-channel wide-field-of-view (limb-to-limb) non-scanning radiometer, a two-channel medium field-of view (1000 km) non-scanning radiometer, and a solar monitor. Ground testing showed the scanners to be susceptible to self-generated and externally generated electromagnetic noise. This paper describes the pre-launch corrective measures taken and the post-launch corrections to the NOAA-9 scanner data. The NOAA-9 scanner has met the mission objectives in accuracy and precision, in part because of the pre-launch reductions of and post-launch data corrections for the electromagnetic noise.

  20. Little Earth Experiment: An instrument to model planetary cores. (United States)

    Aujogue, Kélig; Pothérat, Alban; Bates, Ian; Debray, François; Sreenivasan, Binod


    In this paper, we present a new experimental facility, Little Earth Experiment, designed to study the hydrodynamics of liquid planetary cores. The main novelty of this apparatus is that a transparent electrically conducting electrolyte is subject to extremely high magnetic fields (up to 10 T) to produce electromagnetic effects comparable to those produced by moderate magnetic fields in planetary cores. This technique makes it possible to visualise for the first time the coupling between the principal forces in a convection-driven dynamo by means of Particle Image Velocimetry (PIV) in a geometry relevant to planets. We first present the technology that enables us to generate these forces and implement PIV in a high magnetic field environment. We then show that the magnetic field drastically changes the structure of convective plumes in a configuration relevant to the tangent cylinder region of the Earth's core.

  1. Contemporaneous ring fault activity and surface deformation at subsiding calderas studied using analogue experiments (United States)

    Liu, Yuan-Kai; Ruch, Joël; Vasyura-Bathke, Hannes; Jónsson, Sigurjón


    Ground deformation analyses of several subsiding calderas have shown complex and overlapping deformation signals, with a broad deflation signal that affects the entire volcanic edifice and localized subsidence focused within the caldera. However, the relation between deep processes at subsiding calderas, including magmatic sources and faulting, and the observed surface deformation is still debated. Several recent examples of subsiding calderas in the Galápagos archipelago and at the Axial seamount in the Pacific Ocean indicate that ring fault activity plays an important role not only during caldera collapse, but also during initial stages of caldera subsidence. Nevertheless, ring fault activity has rarely been integrated into numerical models of subsiding calderas. Here we report on sandbox analogue experiments that we use to study the processes involved from an initial subsidence to a later collapse of calderas. The apparatus is composed of a subsiding half piston section connected to the bottom of a glass box and driven by a motor to control its subsidence. We analyze at the same time during the subsidence the 3D displacement at the model surface with a laser scanner and the 2D ring fault evolution on the side of the model (cross-section) with a side-view digital camera. We further use PIVLab, a time-resolved digital image correlation software tool, to extract strain and velocity fields at both the surface and in cross-section. This setup allows to track processes acting at depth and assess their relative importance as the collapse evolves. We further compare our results with the examples observed in nature as well as with numerical models that integrate ring faults.

  2. Geophysical character of the intraplate Wabash Fault System from the Wabash EarthScope FlexArray (United States)

    Conder, J. A.; Zhu, L.; Wood, J. D.


    The Wabash Seismic Array was an EarthScope funded FlexArray deployment across the Wabash Fault System. The Wabash system is long known for oil and gas production. The fault system is often characterized as an intraplate seismic zone as it has produced several earthquakes above M4 in the last 50 years and potentially several above M7 in the Holocene. While earthquakes are far less numerous in the Wabash system than in the nearby New Madrid seismic zone, the seismic moment is nearly twice that of New Madrid over the past 50 years. The array consisted of 45 broadband instruments deployed across the axis to study the larger structure and 3 smaller phased arrays of 9 short-period instruments each to get a better sense of the local seismic output of smaller events. First results from the northern phased array indicate that seismicity in the Wabash behaves markedly differently than in New Madrid, with a low b-value around 0.7. Receiver functions show a 50 km thick crust beneath the system, thickening somewhat to the west. A variable-depth, positive-amplitude conversion in the deep crust gives evidence for a rift pillow at the base of the system within a dense lowermost crustal layer. Low Vs and a moderate negative amplitude conversion in the mid crust suggest a possible weak zone that could localize deformation. Shear wave splitting shows fast directions consistent with absolute plate motion across the system. Split times drop in magnitude to 0.5-0.7 seconds within the valley while in the 1-1.5 second range outside the valley. This magnitude decrease suggests a change in mantle signature beneath the fault system, possibly resulting from a small degree of local flow in the asthenosphere either along axis (as may occur with a thinned lithosphere) or by vertical flow (e.g., from delamination or dripping). We are building a 2D tomographic model across the region, relying primarily on teleseismic body waves. The tomography will undoubtedly show variations in crustal structure

  3. Effects of deglaciation on the crustal stress field and implications for endglacial faulting: A parametric study of simple Earth and ice models

    International Nuclear Information System (INIS)

    Lund, Bjoern


    The large faults of northern Scandinavia, hundreds of kilometres long and with offsets of more than 10 m, are inferred to be the result of major earthquakes triggered by the retreating ice sheet some 9,000 years ago. In this report we have studied a number of parameters involved in quantitative modelling of glacial isostatic adjustment (GIA) in order to illustrate how they affect stress, displacement and fault stability during deglaciation. Using a variety of reference models, we have verified that our modelling approach, a finite element analysis scheme with proper adjustments for the requirements of GIA modelling, performs satisfactory. The size of the model and the density of the grid have been investigated in order to be able to perform high resolution modelling in reasonable time. This report includes studies of both the ice and earth models. We have seen that the steeper the ice edge is, the more concentrated is the deformation around the edge and consequently shear stress localizes with high magnitudes around the ice edge. The temporal evolution of height and basal extent of the ice is very important for the response of the earth model, and we have shown that the last stages of ice retreat can cause fault instability over a large lateral region. The effect on shear stress and vertical displacement by variations in Earth model parameters such as stiffness, viscosity, density, compressibility and layer thickness was investigated. More complicated geometries, such as multiple layers and lateral layer thickness variations, were also studied. We generally find that these variations have more effect on the shear stress distributions than on the vertical displacement distributions. We also note that shear stress magnitude is affected more than the spatial shape of the shear stress distribution. Fault stability during glaciation/deglaciation was investigated by two different variations on the Mohr-Coulomb failure criterion. The stability of a fault in a stress field

  4. Effects of deglaciation on the crustal stress field and implications for endglacial faulting: A parametric study of simple Earth and ice models

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Bjoern [Uppsala Univ. (Sweden). Dept. of Earth Sciences


    The large faults of northern Scandinavia, hundreds of kilometres long and with offsets of more than 10 m, are inferred to be the result of major earthquakes triggered by the retreating ice sheet some 9,000 years ago. In this report we have studied a number of parameters involved in quantitative modelling of glacial isostatic adjustment (GIA) in order to illustrate how they affect stress, displacement and fault stability during deglaciation. Using a variety of reference models, we have verified that our modelling approach, a finite element analysis scheme with proper adjustments for the requirements of GIA modelling, performs satisfactory. The size of the model and the density of the grid have been investigated in order to be able to perform high resolution modelling in reasonable time. This report includes studies of both the ice and earth models. We have seen that the steeper the ice edge is, the more concentrated is the deformation around the edge and consequently shear stress localizes with high magnitudes around the ice edge. The temporal evolution of height and basal extent of the ice is very important for the response of the earth model, and we have shown that the last stages of ice retreat can cause fault instability over a large lateral region. The effect on shear stress and vertical displacement by variations in Earth model parameters such as stiffness, viscosity, density, compressibility and layer thickness was investigated. More complicated geometries, such as multiple layers and lateral layer thickness variations, were also studied. We generally find that these variations have more effect on the shear stress distributions than on the vertical displacement distributions. We also note that shear stress magnitude is affected more than the spatial shape of the shear stress distribution. Fault stability during glaciation/deglaciation was investigated by two different variations on the Mohr-Coulomb failure criterion. The stability of a fault in a stress field

  5. The Effect of Phase-to-earth Faults on the Operating Conditions of a Separated 110 kV Grid Normally Operated with Effectively Earthed Neutral, and Temporarily Supplied from a Compensated 110 kV Grid

    Directory of Open Access Journals (Sweden)

    Wilhelm Rojewski


    Full Text Available The paper discusses the interoperability of the German compensated 110 kV grid and the Polish effectively earthed 110 kV grid. It is assumed that an area of one grid, separated from its power system, will be temporarily supplied from the other grid in its normal regime. Reference is made to the risks associated with phase-to-earth faults in grids so interconnected. Particular attention is paid to the working conditions of surge arresters and voltage transformers in the Polish 110 kV grid deprived of its neutral earthing when supplied from the German grid.

  6. Influence of fault asymmetric dislocation on the gravity changes

    Directory of Open Access Journals (Sweden)

    Duan Hurong


    Full Text Available A fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement. Large faults within the Earth’s crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, energy release associated with rapid movement on active faults is the cause of most earthquakes. The relationship between unevenness dislocation and gravity changes was studied on the theoretical thought of differential fault. Simulated observation values were adopted to deduce the gravity changes with the model of asymmetric fault and the model of Okada, respectively. The characteristic of unevennes fault momentum distribution is from two end points to middle by 0 according to a certain continuous functional increase. However, the fault momentum distribution in the fault length range is a constant when the Okada model is adopted. Numerical simulation experiments for the activities of the strike-slip fault, dip-slip fault and extension fault were carried out, respectively, to find that both the gravity contours and the gravity variation values are consistent when either of the two models is adopted. The apparent difference lies in that the values at the end points are 17. 97% for the strike-slip fault, 25. 58% for the dip-slip fault, and 24. 73% for the extension fault.

  7. ISLSCP II Earth Radiation Budget Experiment (ERBE) Monthly Albedo, 1986-1990 (United States)

    National Aeronautics and Space Administration — The goals of the Earth Radiation Budget Experiment (ERBE) are (1) to understand the radiation balance between the Sun, Earth, atmosphere, and space and (2) to...

  8. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience (United States)

    Pantosti, Daniela


    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active

  9. Development of the self-learning machine for creating models of microprocessor of single-phase earth fault protection devices in networks with isolated neutral voltage above 1000 V (United States)

    Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.


    The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.

  10. Addressing Earth Science Data Access Challenges through User Experience Research (United States)

    Hemmings, S. N.; Banks, B.; Kendall, J.; Lee, C. M.; Irwin, D.; Toll, D. L.; Searby, N. D.


    The NASA Capacity Building Program (Earth Science Division, Applied Sciences Program) works to enhance end-user capabilities to employ Earth observation and Earth science (EO/ES) data in decision-making. Open data access and user-tailored data delivery strategies are critical elements towards this end. User Experience (UX) and User Interface (UI) research methods can offer important contributions towards addressing data access challenges, particularly at the interface of science application/product development and product transition to end-users. This presentation focuses on developing nation contexts and describes methods, results, and lessons learned from two recent UX/UI efforts conducted in collaboration with NASA: the redesign project and the U.S. Water Partnership (USWP) Portal development effort. SERVIR, a collaborative venture among NASA, USAID, and global partners, seeks to improve environmental management and climate change response by helping governments and other stakeholders integrate EO and geospatial technologies into decision-making. The USWP, a collaboration among U.S. public and private sectors, harnesses U.S.-based resources and expertise to address water challenges in developing nations. SERVIR's study, conducted from 2010-2012, assessed and tested user needs, preferences, and online experiences to generate a more user-friendly online data portal at The portal provides a central access interface to data and products from SERVIR's network of hubs in East Africa, the Hindu Kush Himalayas, and Mesoamerica. The second study, conducted by the USWP Secretariat and funded by the U.S. Department of State, seeks to match U.S.-based water information resources with developing nation stakeholder needs. The USWP study utilizes a multi-pronged approach to identify key design requirements and to understand the existing water data portal landscape. Adopting UX methods allows data distributors to design customized UIs that

  11. Experiment study on an inductive superconducting fault current limiter using no-insulation coils (United States)

    Qiu, D.; Li, Z. Y.; Gu, F.; Huang, Z.; Zhao, A.; Hu, D.; Wei, B. G.; Huang, H.; Hong, Z.; Ryu, K.; Jin, Z.


    No-insulation (NI) coil made of 2 G high temperature superconducting (HTS) tapes has been widely used in DC magnet due to its excellent performance of engineering current density, thermal stability and mechanical strength. However, there are few AC power device using NI coil at present. In this paper, the NI coil is firstly applied into inductive superconducting fault current limiter (iSFCL). A two-winding structure air-core iSFCL prototype was fabricated, composed of a primary copper winding and a secondary no-insulation winding using 2 G HTS coated conductors. Firstly, in order to testify the feasibility to use NI coil as the secondary winding, the impedance variation of the prototype at different currents and different cycles was tested. The result shows that the impedance increases rapidly with the current rises. Then the iSFCL prototype was tested in a 40 V rms/ 3.3 kA peak short circuit experiment platform, both of the fault current limiting and recovery property of the iSFCL are discussed.

  12. Unified law of evolution of experimental gouge-filled fault for fast and slow slip events at slider frictional experiments (United States)

    Ostapchuk, Alexey; Saltykov, Nikolay


    Excessive tectonic stresses accumulated in the area of rock discontinuity are released while a process of slip along preexisting faults. Spectrum of slip modes includes not only creeps and regular earthquakes but also some transitional regimes - slow-slip events, low-frequency and very low-frequency earthquakes. However, there is still no agreement in Geophysics community if such fast and slow events have mutual nature [Peng, Gomberg, 2010] or they present different physical phenomena [Ide et al., 2007]. Models of nucleation and evolution of fault slip events could be evolved by laboratory experiments in which regularities of shear deformation of gouge-filled fault are investigated. In the course of the work we studied deformation regularities of experimental fault by slider frictional experiments for development of unified law of evolution of fault and revelation of its parameters responsible for deformation mode realization. The experiments were conducted as a classic slider-model experiment, in which block under normal and shear stresses moves along interface. The volume between two rough surfaces was filled by thin layer of granular matter. Shear force was applied by a spring which deformed with a constant rate. In such experiments elastic energy was accumulated in the spring, and regularities of its releases were determined by regularities of frictional behaviour of experimental fault. A full spectrum of slip modes was simulated in laboratory experiments. Slight change of gouge characteristics (granule shape, content of clay), viscosity of interstitial fluid and level of normal stress make it possible to obtained gradual transformation of the slip modes from steady sliding and slow slip to regular stick-slip, with various amplitude of 'coseismic' displacement. Using method of asymptotic analogies we have shown that different slip modes can be specified in term of single formalism and preparation of different slip modes have uniform evolution law. It is shown

  13. Micro-textures of Deformed Gouges by Friction Experiments of Mont Terri Main Fault, Switzerland (United States)

    Aoki, K.; Seshimo, K.; Sakai, T.; Komine, Y.; Kametaka, M.; Watanabe, T.; Nussbaum, C.; Guglielmi, Y.


    Friction experiment was conducted on samples from the Main Fault of Mont Terri Rock Laboratory, Switzerland and then micro-textures of deformed gouges were observed using a scanning electron microscope JCM-6000 and JXA-8530F. Samples were taken at the depths of 47.2m and 37.3m of borehole BSF-1, and at 36.7m, 37.1m, 41.4m and 44.6m of borehole BSF-2, which were drilled from the drift floor at 260m depth from the surface. Friction experiment was conducted on above 6 samples using a rotary shear low to high-velocity friction apparatus at the Institute of Geology, China Earthquake Administration in Beijing at a normal stress of 3.95 to 4.0 MPa and at slip rates ranging 0.2 microns/s to 2.1mm/s. Cylindrical specimens of Ti-Al-V alloy, exhibiting similar behaviors as the host rock specimen, were used as rotary and stationary pistons of 40 mm diameter. A Teflon sleeve was used around the piston to confine the sample during the test. Main results are summarized as follows. 1) Mud rocks in Mont Terri drill holes (BFS-1, BFS-2) had steady-state or nearly steady-state friction coefficient μss in the range of 0.1 0.3 for wet gouges and 0. 5 0.7 for dry gouges. Friction coefficients of dry gouges were approximately twice as large as those of wet gouges. However, the fault rock (37.3 m, BFS-1) with scaly fabric showed no difference between wet and dry conditions : μss (wet): 0.50 0.77, μss (dry): 0.45 0.78. This is probably because the clay contents of this rock is less ( 33 %) than those in other rocks (67 73 %) (Shimamoto, 2017). 2) Deformed gouges are characterized by well-developed slip zones adjacent to the rotary and stationary pistons, accompanied by slickenside surfaces with clear striations. Such slickenside surfaces are similar to those developed in the drill core samples used in our experiments. 3) Multiple slip zones were observed in the 37.3m of BFS-1 and the 36.7m of BFS-2 samples under dry condition, suggesting that a slip occurred in the interior of the gouge

  14. Science support for the Earth radiation budget experiment (United States)

    Coakley, James A., Jr.


    The work undertaken as part of the Earth Radiation Budget Experiment (ERBE) included the following major components: The development and application of a new cloud retrieval scheme to assess errors in the radiative fluxes arising from errors in the ERBE identification of cloud conditions. The comparison of the anisotropy of reflected sunlight and emitted thermal radiation with the anisotropy predicted by the Angular Dependence Models (ADM's) used to obtain the radiative fluxes. Additional studies included the comparison of calculated longwave cloud-free radiances with those observed by the ERBE scanner and the use of ERBE scanner data to track the calibration of the shortwave channels of the Advanced Very High Resolution Radiometer (AVHRR). Major findings included: the misidentification of cloud conditions by the ERBE scene identification algorithm could cause 15 percent errors in the shortwave flux reflected by certain scene types. For regions containing mixtures of scene types, the errors were typically less than 5 percent, and the anisotropies of the shortwave and longwave radiances exhibited a spatial scale dependence which, because of the growth of the scanner field of view from nadir to limb, gave rise to a view zenith angle dependent bias in the radiative fluxes.

  15. A Study on the Dependable and Secure Relaying Scheme under High Resistance Earth Faults on HV, EHV Line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.D.; Han, K.N. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)


    This report contains following items for the purpose of investigating and analyzing characteristics of high impedance ground faults. - Reason and characteristics identification of HIF - Modeling of power system - Testing of protective relays using RTD(Real Time Digital Simulator) - Staged ground faults test - Development of new algorithm to detect HIF - Protective coordination schemes between different types of relays - HIF monitoring and relaying scheme and H/W prototyping. (author). 22 refs., 28 figs., 21 tabs.

  16. Magnetic behaviors of cataclasites within Wenchuan earthquake fault zone in heating experiments (United States)

    Zhang, L.; Li, H.; Sun, Z.; Chou, Y. M.; Cao, Y., Jr.; Huan, W.; Ye, X.; He, X.


    Previous rock magnetism of fault rocks were used to trace the frictional heating temperature, however, few studies are focus on different temperatures effect of rock magnetic properties. To investigate rock magnetic response to different temperature, we conducted heating experiments on cataclasites from the Wenchuan earthquake Fault Scientific Drilling borehole 2 (WFSD-2) cores. Samples of cataclasites were obtained using an electric drill with a 1 cm-diameter drill pipe from 580.65 m-depth. Experiments were performed by a Thermal-optical measurement system under argon atmosphere and elevated temperatures. Both microstructural observations and powder X-ray diffraction analyses show that feldspar and quartz start to melt at 1100 ° and 1300 ° respectively. Magnetic susceptibility values of samples after heating are higher than that before heating. Samples after heating at 700 and 1750 ° have the highest values of magnetic susceptibility. Rock magnetic measurements show that the main ferromagnetic minerals within samples heated below 1100 ° (400, 700, 900 and 1100 °) are magnetite, which is new-formed by transformation of paramagnetic minerals. The χferri results show that the quantity of magnetite is bigger at sample heated by 700° experiment than by 400, 900 and 1100° experiments. Based on the FORC diagrams, we consider that magnetite grains are getting finer from 400 to 900°, and growing coarser when heated from 900 to 1100 °. SEM-EDX results indicate that the pure iron are formed in higher temperature (1300, 1500 and 1750 °), which present as framboids with size <10 μm. Rock magnetic measurements imply pure iron is the main ferromagnetic materials in these heated samples. The amount and size of iron framboids increase with increasing temperature. Therefore, we conclude that the paramagnetic minerals are decomposed into fine magnetite, then to coarse-grained magnetite, finally to pure iron at super high temperature. New-formed magnetite contributes to

  17. Development of Venus Balloon Seismology Missions Through Earth Analog Experiments (United States)

    Krishnamoorthy, S.; Komjathy, A.; Cutts, J. A.; Pauken, M. T.; Garcia, R. F.; Mimoun, D.; Jackson, J. M.; Kedar, S.; Smrekar, S. E.; Hall, J. L.


    The study of a planet’s seismic activity is central to the understanding of its internal structure. We discuss advances made through Earth analog testing for performing remote seismology on Venus using balloons floated in the mid-atmosphere.

  18. Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults (United States)

    Rivière, J.; Lv, Z.; Johnson, P. A.; Marone, C.


    We investigate the evolution of the frequency-magnitude b-value during stable and unstable frictional sliding experiments. Using a biaxial shear configuration, we record broadband acoustic emissions (AE) while shearing layers of simulated granular fault gouge under normal stresses of 2-8 MPa and shearing velocity of 11 μm/s. AE event amplitude ranges over 3-4 orders of magnitude and we find an inverse correlation between b and shear stress. The reduction of b occurs systematically as shear stress rises prior to stick-slip failure and indicates a greater proportion of large events when faults are more highly stressed. For quasi-periodic stick-slip events, the temporal evolution of b has a characteristic saw-tooth pattern: it slowly drops as shear stress increases and quickly jumps back up at the time of failure. The rate of decrease during the inter-seismic period is independent of normal stress but the average value of b decreases systematically with normal stress. For stable sliding, b is roughly constant during shear, however it exhibits large variability. During irregular stick-slip, we see a mix of both behaviors: b decreases during the interseismic period between events and then remains constant when shear stress stabilizes, until the next event where a co-seismic increase is observed. Our results will help improve seismic hazard assessment and, ultimately, could aid earthquake prediction efforts by providing a process-based understanding of temporal changes in b-value during the seismic cycle.

  19. Control Surface Fault Diagnosis with Specified Detection Probability - Real Event Experiences

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens


    Diagnosis of actuator faults is crucial for aircraft since loss of actuation can have catastrophic consequences. For autonomous aircraft the steps necessary to achieve fault tolerance is limited when only basic and non-redundant sensor and actuators suites are present. Through diagnosis...... that exploits analytical redundancies it is, nevertheless, possible to cheaply enhance the level of safety. This paper presents a method for diagnosing control surface faults by using basic sensors and hardware available on an autonomous aircraft. The capability of fault diagnosis is demonstrated obtaining...... false alarm probability. A data based method is used to determine the validity of the methods proposed. Verification is achieved using real data and shows that the presented diagnosis method is efficient and could have avoided incidents where faults led to loss of aircraft....

  20. Spectral evaluation of Earth geopotential models and an experiment ...

    Indian Academy of Sciences (India)

    the case study provide a comparison among the EGMs by means of their fit to the local gravity field. 1. Introduction. The gravity field of the ... Compute Restore technique; GNSS/levelling; Turkey; data analysis; modelling. J. Earth Syst. Sci. 121, No. ..... (ΔgFA) (as an approximation of Helmert gravity anomalies) on land were ...

  1. Spectral evaluation of Earth geopotential models and an experiment ...

    Indian Academy of Sciences (India)

    As the number of Earth geopotential models (EGM) grows with the increasing number of data collected by dedicated satellite gravity missions, CHAMP, GRACE and GOCE, measuring the differences among the models and monitoring the improvements in gravity field recovery are required. This study assesses the ...

  2. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience (United States)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco


    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  3. SLSF in-reactor local fault safety experiment P4. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D. H.; Holland, J. W.; Braid, T. H.; Ragland, W. A.


    The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The design goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.

  4. Layer rotation around vertical fault overlap zones: observations from seismic data, field examples, and physical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rykkelid, E. [Norsk Hydro ASA, Oslo (Norway); Fossen, H. [University of Bergen (Norway). Dept. of Geology


    Vertically overlapping fault segments are common structures in faulted hydrocarbon reservoirs. Experimental work and field observations show a close relationship between the rotation of layers in the region of overlap, the type of overlap (restraining vs. releasing) and fault curvature. In general, releasing overlap zones (where the normal fault steps upward into the hanging-wall) show normal rotation or drag, thus decreasing the effective throw on the fault. In contrast, restraining overlaps tend to develop reverse rotation in the overlap zone, particularly if the normal fault tips curve toward each other. Releasing overlap zones seem to be more common than the restraining zones, and the overlaps tend to form in shaly layers between thicker sandstones. Narrow overlaps of this type typically develop zones of drag or shale smear that could seal or reduce communication across the adjacent sandstone layers. Hence, overlap zones may significantly influence communication in a reservoir, depending on the fault arrangement, geometry, and lithological properties. Seismic interpreters and structural geologists should pay particular attention to layer rotation to identify vertical overlap structures and to evaluate their influence on reservoir performance. (author)


    Directory of Open Access Journals (Sweden)

    Vitalina V. Fedoniuk


    Full Text Available The possibility of using GIS in the study of geographical and environmental sciences is shown. Some features of work with the Google Earth software product are described. Possible practical works with additional layers of services of geospatial data are described. Examples of practical tasks for the students are given. In particular, such topics are considered: the study of landscapes, work with cartographical images, the construction of hypsometric profiles, photomaps creating, analysis of natural reserve fund, assessment of territorial distribution of global and regional environmental problems, etc. Possibilities of improvement of carrying out practical and laboratory works on disciplines of a geographical and geoecological cycle with Google Earth program application are highlighted.

  6. Experiment of exploration using the active-faults exploration system; Katsudanso tansa system wo mochiita chika tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Mikada, H.; Sato, H.; Iwasaki, T.; Hirata, N. [The University of Tokyo, Tokyo (Japan). Earthquake Research Institute; Ikeda, Y. [The University of Tokyo, Tokyo (Japan). Faculty of Science; Ikawa, T.; Kawabe, Y.; Aoki, Y. [JAPEX Geoscience Institute, Tokyo (Japan)


    A system for exploration of active-faults by seismic reflection profiling method was introduced at Earthquake Research Institute, University of Tokyo. A test-run was conducted to check the performance of this system at Ranzan, Saitama Prefecture. This paper describes the confirmed performance of mini-VIB as a wide band frequency seismic source, the quality of data obtained using a digital data acquisition system, and problems for data processing of fault exploration in the future. For the test-run at Ranzan, two-dimensional exploration was conducted by the quasi-three-dimensional data acquisition method using three geophones of 8 Hz, 28 Hz, and 40 Hz, simply arranged in parallel on the measurement line. Using an active seismic vibrator, mini-VIB, data acquisition of faults in the wide band frequency was achieved, which would result in the highly accurate imaging. Operation of data acquisition and processing systems is easy, and the system can be also used as a kind of black box. The existing methods are to be used sufficiently as a tool for imaging of faults. Further research for accumulating experience may become necessary toward the extension of the system expected in the future. 5 refs., 6 figs.

  7. Strike-slip fault Kinematics and mechanics at the seismic cycle time-scale : Results from new analogue model experiments. (United States)

    Caniven, Yannick; Dominguez, Stéphane; Soliva, Roger; Cattin, Rodolphe; Peyret, Michel; Chéry, Jean; Romano, Christian


    The average seismic cycle duration extends from hundred to a few thousands years but geodetic measurements, including trilateration, GPS, Insar and seismological data extend over less than one century. This short time observation scale renders difficult, then, to constrain the role of key parameters such as fault friction and geometry, crust rheology, stress and strain rate that control the kinematics and mechanics of active faults. To solve this time scale issue, we have developed a new experimental set-up that reproduces scaled micro-earthquakes and several hundreds of seismic cycles along a strike-slip fault. The model is constituted by two polyurethane foam plates laterally in contact, lying on a basal silicone layer, which simulate the mechanical behaviour of an elastoplastic upper crust over a ductile lower crust, respectively. To simulate the boundary conditions of a strike-slip fault, a computerized motoreductor system moves the two compartments on an opposite sens and at a constant very low velocity (a few µm/s). The model spatial and temporal scaling, deduces from analog material physical and mechanical parameters, implies that 1 cm in the model represents 2-3 km in the nature and 1 s is equivalent to 5-15 years. Surface-horizontal strain field is quantified by sub-pixel correlation of digital camera pictures recorded every 16 µm of displacement. For each experience about 2000 horizontal-velocity field measurements are recorded. The analysis of model-interseismic and coseismic surface displacements and their comparison to seismogenic natural faults demonstrate that our analog model reproduces correctly both near and far-field surface strains. To compare the experiences, we have developed several algorithms that allow studying the main spatial and temporal evolution of the physical parameters and surface deformation processes that characterise the seismic cycle (magnitudes, stress, strain, friction coefficients, interseismic locking depth, recurrence

  8. On the possibility of measuring the Earth's gravitomagnetic force in a new laboratory experiment

    International Nuclear Information System (INIS)

    Iorio, Lorenzo


    In this letter we propose, in a preliminary way, a new Earth-based laboratory experiment aimed at the detection of the gravitomagnetic field of the Earth. It consists of the measurement of the difference between the circular frequencies of two rotators moving along identical circular paths, but in opposite directions, on a horizontal friction-free plane in a vacuum chamber placed at the South Pole. The accuracy to our knowledge of the Earth's rotation from VLBI and the possibility of measuring the rotators' periods over many revolutions should allow for the feasibility of the proposed experiment. (letter to the editor)


    Directory of Open Access Journals (Sweden)

    Mustafa DEMETGÜL


    Full Text Available In this study, an artificial neural network is developed to find an error rapidly on pneumatic system. Also the ANN prevents the system versus the failure. The error on the experimental bottle filling plant can be defined without any interference using analog values taken from pressure sensors and linear potentiometers. The sensors and potentiometers are placed on different places of the plant. Neural network diagnosis faults on plant, where no bottle, cap closing cylinder B is not working, bottle cap closing cylinder C is not working, air pressure is not sufficient, water is not filling and low air pressure faults. The fault is diagnosed by artificial neural network with LVQ. It is possible to find an failure by using normal programming or PLC. The reason offing Artificial Neural Network is to give a information where the fault is. However, ANN can be used for different systems. The aim is to find the fault by using ANN simultaneously. In this situation, the error taken place on the pneumatic system is collected by a data acquisition card. It is observed that the algorithm is very capable program for many industrial plants which have mechatronic systems.

  10. Big Earth Data: the Film, the Experience, and some Thoughts (United States)

    Baumann, P.


    Scientists have to get out of the ivory tower and tell society, which ultimately finances them, about their work, their results, and implications, be they good or bad. This is commonly accepted ethics. But how would you "tell society" at large what you are doing? Scientific work typically is difficult to confer to lay people, and finding suitable simplifications and paraphrasings requires considerable effort. Estimating societal implications is dangerous as swimming with sharks, some of which are your own colleagues. Media tend to be not always interested - unless results are particularly spectacular, well, in a press sense. Again, sharks are luring. All this makes informing the public a tedious, time-consuming task which tends to receive not much appreciation in tenure negotiations where indexed publications are the first and foremost measure.As part of the EU funded EarthServer initiative we tried it. Having promised a "video about the project" we found it boring to do another 10 minute repetition from the grant contract and started aiming at a full TV documentary explaining "Big Earth Data" to the interested citizens. It took more than one year to convince a TV producing company and TV stations that this is not another feature about the beauty of nature or catastrophies, but a bout human insight from computer-supported sifting through all those observations and simulations available. After they got the gist they were fully on board and supported financially with a substantial amount. The final 53 minutes "Big Earth Data" movie was broadcast in February 2015 in German and French (English version available from ). Several smaller spin-off features originated around it, such as an uptake of the theme (and material) in a popular German science TV series.Of course, this is but one contribution and cannot be made a continuous activity. In the talk we want to present and discuss the "making of" from a scientist's perspective, highlighting the ups and downs in the

  11. An expert system for fault management assistance on a space sleep experiment (United States)

    Atamer, A.; Delaney, M.; Young, L. R.


    The expert system, Principal Investigator-in-a-box, or [PI], was designed to assist astronauts or other operators in performing experiments outside their expertise. Currently, the software helps astronauts calibrate instruments for a Sleep and Respiration Experiment without contact with the investigator on the ground. It flew on the Space Shuttle missions STS-90 and STS-95. [PI] displays electrophysiological signals in real time, alerts astronauts via the indicator lights when a poor signal quality is detected, and advises astronauts how to restore good signal quality. Thirty subjects received training on the sleep instrumentation and the [PI] interface. A beneficial effects of [PI] and training reduced troubleshooting time. [PI] benefited subjects on the most difficult scenarios, even though its lights were not 100% accurate. Further, questionnaires showed that most subjects preferred monitoring waveforms with [PI] assistance rather than monitoring waveforms alone. This study addresses problems of complex troubleshooting and the extended time between training and execution that is common to many human operator situations on earth such as in power plant operation, and marine exploration.

  12. Seismicity, groundwater level variations and Earth tides in the Hronov-Poříčí Fault Zone, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kolínský, Petr; Valenta, Jan; Gaždová, Renata


    Roč. 9, č. 2 (2012), s. 191-209 ISSN 1214-9705 R&D Projects: GA ČR GA205/09/1244 Institutional research plan: CEZ:AV0Z30460519 Keywords : Eastern Bohemian Massif * groundwater level * seismicity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.530, year: 2011

  13. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies (United States)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.


    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.



    Mustafa DEMETGÜL


    In this study, an artificial neural network is developed to find an error rapidly on pneumatic system. Also the ANN prevents the system versus the failure. The error on the experimental bottle filling plant can be defined without any interference using analog values taken from pressure sensors and linear potentiometers. The sensors and potentiometers are placed on different places of the plant. Neural network diagnosis faults on plant, where no bottle, cap closing cylinder B is not working, b...

  15. Revealing the Earth's mantle from the tallest mountains using the Jinping Neutrino Experiment. (United States)

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A; Xi, Yufei; McDonough, William F


    The Earth's engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth's composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth's flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle's radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle's radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection.

  16. Machine Learning of Fault Friction (United States)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.


    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017)., B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025

  17. Fault location using synchronized sequence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun; Jia, Qing-Quan; Li, Xin-Bin; Dou, Chun-Xia [Department of Power Electrical Engineering, Yanshan University, Qinhuangdao 066004 (China)


    This paper proposes fault location formulas using synchronized sequence measurements. For earth faults, zero-sequence voltages and currents at two terminals of faulted line are applied to fault location. Negative-sequence measurements are utilized for asymmetrical faults and positive-sequence measurements are used for three-phase faults. The fault location formulas are derived from a fault location technique [Wang C, Dou C, Li X, Jia Q. A WAMS/PMU-based fault location technique. Elect Power Syst Res 2007;77(8):936-945] based on WAMS/PMU. The technique uses synchronized fault voltages measured by PMUs in power network. The formulas are simple and are easy for application. Case studies on a testing network with 500 kV transmission lines including ATP/EMTP simulations are presented. Various fault types and fault resistances are also considered. (author)

  18. The Magnitude Distribution of Earthquakes Near Southern California Faults (United States)


    Lindh , 1985; Jackson and Kagan, 2006]. We do not consider time dependence in this study, but focus instead on the magnitude distribution for this fault...90032-7. Bakun, W. H., and A. G. Lindh (1985), The Parkfield, California, earth- quake prediction experiment, Science, 229(4714), 619–624, doi:10.1126

  19. Rare earths and yttrium hydrostratigraphy along the Lake Kinneret-Dead Sea-Arava transform fault, Israel and adjoining territories

    International Nuclear Information System (INIS)

    Moeller, P.; Rosenthal, E.; Dulski, P.; Geyer, S.; Guttman, Y.


    Rare earth elements and Y (REY) have been analysed in 49 groundwaters from localities in the areas of Lake Kinneret and the Jordan and Arava Valleys. These waters originate from various aquifers and the REY abundances are expected to be controlled by the aquifer rocks. The REY pattern allow one to distinguish interaction of waters with basalts, basalt-limestone interaction zones (silicified limestones), limestones from the Judea and Avdat Groups (Upper Cretaceous and Eocene, respectively), and sandstones of the Lower Cretaceous Kurnub Group. Groundwater from the Quaternary alluvial fill (Dead Sea Group) are either controlled by Judea Group limestone or Kurnub Group sandstone. The REY patterns show characteristic features for each group. In hydrogeological systems, the rocks of natural replenishment areas are usually not the same as rock units from which the waters are collected. This becomes evident by comparing the lithostratigraphic groups from which the waters were collected and the hydrochemical grouping according to REY patterns with their characteristic trends and anomalies. In many cases, there is a correspondence between the lithostratigraphic and the hydrochemical grouping; in other cases, the 2 groupings disagree. This disagreement proves inter-aquifer flow of groundwater. In some cases, the geologically derived aquifers rocks of origin, differ from those indicated by REY patterns. Thus, applying the REY grouping, new fundamental information for hydrological models can be given and sources of salinisation can be elucidated

  20. Relativistic Gravitational Experiment in the Earth Orbit: Concept, Technology, and Configuration of Satellite Constellation (United States)

    Barabanov, A. A.; Milyukov, V. K.; Moskatiniev, I. V.; Nesterin, I. M.; Sysoev, V. K.; Yudin, A. D.


    An arrangement of the orbital experiment on the measurement of the light propagation delay in the gravitational field of the Earth (Shapiro effect) using laser interferometry based on a cluster of small spacecraft (SC) is proposed. SC layouts, launch technology, and high-precision measurements of their orbital parameters are considered.

  1. An Experience of Science Theatre to Introduce Earth Interior and Natural Hazards to Children (United States)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana


    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of making them acquainted with a topic, the interior of the Earth, largely underestimated in compulsory school curricula worldwide. A not less important task was to encourage a positive attitude towards natural…

  2. Inflated concepts for the earth science geostationary platform and an associated flight experiment (United States)

    Friese, G.


    Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.

  3. Seismic Experiment at North Arizona To Locate Washington Fault - 3D Field Test

    KAUST Repository

    Hanafy, Sherif M


    No. of receivers in the inline direction: 80, Number of lines: 6, Receiver Interval: 1 m near the fault, 2 m away from the fault (Receivers 1 to 12 at 2 m intervals, receivers 12 to 51 at 1 m intervals, and receivers 51 to 80 at 2 m intervals), No. of shots in the inline direction: 40, Shot interval: 2 and 4 m (every other receiver location). Data Recording The data are recorded using two Bison equipment, each is 120 channels. We shot at all 240 shot locations and simultaneously recorded seismic traces at receivers 1 to 240 (using both Bisons), then we shot again at all 240 shot locations and we recorded at receivers 241 to 480. The data is rearranged to match the receiver order shown in Figure 3 where receiver 1 is at left-lower corner, receivers increase to 80 at right lower corner, then receiver 81 is back to left side at Y = 1.5 m, etc.

  4. CEGB philosophy and experience with fault-tolerant micro-computer application for power plant controls

    International Nuclear Information System (INIS)

    Clinch, D.A.L.


    From the mid-1960s until the late 1970s, automatic modulating control of the main boiler plant on CEGB fossil-fired power stations was largely implemented with hard wired electronic equipment. Mid-way through this period, the CEGB formulated a set of design requirements for this type of equipment; these laid particular emphasis on the fault tolerance of a control system and specified the nature of the interfaces with a control desk and with plant regulators. However, the automatic control of an Advanced Gas Cooled Reactor (AGR) is based upon measured values which are derived by processing a large number of thermocouple signals. This is more readily implemented digitally than with hard-wired equipment. Essential to the operation of an AGR power station is a data processing (DP) computer for monitoring the plant; so the first group of AGR power stations, designed in the 1960s, employed their DP computers for modulating control. Since the late 1970s, automatic modulating control of major plants, for new power stations and for re-fits on established power stations, has been implemented with micro-computers. Wherever practicable, the policy formulated earlier for hard-wired equipment has been retained, particularly in respect of the interfaces. This policy forms the foundation of the fault tolerance of these micro-computer systems

  5. Urban fifth graders' connections-making between formal earth science content and their lived experiences (United States)

    Brkich, Katie Lynn


    Earth science education, as it is traditionally taught, involves presenting concepts such as weathering, erosion, and deposition using relatively well-known examples—the Grand Canyon, beach erosion, and others. However, these examples—which resonate well with middle- and upper-class students—ill-serve students of poverty attending urban schools who may have never traveled farther from home than the corner store. In this paper, I explore the use of a place-based educational framework in teaching earth science concepts to urban fifth graders and explore the connections they make between formal earth science content and their lived experiences using participant-driven photo elicitation techniques. I argue that students are able to gain a sounder understanding of earth science concepts when they are able to make direct observations between the content and their lived experiences and that when such direct observations are impossible they make analogies of appearance, structure, and response to make sense of the content. I discuss additionally the importance of expanding earth science instruction to include man-made materials, as these materials are excluded traditionally from the curriculum yet are most immediately available to urban students for examination.

  6. Experiences with on line fault detection system for protection system logic and decay heat removal system logic in Dhruva

    International Nuclear Information System (INIS)

    Ramkumar, N.; Dutta, P.K.; Darbhe, M.D.; Bharadwaj, G.


    Dhruva is a 100 MW (Thermal) natural uranium fuelled, vertical core, tank type multi purpose research reactor with heavy water acting as moderator, coolant and reflector. Helium is used as cover gas for heavy water system. Reactor Protection System and Decay Heat Removal System (DHRS) have triplicated instrumented channels. The logic for these systems are hybrid in nature with a mixture of relay logic and solid state logic. Fine Impulse Technique(FIT) is employed for On-line fault detection in the solid state logics of these systems. The FIT systems were designed in the early eighties. Operating experiences over the past 15 years has revealed certain deficiencies. In view of this, a microcomputer based state of the art FIT systems for logics of Reactor Protection System and DHRS are being implemented with improved functionalities built into them. This paper describes the operating experience of old FIT systems and improved features of the proposed new FIT systems. (author)

  7. Radiation Environment in EARTH-MOON Space: Results from Radom Experiment Onboard CHANDRAYAAN-1 (United States)

    Vadawale, S. V.; Goswami, J. N.; Dachev, T. P.; Tomov, B. T.; Girish, V.


    The radiation monitor (RADOM) payload is a miniature dosimeter spectrometer onboard Chandrayaan-1 mission for monitoring the local radiation environment in near-Earth space and in lunar space. RADOM measured the total absorbed dose and spectrum of the deposited energy from high-energy particles in near-Earth space, en-route and in lunar orbit. RADOM was the first experiment to be switched on soon after the launch of Chandrayaan-1 and was operational till the end of the mission. This article summarizes the observations carried out by RADOM during the entire life time of the Chandrayaan-1 mission and some of the salient results.

  8. Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.


    Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE...... and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20...

  9. Paleoseismology: evidence of earth activity

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucie


    Roč. 105, č. 5 (2016), 1467-1469 ISSN 1437-3254 Institutional support: RVO:67985891 Keywords : Paleoseismology * Colluvial wedge * White Creek Fault _ * Greendale Fault * San Andreas Fault * Paganica Fault Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.283, year: 2016

  10. Foucault pendulum at the south pole: Proposal for an experiment to detect the earth's general relativistic gravitomagnetic field

    International Nuclear Information System (INIS)

    Braginsky, V.B.; Polnarev, A.G.; Thorne, K.S.


    An experiment is proposed for measuring the earth's gravitomagnetic field by monitoring its effect on the plane of swing of a Foucault pendulum at the south pole (''dragging of inertial frames by earth's rotation''). With great effort a 10% experiment in a measurement time of several months might be achieved

  11. Fault slip versus slope deformations: Experience from paleoseismic trenches in the region with low slip-rate faults and strong Pleistocene periglacial mass wasting (Bohemian Massif)

    Czech Academy of Sciences Publication Activity Database

    Špaček, P.; Valenta, Jan; Tábořík, Petr; Ambrož, V.; Urban, M.; Štěpančíková, Petra


    Roč. 451, 7 SEP (2017), s. 56-73 ISSN 1040-6182 R&D Projects: GA ČR GAP210/12/0573; GA MŠk(CZ) LM2015079; GA MŠk 7AMB13AT023 Institutional support: RVO:67985891 Keywords : Active fault ing * Paleoseismology * Slope deformation * Solifluction * Colluvium * Quaternary * Bohemian massif Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.199, year: 2016

  12. Thermodynamic Analysis of Snowball Earth Hysteresis Experiment: Efficiency, Entropy Production, and Irreversibility


    Lucarini, Valerio; Fraedrich, Klaus; Lunkeit, Frank


    We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The effi...

  13. Earth at Rest. Aesthetic Experience and Students' Grounding in Science Education (United States)

    Østergaard, Edvin


    Focus of this article is the current situation characterized by students' de-rootedness and possible measures to improve the situation within the frame of education for sustainable development. My main line of argument is that science teachers can practice teaching in such a way that students are brought in deeper contact to the environment. I discuss efforts to promote aesthetic experience in science class and in science teacher education. Within a wide range of definitions, my main understanding of aesthetic experience is that of pre-conceptual experience, relational to the environment and incorporated in students' embodied knowledge. I ground the idea of Earth at rest in Husserl's phenomenological philosophy and Heidegger's notion of science' deprivation of the world. A critique of the ontological reversal leads to an ontological re-reversal that implies giving lifeworld experience back its value and rooting scientific concepts in students' everyday lives. Six aspects of facilitating grounding in sustainability-oriented science teaching and teacher education are highlighted and discussed: students' everyday knowledge and experience, aesthetic experience and grounding, fostering aesthetic sensibility, cross-curricular integration with art, ontological and epistemological aspects, and belongingness and (re-)connection to Earth. I conclude that both science students and student-teachers need to practice their sense of caring and belonging, as well as refining their sensibility towards the world. With an intension of educating for a sustainable development, there is an urgent need for a critical discussion in science education when it comes to engaging learners for a sustainable future.

  14. Impact into the earth's ocean floor - Preliminary experiments, a planetary model, and possibilities for detection (United States)

    Mckinnon, W. B.


    Impact processes and plate tectonics are invoked in an experimental study of craters larger than 100 km in diameter on the ocean floor. Although the results obtained from 22-caliber (383 m/sec) ammunition experiments using dense, saturated sand as a target medium cannot be directly scaled to large events, the phenomenology exhibited is that expected of actual craters on the ocean floor: steep, mixed ejecta plume, gravitational adjustment of the crater to form a shallow basin, and extensive reworking of the ejecta, rim, and floor materials by violent collapse of the transient water cavity. Excavation into the mantle is predicted, although asthenospheric influence on outer ring formation is not. The clearest geophysical signature of such a crater is not topography; detection should instead be based on gravity and geoid anomalies due to uplift of the Moho, magnetic anomalies, and seismic resolution of the Moho uplift and crater formation fault planes.

  15. In Search of the Invisible Roots: Immigrant Experiences in Jhumpa Lahiri’s Unaccustomed Earth

    Directory of Open Access Journals (Sweden)

    Rogobete Daniela


    Full Text Available This paper attempts an analysis of the metaphorical strategies Jhumpa Lahiri uses in her 2008 collection of short stories Unaccustomed Earth in order to explore and comment on the intricate relations and the complex web of feelings and resentments, longing and attachment that make up the essence of family life as shaped by the diasporic experience. In this volume, Lahiri particularly focuses on the conflicting emotions engendered by migration, on the articulation of displacement and reintegration, and on the capacity to fully assume the diasporic experience and turn it into a meaningful assertion of one’s identity.

  16. Experience using an automated fault location system with a time-of-flight wall detector array

    International Nuclear Information System (INIS)

    Olson, D.; Greiman, W.; Hall, D.; Balaban, D.; Day, C.


    We describe the architecture of a general purpose monitoring system and give examples of it use with a 300 element detector array in a relativistic heavy ion experiment. The system has a simple and well defined interface between the detector specific parts of the system and those which are independent of any detector specific features. Tracking simple statistics on the fundamental data items (ADC and TDC values) are sufficient to diagnose the higher level components in the system. The monitoring of one-line beam data provides a sensitive monitor of global parameters of the experiment. 5 figs

  17. Earthdata 3.0: A Unified Experience and Platform for Earth Science Discovery (United States)

    Plofchan, P.; McLaughlin, B. D.


    NASA's EOSDIS (Earth Observing System Data and Information System) as a multitude of websites and applications focused on serving the Earth Science community's extensive data needs. With no central user interface, theme, or mechanism for accessing that data, interrelated systems are confusing and potentially disruptive in users' searches for EOSDIS data holdings. In an effort to bring consistency across these systems, an effort was undertaken to develop Earthdata 3.0: a complete information architecture overhaul of the Earthdata website, a significant update to the Earthdata user experience and user interface, and an increased focus on searching across EOSDIS data holdings, including those housed and made available through DAAC websites. As part of this effort, and in a desire to unify the user experience across related websites, the Earthdata User Interface (EUI) was developed. The EUI is a collection of responsive design components and layouts geared toward creating websites and applications within the Earthdata ecosystem. Each component and layout has been designed specifically for Earth science-related projects which eliminates some of the complexities of building a website or application from the ground up. Its adoption will ensure both consistent markup and a unified look and feel for end users, thereby increasing usability and accessibility. Additionally, through the user of a Google Search Appliance, custom Clojure code, and in cooperation with DAACs, Earthdata 3.0 presents a variety of search results upon a user's keyword(s) entry. These results are not just textual links, but also direct links to downloadable datasets, visualizations of datasets and collections of data, and related articles and videos for further research. The end result of the development of the EUI and the enhanced multi-response type search is a consistent and usable platform for Earth scientists and users to navigate and locate data to further their research.

  18. Faults Images (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  19. Cloud-radiative forcing and climate - Results from the Earth Radiation Budget Experiment (United States)

    Ramanathan, V.; Cess, R. D.; Harrison, E. F.; Minnis, P.; Barkstrom, B. R.


    The spaceborne Earth Radiation Budget Experiment was begun in 1984 to obtain quantitative estimates of the global distributions of cloud-radiative forcing. The magnitude of the observed net cloud forcing is about four times greater than the expected value of radiative forcing from a doubling of CO2; the shortwave and longwave components of cloud forcing are about 10 times as large as those for a CO2 doubling. Small changes in the cloud-radiative forcing fields can therefore play a significant role as a climate-feedback mechanism.

  20. Characterization of the San Andreas Fault near Parkfield, California by fault-zone trapped waves (United States)

    Li, Y.; Vidale, J.; Cochran, E.


    In October, 2002, coordinated by the Pre-EarthScope/SAFOD, we conducted an extensive seismic experiment at the San Andreas fault (SAF), Parkfield to record fault-zone trapped waves generated by explosions and microearthquakes using dense linear seismic arrays of 52 PASSCAL 3-channel REFTEKs deployed across and along the fault zone. We detonated 3 explosions within and out of the fault zone during the experiment, and also recorded other 13 shots of PASO experiment of UWM/RPI (Thurber and Roecker) detonated around the SAFOD drilling site at the same time. We observed prominent fault-zone trapped waves with large amplitudes and long duration following S waves at stations close to the main fault trace for sources located within and close to the fault zone. Dominant frequencies of trapped waves are 2-3 Hz for near-surface explosions and 4-5 Hz for microearthquakes. Fault-zone trapped waves are relatively weak on the north strand of SAF for same sources. In contrast, seismograms registered for both the stations and shots far away from the fault zone show a brief S wave and lack of trapped waves. These observations are consistent with previous findings of fault-zone trapped waves at the SAF [Li et al., 1990; 1997], indicating the existence of a well-developed low-velocity waveguide along the main fault strand (principal slip plan) of the SAF. The data from denser arrays and 3-D finite-difference simulations of fault-zone trapped waves allowed us to delineate the internal structure, segmentation and physical properties of the SAF with higher resolution. The trapped-wave inferred waveguide on the SAF Parkfield segment is ~150 m wide at surface and tapers to ~100 m at seismogenic depth, in which Q is 20-50 and S velocities are reduced by 30-40% from wall-rock velocities, with the greater velocity reduction at the shallow depth and to southeast of the 1966 M6 epicenter. We interpret this low-velocity waveguide on the SAF main strand as being the remnant of damage zone caused

  1. First decadal lunar results from the Moon and Earth Radiation Budget Experiment. (United States)

    Matthews, Grant


    A need to gain more confidence in computer model predictions of coming climate change has resulted in greater analysis of the quality of orbital Earth radiation budget (ERB) measurements being used today to constrain, validate, and hence improve such simulations. These studies conclude from time series analysis that for around a quarter of a century, no existing satellite ERB climate data record is of a sufficient standard to partition changes to the Earth from those of un-tracked and changing artificial instrumentation effects. This led to the creation of the Moon and Earth Radiation Budget Experiment (MERBE), which instead takes existing decades old climate data to a higher calibration standard using thousands of scans of Earth's Moon. The Terra and Aqua satellite ERB climate records have been completely regenerated using signal-processing improvements, combined with a substantial increase in precision from more comprehensive in-flight spectral characterization techniques. This study now builds on previous Optical Society of America work by describing new Moon measurements derived using accurate analytical mapping of telescope spatial response. That then allows a factor of three reduction in measurement noise along with an order of magnitude increase in the number of retrieved independent lunar results. Given decadal length device longevity and the use of solar and thermal lunar radiance models to normalize the improved ERB results to the International System of Units traceable radiance scale of the "MERBE Watt," the same established environmental time series analysis techniques are applied to MERBE data. They evaluate it to perhaps be of sufficient quality to immediately begin narrowing the largest of climate prediction uncertainties. It also shows that if such Terra/Aqua ERB devices can operate into the 2020s, it could become possible to halve these same uncertainties decades sooner than would be possible with existing or even planned new observing systems.

  2. Consistency of Earth Radiation Budget Experiment bidirectional models and the observed anisotropy of reflected sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, D.G. (Univ. of Colorado, Boulder (USA)); Coakley, J.A. (Oregon State Univ., Corvallis (USA))


    The Earth Radiation Budget Experiment (ERBE) uses bidirectional models to estimate radiative fluxes from observed radiances. The anisotropy of the radiance field derived from these models is compared with that observed with the ERBE scanner on the Earth Radiation Budget Satellite (ERBS). The bidirectional models used by ERBE were derived from NIMBUS 7 Earth radiation budget (ERB) scanner observations. Because of probable differences in the radiometric calibrations of the ERB and ERBE scanners and because of differences in their field of view sizes, the authors expect to find systematic differences of a few percent between the NIMBUS 7 ERB-derived radiation field anisotropy and the ERBS scanner-observed anisotropy. The differences expected are small compared with the variability of the anisotropy which arises from the variability in cloud cover allowed to occur within the individual scene types. By averaging over groups of 40 ERBE scanner scan lines (equivalent to an average over approximately 2,000 km) for a period of a month, they detect significant differences between the modeled and observed anisotropy for particular scene types and Sun-Earth-satellite viewing geometries. For a typical 2.5{degree} latitude-longitude region these differences give rise to a bias in the radiative flux that is at least 0.3% for the monthly mean and an rms error that is at least 4% for instantaneous observations. By comparing the fluxes derived using the observed anisotropy with those derived assuming isotropic reflection, they conclude that a reasonable estimate for the maximum error due to the use of incorrect bidirectional models is a bias of approximately 4% for a typical 2.5{degree} latitude-longitude, monthly mean and an rms error of 15%.

  3. Fault finder (United States)

    Bunch, Richard H.


    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  4. The first Italian superconducting fault current limiter: Results of the field testing experience after one year operation

    International Nuclear Information System (INIS)

    Martini, L; Bocchi, M; Ascade, M; Valzasina, A; Rossi, V; Angeli, G; Ravetta, C


    Ricerca sul Sistema Energetico S.p.A. (RSE) has been gaining a relevant experience in the simulation, design and installation of resistive-type Superconducting Fault Current Limiter (SFCL) devices for more than five years in the framework of a R and D national project funded by the Ricerca di Sistema (RdS). The most recent outcome of this research activity is the installation of a resistive-type BSCCO-based 9 kV / 3.4 MVA SFCL device in a single feeder branch of the Medium Voltage (MV) distribution network managed by A2A Reti Elettriche S.p.A (A2A) in the Milano area. This installation represents the first SFCL successfully installed in Italy. In this paper, we report on the main outcomes after a more than 1-year long steady-state field testing activity. The design of an upgraded device to be installed in the same substation has already been initiated: the new SFCL will allow to protect four different feeders, therefore implying a device upgrade up to 15.6 MVA.

  5. Does fault strengthening in laboratory rock friction experiments really depend primarily upon time and not slip? (United States)

    Bhattacharya, Pathikrit; Rubin, Allan M.; Beeler, Nicholas M.


    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law) or with time even without slip (Aging law). While rate stepping experiments show support for the Slip law, laboratory-observed frictional behavior near-zero slip rates has traditionally been inferred as supporting Aging law style time-dependent healing, in particular, from the slide-hold-slide experiments of Beeler et al. (1994). Using a combination of new analytical results and explicit numerical (Bayesian) inversion, we show instead that the slide-hold-slide data of Beeler et al. (1994) favor slip-dependent state evolution during holds. We show that, while the stiffness-independent rate of growth of peak stress (following reslides) with hold duration is a property shared by both the Aging and (under a more restricted set of parameter combinations) Slip laws, the observed stiffness dependence of the rate of stress relaxation during long holds is incompatible with the Aging law with constant rate-state parameters. The Slip law consistently fits the evolution of the stress minima at the end of the holds well, whether fitting jointly with peak stresses or otherwise. But neither the Aging nor Slip laws fit all the data well when a - b is constrained to values derived from prior velocity steps. We also attempted to fit the evolution of stress peaks and minima with the Kato-Tullis hybrid law and the shear stress-dependent Nagata law, both of which, even with the freedom of an extra parameter, generally reproduced the best Slip law fits to the data.

  6. Taking into account the Earth's rotation in experiments on search for the electric dipole moment of neutron

    International Nuclear Information System (INIS)

    Silenko, A.Ya.


    Analysis of the problem of taking into account the Earth's rotation in a search for the electric dipole moment (EDM) of the neutron in experiments with ultracold neutrons and in a diffractional experiment is fulfilled. Taking into account the Earth's rotation in the diffractional experiment gives an exactly calculated correction which is negligible as compared with the accuracy reached at present time. In the experiments with ultracold neutrons, the correction is greater than the systematical error and the exact calculation of it needs further investigation. In this connection, further developments of diffractional method would considerably promote progress in the search for the electric dipole moment of the neutron

  7. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics. (United States)

    Surducan, E; Surducan, V; Limare, A; Neamtu, C; Di Giuseppe, E


    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm(3) convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  8. Haze production rates in super-Earth and mini-Neptune atmosphere experiments (United States)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique


    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  9. Composition of the earth's atmosphere by shock-layer radiometry during the PAET entry probe experiment. (United States)

    Whiting, E. E.; Arnold, J. O.; Page, W. A.; Reynolds, R. M.


    A determination of the composition of the earth's atmosphere obtained from onboard radiometer measurements of the spectra emitted from the bow shock layer of a high-speed entry probe is reported. The N2, O2, CO2, and noble gas concentrations in the earth's atmosphere were determined to good accuracy by this technique. The results demonstrate unequivocally the feasibility of determining the composition of an unknown planetary atmosphere by means of a multichannel radiometer viewing optical emission from the heated atmospheric gases in the region between the bow shock wave and the vehicle surface. The spectral locations in this experiment were preselected to enable the observation of CN violet, N2(+) first negative and atomic oxygen emission at 3870, 3910, and 7775 A, respectively. The atmospheric gases were heated and compressed by the shock wave to a peak temperature of about 6100 K and a corresponding pressure of 0.4 atm. Complete descriptions of the data analysis technique and the onboard radiometer and its calibration are given.

  10. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise (United States)

    Meredith, Barry D.


    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  11. Haze production rates in super-Earth and mini-Neptune atmosphere experiments (United States)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique


    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  12. Consistency of Earth Radiation Budget Experiment bidirectional models and the observed anisotropy of reflected sunlight (United States)

    Baldwin, Daniel G.; Coakley, James A., Jr.


    The anisotropy of the radiance field estimated from bidirectional models derived from Nimbus 7 ERB scanner data is compared with the anisotropy observed with the ERB Experiment (ERBE) scanner aboard the ERB satellite. The results of averaging over groups of 40 ERBE scanner scan lines for a period of a month revealed significant differences between the modeled and the observed anisotropy for given scene types and the sun-earth-satellite viewing geometries. By comparing the radiative fluxes derived using the observed anisotropy with those derived assuming isotropic reflection, it is concluded that a reasonable estimate for the maximum error due to the use of incorrect bidirectional models is a bias of about 4 percent for a typical 2.5 deg latitude-longitude monthly mean, and an rms error of 15 percent.

  13. Science Results from Colorado Student Space Weather Experiment (CSSWE): Energetic Particle Distribution in Near Earth Environment (United States)

    Li, Xinlin


    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, launched into a low-Earth, polar orbit on 13 September 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of trapped radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics for NASA/Van Allen Probes mission, which consists of two identical spacecraft, launched 30 August 2012, that traverse the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3.3 MeV. The commissioning phase was completed and REPTile was activated on 4 October 2012. The data are very clean, far exceeding expectations! A number of engineering challenges had to be overcome to achieve such clean measurements under the mass and power limits of a CubeSat. The CSSWE is also an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project.

  14. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.


    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  15. Pairing Essential Climate Science with Sustainable Energy Information: the "EARTH-The Operators' Manual" experiment (United States)

    Akuginow, E.; Alley, R. B.; Haines-Stiles, G.


    considerable challenge of supplying clean energy to a growing population. Additional scenes have been filmed in Brazil, Spain, China, Morocco, Scotland, and across America, including at the National Renewable Energy Lab. in Denver, CO, and New Orleans. Program 3 (presently untitled and targeted for 2012) will feature American communities seeking to increase energy efficiency and minimize carbon emissions. The Fall 2010 AGU presentation will include video clips from the series, initial findings from focus groups (coordinated by project evaluator, Rockman Et Al) as to what information has been found most compelling to potential audiences, and a description of plans being developed by the project's science center partners in San Diego CA, Portland OR, Minneapolis-St. Paul, Fort Worth TX and Raleigh NC. "EARTH-The Operators' Manual" is an experiment to determine the effectiveness of these activities to reach audiences who, according to surveys, have actually become less convinced of anthropogenic climate change, while remaining supportive of investments in advancing clean energy opportunities.

  16. How to Communicate Near Earth Objects with the Public - Klet Observatory Experience (United States)

    Ticha, Jana; Tichy, Milos; Kocer, Michal


    Near-Earth Object (NEO) research is counted among the most popular parts of communicating astronomy with the public. Increasing research results in the field of Near-Earth Objects as well as impact hazard investigations cause growing interest among general public and media. Furthermore NEO related issues have outstanding educational value. So thus communicating NEO detection, NEO characterization, possible impact effects, space missions to NEOs, ways of mitigation and impact warnings with the public and media belong to the most important tasks of scientists and research institutions.Our institution represents an unique liaison of the small professional research institution devoted especially to NEO studies (the Klet Observatory, Czech Republic) and the educational and public outreach branch (the Observatory and Planetarium Ceske Budejovice, Czech Republic). This all has been giving us an excellent opportunity for bringing NEO information to wider audience. We have been obtaining a wide experience in communicating NEOs with the public more than twenty years.There is a wide spectrum of public outreach tools aimed to NEO research and hazard. As the most useful ones we consider two special on-line magazines (e-zins) devoted to asteroids ( and comets ( in Czech language, educational multimedia presentations for schools at different levels in planetarium, summer excursions for wide public just at the Klet Observatory on the top of the Klet mountain, public lectures, meetings and exhibitions. It seems to be very contributing and favoured by public to have opportunities for more or less informal meetings just with NEO researchers from time to time. Very important part of NEO public outreach consists of continuous contact with journalists and media including press releases, interviews, news, periodical programs. An increasing role of social media is taken into account through Facebook and Twitter profiles.The essential goal of all mentioned NEO

  17. Evaluation of the Earth Radiation Budget Experiment (ERBE) shortwave channel's stability using in-flight calibration sources (United States)

    Gibson, Michael A.; Lee, Robert B., III; Thomas, Susan


    The Earth Radiation Budget Experiment (ERBE) radiometers were designed to make absolute measurements of the incoming solar, earth-reflected solar, and earth-emitted fluxes for investigations of the earth's climate system. Thermistor bolometers were the sensors used for the ERBE scanning radiometric package. Each thermistor bolometer package consisted of three narrow field of view broadband radiometric channels measuring shortwave, longwave, and total (0.2 micron to 50 microns) radiation. The in-flight calibration facilities include Mirror Attenuator Mosaics, shortwave internal calibration source, and internal blackbody sources to monitor the long-term responsivity of the radiometers. This paper describes the in-flight calibration facilities, the calibration data reduction techniques, and the results from the in-flight shortwave channel calibrations. The results indicate that the ERBE shortwave detectors were stable to within +/- 1 percent for up to five years of flight operation.

  18. Creating a Research Experience in an Undergraduate Geophysics Course: Integrated Geophysical Study of the Silver Creek Fault, Santa Clara Valley, California (United States)

    Reed, D. L.; Williams, R.


    An undergraduate geophysics course at the San Jose State University was redesigned to focus on providing students with an integrated research experience that included both formative and summative assessments of learning. To this end, the students carried out four geophysical studies (gravity, magnetic, refraction, and reflection) across the inferred location of the Silver Creek fault, which is buried by the Quaternary alluvium of the Santa Clara Valley within walking distance of the university. The seismic experiments were made possible with equipment loaned by Geometrics Inc. and seismic and borehole data first acquired during a joint study by the U.S. Geological Survey and the Santa Clara Valley Water District. Three field reports, one produced after each of the first three field experiments, provided formative assessment of each student's understanding of the geophysical method, its application to the primary research objective of defining the location and structure of the Silver Creek fault, and their ability to produce a manuscript of professional quality. After each of the field reports, students were required to rewrite the report, based on feedback provided by the instructor, as well as incorporate the analysis and interpretation of the subsequent geophysical study. Students also modified conclusions of the preceding surveys in order to produce an internally consistent interpretation with each new analysis. Regional geologic relations and borehole data provided additional constraints to interpretations based on the geophysical analyses. For summative assessment, students submitted a final manuscript that had undergone three revisions as well as presented an integrated geophysical study of the Silver Creek fault based on the four geophysical experiments. The quality of the field reports showed marked improvement with each successive submission during the semester and were significantly better than in previous versions of the course, which featured various

  19. Understanding Coupled Earth-Surface Processes through Experiments and Models (Invited) (United States)

    Overeem, I.; Kim, W.


    Traditionally, both numerical models and experiments have been purposefully designed to ';isolate' singular components or certain processes of a larger mountain to deep-ocean interconnected source-to-sink (S2S) transport system. Controlling factors driven by processes outside of the domain of immediate interest were treated and simplified as input or as boundary conditions. Increasingly, earth surface processes scientists appreciate feedbacks and explore these feedbacks with more dynamically coupled approaches to their experiments and models. Here, we discuss key concepts and recent advances made in coupled modeling and experimental setups. In addition, we emphasize challenges and new frontiers to coupled experiments. Experiments have highlighted the important role of self-organization; river and delta systems do not always need to be forced by external processes to change or develop characteristic morphologies. Similarly modeling f.e. has shown that intricate networks in tidal deltas are stable because of the interplay between river avulsions and the tidal current scouring with both processes being important to develop and maintain the dentritic networks. Both models and experiment have demonstrated that seemingly stable systems can be perturbed slightly and show dramatic responses. Source-to-sink models were developed for both the Fly River System in Papua New Guinea and the Waipaoa River in New Zealand. These models pointed to the importance of upstream-downstream effects and enforced our view of the S2S system as a signal transfer and dampening conveyor belt. Coupled modeling showed that deforestation had extreme effects on sediment fluxes draining from the catchment of the Waipaoa River in New Zealand, and that this increase in sediment production rapidly shifted the locus of offshore deposition. The challenge in designing coupled models and experiments is both technological as well as intellectual. Our community advances to make numerical model coupling more

  20. Fault diagnosis (United States)

    Abbott, Kathy


    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  1. Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity

    Directory of Open Access Journals (Sweden)

    M. Eby


    Full Text Available Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there

  2. Earth-satellite propagation above GHz: Papers from the 1972 spring URSI session on experiments utilizing the ATS-5 satellite (United States)

    Ippolito, L. J. (Compiler)


    Papers are reported from the Special Session on Earth-Satellite Propagation Above 10 GHz, presented at The 1972 Spring Meeting of the United States National Committee, International Union of Radio Science, April 1972, Washington, D. C. This session was devoted to propagation measurements associated with the Applications Technology Satellite (ATS-5), which provided the first operational earth-space links at frequencies above 15 GHz. A comprehensive summary is presented of the major results of the ATS-5 experiment measurements and related radiometric, radar and meteorological studies. The papers are organized around seven selected areas of interest, with the results of the various investigators combined into a single paper presented by a principal author for that area. A comprehensive report is provided on the results of the ATS-5 satellite to earth transmissions. A complete list of published reports and presentations related to the ATS-5 Millimeter Wave Experiment is included.

  3. Neotectonic development of the El Salvador Fault Zone and implications for deformation in the Central America Volcanic Arc: Insights from 4-D analog modeling experiments (United States)

    Alonso-Henar, Jorge; Schreurs, Guido; Martinez-Díaz, José Jesús; Álvarez-Gómez, José Antonio; Villamor, Pilar


    The El Salvador Fault Zone (ESFZ) is an active, approximately 150 km long and 20 km wide, segmented, dextral strike-slip fault zone within the Central American Volcanic Arc striking N100°E. Although several studies have investigated the surface expression of the ESFZ, little is known about its structure at depth and its kinematic evolution. Structural field data and mapping suggest a phase of extension, at some stage during the evolution of the ESFZ. This phase would explain dip-slip movements on structures that are currently associated with the active, dominantly strike slip and that do not fit with the current tectonic regime. Field observations suggest trenchward migration of the arc. Such an extension and trenchward migration of the volcanic arc could be related to slab rollback of the Cocos plate beneath the Chortis Block during the Miocene/Pliocene. We carried out 4-D analog model experiments to test whether an early phase of extension is required to form the present-day fault pattern in the ESFZ. Our experiments suggest that a two-phase tectonic evolution best explains the ESFZ: an early pure extensional phase linked to a segmented volcanic arc is necessary to form the main structures. This extensional phase is followed by a strike-slip dominated regime, which results in intersegment areas with local transtension and segments with almost pure strike-slip motion. The results of our experiments combined with field data along the Central American Volcanic Arc indicate that the slab rollback intensity beneath the Chortis Block is greater in Nicaragua and decreases westward to Guatemala.

  4. The Kickstart of the Age of the Earth Race: Revisiting the Experiment of the Comte de Buffon at School (United States)

    Pincelli, M. M.; Prat, M. R.; Lescano, G. M.; Formichella, M. del C.; Brustle, M.; Otranto, S.


    In this work, the first experiment ever done to determine the age of the Earth is revisited. The benefits of its application at primary and secondary school levels are presented and discussed. In particular, emphasis is placed on the advantage of facing students with the challenges that scientists have had to overcome during the past three…

  5. Structure of kaolinite and influence of stacking faults: reconciling theory and experiment using inelastic neutron scattering analysis. (United States)

    White, Claire E; Kearley, Gordon J; Provis, John L; Riley, Daniel P


    The structure of kaolinite at the atomic level, including the effect of stacking faults, is investigated using inelastic neutron scattering (INS) spectroscopy and density functional theory (DFT) calculations. The vibrational dynamics of the standard crystal structure of kaolinite, calculated using DFT (VASP) with normal mode analysis, gives good agreement with the experimental INS data except for distinct discrepancies, especially for the low frequency modes (200-400 cm(-1)). By generating several types of stacking faults (shifts in the a,b plane for one kaolinite layer relative to the adjacent layer), it is seen that these low frequency modes are affected, specifically through the emergence of longer hydrogen bonds (O-H⋯O) in one of the models corresponding to a stacking fault of -0.3151a - 0.3151b. The small residual disagreement between observed and calculated INS is assigned to quantum effects (which are not taken into account in the DFT calculations), in the form of translational tunneling of the proton in the hydrogen bonds, which lead to a softening of the low frequency modes. DFT-based molecular dynamics simulations show that anharmonicity does not play an important role in the structural dynamics of kaolinite.

  6. Evaluation of the Earth Systems Research Laboratory's global Observing System Simulation Experiment system

    Directory of Open Access Journals (Sweden)

    Nikki C. Privé


    Full Text Available An Observing System Simulation Experiment (OSSE system has been implemented at the National Oceanographic and Atmospheric Administration Earth Systems Research Laboratory in the US as part of an international Joint OSSE effort. The setup of the OSSE consists of a Nature Run from a 13-month free run of the European Center for Medium-Range Weather Forecasts operational model, synthetic observations developed at the National Centers for Environmental Prediction (NCEP and the National Aeronautics and Space Administration Global Modelling and Assimilation Office, and an operational version of the NCEP Gridpoint Statistical Interpolation data assimilation and Global Forecast System numerical weather prediction model. Synthetic observations included both conventional observations and the following radiance observations: AIRS, AMSU-A, AMSU-B, HIRS2, HIRS3, MSU, GOES radiance and OSBUV. Calibration was performed by modifying the error added to the conventional synthetic observations to achieve a match between data denial impacts on the analysis state in the OSSE system and in the real data system. Following calibration, the performance of the OSSE system was evaluated in terms of forecast skill scores and impact of observations on forecast fields.

  7. Earthkeepers in the Czech Republic: Experience from the implementation process of an earth education programme

    Directory of Open Access Journals (Sweden)

    Jan Činčera


    Full Text Available The article presents experience with implementation of the international Earthkeepers earth education programme in the Czech Republic. The paper begins with an evaluation of the implementation process from the point of view of the staff of the Bohemian Paradise Ecological Education Centre (Středisko ekologické výchovy Český ráj that prepared and conducted the Czech version of the programme. According to their assessment, the process was challenging, demanding, and rewarding. In the second part, the article analyzes pupils’ (age 10-12 and teachers’ satisfaction with the programme. The respondents expressed a high level of satisfaction, with the programme having a lingering effect on following school lessons. The last part presents the effects of the piloted programme on pupils’ ecological knowledge and attitudes. The results proved to have a positive impact of the programme on both variables. Implications for further dissemination of the programme in the Czech Republic are discussed.

  8. Fault-Related Sanctuaries (United States)

    Piccardi, L.


    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  9. Analysis of earth albedo effect on sun sensor measurements based on theoretical model and mission experience (United States)

    Brasoveanu, Dan; Sedlak, Joseph


    Analysis of flight data from previous missions indicates that anomalous Sun sensor readings could be caused by Earth albedo interference. A previous Sun sensor study presented a detailed mathematical model of this effect. The model can be used to study the effect of both diffusive and specular reflections and to improve Sun angle determination based on perturbed Sun sensor measurements, satellite position, and an approximate knowledge of attitude. The model predicts that diffuse reflected light can cause errors of up to 10 degrees in Coarse Sun Sensor (CSS) measurements and 5 to 10 arc sec in Fine Sun Sensor (FSS) measurements, depending on spacecraft orbit and attitude. The accuracy of these sensors is affected as long as part of the illuminated Earth surface is present in the sensor field of view. Digital Sun Sensors (DSS) respond in a different manner to the Earth albedo interference. Most of the time DSS measurements are not affected, but for brief periods of time the Earth albedo can cause errors which are a multiple of the sensor least significant bit and may exceed one degree. This paper compares model predictions with Tropical Rainfall Measuring Mission (TRMM) CSS measurements in order to validate and refine the model. Methods of reducing and mitigating the impact of Earth albedo are discussed. ne CSS sensor errors are roughly proportional to the Earth albedo coefficient. Photocells that are sensitive only to ultraviolet emissions would reduce the effective Earth albedo by up to a thousand times, virtually eliminating all errors caused by Earth albedo interference.

  10. Earth Sciences as a Vehicle for Gifted Education--The Hong Kong Experience (United States)

    Murphy, Phillip J.; Chan, Lung Sang; Murphy, Elizabeth


    The development and delivery of an Earth-science-focused short course designed to prepare Hong Kong students for university level study is described. Earth sciences provide an inspirational and challenging context for learning and teaching in Hong Kong's increasingly skills-based curriculum. (Contains 3 figures and 4 online resources.)

  11. PanEurasian Experiment (PEEX): Modelling Platform for Earth System Observations and Forecasting (United States)

    Baklanov, Alexander; Mahura, Alexander; Penenko, Vladimir; Zilitinkevich, Sergej; Kulmala, Markku


    models, analysing scenarios, inverse modelling, modelling based on measurement needs and processes; • Model validation by remote sensing data and assimilation of satellite observations to constrain models to better understand processes, e.g., emissions and fluxes with top-down modelling; • Geophysical/ chemical model validation with experiments at various spatial and temporal scales. Added value of the comprehensive multi-platform observations and modeling; network of monitoring stations with the capacity to quantify those interactions between neighboring areas ranging from the Arctic and the Mediterranean to the Chinese industrial areas and the Asian steppes is needed. For example, apart from development of Russian stations in the PEEX area a strong co-operation with surrounding research infrastructures in the model of ACTRIS network needs to be established in order to obtain a global perspective of the emissions transport, transformation and ageing of pollutants incoming and exiting the PEEX area. The PEEX-MP aims to simulate and predict the physical aspects of the Earth system and to improve understanding of the bio-geochemical cycles in the PEEX domain, and beyond. The environmental change in this region implies that, from the point-of-view of atmospheric flow, the lower boundary conditions are changing. This is important for applications with immediate relevance for society, such as numerical weather prediction. The PEEX infrastructure will provide a unique view to the physical properties of the Earth surface, which can be used to improve assessment and prediction models. This will directly benefit citizens of the North in terms of better early warning of hazardous events, for instance. On longer time-scales, models of the bio-geochemical cycles in the PEEX domain absolutely need support from the new monitoring infra-structure to better measure and quantify soil and vegetation properties. In the most basic setup, the atmospheric and oceanic Global Circulation

  12. Innovating the Experience of Peer Learning and Earth Science Education in the Field (United States)

    Scoates, J. S.; Hanano, D. W.; Weis, D.; Bilenker, L.; Sherman, S. B.; Gilley, B.


    development of professional skills in three key areas: (1) project and time management, (2) teamwork and communication, and (3) critical thinking and problem-solving. The MAGNET experience with peer learning represents a model that can readily be adapted for future field instruction in the Earth Sciences.

  13. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F


    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  14. Guilt without fault

    DEFF Research Database (Denmark)

    Schrøder, Katja; la Cour, Karen; Jørgensen, Jan Stener


    -free approach is promoted in the aftermath of adverse events. The purpose is to illustrate how healthcare professionals may experience guilt without being at fault after adverse events, and Gamlund's theory on forgiveness without blame is used as the theoretical framework for this analysis. Philosophical...

  15. Climate studies from satellite observations - Special problems in the verification of earth radiation balance, cloud climatology, and related climate experiments (United States)

    Vonder Haar, T. H.


    A body of techniques that have been developed and planned for use during the Earth Radiation Budget Experiment (ERBE), the International Satellite Cloud Climatology Project (ISCCP), and related climate experiments of the 1980's are reviewed. Validation and verification methods must apply for systems of satellites. They include: (1) use of a normalization or intercalibration satellite, (2) special intensive observation areas located over ground-truth sites, and (3) monitoring of sun and earth by several satellites and/or several instruments at the same time. Since each climate application area has a hierarchy of user communities, validation techniques vary from very detailed methods to those that simply assure high relative accuracy in detecting space and time variations for climate studies. It is shown that climate experiments generally require more emphasis on long-term stability and internal consistency of satellite data sets than high absolute accuracy.

  16. Racial Fault-lines in “Baseball’s Great Experiment:” Black Perceptions, White Reactions

    Directory of Open Access Journals (Sweden)

    Henry D. Fetter


    Full Text Available This paper examines three facets of the breaking of major league baseball’s color line by Jackie Robinson of the Brooklyn Dodgers in 1947: the perception of blacks, the response of white players (whether teammates or opponents, and the reaction of baseball fans. By so doing, the paper will illuminate the fault-lines that characterized race relations within both the sport of baseball and the larger society as each was confronted with new challenges to long established policies and practices in the years after the Second World War.

  17. The Third Tibetan Plateau Atmospheric Scientific Experiment for Understanding the Earth-Atmosphere Coupled System (United States)

    Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L. P.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; Zhong, L. Z.; Ma, Y.; Tang, S. H.; Liu, Y.; Liu, H.; Li, Y. H.; Zhang, Q.; Hu, Z.; Sun, J. H.; Zhang, S.; Dong, L.; Zhang, H.; Zhao, Y.; Yan, X.; Xiao, A.; Wan, W.; Zhou, X.


    The Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III) was initiated jointly by the China Meteorological Administration, the National Natural Scientific Foundation, and the Chinese Academy of Sciences. This paper presents the background, scientific objectives, and overall experimental design of TIPEX-III. It was designed to conduct an integrated observation of the earth-atmosphere coupled system over the Tibetan Plateau (TP) from land surface, planetary boundary layer (PBL), troposphere, and stratosphere for eight to ten years by coordinating ground- and air-based measurement facilities for understanding spatial heterogeneities of complex land-air interactions, cloud-precipitation physical processes, and interactions between troposphere and stratosphere. TIPEX-III originally began in 2014, and is ongoing. It established multiscale land-surface and PBL observation networks over the TP and a tropospheric meteorological radiosonde network over the western TP, and executed an integrated observation mission for cloud-precipitation physical features using ground-based radar systems and aircraft campaigns and an observation task for atmospheric ozone, aerosol, and water vapor. The archive, management, and share policy of the observation data are also introduced herein. Some TIPEX-III data have been preliminarily applied to analyze the features of surface sensible and latent heat fluxes, cloud-precipitation physical processes, and atmospheric water vapor and ozone over the TP, and to improve the local precipitation forecast. Furthermore, TIPEX-III intends to promote greater scientific and technological cooperation with international research communities and broader organizations. Scientists working internationally are invited to participate in the field campaigns and to use the TIPEX-III data for their own research.

  18. Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments (United States)

    Schwandt, Craig S.; McKay, Gordon A.


    Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.

  19. Faults in Linux

    DEFF Research Database (Denmark)

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman


    In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been...... decreasing. And, even though drivers still accounts for a large part of the kernel code and contains the most faults, its fault rate is now below that of other directories, such as arch (HAL) and fs (file systems). These results can guide further development and research efforts. To enable others...

  20. Active fault traces along Bhuj Fault and Katrol Hill Fault, and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 3. Active fault traces ... Fumio Kaneko1. OYO International Corporation, Rokubancho Kyodo Bldg. 2F, 6 Rokubancho, Chiyoda-ku, Tokyo, Japan 102-0085. Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India.

  1. Mechanisms, Monitoring and Modeling Earth Fissure generation and Fault activation due to subsurface Fluid exploitation (M3EF3): A UNESCO-IGCP project in partnership with the UNESCO-IHP Working Group on Land Subsidence (United States)

    Teatini, P.; Carreon-Freyre, D.; Galloway, D. L.; Ye, S.


    Land subsidence due to groundwater extraction was recently mentioned as one of the most urgent threats to sustainable development in the latest UNESCO IHP-VIII (2014-2020) strategic plan. Although advances have been made in understanding, monitoring, and predicting subsidence, the influence of differential vertical compaction, horizontal displacements, and hydrostratigraphic and structural features in groundwater systems on localized near-surface ground ruptures is still poorly understood. The nature of ground failure may range from fissuring, i.e., formation of an open crack, to faulting, i.e., differential offset of the opposite sides of the failure plane. Ground ruptures associated with differential subsidence have been reported from many alluvial basins in semiarid and arid regions, e.g. China, India, Iran, Mexico, Saudi Arabia, Spain, and the United States. These ground ruptures strongly impact urban, industrial, and agricultural infrastructures, and affect socio-economic and cultural development. Leveraging previous collaborations, this year the UNESCO Working Group on Land Subsidence began the scientific cooperative project M3EF3 in collaboration with the UNESCO International Geosciences Programme (IGCP n.641; to improve understanding of the processes involved in ground rupturing associated with the exploitation of subsurface fluids, and to facilitate the transfer of knowledge regarding sustainable groundwater management practices in vulnerable aquifer systems. The project is developing effective tools to help manage geologic risks associated with these types of hazards, and formulating recommendations pertaining to the sustainable use of subsurface fluid resources for urban and agricultural development in susceptible areas. The partnership between the UNESCO IHP and IGCP is ensuring that multiple scientific competencies required to optimally investigate earth fissuring and faulting caused by groundwater withdrawals are being employed.

  2. Fault shear stiffness as the key parameter determining fault behavior (United States)

    Ostapchuk, A. A.; Kocharyan, G. G.; Pavlov, D. V.; Kabychenko, N. V.


    Presented are the results of laboratory experiments on studying the variation of fault shear stiffness during a seismic cycle. It is shown that the slip mode correlates well with the specific value of fault stiffness ks1 at the loading stage. As the fault goes over to a metastable state, its stiffness changes abruptly from ks1 to 0. This change can be detected in active monitoring, which consists in analyzing the frequency response of an oscillatory "block-fault" system. A periodic pulsed action on the "block-fault" system allowed us to reliably detect a relative decrease by 30% of the resonance frequency of its response when the system goes over to the metastable state.

  3. Re-orientation of the extension direction and pure extensional faulting at oblique rift margins: Comparison between the Main Ethiopian Rift and laboratory experiments

    NARCIS (Netherlands)

    Corti, G.; Philippon, M.|info:eu-repo/dai/nl/370818636; Sani, F.; Keir, D.; Kidane, T.


    In this study, we draw on a unique combination of well-resolved fault-slip data and earthquake focal mechanisms to constrain spatial variations in style of faulting in the obliquely extending Main Ethiopian Rift, East Africa. These data show that both boundary and internal faults - oblique and

  4. The kickstart of the age of the Earth race: revisiting the experiment of the Comte de Buffon at school (United States)

    Pincelli, M. M.; Prat, M. R.; Lescano, G. M.; Formichella, M. del C.; Brustle, M.; Otranto, S.


    In this work, the first experiment ever done to determine the age of the Earth is revisited. The benefits of its application at primary and secondary school levels are presented and discussed. In particular, emphasis is placed on the advantage of facing students with the challenges that scientists have had to overcome during the past three centuries to reach our present knowledge in contrast to the mere transmission of the latest facts.

  5. Cross-Cultural Field Experiences in Earth and Social Sciences for Chilean and American Graduate Students (United States)

    Duffin, J.; Russell, M.; Fuentes, B.; Riffo, A.; Link, T. E.; Caamaño, D.; King, R.; Barra, R.


    the plans of both countries. This project is an example of the value of supplemental field experiences in graduate education, as it stimulated conversations on earth science subjects that transcend disciplines, cultures, and scales, and provided students a practicum for applying interdisciplinary research techniques.

  6. Soil and crop management experiments in the Laboratory Biosphere: An analogue system for the Mars on Earth ® facility (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil

  7. Creating the Public Connection: Interactive Experiences with Real-Time Earth and Space Science Data (United States)

    Reiff, Patricia H.; Ledley, Tamara S.; Sumners, Carolyn; Wyatt, Ryan


    The Houston Museum of Natural Sciences is less than two miles from Rice University, a major hub on the Internet. This project links these two institutions so that NASA real-time data and imagery can flow via Rice to the Museum where it reaches the public in the form of planetarium programs, computer based interactive kiosks, and space and Earth science problem solving simulation. Through this program at least 200,000 visitors annually (including every 4th and 7th grader in the Houston Independent School District) will have direct exposure to the Earth and space research being conducted by NASA and available over the Internet. Each information conduit established between Rice University and the Houston Museum of Natural Science will become a model for public information dissemination that can be replicated nationally in museums, planetariums, Challenger Centers, and schools.


    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics and Astronomy, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples " Federico II," I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991 Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Felice, V. Di [INFN, Sezione di Rome " Tor Vergata," I-00133 Rome (Italy); Castellini, G., E-mail: [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); and others


    We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above ∼70 MeV performed by the PAMELA mission at low Earth orbits (350 ÷ 610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra, and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes, placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.

  9. Seasonal water storage modulating seismicity on California faults (United States)

    Johnson, C. W.; Fu, Y.; Burgmann, R.


    In California the accumulation of winter snowpack in the Sierra Nevada, surface water in lakes and reservoirs, and groundwater in sedimentary basins follow the annual cycle of wet winters and dry summers. The surface loads resulting from the seasonal changes in water storage produce elastic deformation of the Earth's crust. Micro-earthquakes in California appear to follow a subtle annual cycle, possibly in response to the water load. Previous studies posit that temperature, atmospheric pressure, or hydrologic changes may strain the lithosphere and promote additional earthquakes above background levels. Here we use GPS vertical time series (2006 - 2015) to constrain models of monthly hydrospheric loading and compute annual peak-to-peak stresses on faults throughout northern California, which can exceed 1kPa. Depending on fault geometry the addition or removal of water increases the Coulomb failure stress. The largest stress amplitudes are occurring on dipping reverse faults in the Coast Ranges and along the eastern Sierra Nevada range front. We analyze M≥2.0 earthquakes with known focal mechanisms in northern and central California to resolve fault normal and shear stresses for the focal geometry. Our results reveal more earthquakes occurring during slip-encouraging stress conditions and suggest that earthquake populations are modulated at periods of natural loading cycles, which promote failure by subtle stress changes. The most notable shear-stress change occurs on more shallowly dipping structures. However, vertically dipping strike-slip faults are common throughout California and experience smaller amplitude stress change but still exhibit positive correlation with seasonal loading cycles. Our seismicity analysis suggests the annual hydrologic cycle is a viable mechanism to promote earthquakes and provides new insight to fault mechanical properties.

  10. A Geograns update. New experiences to teach earth sciences to students older than 55 (United States)

    Cerdà, A.; Pinazo, S.


    How to teach earth science to students that have access to the university after the age of 55 is a challenge due to the different background of the students. They ranged from those with only basic education (sometimes they finished school at the age of 9) to well educate students such as university professors, physicians or engineers. Students older than 55 are enrolled in what is called the university programme NauGran project at the University of Valencia. They follow diverse topics, from health science to Arts. Since 2006 the Department of Geography and the NauGran project developed the Club for Geographers and Walkers called Geograns. The objective is to teach Earth Science in the field as a strategy to improve the knowledge of the students with a direct contact with the territory. This initiative reached a successful contribution by the students, with 70 students registered. The successful strategy we have developed since then is to base our teaching on field work. Every lecture is related to some visits to the field. A pre-excursion lecture introduces the key questions of the study site (hydrology, geology, botany, geomorphology…). During the field work we review all the topics and the students are encouraged to ask and discuss any of the topics studied. Finally, a post-excursion lecture is given to review the acquired knowledge. During the last academic year 2007-2008 the excursion focussed on: (i) energy sources: problems and solutions, with visit to nuclear, wind and hydraulic power stations; (i) human disturbances and humankind as landscaper, with visits to wetlands, river gorges and Iberian settlements; and (iii) human activities and economical resources, with visits to vineyards and wineries and orange fields devoted to organic farming. This is being a positive strategy to teach Earth Science to a wide and heterogeneous group of students, as they improve their knowledge with a direct contact with the landscape, other colleagues and teachers in the

  11. IEDA Integrated Services: Improving the User Experience for Interdisciplinary Earth Science Research (United States)

    Carter-Orlando, M.; Ferrini, V. L.; Lehnert, K.; Carbotte, S. M.; Richard, S. M.; Morton, J. J.; Shane, N.; Ash, J.; Song, L.


    The Interdisciplinary Earth Data Alliance (IEDA) is an NSF-funded data facility that provides data tools and services to support the Ocean, Earth, and Polar Sciences. IEDA systems, developed and maintained primarily by the IEDA partners EarthChem and the Marine Geoscience Data System (MGDS), serve as primary community data collections for global geochemistry and marine geoscience research and support the preservation, discovery, retrieval, and analysis of a wide range of observational field and analytical data types. Individual IEDA systems originated independently and differ from one another in purpose and scope. Some IEDA systems are data repositories (EarthChem Library, Marine Geo-Digital Library), while others are actively maintained data syntheses (GMRT, PetDB, EarthChem Portal, Geochron). Still others are data visualization and analysis tools (GeoMapApp). Although the diversity of IEDA's data types, tools, and services is a major strength and of high value to investigators, it can be a source of confusion. And while much of the data managed in IEDA systems is appropriate for interdisciplinary research, investigators may be unfamiliar with the user interfaces and services of each system, especially if it is not in their primary discipline. This presentation will highlight new ways in which IEDA helps researchers to more efficiently navigate data submission and data access. It will also discuss how IEDA promotes discovery and access within and across its systems, to serve interdisciplinary science while also remaining aware of and responsive to the more specific needs of its disciplinary user communities. The IEDA Data Submission Hub (DaSH), which is currently under development, aspires to streamline the submission process for both the science data contributor and for the repository data curator. Instead of users deciding a priori, which system they should contribute their data to, the DaSH helps route them to the appropriate repository based primarily on data

  12. Machine Fault Signature Analysis

    Directory of Open Access Journals (Sweden)

    Pratesh Jayaswal


    Full Text Available The objective of this paper is to present recent developments in the field of machine fault signature analysis with particular regard to vibration analysis. The different types of faults that can be identified from the vibration signature analysis are, for example, gear fault, rolling contact bearing fault, journal bearing fault, flexible coupling faults, and electrical machine fault. It is not the intention of the authors to attempt to provide a detailed coverage of all the faults while detailed consideration is given to the subject of the rolling element bearing fault signature analysis.

  13. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.


    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  14. Stress evolution and fault stability during the Weichselian glacial cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Bjoern; Schmidt, Peter; Hieronymus, Christoph (Dept. of Earth Sciences, Uppsala Univ., Uppsala (Sweden))


    layered models tend to fit the data better than the few models with laterally varying lithosphere thickness, where especially the horizontal velocities vary significantly between models and between the models and the data. The regional patterns of stress distribution and stress directions are remarkably similar for all earth models, while the magnitude of the induced stresses vary significantly between models, mainly due to variations in the stiffness of the uppermost layer. The temporal stress evolution at 500 m depth in Forsmark and Oskarshamn is determined by the ice sheet evolution whereas the magnitude of the induced stresses depend on the earth model. For models with realistic stiffness distributions, the induced horizontal stresses both in Forsmark and in Oskarshamn are similar to the magnitude of the vertical stress of the ice load. Stress histories for the Paervie fault, which is located close to the western edge of the ice sheet, show that although the Paervie fault is the largest known endglacial fault, the induced stress magnitudes are not very high, which is due to the relatively modest thickness of the ice sheet here all through the glacial history. In the fault stability analysis we use mainly two synthetic background stress fields, one reverse and one strike-slip. In agreement with previous studies we find that the background stress field is important for the resulting stability field. We show that in a reverse state of stress at 9.5 km depth, with a glacially induced pore pressure head of 50% of the local ice weight, both Forsmark and Oskarshamn would experience fault instability at the end of glaciation. In a strike-slip stress state, the stability field is more sensitive to variations in the direction of the background field, but for our reference field both Forsmark and Oskarshamn show mostly stable conditions. Stability analysis at the Paervie fault shows that in a strike-slip background field the Paervie fault would be stable all through the

  15. Stress evolution and fault stability during the Weichselian glacial cycle

    International Nuclear Information System (INIS)

    Lund, Bjoern; Schmidt, Peter; Hieronymus, Christoph


    . Our flat layered models tend to fit the data better than the few models with laterally varying lithosphere thickness, where especially the horizontal velocities vary significantly between models and between the models and the data. The regional patterns of stress distribution and stress directions are remarkably similar for all earth models, while the magnitude of the induced stresses vary significantly between models, mainly due to variations in the stiffness of the uppermost layer. The temporal stress evolution at 500 m depth in Forsmark and Oskarshamn is determined by the ice sheet evolution whereas the magnitude of the induced stresses depend on the earth model. For models with realistic stiffness distributions, the induced horizontal stresses both in Forsmark and in Oskarshamn are similar to the magnitude of the vertical stress of the ice load. Stress histories for the Paervie fault, which is located close to the western edge of the ice sheet, show that although the Paervie fault is the largest known endglacial fault, the induced stress magnitudes are not very high, which is due to the relatively modest thickness of the ice sheet here all through the glacial history. In the fault stability analysis we use mainly two synthetic background stress fields, one reverse and one strike-slip. In agreement with previous studies we find that the background stress field is very important for the resulting stability field. We show that in a reverse state of stress at 9.5 km depth, with a glacially induced pore pressure head of 50% of the local ice weight, both Forsmark and Oskarshamn would experience fault instability at the end of glaciation. In a strike-slip stress state, the stability field is more sensitive to variations in the direction of the background field, but for our reference field both Forsmark and Oskarshamn show mostly stable conditions. Stability analysis at the Paervie fault shows that in a strike-slip background field the Paervie fault would be stable all

  16. Laurel Clark Earth Camp: A Program for Teachers and Students to Explore Their World and Study Global Change Through Field-Experience and Satellite Images (United States)

    Buxner, S.; Orchard, A.; Colodner, D.; Schwartz, K.; Crown, D. A.; King, B.; Baldridge, A.


    The Laurel Clark Earth Camp program provides middle and high school students and teachers opportunities to explore local environmental issues and global change through field-experiences, inquiry exercises, and exploring satellite images.

  17. Comparison of cloud forcing derived from the Earth Radiation Budget Experiment with that simulated by the NCAR Community Climate Model (United States)

    Kiehl, J. T.; Ramanathan, V.


    The cloud radiative forcing derived from the Earth Radiation Budget Experiment (ERBE) data was compared with cloud forcing simulated by a T42 version of the NCAR Community Climate Model (CCM). The comparison indicates a number of deficiencies in the CCM. Namely, it is shown that the model emits substantially more long-wave radiation than is observed by ERBE. This overestimation is attributed to two model characteristics: (1) the model is too dry and thus reduces the greenhouse longwave radiation effect of the atmosphere (permitting more longwave radiation to escape into space); and (2) the effective high cloud amount is quite small in the model.

  18. Geochemical characteristics of fault core and damage zones of the Hong-Che Fault Zone of the Junggar Basin (NW China) with implications for the fault sealing process (United States)

    Liu, Yin; Wu, Kongyou; Wang, Xi; Pei, Yangwen; Liu, Bo; Guo, Jianxun


    Faults may have a complex internal structure, including fault core and damage zone, and can act as major conduits for fluid migration. The migration of fluids along faults is generally associated with strong fluid-rock interaction, forming large amounts of cement that fill in the fractures. The cementation of the fault fractures is considered to be one of the important parameters of fault sealing. The different components of faults have diverse geochemical features because of varying physical characteristics. The investigation of the geochemical characteristics of the fault and damage zones could provide important information about the fault sealing process, which is very important in oil and gas exploration. To understand the fault-cemented sealing process, detailed geochemical studies were conducted on the fault and damage zones of the Hong-Che Fault of the northwestern Junggar Basin in China. The major and trace element data of our study suggest that the fault core is characterized by higher loss on ignition (LOI), potassium loss, Chemical Index of Alteration (CIA), and Plagioclase Index of Alteration (PIA) values and lower high field strength element (HFSE), large-ion lithosphile element (LILE), and rare earth element (REE) concentrations compared with the damage zone, implying more serious elemental loss and weathering of the fault core compared with the damage zone during faulting. The carbon and oxygen isotope data reveal that the cement of the Hong-Che Fault Zone formed due to multiple sources of fluids. The fault core was mainly affected by deep sources of hydrothermal fluids. In combination with previous studies, we suggest a potential fault-cemented sealing process during the period of fault movement. The fault core acts as the fluid conduit during faulting. After faulting, the fault core is cemented and the damage zone becomes the major conduit for fluid migration. The cementation firstly occurs on two sides of the damage zone in the upper part of the

  19. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit. (United States)

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé


    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.

  20. Ultra-thin clay layers facilitate seismic slip in carbonate faults. (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Spagnuolo, Elena; Zorzi, Federico


    Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms -1 ) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms -1 ), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

  1. Implementation of a model based fault detection and diagnosis technique for actuation faults of the SSME (United States)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.


    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the Space Shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the Space Shuttle Main Engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  2. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...... in a standard setup and a synthesis method for fault detectors is given. Further, fault detection problems with both parametric faults and faults described by external input signals are also shortly considered....

  3. Fault zone fabric and fault weakness

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C.


    Geological and geophysical evidence suggests that some crustal faults are weak1–6 compared to laboratory measurements of frictional strength7. Explanations for fault weakness include the presence of weak minerals4, high fluid pressures within the fault core8,9 and dynamic processes such as


    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin


    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A ‘fault

  5. X-ray absorption experiments on rare earth and uranium compounds under high pressure

    International Nuclear Information System (INIS)

    Schmiester, G.


    After an introduction into the phenomenon of the mixed valency and the method of measuring the microstructures by X-ray absorption spectroscopy in the area of the L edges under pressure, the results of investigations at selected substitutes of the chalcogenides and puictides of the rare earths and the uranium were given. Thus, pressure-induced valency transitions in YbS and YbTe, instabilities in valency and structural phase transitions in EUS and SmTe as well as the change in the electron structure in USb under pressure were investigated in order to answer questions of solid state physics (e.g. semiconductor-metal transitions, correlation between valency and structural phase transitions). Hybridization effects in L III spectra of formally tetravalent Ca are analyzed at CeF 4 and CeO 2 (insulators) and the role of final state effects in the L III spectra are analyzed at EuP 2 P 2 and TmSe-TmTe (semiconductor systems). (RB) [de

  6. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.


    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  7. Fault tolerant operation of switched reluctance machine (United States)

    Wang, Wei

    experiments. With the proposed optimal waveform, torque production is greatly improved under the same Root Mean Square (RMS) current constraint. Additionally, position sensorless operation methods under phase faults are investigated to account for the combination of physical position sensor and phase winding faults. A comprehensive solution for position sensorless operation under single and multiple phases fault are proposed and validated through experiments. Continuous position sensorless operation with seamless transition between various numbers of phase fault is achieved.

  8. Faults in Linux

    DEFF Research Database (Denmark)

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman


    In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... of development and research efforts on improving the reliability of driver code. Today Linux is used in a much wider range of environments, provides a much wider range of services, and has adopted a new development and release model. What has been the impact of these changes on code quality? Are drivers still...... a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been...

  9. Experimental evidence that thrust earthquake ruptures might open faults. (United States)

    Gabuchian, Vahe; Rosakis, Ares J; Bhat, Harsha S; Madariaga, Raúl; Kanamori, Hiroo


    Many of Earth's great earthquakes occur on thrust faults. These earthquakes predominantly occur within subduction zones, such as the 2011 moment magnitude 9.0 eathquake in Tohoku-Oki, Japan, or along large collision zones, such as the 1999 moment magnitude 7.7 earthquake in Chi-Chi, Taiwan. Notably, these two earthquakes had a maximum slip that was very close to the surface. This contributed to the destructive tsunami that occurred during the Tohoku-Oki event and to the large amount of structural damage caused by the Chi-Chi event. The mechanism that results in such large slip near the surface is poorly understood as shallow parts of thrust faults are considered to be frictionally stable. Here we use earthquake rupture experiments to reveal the existence of a torquing mechanism of thrust fault ruptures near the free surface that causes them to unclamp and slip large distances. Complementary numerical modelling of the experiments confirms that the hanging-wall wedge undergoes pronounced rotation in one direction as the earthquake rupture approaches the free surface, and this torque is released as soon as the rupture breaks the free surface, resulting in the unclamping and violent 'flapping' of the hanging-wall wedge. Our results imply that the shallow extent of the seismogenic zone of a subducting interface is not fixed and can extend up to the trench during great earthquakes through a torquing mechanism.

  10. Imperial scientists lead the way in preparation for the biggest experiment on earth

    CERN Multimedia

    Reeves, Danielle


    "An international team of over 2'000 scientist, led by Professor Tejinder Virdee from Imperial College London's Departement of Physics is stepping up preparations for the world's largest ever physics experiment, starting next year at CERN near Geneva, Switzerland." (1 page)

  11. Modeling the evolution of the lower crust with laboratory derived rheological laws under an intraplate strike slip fault (United States)

    Zhang, X.; Sagiya, T.


    The earth's crust can be divided into the brittle upper crust and the ductile lower crust based on the deformation mechanism. Observations shows heterogeneities in the lower crust are associated with fault zones. One of the candidate mechanisms of strain concentration is shear heating in the lower crust, which is considered by theoretical studies for interplate faults [e.g. Thatcher & England 1998, Takeuchi & Fialko 2012]. On the other hand, almost no studies has been done for intraplate faults, which are generally much immature than interplate faults and characterized by their finite lengths and slow displacement rates. To understand the structural characteristics in the lower crust and its temporal evolution in a geological time scale, we conduct a 2-D numerical experiment on the intraplate strike slip fault. The lower crust is modeled as a 20km thick viscous layer overlain by rigid upper crust that has a steady relative motion across a vertical strike slip fault. Strain rate in the lower crust is assumed to be a sum of dislocation creep and diffusion creep components, each of which flows the experimental flow laws. The geothermal gradient is assumed to be 25K/km. We have tested different total velocity on the model. For intraplate fault, the total velocity is less than 1mm/yr, and for comparison, we use 30mm/yr for interplate faults. Results show that at a low slip rate condition, dislocation creep dominates in the shear zone near the intraplate fault's deeper extension while diffusion creep dominates outside the shear zone. This result is different from the case of interplate faults, where dislocation creep dominates the whole region. Because of the power law effect of dislocation creep, the effective viscosity in the shear zone under intraplate faults is much higher than that under the interplate fault, therefore, shear zone under intraplate faults will have a much higher viscosity and lower shear stress than the intraplate fault. Viscosity contract between

  12. The ClearEarth Project: Preliminary Findings from Experiments in Applying the CLEARTK NLP Pipeline and Annotation Tools Developed for Biomedicine to the Earth Sciences (United States)

    Duerr, R.; Thessen, A.; Jenkins, C. J.; Palmer, M.; Myers, S.; Ramdeen, S.


    The ability to quickly find, easily use and effortlessly integrate data from a variety of sources is a grand challenge in Earth sciences, one around which entire research programs have been built. A myriad of approaches to tackling components of this challenge have been demonstrated, often with some success. Yet finding, assessing, accessing, using and integrating data remains a major challenge for many researchers. A technology that has shown promise in nearly every aspect of the challenge is semantics. Semantics has been shown to improve data discovery, facilitate assessment of a data set, and through adoption of the W3C's Linked Data Platform to have improved data integration and use at least for data amenable to that paradigm. Yet the creation of semantic resources has been slow. Why? Amongst a plethora of other reasons, it is because semantic expertise is rare in the Earth and Space sciences; the creation of semantic resources for even a single discipline is labor intensive and requires agreement within the discipline; best practices, methods and tools for supporting the creation and maintenance of the resources generated are in flux; and the human and financial capital needed are rarely available in the Earth sciences. However, other fields, such as biomedicine, have made considerable progress in these areas. The NSF-funded ClearEarth project is adapting the methods and tools from these communities for the Earth sciences in the expectation that doing so will enhance progress and the rate at which the needed semantic resources are created. We discuss progress and results to date, lessons learned from this adaptation process, and describe our upcoming efforts to extend this knowledge to the next generation of Earth and data scientists.

  13. In-circuit fault injector user's guide (United States)

    Padilla, Peter A.


    A fault injector system, called an in-circuit injector, was designed and developed to facilitate fault injection experiments performed at NASA-Langley's Avionics Integration Research Lab (AIRLAB). The in-circuit fault injector (ICFI) allows fault injections to be performed on electronic systems without special test features, e.g., sockets. The system supports stuck-at-zero, stuck-at-one, and transient fault models. The ICFI system is interfaced to a VAX-11/750 minicomputer. An interface program has been developed in the VAX. The computer code required to access the interface program is presented. Also presented is the connection procedure to be followed to connect the ICFI system to a circuit under test and the ICFI front panel controls which allow manual control of fault injections.

  14. Improving Science Literacy and Earth Science Awareness Through an Intensive Summer Research Experience in Paleobiology (United States)

    Heim, N. A.; Saltzman, J.; Payne, J.


    The chasm between classroom science and scientific research is bridged in the History of Life Internships at Stanford University. The primary foci of the internships are collection of new scientific data and original scientific research. While traditional high school science courses focus on learning content and laboratory skills, students are rarely engaged in real scientific research. Even in experiential learning environments, students investigate phenomena with known outcomes under idealized conditions. In the History of Life Internships, high school youth worked full time during the summers of 2013 and 2014 to collect body size data on fossil Echinoderms and Ostracods, measuring more than 20,000 species in total. These data are contributed to the larger research efforts in the Stanford Paleobiology Lab, but they also serve as a source of data for interns to conduct their own scientific research. Over the course of eight weeks, interns learn about previous research on body size evolution, collect data, develop their own hypotheses, test their hypotheses, and communicate their results to their peers and the larger scientific community: the 2014 interns have submitted eight abstracts to this meeting for the youth session entitled Bright STaRS where they will present their research findings. Based on a post-internship survey, students in the 2013 History of Life cohort had more positive attitudes towards science and had a better understanding of how to conduct scientific research compared to interns in the Earth Sciences General Internship Program, where interns typically do not complete their own research project from start to finish. In 2014, we implemented both pre- and post-internship surveys to determine if these positive attitudes were developed over the course of the internship. Conducting novel research inspires both the students and instructors. Scientific data collection often involves many hours of repetitive work, but answering big questions typically

  15. Training for Skill in Fault Diagnosis (United States)

    Turner, J. D.


    The Knitting, Lace and Net Industry Training Board has developed a training innovation called fault diagnosis training. The entire training process concentrates on teaching based on the experiences of troubleshooters or any other employees whose main tasks involve fault diagnosis and rectification. (Author/DS)

  16. The AFIS experiment: Detecting low energetic antiprotons in a low earth orbit, using an active target detector

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Thomas; Gaisbauer, Dominic; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Meng, Lingxin; Paul, Stephan [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany); Renker, Dieter [Physics Department E17, Technische Universitaet Muenchen (Germany)


    Since the first observation of geomagnetically trapped antiprotons by the PAMELA experiment and the new results on the positron excess by the AMS-02 experiment, the creation and transport of antimatter in the Earth's upper atmosphere attracts more and more attention both at theoretical and experimental side. For this reason the AFIS experiment was initiated to measure the flux of low energetic antiprotons in the South Atlantic Anomaly (SAA). We developed an active target detector made from scintillating fibers connected to silicon photomultipliers which allows to detect antiprotons in the energy interval of about 30 MeV-100 MeV. The stopping curve of incoming antiprotons (Bragg peak) and the signal of outgoing pions created from the annihilation, are used for particle identification as well as triggering. We plan to implement this detector on a 3 unit cubesat satellite in the framework the 'Move2Warp' mission, which is carried out as a student project by the Technische Universitaet Muenchen.

  17. Diapirism on Venus and the Early Earth and The thermal effect of fluid flows in AECL's Tunnel Sealing Experiment (United States)

    Robin, Catherine M. I.


    Flow instabilities occur at all scales in planetary systems. In this thesis we examine three cases of such instabilities, on three very different length scales. In the first part, we test the idea that Archean granite-greenstone belts (GGBs) form by crustal diapirism, or Rayleigh-Taylor instabilities. GGBs are characterized by large granitic domes (50-100 km in diameter) embedded in narrow keel-shaped greenstones. They are ubiquitous in Archean (> 2.5 Ga) terrains, but rare thereafter. We performed finite element calculations for a visco-elastic, temperature-dependent, non-Newtonian crust under conditions appropriate for the Archean, which show that dense low-viscosity volcanics overlying a felsic basement will overturn diapirically in as little as 10 Ma, displacing as much as 60 % of the volcanics to the lower crust. This surprisingly fast overturn rate suggests that diapiric overturn dominated crustal tectonics in the hot conditions of the Early Earth, becoming less important as the Earth cooled. Moreover, the deposition of large volumes of wet basaltic volcanics to the lower crust may provide the source for the formation of the distinctly Archean granitic rocks which dominate Earth's oldest continents. The second part examines the origin of Venusian coronae, circular volcanic features unique to Venus. Coronae are thought to result from small instabilities (diapirs) from the core-mantle boundary, which are typical of stagnant-lid convection. However, most young coronae are located in a region surrounded by long-lived hotspots, typical of a more active style of mantle convection. Using analogue experiments in corn syrup heated from below, we show that the co-existence of diapirs and long-lived mantle plumes are a direct consequence of the catastrophic overturn of the cold Venusian lithosphere thought to have occurred ˜ 700 Ma ago. In the last part we analyze the thermal effect of fluid flow through a full-scale experiment testing clay and concrete tunnel seals in

  18. Launching and Undergraduate Earth System Science Curriculum with a Focus on Global Sustainability: the Loma Linda University Experience (United States)

    Ford, R. E.; Dunbar, S. G.; Soret, S.; Wiafe, S.; Gonzalez, D.; Rossi, T.


    The vision of the School of Science and Technology (SST) at Loma Linda University (LLU) is to develop an interdisciplinary approach to doing science that bridges the social, biological, earth, and health sciences. It will provide opportunities for undergraduate, graduate, and professional students to apply new tools and concepts to the promotion of global service and citizenship while addressing issues of global poverty, health and disease, environmental degradation, poverty, and social inequality. A primary teaching strategy will be to involve students with faculty in applied field social and science policy research on "global sustainability" issues and problems in real places such as Fiji, Jamaica, Honduras, Bahamas, East Africa, and the US southwest (Great Basin, Salton Sea, coastal California, southern Utah). Recently we became a partner in the NASA/USRA ESSE21 Project (Earth System Science Education for the 21st Century). We bring to that consortium strengths and experience in areas such as social policy, sustainable development, medicine, environmental health, disaster mitigation, humanitarian relief, geoinformatics and bioinformatics. This can benefit ESSE21, the NASA Earth Enterprise Mission, and the wider geosciences education community by demonstrating the relevance of such tools, and methods outside the geosciences. Many of the graduate and undergraduate students who will participate in the new program come from around the world while many others represent underserved populations in the United States. The PI and Co-PIs have strong global as well as domestic experience serving underrepresented communities, e.g. Seth Wiafe from Ghana, Sam Soret from Spain, Stephen Dunbar from the South Pacific, and Robert Ford from Latin America and Africa. Our partnership in implementation will include other institutions such as: La Sierra University, the California State University, Pomona, Center for Geographic Information Science Research, ESRI, Inc., the University of

  19. An Experiment to Study Sporadic Sodium Layers in the Earth's Mesosphere and Lower Thermosphere (United States)

    Swenson, Charles M.


    The Utah State University / Space Dynamics Lab was funded under a NASA Grant. This investigation has been part of Rockwell Universities Sudden Atom Layer Investigation (SAL). USU/SDL provided an electron density measurement instrument, the plasma frequency probe, which was launched on the vehicle 21.117 from Puerto-Rico in February of 1998. The instrument successfully measured electron density as designed and measurement techniques included in this version of the Plasma Frequency probe provided valuable insight into the electron density structures associated with sudden sodium layers in a collisional plasma. Electron density data was furnished to Rockwell University but no science meetings were held by Rockwell Data from the instrument was presented to the scientific community at the URSI General Session in 1999. A paper is in preparation for publication in Geophysical Research Letters. The following document provides a summary of the experiment and data obtained as a final report on this grant.

  20. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.


    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  1. Fault Severity Evaluation and Improvement Design for Mechanical Systems Using the Fault Injection Technique and Gini Concordance Measure

    Directory of Open Access Journals (Sweden)

    Jianing Wu


    Full Text Available A new fault injection and Gini concordance based method has been developed for fault severity analysis for multibody mechanical systems concerning their dynamic properties. The fault tree analysis (FTA is employed to roughly identify the faults needed to be considered. According to constitution of the mechanical system, the dynamic properties can be achieved by solving the equations that include many types of faults which are injected by using the fault injection technique. Then, the Gini concordance is used to measure the correspondence between the performance with faults and under normal operation thereby providing useful hints of severity ranking in subsystems for reliability design. One numerical example and a series of experiments are provided to illustrate the application of the new method. The results indicate that the proposed method can accurately model the faults and receive the correct information of fault severity. Some strategies are also proposed for reliability improvement of the spacecraft solar array.

  2. Earth Experiments in a Virtual World: Introducing Climate & Coding to High School Girls (United States)

    Singh, H. A.; Twedt, J. R.


    In our increasingly technologically-driven and information-saturated world, literacy in STEM fields can be crucial for career advancement. Nevertheless, both systemic and interpersonal barriers can prevent individuals, particularly members of under-represented groups, from engaging in these fields. Here, we present a high school-level workshop developed to foster basic understanding of climate science while exposing students to the Python programming language. For the past four years, the workshop has been a part of the annual Expanding Your Horizons conference for high school girls, whose mission is to spark interest in STEM fields. Moving through current events in the realm of global climate policy, the fundamentals of climate, and the mathematical representation of planetary energy balance, the workshop culminates in an under-the-hood exploration of a basic climate model coded in the Python programming language. Students interact directly with the underlying code to run `virtual world' experiments that explore the impact of solar insolation, planetary albedo, the greenhouse effect, and meridional energy transport on global temperatures. Engagement with Python is through the Jupyter Notebook interface, which permits direct interaction with the code but is more user-friendly for beginners than a command-line approach. We conclude with further ideas for providing online access to workshop materials for educators, and additional venues for presenting such workshops to under-represented groups in STEM.

  3. Strontium-free rare earth perovskite ferrites with fast oxygen exchange kinetics: Experiment and theory (United States)

    Berger, Christian; Bucher, Edith; Windischbacher, Andreas; Boese, A. Daniel; Sitte, Werner


    The Sr-free mixed ionic electronic conducting perovskites La0.8Ca0.2FeO3-δ (LCF82) and Pr0.8Ca0.2FeO3-δ (PCF82) were synthesized via a glycine-nitrate process. Crystal structure, phase purity, and lattice constants were determined by XRD and Rietveld analysis. The oxygen exchange kinetics and the electronic conductivity were obtained from in-situ dc-conductivity relaxation experiments at 600-800 °C and 1×10-3≤pO2/bar≤0.1. Both LCF82 and PCF82 show exceptionally fast chemical surface exchange coefficients and chemical diffusion coefficients of oxygen. The oxygen nonstochiometry of LCF82 and PCF82 was determined by precision thermogravimetry. A point defect model was used to calculate the thermodynamic factors of oxygen and to estimate self-diffusion coefficients and ionic conductivities. Density Functional Theory (DFT) calculations on the crystal structure, oxygen vacancy formation as well as oxygen migration energies are in excellent agreement with the experimental values. Due to their favourable properties both LCF82 and PCF82 are of interest for applications in solid oxide fuel cell cathodes, solid oxide electrolyser cell anodes, oxygen separation membranes, catalysts, or electrochemical sensors.

  4. Contamination Examples and Lessons from Low Earth Orbit Experiments and Operational Hardware (United States)

    Pippin, Gary; Finckenor, Miria M.


    Flight experiments flown on the Space Shuttle, the International Space Station, Mir, Skylab, and free flyers such as the Long Duration Exposure Facility, the European Retrievable Carrier, and the EFFU, provide multiple opportunities for the investigation of molecular contamination effects. Retrieved hardware from the Solar Maximum Mission satellite, Mir, and the Hubble Space Telescope has also provided the means gaining insight into contamination processes. Images from the above mentioned hardware show contamination effects due to materials processing, hardware storage, pre-flight cleaning, as well as on-orbit events such as outgassing, mechanical failure of hardware in close proximity, impacts from man-made debris, and changes due to natural environment factors.. Contamination effects include significant changes to thermal and electrical properties of thermal control surfaces, optics, and power systems. Data from several flights has been used to develop a rudimentary estimate of asymptotic values for absorptance changes due to long-term solar exposure (4000-6000 Equivalent Sun Hours) of silicone-based molecular contamination deposits of varying thickness. Recommendations and suggestions for processing changes and constraints based on the on-orbit observed results will be presented.

  5. Salt balance: From space experiments to revolutionizing new clinical concepts on earth - A historical review (United States)

    Gerzer, Rupert


    For a long time, sodium balance appeared to be a ;done deal; and was thought to be well understood. However, experiments in preparation of space missions showed that the concept of osmotic sodium storage and close correlations of sodium with water balance are only part of the regulatory mechanisms of body salt. By now it has turned out that the human skin is an important storage place and regulator for sodium, that sodium storage involves macrophages which in turn salt-dependently co-regulate blood pressure, that body sodium also strongly influences bone and protein metabolism, and that immune functions are also strongly influenced by sodium. In addition, the aging process appears to lead to increased body sodium storage, which in turn might influence the aging process of the human body. The current review article summarizes the developments that have led to these revolutionizing new findings and concepts as well as consequences deriving from these findings. Therefore, it is not intended in this article to give a complete literature overview over the whole field but to focus on such key literature and considerations that led to the respective developments.

  6. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.


    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  7. Study on seismic hazard assessment of large active fault systems. Evolution of fault systems and associated geomorphic structures: fault model test and field survey

    International Nuclear Information System (INIS)

    Ueta, Keichi; Inoue, Daiei; Miyakoshi, Katsuyoshi; Miyagawa, Kimio; Miura, Daisuke


    Sandbox experiments and field surveys were performed to investigate fault system evolution and fault-related deformation of ground surface, the Quaternary deposits and rocks. The summary of the results is shown below. 1) In the case of strike-slip faulting, the basic fault sequence runs from early en echelon faults and pressure ridges through linear trough. The fault systems associated with the 2000 western Tottori earthquake are shown as en echelon pattern that characterize the early stage of wrench tectonics, therefore no thoroughgoing surface faulting was found above the rupture as defined by the main shock and aftershocks. 2) Low-angle and high-angle reverse faults commonly migrate basinward with time, respectively. With increasing normal fault displacement in bedrock, normal fault develops within range after reverse fault has formed along range front. 3) Horizontal distance of surface rupture from the bedrock fault normalized by the height of the Quaternary deposits agrees well with those of model tests. 4) Upward-widening damage zone, where secondary fractures develop, forms in the handing wall side of high-angle reverse fault at the Kamioka mine. (author)

  8. Practical Work in Earth Sciences Education: an experience with students in the context of a National Science Programme in Portugal (United States)

    Marques, Luis; Praja, Joäo; Thompson, David


    The programme Ciencia Viva of the Portuguese Ministry of Science and Technology aims to create a greater understanding of science and science education amongst scientists, teachers, school children and the general public, each of whom is encouraged to cooperate and interact through regular contacts. The purpose is to improve practical, experimental and other forms of investigative work. To accomplish such work in schools, an overview of the state of science education worldwide is presented in terms of old and new traditions of the teaching of the physical and historical sciences the latter including the teaching of fieldwork. Traditional practices are compared with those established recently in various parts of the world in which more carefully considered understanding of the nature of science and science education has been established. In illustration of good practice, an outline is offered of the nature and rationale of two sets of curricular materials. These were designed by a team comprising staff members of the University of Aveiro and secondary school teachers and were trialled in schools. These activities are concerned with the internal rock cycle and the internal energy of the Earth in relation to plate tectonic theory. They are also related to the processes of weathering, erosion, transportation and deposition of sedimentary rocks and structures (like wave and current ripple marks) which were formed as part of the external rock cycle driven by the Sun's energy. The account concludes with an outline of the sub programme 'Geology in Summer', a fieldwork programme which introduces a holistic understanding of the workings of the outer part of the Earth to the general public. Students' perspectives and teachers' views about these experiences are generally very positive and are presented at the end. The whole programme was evaluated by an international team of scientists and science educators.

  9. No evidence for shallow shear motion on the Mat Fault, a prominent ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 5. No evidence for shallow shear ... The motion between India and Sunda plates is accommodated along the Churachandpur Mao Fault (CMF) in the Indo-Burmese Wedge (IBW) and Sagaing Fault in the Myanmar region. Within the IBW, the Mat Fault is ...

  10. Deformation of a layered half-space due to a very long tensile fault

    Indian Academy of Sciences (India)

    The problem of the coseismic deformation of an earth model consisting of an elastic layer of uniform thickness overlying an elastic half-space due to a very long tensile fault in the layer is solved analytically. Integral expressions for the surface displacements are obtained for a vertical tensile fault and a horizontal tensile fault.

  11. Laboratory convection experiments with internal, noncontact, microwave generated heating, applied to Earth's mantle dynamics (United States)

    Limare, Angela; Surducan, Emanoil; di Giuseppe, Erika; Surducan, Vasile; Neamtu, Camelia; Vilella, Kenny; Fourel, Loic; Farnetani, Cinzia; Kaminski, Edouard; Jaupart, Claude


    boundary that induce a diffuse upward return flow. Within experimental error, excellent agreement was found between calculated and observed vertical profiles of the horizontally-averaged temperature. Calculations and experiments led to the same velocity field characteristics including the number of instabilities in the upper boundary layer and root mean square velocity values. P. J. Tackley, Geophys. Res. Lett. 20, 2187-2190 (1993).

  12. Faults Discovery By Using Mined Data (United States)

    Lee, Charles


    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  13. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.


    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...

  14. Fault-weighted quantification method of fault detection coverage through fault mode and effect analysis in digital I&C systems

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun; Lee, Seung Jun, E-mail:; Jung, Wondea


    Highlights: • We developed the fault-weighted quantification method of fault detection coverage. • The method has been applied to specific digital reactor protection system. • The unavailability of the module had 20-times difference with the traditional method. • Several experimental tests will be effectively prioritized using this method. - Abstract: The one of the most outstanding features of a digital I&C system is the use of a fault-tolerant technique. With an awareness regarding the importance of thequantification of fault detection coverage of fault-tolerant techniques, several researches related to the fault injection method were developed and employed to quantify a fault detection coverage. In the fault injection method, each injected fault has a different importance because the frequency of realization of every injected fault is different. However, there have been no previous studies addressing the importance and weighting factor of each injected fault. In this work, a new method for allocating the weighting to each injected fault using the failure mode and effect analysis data was proposed. For application, the fault-weighted quantification method has also been applied to specific digital reactor protection system to quantify the fault detection coverage. One of the major findings in an application was that we may estimate the unavailability of the specific module in digital I&C systems about 20-times smaller than real value when we use a traditional method. The other finding was that we can also classify the importance of the experimental case. Therefore, this method is expected to not only suggest an accurate quantification procedure of fault-detection coverage by weighting the injected faults, but to also contribute to an effective fault injection experiment by sorting the importance of the failure categories.

  15. Imaging the Alpine Fault: preliminary results from a detailed 3D-VSP experiment at the DFDP-2 drill site in Whataroa, New Zealand (United States)

    Lay, Vera; Bodenburg, Sascha; Buske, Stefan; Townend, John; Kellett, Richard; Savage, Martha; Schmitt, Douglas; Constantinou, Alexis; Eccles, Jennifer; Lawton, Donald; Hall, Kevin; Bertram, Malcolm; Gorman, Andrew


    The plate-bounding Alpine Fault in New Zealand is an 850 km long transpressive continental fault zone that is late in its earthquake cycle. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. Previously analysed 2D reflection seismic data image the main Alpine Fault reflector at a depth of 1.5-2.2 km with a dip of approximately 48° to the southeast below the DFDP-2 borehole. Additionally, there are indications of a more complex 3D fault structure with several fault branches which have not yet been clearly imaged in detail. For that reason we acquired a 3D-VSP seismic data set at the DFDP-2 drill site in January 2016. A zero-offset VSP and a walk-away VSP survey were conducted using a Vibroseis source. Within the borehole, a permanently installed "Distributed Acoustic Fibre Optic Cable" (down to 893 m) and a 3C Sercel slimwave tool (down to 400 m) were used to record the seismic wavefield. In addition, an array of 160 three-component receivers with a spacing of 10 m perpendicular and 20 m parallel to the main strike of the Alpine Fault was set up and moved successively along the valley to record reflections from the main Alpine Fault zone over a broad depth range and to derive a detailed 3D tomographic velocity model in the hanging wall. We will show a detailed 3D velocity model derived from first-arrival traveltime tomography. Subsets of the whole data set were analysed separately to estimate the corresponding ray coverage and the reliability of the observed features in the obtained velocity model. By testing various inversion parameters and starting models, we derived a detailed near-surface velocity model that reveals the significance of the old glacial valley structures. Hence, this new 3D model improves the velocity model derived previously from a 2D seismic profile line in that area. Furthermore, processing of the dense 3C data

  16. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  17. Iowa Bedrock Faults (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  18. Design of fault simulator

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Sayed, Hanaa E.; Osunleke, Ajiboye S.; Masanobu, Hara


    Fault simulator is proposed to understand and evaluate all possible fault propagation scenarios, which is an essential part of safety design and operation design and support of chemical/production processes. Process models are constructed and integrated with fault models, which are formulated in qualitative manner using fault semantic networks (FSN). Trend analysis techniques are used to map real time and simulation quantitative data into qualitative fault models for better decision support and tuning of FSN. The design of the proposed fault simulator is described and applied on experimental plant (G-Plant) to diagnose several fault scenarios. The proposed fault simulator will enable industrial plants to specify and validate safety requirements as part of safety system design as well as to support recovery and shutdown operation and disaster management.

  19. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos


    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  20. The EOS Aqua/Aura Experience: Lessons Learned on Design, Integration, and Test of Earth-Observing Satellites (United States)

    Nosek, Thomas P.


    NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.

  1. Ras Labs-CASIS-ISS NL experiment for synthetic muscle returned to Earth: resistance to ionizing radiation (United States)

    Rasmussen, Lenore; Albers, Leila N.; Rodriguez, Simone; Gentile, Charles; Meixler, Lewis D.; Ascione, George; Hitchner, Robert; Taylor, James; Hoffman, Dan; Cylinder, David; Gaza, Ramona; Moy, Leon; Mark, Patrick S.; Prillaman, Daniel L.; Nodarse, Robert; Menegus, Michael J.; Ratto, Jo Ann; Thellen, Christopher T.; Froio, Danielle; Valenza, Logan; Poirier, Catherine; Sinkler, Charles; Corl, Dylan; Hablani, Surbhi; Fuerst, Tyler; Gallucci, Sergio; Blocher, Whitney; Liffland, Stephanie


    In anticipation of deep space travel, new materials are being explored to assist and relieve humans in dangerous environments, such as high radiation, extreme temperature, and extreme pressure. Ras Labs Synthetic Muscle™ - electroactive polymers (EAPs) that contract and expand at low voltages - which mimic the unique gentle-yet-strong nature of human tissue, is a potential asset to manned space travel through protective gear and human assist robotics and for unmanned space exploration through deep space. Gen 3 Synthetic Muscle™ was proven to be resistant to extreme temperatures, and there were indications that these materials would also be radiation resistant. The purpose of the Ras Labs-CASIS-ISS Experiment was to test the radiation resistivity of the third and fourth generation of these EAPs, as well as to make them even more radiation resistant. On Earth, exposure of the Generation 3 and Generation 4 EAPs to a Cs-137 radiation source for 47.8 hours with a total dose of 305.931 kRad of gamma radiation was performed at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) at Princeton University, followed by pH, peroxide, Shore Hardness durometer, and electroactivity testing to determine the inherent radiation resistivity of these contractile EAPs, and to determine whether the EAPs could be made even more radiation resistant through the application of appropriate additives and coatings. The on Earth preliminary tests determined that selected Ras Labs EAPs were not only inherently radiation resistant, but with the appropriate coatings and additives, could be made even more radiation resistant. G-force testing to over 10 G's was performed at US Army's ARDEC Labs, with excellent results, in preparation for space flight to the International Space Station National Laboratory (ISS-NL). Selected samples of Generation 3 and Generation 4 Synthetic Muscle™, with various additives and coatings, were launched to the ISS-NL on April 14, 2015 on the

  2. Perspective View, San Andreas Fault (United States)


    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Soumyajit Mukherjee. Articles written in Journal of Earth System Science. Volume 126 Issue 1 February 2017 pp 2. Shear heating by translational brittle reverse faulting along a single, sharp and straight fault plane · Soumyajit Mukherjee · More Details Abstract Fulltext PDF.

  4. Soil organic matter (de)stabilization - new experiments needed to inform soil biogeochemistry modules in earth system models (United States)

    Schmidt, Michael W. I.; Torn, Margaret S.; Riley, William J.


    To better predict soil carbon climate feedbacks, the next generation of soil biogeochemistry modules in Earth System Models (ESMs) demand new types of experiments, and a more appropriate use of existing observations. For example, we highlight soil incubations and how they have been misinterpreted when inferring pseudo-first order turnover times and decomposition temperature and moisture sensitivities. Further, for existing pseudo first-order modules, and the new microbial- and mineral-explicit generation of biogeochemistry modules, there is often a mismatch between temporal and spatial observations and how they are used by modelers. Observation periods should be longer, from annual to decadal, and include transitions, e.g., induced by climate or management. Key observations to better structure and parameterize processes that are important for carbon-climate feedbacks include i) mineral surface interactions, ii) microbial dynamics and activity, including effects of soil temperature and moisture, iii) erosion and export, iv) landscape scale process heterogeneity, and v) the effect of land use change, such as clear cut and changes in tillage. Recent insights and knowledge gaps from traditionally disconnected scientific fields (such as geophysical modeling, agricultural soil science, geomorphology, and soil biogeochemistry) will be discussed in the context of informing ESM-scale terrestrial biogeochemistry models.

  5. Use of rare earth oxides and iron oxides as soil erosion tracers in water erosion experiments at hillslope scale (United States)

    Guzmán, G.; Cañasveras, J. C.; Barrón, V.; Boulal, H.; Gómez, H.; Conde, E.; Fernández, M.; Gómez, J. A.


    The characteristics of the ideal soil erosion have been defined by several authors, for example by Zhang et al. (2001). Despite intensive research on erosion tracers in the last decades there is not a single tracer fulfilling all these characteristics. That is why research on different soil erosion tracers remains as an active field. Two desirable characteristics in erosion tracers are that they should be relatively inexpensive (to purchase and analyze) and that they should be determined with high accuracy in soil or sediment. The availability of multiple tracers is another of the key requirements. In this communication we present our preliminary results on the use of two different sets of erosion tracers. One set are iron oxides with different magnetic and optical properties (Fe3O4, α-Fe2O3 and FeOOH) analyzed by NIRS and magnetic susceptibility measurements. The other set consists of five rare earth oxides (La2O3, Pr6O11, Nd2O3, Sm2O3 and Gd2O3) analyzed using inductively coupled plasma mass spectrometry (ICP-MS). These two groups were studied under controlled and natural conditions, through several water erosion experiments, in field plots with different soil management, crops and scale. In one experiment these tracers were used to determine the source of sediment within sprinkle irrigated fields planted with cotton on shoulders. For this purpose, rainfall simulations were performed under controlled conditions at two scales, one with a portable rainfall simulator at small scale (0.81m2) and with the sprinkler irrigation system in the whole cotton field (2450 m2). Furrows were tagged with both groups of tracers, keeping shoulders untagged (where cotton was planted). Soil samples before and after the rainfall simulations were collected as well as sediment samples. In another experiment four olive orchard plots (330 m2) with different soil managements (cover crop and conventional tillage) were also tagged with the two groups of tracers. Soil samples were taken at

  6. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.


    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  7. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  8. Water Imbalance in the Geological Fault as a Possible Earthquake Trigger (United States)

    Novikov, V.


    Recent devastating earthquakes in Haiti, New Zealand, and Japan demonstrated again failure of short-term prediction based on behavior of various earthquake precursors. This situation stimulates the search of another approach to solve the problem. Because the exact occurrence time of the future event depends on the collective behavior of triggers acting to the geological fault where the future strong earthquake is prepared, it is proposed to monitor the trigger effects and assess their impact on unstable areas. In addition to dynamical impacts, recently it was shown that natural and artificial electromagnetic triggers can affect the regional seismicity, although a mechanism of an influence of electricity on seismicity is not clear yet. Detailed 3D-analysis of electric current density in the Earth crust generated by pulsed power system showed that at the depth of earthquake epicenters (> 5km) it is lower than 10^-7 A/m^2 that is too low for direct earthquake triggering in the fault under critical stress state due to generation of additional stress. Keeping in mind that imbalance of crustal fluids play important role in the earthquake triggering it is reasonable to consider a possible mechanism, which can explain water imbalance in the fault, when electric current flows through the conductive areas of the fault gouge and surroundings. It should be noted that even small amount of water transferred to the fault under critical/metastable stress state can provide an additional fault lubrication and Rhebinder effect resulted in decrease of the fault gouge effective strength and earthquake triggering. In the case of electric current through water-saturated porous rocks the current interacts with geomagnetic field and provides water imbalance in the fault, when conductive water will be moved by electromagnetic force (according to principle of operation of magneto-hydrodynamic (MHD) pump). Depending on fault orientation with respect to magnetic field and current direction the

  9. Estimating Fault Friction From Seismic Signals in the Laboratory (United States)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; Ren, Christopher X.; Riviere, Jacques; Marone, Chris; Guyer, Robert A.; Johnson, Paul A.


    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress and frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. These results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.

  10. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang


    Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation-......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault......-propagation-folding has already been the topic of a large number of empirical studies as well as physical and computational model experiments. However, with the newly developed Stress-based Discrete Element Method (SDEM), we have, for the first time, explored computationally the link between self-emerging fault patterns...

  11. Fault Reconnaissance Agent for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Elhadi M. Shakshuki


    Full Text Available One of the key prerequisite for a scalable, effective and efficient sensor network is the utilization of low-cost, low-overhead and high-resilient fault-inference techniques. To this end, we propose an intelligent agent system with a problem solving capability to address the issue of fault inference in sensor network environments. The intelligent agent system is designed and implemented at base-station side. The core of the agent system – problem solver – implements a fault-detection inference engine which harnesses Expectation Maximization (EM algorithm to estimate fault probabilities of sensor nodes. To validate the correctness and effectiveness of the intelligent agent system, a set of experiments in a wireless sensor testbed are conducted. The experimental results show that our intelligent agent system is able to precisely estimate the fault probability of sensor nodes.

  12. Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: a twin experiment

    Directory of Open Access Journals (Sweden)

    Francois Counillon


    Full Text Available Here, we firstly demonstrate the potential of an advanced flow dependent data assimilation method for performing seasonal-to-decadal prediction and secondly, reassess the use of sea surface temperature (SST for initialisation of these forecasts. We use the Norwegian Climate Prediction Model (NorCPM, which is based on the Norwegian Earth System Model (NorESM and uses the deterministic ensemble Kalman filter to assimilate observations. NorESM is a fully coupled system based on the Community Earth System Model version 1, which includes an ocean, an atmosphere, a sea ice and a land model. A numerically efficient coarse resolution version of NorESM is used. We employ a twin experiment methodology to provide an upper estimate of predictability in our model framework (i.e. without considering model bias of NorCPM that assimilates synthetic monthly SST data (EnKF-SST. The accuracy of EnKF-SST is compared to an unconstrained ensemble run (FREE and ensemble predictions made with near perfect (i.e. microscopic SST perturbation initial conditions (PERFECT. We perform 10 cycles, each consisting of a 10-yr assimilation phase, followed by a 10-yr prediction. The results indicate that EnKF-SST improves sea level, ice concentration, 2 m atmospheric temperature, precipitation and 3-D hydrography compared to FREE. Improvements for the hydrography are largest near the surface and are retained for longer periods at depth. Benefits in salinity are retained for longer periods compared to temperature. Near-surface improvements are largest in the tropics, while improvements at intermediate depths are found in regions of large-scale currents, regions of deep convection, and at the Mediterranean Sea outflow. However, the benefits are often small compared to PERFECT, in particular, at depth suggesting that more observations should be assimilated in addition to SST. The EnKF-SST system is also tested for standard ocean circulation indices and demonstrates decadal

  13. Fault-Tree Compiler (United States)

    Butler, Ricky W.; Boerschlein, David P.


    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  14. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  15. Creating Research-Rich Learning Experiences and Quantitative Skills in a 1st Year Earth Systems Course (United States)

    King, P. L.; Eggins, S.; Jones, S.


    We are creating a 1st year Earth Systems course at the Australian National University that is built around research-rich learning experiences and quantitative skills. The course has top students including ≤20% indigenous/foreign students; nonetheless, students' backgrounds in math and science vary considerably posing challenges for learning. We are addressing this issue and aiming to improve knowledge retention and deep learning by changing our teaching approach. In 2013-2014, we modified the weekly course structure to a 1hr lecture; a 2hr workshop with hands-on activities; a 2hr lab; an assessment piece covering all face-to-face activities; and a 1hr tutorial. Our new approach was aimed at: 1) building student confidence with data analysis and quantitative skills through increasingly difficult tasks in science, math, physics, chemistry, climate science and biology; 2) creating effective learning groups using name tags and a classroom with 8-person tiered tables; 3) requiring students to apply new knowledge to new situations in group activities, two 1-day field trips and assessment items; 4) using pre-lab and pre-workshop exercises to promote prior engagement with key concepts; 5) adding open-ended experiments to foster structured 'scientific play' or enquiry and creativity; and 6) aligning the assessment with the learning outcomes and ensuring that it contains authentic and challenging southern hemisphere problems. Students were asked to design their own ocean current experiment in the lab and we were astounded by their ingenuity: they simulated the ocean currents off Antarctica; varied water density to verify an equation; and examined the effect of wind and seafloor topography on currents. To evaluate changes in student learning, we conducted surveys in 2013 and 2014. In 2014, we found higher levels of student engagement with the course: >~80% attendance rates and >~70% satisfaction (20% neutral). The 2014 cohort felt that they were more competent in writing

  16. Stability of fault submitted to fluid injections (United States)

    Brantut, N.; Passelegue, F. X.; Mitchell, T. M.


    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes

  17. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob


    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step....

  18. Earthquake fault superhighways (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.


    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  19. Studying the effect of a variation in the main parameters on stability of homogeneous earth dams using design experiment

    Directory of Open Access Journals (Sweden)

    Lakehal Rida


    Full Text Available Deterministic approaches such as the limit equilibrium method (LEM especially Bishop modified method has been traditionally used to evaluate the stability of embankment dams. However, the uncertainty associated with the material properties necessitates the use of the probabilistic method to account the sensitivity of this uncertainty on the response of the deterministic approaches. In this study, the authors propose the application of design experiment, especially central composite design (CCD to determine the effects of independent uncertain parameters on the response of stability. A second-order polynomial model with cross terms is used to create an approximating function referred to as response surface for the implicit limit state surface, for which the input data were provided by stability analyses of different heights of homogeneous earth dams (10 m, 20 m, and 30 m with a depth ratio of DH = 1.5 and a circular slip surface using the Bishop modified limit equilibrium method. The proposed models obtained from this application represent higher prediction accuracy. The study of the effect of geotechnical parameters (material properties of embankment on safety factor show the importance of individual factors in level of linear effect with a positive effect of c’ or φ’ and a negative effect of H, γd, γsat and significant influence of two-factors interaction, the effect of c’ highly dependent on H, β, γd and φ’. Moreover, the effect of φ’ is dependent on the values of H and β. Lastly, the optimization of safety factor with respect to the range of values of material properties was made, and two failures modes are discussed which are (φ’, c’ reduction and γd increase.

  20. NASA Perspectives on Earth Observations from Satellite or 50 Years of Meteorological Satellite Experiments-The NASA Perspective (United States)

    Einaudi, Franco


    The NASA was established in 1959. From those very eady days to the present NASA has been intimately involved with NOAA and the scientific community in the development and operation of satellite and sensor experiments. The early efforts included experiments on the TIROS and geostationary Applications Technology Satellites (ATS) series. In the latter case the spin-scan cameras conceived by Verner Suomi, along with the TIROS cameras, opened new vistas at what could be done in meteorological studies with the daily, nearly global, synoptic views from space-borne sensors As the years passed and the Nimbus series of satellites came into being in the 1960's, more quantitative observations with longer-lifetime, increasingly capable, better calibrated instruments came into being. NASA, in collaboration with and in support of NOAA, implemented operational systems that we now know as the Polar Operational Environmental Satellite (POES) series and the Geostationary Operational Environmental Satellite (GOES) series that provided dependable, continuous, dedicated satellite observations for use by the weather and atmospheric science communities. Through the 1970's, 1980's, and 1990's improved, well-calibrated instruments with more spectral bands extending into the thermal and the microwave portions of the electromagnetic spectrum were provided to obtain accurate soundings of the atmosphere, atmospheric chemistry constituents such as ozone, global sea surface temperature, snow and ice extent, vegetation dynamics, etc. In the 1990's and up to the present the NASA/Earth Observing System (EOS) has been developed, implemented, and operated over many years to provide a very comprehensive suite of observations of the atmosphere, as well as land and ocean parameters. The future looks bright wherein the development of new systems, broadly described by the National Academy of Science Decadal Study, is now underway. NASA, along with collaborations with NOAA, other agencies, and the

  1. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults. (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L


    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  2. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine (United States)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.


    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  3. Fault-related-folding structure and reflection seismic sections. Construction of earth model using balanced cross section; Danso ga kaizaisuru shukyoku kozo no keitai to jishin tansa danmen. 1. Balanced cross section wo mochiita chika model no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, T.; Tamagawa, T. [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsukui, R. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center


    Pre-stacking depth migration treatment is studied for the estimation of the fold configuration from seismic survey cross sections. The estimation of a velocity structure is necessary for the execution of such treatment, and the utilization of structural-geological knowledge is required for its interpretation. The concept of balanced cross section in relation to the fault-bend fold constructs a stratum structure model under conditions that the deformation during fold and fault formation is a planar strain, that there is no change in volume due to deformation, and that a fold is a parallel fold. In addition to the above geometric and kinetic approach, there is another fold formation process simulation model using a Newtonian fluid for study from the viewpoint of dynamics. This simulation stands on the presumption that the boundary contains a ramp that had been in presence before fold formation and that an incompressible viscous matter is mounted on the top surface. The viscous matter flows and deforms for the formation of an anticline on the ramp. Such enables the reproduction of a fault-bend fold formation process, and helpful discussion may be furthered on the dynamic aspect of this simulation. 5 refs., 4 figs.

  4. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths (United States)

    Kameyama, Masanori; Yamamoto, Mayumi


    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  5. Fault latency in the memory - An experimental study on VAX 11/780 (United States)

    Chillarege, Ram; Iyer, Ravishankar K.


    Fault latency is the time between the physical occurrence of a fault and its corruption of data, causing an error. The measure of this time is difficult to obtain because the time of occurrence of a fault and the exact moment of generation of an error are not known. This paper describes an experiment to accurately study the fault latency in the memory subsystem. The experiment employs real memory data from a VAX 11/780 at the University of Illinois. Fault latency distributions are generated for s-a-0 and s-a-1 permanent fault models. Results show that the mean fault latency of a s-a-0 fault is nearly 5 times that of the s-a-1 fault. Large variations in fault latency are found for different regions in memory. An analysis of a variance model to quantify the relative influence of various workload measures on the evaluated latency is also given.

  6. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  7. Automatic location of short circuit faults

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M. [VTT Energy, Espoo (Finland); Hakola, T.; Antila, E. [ABB Power Oy (Finland); Seppaenen, M. [North-Carelian Power Company (Finland)


    In this chapter, the automatic location of short circuit faults on medium voltage distribution lines, based on the integration of computer systems of medium voltage distribution network automation is discussed. First the distribution data management systems and their interface with the substation telecontrol, or SCADA systems, is studied. Then the integration of substation telecontrol system and computerized relay protection is discussed. Finally, the implementation of the fault location system is presented and the practical experience with the system is discussed

  8. Palaeostress reconstruction using polygonal faults (Invited) (United States)

    Cartwright, J. A.


    Joe Cartwright 3DLab, School of Earth, Ocean and Planetary Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3YE, Wales, UK ( Polygonal faults are non-tectonic normal faults that form during shallow burial of clay-rich sedimentary sequences. They mainly occur in passive continental margin settings, where they are organised into layer-bound tiers spanning areas often in excess of a million km2. They are arranged in complex arrays with a polygonal planform geometry, with a typical spacing of 500-1000m, and have maximum throws of up to 100m or so. There is no general agreement on their genesis, and models range from density inversion to diagenesis. Polygonal faults have been observed in sediments that have never been buried deeper than a few tens of metres, so their shallow origin is certain. Their polygonal planform argues powerfully for their non-tectonic origin, and their presence in passively buried horizontal sequences testifies to a bulk volumetric strain in units deformed by these faults that is truly three-dimensional, and clearly at odds with classical views of sediment compaction as a 1d consolidation strain. Here I present examples of polygonal faults that have propagated under the influence of a local or regional tectonic stress. The addition of a tectonic stress leads to an anisotropic horizontal state of stress, and the polygonal faults respond to this by propagating preferentially in a single direction: the local direction of the intermediate principal compressive stress. Sharp boundaries are observed between classical polygonal planform arrays (where horizontal stress is isotropic), and strongly aligned arrays. Excellent examples of this segregation into two types of array are observed surrounding salt diapirs, conduits for mud volcanoes, and most interestingly adjacent to tectonic faults. In all these cases it is possible to recognise the zone of influence of the local structure (fault or intrusion) on the

  9. Sequential fault diagnosis for mechatronics system using diagnostic hybrid bond graph and composite harmony search

    Directory of Open Access Journals (Sweden)

    Ming Yu


    Full Text Available This article proposes a sequential fault diagnosis method to handle asynchronous distinct faults using diagnostic hybrid bond graph and composite harmony search. The faults under consideration include fault mode, abrupt fault, and intermittent fault. The faults can occur in different time instances, which add to the difficulty of decision making for fault diagnosis. This is because the earlier occurred fault can exhibit fault symptom which masks the fault symptom of latter occurred fault. In order to solve this problem, a sequential identification algorithm is developed in which the identification task is reactivated based on two conditions. The first condition is that the latter occurred fault has at least one inconsistent coherence vector element which is consistent in coherence vector of the earlier occurred fault, and the second condition is that the existing fault coherence vector has the ability to hide other faults and the second-level residual exceeds the threshold. A new composite harmony search which is capable of handling continuous variables and binary variables simultaneously is proposed for identification purpose. Experiments on a mobile robot system are conducted to assess the proposed sequential fault diagnosis algorithm.

  10. Earth Science With the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station (United States)

    Zawodny, Joe; Vernier, Jean-Paul; Thomason, Larry; Roell, Marilee; Pitts, Mike; Moore, Randy; Hill, Charles; Flittner, David; Damadeo, Rob; Cisewski, Mike


    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes

  11. Fault Tolerant Position-mooring Control for Offshore Vessels

    DEFF Research Database (Denmark)

    Blanke, Mogens; Nguyen, Trong Dong


    by a system to handle faults in mooring lines, sensors or thrusters. Simulations and model basin experiments are carried out to validate the concept for scenarios with single or multiple faults. The results demonstrate that enhanced availability and safety are obtainable with this design approach. While......Fault-tolerance is crucial to maintain safety in offshore operations. The objective of this paper is to show how systematic analysis and design of fault-tolerance is conducted for a complex automation system, exemplified by thruster assisted Position-mooring. Using redundancy as required....... Functional faults that are only detectable, are rendered isolable through an active isolation approach. Once functional faults are isolated, they are handled by fault accommodation techniques to meet overall control objectives specified by class requirements. The paper illustrates the generic methodology...

  12. Fault Tolerant Position-mooring Control for Offshore Vessels

    DEFF Research Database (Denmark)

    Blanke, Mogens; Nguyen, Trong Dong


    Fault-tolerance is crucial to maintain safety in offshore operations. The objective of this paper is to show how systematic analysis and design of fault-tolerance is conducted for a complex automation system, exemplified by thruster assisted Position-mooring. Using redundancy as required....... Functional faults that are only detectable, are rendered isolable through an active isolation approach. Once functional faults are isolated, they are handled by fault accommodation techniques to meet overall control objectives specified by class requirements. The paper illustrates the generic methodology...... by a system to handle faults in mooring lines, sensors or thrusters. Simulations and model basin experiments are carried out to validate the concept for scenarios with single or multiple faults. The results demonstrate that enhanced availability and safety are obtainable with this design approach. While...

  13. Fault-Tolerant Heat Exchanger (United States)

    Izenson, Michael G.; Crowley, Christopher J.


    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  14. Remote triggering of fault-strength changes on the San Andreas fault at Parkfield. (United States)

    Taira, Taka'aki; Silver, Paul G; Niu, Fenglin; Nadeau, Robert M


    Fault strength is a fundamental property of seismogenic zones, and its temporal changes can increase or decrease the likelihood of failure and the ultimate triggering of seismic events. Although changes in fault strength have been suggested to explain various phenomena, such as the remote triggering of seismicity, there has been no means of actually monitoring this important property in situ. Here we argue that approximately 20 years of observation (1987-2008) of the Parkfield area at the San Andreas fault have revealed a means of monitoring fault strength. We have identified two occasions where long-term changes in fault strength have been most probably induced remotely by large seismic events, namely the 2004 magnitude (M) 9.1 Sumatra-Andaman earthquake and the earlier 1992 M = 7.3 Landers earthquake. In both cases, the change possessed two manifestations: temporal variations in the properties of seismic scatterers-probably reflecting the stress-induced migration of fluids-and systematic temporal variations in the characteristics of repeating-earthquake sequences that are most consistent with changes in fault strength. In the case of the 1992 Landers earthquake, a period of reduced strength probably triggered the 1993 Parkfield aseismic transient as well as the accompanying cluster of four M > 4 earthquakes at Parkfield. The fault-strength changes produced by the distant 2004 Sumatra-Andaman earthquake are especially important, as they suggest that the very largest earthquakes may have a global influence on the strength of the Earth's fault systems. As such a perturbation would bring many fault zones closer to failure, it should lead to temporal clustering of global seismicity. This hypothesis seems to be supported by the unusually high number of M >or= 8 earthquakes occurring in the few years following the 2004 Sumatra-Andaman earthquake.

  15. Research for Forming up the Controlling Diagram Utilizing the Connection of a LV Resistor on Voltage Transformer’s Open-Triagle Coil to Reduce over Voltage Caused by Earth Fault in 6 kV Grid of QuangNinh Underground Mines

    Directory of Open Access Journals (Sweden)

    Viet Bun Ho


    Full Text Available Single phase earth-fault in MV grids usually causes overvoltage that harm to human being and electric equipment. If the magnitude of over voltage is so great, many grids’ eco-technical parameters will be affected. The paper analyzes all possible consequences of over voltage occurred in 6 kV grid of QuangNinh underground mines. Base on the analysis, a controlling diagram utilizing the connection of a LV resistor on voltage transformer’s open-triangle coil to reduce over voltage is recommended. The simulation results of the diagram are used to prove the effectiveness of solution: the over voltage magnitude is only in the range of (2,1–2,4.Uf. Other advantage that solution brings to relay system will be pointed out.

  16. Open-Switch Fault Diagnosis and Fault Tolerant for Matrix Converter with Finite Control Set-Model Predictive Control

    DEFF Research Database (Denmark)

    Peng, Tao; Dan, Hanbing; Yang, Jian


    To improve the reliability of the matrix converter (MC), a fault diagnosis method to identify single open-switch fault is proposed in this paper. The introduced fault diagnosis method is based on finite control set-model predictive control (FCS-MPC), which employs a time-discrete model of the MC...... topology and a cost function to select the best switching state for the next sampling period. The proposed fault diagnosis method is realized by monitoring the load currents and judging the switching state to locate the faulty switch. Compared to the conventional modulation strategies such as carrier......-switch fault conditions without any redundant hardware, a fault tolerant strategy based on predictive control is also studied. The fault tolerant strategy is to select the most appropriate switching state, associated with the remaining normal switches of the MC. Experiment results are presented to show...

  17. Fault Management Guiding Principles (United States)

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan


    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  18. Urban Fifth Graders' Connections-Making between Formal Earth Science Content and Their Lived Experiences (United States)

    Brkich, Katie Lynn


    Earth science education, as it is traditionally taught, involves presenting concepts such as weathering, erosion, and deposition using relatively well-known examples--the Grand Canyon, beach erosion, and others. However, these examples--which resonate well with middle- and upper-class students--ill-serve students of poverty attending urban schools…

  19. Uncovering dynamic fault trees

    NARCIS (Netherlands)

    Junges, Sebastian; Guck, Dennis; Katoen, Joost P.; Stoelinga, Mariëlle Ida Antoinette

    Fault tree analysis is a widespread industry standard for assessing system reliability. Standard (static) fault trees model the failure behaviour of systems in dependence of their component failures. To overcome their limited expressive power, common dependability patterns, such as spare management,

  20. Validation of Helicopter Gear Condition Indicators Using Seeded Fault Tests (United States)

    Dempsey, Paula; Brandon, E. Bruce


    A "seeded fault test" in support of a rotorcraft condition based maintenance program (CBM), is an experiment in which a component is tested with a known fault while health monitoring data is collected. These tests are performed at operating conditions comparable to operating conditions the component would be exposed to while installed on the aircraft. Performance of seeded fault tests is one method used to provide evidence that a Health Usage Monitoring System (HUMS) can replace current maintenance practices required for aircraft airworthiness. Actual in-service experience of the HUMS detecting a component fault is another validation method. This paper will discuss a hybrid validation approach that combines in service-data with seeded fault tests. For this approach, existing in-service HUMS flight data from a naturally occurring component fault will be used to define a component seeded fault test. An example, using spiral bevel gears as the targeted component, will be presented. Since the U.S. Army has begun to develop standards for using seeded fault tests for HUMS validation, the hybrid approach will be mapped to the steps defined within their Aeronautical Design Standard Handbook for CBM. This paper will step through their defined processes, and identify additional steps that may be required when using component test rig fault tests to demonstrate helicopter CI performance. The discussion within this paper will provide the reader with a better appreciation for the challenges faced when defining a seeded fault test for HUMS validation.

  1. Solar system fault detection (United States)

    Farrington, R.B.; Pruett, J.C. Jr.


    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  2. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis...... that carried the control system designer through the steps necessary to consider fault handling in an early design phase. It was shown how an existing control loop with interface to the plant wide control system could be extended with three additional modules to obtain fault tolerance: Fault detection...

  3. Effect analysis of faults in digital I and C systems of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun


    A reliability analysis of digital instrumentation and control (I and C) systems in nuclear power plants has been introduced as one of the important elements of a probabilistic safety assessment because of the unique characteristics of digital I and C systems. Digital I and C systems have various features distinguishable from those of analog I and C systems such as software and fault-tolerant techniques. In this work, the faults in a digital I and C system were analyzed and a model for representing the effects of the faults was developed. First, the effects of the faults in a system were analyzed using fault injection experiments. A software-implemented fault injection technique in which faults can be injected into the memory was used based on the assumption that all faults in a system are reflected in the faults in the memory. In the experiments, the effect of a fault on the system output was observed. In addition, the success or failure in detecting the fault by fault-tolerant functions included in the system was identified. Second, a fault tree model for representing that a fault is propagated to the system output was developed. With the model, it can be identified how a fault is propagated to the output or why a fault is not detected by fault-tolerant techniques. Based on the analysis results of the proposed method, it is possible to not only evaluate the system reliability but also identify weak points of fault-tolerant techniques by identifying undetected faults. The results can be reflected in the designs to improve the capability of fault-tolerant techniques. (author)

  4. Compliance of REE's operational procedure 12.3 regarding fault ride-through capability. The experience of a multi-technology owner

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Guillen, J.; Giraut Ruso, E.; Quinonez-Varela, G.; Navarrete Pablo-Romero, A.; Rebollo Rico, I.; Hernandez Fernandez de la Pradilla, T. [Acciona Energia, Sarriguren (Spain); Comench, M.P.; Garcia-Gracia, M. [Zaragoza Univ. (Spain). CIRCE


    The installed wind power capacity in Spain has rapidly increased over the last years, and consequently, a number of issues associated to the security and reliability of the power system have been prompted. A critical aspect is the fault ride-through capability of wind turbine generators. In 2006, the Spanish TSO published a new Operational Procedure which governs this capability for wind power plants, either new or existing, and was enforced in 2007. This paper describes the requirements that the wind power plants have to fulfil to comply with the Operational Procedure, the multiple technologies that Acciona Energia had to retrofit and the theoretical solutions that were analysed during this process. Also, simulations and field tests are discussed, together with a discussion on the current situation of solutions for old wind power plants, and the lessons learned throughout the retrofit process. (orig.)

  5. Relationships between along-fault heterogeneous normal stress and fault slip patterns during the seismic cycle: Insights from a strike-slip fault laboratory model (United States)

    Caniven, Yannick; Dominguez, Stéphane; Soliva, Roger; Peyret, Michel; Cattin, Rodolphe; Maerten, Frantz


    We use a strike-slip fault analog model to study experimentally the role played by along-fault non-uniform and asymmetric applied normal stress on both coseismic slip and long-term fault behavior. Our model is based on a visco-elasto-plastic multi-layered rheology that allows to produce several hundreds of scaled analog microquakes and associated seismic cycles. Uniform or heterogeneous applied normal stress along the fault plane is imposed and maintained constant during the whole experiment durations. Our results suggest that coseismic slip patterns are strongly controlled by spatial normal stress variations and subsequent accumulated shear stress along fault strike. Major microquakes occur preferentially in zones of major shear stress asperities. Coseismic slip distributions exhibit a pattern similar to the along-fault applied normal stress distribution. The occurrence of isolated low to moderate microquakes where residual stresses persist around secondary stress asperities, indicates that stress conditions along the fault also control the whole variability of fault slip events. Moreover, when fault slip stability conditions are modulated by normal stress distribution, our experiments suggest that the along-fault stress heterogeneity influences the seismic cycle regularity and, consequently, long-term fault slip behavior. Uniform applied normal stress favors irregular seismic cycles and the occurrence of earthquakes clustering, whereas non-uniform normal stress with a single high amplitude stress asperity generates strong characteristic microquake events with stable return periods. Together our results strengthen the assumption that coseismic slip distribution and earthquake variability along an active fault may provide relevant information on long term tectonic stress and could thus improve seismic hazard assessment.

  6. Reactivation of normal faults as high-angle reverse faults due to low frictional strength: Experimental data from the Moonlight Fault Zone, New Zealand (United States)

    Smith, S. A. F.; Tesei, T.; Scott, J. M.; Collettini, C.


    Large normal faults are frequently reactivated as high-angle reverse faults during basin inversion. Elevated fluid pressure is commonly invoked to explain high-angle reverse slip. Analogue and numerical modeling have demonstrated that frictional weakening may also promote high-angle reverse slip, but there are currently no frictional strength measurements available for fault rocks collected from large high-angle reverse faults. To test the hypothesis that frictional weakening could facilitate high-angle reverse slip, we performed single- and double-direct friction experiments on fault rocks collected from the Moonlight Fault Zone in New Zealand, a basin-bounding normal fault zone that was reactivated as a high-angle reverse fault (present-day dip angle 60°-75°). The fault core is exposed in quartzofeldspathic schists exhumed from c. 4-8 km depth and contains a <20 m thick sequence of breccias, cataclasites and foliated cataclasites that are enriched in chlorite and muscovite. Friction experiments on water-saturated, intact samples of foliated cataclasite at room temperature and normal stresses up to 75 MPa yielded friction coefficients of 0.19<μ < 0.25. On the assumption of horizontal maximum compressive stress, reactivation analysis indicates that a friction coefficient of <0.25 will permit slip on high-angle reverse faults at hydrostatic (or even sub-hydrostatic) fluid pressures. Since foliated and phyllosilicate-rich fault rocks are common in large reactivated fault zones at basement depths, long-term frictional weakening is likely to act in concert with episodic build-ups of fluid pressure to promote high-angle reverse slip during basin inversion.

  7. Earth fissures in Qinglong Graben in Yuncheng Basin, China

    Indian Academy of Sciences (India)


    factors in the development and expansion of the earth fissures in Qinglong Graben. 20. The earth fissures forming ... Keywords: Earth fissure, Qinglong Graben, Yuncheng Basin, syn-sedimentary. 26 fault, forming process. 27. 1. ...... double spring flat earthquake, West-Central Nevada. Seismol Soc Am Bull 93(6):. 367.

  8. Fault-tolerant design

    CERN Document Server

    Dubrova, Elena


    This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field.  Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety.  They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems.  Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy.  The content is designed to be highly accessible, including numerous examples and exercises.  Solutions and powerpoint slides are available for instructors.   ·         Provides textbook coverage of the fundamental concepts of fault-tolerance; ·         Describes a variety of basic techniques for achieving fault-toleran...

  9. Fault Management Metrics (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig


    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  10. Fault Analysis in Cryptography

    CERN Document Server

    Joye, Marc


    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  11. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR......) part. The FTC architecture can be applied for additive faults, parametric faults, and for system structural changes. Only parametric faults will be considered in this paper. The main focus in this paper is on the use of the new approach of active fault diagnosis in connection with FTC. The active fault...... diagnosis approach is based on including an auxiliary input in the system. A fault signature matrix is introduced in connection with AFD, given as the transfer function from the auxiliary input to the residual output. This can be considered as a generalization of the passive fault diagnosis case, where...

  12. The large area crop inventory experiment: An experiment to demonstrate how space-age technology can contribute to solving critical problems here on earth (United States)


    The large area crop inventory experiment is being developed to predict crop production through satellite photographs. This experiment demonstrates how space age technology can contribute to solving practical problems of agriculture management.

  13. Fault detection and diagnosis of photovoltaic systems (United States)

    Wu, Xing

    The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV) systems. One of the primary aims of research in building-integrated PV systems is to improve the performance of the system's efficiency, availability, and reliability. Although much work has been done on technological design to increase a photovoltaic module's efficiency, there is little research so far on fault diagnosis for PV systems. Faults in a PV system, if not detected, may not only reduce power generation, but also threaten the availability and reliability, effectively the "security" of the whole system. In this paper, first a circuit-based simulation baseline model of a PV system with maximum power point tracking (MPPT) is developed using MATLAB software. MATLAB is one of the most popular tools for integrating computation, visualization and programming in an easy-to-use modeling environment. Second, data collection of a PV system at variable surface temperatures and insolation levels under normal operation is acquired. The developed simulation model of PV system is then calibrated and improved by comparing modeled I-V and P-V characteristics with measured I--V and P--V characteristics to make sure the simulated curves are close to those measured values from the experiments. Finally, based on the circuit-based simulation model, a PV model of various types of faults will be developed by changing conditions or inputs in the MATLAB model, and the I--V and P--V characteristic curves, and the time-dependent voltage and current characteristics of the fault modalities will be characterized for each type of fault. These will be developed as benchmark I-V or P-V, or prototype transient curves. If a fault occurs in a PV system, polling and comparing actual measured I--V and P--V characteristic curves with both normal operational curves and these baseline fault curves will aid in fault diagnosis.

  14. Modeling and detection of high Impedance arcing fault in medium voltage networks

    Energy Technology Data Exchange (ETDEWEB)

    Elkalashy, N.I.


    In this dissertation, a universal arc representation using the Electromagnetic Transient Program (Emp) is first developed. It is accomplished based on the bilateral interaction between Emp network and Transient Analysis Control System (Tacks) field. This arc modeling procedure is used as a useful guide to present a new model for high impedance arcing faults due to leaning trees. At the Power Systems and High Voltage Laboratory, Helsinki University of Technology (TKK), Finland, experiments have been performed to measure the fault characteristics due to leaning trees and therefore to verify the proposed model. Towards investigating detection facilities of this fault type, the fault model is incorporated at different locations in 20 kV Medium Voltage (MV) networks using the ATP draw program, which is a graphical interface utilized to simplify the ATP/Emp processing. Then, phase quantities and residual components are taken at different measuring nodes in the simulated networks. It is revealed that the main feature of this fault type that can enhance its detection is the periodicity of electromagnetic transients created by repetitions of the arc-reignition after each current zero-crossing. This feature is obtained considering different earthing concepts. Different detection techniques are proposed based on Discrete Wavelet Transform (DWT). The absolute sum of the wavelet coefficients in the respective frequency band is investigated for the detection purposes while several selectivity functions are proposed for the first time. The selectivity functions are presented using Logic Functions, fundamental current components and transient power directionalities. Test cases provide evidence of the efficacy of the proposed techniques. This dissertation is written in a form of the article dissertation. Its core depends on both of a summary and six original publications. (orig.)

  15. Monitoring the Earth (United States)

    Vita-Finzi, Claudio


    Monitoring the Earth is the first book to review the recent advances in satellite technology, computing and mass spectrometry that are opening up completely new avenues of enquiry to Earth scientists. Among the geological changes that were previously considered too slow or too extensive for direct measurements and that can now be monitored directly are continental displacements, mountain uplift, the growth and decay of icesheets and glaciers, the faulting and folding of rocks, the progress of weathering and sedimentation, and the growth of coral reefs. In addition to these developments, the book assesses progress in fields not normally considered part of physical geology, such as the shape and orbit of the gravity and the terrestrial magnetic field. The results from the new findings are already helping Earth scientists analyze and explain the underlying mechanisms, notably with regard to the storage and release of strain during earthquakes and the interaction of glacial history with the Earth's rate of rotation. The outcoe is a foretaste of the physical geology of the space age.^Fully illustrated with line drawings and photographs, and with a bibliography that encompasses the scattered and disparate litarature, Monitoring the Earth is intended for undergraduates in geology, geomorphology, geomatic engineering and planetary science, but it should also be of interest to astronomers and historians of science.

  16. Current Signature Analysis as Diagnosis Media for Incipient Fault Detection

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper focuses on the experimental investigation for incipient fault detection and fault detection methods existing in the literature, using Wound Rotor Induction Machine (WRIM. Three main experiments (one for stator phase unbalance, one for rotor phase unbalance and one for turn-to-turn faults have been performed to study the electrical behavior of the WRIM. The article aims to provide further documentation for an advanced condition monitoring system, in order to avoid undesirable operating conditions and to detect and diagnose incipient electrical faults. A description of the measurement system and experimental investigation are presented and stator and rotor currents spectrum of the WRIM are analyzed.

  17. Quaternary Fault Lines (United States)

    Department of Homeland Security — This data set contains locations and information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the...

  18. Electron spin resonance dating of fault gouge from Desamangalam

    Indian Academy of Sciences (India)

    The preliminary results from the electron spin resonance (ESR) dating on the quartz grains from the fault gouge indicate that the last major faulting in this site occurred 430 ± 43 ka ago. The experiments on different grain sizes of quartz from the gouge showed consistent decrease in age to a plateau of low values, indicating ...

  19. An integral-free expression for short-term changes in fault stability ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 7. An integral-free expression for short-term changes in fault stability due to pore pressure induced when a point load is placed on the pervious boundary of a porous elastic half space containing a fault. Ramesh Chander S K Tomar. Volume 123 Issue 7 ...

  20. Application Research of Fault Tree Analysis in Grid Communication System Corrective Maintenance (United States)

    Wang, Jian; Yang, Zhenwei; Kang, Mei


    This paper attempts to apply the fault tree analysis method to the corrective maintenance field of grid communication system. Through the establishment of the fault tree model of typical system and the engineering experience, the fault tree analysis theory is used to analyze the fault tree model, which contains the field of structural function, probability importance and so on. The results show that the fault tree analysis can realize fast positioning and well repairing of the system. Meanwhile, it finds that the analysis method of fault tree has some guiding significance to the reliability researching and upgrading f the system.

  1. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network. (United States)

    Sun, Weifang; Yao, Bin; Zeng, Nianyin; Chen, Binqiang; He, Yuchao; Cao, Xincheng; He, Wangpeng


    As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault's characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault's characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal's features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear's weak fault features.

  2. Methods for Fault Diagnosability Analysis of a Class of Affine Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Xiafu Peng


    Full Text Available The fault diagnosability analysis for a given model, before developing a diagnosis algorithm, can be used to answer questions like “can the fault fi be detected by observed states?” and “can it separate fault fi from fault fj by observed states?” If not, we should redesign the sensor placement. This paper deals with the problem of the evaluation of detectability and separability for the diagnosability analysis of affine nonlinear system. First, we used differential geometry theory to analyze the nonlinear system and proposed new detectability criterion and separability criterion. Second, the related matrix between the faults and outputs of the system and the fault separable matrix are designed for quantitative fault diagnosability calculation and fault separability calculation, respectively. Finally, we illustrate our approach to exemplify how to analyze diagnosability by a certain nonlinear system example, and the experiment results indicate the effectiveness of the fault evaluation methods.

  3. Fault morphology of the lyo Fault, the Median Tectonic Line Active Fault System


    後藤, 秀昭


    In this paper, we investigated the various fault features of the lyo fault and depicted fault lines or detailed topographic map. The results of this paper are summarized as follows; 1) Distinct evidence of the right-lateral movement is continuously discernible along the lyo fault. 2) Active fault traces are remarkably linear suggesting that the angle of fault plane is high. 3) The lyo fault can be divided into four segments by jogs between left-stepping traces. 4) The mean slip rate is 1.3 ~ ...

  4. Hydraulic properties variations response to seismic activity in the thick alluvial materials overlying an active fault: the Chihshang Fault (Taiwan) (United States)

    Mu, C. H.; Lee, J. C.; Cappa, F.; Guglielmi, Y.; Randolph-Flagg, N. G.


    The Chihshang Fault, one of the most active creeping faults in the world at a surface slip rate of 2-3 cm/yr, is located at plate suture between the Philippine Sea and the Eurasian plates in eastern Taiwan. Near the surface at the Chinyuan village, the Chihshang Fault propagates into the Holocene unconsolidated gravel layers. There, the Chihshang Fault displays a three-branch fault system with a diffused fault zone in the Chinyuan alluvial fan, which is composed of at least 100 m thick alluvial deposits. Outside of the Chinyuan fan, the Chihshang Fault exhibits a single fault system. In order to better understand whether the pore-fluid pressure variations within the alluvial gravels influences the near-surface seasonal locked behavior of the Chihshang Fault, we drilled four groundwater wells of depth of 30-100 m across the fault zone in the alluvial fan. Monitoring of natural pore pressure variations in piezometers, monthly slug experiments, and long duration pumping/injection experiments were carried out during 2007-2011. Together with the subsurface electrical resistivity imaging and core geological analysis, we identified a shallow aquifer layer that is deformed and truncated by the obliquely dipping fault zone. The results showed that the permeability within the fault zone is an order of magnitude less than that outside of the fault zone (i.e., the footwall and the hanging wall). This change in permeability may explain the 8-10 meter step of offset in groundwater level across the fault. In addition, repeated slug tests revealed that the permeability not only varied seasonally but also increased gradually by 20 fold in the hanging wall from 2007 to 2011. A dramatic jump in the permeability in the fault zone was observed from April to September 2008. This phenomenon is interpreted as a result of a cluster of low magnitude earthquakes occurred at the shallow crust, which may either have changed the static stress field along the fault, or cause dilatation that

  5. Mechanical Fault Diagnosis of High Voltage Circuit Breakers with Unknown Fault Type Using Hybrid Classifier Based on LMD and Time Segmentation Energy Entropy

    Directory of Open Access Journals (Sweden)

    Nantian Huang


    Full Text Available In order to improve the identification accuracy of the high voltage circuit breakers’ (HVCBs mechanical fault types without training samples, a novel mechanical fault diagnosis method of HVCBs using a hybrid classifier constructed with Support Vector Data Description (SVDD and fuzzy c-means (FCM clustering method based on Local Mean Decomposition (LMD and time segmentation energy entropy (TSEE is proposed. Firstly, LMD is used to decompose nonlinear and non-stationary vibration signals of HVCBs into a series of product functions (PFs. Secondly, TSEE is chosen as feature vectors with the superiority of energy entropy and characteristics of time-delay faults of HVCBs. Then, SVDD trained with normal samples is applied to judge mechanical faults of HVCBs. If the mechanical fault is confirmed, the new fault sample and all known fault samples are clustered by FCM with the cluster number of known fault types. Finally, another SVDD trained by the specific fault samples is used to judge whether the fault sample belongs to an unknown type or not. The results of experiments carried on a real SF6 HVCB validate that the proposed fault-detection method is effective for the known faults with training samples and unknown faults without training samples.

  6. Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks

    NARCIS (Netherlands)

    Chatzaras, V.; Tikoff, B.; Newman, J.; Withers, A.C.; Drury, M.R.


    In lithospheric-scale strike-slip fault zones, upper crustal strength is well constrained from borehole observations and fault rock deformation experiments, but mantle strength is less well known. Using peridotite xenoliths, we show that the upper mantle below the San Andreas fault system

  7. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...... isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated...

  8. Erosion influences the seismicity of active thrust faults. (United States)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H


    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  9. SAFOD Penetrates the San Andreas Fault

    Directory of Open Access Journals (Sweden)

    Mark D. Zoback


    Full Text Available SAFOD, the San Andreas Fault Observatory at Depth (Fig. 1, completed an important milestone in July 2005 by drilling through the San Andreas Fault at seismogenic depth. SAFOD is one of three major components of EarthScope, a U.S. National Science Foundation (NSF initiative being conducted in collaboration with the U.S. Geological Survey (USGS. The International Continental Scientific DrillingProgram (ICDP provides engineering and technical support for the project as well as online access to project data and information ( In 2002, the ICDP, the NSF, and the USGS provided funding for a pilot hole project at the SAFOD site. Twenty scientifi c papers summarizing the results of the pilot hole project as well as pre-SAFOD site characterization studies were published in Geophysical Research Letters (Vol.31, Nos. 12 and 15, 2004.

  10. The San Andreas Fault and a Strike-slip Fault on Europa (United States)


    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay. The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left). A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements. Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled materials, but may

  11. The San Andreas Fault and a Strike-slip Fault on Europa (United States)


    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay. The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left). A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements. Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled materials, but may

  12. Landforms along transverse faults parallel to axial zone of folded ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 1. Landforms along transverse faults parallel to axial zone of folded mountain front, north-eastern Kumaun Sub-Himalaya, India. Khayingshing ... Keywords. Himalayan Frontal Thrust; outer Kumaun Himalaya; transverse structure; folded mountain front.

  13. Geology of the Elephanta Island fault zone, western Indian rifted ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 1. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure. Hrishikesh Samant Ashwin Pundalik Joseph D'souza Hetu Sheth Keegan Carmo Lobo Kyle D'souza Vanit Patel. Volume ...

  14. Evaluating the movement of active faults on buried pipelines | Parish ...

    African Journals Online (AJOL)

    During the earthquake, a buried pipeline may be experienced extreme loading that is the result of the relatively large displacement of the Earth along the pipe. Large movements of ground could occur by faulting, liquefaction, lateral spreading, landslides, and slope failures. Since the pipelines are widely spread, and in ...

  15. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. (United States)

    Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J; Long, Christian; Takeuchi, Ichiro


    Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet.

  16. Fault location on power networks

    CERN Document Server

    Saha, Murari Mohan


    Fault Location on Power Lines enables readers to pinpoint the location of a fault on power lines following a disturbance. The nine chapters are organised according to the design of different locators. The authors do not simply refer the reader to manufacturers' documentation, but instead have compiled detailed information to allow for in-depth comparison. Fault Location on Power Lines describes basic algorithms used in fault locators, focusing on fault location on overhead transmission lines, but also covering fault location in distribution networks. An application of artificial intelligence i

  17. What is Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Frei, C. W.; Kraus, K.


    Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to the plant, to personnel or the environment. Fault-tolerant control is the synonym for a set of recent techniques that were developed to increase plant...... availability and reduce the risk of safety hazards. Its aim is to prevent that simple faults develop into serious failure. Fault-tolerant control merges several disciplines to achieve this goal, including on-line fault diagnosis, automatic condition assessment and calculation of remedial actions when a fault...

  18. Geophysical Characterization of the Hilton Creek Fault System (United States)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.


    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  19. The San Andreas Fault 'Supersite' (Invited) (United States)

    Hudnut, K. W.


    An expanded and permanent Supersite has been proposed to the Committee on Earth Observation Satellites (CEOS) for the San Andreas Fault system, based upon the successful initial Group on Earth Observations (GEO) Geohazard Supersite for the Los Angeles region from 2009-2013. As justification for the comprehensive San Andreas Supersite, consider the earthquake history of California, in particular the devastating M 7.8 San Francisco earthquake of 1906, which occurred along the San Andreas Fault, as did an earthquake of similar magnitude in 1857 in southern California. Los Angeles was only a small town then, but now the risk exposure has increased for both of California's megacities. Between the San Francisco and Los Angeles urban areas lies a section of the San Andreas Fault known to creep continually, so it has relatively less earthquake hazard. It used to be thought of as capable of stopping earthquakes entering it from either direction. Transitional behavior at either end of the creeping section is known to display a full range of seismic to aseismic slip events and accompanying seismicity and strain transient events. Because the occurrence of creep events is well documented by instrumental networks such as CISN and PBO, the San Andreas Supersite can be expected to be especially effective. A good baseline level of geodetic data regarding past events and strain accumulation and release exists. Many prior publications regarding the occurrence of geophysical phenomena along the San Andreas Fault system mean that in order to make novel contributions, state-of-the-art science will be required within this Supersite region. In more recent years, the 1989 Loma Prieta earthquake struck adjacent to the San Andreas Fault and caused the most damage along the western side of the San Francisco Bay Area. More recently, the concern has focused on the potential for future events along the Hayward Fault along the eastern side of San Francisco Bay. In Southern California, earthquakes

  20. Moving Heaven and Earth: Administrative Search and Selection Processes and the Experience of an African American Woman Senior Administrator (United States)

    Barnett-Johnson, Kim R.


    The purpose of this case/phenomenological study was to examine a collegiate administrative search and selection process and the experience of an African American woman who was selected to the position of chancellor. A case concerning the search process of a regional campus of Ivy Tech Community College of Indiana was identified and chosen.…

  1. Deep Fault Recognizer: An Integrated Model to Denoise and Extract Features for Fault Diagnosis in Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Xiaojie Guo


    Full Text Available Fault diagnosis in rotating machinery is significant to avoid serious accidents; thus, an accurate and timely diagnosis method is necessary. With the breakthrough in deep learning algorithm, some intelligent methods, such as deep belief network (DBN and deep convolution neural network (DCNN, have been developed with satisfactory performances to conduct machinery fault diagnosis. However, only a few of these methods consider properly dealing with noises that exist in practical situations and the denoising methods are in need of extensive professional experiences. Accordingly, rethinking the fault diagnosis method based on deep architectures is essential. Hence, this study proposes an automatic denoising and feature extraction method that inherently considers spatial and temporal correlations. In this study, an integrated deep fault recognizer model based on the stacked denoising autoencoder (SDAE is applied to both denoise random noises in the raw signals and represent fault features in fault pattern diagnosis for both bearing rolling fault and gearbox fault, and trained in a greedy layer-wise fashion. Finally, the experimental validation demonstrates that the proposed method has better diagnosis accuracy than DBN, particularly in the existing situation of noises with superiority of approximately 7% in fault diagnosis accuracy.

  2. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn


    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...... the challenge model and the requirements for challenge participants. In addition, it motivates many of the faults by citing publications that give field data from wind turbine control tests....

  3. Properties of ELF electromagnetic waves in and above the earth's ionosphere deduced from plasma wave experiments on the OV1-17 and Ogo 6 satellites

    International Nuclear Information System (INIS)

    Kelley, M.C.; Tsurutani, B.T.; Mozer, F.S.


    An analysis of ac electric field data obtained on board the OV1-17 satellite and ac magnetic field data obtained on board the Ogo 6 satellite has been made during the northern hemisphere spring and summer of 1969 with the purpose of studying extreme low frequency (ELF) electromagnetic waves above the earth's ionosphere. The results are in basic agreement with a number of previous ground-based and low-altitude satellite experiments in that the peak signal was observed at high latitudes outside the statistical location of the plasmapause on the day side of the earth, that ELF chorus was very often observed in conjunction with the steady ELF hiss emissions, that the winter hemisphere signal was considerably smaller than that observed in summer or in equinoctial months, and that the emission strength and region of occurrence are asymmetric about magnetic noon. Observations of such strong hiss signals outside the plasmasphere are somewhat surprising in light of Ogo 3 and Ogo 5 measurements which show steady ELF hiss to be closely confined to the plasmasphere at high altitudes during normal circumstances. The present study supports the hypothesis that hiss leaks out of the plasmasphere and refracts downward into the lower ionosphere; such a model predicts the observed summer-winter asymmetry and the poleward skewing of the ELF peak signal strength with decreasing altitude

  4. Thermal Orbital Environmental Parameter Study on the Propulsive Small Expendable Deployer System (ProSEDS) Using Earth Radiation Budget Experiment (ERBE) Data (United States)

    Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)


    The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.

  5. Prebiotic Synthesis of Methionine and Other Sulfur-Containing Organic Compounds on the Primitive Earth: A Contemporary Reassessment Based on an Unpublished 1958 Stanley Miller Experiment (United States)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; Lazcano, Antonio


    Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH4), hydrogen sulfide (H2S), ammonia (NH3), and carbon dioxide (CO2). Racemic methionine was farmed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H2S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.

  6. Fault Tolerant Computer Architecture

    CERN Document Server

    Sorin, Daniel


    For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes

  7. Computer hardware fault administration (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.


    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  8. Fault-related controls on hydrothermal flows in Eastern Pyrénées (France) (United States)

    Taillefer, Audrey; Soliva, Roger; Guillou-Frottier, Laurent; Le Goff, Elisabeth; Martin, Guillaume


    The way faults control upward fluid flow in extensive hydrothermal systems without an abnormal heat source such as volcanic or plutonic activity is still unclear. In the Eastern Pyrénées, an alignment of 29 hot springs (from 29°C to 73°C) along the Têt normal Fault offers the opportunity to study this process. Using an integrated multi-scale geological approach including mapping, remote sensing, macro and microscopic analyses of fault zones, we show that hot springs locate close to high topographic reliefs related to fault throw and segmentation. Emergences are always in crystalline rocks at gneiss-metasediments contacts, mostly in the Têt Fault footwall. In more details, they localize either (1) in brittle fault damage zones at the intersection between the Têt Fault and subsidiary faults, and (2) into hercynian ductile faults where dissolution cavities run along shear zones. Using these observations and 2D preliminary numerical simulations, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids infiltrate at high altitude in the fault footwall relief where they acquire temperature because of the geothermal gradient. Hydraulic gradient and buoyancy forces allow them to upflow along fault-related permeability anisotropies. The identification and prioritization of the features controlling this kind of system have important implications for geothermal exploration and for the understanding of fluid-flow into the brittle Earth's crust in general.

  9. Geophysical Imaging of Fault Structures Over the Qadimah Fault, Saudi Arabia

    KAUST Repository

    AlTawash, Feras


    The purpose of this study is to use geophysical imaging methods to identify the conjectured location of the ‘Qadimah fault’ near the ‘King Abdullah Economic City’, Saudi Arabia. Towards this goal, 2-D resistivity and seismic surveys were conducted at two different locations, site 1 and site 2, along the proposed trace of the ‘Qadimah fault’. Three processing techniques were used to validate the fault (i) 2-D travel time tomography, (ii) resistivity imaging, and (iii) reflection trim stacking. The refraction traveltime tomograms at site 1 and site 2 both show low-velocity zones (LVZ’s) next to the conjectured fault trace. These LVZ’s are interpreted as colluvial wedges that are often observed on the downthrown side of normal faults. The resistivity tomograms are consistent with this interpretation in that there is a significant change in resistivity values along the conjectured fault trace. Processing the reflection data did not clearly reveal the existence of a fault, and is partly due to the sub-optimal design of the reflection experiment. Overall, the results of this study strongly, but not definitively, suggest the existence of the Qadimah fault in the ‘King Abdullah Economic City’ region of Saudi Arabia.

  10. Large-scale, high-performance and cloud-enabled multi-model analytics experiments in the context of the Earth System Grid Federation (United States)

    Fiore, S.; Płóciennik, M.; Doutriaux, C.; Blanquer, I.; Barbera, R.; Williams, D. N.; Anantharaj, V. G.; Evans, B. J. K.; Salomoni, D.; Aloisio, G.


    The increased models resolution in the development of comprehensive Earth System Models is rapidly leading to very large climate simulations output that pose significant scientific data management challenges in terms of data sharing, processing, analysis, visualization, preservation, curation, and archiving.Large scale global experiments for Climate Model Intercomparison Projects (CMIP) have led to the development of the Earth System Grid Federation (ESGF), a federated data infrastructure which has been serving the CMIP5 experiment, providing access to 2PB of data for the IPCC Assessment Reports. In such a context, running a multi-model data analysis experiment is very challenging, as it requires the availability of a large amount of data related to multiple climate models simulations and scientific data management tools for large-scale data analytics. To address these challenges, a case study on climate models intercomparison data analysis has been defined and implemented in the context of the EU H2020 INDIGO-DataCloud project. The case study has been tested and validated on CMIP5 datasets, in the context of a large scale, international testbed involving several ESGF sites (LLNL, ORNL and CMCC), one orchestrator site (PSNC) and one more hosting INDIGO PaaS services (UPV). Additional ESGF sites, such as NCI (Australia) and a couple more in Europe, are also joining the testbed. The added value of the proposed solution is summarized in the following: it implements a server-side paradigm which limits data movement; it relies on a High-Performance Data Analytics (HPDA) stack to address performance; it exploits the INDIGO PaaS layer to support flexible, dynamic and automated deployment of software components; it provides user-friendly web access based on the INDIGO Future Gateway; and finally it integrates, complements and extends the support currently available through ESGF. Overall it provides a new "tool" for climate scientists to run multi-model experiments. At the

  11. Improving Multiple Fault Diagnosability using Possible Conflicts (United States)

    National Aeronautics and Space Administration — Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can...

  12. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon


    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene

  13. Fault diagnosis of induction motors

    CERN Document Server

    Faiz, Jawad; Joksimović, Gojko


    This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.

  14. Fault management and systems knowledge (United States)


    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  15. Seismic Velocity and Elastic Properties of Plate Boundary Faults (United States)

    Jeppson, Tamara N.

    The elastic properties of fault zone rock at depth play a key role in rupture nucleation, propagation, and the magnitude of fault slip. Materials that lie within major plate boundary fault zones often have very different material properties than standard crustal rock values. In order to understand the mechanics of faulting at plate boundaries, we need to both measure these properties and understand how they govern the behavior of different types of faults. Mature fault zones tend to be identified in large-scale geophysical field studies as zones with low seismic velocity and/or electrical resistivity. These anomalous properties are related to two important mechanisms: (1) mechanical or diagenetic alteration of the rock materials and/or (2) pore fluid pressure and stress effects. However, in remotely-sensed and large-length-scale data it is difficult to determine which of these mechanisms are affecting the measured properties. The objective of this dissertation research is to characterize the seismic velocity and elastic properties of fault zone rocks at a range of scales, with a focus on understanding why the fault zone properties are different from those of the surrounding rock and the potential effects on earthquake rupture and fault slip. To do this I performed ultrasonic velocity experiments under elevated pressure conditions on drill core and outcrops samples from three plate boundary fault zones: the San Andreas Fault, California, USA; the Alpine Fault, South Island, New Zealand; and the Japan Trench megathrust, Japan. Additionally, I compared laboratory measurements to sonic log and large-scale seismic data to examine the scale-dependence of the measured properties. The results of this study provide the most comprehensive characterization of the seismic velocities and elastic properties of fault zone rocks currently available. My work shows that fault zone rocks at mature plate boundary faults tend to be significantly more compliant than surrounding crustal

  16. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment (United States)

    Xue, Q.; Tang, J., Sr.; Chen, H.


    High concentrations of ammonium sulfate, often used in the in-situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages, and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid extractable fractions. 96% of the extractable fraction in soil were desorbed into solution at pH=3.0, and the content of the reducible fraction was observed to initially increase (when pH>4.0) and then decrease (when pHsoil followed the trend of reducible fraction > oxidizable fraction > acid extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process.

  17. NASA Spacecraft Fault Management Workshop Results (United States)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen


    Fault Management is a critical aspect of deep-space missions. For the purposes of this paper, fault management is defined as the ability of a system to detect, isolate, and mitigate events that impact, or have the potential to impact, nominal mission operations. The fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and

  18. Fault-Mechanism Simulator (United States)

    Guyton, J. W.


    An inexpensive, simple mechanical model of a fault can be produced to simulate the effects leading to an earthquake. This model has been used successfully with students from elementary to college levels and can be demonstrated to classes as large as thirty students. (DF)

  19. Row fault detection system (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN


    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  20. Fault Monitoring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens


    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to mooring line...... breakage and a high-risk abortion of an oil-loading operation. With significant drift forces from waves, non-Gaussian elements dominate forces and the residuals designed for fault diagnosis. Hypothesis testing need be designed using dedicated change detection for the type of distribution encountered....... Properties of detection and fault-tolerant control are demonstrated by high fidelity simulations....

  1. Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump (United States)

    Zhang, Ming; Jiang, Zhinong; Feng, Kun


    Rolling bearing faults are among the primary causes of breakdown in multistage centrifugal pump. A novel method of rolling bearings fault diagnosis based on variational mode decomposition is presented in this contribution. The rolling bearing fault signal calculating model of different location defect is established by failure mechanism analysis, and the simulation vibration signal of the proposed fault model is investigated by FFT and envelope analysis. A comparison has gone to evaluate the performance of bearing defect characteristic extraction for rolling bearings simulation signal by using VMD and EMD. The result of comparison verifies the VMD can accurately extract the principal mode of bearing fault signal, and it better than EMD in bearing defect characteristic extraction. The VMD is then applied to detect different location fault features for rolling bearings fault diagnosis via modeling simulation vibration signal and practical vibration signal. The analysis result of simulation and experiment proves that the proposed method can successfully diagnosis rolling bearings fault.

  2. Faults Diagnosis for Vibration Signal Based on HMM

    Directory of Open Access Journals (Sweden)

    Shao Qiang


    Full Text Available Faults behaviors of automotive engine in running-up stage are shown a multidimensional pattern that evolves as a function of time (called dynamic patterns. It is necessary to identify the type of fault during early running stages of automotive engine for the selection of appropriate operator actions to prevent a more severe situation. In this situation, the Faults diagnosis method based on continuous HMM is proposed. Feature vectors of main FFT spectrum component are extracted from vibration signals and looked up as observation vectors of HMM. Several HMMs which substitute the types of faults in automotive engine vibration system are modeled. Decision-making for faults classification is performed. The results of experiment are shown the proposed method is executable and effective.

  3. Achieving Agreement in Three Rounds with Bounded-Byzantine Faults (United States)

    Malekpour, Mahyar, R.


    A three-round algorithm is presented that guarantees agreement in a system of K greater than or equal to 3F+1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport, Shostak, and Pease and is scalable with respect to the number of nodes in the system and applies equally to traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.

  4. Automatic identification of otologic drilling faults: a preliminary report. (United States)

    Shen, Peng; Feng, Guodong; Cao, Tianyang; Gao, Zhiqiang; Li, Xisheng


    A preliminary study was carried out to identify parameters to characterize drilling faults when using an otologic drill under various operating conditions. An otologic drill was modified by the addition of four sensors. Under consistent conditions, the drill was used to simulate three important types of drilling faults and the captured data were analysed to extract characteristic signals. A multisensor information fusion system was designed to fuse the signals and automatically identify the faults. When identifying drilling faults, there was a high degree of repeatability and regularity, with an average recognition rate of >70%. This study shows that the variables measured change in a fashion that allows the identification of particular drilling faults, and that it is feasible to use these data to provide rapid feedback for a control system. Further experiments are being undertaken to implement such a system.

  5. Fault healing and earthquake spectra from stick slip sequences in the laboratory and on active faults (United States)

    McLaskey, G. C.; Glaser, S. D.; Thomas, A.; Burgmann, R.


    Repeating earthquake sequences (RES) are thought to occur on isolated patches of a fault that fail in repeated stick-slip fashion. RES enable researchers to study the effect of variations in earthquake recurrence time and the relationship between fault healing and earthquake generation. Fault healing is thought to be the physical process responsible for the 'state' variable in widely used rate- and state-dependent friction equations. We analyze RES created in laboratory stick slip experiments on a direct shear apparatus instrumented with an array of very high frequency (1KHz - 1MHz) displacement sensors. Tests are conducted on the model material polymethylmethacrylate (PMMA). While frictional properties of this glassy polymer can be characterized with the rate- and state- dependent friction laws, the rate of healing in PMMA is higher than room temperature rock. Our experiments show that in addition to a modest increase in fault strength and stress drop with increasing healing time, there are distinct spectral changes in the recorded laboratory earthquakes. Using the impact of a tiny sphere on the surface of the test specimen as a known source calibration function, we are able to remove the instrument and apparatus response from recorded signals so that the source spectrum of the laboratory earthquakes can be accurately estimated. The rupture of a fault that was allowed to heal produces a laboratory earthquake with increased high frequency content compared to one produced by a fault which has had less time to heal. These laboratory results are supported by observations of RES on the Calaveras and San Andreas faults, which show similar spectral changes when recurrence time is perturbed by a nearby large earthquake. Healing is typically attributed to a creep-like relaxation of the material which causes the true area of contact of interacting asperity populations to increase with time in a quasi-logarithmic way. The increase in high frequency seismicity shown here

  6. Dynamically Weak Faults During Earthquakes (Invited) (United States)

    di Toro, G.; Han, R.; Hirose, T.; de Paola, N.; Nielsen, S. B.; Mizoguchi, K.; Ferri, F.; Cocco, M.; Shimamoto, T.


    The rock friction coefficient μ (=τ/σn) is a key parameter to characterize dynamic fault weakening since it controls the earthquake breakdown process and slip history. In the last 15 years, the installation and exploitation of rotary shear apparatuses designed to impose to the samples slip rates (V ~ 1 m/s) and displacements (δ > 1 m) typical of large earthquakes, produced unexpected experimental results. Among these, the dramatic drop in friction (in most cases up to 90%) independently of the rock type (cohesive and non-cohesive rocks, silica- and non silica-built rocks) and the implied thermally-activated weakening mechanism (e.g., gel-, melt-, nanopowder-, thermal decomposition-, thermal pressurization- lubrication). In the experiments performed at constant slip rate and constant normal stress, friction decrease with increasing slip from a peak value τp to a steady-state value τss can be approximated as an exponential decay law (τ(δ)=τss+(τp-τss)exp(-δ/Dth), where Dth (or slip distance over which the friction coefficient decays to a value τss+1/e(τp-τss) is defined as a thermal slip distance. Indeed, the analysis of the power density (Φ = τ(δ)V) dissipated during the experiments, suggests that the activation of dynamic weakening mechanisms is associated with temperature increase in the slipping zone which triggers chemical reactions. Extrapolation of experimental data to natural conditions is supported by the following observations: 1) in the experiments, the thermal slip distance decreases according to a power law for increasing normal stresses: at σn > 200 MPa (e.g., 7 km depth), Dth should reduce to less than ten centimeters, consistently with field and theoretical evidences; 2) in the experiments, the breakdown work Wb (or the portion of total mechanical work associated with the breakdown process) ranges from 1 to 42 MJ m-2. This range overlaps with Wb for moderate to large earthquakes (1-100 MJ m-2); since field and theoretical

  7. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren

    that the fault is discovered in time such that appropriate actions can be taken. That could either be the aircraft controlling computer taking the fault into account or a human operator that intervenes. Detection of faults that occur during flight is exactly the subject of this thesis. Safety towards faults...... for manned aircraft is often achieved by making most of the systems onboard redundant. This is an easy way to obtain safety since no single system fault is catastrophic. The failed subsystem can be disconnected and the redundant systems can take over the tasks of the failed system. For smaller UAVs both...... a specific UAV, used by the Danish military, it is investigated how a number of critical faults can be detected and handled. One of the challenges using telemetry data for the fault diagnosis is the limited bandwidth in the radio link between the aircraft and the base-station on ground. This combined...

  8. An automatic fault management model for distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M.; Haenninen, S. [VTT Energy, Espoo (Finland); Seppaenen, M. [North-Carelian Power Co (Finland); Antila, E.; Markkila, E. [ABB Transmit Oy (Finland)


    An automatic computer model, called the FI/FL-model, for fault location, fault isolation and supply restoration is presented. The model works as an integrated part of the substation SCADA, the AM/FM/GIS system and the medium voltage distribution network automation systems. In the model, three different techniques are used for fault location. First, by comparing the measured fault current to the computed one, an estimate for the fault distance is obtained. This information is then combined, in order to find the actual fault point, with the data obtained from the fault indicators in the line branching points. As a third technique, in the absence of better fault location data, statistical information of line section fault frequencies can also be used. For combining the different fault location information, fuzzy logic is used. As a result, the probability weights for the fault being located in different line sections, are obtained. Once the faulty section is identified, it is automatically isolated by remote control of line switches. Then the supply is restored to the remaining parts of the network. If needed, reserve connections from other adjacent feeders can also be used. During the restoration process, the technical constraints of the network are checked. Among these are the load carrying capacity of line sections, voltage drop and the settings of relay protection. If there are several possible network topologies, the model selects the technically best alternative. The FI/IL-model has been in trial use at two substations of the North-Carelian Power Company since November 1996. This chapter lists the practical experiences during the test use period. Also the benefits of this kind of automation are assessed and future developments are outlined

  9. Fault Detection Coverage Quantification of Automatic Test Functions of Digital I and C System in NPPs

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Lee, Seung Jun; Hur, Seop; Lee, Young Jun; Jang, Seung Cheol


    Recently, analog instrument and control (I and C) systems in nuclear power plants (NPPs) have been replaced with digital systems for safer and more efficient operations. Digital I and C systems have adopted various fault-tolerant techniques that help the system correctly and safely perform the specific required functions in spite of the presence of faults. Each fault-tolerant technique has a different inspection period from real-time monitoring to monthly testing. The range covered by each fault-tolerant technique is also different. The digital I and C system, therefore, adopts multiple barriers consisting of various fault-tolerant techniques to increase total fault detection coverage. Even though these fault-tolerant techniques are adopted to ensure and improve the safety of a system, their effects have not been properly considered yet in most PSA models. Therefore, it is necessary to develop an evaluation method that can describe these features of a digital I and C system. Several issues must be considered in the fault coverage estimation of a digital I and C system, and two of them were handled in this work. The first is to quantify the fault coverage of each fault-tolerant technique implemented in the system, and the second is to exclude the duplicated effect of fault-tolerant techniques implemented simultaneously at each level of the system's hierarchy, as a fault occurring in a system might be detected by one or more fault-tolerant techniques. For this work, fault injection experiment was used to obtain the exact relations between faults and multiple barriers of fault-tolerant techniques. This experiment was applied to a bistable processor (BP) of a reactor protection system

  10. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.


    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  11. Deaf students and scientists side-by-side: Self-efficacy and modeling in real-world earth science research (United States)

    Jepson, Patricia Jane

    Deaf and hard of hearing students from five high schools were involved in an earth science project on geological faults. Variables of interest were self-efficacy in science and self-efficacy in career decision-making. The influence and characteristics of role models for deaf and hard of hearing students were also examined. Social cognitive career theory (Lent, Brown, & Hackett, 1994) was used as the theoretical base in this mixed method study. The fault curriculum unit was a collaborative project between Geosciences faculty at the University of Massachusetts and SOAR-High, an earth science program coordinated by the Clerc Center at Gallaudet University. Students participated in three interconnected learning components: (a) classroom experiments using a specially designed sandbox unit to model changes that take place in the earth's crust; (b) videoconferences with geoscientists; and (c) a five-day field trip where students, teachers, and scientists worked side-by-side in the field studying faults in Utah. Quantitative and qualitative data focused on science self-efficacy, career decision-making self-efficacy, and the influence of role models. Results suggested that active, student-centered learning activities had a positive impact on science self-efficacy and career decision making self-efficacy.

  12. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault. (United States)

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang


    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  13. Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review. (United States)

    Holm, Nils G; Andersson, Eva


    The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of

  14. Automatic Fault Characterization via Abnormality-Enhanced Classification

    Energy Technology Data Exchange (ETDEWEB)

    Bronevetsky, G; Laguna, I; de Supinski, B R


    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

  15. The Teach for America RockCorps, Year 2: Using Authentic Research Experiences in Geophysics for STEM Teachers to Inspire Earth Science-Themed Lessons in High School Classrooms (United States)

    Parsons, B.; Kassimu, R.; Borjas, C. N.; Griffith, W. A.


    Brooke Parsons1, Rahmatu Kassimu2, Christopher Borjas3, and W. Ashley Griffith31Uplift Hampton Preparatory High School, Dallas, TX, 75232 2H. Grady Spruce High School, Dallas, TX, 75217 3Department of Earth and Environmental Sciences, University of Texas Arlington, Arlington, TX, 76019 As Earth Science courses appear in fewer high school curricula, we seek to find creative ways to integrate Earth Science themes as contextual examples into other K-12 STEM courses in order to develop (A) Earth Science literacy, and (B) a pipeline of young talent into our field. This presentation details the efforts of the 2nd year Teach for America (TFA) Rock Corps, a five year NSF-sponsored partnership between TFA and the University of Texas at Arlington designed to provide STEM teachers with genuine research opportunities using components that can be extrapolated to develop dynamic Geophysics-themed lesson plans and materials for their classrooms. Two teachers were selected from the Dallas-Fort Worth region of TFA to participate in original research modeling off-fault damage that occurs during earthquakes in a lab setting using a Split-Hopkinson-Pressure Bar (SHPB). In particular, we simulate a coseismic transient stress perturbation in a fault damage zone by combining traditional SHPB with a traveling harmonic oscillator: Two striker bars attached by an elastic spring are launched with a gas gun allowing us to create the double stress pulse expected during an earthquake rupture. This research affords teachers inspiration to implement Geophysics-themed lesson plans for their courses, Physics/Pre-AP Physics and Chemistry. The physics course will adopt principles of seismic wave propagation to teach concepts of impulse, momentum, conservation of energy, harmonic motion, wave velocity, wave propagation, and real world applications of waves. The chemistry course will implement geochemistry themed techniques into applying the scientific method, density, isotopic composition, p

  16. Release fault: A variety of cross fault in linked extensional fault systems, in the Sergipe-Alagoas Basin, NE Brazil (United States)

    Destro, Nivaldo


    Two types of cross faults are herein recognized: transfer faults and the newly termed release faults. Transfer faults form where cross faults connect distinct normal faults and horizontal displacements predominate over vertical ones. In contrast, release faults form where cross faults associated with individual normal faults die out within the hangingwall before connecting to other normal faults, and have predominantly vertical displacements. Release faults are geometrically required to accommodate variable displacements along the strike of a normal fault. Thus, they form to release the bending stresses in the hangingwall, and do not cut normal fault planes nor detachment surfaces at depth. Release faults have maximum throws adjacent to normal faults, and may be nearly perpendicular or obliquely oriented to the strike of the latter. Such geometry appears not to depend upon pre-existing weaknesses, but such variable orientation to normal faults is an inherent property of release faults. Release faults commonly appear as simple normal faults in seismic sections, without implying extension along the strike of rift and basins. Three-dimensional strain deformation occurs in the hangingwall only between the terminations of an individual normal fault, but regionally, release faulting is associated with plane strain deformation in linked extensional fault systems.

  17. `Teaching What I Learned': Exploring students' Earth and Space Science learning experiences in secondary school with a particular focus on their comprehension of the concept of `geologic time' (United States)

    Yoon, Sae Yeol; Peate, David W.


    According to the national survey of science education, science educators in the USA currently face many challenges such as lack of qualified secondary Earth and Space Science (ESS) teachers. Less qualified teachers may have difficulty teaching ESS because of a lack of conceptual understanding, which leads to diminished confidence in content knowledge. More importantly, teachers' limited conceptual understanding of the core ideas automatically leads to a lack of pedagogical content knowledge. This mixed methods study aims to explore the ways in which current secondary schooling, especially the small numbers of highly qualified ESS teachers in the USA, might influence students' learning of the discipline. To gain a better understanding of the current conditions of ESS education in secondary schools, in the first phase, we qualitatively examined a sample middle and high school ESS textbook to explore how the big ideas of ESS, particularly geological time, are represented. In the second phase, we quantitatively analyzed the participating college students' conceptual understanding of geological time by comparing those who had said they had had secondary school ESS learning experience with those who did not. Additionally, college students' perceptions on learning and teaching ESS are discussed. Findings from both the qualitative and quantitative phases indicate participating students' ESS learning experience in their secondary schools seemed to have limited or little influence on their conceptual understandings of the discipline. We believe that these results reflect the current ESS education status, connected with the declining numbers of highly qualified ESS teachers in secondary schools.

  18. Active fault research in India: achievements and future perspective

    Directory of Open Access Journals (Sweden)

    Mithila Verma


    Full Text Available This paper provides a brief overview of the progress made towards active fault research in India. An 8 m high scarp running for more than 80 km in the Rann of Kachchh is the classical example of the surface deformation caused by the great earthquake (1819 Kachchh earthquake. Integration of geological/geomorphic and seismological data has led to the identification of 67 active faults of regional scale, 15 in the Himalaya, 17 in the adjoining foredeep with as many as 30 neotectonic faults in the stable Peninsular India. Large-scale trenching programmes coupled with radiometric dates have begun to constraint the recurrence period of earthquakes; of the order of 500–1000 years for great earthquakes in the Himalaya and 10,000 years for earthquakes of >M6 in the Peninsular India. The global positioning system (GPS data in the stand alone manner have provided the fault parameters and length of rupture for the 2004 Andaman Sumatra earthquakes. Ground penetration radar (GPR and interferometric synthetic aperture radar (InSAR techniques have enabled detection of large numbers of new active faults and their geometries. Utilization of modern technologies form the central feature of the major programme launched by the Ministry of Earth Sciences, Government of India to prepare geographic information system (GIS based active fault maps for the country.

  19. Shear heating in creeping faults changes the onset of convection (United States)

    Tung, R.; Poulet, T.; Alevizos, S.; Veveakis, E.; Regenauer-Lieb, K.


    The interaction between mechanical deformation of creeping faults and fluid flow in porous media has an important influence on the heat and mass transfer processes in Earth sciences. Creeping faults can act as heat sources due to the effect of shear heating and as such could be expected to alter the conditions for hydrothermal convection. In this work, we provide a finite element-based numerical framework developed to resolve the problem of heat and mass transfer in the presence of creeping faults. This framework extends the analytical approach of the linear stability analysis (LSA) frequently used to determine the bifurcation criterion for onset of convection, allowing us to study compressible cases with the option of complex geometry and/or material inhomogeneities. We demonstrate the impact of creeping faults on the onset of convection and show that shear heating—expressed through its dimensionless group the Gruntfest number Gr—has exponential influence on the critical value of the Lewis number Le (inversely proportional to the Rayleigh number Ra) required for convection: Lec ˜ Lec0 eGr. In this expression, Lec0 is the critical value of Le in the absence of shear heating. This exponential scaling shows that shear heating increases the critical Lewis number and triggers hydrothermal convection at lower permeability than in situations without it. We also show that the effect of shear heating in a fault significantly alters the pattern of convection in and around the fault zone.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Senthil Kumar. Articles written in Journal of Earth System Science. Volume 119 Issue 5 October 2010 pp 745-751. Soil-gas helium and surface-waves detection of fault zones in granitic bedrock · G K Reddy T Seshunarayana Rajeev Menon P Senthil Kumar · More Details ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. T K Gundu Rao. Articles written in Journal of Earth System Science. Volume 111 Issue 2 June 2002 pp 103-113. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone · T K Gundu Rao C P ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Biju John. Articles written in Journal of Earth System Science. Volume 111 Issue 2 June 2002 pp 103-113. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone · T K Gundu Rao C P ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Raghavendra Prasad Tiwari. Articles written in Journal of Earth System Science. Volume 122 Issue 6 December 2013 pp 1507-1513. Radon and thoron anomalies along Mat fault in Mizoram, India · Hari Prasad Jaishi Sanjay Singh Raghavendra Prasad Tiwari Ramesh ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Additionally, over-exploitation of groundwater and erosion process are important factors in the development and expansion of the earth fissures in Qinglong Graben. The earth fissures forming process in Qinglong Graben can be divided into three stages: the regional extension first caused normal faults under the surface, ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. George Mathew. Articles written in Journal of Earth System Science. Volume 111 Issue 2 June 2002 pp 103-113. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone · T K Gundu Rao ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Mahabir Singh. Articles written in Journal of Earth System Science. Volume 113 Issue 2 June 2004 pp 235-246. Deformation of a layered half-space due to a very long tensile fault · Sarva Jit Singh Mahabir Singh · More Details Abstract Fulltext PDF. The problem of the ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ferid Dhahri. Articles written in Journal of Earth System Science. Volume 126 Issue 7 October 2017 pp 104. The role of E–W basement faults in the Mesozoic geodynamic evolution of the Gafsa and Chotts basins, south-central Tunisia · Dorra Tanfous Amri Ferid Dhahri ...

  8. Fault linkage and continental breakup (United States)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia


    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part

  9. Fault Diagnosis for Actuators in a Class of Nonlinear Systems Based on an Adaptive Fault Detection Observer

    Directory of Open Access Journals (Sweden)

    Runxia Guo


    Full Text Available The problem of actuators’ fault diagnosis is pursued for a class of nonlinear control systems that are affected by bounded measurement noise and external disturbances. A novel fault diagnosis algorithm has been proposed by combining the idea of adaptive control theory and the approach of fault detection observer. The asymptotical stability of the fault detection observer is guaranteed by setting the adaptive adjusting law of the unknown fault vector. A theoretically rigorous proof of asymptotical stability has been given. Under the condition that random measurement noise generated by the sensors of control systems and external disturbances exist simultaneously, the designed fault diagnosis algorithm is able to successfully give specific estimated values of state variables and failures rather than just giving a simple fault warning. Moreover, the proposed algorithm is very simple and concise and is easy to be applied to practical engineering. Numerical experiments are carried out to evaluate the performance of the fault diagnosis algorithm. Experimental results show that the proposed diagnostic strategy has a satisfactory estimation effect.


    Directory of Open Access Journals (Sweden)

    S. I. Sherman


    features of their internal structures. This method can be effectively applied within the framework of conventional geological surveys of any scale.Results of studies of tectonic divisibility of the Earth based on advanced tectonophysical concepts were referred to establish the zone-block structure (ZBS of the lithosphere. Analyses of faults at various scales showed a strict hierarchy of ranks in the ZBS of the lithosphere in Central Asia, and actual characteristics of 11 hierarchic levels (from global to local were revealed and described in quantitative terms. With reference to the ZBS concept, the Baikal rift was studied, and the soil radon concentration pattern of Pribaikalie was analysed and its main spatial and temporal regularities were revealed.Comprehensive geological, structural, tectonophysical and geoelectrical studies were conducted in the Cenozoic and Mesozoic basins of Pribaikalie and Transbaikalie, and results were consolidated and published. The fault-block patterns, the deep structure, the state of stresses and seismicity of the crust were studied in a number of areas in the region.Complex tectonophysical studies were initiated in the Yakutian diamond-bearing province to reveal structural factors that control the kimberlite locations, and the first results were reported. By applying tectonophysical methods, it was established that periods of formation of kimberlite bodies are related to stages of formation and activation of the fault pattern of the platform cover. A pioneering conclusion was stated that in the structural control over kimberlite magmatism of the Siberian platform, the dominant role is played by fault zones of the orthogonal network, which were activated in the regime of alternating-sign displacements at different stages of the platform's development in the Paleozoic and Mesozoic.Physical modelling experiments using an original installation were conducted, and, among its main achievements, an important result is modelling of the process of

  11. Application of current steps and design of experiments methodology to the detection of water management faults in a proton exchange membrane fuel cell stack (United States)

    Moçotéguy, Philippe; Ludwig, Bastian; Yousfi Steiner, Nadia


    We apply a 25-1 fractional factorial Design of Experiments (DoE) test plan in order to discriminate the direct effects and interactions of five factors on the water management of a 500 We PEMFC stack. The stack is submitted to current steps between different operating levels and several responses are extracted for the DoE analysis. A strong ageing effect on stack and cell performances is observed. Therefore, in order to perform the DoE analysis, responses which values are too strongly affected by ageing are ;corrected; prior to the analysis. A ;virtual; stack, considered as ;healthy;, is also ;reconstructed; by ;putting in series; the cells exhibiting very low performance drop. The results show that stacks and cells' resistivities are mostly impacted by direct effects of both temperature and cathodic inlet relative humidity and by compensating interaction between temperature and anodic overstoichiometric ratio. It also appears that two responses are able to distinguish a ;healthy; stack from a degraded stack: heterogeneities in cell voltages and cell resistivities distributions. They are differently impacted by considered effects and interactions. Thus, a customised water management strategy could be developed, depending on the stack's state of health to maintain it in the best possible operating conditions.

  12. Quantitative evaluation of fault coverage for digitalized systems in NPPs using simulated fault injection method

    International Nuclear Information System (INIS)

    Kim, Suk Joon


    Even though digital systems have numerous advantages such as precise processing of data, enhanced calculation capability over the conventional analog systems, there is a strong restriction on the application of digital systems to the safety systems in nuclear power plants (NPPs). This is because we do not fully understand the reliability of digital systems, and therefore we cannot guarantee the safety of digital systems. But, as the need for introduction of digital systems to safety systems in NPPs increasing, the need for the quantitative analysis on the safety of digital systems is also increasing. NPPs, which are quite conservative in terms of safety, require proving the reliability of digital systems when applied them to the NPPs. Moreover, digital systems which are applied to the NPPs are required to increase the overall safety of NPPs. however, it is very difficult to evaluate the reliability of digital systems because they include the complex fault processing mechanisms at various levels of the systems. Software is another obstacle in reliability assessment of the systems that requires ultra-high reliability. In this work, the fault detection coverage for the digital system is evaluated using simulated fault injection method. The target system is the Local Coincidence Logic (LCL) processor in Digital Plant Protection System (DPPS). However, as the LCL processor is difficult to design equally for evaluating the fault detection coverage, the LCL system has to be simplified. The simulations for evaluating the fault detection coverage of components are performed by dividing into two cases and the failure rates of components are evaluated using MIL-HDBK-217F. Using these results, the fault detection coverage of simplified LCL system is evaluated. In the experiments, heartbeat signals were just emitted at regular interval after executing logic without self-checking algorithm. When faults are injected into the simplified system, fault occurrence can be detected by

  13. Doubly fed induction generator based wind turbine systems subject to recurring grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan


    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the Doubly Fed Induction Generator wind turbine system under recurring grid faults is analyzed. The stator natural flux produced by the voltage recovery after the first grid fault...... may be superposed on the stator natural flux produced by the second grid fault, and it may result in large current and voltage transient. The damping of the stator natural flux can be accelerated with a rotor natural current in its opposite direction after voltage recovery, but larger torque....... The performance of DFIG under recurring grid faults is verified by the simulation and experiments....

  14. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik


    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  15. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore (United States)

    Melia, S.; Hall, R.


    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  16. Fault Location in Power Electrical Traction Line System

    Directory of Open Access Journals (Sweden)

    Yimin Zhou


    Full Text Available In this paper, methods of fault location are discussed in electrical traction single-end direct power supply network systems. Based on the distributed parameter model of the system, the position of the short-circuit fault can be located with the aid of the current and voltage value at the measurement end of the electrical traction line. Furthermore, the influence of the transient resistance, the position of the locomotive, locomotive load for fault location are also discussed. MATLAB simulation tool is used for the simulation experiments. Simulation results are proved the effectiveness of the proposed algorithms.

  17. Ground Fault Overvoltage With Inverter-Interfaced Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, Michael; Hoke, Anderson; Chakraborty, Sudipta; Schutz, Dustin; Mouw, Chris; Nelson, Austin; McCarty, Michael; Wang, Trudie; Sorenson, Adam


    Ground Fault Overvoltage can occur in situations in which a four-wire distribution circuit is energized by an ungrounded voltage source during a single phase to ground fault. The phenomenon is well-documented with ungrounded synchronous machines, but there is considerable discussion about whether inverters cause this phenomenon, and consequently whether inverters require effective grounding. This paper examines the overvoltages that can be supported by inverters during single phase to ground faults via theory, simulation and experiment, identifies the relevant physical mechanisms, quantifies expected levels of overvoltage, and makes recommendations for optimal mitigation.

  18. Fault detection and isolation in processes involving induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Zell, K.; Medvedev, A. [Control Engineering Group, Luleaa University of Technology, Luleaa (Sweden)


    A model-based technique for fault detection and isolation in electro-mechanical systems comprising induction machines is introduced. Two coupled state observers, one for the induction machine and another for the mechanical load, are used to detect and recognize fault-specific behaviors (fault signatures) from the real-time measurements of the rotor angular velocity and terminal voltages and currents. Practical applicability of the method is verified in full-scale experiments with a conveyor belt drive at SSAB, Luleaa Works. (orig.) 3 refs.

  19. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process (United States)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.


    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases. Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission. Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an advanced design methods (ADM) based approach. This approach applies the concepts of design of experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development effort. In order to fit a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful

  20. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon


    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene

  1. Combined structural and magnetotelluric investigation across the West Fault Zone in northern Chile (United States)

    Hoffmann-Rothe, Arne


    The characterisation of the internal architecture of large-scale fault zones is usually restricted to the outcrop-based investigation of fault-related structural damage on the Earth's surface. A method to obtain information on the downward continuation of a fault is to image the subsurface electrical conductivity structure. This work deals with such a combined investigation of a segment of the West Fault, which itself is a part of the more than 2000 km long trench-linked Precordilleran Fault System in the northern Chilean Andes. Activity on the fault system lasted from Eocene to Quaternary times. In the working area (22°04'S, 68°53'W), the West Fault exhibits a clearly defined surface trace with a constant strike over many tens of kilometers. Outcrop condition and morphology of the study area allow ideally for a combination of structural geology investigation and magnetotelluric (MT) / geomagnetic depth sounding (GDS) experiments. The aim was to achieve an understanding of the correlation of the two methods and to obtain a comprehensive view of the West Fault's internal architecture. Fault-related brittle damage elements (minor faults and slip-surfaces with or without striation) record prevalent strike-slip deformation on subvertically oriented shear planes. Dextral and sinistral slip events occurred within the fault zone and indicate reactivation of the fault system. Youngest deformation increments mapped in the working area are extensional and the findings suggest a different orientation of the extension axes on either side of the fault. Damage element density increases with approach to the fault trace and marks an approximately 1000 m wide damage zone around the fault. A region of profound alteration and comminution of rocks, about 400 m wide, is centered in the damage zone. Damage elements in this central part are predominantly dipping steeply towards the east (70-80°). Within the same study area, the electrical conductivity image of the subsurface was

  2. Earthquake Probability Assessment for the Active Faults in Central Taiwan: A Case Study

    Directory of Open Access Journals (Sweden)

    Yi-Rui Lee


    Full Text Available Frequent high seismic activities occur in Taiwan due to fast plate motions. According to the historical records the most destructive earthquakes in Taiwan were caused mainly by inland active faults. The Central Geological Survey (CGS of Taiwan has published active fault maps in Taiwan since 1998. There are 33 active faults noted in the 2012 active fault map. After the Chi-Chi earthquake, CGS launched a series of projects to investigate the details to better understand each active fault in Taiwan. This article collected this data to develop active fault parameters and referred to certain experiences from Japan and the United States to establish a methodology for earthquake probability assessment via active faults. We consider the active faults in Central Taiwan as a good example to present the earthquake probability assessment process and results. The appropriate “probability model” was used to estimate the conditional probability where M ≥ 6.5 and M ≥ 7.0 earthquakes. Our result shows that the highest earthquake probability for M ≥ 6.5 earthquake occurring in 30, 50, and 100 years in Central Taiwan is the Tachia-Changhua fault system. Conversely, the lowest earthquake probability is the Chelungpu fault. The goal of our research is to calculate the earthquake probability of the 33 active faults in Taiwan. The active fault parameters are important information that can be applied in the following seismic hazard analysis and seismic simulation.

  3. Real-time fault diagnosis and fault-tolerant control


    Gao, Zhiwei; Ding, Steven X.; Cecati, Carlo


    This "Special Section on Real-Time Fault Diagnosis and Fault-Tolerant Control" of the IEEE Transactions on Industrial Electronics is motivated to provide a forum for academic and industrial communities to report recent theoretic/application results in real-time monitoring, diagnosis, and fault-tolerant design, and exchange the ideas about the emerging research direction in this field. Twenty-three papers were eventually selected through a strict peer-reviewed procedure, which represent the mo...

  4. 2001 Bhuj-Kachchh earthquake: surface faulting and its relation with neotectonics and regional structures, Gujarat, Western India

    Directory of Open Access Journals (Sweden)

    M. G. Thakkar


    Full Text Available Primary and secondary surface deformation related to the 2001 Bhuj-Kachchh earthquake suggests that thrusting movement took place along an E-W fault near the western extension of the South Wagad Fault, a synthetic fault of the Kachchh Mainland Fault (KMF. Despite early reconnaissance reports that concluded there was no primary surface faulting, we describe an 830 m long, 15-35 cm high, east-west-trending thrust fault scarp near where the seismogenic fault plane would project to the surface, near Bharodiya village (between 23°34.912'N, 70°23.942'E and 23°34.304'N, 70°24.884'E. Along most of the scarp Jurassic bedrock is thrust over Quaternary deposits, but the fault scarp also displaces Holocene alluvium and an earth dam, with dips of 13° to 36° south. Secondary co-seismic features, mainly liquefaction and lateral spreading, dominate the area south of the thrust. Transverse right-lateral movement along the «Manfara Fault» and a parallel fault near Bharodiya suggests segmentation of the E-W master faults. Primary (thrust surface rupture had a length of 0.8 km, maximum displacement of about 35 cm, and average displacement of about 15 cm. Secondary (strike-slip faulting was more extensive, with a total end-to-end length of 15 km, maximum displacement of 35 cm, and average displacement of about 20 cm.

  5. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan


    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  6. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.


    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  7. Fluid involvement in normal faulting (United States)

    Sibson, Richard H.


    Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if

  8. Wilshire fault: Earthquakes in Hollywood? (United States)

    Hummon, Cheryl; Schneider, Craig L.; Yeats, Robert S.; Dolan, James F.; Sieh, Kerry E.; Huftile, Gary J.


    The Wilshire fault is a potentially seismogenic, blind thrust fault inferred to underlie and cause the Wilshire arch, a Quaternary fold in the Hollywood area, just west of downtown Los Angeles, California. Two inverse models, based on the Wilshire arch, allow us to estimate the location and slip rate of the Wilshire fault, which may be illuminated by a zone of microearthquakes. A fault-bend fold model indicates a reverse-slip rate of 1.5-1.9 mm/yr, whereas a three-dimensional elastic-dislocation model indicates a right-reverse slip rate of 2.6-3.2 mm/yr. The Wilshire fault is a previously unrecognized seismic hazard directly beneath Hollywood and Beverly Hills, distinct from the faults under the nearby Santa Monica Mountains.

  9. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob


    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are dealt...... with best at a wind turbine control level. However, some faults are better dealt with at the wind farm control level, if the wind turbine is located in a wind farm. In this paper a benchmark model for fault detection and isolation, and fault tolerant control of wind turbines implemented at the wind farm...... control level is presented. The benchmark model includes a small wind farm of nine wind turbines, based on simple models of the wind turbines as well as the wind and interactions between wind turbines in the wind farm. The model includes wind and power references scenarios as well as three relevant fault...

  10. "PROCESS and UVolution: photochemistry experiments in Low Earth Orbit": investigation of the photostability of organic and mineral material exposed to Mars surface UV radiation conditions (United States)

    Stalport, Fabien; Guan, Yuan Yong; Noblet, Audrey; Coll, Patrice; Szopa, Cyril; Macari, Frederique; Person, Alain; Chaput, Didier; Raulin, Francois; Cottin, Hervé

    The harsh martian environment could explain the lack of organics and minerals such as car-bonates by destroying them: i) no organic molecule has been found at the two different landing sites of the Viking landers within the detection limits of the instruments onboard, ii) to date, no large deposits of carbonates have been detected and their detection is specific of local ar-eas and in very low amounts. In this context several experimental and numerical modelling studies were led to evaluate the possibility for the destruction or evolution of the organics and carbonates under the martian surface environmental conditions. The presence of UV radiation has been proposed to explain the photodecomposition of such material. This is the reason why, to investigate the nature, abundance, and stability of organic and mineral material that could survive under such environmental conditions, we exposed in low Earth orbit organic molecules and carbonates (also biominerals) with martian relevance to solar UV radiation ¿ 200 nm, in the frame of the experiment UVolution, onboard the BIOPAN ESA module which was set outside a Russian Foton automated capsule and exposed to space condition during 12 days in September 2007, and the experiment PROCESS (hervé peux tu rajouter quelques infos sur le temps exact d'exposition stp) which was set outside the International Space Station (ISS). Here, we present results with regard to the impact of solar UV radiation on the targeted molecules. Preliminary results indicate that that no organic sample seems to resist to the solar UV radiation if directly exposed to it. Conversely our results show that the exposed carbonates seem to be stable to the solar UV radiation if directly exposed to it. Moreover, the stability of the biominerals strengthens the interest to explore deeper their potential as life records at Mars. Hence they should be considered as primary targets for in situ analyses during future missions.

  11. Rare earths

    International Nuclear Information System (INIS)

    Cranstone, D.A.


    There has been no Canadian production of the rare earth oxides since 1977. World production in 1978, the last year for which figures are available, is estimated to have been about 41000 tonnes, mostly from Australia and the United States. The United States Bureau of Mines estimates that world reserves contain about 7 million tonnes of rare earth oxides and 35 million tonnes of yttrium. The largest yttrium reserves are in India, while China is believed to have the world's largest reserves of rare earth oxides. World consumption of rare aarths increased slightly in 1980, but is still only a small fraction of known reserves. Rare earths are used mainly in high-strength magnets, automobile exhaust systems, fluorescent tube and television screen phosphors, metallurgical applications, petroleum cracking catalysts, and glass polishing

  12. 20 CFR 404.507 - Fault. (United States)


    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that...

  13. Final Technical Report: PV Fault Detection Tool.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  14. San Andreas Fault in the Carrizo Plain (United States)


    The 1,200-kilometer (800-mile)San Andreas is the longest fault in California and one of the longest in North America. This perspective view of a portion of the fault was generated using data from the Shuttle Radar Topography Mission (SRTM), which flew on NASA's Space Shuttle last February, and an enhanced, true-color Landsat satellite image. The view shown looks southeast along the San Andreas where it cuts along the base of the mountains in the Temblor Range near Bakersfield. The fault is the distinctively linear feature to the right of the mountains. To the left of the range is a portion of the agriculturally rich San Joaquin Valley. In the background is the snow-capped peak of Mt. Pinos at an elevation of 2,692 meters (8,831 feet). The complex topography in the area is some of the most spectacular along the course of the fault. To the right of the fault is the famous Carrizo Plain. Dry conditions on the plain have helped preserve the surface trace of the fault, which is scrutinized by both amateur and professional geologists. In 1857, one of the largest earthquakes ever recorded in the United States occurred just north of the Carrizo Plain. With an estimated magnitude of 8.0, the quake severely shook buildings in Los Angeles, caused significant surface rupture along a 350-kilometer (220-mile) segment of the fault, and was felt as far away as Las Vegas, Nev. This portion of the San Andreas is an important area of study for seismologists. For visualization purposes, topographic heights displayed in this image are exaggerated two times.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60

  15. Earth Sciences

    International Nuclear Information System (INIS)



    The following papers were presented at the earth science session: earth science developments in support of water isolation; development of models and parameters for ground-water flow in fractured rock masses; isotope geochemistry as a tool for determining regional ground-water flow; natural analogs of radionuclide migration; nuclide retardation data: its use in the NWTS program; and ground-water geochemistry and interaction with basalt at Hanford

  16. An Overview of Transmission Line Protection by Artificial Neural Network: Fault Detection, Fault Classification, Fault Location, and Fault Direction Discrimination

    Directory of Open Access Journals (Sweden)

    Anamika Yadav


    Full Text Available Contemporary power systems are associated with serious issues of faults on high voltage transmission lines. Instant isolation of fault is necessary to maintain the system stability. Protective relay utilizes current and voltage signals to detect, classify, and locate the fault in transmission line. A trip signal will be sent by the relay to a circuit breaker with the purpose of disconnecting the faulted line from the rest of the system in case of a disturbance for maintaining the stability of the remaining healthy system. This paper focuses on the studies of fault detection, fault classification, fault location, fault phase selection, and fault direction discrimination by using artificial neural networks approach. Artificial neural networks are valuable for power system applications as they can be trained with offline data. Efforts have been made in this study to incorporate and review approximately all important techniques and philosophies of transmission line protection reported in the literature till June 2014. This comprehensive and exhaustive survey will reduce the difficulty of new researchers to evaluate different ANN based techniques with a set of references of all concerned contributions.

  17. Advanced cloud fault tolerance system (United States)

    Sumangali, K.; Benny, Niketa


    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  18. Seismological Studies for Tensile Faults

    Directory of Open Access Journals (Sweden)

    Gwo-Bin Ou


    Full Text Available A shear slip fault, an equivalence of a double couple source, has often been assumed to be a kinematic source model in ground motion simulation. Estimation of seismic moment based on the shear slip model indicates the size of an earthquake. However, if the dislocation of the hanging wall relative to the footwall includes not only a shear slip tangent to the fault plane but also expansion and compression normal to the fault plane, the radiating seismic waves will feature differences from those out of the shear slip fault. Taking account of the effects resulting from expansion and compression to a fault plane, we can resolve the tension and pressure axes as well as the fault plane solution more exactly from ground motions than previously, and can evaluate how far a fault zone opens or contracts during a developing rupture. In addition to a tensile angle and Poisson¡¦s ratio for the medium, a tensile fault with five degrees of freedom has been extended from the shear slip fault with only three degrees of freedom, strike, dip, and slip.

  19. SEISMOLOGY: Watching the Hayward Fault. (United States)

    Simpson, R W


    The Hayward fault, located on the east side of the San Francisco Bay, represents a natural laboratory for seismologists, because it does not sleep silently between major earthquakes. In his Perspective, Simpson discusses the study by Bürgmann et al., who have used powerful new techniques to study the fault. The results indicate that major earthquakes cannot originate in the northern part of the fault. However, surface-rupturing earthquakes have occurred in the area, suggesting that they originated to the north or south of the segment studied by Bürgmann et al. Fundamental questions remain regarding the mechanism by which plate tectonic stresses are transferred to the Hayward fault.

  20. Fault-Tree Compiler Program (United States)

    Butler, Ricky W.; Martensen, Anna L.


    FTC, Fault-Tree Compiler program, is reliability-analysis software tool used to calculate probability of top event of fault tree. Five different types of gates allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language of FTC easy to understand and use. Program supports hierarchical fault-tree-definition feature simplifying process of description of tree and reduces execution time. Solution technique implemented in FORTRAN, and user interface in Pascal. Written to run on DEC VAX computer operating under VMS operating system.

  1. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others


    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  2. Laboratory scale micro-seismic monitoring of rock faulting and injection-induced fault reactivation (United States)

    Sarout, J.; Dautriat, J.; Esteban, L.; Lumley, D. E.; King, A.


    The South West Hub CCS project in Western Australia aims to evaluate the feasibility and impact of geosequestration of CO2 in the Lesueur sandstone formation. Part of this evaluation focuses on the feasibility and design of a robust passive seismic monitoring array. Micro-seismicity monitoring can be used to image the injected CO2plume, or any geomechanical fracture/fault activity; and thus serve as an early warning system by measuring low-level (unfelt) seismicity that may precede potentially larger (felt) earthquakes. This paper describes laboratory deformation experiments replicating typical field scenarios of fluid injection in faulted reservoirs. Two pairs of cylindrical core specimens were recovered from the Harvey-1 well at depths of 1924 m and 2508 m. In each specimen a fault is first generated at the in situ stress, pore pressure and temperature by increasing the vertical stress beyond the peak in a triaxial stress vessel at CSIRO's Geomechanics & Geophysics Lab. The faulted specimen is then stabilized by decreasing the vertical stress. The freshly formed fault is subsequently reactivated by brine injection and increase of the pore pressure until slip occurs again. This second slip event is then controlled in displacement and allowed to develop for a few millimeters. The micro-seismic (MS) response of the rock during the initial fracturing and subsequent reactivation is monitored using an array of 16 ultrasonic sensors attached to the specimen's surface. The recorded MS events are relocated in space and time, and correlate well with the 3D X-ray CT images of the specimen obtained post-mortem. The time evolution of the structural changes induced within the triaxial stress vessel is therefore reliably inferred. The recorded MS activity shows that, as expected, the increase of the vertical stress beyond the peak led to an inclined shear fault. The injection of fluid and the resulting increase in pore pressure led first to a reactivation of the pre

  3. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network (United States)

    Sun, Weifang; Yao, Bin; Zeng, Nianyin; He, Yuchao; Cao, Xincheng; He, Wangpeng


    As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault’s characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault’s characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal’s features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear’s weak fault features. PMID:28773148

  4. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm. (United States)

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie


    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  5. SOM Neural Network Fault Diagnosis Method of Polymerization Kettle Equipment Optimized by Improved PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-sheng Wang


    Full Text Available For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC production process, a fault diagnosis strategy based on the self-organizing map (SOM neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  6. DWT based bearing fault detection in induction motor using noise cancellation

    Directory of Open Access Journals (Sweden)

    K.C. Deekshit Kompella


    Full Text Available This paper presents an approach to detect the bearing faults experienced by induction machine using motor current signature analysis (MCSA. At the incipient stage of bearing fault, the current signature analysis has shown poor performance due to domination of pre fault components in the stator current. Therefore, in this paper domination of pre fault components is suppressed using noise cancellation by Wiener filter. The spectral analysis is carried out using discrete wavelet transform (DWT. The fault severity is estimated by calculating fault indexing parameter of wavelet coefficients. It is further proposed that, the fault indexing parameter of power spectral density (PSD based wavelet coefficients gives better results. The proposed method is examined using simulation and experiment on 2.2 kW test bed.

  7. Individual differences and the effects of an information aid in performance of a fault diagnosis task

    NARCIS (Netherlands)

    Raaijmakers, J.G.W.; Verduyn, W.W.


    Two experiments are reported that investigated the performance of operators in a fault diagnosis task. Naval engineers working in the Ship's Control Centre (SCC) on board of frigates of the Royal Netherlands Navy were asked to solve a number of unfamiliar fault problems. In the first experiment, it

  8. Communication-based fault handling scheme for ungrounded distribution systems

    International Nuclear Information System (INIS)

    Yang, X.; Lim, S.I.; Lee, S.J.; Choi, M.S.


    The requirement for high quality and highly reliable power supplies has been increasing as a result of increasing demand for power. At the time of a fault occurrence in a distribution system, some protection method would be dedicated to fault section isolation and service restoration. However, if there are many outage areas when the protection method is performed, it is an inconvenience to the customer. A conventional method to determine a fault section in ungrounded systems requires many successive outage invocations. This paper proposed an efficient fault section isolation method and service restoration method for single line-to-ground fault in an ungrounded distribution system that was faster than the conventional one using the information exchange between connected feeders. The proposed algorithm could be performed without any power supply interruption and could decrease the number of switching operations, so that customers would not experience outages very frequently. The method involved the use of an intelligent communication method and a sequential switching control scheme. The proposed algorithm was also applied in both a single-tie and multi-tie distribution system. This proposed algorithm has been verified through fault simulations in a simple model of ungrounded multi-tie distribution system. The method proposed in this paper was proven to offer more efficient fault identification and much less outage time than the conventional method. The proposed method could contribute to a system design since it is valid in multi-tie systems. 5 refs., 2 tabs., 8 figs

  9. AFTC Code for Automatic Fault Tree Construction: Users Manual

    International Nuclear Information System (INIS)

    Gopika Vinod; Saraf, R.K.; Babar, A.K.


    Fault Trees perform a predominant role in reliability and safety analysis of system. Manual construction of fault tree is a very time consuming task and moreover, it won't give a formalized result, since it relies highly on analysts experience and heuristics. This necessitates a computerised fault tree construction, which is still attracting interest of reliability analysts. AFTC software is a user friendly software model for constructing fault trees based on decision tables. Software is equipped with libraries of decision tables for components commonly used in various Nuclear Power Plant (NPP) systems. User is expected to make a nodal diagram of the system, for which fault tree is to be constructed, from the flow sheets available. The text nodal diagram goes as the sole input defining the system flow chart. AFTC software is a rule based expert system which draws the fault tree from the system flow chart and component decision tables. AFTC software gives fault tree in both text and graphic format. Help is provided as how to enter system flow chart and component decision tables. The software is developed in 'C' language. Software is verified with simplified version of the fire water system of an Indian PHWR. Code conversion will be undertaken to create a window based version. (author)

  10. Fault current limiter (United States)

    Darmann, Francis Anthony


    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  11. Large scale and cloud-based multi-model analytics experiments on climate change data in the Earth System Grid Federation (United States)

    Fiore, Sandro; Płóciennik, Marcin; Doutriaux, Charles; Blanquer, Ignacio; Barbera, Roberto; Donvito, Giacinto; Williams, Dean N.; Anantharaj, Valentine; Salomoni, Davide D.; Aloisio, Giovanni


    In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated, such as the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). A case study on climate models intercomparison data analysis addressing several classes of multi-model experiments is being implemented in the context of the EU H2020 INDIGO-DataCloud project. Such experiments require the availability of large amount of data (multi-terabyte order) related to the output of several climate models simulations as well as the exploitation of scientific data management tools for large-scale data analytics. More specifically, the talk discusses in detail a use case on precipitation trend analysis in terms of requirements, architectural design solution, and infrastructural implementation. The experiment has been tested and validated on CMIP5 datasets, in the context of a large scale distributed testbed across EU and US involving three ESGF sites (LLNL, ORNL, and CMCC) and one central orchestrator site (PSNC). The general "environment" of the case study relates to: (i) multi-model data analysis inter-comparison challenges; (ii) addressed on CMIP5 data; and (iii) which are made available through the IS-ENES/ESGF infrastructure. The added value of the solution proposed in the INDIGO-DataCloud project are summarized in the following: (i) it implements a different paradigm (from client- to server-side); (ii) it intrinsically reduces data movement; (iii) it makes lightweight the end-user setup; (iv) it fosters re-usability (of data, final

  12. Fault Friction and Physics: Lessons from SAFOD (Invited) (United States)

    Carpenter, B. M.; Marone, C.; Saffer, D. M.; Lockner, D. A.; Morrow, C. A.; Hickman, S. H.; French, M. E.; Chester, J. S.; Chester, F. M.


    Sampling and down-hole measurements of active faults at seismogenic depths have produced significant advances in our knowledge of fault zone evolution, structure, composition and mechanical behavior. The San Andreas Fault Observatory at Depth (SAFOD), located in central California along a section of the San Andreas Fault (SAF) that is slipping through a combination of fault creep and repeating microearthquakes, has greatly increased our understanding of the mechanical behavior of plate-boundary faults. In this talk, we summarize results from studies of SAFOD core recovered from the creeping SAF at seismogenic depths (~2.7 km), focusing on the frictional strength and sliding stability of the fault, as well as deformation processes occurring within the active fault at depth. Ongoing laboratory investigations of SAFOD core continue to advance our understanding of frictional strength, slip stability, poromechanical properties, and their coupling in active fault zones. Fault slip is localized within two actively deforming gouge-filled zones (1.6 m and 2.6 m wide), which were identified on the basis of casing deformation prior to SAFOD coring (see Zoback et al., 2011, Scientific Drilling, No. 11). Friction experiments performed on fault gouge from these two deforming zones at near in-situ conditions have shown that material from the actively creeping SAF is remarkably weak (coefficient of friction as low as ~0.1), and exhibits little to no frictional restrengthening. Laboratory results further show that gouge from the creeping section is both statically and dynamically weak, and indicate that the shallow portion (constitutive properties deduced from post-seismic surface deformation and seismic behavior. Microstructural studies of recovered fault gouge have shown that mechanical weakness of the active SAF is likely due to the presence of pervasive, anastomozing shear surfaces developed within the clay-rich gouge matrix. These studies also suggest that the wall rock

  13. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults. (United States)

    Cowie, P A; Phillips, R J; Roberts, G P; McCaffrey, K; Zijerveld, L J J; Gregory, L C; Faure Walker, J; Wedmore, L N J; Dunai, T J; Binnie, S A; Freeman, S P H T; Wilcken, K; Shanks, R P; Huismans, R S; Papanikolaou, I; Michetti, A M; Wilkinson, M


    Many areas of the Earth's crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36 Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36 Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (10 4  yr; 10 2  km) but over shorter timescales most of the deformation may be accommodated by fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting.

  14. Central Asia Active Fault Database (United States)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah


    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  15. Fault Monitooring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens


    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to line breakage...... and risky abortion of an oil-loading operation. With signicant drift forces from waves, non-Gaussian elements dominate in residuals and fault diagnosis need be designed using dedicated change detection for the type of distribution encountered. In addition to dedicated diagnosis, an optimal position...... algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Detection properties and fault-tolerant control are demonstrated by high delity simulations...

  16. Bones of the Earth (United States)

    Correa, Jose Miguel


    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  17. Fault Management Design Strategies (United States)

    Day, John C.; Johnson, Stephen B.


    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  18. Visualization of the fault slip connected with the West Bohemia earthquake swarms

    Czech Academy of Sciences Publication Activity Database

    Kolář, Petr; Růžek, Bohuslav; Boušková, Alena; Horálek, Josef


    Roč. 8, č. 2 (2011), s. 169-187 ISSN 1214-9705 R&D Projects: GA AV ČR(CZ) IAA300120805; GA ČR GAP210/10/1728 Institutional research plan: CEZ:AV0Z30120515 Keywords : West Bohemia earthquake swarm * fault slip * fault dynamics * asperity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.530, year: 2011

  19. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles (United States)

    Jeon, Namju; Lee, Hyeongcheol


    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431

  20. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Namju Jeon


    Full Text Available An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  1. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles. (United States)

    Jeon, Namju; Lee, Hyeongcheol


    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  2. Development of Asset Fault Signatures for Prognostic and Health Management in the Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Vivek Agarwal; Nancy J. Lybeck; Randall Bickford; Richard Rusaw


    Proactive online monitoring in the nuclear industry is being explored using the Electric Power Research Institute’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. The FW-PHM Suite is a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. The FW-PHM Suite has four main modules: Diagnostic Advisor, Asset Fault Signature (AFS) Database, Remaining Useful Life Advisor, and Remaining Useful Life Database. This paper focuses on development of asset fault signatures to assess the health status of generator step-up generators and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. At the most basic level, fault signatures are comprised of an asset type, a fault type, and a set of one or more fault features (symptoms) that are indicative of the specified fault. The AFS Database is populated with asset fault signatures via a content development exercise that is based on the results of intensive technical research and on the knowledge and experience of technical experts. The developed fault signatures capture this knowledge and implement it in a standardized approach, thereby streamlining the diagnostic and prognostic process. This will support the automation of proactive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  3. Physical Fault Injection and Monitoring Methods for Programmable Devices

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00510096; Ferencei, Jozef

    A method of detecting faults for evaluating the fault cross section of any field programmable gate array (FPGA) was developed and is described in the thesis. The incidence of single event effects in FPGAs was studied for different probe particles (proton, neutron, gamma) using this method. The existing accelerator infrastructure of the Nuclear Physics Institute in Rez was supplemented by more sensitive beam monitoring system to ensure that the tests are done under well defined beam conditions. The bit cross section of single event effects was measured for different types of configuration memories, clock signal phase and beam energies and intensities. The extended infrastructure served also for radiation testing of components which are planned to be used in the new Inner Tracking System (ITS) detector of the ALICE experiment and for selecting optimal fault mitigation techniques used for securing the design of the FPGA-based ITS readout unit against faults induced by ionizing radiation.

  4. A Lateral Tensile Fracturing Model for Listric Fault (United States)

    Qiu, Z.


    The new discovery of a major seismic fault of the great 1976 Tangshan earthquake suggests a lateral tensile fracturing process at the seismic source. The fault is in listric shape but can not be explained with the prevailing model of listric fault. A double-couple of forces without moment is demonstrated to be applicable to simulate the source mechanism. Based on fracture mechanics, laboratory experiments as well as numerical simulations, the model is against the assumption of stick-slip on existing fault as the cause of the earthquake but not in conflict with seismological observations. Global statistics of CMT solutions of great earthquakes raises significant support to the idea that lateral tensile fracturing might account for not only the Tangshan earthquake but also others.

  5. A Diagnostic System for Speed-Varying Motor Rotary Faults

    Directory of Open Access Journals (Sweden)

    Chwan-Lu Tseng


    Full Text Available This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experiments, this study used wireless sensor nodes to transmit vibration data and employed MATLAB to write codes for functional modules, including the signal processing, sensorless rotational speed estimation, neural network, and stochastic process control chart. Additionally, Visual Basic software was used to create an integrated human-machine interface. The experimental results regarding the test of equipment faults indicated that the proposed novel diagnostic system can effectively estimate rotational speeds and provide superior ability of motor fault discrimination with fast training convergence.

  6. Automatic identification of otological drilling faults: an intelligent recognition algorithm. (United States)

    Cao, Tianyang; Li, Xisheng; Gao, Zhiqiang; Feng, Guodong; Shen, Peng


    This article presents an intelligent recognition algorithm that can recognize milling states of the otological drill by fusing multi-sensor information. An otological drill was modified by the addition of sensors. The algorithm was designed according to features of the milling process and is composed of a characteristic curve, an adaptive filter and a rule base. The characteristic curve can weaken the impact of the unstable normal milling process and reserve the features of drilling faults. The adaptive filter is capable of suppressing interference in the characteristic curve by fusing multi-sensor information. The rule base can identify drilling faults through the filtering result data. The experiments were repeated on fresh porcine scapulas, including normal milling and two drilling faults. The algorithm has high rates of identification. This study shows that the intelligent recognition algorithm can identify drilling faults under interference conditions. (c) 2010 John Wiley & Sons, Ltd.

  7. Techniques for Diagnosing Software Faults

    NARCIS (Netherlands)

    Abreu, R.F.; Zoeteweij, P.; Van Gemund, A.J.C.


    This technical report is meant to report our findings and ideas with respect to spectrum-based fault localization and modelbased diagnosis. In the following we want to introduce and compare model-based diagnosis (MBD), spectrum-based fault localization (SFL) and our contributions using 3-inverters

  8. Fault self-repair strategy based on evolvable hardware and reparation balance technology

    Directory of Open Access Journals (Sweden)

    Zhang Junbin


    Full Text Available In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress, the circuits faults appear easily. Circuit faults will inevitably lead to serious losses of availability or impeded mission success without self-repair over the mission duration. Traditional fault-repair methods based on redundant fault-tolerant technique are straightforward to implement, yet their area, power and weight cost can be excessive. Moreover they utilize all plug-in or component level circuits to realize redundant backup, such that their applicability is limited. Hence, a novel self-repair technology based on evolvable hardware (EHW and reparation balance technology (RBT is proposed. Its cost is low, and fault self-repair of various circuits and devices can be realized through dynamic configuration. Making full use of the fault signals, correcting circuit can be found through EHW technique to realize the balance and compensation of the fault output-signals. In this paper, the self-repair model was analyzed which based on EHW and RBT technique, the specific self-repair strategy was studied, the corresponding self-repair circuit fault system was designed, and the typical faults were simulated and analyzed which combined with the actual electronic devices. Simulation results demonstrated that the proposed fault self-repair strategy was feasible. Compared to traditional techniques, fault self-repair based on EHW consumes fewer hardware resources, and the scope of fault self-repair was expanded significantly.

  9. On the origins of Earth rotation anomalies: New insights on the basis of both “paleogeodetic” data and Gravity Recovery and Climate Experiment (GRACE) data (United States)

    Peltier, W. R.; Luthcke, Scott B.


    The theory previously developed to predict the impact on Earth's rotational state of the late Pleistocene glaciation cycle is extended. In particular, we examine the extent to which a departure of the infinite time asymptote of the viscoelastic tidal Love number of degree 2, "k2T," from the observed "fluid" Love number, "kf," impacts the theory. A number of tests of the influence of the difference in these Love numbers on theoretical predictions of the model of the glacial isostatic adjustment (GIA) process are explored. Relative sea level history predictions are shown not to be sensitive to the difference even though they are highly sensitive to the influence of the changing rotational state itself. We also explore in detail the accuracy with which the Gravity Recovery and Climate Experiment (GRACE) satellite system is able to observe the global GIA process including the time-dependent amplitude of the degree 2 and order 1 spherical harmonic components of the gravitational field, the only components that are significantly influenced by rotational effects. It is explicitly shown that the GRACE observation of these properties of the time-varying gravitational field is sufficiently accurate to rule out the values predicted by the ICE-5G (VM2) model of Peltier (2004). However, we also note that this model is constrained only by data from an epoch during which modern greenhouse gas induced melting of both the great polar ice-sheets and small ice sheets and glaciers was not occurring. Such modern loss of grounded continental ice strongly influences the evolving rotational state of the planet and thus the values of the degree 2 and order 1 Stokes coefficients as they are currently being measured by the GRACE satellite system. A series of sensitivity tests are employed to demonstrate this fact. We suggest that the accuracy of scenarios for modern land ice melting may be tested by ensuring that such scenarios conform to the GRACE observations of these crucial time

  10. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng


    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  11. ESR dating of the fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon


    We carried out ESR dating of fault rocks collected near the nuclear reactor. The Upcheon fault zone is exposed close to the Ulzin nuclear reactor. The space-time pattern of fault activity on the Upcheon fault deduced from ESR dating of fault gouge can be summarised as follows : this fault zone was reactivated between fault breccia derived from Cretaceous sandstone and tertiary volcanic sedimentary rocks about 2 Ma, 1.5 Ma and 1 Ma ago. After those movements, the Upcheon fault was reactivated between Cretaceous sandstone and fault breccia zone about 800 ka ago. This fault zone was reactivated again between fault breccia derived form Cretaceous sandstone and Tertiary volcanic sedimentary rocks about 650 ka and after 125 ka ago. These data suggest that the long-term(200-500 k.y.) cyclic fault activity of the Upcheon fault zone continued into the Pleistocene. In the Ulzin area, ESR dates from the NW and EW trend faults range from 800 ka to 600 ka NE and EW trend faults were reactivated about between 200 ka and 300 ka ago. On the other hand, ESR date of the NS trend fault is about 400 ka and 50 ka. Results of this research suggest the fault activity near the Ulzin nuclear reactor fault activity continued into the Pleistocene. One ESR date near the Youngkwang nuclear reactor is 200 ka

  12. A Tensile Origin for Pulverized Fault Zone Rock (United States)

    St Julien, R. C.; Griffith, W. A.; Ghaffari, H. O.


    The origin of highly fragmented, but lightly strained rocks distributed asymmetrically across major strike slip faults has been enigmatic since their first recognition, yet the explanation has major implications for earthquake physics. These so called "pulverized" rocks are found up to 100m away from the principal slip zone of the San Andreas fault and other strike slip faults around the world. Experiments suggest that rock pulverization occurs at strain rates on the order of 102 s-1, pointing to a coseismic origin; however, strain rates during sub-Rayleigh earthquake rupture propagation 100m from faults is expected to be at least two orders of magnitude smaller than this, leading some to suggest that pulverization occurs during supershear earthquake rupture. Numerical solutions suggest that states of isotropic tension occur in more compliant sides of the fault, and at distances as great as 100m from the fault, as a sub-Rayleigh rupture propagates. We develop a novel modification to the Split-Hopkinson Pressure Bar apparatus wherein an axial compressive pulse produces isotropic radial tension in a disk-shaped rock specimen. We show that under isotropic tension, fragmentation of Westerly Granite occurs at strain rates on the order of 100 s-1, and fragment size scales inversely with strain rate in close agreement with energy-based fragmentation models. Similar experiments on thermally pre-treated Westerly granite specimens demonstrate how pre-existing damage can further reduce strain rates and tensile stresses required for intense fragmentation. Our results solve the strain rate-distance scaling problem between laboratory and field observations of pulverized rocks and also explains the asymmetric distribution of fault rocks. Furthermore, this implies long-term preferred earthquake rupture directivity along major faults where pulverized rocks are found.

  13. Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps (United States)

    Roggon, Lars; Hetzel, Ralf; Hiesinger, Harald; Clark, Jaclyn D.; Hampel, Andrea; van der Bogert, Carolyn H.


    Fault populations on terrestrial planets exhibit a linear relationship between their length, L, and the maximum displacement, D, which implies a constant D/L ratio during fault growth. Although it is known that D/L ratios of faults are typically a few percent on Earth and 0.2-0.8% on Mars and Mercury, the D/L ratios of lunar faults are not well characterized. Quantifying the D/L ratios of faults on the Moon is, however, crucial for a better understanding of lunar tectonics, including for studies of the amount of global lunar contraction. Here, we use high-resolution digital terrain models to perform a topographic analysis of four lunar thrust faults - Simpelius-1, Morozov (S1), Fowler, and Racah X-1 - that range in length from 1.3 km to 15.4 km. First, we determine the along-strike variation of the vertical displacement from ≥ 20 topographic profiles across each fault. For measuring the vertical displacements, we use a method that is commonly applied to fault scarps on Earth and that does not require detrending of the profiles. The resulting profiles show that the displacement changes gradually along these faults' strike, with maximum vertical displacements ranging from 17 ± 2 m for Simpelius-1 to 192 ± 30 m for Racah X-1. Assuming a fault dip of 30° yields maximum total displacements (D) that are twice as large as the vertical displacements. The linear relationship between D and L supports the inference that lunar faults gradually accumulate displacement as they propagate laterally. For the faults we investigated, the D/L ratio is ∼2.3%, an order of magnitude higher than theoretical predictions for the Moon, but a value similar for faults on Earth. We also employ finite-element modeling and a Mohr circle stress analysis to investigate why many lunar thrust faults, including three of those studied here, form uphill-facing scarps. Our analysis shows that fault slip is preferentially initiated on planes that dip in the same direction as the topography, because

  14. Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions

    Directory of Open Access Journals (Sweden)

    Fan Xiao


    Full Text Available During non-severe fault conditions, crowbar protection is not activated and the rotor windings of a doubly-fed induction generator (DFIG are excited by the AC/DC/AC converter. Meanwhile, under asymmetrical fault conditions, the electrical variables oscillate at twice the grid frequency in synchronous dq frame. In the engineering practice, notch filters are usually used to extract the positive and negative sequence components. In these cases, the dynamic response of a rotor-side converter (RSC and the notch filters have a large influence on the fault current characteristics of the DFIG. In this paper, the influence of the notch filters on the proportional integral (PI parameters is discussed and the simplified calculation models of the rotor current are established. Then, the dynamic performance of the stator flux linkage under asymmetrical fault conditions is also analyzed. Based on this, the fault characteristics of the stator current under asymmetrical fault conditions are studied and the corresponding analytical expressions of the stator fault current are obtained. Finally, digital simulation results validate the analytical results. The research results are helpful to meet the requirements of a practical short-circuit calculation and the construction of a relaying protection system for the power grid with penetration of DFIGs.

  15. San Andreas-sized Strike-slip Fault on Europa (United States)


    subsequent tidal stress causes it to move lengthwise in one direction. Then tidal forces close the fault again, preventing the area from moving back to its original position. Daily tidal cycles produce a steady accumulation of lengthwise offset motions. Here on Earth, unlike Europa, large strike-slip faults like the San Andreas are set in motion by plate tectonic forces. North is to the top of the picture and the sun illuminates the surface from the top. The image, centered at 66 degrees south latitude and 195 degrees west longitude, covers an area approximately 300 by 203 kilometers(185 by 125 miles). The pictures were taken on September 26, 1998by Galileo's solid-state imaging system. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL Background information and educational context for the images can be found at URL

  16. Faults detection approach using PCA and SOM algorithm in PMSG-WT system

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine FADDA


    Full Text Available In this paper, a new approach for faults detection in observable data system wind turbine - permanent magnet synchronous generator (WT-PMSG, the studying objective, illustrate the combination (SOM-PCA to build Multi-local-PCA models faults detection in system (WT-PMSG, the performance of the method suggested to faults detection in system data, finding good results in simulation experiment.

  17. Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations (United States)

    Collettini, Cristiano; Scuderi, Marco; Marone, Chris


    Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.

  18. Mapping the Qademah Fault with Traveltime, Surface-wave, and Resistivity Tomograms

    KAUST Repository

    Hanafy, Sherif M.


    Traveltime, surface-wave, and resistivity tomograms are used to track the buried Qademah fault located near King Abdullah Economic City (KAEC), Saudi Arabia. The fault location is confirmed by the 1) resistivity tomogram obtained from an electrical resistivity experiment, 2) the refraction traveltime tomogram, 3) the reflection image computed from 2D seismic data set recorded at the northern part of the fault, and 4) the surface-wave tomogram.

  19. Reply to discussion by M. C. Alçiçek et al. on ;Neogene-Quaternary evolution of the Tefenni basin on the Fethiye-Burdur fault zone, SW Anatolia-Turkey;, Journal of African Earth Sciences, 118, 137-148, by R. Aksoy and S. Aksarı (United States)

    Aksoy, Rahmi; Aksarı, Süleyman


    In their discussion on the Aksoy and Aksarı (2016) article, Alçiçek et al. (2017) claim that our stratigraphic interpretation, age assignment for the rock units and kinematic analysis depended on incorrect data. They also claim that there is no evidence for a NE-trending fault zone (Fethiye-Burdur Fault Zone) from Fethiye to Burdur with left-lateral strike-slip movement. Our opposing views on the above-mentioned issues are given below.

  20. Digital Earth - A sustainable Earth (United States)



    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  1. Arc fault detection system (United States)

    Jha, K.N.


    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  2. Alpine Fault, New Zealand, SRTM Shaded Relief and Colored Height (United States)


    The Alpine fault runs parallel to, and just inland of, much of the west coast of New Zealand's South Island. This view was created from the near-global digital elevation model produced by the Shuttle Radar Topography Mission (SRTM) and is almost 500 kilometers (just over 300 miles) wide. Northwest is toward the top. The fault is extremely distinct in the topographic pattern, nearly slicing this scene in half lengthwise. In a regional context, the Alpine fault is part of a system of faults that connects a west dipping subduction zone to the northeast with an east dipping subduction zone to the southwest, both of which occur along the juncture of the Indo-Australian and Pacific tectonic plates. Thus, the fault itself constitutes the major surface manifestation of the plate boundary here. Offsets of streams and ridges evident in the field, and in this view of SRTM data, indicate right-lateral fault motion. But convergence also occurs across the fault, and this causes the continued uplift of the Southern Alps, New Zealand's largest mountain range, along the southeast side of the fault. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast (image top to bottom) direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data

  3. Frictional strengths of fault gouge from a creeping segment of the Bartlett Springs Fault, northern California (United States)

    Swiatlowski, J. L.; Moore, D. E.; Lockner, D. A.


    The Bartlett Springs Fault (BSF) is a right-lateral strike-slip fault that is part of the San Andreas Fault System in Northern California with an estimated slip rate of 7 mm/yr. An exposure of the BSF near Lake Pillsbury, which creeps at a rate of 3.4 mm/yr, reveals a 1.5 m-wide zone of serpentinite-bearing gouge that has risen buoyantly to the surface in a manner similar to that documented for the San Andreas creeping section at SAFOD. The gouge is a heterogeneous mixture of the high-temperature serpentine mineral antigorite and the greenschist facies alteration assemblage talc + chlorite + tremolite, all of which are stable at temperatures >250°C, indicating that the gouge was tectonically entrained in the fault from depths near the base of the seismogenic zone. Antigorite has been shown to promote fault creep when sheared between crustal rocks at hydrothermal conditions. However, the effect of thorough metasomatism of antigorite on sliding stability are unknown. We conducted velocity-stepping strength experiments to explore the effect on frictional behavior if the serpentinite is completely replaced by the talc-chlorite-tremolite assemblage. The experiments were conducted at 290°C, 140 MPa effective normal stress, and 90 MPa fluid pressure to simulate conditions at 9 km depth. We tested mixtures of the three minerals in varying proportions (ternary mixing-law). The end-member samples show a four-fold variation in frictional strength: talc is the weakest (µ 0.12), tremolite the strongest (µ 0.55), and chlorite intermediate (µ 0.30). Talc and chlorite are velocity strengthening (a-b > 0) and tremolite velocity weakening (a-b 50% talc have coefficients of friction <0.2 with (a-b) ≥ 0. Talc would thus need to be concentrated in the sheared gouge matrix to promote creep in thoroughly altered serpentinite at depth.

  4. Absolute age determination of quaternary faults

    International Nuclear Information System (INIS)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik


    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results

  5. Absolute age determination of quaternary faults

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik [Korea Basic Science Institute, Seoul (Korea, Republic of)] (and others)


    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results.

  6. Improving Multiple Fault Diagnosability using Possible Conflicts (United States)

    Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino


    Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.

  7. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    International Nuclear Information System (INIS)

    Cumbest, R.J.


    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion

  8. Uranium Groundwater Anomalies and Active Normal Faulting

    International Nuclear Information System (INIS)

    Plastino, Wolfango; Panza, Giuliano Francesco; Doglioni, Carlo


    The ability to predict earthquakes is one of the greatest challenges for Earth Sciences. Radon has been suggested as one possible precursor, and its groundwater anomalies associated with earthquakes and water-rock interactions were proposed in several seismogenic areas worldwide as due to possible transport of radon through microfractures, or due to crustal gas fluxes along active faults. However, the use of radon as a possible earthquake's precursor is not clearly linked to crustal deformation. Here we show that uranium groundwater anomalies, which were observed in cataclastic rocks crossing the underground Gran Sasso National Laboratory, can be used as a possible precursor of earthquakes in domains where continental lithosphere is subducted. Measurements evidence clear, sharp anomalies from July, 2008 to the end of March, 2009, related to a preparation phase of the seismic swarm, which occurred near L'Aquila, Italy, from October, 2008 to April, 2009. On April 6th, 2009 an earthquake (M w =6.3) occurred at 01:33 UT in the same area, with normal faulting on a NW-SE oriented structure about 15 km long, dipping toward SW. In the framework of the geophysical and geochemical models of the area, these measurements indicate that uranium may be used as a possible strain meter in extensional tectonic settings similar to those where the L'Aquila earthquake occurred. (author)

  9. Coseismic paleomagnetic signal in fault pseudotachylytes? (United States)

    Ferre, E.; Geissman, J. W.; Zechmeister, M. S.


    The 59 Ma-old fault-related pseudotachylytes of the Peninsular Ranges of California have been investigated from the microstructural and magnetic point of view. These veins have a 30-fold increase in magnetic susceptibility compared to their tonalitic host-rock. The increase results from the breakdown of mafic silicates during frictional melting and subsequent formation of abundant fine grained magnetite grains. Upon rapid cooling of the pseudotachylyte melt in the Earth's magnetic field the rocks acquire a strong thermoremanent magnetization. In addition to this dominant process some samples exhibit a "lightning-induced" remanent magnetization acquired during seismic slip in the presence of a high magnetic field. This unusual remanence component is anomalous in direction and tends to be at high angle to the pseudotachylyte vein plane. We propose that the coseismic lightning-induced magnetization is caused by electrical currents possibly similar to those responsible for earthquake lightnings.

  10. Vp and Vs velocity models from the Eurasia-Africa plate boundary across the Gloria Fault, North Atlantic Ocean (United States)

    Batista, Luis; Hübscher, Christian; Terrinha, Pedro; Matias, Luis; Afilhado, Alexandra; Lüdmann, Thomas


    The oceanic crustal and uppermost lithospheric mantle structure across the Gloria Fault transcurrent plate boundary between Africa and Eurasia in the Northeast Atlantic is investigated based on seismic reflection, seismic refraction and wide angle reflection data. This experiment used 18 ocean bottom stations along a N-S 150 km long traverse together with coincident acquisition of a multichannel seismic reflection profile. Structural and seismic stratigraphic interpretation of the reflection profile shows that Neogene to recent tectonic deformation on this segment of the plate boundary concentrated on the southern side of the Gloria Fault, i.e. the Africa plate. Modeling of P and S seismic waves and gravimetric anomalies allowed estimation of velocities, density, Poisson's ratio and proposal of a compositional model. A five layer model is proposed in which layers 1 to 3 correspond to normal sediments and typical oceanic crust layers 2 and 3, respectively. Layer 5 yielded mantle velocities above 7.9 km/s. Layer 4 with 4 km of thickness has Vp velocities between 7.1 and 7.4 km/s. Layer 4 velocities can be found at the base of the lower crust and at the uppermost hydrated lithospheric mantle as reported from various authors from other parts of the Earth. Enrichment in olivine at the base of the lower crust, as a result of underplating, could explain Layer 4 velocities; however, there are no morphologic evidences associated to plume activity. On the other hand, morphologic, geologic and seismicity generated along the Gloria Fault (M>7-8.4) indicates that the Gloria Fault has accumulated ductile and brittle deformation from the upper mantle through the surface. It is here argued that pathways for fluid migration through seismic pumping mechanisms have provided the conditions for partial serpentinization of the peridotite mantle rocks, which probably make up the bulk of Layer 4. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz

  11. Fault Injection and Monitoring Capability for a Fault-Tolerant Distributed Computation System (United States)

    Torres-Pomales, Wilfredo; Yates, Amy M.; Malekpour, Mahyar R.


    The Configurable Fault-Injection and Monitoring System (CFIMS) is intended for the experimental characterization of effects caused by a variety of adverse conditions on a distributed computation system running flight control applications. A product of research collaboration between NASA Langley Research Center and Old Dominion University, the CFIMS is the main research tool for generating actual fault response data with which to develop and validate analytical performance models and design methodologies for the mitigation of fault effects in distributed flight control systems. Rather than a fixed design solution, the CFIMS is a flexible system that enables the systematic exploration of the problem space and can be adapted to meet the evolving needs of the research. The CFIMS has the capabilities of system-under-test (SUT) functional stimulus generation, fault injection and state monitoring, all of which are supported by a configuration capability for setting up the system as desired for a particular experiment. This report summarizes the work accomplished so far in the development of the CFIMS concept and documents the first design realization.

  12. Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Coubal, Miroslav; Adamovič, Jiří; Málek, Jiří; Prouza, V.


    Roč. 59, č. 3 (2014), s. 183-208 ISSN 1802-6222 Institutional support: RVO:67985831 ; RVO:67985891 Keywords : fault architecture * fault plane geometry * drag structures * thrust fault * sandstone * Lusatian Fault Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.405, year: 2014

  13. Transformer fault diagnosis using continuous sparse autoencoder. (United States)

    Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou


    This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis.

  14. Undulator Hall Air Temperature Fault Scenarios

    International Nuclear Information System (INIS)

    Sevilla, J.


    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about ±2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  15. 2-D deformation of two welded half-spaces due to a blind dip-slip fault

    Indian Academy of Sciences (India)

    Earth Planet. Int. 65 276–282. Rani S, Singh S J and Kumari G 1995 Static deformation of two welded elastic half-spaces caused by a rectangular fault located on the interface; Phys. Earth Planet. Int. 92 261–269. Rongved L 1955 Force interior to one of two joined semi- infinite solids; In: Proceedings of the 2nd Midwestern.

  16. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite (United States)

    Thompson, B.D.; Young, R.P.; Lockner, David A.


    A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.

  17. Gear fault detection using customized multiwavelet lifting schemes (United States)

    Yuan, Jing; He, Zhengjia; Zi, Yanyang


    Fault symptoms of running gearboxes must be detected as early as possible to avoid serious accidents. Diverse advanced methods are developed for this challenging task. However, for multiwavelet transforms, the fixed basis functions independent of the input dynamic response signals will possibly reduce the accuracy of fault diagnosis. Meanwhile, for multiwavelet denoising technique, the universal threshold denoising tends to overkill important but weak features in gear fault diagnosis. To overcome the shortcoming, a novel method incorporating customized (i.e., signal-based) multiwavelet lifting schemes with sliding window denoising is proposed in this paper. On the basis of Hermite spline interpolation, various vector prediction and update operators with the desirable properties of biorthogonality, symmetry, short support and vanishing moments are constructed. The customized lifting-based multiwavelets for feature matching are chosen by the minimum entropy principle. Due to the periodic characteristics of gearbox vibration signals, sliding window denoising favorable to retain valuable information as much as possible is employed to extract and identify the fault features in gearbox signals. The proposed method is applied to simulation experiments, gear fault diagnosis and normal gear detection to testify the efficiency and reliability. The results show that the method involving the selection of appropriate basis functions and the proper feature extraction technique could act as an effective and promising tool for gear fault detection.

  18. "Handling" seismic hazard: 3D printing of California Faults (United States)

    Kyriakopoulos, C.; Potter, M.; Richards-Dinger, K. B.


    As earth scientists, we face the challenge of how to explain and represent our work and achievements to the general public. Nowadays, this problem is partially alleviated by the use of modern visualization tools such as advanced scientific software (, high resolution monitors, elaborate video simulations, and even 3D Virtual Reality goggles. However, the ability to manipulate and examine a physical object in 3D is still an important tool to connect better with the public. For that reason, we are presenting a scaled 3D printed version of the complex network of earthquake faults active in California based on that used by the Uniform California Earthquake Rupture Forecast 3 (UCERF3) (Field et al., 2013). We start from the fault geometry in the UCERF3.1 deformation model files. These files contain information such as the coordinates of the surface traces of the faults, dip angle, and depth extent. The fault specified in the above files are triangulated at 1km resolution and exported as a facet (.fac) file. The facet file is later imported into the Trelis 15.1 mesh generator ( We use Trelis to perform the following three operations: First, we scale down the model so that 100 mm corresponds to 100km. Second, we "thicken" the walls of the faults; wall thickness of at least 1mm is necessary in 3D printing. We thicken fault geometry by 1mm on each side of the faults for a total of 2mm thickness. Third, we break down the model into parts that will fit the printing bed size ( 25 x 20mm). Finally, each part is exported in stereolithography format (.stl). For our project, we are using the 3D printing facility within the Creat'R Lab in the UC Riverside Orbach Science Library. The 3D printer is a MakerBot Replicator Desktop, 5th Generation. The resolution of print is 0.2mm (Standard quality). The printing material is the MakerBot PLA Filament, 1.75 mm diameter, large Spool, green. The most complex part of the display model requires approximately 17

  19. Fault Features Extraction and Identification based Rolling Bearing Fault Diagnosis

    International Nuclear Information System (INIS)

    Qin, B; Sun, G D; Zhang L Y; Wang J G; HU, J


    For the fault classification model based on extreme learning machine (ELM), the diagnosis accuracy and stability of rolling bearing is greatly influenced by a critical parameter, which is the number of nodes in hidden layer of ELM. An adaptive adjustment strategy is proposed based on vibrational mode decomposition, permutation entropy, and nuclear kernel extreme learning machine to determine the tunable parameter. First, the vibration signals are measured and then decomposed into different fault feature models based on variation mode decomposition. Then, fault feature of each model is formed to a high dimensional feature vector set based on permutation entropy. Second, the ELM output function is expressed by the inner product of Gauss kernel function to adaptively determine the number of hidden layer nodes. Finally, the high dimension feature vector set is used as the input to establish the kernel ELM rolling bearing fault classification model, and the classification and identification of different fault states of rolling bearings are carried out. In comparison with the fault classification methods based on support vector machine and ELM, the experimental results show that the proposed method has higher classification accuracy and better generalization ability. (paper)

  20. Study of the earth's deep interior and crystallography. X-ray and neutron diffraction experiments under high pressures

    International Nuclear Information System (INIS)

    Yagi, Takehiko


    History of the study of the Earth's deep interior was reviewed. In order to understand Earth's deep interior from the view point of materials science, X-ray diffraction under high pressure and high temperature played very important role. Use of synchrotron radiation dramatically advanced this experimental technique and it is now possible to make precise X-ray study under the P-T conditions corresponding even to the center of the Earth. In order to clarify the behavior of light elements such as hydrogen, however, studies using neutron diffraction are also required. A new neutron beam line dedicated for high-pressure science is constructed at J-PARC and is now ready for use. (author)

  1. Expert System Detects Power-Distribution Faults (United States)

    Walters, Jerry L.; Quinn, Todd M.


    Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.

  2. 20 CFR 410.561b - Fault. (United States)


    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see § 410...

  3. 22 CFR 17.3 - Fault. (United States)


    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the individual...

  4. Fault Detection for Diesel Engine Actuator

    DEFF Research Database (Denmark)

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.


    Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur.......Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur....

  5. Active fault diagnosis by temporary destabilization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob


    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  6. From fault classification to fault tolerance for multi-agent systems

    CERN Document Server

    Potiron, Katia; Taillibert, Patrick


    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  7. Experimental challenges to reproduce seismic fault motion (United States)

    Shimamoto, T.


    This presentation briefly reviews scientific and technical development in the studies of intermediate to high-velocity frictional properties of faults and summarizes remaining technical challenges to reproduce nucleation to growth processes of large earthquakes in laboratory. Nearly 10 high-velocity or low to high-velocity friction apparatuses have been built in the last several years in the world and it has become possible now to produce sub-plate velocity to seismic slip rate in a single machine. Despite spreading of high-velocity friction studies, reproducing seismic fault motion at high P and T conditions to cover the entire seismogenic zone is still a big challenge. Previous studies focused on (1) frictional melting, (2) thermal pressurization, and (3) high-velocity gouge behavior without frictional melting. Frictional melting process was solved as a Stefan problem with very good agreement with experimental results. Thermal pressurization has been solved theoretically based on measured transport properties and has been included successfully in the modeling of earthquake generation. High-velocity gouge experiments in the last several years have revealed that a wide variety of gouges exhibit dramatic weakening at high velocities (e.g., Di Toro et al., 2011, Nature). Most gouge experiments were done under dry conditions partly to separate gouge friction from the involvement of thermal pressurization. However, recent studies demonstrated that dehydration or degassing due to mineral decomposition can occur during seismic fault motion. Those results not only provided a new view of looking at natural fault zones in search of geological evidence of seismic fault motion, but also indicated that thermal pressurization and gouge weakening can occur simultaneously even in initially dry gouge. Thus experiments with controlled pore pressure are needed. I have struggled to make a pressure vessel for wet high-velocity experiments in the last several years. A technical

  8. Capability of DFIG WTS to ride through recurring asymmetrical grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Chen, Min


    The Wind Turbine Systems (WTS) are required to ride through recurring grid faults in some countries. In this paper, the capability of Doubly Fed Induction Generator (DFIG) WTS to ride through recurring asymmetrical grid faults is evaluated and compared with the ride through capability under single...... asymmetrical grid fault. A mathematical model of the DFIG under recurring asymmetrical grid faults is represented. The analysis are verified by simulations on a 1.5MW DFIG model and by experiments on a reduced-scale DFIG test system....

  9. Characteristic Analysis and Fault-Tolerant Control of Circulating Current for Modular Multilevel Converters under Sub-Module Faults

    Directory of Open Access Journals (Sweden)

    Wen Wu


    Full Text Available A modular multilevel converter (MMC is considered to be a promising topology for medium- or high-power applications. However, a significantly increased amount of sub-modules (SMs in each arm also increase the risk of failures. Focusing on the fault-tolerant operation issue for the MMC under SM faults, the operation characteristics of MMC with different numbers of faulty SMs in the arms are analyzed and summarized in this paper. Based on the characteristics, a novel circulating current-suppressing (CCS fault-tolerant control strategy comprised of a basic control unit (BCU and virtual resistance compensation control unit (VRCCU in two parts is proposed, which has three main features: (i it can suppress the multi-different frequency components of the circulating current under different SM fault types simultaneously; (ii it can help fast limiting of the transient fault current caused at the faulty SM bypassed moment; and (iii it does not need extra communication systems to acquire the information of the number of faulty SMs. Moreover, by analyzing the stability performance of the proposed controller using the Root-Locus criterion, the election principle of the value of virtual resistance is revealed. Finally, the efficiency of the control strategy is confirmed with the simulation and experiment studies under different fault conditions.

  10. Simulating spontaneous aseismic and seismic slip events on evolving faults (United States)

    Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras


    Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare

  11. The fault-tree compiler (United States)

    Martensen, Anna L.; Butler, Ricky W.


    The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.

  12. Fault Tolerant External Memory Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas


    Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...... bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where...

  13. Cell boundary fault detection system (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN


    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  14. Method for detecting an open-switch fault in a grid-connected NPC inverter system

    DEFF Research Database (Denmark)

    Choi, Ui-Min; Jeong, Hae-Gwang; Lee, Kyo-Beum


    This paper proposes a fault-detection method for an open-switch fault in the switches of grid-connected neutral-point-clamped inverter systems. The proposed method can not only detect the fault condition but also identify the location of the faulty switch. In the proposed method, which is designed...... by incorporating a simple switching control in the conventional method, the fault condition is detected on the basis of the radius of the Concordia current pattern, and the location of the faulty switch can be identified. By using the proposed method, it is possible to detect the open-switch fault and identify...... the faulty switch within two fundamental periods, without using additional sensors or performing complex calculations. Simulations and experiments are carried out to confirm the reliability of the proposed fault-detection method....

  15. Combined rotor fault diagnosis in rotating machinery using empirical mode decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sukhjeet; Kumar, Navin [Indian Institute of Technology, Ropar Rupnagar (India)


    Unbalance, misalignment, partial rub, looseness and bent rotor are one of the most commonly observed faults in rotating machines. These faults cause breakdowns in rotating machinery and create undesired vibrations while operating. In this study, an approach to detect combined fault of unbalance and bent rotors for advance detection of the features of the fault rotors diagnosis is proposed. Empirical mode decomposition (EMD) is used efficiently to decompose the complex vibration signals of rotating machinery into a known number of intrinsic mode functions so that the fault characteristics of the unbalanced and bowed shaft can be examined in the time-frequency Hilbert spectrum. A test bench of Spectra-Quest has been used for performing experiments to illustrate the unbalance and the bent rotor conditions as well as the healthy rotor condition. Analysis of the results shows the usefulness of proposed approach in diagnosing the unbalance and bowed fault of the shaft in rotating machinery.

  16. The Design of a Fault-Tolerant COTS-Based Bus Architecture for Space Applications (United States)

    Chau, Savio N.; Alkalai, Leon; Tai, Ann T.


    The high-performance, scalability and miniaturization requirements together with the power, mass and cost constraints mandate the use of commercial-off-the-shelf (COTS) components and standards in the X2000 avionics system architecture for deep-space missions. In this paper, we report our experiences and findings on the design of an IEEE 1394 compliant fault-tolerant COTS-based bus architecture. While the COTS standard IEEE 1394 adequately supports power management, high performance and scalability, its topological criteria impose restrictions on fault tolerance realization. To circumvent the difficulties, we derive a "stack-tree" topology that not only complies with the IEEE 1394 standard but also facilitates fault tolerance realization in a spaceborne system with limited dedicated resource redundancies. Moreover, by exploiting pertinent standard features of the 1394 interface which are not purposely designed for fault tolerance, we devise a comprehensive set of fault detection mechanisms to support the fault-tolerant bus architecture.

  17. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel


    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  18. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob


    A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...... for additive faults, parametric faults, and for system structural changes. The modeling for each of these fault classes is described. The method allows to design for passive as well as for active fault handling. Also, the related design method can be fitted either to guarantee stability or to achieve graceful...... degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including...

  19. Magnetic enhancement and softening of fault gouges during seismic slip: Laboratory observation and implications (United States)

    Yang, T.; Chen, J.; Dekkers, M. J.


    Anomalous rock magnetic properties have been reported in slip zones of many previous earthquakes (e.g., the 1995 Kobe earthquake, Japan; the 1999 Chi-Chi earthquake, Taiwan, and the 2008 Wenchuan earthquake, China). However, it is unclear whether short-duration frictional heating can actually induce such rock magnetic anomalies in fault zones; identification of this process in natural fault zones is not that straightforward. A promising approach to solve this problem is to conduct high-velocity friction (HVF) experiments that reproduce seismic fault movements and frictional heating in a simulated fault zone. Afterwards natural fault zones can be analyzed with renewed insight. Our HVF experiments on fault gouges that are simulating large amounts of earthquake slip, show significant magnetic enhancement and softening of sheared gouges. Mineral magnetic measurements reveal that magnetite was formed due to thermal decomposition of smectite during the HVF experiment on the paramagnetic fault gouge. Also, goethite was transformed to intermediate magnetite during the HVF experiment on the goethite-bearing fault gouge. Magnetic susceptibility, saturation remanence and saturation magnetization of sheared samples are linearly increasing with and strongly depend on the temperature rise induced by frictional heating; in contrast, coecivities are decreasing with increasing temperature. Thus, frictional heating can induce thermal decomposition/transformation during short-duration, high-velocity seismic slip, leading to magnetic enhancement and softening of a slip zone. Mineral magnetic methods are suited for diagnosing earthquake slip and estimating the temperature rise of co-seismic frictional heating.

  20. Static Decoupling in fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index......An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index...

  1. Exposing the faults

    International Nuclear Information System (INIS)

    Richardson, P.J.


    UK NIREX, the body with responsibility for finding an acceptable strategy for deposition of radioactive waste has given the impression throughout its recent public consultation that the problem of nuclear waste is one of public and political acceptability, rather than one of a technical nature. However the results of the consultation process show that it has no mandate from the British public to develop a single, national, deep repository for the burial of radioactive waste. There is considerable opposition to this method of managing radioactive waste and suspicion of the claims by NIREX concerning the supposed integrity and safety of this deep burial option. This report gives substance to those suspicions and details the significant areas of uncertainty in the concept of effective geological containment of hazardous radioactive elements, which remain dangerous for tens of thousands of years. Because the science of geology is essentially retrospective rather than predictive, NIREX's plans for a single, national, deep 'repository' depend heavily upon a wide range of assumptions about the geological and hydrogeological regimes in certain areas of the UK. This report demonstrates that these assumptions are based on a limited understanding of UK geology and on unvalidated and simplistic theoretical models of geological processes, the performance of which can never be directly tested over the long time-scales involved. NIREX's proposals offer no guarantees for the safe and effective containment of radioactivity. They are deeply flawed. This report exposes the faults. (author)

  2. Qademah Fault Passive Data

    KAUST Repository

    Hanafy, Sherif M.


    OBJECTIVE: In this field trip we collect passive data to 1. Convert passive to surface waves 2. Locate Qademah fault using surface wave migration INTRODUCTION: In this field trip we collected passive data for several days. This data will be used to find the surface waves using interferometry and then compared to active-source seismic data collected at the same location. A total of 288 receivers are used. A 3D layout with 5 m inline intervals and 10 m cross line intervals is used, where we used 12 lines with 24 receivers at each line. You will need to download the file (rec_times.mat), it contains important information about 1. Field record no 2. Record day 3. Record month 4. Record hour 5. Record minute 6. Record second 7. Record length P.S. 1. All files are converted from original format (SEG-2) to matlab format P.S. 2. Overlaps between records (10 to 1.5 sec.) are already removed from these files

  3. Semi-supervised weighted kernel clustering based on gravitational search for fault diagnosis. (United States)

    Li, Chaoshun; Zhou, Jianzhong


    Supervised learning method, like support vector machine (SVM), has been widely applied in diagnosing known faults, however this kind of method fails to work correctly when new or unknown fault occurs. Traditional unsupervised kernel clustering can be used for unknown fault diagnosis, but it could not make use of the historical classification information to improve diagnosis accuracy. In this paper, a semi-supervised kernel clustering model is designed to diagnose known and unknown faults. At first, a novel semi-supervised weighted kernel clustering algorithm based on gravitational search (SWKC-GS) is proposed for clustering of dataset composed of labeled and unlabeled fault samples. The clustering model of SWKC-GS is defined based on wrong classification rate of labeled samples and fuzzy clustering index on the whole dataset. Gravitational search algorithm (GSA) is used to solve the clustering model, while centers of clusters, feature weights and parameter of kernel function are selected as optimization variables. And then, new fault samples are identified and diagnosed by calculating the weighted kernel distance between them and the fault cluster centers. If the fault samples are unknown, they will be added in historical dataset and the SWKC-GS is used to partition the mixed dataset and update the clustering results for diagnosing new fault. In experiments, the proposed method has been applied in fault diagnosis for rotatory bearing, while SWKC-GS has been compared not only with traditional clustering methods, but also with SVM and neural network, for known fault diagnosis. In addition, the proposed method has also been applied in unknown fault diagnosis. The results have shown effectiveness of the proposed method in achieving expected diagnosis accuracy for both known and unknown faults of rotatory bearing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Passive fault current limiting device (United States)

    Evans, Daniel J.; Cha, Yung S.


    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  5. Effect of wind generation system types on Micro-Grid (MG) fault performance during both standalone and grid connected modes

    International Nuclear Information System (INIS)

    Kamel, Rashad M.


    Highlights: • This paper evaluated the effects of different wind system types on fault performance of Micro-Grid. • Both standalone and grid connected modes are considered. • The MG earthing system configuration is taken in consideration. - Abstract: Recently, there are three wind generation (WG) system types. The first type is called Fixed Speed Wind Generation (FSWG) system, which employs squirrel cage induction generators. Double Fed Induction Generator (DFIG) is utilized in the second type. The third type is called Full Converter Wind Generation (FCWG) system, which is interfaced with Micro-Grid (MG) through a back to back converter. During fault occurrence, each WG has its performance and characteristics which are determined by the generator physical characteristics and the MG earthing system configuration. For some WG types, the fault current depends also on the control algorithm of the power converter. The main target of this paper is to investigate and estimate how the fault performance of MG during both standalone and grid-connected modes is influenced by the type of WG. It is found during standalone mode that the type of the employed WG has a dominant impact on the MG performance under fault disturbance. On the contrary, the type of the employed WG has a negligible effect on the MG fault performance during grid-connected mode. This is because the main grid contributes most of the fault current. Effects of earthing system type on MG performance are highlighted

  6. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems

    NARCIS (Netherlands)

    Wullschleger, S.D.; Epstein, H.E.; Box, E.O.; Euskirchen, E.S.; Goswami, S.; Iversen, C.M.; Kattge, J.; Norby, R.J.; van Bodegom, P.M.; Xu, X.


    Background Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the

  7. Permeability evolution of normal faults with clay smear: insights from structural observations in water saturated sandbox models and numerical simulations (United States)

    Kettermann, Michael; Urai, Janos L.; Vrolijk, Peter J.


    Fault processes are complex phenomena that defy reliable prediction. Clay smear in particular is difficult to predict for sub-surface flow applications and would benefit from an improved understanding of controlling processes. In this study, we present a series of water-saturated sandbox experiments producing large clay smear surfaces up to 500 cm2. In these experiments, we couple across-fault flow measurements with structural analysis of post-mortem excavated clay smear surfaces. To develop a tool for evaluating the evolving fault structure during formation, we compare measured flow data to simplified numerical flow simulations. Results show diagnostic relationships between the observed fault structures and measured cross-fault flow. In experiments with one or two clay layers and a cumulative thickness of 10 mm and 100 mm displacement, we observe that normally consolidated clay, in a structural domain of graben faulting, initially yields in hybrid brittle/ductile failure. Characteristic for this type of failure is an early breaching of the clay layer by brittle fracturing causing increased cross-fault flow. However, the type of failure varies laterally and shear failure occurs as well. We observed that holes preferably form beneath extensional parts of the footwall cutoff. These can be identified in map-view as the fault curves towards the hanging wall. During the evolution of the fault, this is typically followed by fault back-stepping, formation of clay smears and reworking of clay fragments in the fault. These processes lead to slower increases of cross-fault flux. Holes that formed during the early breaching of the clay layer mostly remain open during the evolution of a fault, although there is some evidence for occasional resealing of holes. Fault zones are segmented by fault lenses, breached relays and clay smears in which sand and clay mix by deformation. Experiments with two clay layers show that holes rarely form at the same position on the fault planes

  8. Earthing the Human Body Influences Physiologic Processes (United States)

    Sokal, Karol


    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  9. Analysis of the relationship of automatically and manually extracted lineaments from DEM and geologically mapped tectonic faults around the Main Ethiopian Rift and the Ethiopian highlands, Ethiopia

    Czech Academy of Sciences Publication Activity Database

    Kusák, Michal; Krbcová, K.


    Roč. 52, č. 1 (2017), s. 5-17 ISSN 0300-5402 Institutional support: RVO:67985891 Keywords : azimuth * faults * lineaments * Main Ethiopian Rift * morphometry Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  10. A New PV Array Fault Diagnosis Method Using Fuzzy C-Mean Clustering and Fuzzy Membership Algorithm

    Directory of Open Access Journals (Sweden)

    Qiang Zhao


    Full Text Available Photovoltaic (PV power station faults in the natural environment mainly occur in the PV array, and the accurate fault diagnosis is of particular significance for the safe and efficient PV power plant operation. The PV array’s electrical behavior characteristics under fault conditions is analyzed in this paper, and a novel PV array fault diagnosis method is proposed based on fuzzy C-mean (FCM and fuzzy membership algorithms. Firstly, clustering analysis of PV array fault samples is conducted using the FCM algorithm, indicating that there is a fixed relationship between the distribution characteristics of cluster centers and the different fault, then the fault samples are classified effectively. The membership degrees of all fault data and cluster centers are then determined by the fuzzy membership algorithm for the final fault diagnosis. Simulation analysis indicated that the diagnostic accuracy of the proposed method was 96%. Field experiments further verified the correctness and effectiveness of the proposed method. In this paper, various types of fault distribution features are effectively identified by the FCM algorithm, whether the PV array operation parameters belong to the fault category is determined by fuzzy membership algorithm, and the advantage of the proposed method is it can classify the fault data from normal operating data without foreknowledge.

  11. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier. (United States)

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang


    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF₆ HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods.

  12. Fracture structures of active Nojima fault, Japan, revealed by borehole televiewer imaging (United States)

    Nishiwaki, T.; Lin, A.


    Most large intraplate earthquakes occur as slip on mature active faults, any investigation of the seismic faulting process and assessment of seismic hazards require an understanding of the nature of active fault damage zones as seismogenic source. In this study, we focus on the fracture structures of the Nojima Fault (NF) that triggered the 1995 Kobe Mw 7.2 earthquake using ultrasonic borehole televiewer (BHTV) images from a borehole wall. The borehole used in this study was drilled throughout the NF at 1000 m in depth by a science project of Drilling into Fault Damage Zone(DFDZ) in 2016 (Lin, 2016; Miyawaki et al., 2016). In the depth of consolidated sandstone and conglomerate of the Plio-Pleistocene Osaka-Group and mudstone and sandstone of the Miocene Kobe Group. The basement rock in the depth of >230 m consist of pre-Neogene granitic rock. Based on the observations of cores and analysis of the BHTV images, the main fault plane was identified at a depth of 529.3 m with a 15 cm thick fault gouge zone and a damage zone of 100 m wide developed in the both sides of the main fault plane. Analysis of the BHTV images shows that the fractures are concentrated in two groups: N45°E (Group-1), parallel to the general trend of the NF, and another strikes N70°E (Group-2), oblique to the fault with an angle of 20°. It is well known that Riedel shear structures are common within strike-slip fault zones. Previous studies show that the NF is a right-lateral strike-slip fault with a minor thrust component, and that the fault damage zone is characterized by Riedel shear structures dominated by Y shears (main faults), R shears and P foliations (Lin, 2001). We interpret that the fractures of Group (1) correspond to Y Riedel fault shears, and those of Group (2) are R shears. Such Riedel shear structures indicate that the NF is a right-lateral strike-slip fault which is activated under a regional stress field oriented to the direction close to east-west, coincident with that

  13. Evolution of wear and friction along experimental faults (United States)

    Boneh, Yeval; Chang, Jefferson C.; Lockner, David A.; Reches, Zeev


    We investigate the evolution of wear and friction along experimental faults composed of solid rock blocks. This evolution is analyzed through shear experiments along five rock types, and the experiments were conducted in a rotary apparatus at slip velocities of 0.002–0.97 m/s, slip distances from a few millimeters to tens of meters, and normal stress of 0.25–6.9 MPa. The wear and friction measurements and fault surface observations revealed three evolution phases: A) An initial stage (slip distances surface; B) a running-in stage of slip distances of 1–3 m with intense wear-rate, failure of many asperities, and simultaneous reduction of the friction coefficient and wear-rate; and C) a steady-state stage that initiates when the fault surface is covered by a gouge layer, and during which both wear-rate and friction coefficient maintain quasi-constant, low levels. While these evolution stages are clearly recognizable for experimental faults made from bare rock blocks, our analysis suggests that natural faults “bypass” the first two stages and slip at gouge-controlled steady-state conditions.

  14. Investigating the possible effects of salt in the fault zones on rates of seismicity - insights from analogue and numerical modeling (United States)

    Urai, Janos; Kettermann, Michael; Abe, Steffen


    The presence of salt in dilatant normal faults may have a strong influence on fault mechanics and related seismicity. However, we lack a detailed understanding of these processes. This study is based on the geological setting of the Groningen area. During tectonic faulting in the Groningen area, rock salt may have flown downwards into dilatant faults, which thus may contain lenses of rock salt at present. Because of its viscous properties, the presence of salt lenses in a fault may introduce a strain-rate dependency to the faulting and affect the distribution of magnitudes of seismic events. We present a "proof of concept" showing that the above processes can be investigated using a combination of analogue and numerical modeling. Full scaling and discussion of the importance of these processes to induced seismicity in Groningen require further, more detailed study. The analogue experiments are based on a simplified stratigraphy of the Groningen area, where it is generally thought that most of the Rotliegend faulting has taken place in the Jurassic, after deposition of the Zechstein. This is interpreted to mean that at the time of faulting the sulphates were brittle anhydrite. If these layers were sufficiently brittle to fault in a dilatant fashion, rock salt could flow downwards into the dilatant fractures. To test this hypothesis, we use sandbox experiments where we combine cohesive powder as analog for brittle anhydrites and carbonates with viscous salt analogs to explore the developing fault geometry and the resulting distribution of salt in the faults. In the numerical models we investigate the stick-slip behavior of fault zones containing ductile material using the Discrete Element Method (DEM). Results show that the DEM approach is in principle suitable for the modeling of the seismicity of faults containing salt: the stick-slip motion of the fault becomes dependent on shear loading rate with a modification of the frequency magnitude distribution of the

  15. When the earth shudders

    Energy Technology Data Exchange (ETDEWEB)

    Maltese, G.

    The enormous damage that can be caused by earthquakes (500,000 deaths in Tangshan, China, 1976) makes the art and science of earthquake predicting one of the principal objectives of modern geophysics. In this review of the state-of-the-art in earthquake predicting, brief notes are given on several topics: plate tectonics theory, geographic distribution of earthquakes, elastic potential energy storage of rocks, seismic wave typology, comparison of Mercalli and Richter scales, pre-warning signs in nature (strange behaviour of animals, preliminary reduction of seismic wave velocity, variations in local micro-seismicity and physical properties of rocks, etc.), comparison of earthquake energy release models, historical origin of the science of earthquake predicting, implication of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, the time element in prediction making, analysis of examples of correct predictions, pattern recognition instrumentation, earthquake intensity control through fluid injection, correlations between water reservoir level and seismicity, the creation of government programs for the monitoring of the earth's crust and seismic data acquisition, comparison of earthquake prediction and preparedness approaches in Japan and the USA.

  16. Radial basis function neural network in fault detection of automotive ...

    African Journals Online (AJOL)

    Radial basis function neural network in fault detection of automotive engines. ... Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults ... Keywords: Automotive engine, independent RBFNN model, RBF neural network, fault detection

  17. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews


    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  18. The Deformation of Overburden Soil and Interaction with Pile Foundations of Bridges Induced by Normal Faulting (United States)

    Wu, Liang-Chun; Li, Chien-Hung; Chan, Pei-Chen; Lin, Ming-Lang


    According to the investigations of well-known disastrous earthquakes in recent years, ground deformation induced by faulting is one of the causes for engineering structure damages in addition to strong ground motion. Most of structures located on faulting zone has been destroyed by fault offset. Take the Norcia Earthquake in Italy (2016, Mw=6.2) as an example, the highway bridge in Arquata crossing the rupture area of the active normal fault suffered a quantity of displacement which causing abutment settlement, the piers of bridge fractured and so on. However, The Seismic Design Provisions and Commentary for Highway Bridges in Taiwan, the stating of it in the general rule of first chapter, the design in bridges crossing active fault: "This specification is not applicable of making design in bridges crossing or near active fault, that design ought to the other particular considerations ".This indicates that the safty of bridges crossing active fault are not only consider the seismic performance, the most ground deformation should be attended. In this research, to understand the failure mechanism and the deformation characteristics, we will organize the case which the bridges subjected faulting at home and abroad. The processes of research are through physical sandbox experiment and numerical simulation by discrete element models (PFC3-D). The normal fault case in Taiwan is Shanchiao Fault. As above, the research can explore the deformation in overburden soil and the influences in the foundations of bridges by normal faulting. While we can understand the behavior of foundations, we will make the bridge superstructures into two separations, simple beam and continuous beam and make a further research on the main control variables in bridges by faulting. Through the above mentioned, we can then give appropriate suggestions about planning considerations and design approaches. This research presents results from sandbox experiment and 3-D numerical analysis to simulate

  19. Climate in Earth history (United States)

    Berger, W. H.; Crowell, J. C.


    Complex atmosphere-ocean-land interactions govern the climate system and its variations. During the course of Earth history, nature has performed a large number of experiments involving climatic change; the geologic record contains much information regarding these experiments. This information should result in an increased understanding of the climate system, including climatic stability and factors that perturb climate. In addition, the paleoclimatic record has been demonstrated to be useful in interpreting the origin of important resources-petroleum, natural gas, coal, phosphate deposits, and many others.

  20. Development of the Global Earthquake Model’s neotectonic fault database (United States)

    Christophersen, Annemarie; Litchfield, Nicola; Berryman, Kelvin; Thomas, Richard; Basili, Roberto; Wallace, Laura; Ries, William; Hayes, Gavin P.; Haller, Kathleen M.; Yoshioka, Toshikazu; Koehler, Richard D.; Clark, Dan; Wolfson-Schwehr, Monica; Boettcher, Margaret S.; Villamor, Pilar; Horspool, Nick; Ornthammarath, Teraphan; Zuñiga, Ramon; Langridge, Robert M.; Stirling, Mark W.; Goded, Tatiana; Costa, Carlos; Yeats, Robert


    The Global Earthquake Model (GEM) aims to develop uniform, openly available, standards, datasets and tools for worldwide seismic risk assessment through global collaboration, transparent communication and adapting state-of-the-art science. GEM Faulted Earth (GFE) is one of GEM’s global hazard module projects. This paper describes GFE’s development of a modern neotectonic fault database and a unique graphical interface for the compilation of new fault data. A key design principle is that of an electronic field notebook for capturing observations a geologist would make about a fault. The database is designed to accommodate abundant as well as sparse fault observations. It features two layers, one for capturing neotectonic faults and fold observations, and the other to calculate potential earthquake fault sources from the observations. In order to test the flexibility of the database structure and to start a global compilation, five preexisting databases have been uploaded to the first layer and two to the second. In addition, the GFE project has characterised the world’s approximately 55,000 km of subduction interfaces in a globally consistent manner as a basis for generating earthquake event sets for inclusion in earthquake hazard and risk modelling. Following the subduction interface fault schema and including the trace attributes of the GFE database schema, the 2500-km-long frontal thrust fault system of the Himalaya has also been characterised. We propose the database structure to be used widely, so that neotectonic fault data can make a more complete and beneficial contribution to seismic hazard and risk characterisation globally.

  1. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps) (United States)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo


    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation

  2. Squeezing the crystalline lattice of the heavy rare-earth metals to change their magnetic order: Experiment and ab initio theory (United States)

    Andrianov, A. Vl.; Savel'Eva, O. A.; Bauer, E.; Staunton, J. B.


    Ab initio electronic structure theory finds the type of magnetic order of the heavy rare earths to be correlated directly with the a and c lattice parameters of their hexagonal-close-packed crystal lattices. We refine our experimental data and obtain magnetic phase diagrams showing magnetic state and transition temperatures versus a and c for Tb and for the alloy Ho0.4Gd0.6. For both systems we mark out the boundaries in a and c space between incommensurate (helical) antiferromagnetic order and ferromagnetic states and find that these agree very well with the theoretical prediction as well as with each other. These data support the proposition of a universal “crystallomagnetic” phase diagram for the heavy rare earths.

  3. Examination of faults active motion on buried pipelines | Parish ...

    African Journals Online (AJOL)

    During an earthquake, a buried pipeline may experience a severe loading as the result of the ground relatively large displacement along the pipe. Large ground movements may occur by faulting, liquefaction, lateral spreading, landslides and slope failures. Since the pipelines are widely spread, and in some areas ...

  4. Matching interpolation of CT faulted images based on corresponding object

    International Nuclear Information System (INIS)

    Chen Lingna


    For CT faulted images interpolation this paper presents a corresponding pint matching interpolation algorithm, which is based on object feature. Compared with the traditional interpolation algorithms, the new algorithm improves visual effect and its interpolation error. The computer experiments show that the algorithm can effectively improve the interpolation quality, especially more clear scene at the boundary. (authors)

  5. Fault detection and isolation for complex system (United States)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi


    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  6. Anisotropy of permeability in faulted porous sandstones (United States)

    Farrell, N. J. C.; Healy, D.; Taylor, C. W.


    Studies of fault rock permeabilities advance the understanding of fluid migration patterns around faults and contribute to predictions of fault stability. In this study a new model is proposed combining brittle deformation structures formed during faulting, with fluid flow through pores. It assesses the impact of faulting on the permeability anisotropy of porous sandstone, hypothesising that the formation of fault related micro-scale deformation structures will alter the host rock porosity organisation and create new permeability pathways. Core plugs and thin sections were sampled around a normal fault and oriented with respect to the fault plane. Anisotropy of permeability was determined in three orientations to the fault plane at ambient and confining pressures. Results show that permeabilities measured parallel to fault dip were up to 10 times higher than along fault strike permeability. Analysis of corresponding thin sections shows elongate pores oriented at a low angle to the maximum principal palaeo-stress (σ1) and parallel to fault dip, indicating that permeability anisotropy is produced by grain scale deformation mechanisms associated with faulting. Using a soil mechanics 'void cell model' this study shows how elongate pores could be produced in faulted porous sandstone by compaction and reorganisation of grains through shearing and cataclasis.

  7. The effect of spatially heterogeneous damage in simple models of earthquake fault networks (United States)

    Tiampo, K. F.; Dominguez, R.; Klein, W.; Serino, C.; Kazemian, J.


    Natural earthquake fault systems are highly heterogeneous in space; inhomogeneities occur because the earth is made of a variety of materials of different strengths and dissipate stress differently. Because the spatial arrangement of these materials is dependent on the geologic history, the spatial distribution of these various materials can be quite complex and occur over a variety of length scales. One way that the inhomogeneous nature of fault systems manifests itself is in the spatial patterns which emerge in seismicity (Tiampo et al., 2002, 2007). Despite their inhomogeneous nature, real faults are often modeled as spatially homogeneous systems. One argument for this approach is that earthquake faults experience long range stress transfer, and if this range is longer than the length scales associated with the inhomogeneities of the system, the dynamics of the system may be unaffected by the inhomogeneities. However, it is not clear that this is always the case. In this work we study the scaling of earthquake models that are variations of Olami-Feder-Christensen (OFC) and Burridge-Knopoff (BK) models, in order to explore the effect of spatial inhomogeneities on earthquake-like systems when interaction ranges are long, but not necessarily longer than the distances associated with the inhomogeneities of the system (Burridge and L. Knopoff, 1967; Rundle and Jackson, 1977; Olami et al., 1988). For long ranges and without inhomogeneities, such models have been found to produce scaling similar to GR scaling found in real earthquake systems (Rundle and Klein, 1993). In the earthquake models discussed here, damage is distributed inhomogeneously throughout and the interaction ranges, while long, are not longer than all of the damage length scales. In addition, we attempt to model the effect of a fixed distribution of asperities, and find that this has an effect on the magnitude-frequency relation, producing larger events at regular intervals, We find that the scaling

  8. The Impact of TCSC on IDMT Relays in SLG Fault in Distribution Networks

    Directory of Open Access Journals (Sweden)

    Lazhar Bougouffa


    Full Text Available IDMT Directional Over-Current Relays protection is one of the basic protective relaying for distribution systems, for fault detection and clearing as soon as possible. Its function would generally be changed in presence of FACTS devices. In this paper a study to investigate the direct effect of varying reactance of the TCSC on single-line-to-ground (SLG fault in compensated distribution systems. This paper, therefore presents the calculation of fault component, and directional over-current relay operating time characteristics for phase-to-earth fault involving the TCSC. The case study is compared between compensated and uncompensated system. The coordination of the relays is a nonlinear programming problem and it is solved by using MATLAB software.

  9. Rough Set-Probabilistic Neural Networks Fault Diagnosis Method of Polymerization Kettle Equipment Based on Shuffled Frog Leaping Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang


    Full Text Available In order to realize the fault diagnosis of the polyvinyl chloride (PVC polymerization kettle reactor, a rough set (RS–probabilistic neural networks (PNN fault diagnosis strategy is proposed. Firstly, through analysing the technique of the PVC polymerization reactor, the mapping between the polymerization process data and the fault modes is established. Then, the rough set theory is used to tackle the input vector of PNN so as to reduce the network dimensionality and improve the training speed of PNN. Shuffled frog leaping algorithm (SFLA is adopted to optimize the smoothing factor of PNN. The fault pattern classification of polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the fault diagnosis simulation experiments are conducted by combining with the industrial on-site historical datum of polymerization kettle, and the results show that the RS–PNN fault diagnosis strategy is effective.

  10. No evidence for shallow shear motion on the Mat Fault, a prominent ...

    Indian Academy of Sciences (India)

    and is flanked by the Bay of Bengal sediments to the west and Shan Plateau to the east (Fitch 1972;. Le Dain et al. ... Shan Plateau and joins into the Andaman sea rift system which finally joins the Sumatra Fault. System in ..... 2008 Subduction of the Indian lithosphere beneath the. Tibetan Plateau and Burma; Earth Planet.

  11. A note on 2-D lithospheric deformation due to a blind strike-slip fault

    Indian Academy of Sciences (India)

    mic deformation. Several researchers have devel- oped models of coseismic lithospheric deformation. Rybicki (1971) found a closed-form analytical solu- tion for the problem of a long vertical strike-slip fault in a two-layer model of the earth. Chinnery and Jovanovich (1972) extended the solution to a three-layer model.

  12. Deformation of a layered half-space due to a very long tensile fault

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    an earth model consisting of an elastic layer of uniform thickness overlying a viscoelastic half-space. 1. Introduction. Tensile fault representation has several important geophysical applications, such as modelling of the deformation fields due to dyke injection in the vol- canic region, mine collapse and fluid-driven cracks.

  13. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation (United States)

    Haddad, David Elias


    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…

  14. Tectonic phase separation applied to the Sudetic Marginal Fault Zone (NE part of the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucie


    Roč. 12, č. 2 (2015), s. 251-267 ISSN 1672-6316 R&D Projects: GA ČR GA205/09/1244 Institutional support: RVO:67985891 Keywords : Sudetic Marginal Fault Zone * paleostress reconstruction * active tectonics * frequency analysis Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.017, year: 2015

  15. Generic, scalable and decentralized fault detection for robot swarms. (United States)

    Tarapore, Danesh; Christensen, Anders Lyhne; Timmis, Jon


    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system's capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation.

  16. Distributed adaptive diagnosis of sensor faults using structural response data (United States)

    Dragos, Kosmas; Smarsly, Kay


    The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.

  17. Sulfur Earth (United States)

    de Jong, B. H.


    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  18. Where's the Hayward Fault? A Green Guide to the Fault (United States)

    Stoffer, Philip W.


    This report describes self-guided field trips to one of North America?s most dangerous earthquake faults?the Hayward Fault. Locations were chosen because of their easy access using mass transit and/or their significance relating to the natural and cultural history of the East Bay landscape. This field-trip guidebook was compiled to help commemorate the 140th anniversary of an estimated M 7.0 earthquake that occurred on the Hayward Fault at approximately 7:50 AM, October 21st, 1868. Although many reports and on-line resources have been compiled about the science and engineering associated with earthquakes on the Hayward Fault, this report has been prepared to serve as an outdoor guide to the fault for the interested public and for educators. The first chapter is a general overview of the geologic setting of the fault. This is followed by ten chapters of field trips to selected areas along the fault, or in the vicinity, where landscape, geologic, and man-made features that have relevance to understanding the nature of the fault and its earthquake history can be found. A glossary is provided to define and illustrate scientific term used throughout this guide. A ?green? theme helps conserve resources and promotes use of public transportation, where possible. Although access to all locations described in this guide is possible by car, alternative suggestions are provided. To help conserve paper, this guidebook is available on-line only; however, select pages or chapters (field trips) within this guide can be printed separately to take along on an excursion. The discussions in this paper highlight transportation alternatives to visit selected field trip locations. In some cases, combinations, such as a ride on BART and a bus, can be used instead of automobile transportation. For other locales, bicycles can be an alternative means of transportation. Transportation descriptions on selected pages are intended to help guide fieldtrip planners or participants choose trip

  19. Fault trees for diagnosis of system fault conditions

    International Nuclear Information System (INIS)

    Lambert, H.E.; Yadigaroglu, G.


    Methods for generating repair checklists on the basis of fault tree logic and probabilistic importance are presented. A one-step-ahead optimization procedure, based on the concept of component criticality, minimizing the expected time to diagnose system failure is outlined. Options available to the operator of a nuclear power plant when system fault conditions occur are addressed. A low-pressure emergency core cooling injection system, a standby safeguard system of a pressurized water reactor power plant, is chosen as an example illustrating the methods presented

  20. Fault2SHA- A European Working group to link faults and Probabilistic Seismic Hazard Assessment communities in Europe (United States)

    Scotti, Oona; Peruzza, Laura


    assessment in Europe. Europe is a country dominated by slow deforming regions where the long histories of seismicity are the main source of information to infer fault behaviour. Geodetic studies, geomorphological studies as well as paleoseismological studies are welcome complementary data that are slowly filling in the database but are at present insufficient, by themselves, to allow characterizing faults. Moreover, Europe is characterized by complex fault systems (Upper Rhine Graben, Central and Southern Apennines, Corinth, etc.) and the degree of uncertainty in the characterization of the faults can be very different from one country to the other. This requires developing approaches and concepts that are adapted to the European context. It is thus the specificity of the European situation that motivates the creation of a predominantly European group where field geologists, fault modellers and fault-PSHA practitioners may exchange and learn from each other's experience.