WorldWideScience

Sample records for earth electrolyte solutions

  1. Wedge wetting by electrolyte solutions

    Science.gov (United States)

    Mußotter, Maximilian; Bier, Markus

    2017-09-01

    The wetting of a charged wedgelike wall by an electrolyte solution is investigated by means of classical density functional theory. As in other studies on wedge wetting, this geometry is considered as the most simple deviation from a planar substrate, and it serves as a first step toward more complex confinements of fluids. By focusing on fluids containing ions and surface charges, features of real systems are covered that are not accessible within the vast majority of previous theoretical studies concentrating on simple fluids in contact with uncharged wedges. In particular, the filling transition of charged wedges is necessarily of first order, because wetting transitions of charged substrates are of first order and the barrier in the effective interface potential persists below the wetting transition of a planar wall; hence, critical filling transitions are not expected to occur for ionic systems. The dependence of the critical opening angle on the surface charge, as well as the dependence of the filling height, of the wedge adsorption, and of the line tension on the opening angle and on the surface charge are analyzed in detail.

  2. Classical thermodynamics of non-electrolyte solutions

    CERN Document Server

    Van Ness, H C

    1964-01-01

    Classical Thermodynamics of Non-Electrolyte Solutions covers the historical development of classical thermodynamics that concerns the properties of vapor and liquid solutions of non-electrolytes. Classical thermodynamics is a network of equations, developed through the formal logic of mathematics from a very few fundamental postulates and leading to a great variety of useful deductions. This book is composed of seven chapters and begins with discussions on the fundamentals of thermodynamics and the thermodynamic properties of fluids. The succeeding chapter presents the equations of state for

  3. Study on rare earth/alkaline earth oxide-doped CeO2 solid electrolyte

    Institute of Scientific and Technical Information of China (English)

    YAN Kai; ZHEN Qiang; Song Xiwen

    2007-01-01

    Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the Sm2O3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Sm0.20Ce0.8O1.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the Arrhenius equation. Then the Sm2O3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.

  4. Polyethylene glycol-electrolyte solution (PEG-ES)

    Science.gov (United States)

    Polyethylene glycol-electrolyte solution (PEG-ES) is used to empty the colon (large intestine, bowel) before a colonoscopy ( ... Polyethylene glycol-electrolyte solution (PEG-ES) comes as a powder to mix with water and take by mouth. ...

  5. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  6. Glasslike Behavior in Aqueous Electrolyte Solutions

    CERN Document Server

    Turton, David A; Hefter, Glenn; Buchner, Richard; Wynne, Klaas; 10.1063/1.2906132

    2009-01-01

    When salts are added to water, the viscosity generally increases suggesting the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules implying no enhance-ment or breakdown of the hydrogen-bond network. Here we report optical Kerr-effect and dielectric relaxa-tion spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

  7. Glasslike behavior in aqueous electrolyte solutions.

    Science.gov (United States)

    Turton, David A; Hunger, Johannes; Hefter, Glenn; Buchner, Richard; Wynne, Klaas

    2008-04-28

    When salts are added to water, generally the viscosity increases, suggesting that the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules, implying no enhancement or breakdown of the hydrogen-bond network. Here, we report optical Kerr effect and dielectric relaxation spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

  8. Thermal Decomposition of Dimethoxymethane Electrolyte Solution.

    Science.gov (United States)

    1982-06-01

    DIMETHOXYMETHANE ELECTROLYTE SOLUTION by J. S. Foos and V. Meltz Prepared for Publication in the Journal of the Electrochemical Society EIC...Journal of the Electrochemical Society . III. KEY WORDS (Conitiue onl reverse side It neci’eay and Identify by block nsinibor) Lithium Battery, Organic...Batteries, B. B. Owens and N. Margalit, eds., Vol. 80-4, The Electrochemical Society , Pennington, NJ, 384 (1980). .2. K. M. Abraham, J. L. Goldman and D. L

  9. Electrolyte Solutions and Specific Ion Effects on Interfaces

    Science.gov (United States)

    Friedman, Ran

    2013-01-01

    Introductory general and physical chemistry courses often deal with colligative properties of solutions and do not discuss nonideal solutions in detail. Yet, a growing body of evidence reveals that even at physiological concentrations electrolyte solutions cannot be treated as ideal when a charged or partially charged solute (such as a protein) is…

  10. Modeling Electrolyte Solutions with the extended universal quasichemical (UNIQUAC) Model

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2005-01-01

    The extended universal quasichemical (UNIQUAC) model is a thermodynamic model for solutions containing electrolytes and non-electrolytes. The model is a gibbs excess function consisting of a Debye-Hückel term and a standard UNIQUAC term. The model only requires binary, ion specific interaction...... parameters. A unique choice of standard states makes the model able to reproduce solid-liquid, vapor-liquid, and liquid-liquid phase equilibria as well as thermal properties of electrolyte solutions using one set of parameters....

  11. Modeling Electrolyte Solutions with the extended universal quasichemical (UNIQUAC) Model

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2005-01-01

    The extended universal quasichemical (UNIQUAC) model is a thermodynamic model for solutions containing electrolytes and non-electrolytes. The model is a gibbs excess function consisting of a Debye-Hückel term and a standard UNIQUAC term. The model only requires binary, ion specific interaction...... parameters. A unique choice of standard states makes the model able to reproduce solid-liquid, vapor-liquid, and liquid-liquid phase equilibria as well as thermal properties of electrolyte solutions using one set of parameters....

  12. Partition Equilibrium Between Charged Membrane and Single Electrolyte Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    徐铜文; 杨伟华; 何柄林

    2001-01-01

    Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with monovalence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to hulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated with in chosen parameters. It is revealed that ion partition is not related solely withthe respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoreticalcal culations were compared with the experimental data and a good agreement was observed.

  13. Partition Equilibrium Between Charged Membrane and Single Electrolyte Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with mono valence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to bulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated within chosen parameters. It is revealed that ion partition is not related solely with the respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoretical calculations were compared with the experimental data and a good agreement was observed.

  14. Electrolytes supramolecular interactions and non-equilibrium phenomena in concentrated solutions

    CERN Document Server

    Aseyev, Georgii Georgievich

    2014-01-01

    Electrolyte solutions play a key role in traditional chemical industry processes as well as other sciences such as hydrometallurgy, geochemistry, and crystal chemistry. Knowledge of electrolyte solutions is also key in oil and gas exploration and production, as well as many other environmental engineering endeavors. Until recently, a gap existed between the electrolyte solution theory dedicated to diluted solutions, and the theory, practice, and technology involving concentrated solutions.Electrolytes: Supramolecular Interactions and Non-Equilibrium Phenomena in Concentrated Solutions addresse

  15. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    CERN Document Server

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  16. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    Science.gov (United States)

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  17. Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions.

    Science.gov (United States)

    Donose, Bogdan C; Vakarelski, Ivan U; Higashitani, Ko

    2005-03-01

    Adsorption of hydrated cations on hydrophilic surfaces has been related to a variety of phenomena associated with the short-range interaction forces and mechanisms of the adhesive contact between the surfaces. Here we have investigated the effect of the adsorption of cations on the lateral interaction. Using lateral force microscopy (LFM), we have measured the friction force between a silica particle and silica wafer in pure water and in electrolyte solutions of LiCl, NaCl, and CsCl salts. A significant lubrication effect was demonstrated for solutions of high electrolyte concentrations. It was found that the adsorbed layers of smaller and more hydrated cations have a higher lubrication capacity than the layers of larger and less hydrated cations. Additionally, we have demonstrated a characteristic dependence of the friction force on the sliding velocity of surfaces. A mechanism for the observed phenomena based on the microstructures of the adsorbed layers is proposed.

  18. Ionic enhancement of silica surface nanowear in electrolyte solutions.

    Science.gov (United States)

    Vakarelski, Ivan U; Teramoto, Naofumi; McNamee, Cathy E; Marston, Jeremy O; Higashitani, Ko

    2012-11-20

    The nanoscale wear and friction of silica and silicon nitride surfaces in aqueous electrolyte solutions were investigated by using sharp atomic force microscope (AFM) cantilever tips coated with silicon nitride. Measurements were carried out in aqueous solutions of varying pH and in monovalent and divalent cation chloride and nitrate solutions. The silica surface was shown to wear strongly in solutions of high pH (≈11.0), as expected, but the presence of simple cations, such as Cs(+) and Ca(2+), was shown to dramatically effect the wear depth and friction force for the silica surface. In the case of monovalent cations, their hydration enthalpies correlated well with the wear and friction. The weakest hydrated cation of Cs(+) showed the most significant enhancement of wear and friction. In the case of divalent cations, a complex dependence on the type of cation was found, where the type of anion was also seen to play an important role. The CaCl(2) solution showed the anomalous enhancement of wear depth and friction force, although the solution of Ca(NO(3))(2) did not. The present results obtained with an AFM tip were also compared with previous nanotribology studies of silica surfaces in electrolyte solutions, and possible molecular mechanisms as to why cations enhance the wear and friction were also discussed.

  19. Ionic enhancement of silica surface nanowear in electrolyte solutions

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-11-20

    The nanoscale wear and friction of silica and silicon nitride surfaces in aqueous electrolyte solutions were investigated by using sharp atomic force microscope (AFM) cantilever tips coated with silicon nitride. Measurements were carried out in aqueous solutions of varying pH and in monovalent and divalent cation chloride and nitrate solutions. The silica surface was shown to wear strongly in solutions of high pH (≈11.0), as expected, but the presence of simple cations, such as Cs+ and Ca2+, was shown to dramatically effect the wear depth and friction force for the silica surface. In the case of monovalent cations, their hydration enthalpies correlated well with the wear and friction. The weakest hydrated cation of Cs+ showed the most significant enhancement of wear and friction. In the case of divalent cations, a complex dependence on the type of cation was found, where the type of anion was also seen to play an important role. The CaCl2 solution showed the anomalous enhancement of wear depth and friction force, although the solution of Ca(NO3)2 did not. The present results obtained with an AFM tip were also compared with previous nanotribology studies of silica surfaces in electrolyte solutions, and possible molecular mechanisms as to why cations enhance the wear and friction were also discussed. © 2012 American Chemical Society.

  20. Electrical pulse fabrication of graphene nanopores in electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Aaron T.; Szalay, Tamas [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Lu, Bo [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Xie, Ping [Oxford Nanopore Technologies, One Kendall Square, Cambridge, Massachusetts 02139 (United States); Golovchenko, Jene A., E-mail: golovchenko@physics.harvard.edu [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-05-18

    Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips.

  1. A lithium ion battery using an aqueous electrolyte solution

    OpenAIRE

    Zheng Chang; Chunyang Li; Yanfang Wang; Bingwei Chen; Lijun Fu; Yusong Zhu; Lixin Zhang; Yuping Wu; Wei Huang

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge vo...

  2. Thermodynamic properties of gases dissolved in electrolyte solutions.

    Science.gov (United States)

    Tiepel, E. W.; Gubbins, K. E.

    1973-01-01

    A method based on perturbation theory for mixtures is applied to the prediction of thermodynamic properties of gases dissolved in electrolyte solutions. The theory is compared with experimental data for the dependence of the solute activity coefficient on concentration, temperature, and pressure; calculations are included for partial molal enthalpy and volume of the dissolved gas. The theory is also compared with previous theories for salt effects and found to be superior. The calculations are best for salting-out systems. The qualitative feature of salting-in is predicted by the theory, but quantitative predictions are not satisfactory for such systems; this is attributed to approximations made in evaluating the perturbation terms.

  3. MOLECULAR DESCRIPTION OF ELECTROLYTE SOLUTION IN A CARBON AEROGEL ELECTRODE

    Directory of Open Access Journals (Sweden)

    A.Kovalenko

    2003-01-01

    Full Text Available We develop a molecular theory of aqueous electrolyte solution sorbed in a nanoporous carbon aerogel electrode, based on the replica reference interaction site model (replica RISM for realistic molecular quenched-annealed systems. We also briefly review applications of carbon aerogels for supercapacitor and electrochemical separation devices, as well as theoretical and computer modelling of disordered porous materials. The replica RISM integral equation theory yields the microscopic properties of the electrochemical double layer formed at the surface of carbon aerogel nanopores, with due account of chemical specificities of both sorbed electrolyte and carbon aerogel material. The theory allows for spatial disorder of aerogel pores in the range from micro- to macroscopic size scale. We considered ambient aqueous solution of 1 M sodium chloride sorbed in two model nanoporous carbon aerogels with carbon nanoparticles either arranged into branched chains or randomly distributed. The long-range correlations of the carbon aerogel nanostructure substantially affect the properties of the electrochemical double layer formed by the solution sorbed in nanopores.

  4. Electrolytic Recovery of Nickel from Spent Electroless Nickel Bath Solution

    Directory of Open Access Journals (Sweden)

    R. Idhayachander

    2010-01-01

    Full Text Available Plating industry is one of the largest polluting small scale industries and nickel plating is among the important surface finishing process in this industry. The waste generated during this operation contains toxic nickel. Nickel removal and recovery is of great interest from spent bath for environmental and economic reasons. Spent electroless nickel solution from a reed relay switch manufacturing industry situated in Chennai was taken for electrolytic recovery of nickel. Electrolytic experiment was carried out with mild steel and gold coated mild steel as cathode and the different parameters such as current density, time, mixing and pH of the solution were varied and recovery and current efficiency was studied. It was noticed that there was an increase in current efficiency up to 5 A/dm2 and after that it declines. There is no significant improvement with mixing but with modified cathode there was some improvement. Removal of nickel from the spent electroless nickel bath was 81.81% at 5 A/dm2 and pH 4.23. Under this condition, the content of nickel was reduced to 0.94 g/L from 5.16 g/L. with 62.97% current efficiency.

  5. Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions.

    Science.gov (United States)

    Longinotti, M Paula; Corti, Horacio R

    2009-04-23

    The electrical conductivity of CsCl, KCl, Bu(4)NBr, and Bu(4)NI was studied in stable and supercooled (metastable) sucrose and trehalose aqueous solutions over a wide viscosity range. The results indicate that large positive deviations from the Walden rule occur in these systems due to the higher tendency of the ions to move in water-rich regions, as previously observed for NaCl and MgCl(2). The electrical molar conductivity viscosity dependence can be described with a fractional Walden rule (Lambdaeta(alpha) = constant), where alpha is a decoupling parameter which increases with ionic size and varies between 0.61 and 0.74 for all of the studied electrolytes. Using the electrical molar conductivity dependence of ion-ion interactions, an effective dielectric constant was calculated for a trehalose 39 wt% aqueous solution as a function of temperature. Above 278 K, the effective and the bulk solution dielectric constants are similar, but at lower temperatures, where the carbohydrate becomes less mobile than water, the effective dielectric constant approaches the dielectric constant of water. We also conclude that the solute-solvent dielectric friction contribution can be neglected, reinforcing the idea that the observed breakdown of the Walden rule is due to the existence of local microheterogeneities. The Walden plots for the studied ionic solutes show a decoupling similar to that found for the diffusion of water in the same solutions.

  6. A lithium ion battery using an aqueous electrolyte solution

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg‑1. It will be a promising energy storage system with good safety and efficient cooling effects.

  7. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa; Ibrahim [Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia Phone: +62217863516, Fax: +62217863515 (Indonesia)

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  8. Study on rare earth electrolyte of SDC-LSGM

    Institute of Scientific and Technical Information of China (English)

    XU Dan; LIU Xiaomei; ZHU Chengjun; WANG Dejun; YAN Duanting; WANG Deyong; SU Wenhui

    2008-01-01

    Ce0.85Sm0.15O1.925 (SDC) and La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) were synthesized using Glycine-Nitrate Process (GNP), and the composite electrolytes were prepared by mixing SDC and LSGM. An X-ray diffraction pattern indicated that the mixture of SDC and LSGM consisted of their original phases after heating at 1450 oC for 10 h. The electronic conductivity of SDC-LSGM composite electrolytes were measured by direct current polarization method using Hebb-Wagner ion blocking cell at 700-800 oC in the oxygen partial pressure range of 10-6-10-20 MPa and compared with the results of SDC. Typical polarization curves, which were theoretically predicted, were observed on all the samples. The slopes of lgσe-lgPo2 plot for all the composite electrolytes agreed with the theoretically predicted value of -1/4 at some intermediate oxygen partial pressures and -1/6 at low oxygen partial pressure. The electronic conductivity of SDC-LSGM composite electrolytes decreased with the increase in LSGM content, whereas the ionic transport number ti of all the samples increased with the increase in LSGM content.

  9. An AFM study of calcite dissolution in concentrated electrolyte solutions

    Science.gov (United States)

    Ruiz Agudo, E.; Putnis, C. V.; Putnis, A.; Rodriguez-Navarro, C.

    2009-04-01

    Calcite-solution interactions are of a paramount importance in a range of processes such as the removal of heavy metals, carbon dioxide sequestration, landscape modeling, weathering of building stone and biomineralization. Water in contact with minerals often carries significant amounts of solutes; additionally, their concentration may vary due to evaporation and condensation. It is well known that calcite dissolution is affected dramatically by the presence of such solutes. Here we present investigations on the dissolution of calcite in the presence of different electrolytes. Both bulk (batch reactors) experiments and nanoscale (in situ AFM) techniques are used to study the dissolution of calcite in a range of solutions containing alkaly cations balanced by halide anions. Previous works have indicated that the ionic strength has little influence in calcite dissolution rates measured from bulk experiments (Pokrovsky et al. 2005; Glendhill and Morse, 2004). Contrary to these results, our quantitative analyses of AFM observations show an enhancement of the calcite dissolution rate with increasing electrolyte concentration. Such an effect is concentration-dependent and it is most evident in concentrated solutions. AFM experiments have been carried out in a fluid cell using calcite cleavage surfaces in contact with solutions of simple salts of the alkaly metals and halides at different undersaturations with respect to calcite to try to specify the effect of the ionic strength on etch pit spreading rate and calcite dissolution rate. These results show that the presence of soluble salts may critically affect the weathering of carbonate rocks in nature as well as the decay of carbonate stone in built cultural heritage. References: Pokrosky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0 to 50 atm pCO2. Chemical Geology, 2005, 217 (3-4) 239-255. Glendhill, D.K.; Morse, J.W. Dissolution kinetics of calcite in Na

  10. Subdaily Earth rotation model and GPS solutions

    Science.gov (United States)

    Panafidina, Natalia; Hugentobler, Urs; Seitz, Manuela

    2014-05-01

    In this contribution we study the influence of the subdaily Earth rotation model on the GPS solution including station coordinates, satellite orbits and daily Earth rotation parameters (ERPs). The approach used is based on the transformation of GPS normal equation systems: free daily normal equations containing ERPs with 1-hour resolution are used as input data, in this case the high-frequency ERPs can be transformed into tidal terms which then can be fixed to new a priori values, thus changing implicitly the underlying subdaily Earth rotation model. To study the influence of individual tidal terms on the solution we successively changed a priori values for one tidal term in polar motion and compared the resulting solutions for GPS orbits, station coordinates and daily ERPs for a time interval of 13 years. The comparison reveals periodic changes in all estimated parameters with periods depending on the periods of the changed tidal terms. The dynamical reference frame realized by the GPS orbits is also affected: the whole satellite constellation shows periodic orientation variations, and each individual satellite shows periodic changes in the position of the orbit origin. We present a mechanism showing how errors in the subdaily Earth rotation model are propagated into the dynamical reference frame and the estimated parameters. Our model represents a change in one tidal term over one day as the sum of a prograde diurnal wave, a retrograde diurnal wave and an offset and linear drift in x- and y-pole. We demonstrate that this simple model, in conjunction with appropriate constraints, can explain well the observed variations in a one day GPS solution as well as in daily pole rates caused by changes in the subdaily Earth rotation model.

  11. Investigation of low frequency electrolytic solution behavior with an accurate electrical impedance method

    Science.gov (United States)

    Ho, Kung-Chu; Su, Vin-Cent; Huang, Da-Yo; Lee, Ming-Lun; Chou, Nai-Kuan; Kuan, Chieh-Hsiung

    2017-01-01

    This paper reports the investigation of strong electrolytic solutions operated in low frequency regime through an accurate electrical impedance method realized with a specific microfluidic device and high resolution instruments. Experimental results show the better repeatability and accuracy of the proposed impedance method. Moreover, all electrolytic solutions appear the so-called relaxation frequency at each peak value of dielectric loss due to relaxing total polarization inside the device. The relaxation frequency of concentrated electrolytes becomes higher owing to the stronger total polarization behavior coming from the higher conductivity as well as the lower resistance in the electrolytic solutions.

  12. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-07

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  13. PREDICTING WATER ACTIVITY IN ELECTROLYTE SOLUTIONS WITH THE CISTERNAS-LAM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    REYNOLDS JG; GREER DA; DISSELKAMP RL

    2011-03-01

    Water activity is an important parameter needed to predict the solubility of hydrated salts in Hanford nuclear waste supernatants. A number of models available in the scientific literature predict water activity from electrolyte solution composition. The Cisternas-Lam model is one of those models and has several advantages for nuclear waste application. One advantage is that it has a single electrolyte specific parameter that is temperature independent. Thus, this parameter can be determined from very limited data and extrapolated widely. The Cisternas-Lam model has five coefficients that are used for all aqueous electrolytes. The present study aims to determine if there is a substantial improvement in making all six coefficients electrolyte specific. The Cisternas-Lam model was fit to data for six major electrolytes in Hanford nuclear waste supernatants. The model was first fit to all data to determine the five global coefficients, when they were held constant for all electrolytes it yielded a substantially better fit. Subsequently, the model was fit to each electrolyte dataset separately, where all six coefficients were allowed to be electrolyte specific. Treating all six coefficients as electrolyte specific did not make sufficient difference, given the complexity of applying the electrolyte specific parameters to multi-solute systems. Revised water specific parameters, optimized to the electrolytes relevant to Hanford waste, are also reported.

  14. Partition Equilibrium on the Interface Between a Charged Membrane and a Mixed Electrolyte Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Ionic partition equilibrium on a charged membrane immersed in a mixed electrolyte solution was systematically investigated and several models were established for the determination of partition coefficients. On the basis of theoretical models, the effects of the concentration ratio λ of the fixed group(charged density) to reference electrolyte, the concentration ratio η between the two electrolytes existing in the solution and the valence of the electrolyte ions on the partition equilibrium in a positively charged membrane were analyzed and simulated within the chosen parameters in detail. The obtainable results can also be applicable to a sytem of mixed electrolytes contacting with a negatively charged membrane. The theoretical calculations were confirmed with the experimental data of model mixed electrolytes, NaCl+HCl and CaCl2+NaCl partitioned in the system of self-made negatively charged membrane-sulphonated poly(phenylene oxide)(SPPO) with different charge densities.

  15. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  16. Mixing of two different electrolyte solutions in electromagnetic rectangular mixers

    Institute of Scientific and Technical Information of China (English)

    Meimei WEN; Chang Nyung KIM; Yue YAN

    2016-01-01

    This study proposes a new electromagnetic rectangular mixer, and numerically examines the mixing characteristics of two different electrolyte solutions in the device under a uniform magnetic field. The mixer consists of a conduit with electrodes equipped on its top and bottom walls. The difference in the electric potentials applied to the sets of electrodes induces the current. The combi- nation of the induced current and magnetic field yields Lorentz force, resulting in the fluid motion for pumping and mixing of the two different fluids. The numerical simulation is carried out with the use of commercial software CFX. The present numerical model is validated by an existing numerical work. The effect of different variables on mixing efficiency is investigated in many different cases with two different heights of the duct and various input voltages of the electrodes. The current simulation results indicate that the mixing performance can be enhanced by using multiple sets of electrodes and applying higher input voltages (absolute values) to the electrodes.

  17. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    OpenAIRE

    Lixia Bian; Yanyan Fang; Xiaolin Wang

    2014-01-01

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which c...

  18. Solvation of Lithium Irons in Mixed Organic Electrolyte Solutions by Electrospray Ionization Mass Spectroscopy

    OpenAIRE

    MATSUDA, Yoshiharu; FUKUSHIMA, Tsuyoshi; Hashimoto, Hiroyuki; ARAKAWA, Ryuichi

    2002-01-01

    Solvation of lithium ions in mixed organic electrolyte solutions for secondary lithium batteries was investigated by electrospray ionization mass spectroscopy. The electrolyte solutions were mixed binary solutions of diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylene carbonate (EC),γ-butyrolactone (GBL), and propylene carbonate (PC) containing LiClO4. Lithium ions solvated mainly to two solvent molecules. The order of the inclination of the solvent molecules solvating to lithium ions...

  19. Thermodynamic Modeling of Surface Tension of Aqueous Electrolyte Solution by Competitive Adsorption Model

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Kamali

    2015-01-01

    Full Text Available Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other temperatures in binary and ternary system of aqueous electrolyte solution are predicted. The average absolute deviations for calculation of surface tension of binary and mixed electrolyte systems by new model are 1.98 and 1.70%, respectively.

  20. Experimental investigation into the transmembrane electrical potential of the forward osmosis membrane process in electrolyte solutions.

    Science.gov (United States)

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-06-19

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  1. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Lixia Bian

    2014-06-01

    Full Text Available The transmembrane electrical potential (TMEP in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2, concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  2. Vapor-Liquid-Solid Equilibria of Sulfur Dioxide in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Pereda, Selva; Thomsen, Kaj; Rasmussen, Peter

    2000-01-01

    The Extended UNIQUAC model for electrolyte systems, combined with the Soave-Redlich-Kwong equation of state is used to describe the complex vapor-liquid-solid equilibria of sulfur dioxide in electrolyte solutions. Model parameters based on 1500 experimental data points are presented. The paramete...

  3. Carbohydrate Electrolyte Solutions Enhance Endurance Capacity in Active Females

    Directory of Open Access Journals (Sweden)

    Feng-Hua Sun

    2015-05-01

    Full Text Available The purpose of the present study was to investigate the effects of supplementation with a carbohydrate-electrolyte solution (CES in active females during a prolonged session of submaximal running to exhaustion. Eight healthy active females volunteered to perform a session of open-ended running to exhaustion at 70% of their maximal oxygen consumption on a treadmill during the follicular phase of their menstrual cycle on two occasions. During each run, the subjects consumed either 3mL·kg−1 body mass of a 6% CES or a placebo drink (PL every 20 min during exercise. The trials were administered in a randomized double-blind, cross-over design. During the run, the subjects ingested similar volumes of fluid in two trials (CES: 644 ± 75 mL vs. PL: 593 ± 66 mL, p > 0.05. The time to exhaustion was 16% longer during the CES trial (106.2 ± 9.4 min than during the PL trial (91.6 ± 5.9 min (p < 0.05. At 45 min during exercise, the plasma glucose concentration in the CES trial was higher than that in PL trial. No differences were observed in the plasma lactate level, respiratory exchange ratio, heart rate, perceived rate of exertion, sensation of thirst, or abdominal discomfort between the two trials (p > 0.05. The results of the present study confirm that CES supplementation improves the moderate intensity endurance capacity of active females during the follicular phases of the menstrual cycle. However, the exogenous oxidation of carbohydrate does not seem to explain the improved capacity after CES supplementation.

  4. Self-diffusion in electrolyte solutions a critical examination of data compiled from the literature

    CERN Document Server

    Mills, R

    1989-01-01

    This compilation - the first of its kind - fills a real gap in the field of electrolyte data. Virtually all self-diffusion data in electrolyte solutions as reported in the literature have been examined and the book contains over 400 tables covering diffusion in binary and ternary aqueous solutions, in mixed solvents, and of non-electrolytes in various solvents.An important feature of the compilation is that all data have been critically examined and their accuracy assessed. Other features are an introductory chapter in which the methods of measurement are reviewed; appendices containing tables

  5. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions

    Science.gov (United States)

    Gao, Xiangwen; Chen, Yuhui; Johnson, Lee; Bruce, Peter G.

    2016-08-01

    On discharge, the Li-O2 battery can form a Li2O2 film on the cathode surface, leading to low capacities, low rates and early cell death, or it can form Li2O2 particles in solution, leading to high capacities at relatively high rates and avoiding early cell death. Achieving discharge in solution is important and may be encouraged by the use of high donor or acceptor number solvents or salts that dissolve the LiO2 intermediate involved in the formation of Li2O2. However, the characteristics that make high donor or acceptor number solvents good (for example, high polarity) result in them being unstable towards LiO2 or Li2O2. Here we demonstrate that introduction of the additive 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) promotes solution phase formation of Li2O2 in low-polarity and weakly solvating electrolyte solutions. Importantly, it does so while simultaneously suppressing direct reduction to Li2O2 on the cathode surface, which would otherwise lead to Li2O2 film growth and premature cell death. It also halves the overpotential during discharge, increases the capacity 80- to 100-fold and enables rates >1 mA cmareal-2 for cathodes with capacities of >4 mAh cmareal-2. The DBBQ additive operates by a new mechanism that avoids the reactive LiO2 intermediate in solution.

  6. In situ Raman investigation of electrolyte solutions in the vicinity of graphite negative electrodes.

    Science.gov (United States)

    Song, Hee-Youb; Fukutsuka, Tomokazu; Miyazaki, Kohei; Abe, Takeshi

    2016-10-05

    The structure of electrolyte solutions plays an important role in the lithium-ion intercalation reaction at graphite negative electrodes. The solvation structure of an electrolyte solution in bulk has been investigated previously. However, the structure of an electrolyte solution at the graphite negative electrode/electrolyte solution interface, where the lithium-ion intercalation reaction occurs is more important. In this study, the structure of electrolyte solutions in the vicinity of a graphite negative electrode was investigated using in situ Raman spectroscopy during the 1st reduction process in 1 mol dm(-3) LiClO4/ethylene carbonate (EC) + diethyl carbonate (DEC) (1 : 1 volume ratio), 1 mol dm(-3) LiCF3SO3/propylene carbonate (PC), and 1 mol dm(-3) LiCF3SO3/PC + tetraethylene glycol dimethyl ether (tetraglyme) (20 : 1 volume ratio). As a result, in the electrolyte solutions in which the lithium-ion intercalation reaction can occur (LiClO4/EC + DEC and LiCF3SO3/PC + tetraglyme), the Raman spectra of free solvent molecules (EC or PC) and anions showed a positive vibrational frequency shift during the co-intercalation reaction, and these shifts returned to their original positions during the lithium-ion intercalation reaction. On the other hand, there is no vibrational frequency shift in LiCF3SO3/PC, an electrolyte in which the lithium-ion intercalation reaction cannot occur. Based on our results, the relationship between the Raman shift and the solid electrolyte interphase (SEI) formation process was discussed.

  7. Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells

    Science.gov (United States)

    Merrill, Matthew D.; Logan, Bruce E.

    Protonated weak acids commonly used in microbial electrolysis cell (MEC) solutions can affect the hydrogen evolution reaction (HER) through weak acid catalysis, and by lowering solution resistance between the anode and the cathode. Weak acid catalysis of the HER with protonated phosphate, acetate, and carbonate electrolyte species improved MEC performance by lowering the cathode's overpotential by up to 0.30 V at pH 5, compared to sodium chloride electrolytes. Deprotonation of weak acids into charged species at higher pHs improved MEC performance primarily by increasing the electrolyte's conductivity and therefore decreasing the solution resistance between electrodes. The potential contributions from weak acid catalysis and solution resistance were compared to determine whether a reactor would operate more efficiently at lower pH because of the HER, or at higher pH because of solution resistance. Phosphate and acetate electrolytes allowed the MEC to operate more efficiently under more acidic conditions (pH 5). Carbonate electrolytes increased performance from pH 5 to 9 due to a relatively large increases in conductivity. These results demonstrate that specific buffers can substantially contribute to MEC performance through both reduction in cathode overpotential and solution resistance.

  8. Low-Frequency Dielectric Dispersion of Highly Concentrated Spherical Particles in an Electrolyte Solution

    Institute of Scientific and Technical Information of China (English)

    倪福生; 顾国庆; 陈康民

    2002-01-01

    We deal with the problem of calculating the effective dielectric dispersion and electrical conductivity of colloidaldispersions. A comparison of the theoretical calculation of first principles with the experimental data of Schwanshows that our technique proposed here is no longer restricted to dilute solutions and is very effective for studyingthe dielectric properties of colloids with highly concentrated charged spherical particles in an electrolyte solution.

  9. Simulations of mean ionic activity coefficients and solubilities in aqueous electrolyte solutions

    Science.gov (United States)

    Panagiotopoulos, Athanassios

    Aqueous electrolyte solutions play an important role in industrial, geochemical and biological applications. The mean ionic activity coefficients quantify the deviation of salt chemical potential from ideal solution behavior; experimental measurements are available for many salts over broad ranges of concentration and temperature, but there have been practically no prior simulation results, because if sampling difficulties for explicit-solvent electrolyte solutions. We have developed a new approach for determination of activity coefficients of aqueous electrolytes. Common fixed-point-charge models for water and ions are unable to reproduce simultaneously activity coefficients and solubilities. Polarizable models perform better, but still predict an incorrect temperature dependence of these properties. Work supported by the U.S. Department of Energy, Office of Basic Energy Science.

  10. Oral therapy in children with cholera: a comparison of sucrose and glucose electrolyte solutions.

    Science.gov (United States)

    Sack, D A; Islam, S; Brown, K H; Islam, A; Kabir, A K; Chowdhury, A M; Ali, M A

    1980-01-01

    We performed a double-blind trial comparing sucrose electrolyte oral solution with glucose electrolyte oral solution in children less than 5 years of age with severe cholera-like diarrhea. Of 111 patients studied (102 with bacteriologically confirmed cholera), 55 received sucrose solution and 56 received glucose solution. The success rates, as defined by the absence of the need to give unscheduled intravenous therapy, were similar in the two groups (73% and 77% in the sucrose and glucose groups, respectively). There was no difference in purging rates between the two groups. The primary determinant of success for oral fluid regardless of the sugar was the purging rate. Sucrose malabsorption was responsible for oral therapy failure in one child. This study demonstrates that sucrose is an effective alternative to glucose in the oral therapy solution, but either must be used in conjunction with intravenous solution when treating severe dehydrating diarrhea.

  11. The Hydrodynamic Solution for Flow Profiles in a Binary Strong Electrolyte Solution Under an External Electric Field

    CERN Document Server

    Eu, Byung Chan

    2010-01-01

    In this paper, we follow the general idea of the Onsager--Wilson theory of strong binary electrolyte solutions and completely calculate the velocity profile of ionic flow by first formally solving the hydrodynamic (Stokes) equation for the ionic solutions subjected to an external electric field by a Fourier transform method and then explicitly evaluating the formal Fourier transform solutions as functions of spatial positions and field strength. Thus the axial and transversal components of the velocity and the accompanying nonequilibrium pressure are explicitly obtained. They are rare examples for solutions of a hydrodynamic equation for flow in an external electric field. The present results make it possible to investigate ways to overcome the mathematical difficulty (divergence) inherent to the method of evaluating the formal solutions that Wilson used in his dissertation on the conductance theory (namely, the Onsager--Wilson theory) for strong binary electrolytes. Some examples for the velocity profiles ar...

  12. Mechanism of degradation of electrolyte solutions for dye-sensitized solar cells under ultraviolet light irradiation

    Science.gov (United States)

    Nakajima, Shohei; Katoh, Ryuzi

    2015-01-01

    We studied the mechanism of the degradation of I-/I3--containing electrolyte solutions for dye-sensitized solar cells under UV light irradiation. The yellow electrolyte solutions underwent achromatization during irradiation, indicating the reduction of I3-. We propose a mechanism involving the production of holes in TiO2, reaction of the holes with solvent molecules, and subsequent reduction of I3- by electrons remaining in the TiO2. Although the quantum yield of the photodegradation reaction is estimated to be low (3 × 10-3), this reaction can nevertheless be expected to affect the long-term stability of dye-sensitized solar cell devices.

  13. Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John R.; Dufek, Eric J.; Rollins, Harry W.; Harrup, Mason K.; Gering, Kevin L.

    2017-09-12

    An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure ##STR00001## where X is an organosilyl group or a tert-butyl group and each of R.sup.1, R.sup.2, and R.sup.3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.

  14. A Spherical Earth Solution for TOA Lightning Location Retrieval

    Science.gov (United States)

    Koshak, W. J.; Solakiewicz, R. J.

    1999-01-01

    The problem of retrieving ligntning, ground-strike location on a spherical Earth surface using a network of 4 or more time-of-arrival (TOA) sensors is considered, It is shown that this problem has an analytic solution and therefore does not require the use of nonlinear estimation theory (e.g., minimization). The mathematical robustness of the analytic solution is tested using computer-generated lightning sources and simulated TOA measurement errors. A summary of a quasi-analytic extension of the spherical Earth solution to an oblate spheroid Earth geometry is also provided.

  15. Electrolyte and glucose contents of ripe and unripe coconut liquid as source of oral rehydration solution

    Directory of Open Access Journals (Sweden)

    A O Adegoke

    2012-04-01

    Full Text Available Summary: Electrolyte and glucose contents of 20 ripe and 20 unripe coconuts were analysed along with a commercially prepared oral rehydration solution using flame photometry for sodium, potassium and back titration method for bicarbonate estimation while glucose oxidase method was carried out for glucose estimation. The unripe coconut liquid had mean+ SEM of sodium (mmol/L 40.08 + 3.21, potassium (mmol/l 24.06 + 0.89, bicarbonate (mmol/l 1.48 + 0.20 and glucose (mmol/l 26.30 + 0.21 while the ripe coconut liquidhad sodium (mmol/l 24.60+ 1.36, Potassium (mmol/l 15.48 + 0.23, bicarbonate (mmol/l 0.80 + 0.18 and glucose concentration (mmol/l of 1.68 + 0.51 respectively. There was significant difference in the electrolyte content of the ripe and unripe coconut liquid (P< 0.05. The commercially prepared ORS had sodium (mmol/l 90.00 + 0.1, Potassium (mmol/l 20.00 + 0.1, bicarbonate (mmol/l 29.00 + 0.1 and glucose concentration (mmol/l of 111.00 + 0.1 respectively. The electrolyte and glucose contents of the ripe coconut was found not to meet minimum WHO standard of glucose concentration of 111mmol/l, sodium 90mmol/l, Potassium 20mmol/l and bicarbonate concentration of 30mmol/l for ORS. The Potassium concentration of the unripe coconut was higher than minimum WHO standard for ORS. However, the use of coconut liquid for rehydration cannot be recommended on the basis of its glucose and electrolyte composition.Industrial relevance: Coconut water is often used as an alternative solution for oral rehydration, particularly in regions where mothers' knowledge of oral rehydration is lacking. There has been no differentiation in the type of coconut water used for the purpose of replacing lost electrolytes; hence the electrolytes lost due to dehydration will not be replaced if the source of rehydration doesn’t contain the proper concentration of electrolytes. The study highlighted the deficiencies in the ripe and unripe coconut water as a rehydration source

  16. Recent Advances in the Use of Statistical Mechanics to Establish Molecular Thermodynamic Models for Electrolyte Solutions

    Institute of Scientific and Technical Information of China (English)

    李以圭

    2004-01-01

    Based on statistical mechanics,a review of recent theoretical studies of real electrolyte solutions is presented from three aspects,namely,molecular simulation,mean spherical approximation (MSA),and perturbation theory.Recent advances in studies of three kinds of electrostatic potentials of mean force,three kinds of internal energies (ion-ion,ion-dipole,and dipole-dipole interactions),and three kinds of electrolyte models (primitive,non-primitive,and solvent primitive models) are introduced.The advantages and disadvantages between primitive and non-primitive models,and between MSA and perturbation theory are discussed.Some new equations of state (EOSs) based on MSA and perturbation theory for real electrolyte solutions are introduced.The one-Yukawa EOS and the two-Yukawa EOS for charged colloid systems are presented.

  17. Atomistic simulations of electrolyte solutions and hydrogels with explicit solvent models

    CERN Document Server

    Walter, Jonathan; Reiser, Steffen; Horsch, Martin; Vrabec, Jadran; Hasse, Hans

    2011-01-01

    Two of the most challenging tasks in molecular simulation consist in capturing the properties of systems with long-range interactions (e.g. electrolyte solutions) as well as systems containing large molecules such as hydrogels. For the development and optimization of molecular force fields and models, a large number of simulation runs have to be evaluated to obtain the sensitivity of the target properties with respect to the model parameters. The present work discusses force field development for electrolytes regarding thermodynamic properties of their aqueous solutions. Furthermore, simulations are conducted for the volume transition of hydrogels in the presence of electrolytes. It is shown that the properties of these complex systems can be captured by molecular simulation.

  18. Prediction of the Conductance of Strong Electrolytes and the Calculation of the Ionization Constant of Weak Electrolytes in a Dilute Solution by a New Equation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to predict the conductance for dilute 1-1 valent electrolyte solutions,a new conductance equation was proposed based on the Onsager and Onsagar-Fuoss-Chen conductance equation.It has only one parameter A,which can be obtained directly from the data of ionic limiting molar conductivity Λ∞m,and its expression is very simple.The new equation has been verified by the experimental molar conductivities of some single strong electrolyte and mixed electrolyte solutions at 298.15 K reported in literatures.The results are in good agreement with the experimental data.Meanwhile the ionization constants of some weak electrolyte solutions were calculated by a modified equation of this new equation,and it was also found that the calculation results are in good agreement with the data in the literature.

  19. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions.

    Science.gov (United States)

    See, Kimberly A; Chapman, Karena W; Zhu, Lingyang; Wiaderek, Kamila M; Borkiewicz, Olaf J; Barile, Christopher J; Chupas, Peter J; Gewirth, Andrew A

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, (27)Al and (35)Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ-Cl)3·6THF](+) complex that is observed in the solid state structure. Additionally, conditioning creates free Cl(-) in the electrolyte solution, and we suggest the free Cl(-) adsorbs at the electrode surface to enhance Mg electrodeposition.

  20. The McMillan-Mayer framework and the theory of electrolyte solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen

    2006-01-01

    in the context of the classical thermodynamics and the use of it is examplified by the Debye-Huckel theory. The so-called McMillan-Mayer framework is superfluous when the thermodynamics of the electrolyte solutions is described by the Helmholtz energy functions. (c) 2006 Elsevier B.V. All rights reserved....

  1. Modeling of CO2 solubility in single and mixed electrolyte solutions using statistical associating fluid theory

    Science.gov (United States)

    Jiang, Hao; Panagiotopoulos, Athanassios Z.; Economou, Ioannis G.

    2016-03-01

    Statistical associating fluid theory (SAFT) is used to model CO2 solubilities in single and mixed electrolyte solutions. The proposed SAFT model implements an improved mean spherical approximation in the primitive model to represent the electrostatic interactions between ions, using a parameter K to correct the excess energies ("KMSA" for short). With the KMSA formalism, the proposed model is able to describe accurately mean ionic activity coefficients and liquid densities of electrolyte solutions including Na+, K+, Ca2+, Mg2+, Cl-, Br- and SO42- from 298.15 K to 473.15 K using mostly temperature independent parameters, with sole exception being the volume of anions. CO2 is modeled as a non-associating molecule, and temperature-dependent CO2-H2O and CO2-ion cross interactions are used to obtain CO2 solubilities in H2O and in single ion electrolyte solutions. Without any additional fitting parameters, CO2 solubilities in mixed electrolyte solutions and synthetic brines are predicted, in good agreement with experimental measurements.

  2. Application of the zero separation theorem to the restricted primitive model of electrolyte solutions

    DEFF Research Database (Denmark)

    Sloth, Peter

    1988-01-01

    Calculations of activity coefficients by application of the zero separation theorem is discussed for the restricted primitive model of electrolyte solutions. Numerical results within the framework of the hypernetted chain approximation are given. These indicate that the bridge functions—at zero s...

  3. Electrolyte and Haemogram changes post large volume liposuction comparing two different tumescent solutions

    Directory of Open Access Journals (Sweden)

    Kumar Vivek

    2014-01-01

    Full Text Available Background: The most common definitions of large volume liposuction refer to total 5 l volume aspiration during a single procedure (fat plus wetting solution. Profound haemodynamic and metabolic alterations can accompany large volume liposuction. Due to paucity of literature on the effect of different tumescent solutions on the electrolyte balance and haematological changes during large volume liposuction, we carried out this study using two different wetting solutions to study the same. Materials and Methods: Total 30 patients presenting with varying degrees of localized lipodystrophy in different body regions were enrolled for the study. Prospective randomized controlled trial was conducted by Department of Plastic and Cosmetic Surgery, Sir Ganga Ram Hospital, New Delhi from January 2011 to June 2012. Patients were randomized into two groups of 15 patients each by using computer generated random numbers. Tumescent formula used for Group A (normal saline [NS] was our modification of Klein′s Formula and Tumescent formula used for Group B (ringer lactate [RL] was our modification of Hunstadt′s formula. Serum electrolytes and hematocrit levels were done at preinduction, immediate postoperative period and postoperative day 1. Result: Statistical analysis was performed using SPSS software version 15.0. Which showed statistically significant electrolytes and hematocrit changes occur during large volume liposuction. Conclusion: Statistically significant electrolytes and hematocrit changes occur during large volume liposuction and patients should be kept under observation of anaesthesist for at least 24 h. Patients require strict monitoring of vital parameters and usually Intensive Care Unit is not required. There was no statistical difference in the electrolyte changes using NS or RL as tumescent solution and both solutions were found safe for large volume liposuction.

  4. Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution.

    Science.gov (United States)

    Kim, Kwang-Wook; Kim, Yeon-Hwa; Lee, Se-Yoon; Lee, Eil-Hee; Song, Kyusuk; Song, Kee-Chan

    2009-11-15

    This work studied the characteristic changes of a continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution with changes of operational variables in an electrolytic system which consisted of a cell-stacked electrolyzer equipped with a cation exchange membrane and a gas absorber. The system could completely recover the carbonate salt solution from a uranyl carbonato complex solution in a continuous operation. The cathodic feed rate could control the carbonate concentration of the recovered solution and it affected the most transient pH drop phenomenon of a well type within the gas absorber before a steady state was reached, which caused the possibility of a CO(2) gas slip from the gas absorber. The pH drop problem could be overcome by temporarily increasing the OH(-) concentration of the cathodic solution flowing down within the gas absorber only during the time required for a steady state to be obtained in the case without the addition of outside NaOH. An overshooting peak of the carbonate concentration in the recovered solution before a steady state was observed, which was ascribed to the decarbonation of the initial solution filled within the stacked cells by a redundant current leftover from the complete decarbonation of the feeding carbonate solution.

  5. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.

    Science.gov (United States)

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2017-02-08

    We demonstrate herein that Mn(3+) and not Mn(2+), as commonly accepted, is the dominant dissolved manganese cation in LiPF6-based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn(3+) fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn(3+) in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn(3+) occurs at a very slow rate.

  6. Electrogenerated chemiluminescence induced by sequential hot electron and hole injection into aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Kalle; Kuosmanen, Päivi; Pusa, Matti [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Oskari [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 (Finland); Håkansson, Markus [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Sakari, E-mail: sakari.kulmala@aalto.fi [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland)

    2016-03-17

    Hole injection into aqueous electrolyte solution is proposed to occur when oxide-coated aluminum electrode is anodically pulse-polarized by a voltage pulse train containing sufficiently high-voltage anodic pulses. The effects of anodic pulses are studied by using an aromatic Tb(III) chelate as a probe known to produce intensive hot electron-induced electrochemiluminescence (HECL) with plain cathodic pulses and preoxidized electrodes. The presently studied system allows injection of hot electrons and holes successively into aqueous electrolyte solutions and can be utilized in detecting electrochemiluminescent labels in fully aqueous solutions, and actually, the system is suggested to be quite close to a pulse radiolysis system providing hydrated electrons and hydroxyl radicals as the primary radicals in aqueous solution without the problems and hazards of ionizing radiation. The analytical power of the present excitation waveforms are that they allow detection of electrochemiluminescent labels at very low detection limits in bioaffinity assays such as in immunoassays or DNA probe assays. The two important properties of the present waveforms are: (i) they provide in situ oxidation of the electrode surface resulting in the desired oxide film thickness and (ii) they can provide one-electron oxidants for the system by hole injection either via F- and F{sup +}-center band of the oxide or by direct hole injection to valence band of water at highly anodic pulse amplitudes. - Highlights: • Hot electrons injected into aqueous electrolyte solution. • Generation of hydrated electrons. • Hole injection into aqueous electrolyte solution. • Generation of hydroxyl radicals.

  7. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions

    KAUST Repository

    Li, Yan Vivian

    2014-12-01

    © 2014 Elsevier Inc. Understanding nanoparticle-surface adhesion is necessary to develop inert tracers for subsurface applications. Here we show that nanoparticles with neutral surface charge may make the best subsurface tracers, and that it may be possible to used SiO2 nanoparticle retention to measure the fraction of solid surface that has positive charge. We show that silica nanoparticles dispersed in NaCl electrolyte solutions are increasingly retained in calcium carbonate (calcite) sand-packed columns as the solution ionic strength increases, but are not retained if they are injected in pure water or Na2SO4 electrolyte solutions. The particles retained in the NaCl experiments are released when the column is flushed with pure water or Na2SO4 solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely and only attraction remains. These AFM measurements and their interpretation with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory shows the calcite surface charge is always negative for Na2SO4 solutions, but changes from negative to positive in a patchy fashion as the ionic strength of the NaCl solution increases. Since mixed-charge (patchy) surfaces may be common in the subsurface, nanoparticles with near-zero charge may make the best tracers.

  8. Structure of aqueous electrolyte solutions near a hydrophobic surface

    Directory of Open Access Journals (Sweden)

    M.Kinoshita

    2007-09-01

    Full Text Available The structure of aqueous solutions of 1:1 salts (KCl, NaCl, KF,and CsI near a hydrophobic surface is analysed using the angle-dependent integral equation theory. Water molecules are taken to be hard spheres imbedded with multipolar moments including terms up to octupole order, and hard spherical ions are immersed in this model water. The many-body interactions associated with molecular polarizability are treated at the self-consistent mean field level. The effects of cationic and anionic sizes and salt concentration in the bulk are discussed in detail. As the salt concentration increases, the layer of water molecules next to the surface becomes denser but its orientational order remains almost unchanged. The concentration of each ion at the surface can be drastically different from that in the bulk. Asa striking example, at sufficiently low salt concentrations, the concentration of I- is about 500 times higher than that of F- at the surface.

  9. Thermal and electrochemical properties of nonflammable electrolyte solutions containing fluorinated alkylphosphates for lithium-ion batteries

    Science.gov (United States)

    Todorov, Yanko Marinov; Aoki, Masahiro; Mimura, Hideyuki; Fujii, Kenta; Yoshimoto, Nobuko; Morita, Masayuki

    2016-11-01

    Nonflammable organic electrolyte solutions containing fluorinated alkylphosphates (FAP) have been examined as safer electrolytes for lithium-ion batteries (LIB). Although the ionic conductivity of LiPF6 in neat tris(2,2,2-trifluoroethyl)phosphate (TFEP) solvent is very low, it increases upon the addition of alkyl carbonates such as ethylene carbonate (EC) and fluoroethylene carbonate (4-fluoro-2-oxo-1,3-dioxolane, FEC). A specific conductivity of 1 mS cm-1 or higher was obtained at room temperature for the system containing proper amounts of the carbonates and 0.5 M (mol dm-3) LiPF6. A conventional mixed alkylcarbonate-based solution containing LiPF6 showed a sign of considerable exothermic reactions on the differential scanning calorimetry (DSC) response below 300 °C. However, the LiPF6/TFEP solution showed no significant exothermic response up to 400 °C, even in the presence of charged LiCoO2 (LCO) positive electrode. The addition of an alkylcarbonate to the LiPF6/TFEP solution produced an exothermic response as a result of the thermal decomposition of the carbonate over the charged LCO. However, the temperature at which the exothermic reaction starts was significantly higher in the system containing FEC than that containing EC. The thermal analysis results suggested that the LiPF6/FEC + TFEP combination could work as a safer electrolyte system in LIB under severe conditions.

  10. Precipitation of sodium acid urate from electrolyte solutions

    Science.gov (United States)

    Füredi-Milhofer, Helga; Babić-Ivaniĉić, Vesna; Milat, Ognjen; Brown, Walter E.; Gregory, Thomas M.

    1987-07-01

    The precipitation of soduim urate from solutions containing uric acid, soduim hydroxide, hydrochloric acid, sodium chloride and water was investigated at constant pH (7.5±0.1) and temperature (308 K). Precipitates were observed by lights and electron microscopy and characterized by electron and X-ray diffraction. The results are presented in the form of "precipitation" and "chemical potential" diagrams, the latter giving the soduim-to-urate molar ratios of the precipitates. Two types of precipitation boundaries were observed, both of which had indicated soduim-to-urate moral ratios of 1:1. The ion activity product, (Na +)(HU -), associated with boundary I was AP I=(4.8±1.1)×10 -5 and with boundary II was with boundary II was AP II=(6.5±0.4)×10 -4. The supersaturation, S, at boundary II was S=AP II/ Ksp=12.3, in which Ksp is the solubility product of soduim acid urate monohydrate. The latter precipitated as well-formed crystals at supersaturations of 12.3 and above. The ion activity product associated with boundary I is approximately equal to the solubility product of soduim acid urate monohydrate. Small amounts of several morphologically different sodium urate crystals formed in the range of supersaturations (1≤ S≤12.3). Crystals formed in this range may include the monohydrate of sodium acid urate and possibly a higher hydrate. The findings have relevance to pathological renal stone formation and gouty arthritis.

  11. Development and calibration of an electrolytic cell for ion determination in a soil solution

    Directory of Open Access Journals (Sweden)

    Omar Cleo Neves Pereira

    2015-05-01

    Full Text Available An electrolytic cell was developed to monitor soil modifications after crop fertigation with wastewaters from agroindustrial plants. The device was first calibrated with different levels of potassium chloride dissolved in aqueous solutions at various temperatures. Nernst´s model was used to fit the voltage indicated from the electrolytic cell versus the ionic activity of the potassium from the aqueous solutions of electrical conductivity and known ionic concentrations and the diluted wastewater samples. The equipment accurately indicated the tensions after appropriated correction of the electrical current and the temperature. The device estimated with accuracy the ionic coefficient of activity, the concentration of the potassium chloride and the concentration of the ion K dissolved in the agro-industrial wastewater.

  12. High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery

    Science.gov (United States)

    Liu, Ming; He, Yan-Bing; Lv, Wei; Zhang, Chen; Du, Hongda; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2014-12-01

    It has been indicated that anatase TiO2 is a promising anode material for lithium ion power battery from many previous researches. Whereas, in this work, we find that the anatase TiO2, when used as an anode for lithium ion battery, has high catalytic activity to initiate the decarboxylation reaction of electrolyte solution, resulting in the large generation of sole gaseous component, CO2. The ROLi species and the new phase of flake-like Li2TiF6 material are the main reaction products between anatase TiO2 and LiPF6 based electrolyte solution. This work provides important and urgent information that the surface chemistry of anatase TiO2 used as the anode material of lithium ion battery must be modified to suppress its catalytic activity for the decomposition of solvents.

  13. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  14. Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory

    DEFF Research Database (Denmark)

    Cameretti, Luca F.; Sadowski, Gabriele; Mollerup, Jørgen

    2005-01-01

    The vapor pressures and liquid densities of single-salt electrolyte solutions containing NaCl, LiCl, KCl, NaBr, LiBr, KBr, NaI, LiI, KI, Li2SO4, Na2SO4, and K2SO4 were modeled with an equation of state based on perturbed-chain statistical associated fluid theory (PC-SAFT). The PC-SAFT model...

  15. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    Science.gov (United States)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-04-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data.

  16. An oral electrolyte solution (Pedialyte) in the treatment of acute infantile gastroenteritis.

    Science.gov (United States)

    Sunoto; Pioh, H; Wiharta, A S; Suharyono

    1978-01-01

    During a 3-month period, 35 pediatric patients with infantile acute gastroenteritis were treated with a premixed oral glucose electrolyte solution. The study group consisted of 17 boys and 18 girls with a mean age of 12.4 months (range of 5.5-20 months). 13 patients (37%) had mild dehydration, 16 (46%) had moderate dehydration, and 6 (17%) had normal hydration. 29 (83%( had isotonic dehydration and only 6 (17%) presented with hypotonic dehydration. Almost all of the patients were admitted for a hospital stay of 3 days and on discharge, all were in good condition. None developed severe dehydration or needed intravenous fluid treatment. The mean weight gain during hospitalization was 147 gm with a range of 100-400 gm. Unexpectedly, pathogenic bacteria organisms were discovered in 24 (68.7%) of the total cases, but all the children recovered very well with the oral electrolyte solution only without the need for antibiotics. From clinical, chemical, and other observations, it could be concluded that this ready-to-feed oral electrolyte solution can be used safely and effectively for the treatment of acute infantile gastroenteritis both with or without mild or moderate dehydration. No complications were observed in this study.

  17. Implementation of equilibrium aqueous speciation and solubility (EQ3 type) calculations into Cantera for electrolyte solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Jove-Colon, Carlos F.

    2009-06-01

    In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species. The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.

  18. Tetrahydrofuran-promoted clathrate hydrate phase equilibria of CO{sub 2} in aqueous electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sabil, K.M.; Roman, V.R. [Delft Univ. of Technology, Delft (Netherlands). Physical Chemistry and Molecular Thermodynamics; Witkamp, G.J.; Peters, C.J. [Delft Univ. of Technology, Delft, (Netherlands). Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering

    2008-07-01

    The phase behavior of a system consisting of carbon dioxide (CO{sub 2}) hydrates is of significant importance for many industrial and natural processes. Carbon dioxide and water are part of natural gas streams and they are also found in oil reservoirs during enhanced oil recovery. Formation of hydrate in these cases may cause problems during production and processing. Alternatively, carbon dioxide hydrate formation may be desirable since it can facilitate separation processes, freezing and refrigeration processes and sequestration of CO{sub 2}. The need for phase equilibrium data of systems, particularly electrolyte solutions containing CO{sub 2} are therefore needed. This paper presented a study that attempted to measure the hydrate equilibrium condition for quaternary system consisting of CO{sub 2}, tetrahydrofuran (THF), an electrolyte and water. The purpose of the study was to examine the competing effect of tetrahydrofuran and an electrolyte on the phase behavior of CO{sub 2} hydrates when both were simultaneously present in a system at hydrate forming condition and to compare the effect of different salts inhibition on tetrahydrofuran-promoted CO{sub 2} hydrate. Six different electrolytes were utilized, including sodium chloride, calcium chloride, magnesium chloride, potassium bromide, sodium fluoride and sodium bromide. It was concluded that the inhibiting effect among the cations increased with increasing charge of the cation and its radius. It was also found that the inhibiting effect of the anions decreased with a decrease on their ion radius. 12 refs., 4 figs.

  19. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis.

    Science.gov (United States)

    Shi, Xiaocai; Passe, Dennis H

    2010-10-01

    The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate-electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests. Exploratory multiple-regression analyses were conducted to create prediction models for intestinal water absorption. The factors influencing water and solute absorption are carefully evaluated and extensively discussed. The authors suggest that in the human proximal small intestine, water absorption is related to both total solute and CHO absorption; osmolality exerts various impacts on water absorption in the different segments; the multiple types of CHO in the ingested CHO-E solutions play a critical role in stimulating CHO, sodium, total solute, and water absorption; CHO concentration is negatively related to water absorption; and exercise may result in greater water absorption than rest. A potential regression model for predicting water absorption is also proposed for future research and practical application. In conclusion, water absorption in the human small intestine is influenced by osmolality, solute absorption, and the anatomical structures of gut segments. Multiple types of CHO in a CHO-E solution facilitate water absorption by stimulating CHO and solute absorption and lowering osmolality in the intestinal lumen.

  20. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients

    OpenAIRE

    Boles, Erin E.; Gaines, Cameryn L.; Tillman, Emma M.

    2015-01-01

    OBJECTIVES: The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients.

  1. Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions of Single and Mixed Electrolytes

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1997-01-01

    In this paper, the extended Patel-Teja equation of state was modified to describe non-ideality of the liquid phase containing water and electrolytes accurately. The modified Patel-Teja equation of state (MPT EOS) was utilized to develop a predictive method for gas hydrate equilibria. The new method...... employs the Barkan and Sheinin hydrate model for the description of the hydrate phase, the original Patel-Teja equation of state for the vapor phase fugacities, and the MPT EOS (instead of the activity coefficient model) for the activity of water in the aqueous phase. The new method has succesfully...... predicted the gas hydrate formation conditions in aqueous solutions of single and mixed electrolytes. The agreement between experimental data and predictions was found to be excellent....

  2. Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions of Single and Mixed Electrolytes

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1997-01-01

    In this paper, the extended Patel-Teja equation of state was modified to describe non-ideality of the liquid phase containing water and electrolytes accurately. The modified Patel-Teja equation of state (MPT EOS) was utilized to develop a predictive method for gas hydrate equilibria. The new method...... employs the Barkan and Sheinin hydrate model for the description of the hydrate phase, the original Patel-Teja equation of state for the vapor phase fugacities, and the MPT EOS (instead of the activity coefficient model) for the activity of water in the aqueous phase. The new method has succesfully...... predicted the gas hydrate formation conditions in aqueous solutions of single and mixed electrolytes. The agreement between experimental data and predictions was found to be excellent....

  3. Kinetics of the elementary act of electrochemical reactions at the semiconductor--electrolyte solution interface

    CERN Document Server

    Kovalenko, Sergii

    2013-01-01

    In the framework of the quantum-mechanical theory of elementary act of non-adiabatic electrochemical reactions, it is carried out the calculation of the discharge current of ions at the semiconductor--electrolyte solution interface using the model of isotropic spherically symmetric band. It is shown that our results generalize the well-known formulae for the current density obtained by R.R. Dogonadze, A.M. Kuznetsov, and Yu.A. Chizmadzhev [R.R. Dogonadze, A.M. Kuznetsov, and Yu.A. Chizmadzhev, The kinetics of some heterogeneous reactions at semiconductor--electrolyte interface, Zhur. Fiz. Khim. 38 (1964) 1195--1202]. The average densities of states in the valence band and the conduction band of the semiconductor electrode in the heterogeneous charge transfer are found.

  4. Relationships between Pitzer's ion interaction coefficients and ionic parameters of electrolyte solutions

    Institute of Scientific and Technical Information of China (English)

    李国正; 杨杰; 张良苗; 陆文聪; 陈念贻

    2004-01-01

    Pattern recognition methods were used to treat the experimentally measured data of Pitzer's coefficients of 107 electrolytes, to find the relationships between the ionic structural parameters of these electrolytes and Pitzer's coefficients. It is found that these relationships can be approximately expressed as linear equations of four dimensionless numbers, (R+/R- ), (R+ +R-)/Z+ Z- , (Z+/Z- ) and (Rt/Rl), where R+ and R- are the cationic and anionic radii respectively; Z+ and Z- are the cationic and anionic charge numbers respectively, and (Rt/Rl) denotes the nonsphericity of some non-spherical ions. Besides, it is found that the difference of the nuclear magnetic resonance measured rotational relaxation time of water molecules around cations and anions, |△τ|, has good correlation with Pitzer's coefficients. The relationships can be interpreted by the theory of corresponding states of ionic solutions. Based on the relationships, an example of application to some hydrometallurgical process was discussed.

  5. Multi-scale theory in the molecular simulation of electrolyte solutions

    CERN Document Server

    Zhang, W; Pratt, L R

    2013-01-01

    This paper organizes McMillan-Mayer theory, the potential distribution approach, and quasi-chemical theory to provide theory for the thermodynamic effects associated with longer spatial scales involving longer time scales, thus helping to define a role for AIMD simulation directly on the time and space scales typical of those demanding methods. The theory treats composition fluctuations which would be accessed by larger-scale calculations, and also longer-ranged interactions that are of special interest for electrolyte solutions. The quasi-chemical organization breaks-up governing free energies into physically distinct contributions: packing, outer-shell, and chemical contributions. Here we study specifically the outer-shell contributions that express electrolyte screening. For that purpose we adopt a primitive model suggested by observation of ion-pairing in tetra-ethylammonium tetra-fluoroborate dissolved in propylene carbonate. Gaussian statistical models are shown to be effective physical models for outer...

  6. Onsager’s reciprocal relations in electrolyte solutions. I. Sedimentation and electroacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Gourdin-Bertin, S.; Bernard, O.; Jardat, M. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris (France); Chassagne, C. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris (France); Environmental Fluid Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft (Netherlands)

    2015-08-14

    In the framework of irreversible thermodynamics, we show that the sedimentation current in electrolyte solutions is mathematically equivalent to the low frequency limit of the ionic vibration current, appearing in the presence of an acoustic wave. This non-trivial result is obtained thanks to a careful choice of the reference frame used to express the mass fluxes in the context of electroacoustics. Coupled transport phenomena in electrolyte solutions can also be investigated in a mechanical framework, with a set of Newtonian equations for the dynamics of charged solutes. Both in the context of sedimentation and of electroacoustics, we show that the results obtained in the mechanical framework, in the ideal case (i.e., without interactions between ions), do satisfy the Onsager’s reciprocal relations. We also derive the general relation between corrective forces accounting for ionic interactions which must be fulfilled so that the Onsager’s reciprocal relations are verified. Finally, we show that no additional diffusion term needs to be taken into account in the flux of solutes (far from the walls), even if local concentration gradients exist, contrarily to what was done previously in the literature.

  7. Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor

    Science.gov (United States)

    Dove, Patricia M.; Crerar, David A.

    1990-04-01

    A hydrothermal mixed flow reactor has been developed to study the reaction kinetics of a wide variety of mineral/solution systems. The reactor is constructed of commercially pure titanium to minimize corrosion and operates at temperatures of 25 to 300°C and pressures up to 124 bars. This system is used to measure the dissolution rates of quartz at near-neutral pH in 0.0 to 0.15 m solutions of NaCl, KCl, LiCl, MgCl 2 over a temperature range of 100 to 300°C. In all cases, small concentrations of electrolytes increase the rate, some by as much as 1.5 orders of magnitude above the values measured for deionized water. The effect is greatest for solutions of NaCl and KCl where reaction rates increase with increasing electrolyte concentrations up to 0.05 molal and become constant at higher molalities. Smaller rate increases are observed for LiCl and MgCl 2 solutions. The first-order rate equation for quartz dissolution in pure water at temperatures of 100 to 300°C is given by r H 4sio 4 = k +(a sio2)(a H 2o ) 2(1 - Q/K) for a standard system of 1 m 2 of surface area and 1 kg of solution. The addition of electrolytes to reacting solutions at near-neutral pH accelerates the rate according to a Langmuir adsorption model and has the form r H 4sio 4 = (k + + k adK me +/1 + k me +)(a sio2)(a H 2o ) 2(1 - Q/K). m me + Analysis of the data indicates that the observed rate increases are controlled by the identity and concentration of the cation where alkali cations coordinate with the surface to increase the reactivity of siloxane groups by disrupting the structure of the mineral-solution interface. The rate-limiting step for the dissolution mechanism is described by (Si - O - Si) + H 2O = (Si - O - Si · OH 2)† → 2(Si - O - H) where the intermediate species is probably the same in deionized water and electrolyte solutions, but the reaction frequency is higher in electrolyte solutions due to increases in the accessibility of water to the mineral surface structures

  8. In situ analysis of the interfacial reactions between MCMB electrode and organic electrolyte solutions

    Science.gov (United States)

    Morigaki, Ken-ichi

    The interfacial phenomena between graphite (mesocarbon-microbeads (MCMB)) electrode and organic electrolyte solution were analyzed by in situ atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. The influence of lithium salts (anion species), LiPF 6, LiBF 4, and LiClO 4, on the interfacial reaction, including lithium intercalation into graphite, was investigated in EC+DMC solutions. In situ AFM observation disclosed that morphological changes are quite different from one another depending on the kind of lithium salt (anion). A large expansion of MCMB particle was observed particularly in LiPF 6/EC+DMC. An expansion of MCMB particle started above 1.0 V versus Li/Li + and this expansion seemed to be caused by the decomposition of ternary graphite intercalation compound (GIC) ( C nLi(sol) y), because the expansion remained after de-intercalation of lithium. IRAS spectra of each electrolyte solution showed different behaviors and different reduction products of solvents. double modulation FTIR (DMFTIR) spectra on graphite electrode, which emphasize the surface species, indicated relatively small changes after cathodic polarization. Therefore, the observed morphological changes were caused mainly by the expansion of graphene layers and not by the precipitation of reduction products.

  9. Cold-preserved human spermatozoa in electrolyte-free solution retain their penetration capacity

    Institute of Scientific and Technical Information of China (English)

    全松; 周海宽; 山野修司; 中坂尚代; 青野敏博

    2003-01-01

    Objective: To evaluate penetration capacity of human sperm preserved in electrolyte-free (EF) solution at 4 ℃.Methods: The motility, acrosomal status penetration rate and fertility index of human sperm were assessed before and after cold-preservation in EF solution, respectively.Results: The motility of human sperm cold-preserved in EF solution for 1 week was significantly higher than that of human sperm cold-preserved in modified human tubal fluid (mHTF) (43.4%±7.9% vs 9.5%±2.5%, P0.05), the percentage of capacitated and acrosome-reacted sperm in the EF solution significantly increased after reinitiation (capacitated sperm: 16.0%±2.3% vs 7.6±1.8%, acrosome-reacted sperm: 9.4%±2.1% vs 3.0%±1.7%, P0.05).Conclusion: Cold-preservation did not induce capacitation and acrosome reaction of human sperm in the EF solution, but human sperm cold-preserved in the EF solution for 1 week possesses as much penetration capacity as fresh sperm.

  10. Theory of space-charge polarization for determining ionic constants of electrolytic solutions.

    Science.gov (United States)

    Sawada, Atsushi

    2007-06-14

    A theoretical expression of the complex dielectric constant attributed to space-charge polarization has been derived under an electric field calculated using Poisson's equation considering the effects of bound charges on ions. The frequency dependence of the complex dielectric constant of chlorobenzene solutions doped with tetrabutylammonium tetraphenylborate (TBATPB) has been analyzed using the theoretical expression, and the impact of the bound charges on the complex dielectric constant has been clarified quantitatively in comparison with a theory that does not consider the effect of the bound charges. The Stokes radius of TBA+(=TPB-) determined by the present theory shows a good agreement with that determined by conductometry in the past; hence, the present theory should be applicable to the direct determination of the mobility of ion species in an electrolytic solution without the need to measure ionic limiting equivalent conductance and transport number.

  11. INDIGO-DataCloud solutions for Earth Sciences

    Science.gov (United States)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Fiore, Sandro; Monna, Stephen; Chen, Yin

    2017-04-01

    INDIGO-DataCloud (https://www.indigo-datacloud.eu/) is a European Commission funded project aiming to develop a data and computing platform targeting scientific communities, deployable on multiple hardware and provisioned over hybrid (private or public) e-infrastructures. The development of INDIGO solutions covers the different layers in cloud computing (IaaS, PaaS, SaaS), and provides tools to exploit resources like HPC or GPGPUs. INDIGO is oriented to support European Scientific research communities, that are well represented in the project. Twelve different Case Studies have been analyzed in detail from different fields: Biological & Medical sciences, Social sciences & Humanities, Environmental and Earth sciences and Physics & Astrophysics. INDIGO-DataCloud provides solutions to emerging challenges in Earth Science like: -Enabling an easy deployment of community services at different cloud sites. Many Earth Science research infrastructures often involve distributed observation stations across countries, and also have distributed data centers to support the corresponding data acquisition and curation. There is a need to easily deploy new data center services while the research infrastructure continuous spans. As an example: LifeWatch (ESFRI, Ecosystems and Biodiversity) uses INDIGO solutions to manage the deployment of services to perform complex hydrodynamics and water quality modelling over a Cloud Computing environment, predicting algae blooms, using the Docker technology: TOSCA requirement description, Docker repository, Orchestrator for deployment, AAI (AuthN, AuthZ) and OneData (Distributed Storage System). -Supporting Big Data Analysis. Nowadays, many Earth Science research communities produce large amounts of data and and are challenged by the difficulties of processing and analysing it. A climate models intercomparison data analysis case study for the European Network for Earth System Modelling (ENES) community has been setup, based on the Ophidia big

  12. Evaluation of the tapered PMMA fiber sensor response due to the ionic interaction within electrolytic solutions

    Science.gov (United States)

    Batumalay, M.; Rahman, H. A.; Kam, W.; Ong, Y. S.; Ahmad, F.; Zakaria, R.; Harun, S. W.; Ahmad, H.

    2014-01-01

    A tapered plastic multimode fiber (PMMA) optical sensor is proposed and demonstrated for continuous monitoring of solutions based on different concentration of sodium chloride and glucose in deionized water The tapered PMMA fiber was fabricated using an etching method involving deionized water and acetone to achieve a waist diameter and length of 0.45 mm and 10 mm, respectively, and was used to investigate the effect of straight, U-shape, and knot shape against concentration for both sodium chloride and glucose. The results show that there is a strong dependence of the electrolytic and non-electrolytic nature of the chemical solutions on the sensor output. It is found that the sensitivity of the sodium chloride concentration sensor with the straight tapered fiber probe was 0.0023 mV/%, which was better than the other probe arrangements of U-shape and knot. Meanwhile, the glucose sensor performs with the highest sensitivity of 0.0026 mV/wt % with the knot-shaped tapered fiber probe. In addition, a tapered PMMA probe which was coated by silver film was fabricated and demonstrated using calcium hypochlorite (G70) solution. The working mechanism of such a device is based on the observed increment in the transmission of the sensor that is immersed in solutions of higher concentration. As the concentration varies from 0 ppm to 6 ppm, the output voltage of the sensor increases linearly from 3.61 mV to 4.28 mV with a sensitivity of 0.1154 mV/ppm and a linearity of more than 99.47%. The silver film coating increases the sensitivity of the proposed sensor due to the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber.

  13. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes

    Science.gov (United States)

    Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong

    2016-03-01

    This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%.

  14. Dynamic response of AFM cantilevers to dissimilar functionalized silica surfaces in aqueous electrolyte solutions.

    Science.gov (United States)

    Wu, Yan; Misra, Sambit; Karacor, M Basar; Prakash, Shaurya; Shannon, Mark A

    2010-11-16

    The dynamic response of an oscillating microcantilever with a gold-coated tip interacting with dissimilar functionalized silica surfaces was studied in electrolyte solutions with pH ranging from 4 to 9. Silica surfaces were chemically modified, yielding dissimilar surfaces with -Br, -NH(2), and -CH(3) functional group terminations. The relative hydrophobicity of the surfaces was characterized by contact angle measurements. The surface charge of the functionalized surfaces was first probed with commonly used static AFM measurements and serves as a reference to the dynamic response data. The amplitude and phase of the cantilever oscillation were monitored and used to calculate the effective interaction stiffness and damping coefficient, which relate to the electrical double layer interactions and also to distance-dependent hydrodynamic damping at the solid/water interface. The data for the dynamic response of the AFM over silica surfaces as a function of chemical functionalization and electrolyte pH show that the effective stiffness has a distinctive dependence on the surface charge of functionalized silica surfaces. The hydrodynamic damping also correlates strongly with the relative hydrophobicity of the surface. The data reported here indicate that interfacial properties can be strongly affected by changing the chemical composition of surfaces.

  15. Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake.

    Science.gov (United States)

    Hong, Bong Jin; Compton, Owen C; An, Zhi; Eryazici, Ibrahim; Nguyen, SonBinh T

    2012-01-24

    Aqueous dispersions of graphene oxide are inherently unstable in the presence of electrolytes, which screen the electrostatic surface charge on these nanosheets and induce irreversible aggregation. Two complementary strategies, utilizing either electrostatic or steric stabilization, have been developed to enhance the stability of graphene oxide in electrolyte solutions, allowing it to stay dispersed in cell culture media and serum. The electrostatic stabilization approach entails further oxidation of graphene oxide to low C/O ratio (~1.1) and increases ionic tolerance of these nanosheets. The steric stabilization technique employs an amphiphilic block copolymer that serves as a noncovalently bound surfactant to minimize the aggregate-inducing nanosheet-nanosheet interactions. Both strategies can stabilize graphene oxide nanosheets with large dimensions (>300 nm) in biological media, allowing for an enhancement of >250% in the bioconjugation efficiency of streptavidin in comparison to untreated nanosheets. Notably, both strategies allow the stabilized nanosheets to be readily taken up by cells, demonstrating their excellent performance as potential drug-delivery vehicles.

  16. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R.; Novak, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  17. a Molecular Approach to Electrolyte Solutions: Predicting Phase Behavior and Thermodynamic Properties of Single and Binary-Solvent Systems

    Science.gov (United States)

    Gering, Kevin Leslie

    A molecular formulation based on modern liquid state theory is applied to the properties and phase behavior of electrolyte systems containing volatile species. An electrolyte model based on the exponential modification of the Mean Spherical Approximation (EXP-MSA) is used to describe the cation-cation, cation-anion, and anion-anion distributions of the ionic species. This theory represents an improvement over the nonmodified MSA approach, and goes beyond the usual Debye-Huckel theory and Pitzer correlation for treating concentrated solutions. Electrolyte solutions such as water-salt, ammonia-salt, mixed salts, and mixed -solvent systems are investigated over a wide range of temperatures, pressures, and compositions. The usual salt properties, such as osmotic and mean activity coefficients and other thermodynamic properties (enthalpies), are calculated. The predictions are accurate to saturation limits. In addition, an iterative method is presented that is used to predict vapor-liquid equilibria (VLE) and thermodynamic properties of single-salt multisolvent electrolytes of the form solvent-cosolvent-salt. In this method, a local composition model (LCM) and EXP-MSA theory are combined with traditional phase equilibria relations to estimate the pressures and compositions of a vapor phase in equilibrium with a binary-solvent electrolyte. Also, a pseudo-solvent model is proposed as a means of obtaining a variety of averaged liquid phase electrolyte properties. To predict preferential solvation in mixed solvents, a general framework is developed that is based on predicted solvation numbers of each solvent. Preferential solvation will be shown to influence VLE. Results show that phase equilibria is accurately predicted by the above iterative method. Three mixed-solvent electrolyte systems are investigated: water -ethylene glycol-LiBr, ammonia-water-LiBr, and methanol -water-LiCl. Finally, the above electrolyte model is utilized in predicting design criteria for a single

  18. New design of electric double layer capacitors with aqueous LiOH electrolyte as alternative to capacitor with KOH solution

    Science.gov (United States)

    Stepniak, Izabela; Ciszewski, Aleksander

    Activated carbon (AC) fiber cloths and a hydrophobic microporous polypropylene (PP) membrane, both modified with lithiated acetone oligomers, were used as electrodes and a separator in electric double layer capacitors (EDLCs) with aqueous lithium hydroxide (LiOH) as the electrolyte. Electrochemical characteristics of EDLCs were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge cycle tests and impedance spectroscopy (EIS), compared with a case of the capacitor with aqueous potassium hydroxide (KOH) as an electrolyte. As a result, the capacitor with LiOH aqueous solution and a modified separator and electrodes was found to exhibit higher specific capacitance, maximum energy stored and maximum power than that with KOH aqueous solution.

  19. Effects of a new intravenous electrolyte solution for veterinary therapy on the electrolyte and acid-base balances of healthy horses

    Directory of Open Access Journals (Sweden)

    Priscilla Fajardo Valente Pereira

    2016-01-01

    Full Text Available ABSTRACT: The effects of a new intravenous electrolyte solution for veterinary therapy on electrolyte and acid-base balances of horses were evaluated, assessing the potential of the use of this solution as a rational alternative in fluid therapy. Eight healthy adult horses, including 4 males and 4 females, received two treatments in a cross-over design: isotonic saline solution (IS and a test solution (TS containing 145mEq of Na+, 5mEq of K+, 4mEq of Ca++, 2mEq of Mg++, 96mEq of Cl-, 60mEq of lactate, 50g of dextrose, and 4mg of cyanocobalamin per liter. Solutions were IV infused in a volume corresponding to 5% of BW, over 3 hours. Venous blood samples were taken 5 times before and after the infusion (at 0, 3, 6, 9 e 24h, for pHv, pCO2v, HCO3 -v, BEv, Na+, K+, Cl-, Ca++, Ca, P, Mg, glucose and L-lactate measurements, and AG and SID calculations. The data were analyzed through repeated measures ANOVA. The IS caused mild acidifying effect by increasing Cl- and decreasing plasma SID. In contrast, the TS induced mild and transient hypochloremia without changes in acid-base balance. Hyperglycemia was present at the end of the TS infusion and reversed 6 hours later. The horses did not exhibit any clinical changes. We concluded that TS is an option for fluid therapy in horses.

  20. Specific Features of Motion of Cations and Anions in Electrolyte Solutions

    CERN Document Server

    Bulavin, L A; Malomuzh, M P; Pankratov, K M

    2012-01-01

    The nature of mobility of ions and water molecules in dilute aqueous solutions of electrolytes (at most fifteen water molecules per ion) is investigated. It is shown that the behavior of the mobility coefficients of water molecules and ions, as well as the self-diffusion coefficients of water molecules, are determined by the radii of their hard shells rather than by the effect of the hydrogen bond network. It is established that the influence of hydration effects on the density of the system and the self-diffusion coefficients of water molecules does not exceed several per cent. Based on microscopic concepts, it is shown that the different behaviors of a $\\rm K^{+}$ cation and an $\\rm F^{-}$ anion with equal rigid radii are in good agreement with specific features of the intermolecular interaction described by the generalized Stillinger--David potential.

  1. Adhesion between Silica Particle and Mica Surfaces in Water and Electrolyte Solutions.

    Science.gov (United States)

    Vakarelski; Ishimura; Higashitani

    2000-07-01

    An atomic force microscope (AFM) is used to study the adhesion between a silica sphere and a mica plate in pure water and solutions of monovalent cations (LiCl, NaCl, KCl, and CsCl). It is found that the adhesive force depends not only on the electrolyte concentration but also on the hydration enthalpy of cations and the contact time of the particle on the surface. Possible mechanisms by which the observed phenomena can be explained consistently are discussed extensively. It is suggested that the adhesive force is closely related to the structure of the layer of cations and water molecules adsorbed on the surfaces: the strong adhesive force is obtained when highly hydrated cations (Li(+), Na(+)) are adsorbed to form a thick but weakly adsorbed layer, while the weak adhesive force is observed when poorly hydrated cations (Cs(+), K(+)) are adsorbed to form a thin but strongly adsorbed layer. Copyright 2000 Academic Press.

  2. Electrochemically Controlled Ion-exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Lin, Yuehe [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States

    2016-09-15

    The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).

  3. Balancing Osmotic Pressure of Electrolytes for Nanoporous Membrane Vanadium Redox Flow Battery with a Draw Solute.

    Science.gov (United States)

    Yan, Ligen; Li, Dan; Li, Shuaiqiang; Xu, Zhi; Dong, Junhang; Jing, Wenheng; Xing, Weihong

    2016-12-28

    Vanadium redox flow batteries with nanoporous membranes (VRFBNM) have been demonstrated to be good energy storage devices. Yet the capacity decay due to permeation of vanadium and water makes their commercialization very difficult. Inspired by the forward osmosis (FO) mechanism, the VRFBNM battery capacity decrease was alleviated by adding a soluble draw solute (e.g., 2-methylimidazole) into the catholyte, which can counterbalance the osmotic pressure between the positive and negative half-cell. No change of the electrolyte volume has been observed after VRFBNM being operated for 55 h, revealing that the permeation of water and vanadium ions was effectively limited. Consequently, the Coulombic efficiency (CE) of nanoporous TiO2 vanadium redox flow battery (VRFB) was enhanced from 93.5% to 95.3%, meanwhile, its capacity decay was significantly suppressed from 60.7% to 27.5% upon the addition of soluble draw solute. Moreover, the energy capacity of the VRFBNM was noticeably improved from 297.0 to 406.4 mAh remarkably. These results indicate balancing the osmotic pressure via the addition of draw solute can restrict pressure-dependent vanadium permeation and it can be established as a promising method for up-scaling VRFBNM application.

  4. Dynamic contact angles on PTFE surface by aqueous surfactant solution in the absence and presence of electrolytes.

    Science.gov (United States)

    Chaudhuri, Rajib Ghosh; Paria, Santanu

    2009-09-15

    This study presents the experimental results on dynamic contact angles of pure surfactants and surfactants with electrolyte solutions on PTFE (Teflon) surface. Dynamic advancing (theta(A)) and receding (theta(R)) contact angles measurements by the Wilhelmy plate technique were carried out for aqueous solution of three different surfactants Triton X-100 (TX-100), sodium dodecylbenzene sulfonate (SDBS), and cetyltrimethylammonium bromide (CTAB). The same measurements in the presence of different electrolytes NaCl, Na(2)SO(4), and CaCl(2) for ionic surfactants (SDBS and CTAB) were also carried out to see the change in contact angle and wetting behavior. The presence of electrolytes changes the advancing contact angle as well as wetting properties of hydrophobic solid surface significantly even at very low surfactant concentration. Counter ion valency of the electrolyte is more important in reducing advancing contact angle on hydrophobic PTFE surface at very low concentration of ionic surfactants from CMC. Pure surfactants and ionic surfactants in the presence of electrolytes show a linear relationship between the adhesional tension and surface tension at air-water interface with different slope and intercept.

  5. Low temperature preparation and fuel cell properties of rare earth doped barium cerate solid electrolytes

    Institute of Scientific and Technical Information of China (English)

    蒋凯; 何志奇; 孟建; 任玉芳; 苏锵

    1999-01-01

    The solid electrolytes, BaCe0.8 Ln0.2O2.9 (Ln: Gd, Sm, Eu), were prepared by the sol-gel method. XRD indicated that a pure orthorhombic phase was formed at 900℃. The synthesis temperature by the sol-gel method was about 600℃ lower than the high temperature solid phase reaction method, The electrical conductivity and impedance spectra were measured and the conduction mechanism was studied. The grain-boundary resistance of the solid electrolyte could be reduced or eliminated by the sol-gel method. The conductivity of BaCe0.8Gd0.2O2.9 is 7.87×10-2 S·cm-1 at 800℃. The open-circuit voltage of hydrogen-oxygen fuel cell using BaCe0.8 Gd0.2O2.9 as electrolyte was near to 1 V and its maximum power density was 30 mW·cm-2.

  6. Adsorption of mexiletine onto activated charcoal in macrogol-electrolyte solution.

    Science.gov (United States)

    Arimori, K; Deshimaru, M; Furukawa, E; Nakano, M

    1993-04-01

    Adsorption studies in vitro of mexiletine onto activated charcoal were performed in macrogol (polyethylene glycol)-electrolyte solution (PEG-ELS) and JP XII disintegration medium No. 2 (second medium). Mexiletine was adsorbed more extensively onto activated charcoal in PEG-ELS than that in JP XII second medium. The maximum adsorptive capacity of activated charcoal for the drug was 328 and 284 mg per gram of charcoal in PEG-ELS and JP XII second medium, respectively. In addition, the equilibrium constant of activated charcoal estimated according to the Langmuir equation was 0.079 and 0.034 l per gram of charcoal in PEG-ELS and JP XII second medium, respectively. Adsorption of mexiletine onto activated charcoal was decreased by omitting macrogol, sodium sulfate or sodium bicarbonate from a standard PEG-ELS formulation. Oral activated charcoal will be useful in combination with whole bowel irrigation with PEG-ELS in mexiletine overdose because of its excellent adsorbability in the solution.

  7. Dependence of the dielectric constant of electrolyte solutions on ionic concentration

    CERN Document Server

    Gavish, Nir

    2012-01-01

    We study the dependence of the static dielectric constant of aqueous electrolyte solutions upon the concentration of salt in the solution and temperature. The model takes into account the orientation of the solvent dipoles due to the electric field created by ions, the ionic response to an applied field, and the effect of thermal fluctuations. The analysis suggests that the formation of ion pairs by a small fraction of disassociated ions can have a significant effect on the static dielectric constant. The model predicts the dielectric has the functional dependence $\\varepsilon(c)=\\varepsilon_w-\\beta L(3\\alpha c/\\beta)$ where $L$ is the Langevin function, $c$ is the salt concentration, $\\varepsilon_w$ is the dielectric of the pure water, $\\alpha$ is the total excess polarization of the ions and $\\beta$ is the relative difference between the water dipole moment and the effective dipole moment of ion pairs as weighted by the density of ion pairs and their structural rigidity. The functional form gives an extreme...

  8. Graphene-oxide stabilization in electrolyte solutions using hydroxyethyl cellulose for drug delivery application.

    Science.gov (United States)

    Mianehrow, Hanieh; Moghadam, Mohamad Hasan Mohamadzadeh; Sharif, Farhad; Mazinani, Saeedeh

    2015-04-30

    Stabilization of graphene oxide (GO) in physiological solution is performed using hydroxyethyl cellulose (HEC) to make the resultant nanohybrid suitable for targeted drug delivery purposes. Short and long term stability of GO suspensions with different ionic strengths were assessed using ultraviolet-visible spectroscopy (UV-vis), atomic force microscopy (AFM) and zeta potential measurements. Results depicted that HEC effectively stabilized GO in electrolyte solutions and the mechanism of stabilization appeares to be depended on HEC content. Drug loading and release behavior of folic acid (FA) as a model drug, from GO-HEC nanohybrid were studied to assess its application in drug delivery systems. Results showed the nanohybrid could be highly loaded by folic acid. Moreover, HEC content in the nanohybrid played an important role in final application to make it applicable either as a carrier for controllable drug release or as a folate-targeted drug carrier. In addition, according to cytotoxicity results, the nanohybrid showed good biocompatibility which indeed confirms its potential application as a drug carrier.

  9. Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device

    Science.gov (United States)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-12-01

    The decrease in the efficiency and capacity of a vanadium redox flow battery (VRB) caused by an electrolyte imbalance is an important impediment to its long-term operation. Knowing the state of charge (SOC) of an electrolyte solution can quantify the level of the electrolyte imbalance in the VRB. In this study, a four-pole cell device is devised and employed to predict the SOC. The proposed method directly measures the ionic resistance of the electrolyte solution and is sufficiently precise to be applied in real-time mode. Experimental studies on the effects of the operating current on the four-pole cell and the concentrations of vanadium and sulfuric acid in the electrolyte solution are carried out. The results show that the four-pole cell method can be utilized to measure the electrolyte SOC. The concentrations of vanadium and sulfuric acid in the electrolyte solution affect the ionic resistance of the solution. Regarding the capacity and efficiency of the VRB system, the results indicate that the electrical charge is determined from the concentration of vanadium and that the cell voltage depends on the concentration of sulfuric acid in the electrolyte solution. The decreased vanadium concentration and increased sulfuric acid concentration improves the cell voltage efficiency.

  10. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy.

    Science.gov (United States)

    Abellan, Patricia; Mehdi, B Layla; Parent, Lucas R; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Ji-Guang; Wang, Chong-Min; Evans, James E; Browning, Nigel D

    2014-03-12

    Development of novel electrolytes with increased electrochemical stability is critical for the next generation battery technologies. In situ electrochemical fluid cells provide the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under conditions directly relevant to the operation of practical batteries. In this paper, we have studied the breakdown of a range of inorganic/salt complexes relevant to state-of-the-art Li-ion battery systems by in situ (scanning) transmission electron microscopy ((S)TEM). In these experiments, the electron beam itself caused the localized electrochemical reaction that allowed us to observe electrolyte breakdown in real-time. The results of the in situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in situ liquid stage (S)TEM observations could be used to directly test new electrolyte designs and identify a smaller library of candidate solutions deserving of more detailed characterization. A systematic study of electrolyte degradation is also a necessary first step for any future controlled in operando liquid (S)TEM experiments intent on visualizing working batteries at the nanoscale.

  11. Electrolyte for batteries with regenerative solid electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  12. Analytical theories of transport in concentrated electrolyte solutions from the MSA.

    Science.gov (United States)

    Dufrêche, J-F; Bernard, O; Durand-Vidal, S; Turq, P

    2005-05-26

    Ion transport coefficients in electrolyte solutions (e.g., diffusion coefficients or electric conductivity) have been a subject of extensive studies for a long time. Whereas in the pioneering works of Debye, Hückel, and Onsager the ions were entirely characterized by their charge, recent theories allow specific effects of the ions (such as the ion size dependence or the pair association) to be obtained, both from simulation and from analytical theories. Such an approach, based on a combination of dynamic theories (Smoluchowski equation and mode-coupling theory) and of the mean spherical approximation (MSA) for the equilibrium pair correlation, is presented here. The various predicted equilibrium (osmotic pressure and activity coefficients) and transport coefficients (mutual diffusion, electric conductivity, self-diffusion, and transport numbers) are in good agreement with the experimental values up to high concentrations (1-2 mol L(-1)). Simple analytical expressions are obtained, and for practical use, the formula are given explicitly. We discuss the validity of such an approach which is nothing but a coarse-graining procedure.

  13. Electrolyte-free milk protein solution influences sodium and fluid retention in rats.

    Science.gov (United States)

    Ishihara, Kengo; Kato, Yoshiho; Usami, Ayako; Yamada, Mari; Yamamura, Asuka; Fushiki, Tohru; Seyama, Yousuke

    2013-01-01

    Milk is an effective post-exercise rehydration drink that maintains the net positive fluid balance. However, it is unclear which components are responsible for this effect. We assessed the effect of milk protein solution (MPS) obtained by dialysis on body fluid retention. Milk, MPS, milk electrolyte solution (MES), sports drink and water were administered to male Wistar rats at a dose of 6 ml/rat after treadmill exercise. Total body fluid retention was assessed by urine volume 4 h after administration of hydrating liquids. The rate of gastric emptying was evaluated by a tracer method using (13)C-labelled acetate. Plasma osmolality, Na and K levels, and urinary Na and K were measured by HPLC and osmometry, respectively. The gastric emptying rate was not delayed by MPS. During 4 h of rehydration, cumulative urine volumes differed significantly between treatment groups (P milk- and MPS-fed rats, respectively. Thus, MPS elicited 50 % of the total body fluid retention of milk. Plasma aldosterone levels were significantly higher in MPS- and milk-fed rats compared with water-fed rats. Plasma osmolality was maintained at higher levels in MPS-fed rats than in water- and MES-fed rats (P milk- and MPS-fed groups compared with the MES-fed group. Our results demonstrate that MPS obtained by dialysis clearly affects net body water balance without affecting gastric emptying after exercise. This effect was attributed to retention of Na and water, and maintenance of plasma osmolality.

  14. Mixtures of room temperature ionic liquid/ethanol solutions as electrolytic media for cerium oxide thin layer electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Lair, V., E-mail: virginie-lair@chimie-paristech.f [Laboratoire d' Electrochimie, Chimie des Interfaces et Modelisation pour l' Energie, LECIME, CNRS UMR 7575-Chimie Paristech (ENSCP)-Paris, 11, rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Sirieix-Plenet, J.; Gaillon, L.; Rizzi, C. [UPMC University Paris 06, UMR 7195, Laboratoire de Physicochimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), F-75005 Paris (France); CNRS, UMR 7195, PECSA, F-75005 Paris (France); ESPCI, UMR 7195, PECSA, F-75005 Paris (France); Ringuede, A. [Laboratoire d' Electrochimie, Chimie des Interfaces et Modelisation pour l' Energie, LECIME, CNRS UMR 7575-Chimie Paristech (ENSCP)-Paris, 11, rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2010-12-30

    A cerium oxide thin layer was electrodeposited onto stainless steel, using mixed room temperature ionic liquid (the 1-methyl-3-butylimidazolium bis(trifluoromethyl sulfonyl)imide)/ethanol solutions, as electrolytic medium. The hydrophobic ionic liquid content is one of the main parameters in the morphology control influencing the ceria growth rate and crystallinity. Micro-nano structural properties and electrical behaviour are presented, using XRD, SEM/EDS and impedance spectroscopy, as a function of electrodeposition conditions.

  15. Pulsation Solution to the Equation of Earth's Gravitational Field (Main Outcome)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using d'Alembert equation as the approximation of Einstein's equation, a solution is given in this paper to the time-dependent gravitational equation of the Earth in consideration of the Earth's features, which describes the characteristics of pulsation of the Earth and the structures of spherical layers of its interior, thus providing a theoretical basis for establishing the idea of mantle pulsation.

  16. Low Temperature Preparation of Ceria Solid Solutions Doubly Doped with Rare-Earth and Alkali-Earth and Their Properties as Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    任引哲; 蒋凯; 王海霞; 孟健; 苏锵

    2003-01-01

    A series of solid electrolytes, (Ce0.8Ln0.2)1-xMxO2-δ (Ln= La, Nd, Sm, Gd, M:Alkali-earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 ℃. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte is improved. The effects of rare-earth and alkali-earth ions on the electricity were discussed. The open-circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce0.8Sm0.2)1-0.05Ca0.05O2-δ as electrolyte are 0.86 V and 33 mW*cm-2, respectively.

  17. Study of Interfacial Tension between an Organic Solvent and Aqueous Electrolyte Solutions Using Electrostatic Dissipative Particle Dynamics Simulations

    CERN Document Server

    Mayoral, E; 10.1063/1.4766456

    2012-01-01

    The study of the modification of interfacial properties between an organic solvent and aqueous electrolyte solutions is presented by using electrostatic Dissipative Particle Dynamics (DPD) simulations. In this article the parametrization for the DPD repulsive parameters aij for the electrolyte components is calculated considering the dependence of the Flory-Huggins \\c{hi} parameter on the concentration and the kind of electrolyte added, by means of the activity coefficients. In turn, experimental data was used to obtain the activity coefficients of the electrolytes as a function of their concentration in order to estimate the \\c{hi} parameters and then the aij coefficients. We validate this parametrization through the study of the interfacial tension in a mixture of n-dodecane and water, varying the concentration of different inorganic salts (NaCl, KBr, Na2SO4 and UO2Cl2). The case of HCl in the mixture n-dodecane/water was also analyzed and the results presented. Our simulations reproduce the experimental da...

  18. Investigation of electrolyte wetting in lithium ion batteries: Effects of electrode pore structures and solution

    Science.gov (United States)

    Sheng, Yangping

    Beside natural source energy carriers such as petroleum, coal and natural gas, the lithium ion battery is a promising man-made energy carrier for the future. This is a similar process evolved from horse-powered era to engine driven age. There are still a lot of challenges ahead like low energy density, low rate performance, aging problems, high cost and safety etc. In lithium ion batteries, investigation about manufacturing process is as important as the development of material. The manufacturing of lithium ion battery, including production process (slurry making, coating, drying etc.), and post-production (slitting, calendering etc.) is also complicated and critical to the overall performance of the battery. It includes matching the capacity of anode and cathode materials, trial-and-error investigation of thickness, porosity, active material and additive loading, detailed microscopic models to understand, optimize, and design these systems by changing one or a few parameters at a time. In the manufacturing, one of the most important principles is to ensure good wetting properties between porous solid electrodes and liquid electrolyte. Besides the material surface properties, it is the process of electrolyte transporting to fill the pores in the electrode after injection is less noticed in academic, where only 2-3 drops of electrolyte are needed for lab coin cell level. In industry, the importance of electrolyte transport is well known and it is considered as part of electrolyte wetting (or initial wetting in some situations). In consideration of practical usage term, electrolyte wetting is adopted to use in this dissertation for electrolyte transporting process, although the surface chemistry about wetting is not covered. An in-depth investigation about electrolyte wetting is still missing, although it has significant effects in manufacturing. The electrolyte wetting is determined by properties of electrolyte and electrode microstructure. Currently, only viscosity

  19. Application of the quasi-random lattice model to rare-earth halide solutions for the computation of their osmotic and mean activity coefficients

    Institute of Scientific and Technical Information of China (English)

    Elsa Moggia

    2014-01-01

    This work dealt with the computation of the mean activity coefficients of rare-earth halide aqueous solutions at 25°C, by means of the Quasi Random Lattice (QRL) model. The osmotic coefficients were then calculated consistently, through the integration of the Gibbs-Duhem equation. Using of QRL was mainly motivated by its dependence on one parameter, given in the form of an elec-trolyte-dependent concentration, which was also the highest concentration at which the model could be applied. For all the electrolyte solutions here considered, this parameter was experimentally known and ranged from 1.5 to 2.2 mol/kg, at 25 °C. Accordingly, rare-earth halide concentrations from strong dilution up to 2 mol/kg about could be considered without need for best-fit treatment in order to compute their osmotic and mean activity coefficients. The experimental knowledge about the parameter was an advantageous fea-ture of QRL compared to existing literature models. Following a trend already observed with low charge electrolytes, a satisfactory agreement was obtained with the experimental values for all the investigated rare-earth chlorides and bromides. For the sake of com-pactness, in this work the considered rare-earth halides were all belonging to the P63/m space group in their crystalline (anhydrous) form.

  20. Experimental method to measure the effect of charge on bimolecular collision rates in electrolyte solutions.

    Science.gov (United States)

    Bales, Barney L; Cadman, Kathleen M; Peric, Mirna; Schwartz, Robert N; Peric, Miroslav

    2011-10-13

    A stable, monoprotic nitroxide spin probe is utilized as a model to study molecular collisions in aqueous electrolyte solutions. The rate constants of bimolecular collisions, K(col) for 2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-carboxylic acid (CP) when it is uncharged (at low pH) and K(col)⁻ when it is charged (CP⁻; at high pH), are measured as functions of temperature and ionic strength. The ratio f* ≡ K(col)⁻/K(col) is a direct measure of the effect of charge on the collision rate. Neglecting the small differences in size and diffusion coefficients of CP and CP⁻, f* is the fractional change in collision rate due to Coulomb repulsion which was treated theoretically in Debye's classic paper [Trans. Electr. Chem. Soc. 1942, 82, 265]. K(col) and K(col)⁻ are determined from EPR spectral changes due to spin-spin interactions which are dominated by Heisenberg spin exchange under the conditions of these experiments. Values of f* vary linearly with values of κ · d in the range 0.4 < κ · d < 1.8, where κ and d are the inverse Debye screening length and the distance at closest approach, respectively. Values of d obtained in two independent ways, (1) from rotational correlation times measured by EPR and (2) by insisting that the experimental results be consistent with the Debye theory at infinite dilution, yield similar results. As the ionic strength is increased (κ increased), the screening effect reduces the effect of the Coulomb barrier more slowly than predicted by the Debye theory. While values of K(col) and K(col)⁻ vary substantially with T, approximately following the Stokes-Einstein-Smoluchowski equation, values of f* depend only slightly on temperature at a given value of κ · d, as is predicted by Debye's theory.

  1. Application of oxide coatings to metals in electrolyte solutions by microplasma methods

    Directory of Open Access Journals (Sweden)

    Vladimirovich Timoshenko, Aleksander

    2000-10-01

    Full Text Available Microplasma oxidation of aluminium alloys in alkaline colloidal and finely dispersed solutions is analysed. Oxidation causes both electrolyte and alloy components to be incorporated into resultant coatings, which affect the deposition parameters and coating properties. Oxidation process has been studied at spark, micro-are, and are stages under an alternating current polarisation and under purely anodic polarisation. It is shown that the cathodic component of the alternating current not only facilitates subsequent anodic process, but also contributes to the formation of an oxide layer.

    Se ha examinado la aplicación de procesos de oxidación por microplasma de las aleaciones de aluminio en electrólitos alcalinos, tanto en estado coloidal como microdisperso. Se descubrió que durante el proceso de la oxidación, en la estructura del recubrimiento óxido, van incluyéndose tanto los componentes del electrólito como los de la aleación, lo que modifica las propiedades y parámetros de deposición de las aleaciones obtenidas. El proceso de la oxidación se examinó a lo largo de las siguientes etapas: chispas, micro-arco y arco, tanto bajo la polarización de la corriente alterna como en condiciones de polarización anódica. Se ha demostrado que la componente catódica de la corriente alterna polarizante no sólo facilita los siguientes procesos anódicos, sino que además contribuye a los procesos de formación de la capa óxida.

  2. On-ice sweat rate, voluntary fluid intake, and sodium balance during practice in male junior ice hockey players drinking water or a carbohydrate-electrolyte solution

    National Research Council Canada - National Science Library

    Logan, Heather M; Spriet, Lawrence L; Palmer, Matthew S

    2010-01-01

    This study evaluated the repeatability of hydration and sweat measurements taken during on-ice hockey practices with players drinking only water, and determined whether having only a carbohydrate-electrolyte solution (CES...

  3. Electrolytic reduction of U(VI) to U(IV) in acidic chloride and acidic sulfate solutions

    Science.gov (United States)

    Majima, Hiroshi; Awakura, Yasuhiro; Hirono, Shuichiro

    1986-01-01

    In order to examine the applicability of the electrolytic reduction process of U(VI) (originally developed for the chloride system by PNC) to the sulfate solution system, a fundamental study was made. In this study, the concentrations of various chemical species in the catholytes were calculated at 298 K at various percentages of uranium reduction, taking the chloro-complex and sulfato-complex formation reactions of uranium into consideration. The polarization characteristics of the electrolytic reduction of uranyl chloride and uranyl sulfate were determined, using titanium and platinum cathodes, respectively, at 303 ± 1 K. In conjunction with this process, the electrical conductivity of the catholyte, the electrical resistivity of the cation exchange membrane, and the diffusion coefficient of uranyl sulfate were also determined.

  4. Electrolytic reduction of Nantong coal and model compounds with oxygenic functional groups in an aqueous NaCl solution

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; YAO Li-ping; LIN Juan; ZONG Zhi-min

    2008-01-01

    Electrolytic reductions of oxygenic functional groups (OFGs) on coal surface and coal model compounds with OFGs in an aqueous NaCl solution are studied by electrochemical methods combined with GC/MS, GC and FTIR analyses. Different elec-trode reactions, their corresponding potentials and dynamic equations during the processes are investigated. The results show that benzoic acid, benzaldehyde, benzalcohol and hypnone are reduced to benzaldehyde and benzalcohol, methoxybenzene and benzal-cohol, toluene and styrene, respectively, at the cathode. The corresponding electrode potentials and dynamic equations are deter-mined. The electrolytic reduction also leads to an increase in the contents of hydroxyl groups and aliphatic moieties and a corre-sponding decrease in those of carboxyl and carbonyl groups in Nantong coal, a high-sulfur coal, an enhancement in the flotation desulfurization of the coal. ER also reduces organic sulfur and FeS2 in the coal.

  5. Comparison of two maintenance electrolyte solutions in children in the postoperative appendectomy period: a randomized, controlled trial

    Directory of Open Access Journals (Sweden)

    Maria Clara da Silva Valadão

    2015-10-01

    Full Text Available ABSTRACT OBJECTIVE: To compare two electrolyte maintenance solutions in the postoperative period in children undergoing appendectomy, in relation to the occurrence of hyponatremia and water retention. METHODS: A randomized clinical study involving 50 pediatric patients undergoing appendectomy, who were randomized to receive 2,000 mL/m2/day of isotonic (Na 150 mEq/L or 0.9% NaCl or hypotonic (Na 30 mEq/L NaCl or 0.18% solution. Electrolytes, glucose, urea, and creatinine were measured at baseline, 24 h, and 48 h after surgery. Volume infused, diuresis, weight, and water balance were analyzed. RESULTS: Twenty-four patients had initial hyponatremia; in this group, 13 received hypotonic solution. Seventeen patients remained hyponatremic 48 h after surgery, of whom ten had received hypotonic solution. In both groups, sodium levels increased at 24 h (137.4 ± 2.2 and 137.0 ± 2.7 mmol/L, with no significant difference between them (p = 0.593. Sodium levels 48 h after surgery were 136.6 ± 2.7 and 136.2 ± 2.3 mmol/L in isotonic and hypotonic groups, respectively, with no significant difference. The infused volume and urine output did not differ between groups during the study. The water balance was higher in the period before surgery in patients who received hypotonic solution (p = 0.021. CONCLUSIONS: In the post-appendectomy period, the use of hypotonic solution (30 mEq/L, 0.18% did not increase the risk of hyponatremia when compared to isotonic saline. The use of isotonic solution (150 mEq/L, 0.9% did not favor hypernatremia in these patients. Children who received hypotonic solution showed higher cumulative fluid balance in the preoperative period.

  6. Intravenous Solutions in the Care of Patients With Volume Depletion and Electrolyte Abnormalities

    NARCIS (Netherlands)

    Severs, David; Rookmaaker, Maarten B.; Hoorn, Ewout J.

    2015-01-01

    Infusion fluids are often given to restore blood pressure (volume resuscitation), but may also be administered to replace ongoing losses, match insensible losses, correct electrolyte or acid-base disorders, or provide glucose. The development of new infusion fluids has provided clinicians with a wid

  7. Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD).

    Science.gov (United States)

    Oh, Eun-Ok; Whang, Chin-Myung; Lee, Yu-Ri; Park, Sun-Young; Prasad, Dasari Hari; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Lee, Hae-Weon

    2012-07-03

    An extremely thin bilayer electrolyte consisting of yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is successfully fabricated on a sintered NiO-YSZ substrate. Major processing flaws are effectively eliminated by applying local constraints to YSZ nanoparticles, and excellent open circuit voltage and cell performance are demonstrated in a solid oxide fuel cell (SOFC) at intermediate operating temperatures.

  8. Theoretical analysis of aqueous solutions of mixed strong electrolytes by a smaller-ion shell electrostatic model.

    Science.gov (United States)

    Fraenkel, Dan

    2014-02-07

    In spite of the great importance of mixed electrolytes in science and technology, no compelling theoretical explanation has been offered yet for the thermodynamic behavior of such systems, such as their deviation from ideality and the variation of their excess functions with ionic composition and concentration. Using the newly introduced Smaller-ion Shell treatment - an extension of the Debye-Hückel theory to ions of dissimilar size (hence DH-SiS) - simple analytic mathematical expressions can be derived for the mean and single-ion activity coefficients of binary electrolyte components of ternary ionic systems. Such expressions are based on modifying the parallel DH-SiS equations for pure binary ionic systems, by adding to the three ion-size parameters - a (of counterions), b+ (of positive coions), and b- (of negative coions) - a fourth parameter. For the (+ + -) system, this is "b++," the contact distance between non-coion cations. b++ is derived from fits with experiment and, like the other b's, is constant at varying ion concentration and combination. Four case studies are presented: (1) HCl-NaCl-H2O, (2) HCl-NH4Cl-H2O, (3) (0.01 M HX)-MX-H2O with X = Cl, Br, and with M = Li, Na, K, Cs, and (4) HCl-MCln-H2O with n = 2, M = Sr, Ba; and n = 3, M = Al, Ce. In all cases, theory is fully consistent with experiment when using a of the measured binary electrolyte as the sole fitting parameter. DH-SiS is thus shown to explain known "mysteries" in the behavior of ternary electrolytes, including Harned rule, and to adequately predict the pH of acid solutions in which ionized salts are present at different concentrations.

  9. Cathodic reduction of sulfur dioxide in nonaqueous electrolytes. The effect of solution composition on the diffusion coefficient of sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Shembel, E.M.; Ksenzhek, O.S.; Lituinova, V.I.; Lobach, G.A.

    1986-09-01

    The authors measured the diffusion coefficients of SO/sub 2/ in electrolytes based on propylene carbonate, acetonitrile, dimethylformamide and dimethylsulfoxide in order to estimate possible diffusion limitations with respect to SO/sub 2/ and to establish the influence exerted by the solvent type on the process. The diffusion coefficients were calculated from the limiting diffusion currents of steady-state polarization curves for sulfur dioxide reduction recorded at a gold microdisk electrode which had a diameter of 2 x 10/sup -3/ cm. In lithium salt solutions the potentiodynamic curves recorded at the microelectrode do not exhibit a limiting current but are characterized by a current maximum.

  10. The Stability Limits of the Surface Phases at the Polarized Interface of a Liquid Electrode with an Electrolyte Solution

    Directory of Open Access Journals (Sweden)

    Rudolf N. Kuklin

    2004-01-01

    Full Text Available Abstract: The thermodynamic stability limits of specific adsorption at the polarized liquid metal/ electrolyte solution interface are studied. Here the reversible starting and disappearance of the electroadsorption effects at a threshold potential are revealed, which are the result of Gibbs stability violation. The stability limits are determined by the bifurcation manifold of the critical states for which determinant of matrix of a second differential of the surface pressure equals zero. The equations of the critical states are equivalent to the spinodal equations used in the theory of phase transitions. The conception developed beneath will help provide to interpretate the anomalies of electrocapillary effects through the catastrophe theory.

  11. Comparison of the Debye–Hückel and the Mean Spherical Approximation Theories for Electrolyte Solutions

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M.; Thomsen, Kaj

    2012-01-01

    The thermodynamics of electrolyte solutions has been investigated by many scientists throughout the last century. While several theories have been presented, the most popular models for the electrostatic interactions are based on the Debye–Hückel and mean spherical approximation (MSA) theories....... In this paper we investigate the differences between the Debye–Hückel and the MSA theories, and comparisons of the numerical results for the Helmholtz energy and its derivatives with respect to temperature, volume and composition are presented. The investigation shows that the nonrestricted primitive MSA...

  12. Growth of thin, c-axis oriented Sr-doped LaP3O9 electrolyte membranes in condensed phosphoric acid solutions

    Science.gov (United States)

    Hatada, Naoyuki; Takahashi, Kota; Adachi, Yoshinobu; Uda, Tetsuya

    2016-08-01

    Proton-conducting Sr-doped LaP3O9 has potential application as electrolytes in intermediate temperature fuel cells, but reduction of the electrical resistance of the electrolyte membranes is necessary for practical applications. In this study, we focused on reducing the resistance by reducing the electrolyte thickness, while maintaining a preferable microstructure for proton conduction (c-axis orientation and absence of the small-crystal layer). Thin, c-axis oriented Sr-doped LaP3O9 membranes were successfully obtained in condensed phosphoric acid solutions by a novel "two-step precipitation method". In this method, Sr-doped LaP3O9 powder was artificially deposited on the surface of the carbon paper supports as seeds, and then columnar crystals were grown "downward" in the solutions. We expect that this method will be utilized to produce LaP3O9 electrolyte membranes with lower electrical resistance.

  13. Anodic stripping voltammetry at in situ bismuth-plated carbon and gold microdisc electrodes in variable electrolyte content unstirred solutions.

    Science.gov (United States)

    Baldrianova, L; Svancara, I; Economou, A; Sotiropoulos, S

    2006-10-27

    Carbon and gold microdisc electrodes (30 and 10 microm, respectively) have been tested as substrates for in situ bismuth film plating from unstirred solutions of variable acetate buffer content and were subsequently used in the anodic stripping voltammetry determination of Pb(II) and Cd(II) ions. The effects of Bi(III) concentration, analyte accumulation time, stirring as well as supporting electrolyte content have been studied. Under optimal conditions good voltammetric responses were obtained by means of square wave anodic stripping voltammetry in unstirred analyte solutions of 5 x 10(-8) to 10(-6)M, even in the absence of added buffer. In an indicative application, Pb(II) ion levels were determined in tap water using bismuth-plated carbon microdisc electrodes.

  14. Solution thermodynamics of rare-earth metal ions - physicochemical study-

    Energy Technology Data Exchange (ETDEWEB)

    Amerkhanova, Sh K; Shlyapov, R M; Uali, A S [Buketov Karaganda state university, University str., 28, Karaganda, 100028 (Kazakhstan)], E-mail: amerkhanova_sh@mail.ru

    2009-02-01

    The results of the studying of interactions in multicomponent systems 'polyvinyl alcohol (PVA) - rare-earth element ion - nitrate of sodium - water' are represented. It is established that for rubidium (I) ions temperature and ionic strength is render destroying action, and for yttrium (III) ions the influence of these factors has return character which is connected with features of an electronic structure of metal ion. It is revealed that a dominating role of non-electrostatic formation composed, hence, the formation of donor-acceptor connection of 'metal - ligand' occurs through atom of oxygen.

  15. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions

    CERN Document Server

    Medina, Stefan; Wang, Zhen-Gang; Schmid, Friederike

    2014-01-01

    We propose an efficient simulation algorithm based on the dissipative particle dynamics (DPD) method for studying electrohydrodynamic phenomena in electrolyte fluids. The fluid flow is mimicked with DPD particles while the evolution of the concentration of the ionic species is described using Brownian pseudo particles. The method is designed especially for systems with high salt concentrations, as explicit treatment of the salt ions becomes computationally expensive. For illustration, we apply the method to electro-osmotic flow over patterned, superhydrophobic surfaces. The results are in good agreement with recent theoretical predictions.

  16. Osmotic diuresis-induced hypernatremia: better explained by solute-free water clearance or electrolyte-free water clearance?

    Science.gov (United States)

    Popli, Subhash; Tzamaloukas, Antonios H; Ing, Todd S

    2014-01-01

    Hypernatremia may result from inadequate water intake, excessive water loss or a combination of the two. Osmotic diuresis leads to losses of both solute and water. The relationship between solute and water losses determines the resulting changes in serum osmolality and sodium concentration. Total solute loss is routinely higher than loss of water in osmotic diuresis. Theoretically, then, decreases in serum osmolality (and serum sodium concentration) should follow. In clinical situations of osmotic diuresis, however, reduction in osmolality can take place, but not reduction in serum sodium concentration. It is of note that serum sodium concentration changes are related to urinary losses of sodium and potassium but not to the loss of total solute. In osmotic diuresis, the combined loss of sodium and potassium per liter of urine is lower than the concurrent serum sodium level. Consequently, hypernatremia can ensue. A patient who presented with osmotic diuresis and hypernatremia is described here. In this patient, we have shown that electrolyte-free water clearance is a better index of the effect of osmotic diuresis on serum sodium concentration than the classic solute-free water clearance.

  17. The Role of Concentration Dependent Static Permittivity of Electrolyte Solutions in the Debye-Hückel Theory.

    Science.gov (United States)

    Shilov, Ignat Yu; Lyashchenko, Andrey K

    2015-08-01

    The Debye-Hückel theory has been extended to allow for arbitrary concentration dependence of the electrolyte solution static permittivity. The theory follows the lines advanced by Erich Hückel ( Hückel, E. Phys. Z. 1925, 26, 93) but gives rise to more general and lucid results. New theoretical expressions have been obtained for the excess free energy of solution, activity coefficient of water and mean ionic activity coefficient. The thermodynamic functions contain two terms representing interionic interactions and ion-water (solvation) interactions. The theory has been applied to calculate the activity coefficients of components in the aqueous solutions of alkali metal chlorides from LiCl to CsCl at ambient conditions making use of permittivities taken from experimental dielectric relaxation studies. Calculations without parameter adjustment have demonstrated a semiquantitative agreement with experimental data, reproducing both the nonmonotonic concentration dependence of the activity coefficients and the ordering of activity coefficients for the salts with different cations. A good agreement with experimental data is obtained for the aqueous solutions of LiCl in the concentration range up to 10 mol/kg. The nonmonotonic concentration dependence of activity coefficients is explained as a result of a balance between the effect of interionic interactions and the solvation contribution which appears quite naturally in the framework of the Debye-Hückel approach after incorporation of variable permittivity of solution.

  18. Effect of the cation and the anion of an electrolyte on the solubility of DL-aminobutyric acid in aqueous solutions: measurement and modelling.

    Science.gov (United States)

    Soto, A; Arce, A; K Khoshkbarchi, M; Vera, J H

    1998-07-13

    The solubilities at 298.2 K of dl-aminobutyric acid in aqueous solutions of NaCl, KCl, NaNO(3) and KNO(3) were measured. The solubility of DL-aminobutyric acid was found to be influenced by the concentration and by the nature of both the cation and the anion of the electrolyte. Comparison of the results obtained in this study and those for other amino acids reported in the literature, indicates that the structure of the hydrocarbon backbone of an amino acid plays an important role in the interactions of an amino acid with an electrolyte. A thermodynamic model has been used to correlate the solubilities of DL-aminobutyric acid in aqueous electrolyte solutions. The activity coefficients of the amino acid in the electrolyte solutions, were represented by a model proposed by Khoshkbarchi and Vera [M.K. Khoshkbarchi, J.H. Vera, AIChE J. 42 (1996) 2354; M.K. Khoshkbarchi, J.H. Vera, Ind. Eng. Chem. Res. 35 (1996) 4755]. This model, which considers a combination of both long- and short-range interactions, contains only two adjustable parameters. All other parameters are available in the literature. The model can accurately correlate the solubility of dl-aminobutyric acid in aqueous solutions of electrolytes.

  19. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    Science.gov (United States)

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  20. Coadsorption of Cd(II) and oxalate ions at the TiO2/electrolyte solution interface.

    Science.gov (United States)

    Janusz, W; Matysek, M

    2006-04-01

    The study of the adsorptions of cadmium and oxalate ions at the titania/electrolyte interface and the changes of the electrical double layer (edl) structure in this system are presented. The adsorption of cadmium or oxalate ions was calculated from an uptake of their concentration from the solution. The concentration of Cd(II) or oxalate ions in the solution was determined by radiotracer method. For labeling the solution 14C and 115Cd isotopes were used. Coadsorption of Cd(II) and oxalic ions was determined simultaneously. Besides, the main properties of the edl, i.e., surface charge density and zeta potential were determined by potentiometer titration and electrophoresis measurements, respectively. The adsorption of cadmium ions increases with pH increase and shifts with an increase of the initial concentration of Cd(II) ions towards higher pH values. The adsorption process causes an increase of negatively charged sites on anatase and a decrease of the zeta potential with an increase of initial concentration of these ions. The adsorption of oxalate anions at the titania/electrolyte interface proceeds through the exchange with hydroxyl groups. A decrease of pH produces an increase of adsorption of oxalate ions. The processes of anion adsorption lead to increase the number of the positively charged sites at the titania surface. However, specific adsorption of bidenate ligand as oxalate on one surface hydroxyl group may form inner sphere complexes on the metal oxide surface and may overcharge the compact part of the edl. The presence of oxalate ions in the system affects the adsorption of Cd(II) ions on TiO2, increasing the adsorption at low pH range and decreasing the adsorption at high pH range. Using adsorption as a function of pH data, some characteristic parameters of adsorption envelope were calculated.

  1. The impact of solution chemistry of electrolyte on the sorption of pentachlorophenol and phenanthrene by natural hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanfeng; He, Yan, E-mail: yhe2006@zju.edu.cn; Lian, Zhenghua; Xu, Jianming, E-mail: jmxu@zju.edu.cn

    2014-01-01

    Hematite nanoparticles (NPs) were studied as a sorbent for hydrophobic organic contaminants (OCs) under natural ambient conditions through specially designed contrasting solution chemistry of electrolyte. Ionizable pentachlorophenol (PCP) and non-ionizable phenanthrene (PHE) were selected as representative OCs. The sorption capacities of PCP and PHE were pH-dependent, and a larger amount of PCP was sorbed at pH values below its pK{sub a} (4.75). However, the PHE sorption capacity was higher at relatively high or low pHs (e.g. below 4.0 and above 10.0), possibly due to the larger available surface area of the hematite NPs, caused by the higher values of net charges and charge density. Changes in pH might thus affect the sorption of OCs by hematite NPs, through modification of the surface characteristics of the sorbent and the electronic properties of the sorbate molecules. The influence of different ionic strengths indicated that the amounts of PCP and PHE sorbed by hematite NPs decreased as a concentration function of different types of ions (e.g. Na{sup +}, K{sup +}, Mg{sup 2 +} and Ca{sup 2 +}), with the underlying mechanism possibly being due to four interactions i.e. hydrogen-bonding, competitive sorption by ions in the ambient solution, screening effects and aggregation effects. The results confirmed that the surface chemistry of hematite NPs, the chemical properties of PCP and PHE, and solution chemistry (e.g. pH and ionic strength) of the electrolyte all played an important role in PCP and PHE sorption by hematite NPs. By comparison of both sorption capacity and ecologic advantages, our results suggested that natural hematite NPs would be more competitive and efficient for PCP and PHE sorption than engineered NPs. This finding increases our knowledge regarding the environmental function of natural NPs (such as hematite NPs) for OC remediation through manipulating their interfacial behavior. - Highlights: •Hematite NPs was tested for PCP/PHE sorption under

  2. Buckling Analysis of Cantilever Nanoactuators Immersed in an Electrolyte: A Close Form Solution Using Duan-Rach Modified Adomian Decomposition Method

    Directory of Open Access Journals (Sweden)

    Mohammad Ghalambaz

    2015-07-01

    Full Text Available A new modified Adomian Decomposition Method (ADM is utilized to obtain an analytical solution for buckling of the nanocantilever actuators immersed in liquid electrolytes. The nanoactuators in electrolytes are subject to different nonlinear forces including ionic concentration, van der Waals, external voltage and electrochemical forces. The Duan–Rach modified Adomian decomposition method is utilized to obtain a full explicate solution for the buckling of nanoactuators free of any undetermined coefficients. The results are compared with the results of Wazwas ADM as well as the results of a finite element method available in the literature and found in excellent agreement.

  3. Electrolytic arsenic removal for recycling of washing solutions in a remediation process of CCA-treated wood.

    Science.gov (United States)

    Nanseu-Njiki, Charles-Péguy; Alonzo, Véronique; Bartak, Duane; Ngameni, Emmanuel; Darchen, André

    2007-10-01

    The remediation of chromated copper arsenate or CCA-treated wood is a challenging problem in many countries. In a wet remediation, the recycling of the washing solutions is the key step for a successful process. Within this goal, owing to its solubility and its toxicity, the removal of arsenic from washing solution is the most difficult process. The efficiency of arsenic removal from As(III) solutions by electrolysis was investigated in view of the recycling of acidic washing solutions usable in the remediation of CCA-treated wood. Electrochemical reduction of As(III) is irreversible and thus difficult to perform at carbon electrodes. However the electrolytic extraction of arsenic can be performed by the concomitant reduction of the cupric cation and arsenite anion. The cathodic deposits obtained by controlled potential electrolysis were analyzed by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis. XRD diffraction data indicated that these deposits were mixtures of copper and copper arsenides Cu(3)As and Cu(5)As(2). Electrolysis was carried out in an undivided cell with graphite cathode and copper anode, under a controlled nitrogen atmosphere. The evolution of arsine gas AsH(3) was not observed under these conditions.

  4. Electrolytic treatment of methyl orange in aqueous solution using three-dimensional electrode reactor coupling ultrasonics.

    Science.gov (United States)

    He, Pingting; Wang, Ling; Xue, Jianjun; Cao, Zhibin

    2010-04-01

    The treatment of wastewater containing methyl orange was investigated experimentally using a three-dimensional electrode reactor coupling ultrasonics and the effect of ultrasonics on the degradation was studied. The effects of cell voltage, original concentration of methyl orange, pH value and the concentration of electrolyte on the removal efficiency were considered. The experimental results indicated that the removal rate of methyl orange exceeded 99% and the removal of chemical oxygen demand (COD(Cr)) approached 84% under the optimum conditions. Using ultraviolet-visible spectrum analysis, a general degradation pathway for methyl orange was proposed based on the analysis of intermediate compounds. According to the ultraviolet-visible spectral changes during degradation of methyl orange, it can be presumed that the removal of COD(Cr) lags behind the removal of methyl orange because the structure of the benzene ring was more difficult to destroy compared with the azo double bonds.

  5. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries

    Science.gov (United States)

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-04-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries.

  6. Acid-base and electrolyte status during normovolemic hemodilution with succinylated gelatin or HES-containing volume replacement solutions in rats.

    Directory of Open Access Journals (Sweden)

    Johanna K Teloh

    Full Text Available BACKGROUND: In the past, several studies have compared different colloidal replacement solutions, whereby the focus was usually on the respective colloid. We therefore systematically studied the influence of the carrier solution's composition of five approved colloidal volume replacement solutions (Gelafundin, Gelafusal, Geloplasma, Voluven and Volulyte on acid-base as well as electrolyte status during and following acute severe normovolemic hemodilution. The solutions differed in the colloid used (succinylated gelatin vs. HES and in the presence and concentration of metabolizable anions as well as in their electrolyte composition. METHODS: Anesthetized Wistar rats were subjected to a stepwise normovolemic hemodilution with one of the solutions until a final hematocrit of 10%. Subsequent to dilution (162 min, animals were observed for an additional period (150 min. During dilution and observation time blood gas analyses were performed eight times in total. Additionally, in the Voluven and Volulyte groups as well as in 6 Gelafundin animals, electrolyte concentrations, glucose, pH and succinylated gelatin were measured in urine and histopathological evaluation of the kidney was performed. RESULTS: All animals survived without any indications of injury. Although the employed solutions differed in their respective composition, comparable results in all plasma acid-base and electrolyte parameters studied were obtained. Plasma pH increased from approximately 7.28 to 7.39, the plasma K(+ concentration decreased from circa 5.20 mM to 4.80-3.90 mM and the plasma Cl(- concentration rose from approximately 105 mM to 111-120 mM. Urinary analysis revealed increased excretion of K(+, H(+ and Cl(-. CONCLUSIONS: The present data suggest that the carrier solution's composition with regard to metabolizable anions as well as K(+, Ca(2+ only has a minor impact on acid-base and electrolyte status after application of succinylated gelatin or HES-containing colloidal

  7. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  8. A Concise Equation of State for Aqueous Solutions of Electrolytes Incorporating Thermodynamic Laws and Entropy

    Directory of Open Access Journals (Sweden)

    Raji Heyrovská

    2004-03-01

    Full Text Available Abstract: Recently, the author suggested a simple and composite equation of state by incorporating fundamental thermodynamic properties like heat capacities into her earlier concise equation of state for gases based on free volume and molecular association / dissociation. This work brings new results for aqueous solutions, based on the analogy of the equation of state for gases and solutions over wide ranges of pressures (for gases and concentrations (for solutions. The definitions of entropy and heat energy through the equation of state for gases, also holds for solutions.

  9. Enhanced Colouration Efficiency of Pulsed DC Magnetron Sputtered WO3 Films Cycled in H2SO4 Electrolyte Solution

    Directory of Open Access Journals (Sweden)

    K. Punitha

    2014-01-01

    Full Text Available In the present investigation, we report on DC power and pulsing frequency induced changes in electrochromic properties of pulsed DC magnetron sputtered WO3 films by intercalating/deintercalating H+ ions from 0.1 M H2SO4 electrolyte solution. The observed efficient colouration ↔ bleaching mechanism of WO3 films confirms the effective electrochromic nature of the films associated with the electrochemical intercalation/deintercalation of H+ ions and electrons into WO3 lattice. The higher optical modulation was observed in the visible region of the optical transmittance spectra of colored and bleached WO3 films. The maximum coloration efficiency of 79 cm2/C was observed the first time for the film deposited at a DC power of 150 W and a pulsing frequency of 25 kHz.

  10. Anomalous pH dependent stability behavior of surfactant-free nonpolar oil drops in aqueous electrolyte solutions.

    Science.gov (United States)

    Clasohm, Lucy Y; Vakarelski, Ivan U; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2007-08-28

    Recent advances in atomic force microscopy (AFM) force measurement techniques have allowed the direct measurement and theoretical interpretation of the interaction between a liquid droplet and a solid surface or between two liquid droplets. In this study, we investigated the interaction across an aqueous thin film between fluorocarbon (perfluoropentane) droplets, hydrocarbon (tetradecane) droplets, and a droplet and a flat mica surface in the absence of stabilizers. It was found that even at a relatively elevated electrolyte concentration of 0.1 M NaNO3, depending on the solution pH, interactions between two identical droplets or a droplet and a mica surface could be repulsive. A simple theoretical analysis of the magnitude and range of these interactive forces suggests that the DLVO theory cannot explain the observed behavior. The measured force behavior is discussed in the context of ion adsorption, and the arising charging effects, at the bare oil-water interface.

  11. Theoretical study of phase behaviour of DLVO model for lysozyme and γ-crystalline aqueous electrolyte solutions

    Directory of Open Access Journals (Sweden)

    R. Melnyk

    2015-03-01

    Full Text Available Mean spherical approximation (MSA, second-order Barker-Henderson (BH perturbation theory and thermodynamic perturbation theory (TPT for associating fluids in combination with BH perturbation theory are applied to the study of the structural properties and phase behaviour of the Derjaguin-Landau-Verwey-Overbeek (DLVO model of lysozyme and γ-cristalline aqueous electrolyte solutions. Predictions of the MSA for the structure factors are in good agreement with the corresponding computer simulation predictions. The agreement between theoretical results for the liquid-gas phase diagram and the corresponding results of the experiment and computer simulation is less satisfactory, with predictions of the combined BH-TPT approach being the most accurate.

  12. Earth Based Views of Solute Profiles on Mars (Invited)

    Science.gov (United States)

    Amundson, R.

    2013-12-01

    'Historical accounts of planetary evolution are mostly written in stone' (1), but the last chapter of that history is embedded in its soil. Soil properties reflect the effects of prevailing environmental boundary conditions. Solute profiles are powerful indicators of the direction and magnitude of water flow. I briefly review the chemistry of salt profiles from deserts formed by upward vs. downward migrating water, use this as a basis for interpreting aspects of Mars hydrological history. The Noachian-aged Meridiani Planum land surface is exposed in the Endurance and Victoria Craters. These craters have been estimated to be ~ Letters 240:11-72. (2) Golombek, M.P. (2012) Timescale of small crater modification on Meridiani Planum, Mars. 43rd Lunar and Planetary Science Conference. (3) Arvidson et al. (2011). J. of Geophysical Research 116, E00F15, doi:10.1029/2010JE003746, 2011 (4) Amundson et al. (2008) Geochim. Cosmochim. Acta 72:3845-3864.

  13. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic interaction.

    Science.gov (United States)

    Yamaguchi, T; Matsuoka, T; Koda, S

    2009-03-07

    The theory on the frequency-dependent electric conductivity of electrolyte solutions proposed previously by Yamaguchi et al. [J. Chem. Phys. 127, 234501 (2007)] is extended to include the hydrodynamic interaction between ions. The theory is applied to the aqueous solution of NaCl and the concentration dependence of the conductivity agrees well with that determined by experiments. The effects of the hydrodynamic and relaxation effects are highly nonadditive in the concentrated solution, because the hydrodynamic interaction between ions affects the time-dependent response of the ionic atmosphere. The decrease in the electric conductivity is divided into the contributions of ion pair distribution at various distances. The long-range ionic atmosphere plays a major role at the concentration as low as 0.01 mol/kg, whereas the contribution of the contact ion pair region is important at 1 mol/kg. The magnitude of the contribution of the contact ion pair region is scarcely dependent on the presence of the hydrodynamic interaction. The transport number of cation is calculated to be a decreasing function of concentration as is observed in experiments.

  14. Modelling of the thermodynamic and solvation properties of electrolyte solutions with the statistical associating fluid theory for potentials of variable range

    Science.gov (United States)

    Schreckenberg, Jens M. A.; Dufal, Simon; Haslam, Andrew J.; Adjiman, Claire S.; Jackson, George; Galindo, Amparo

    2014-09-01

    An improved formulation of the extension of the statistical associating fluid theory for potentials of variable range to electrolytes (SAFT-VRE) is presented, incorporating a representation for the dielectric constant of the solution that takes into account the temperature, density and composition of the solvent. The proposed approach provides an excellent correlation of the dielectric-constant data available for a number of solvents including water, representative alcohols and carbon dioxide, and it is shown that the methodology can be used to treat mixed-solvent electrolyte solutions. Models for strong electrolytes of the metal-halide family are considered here. The salts are treated as fully dissociated and ion-specific interaction parameters are presented. Vapour pressure, density, and mean ionic activity coefficient data are used to determine the ion-ion and solvent-ion parameters, and mixed-salt electrolyte solutions (brines) are then treated predictively. We find that the resulting intermolecular potential models follow physical trends in terms of energies and ion sizes with a close relationship observed with well-established ionic diameters. A good description is obtained for the densities, mean ionic activity coefficients, and vapour pressures of the electrolyte solutions studied. The theory is also seen to provide excellent predictions of the osmotic coefficient and of the depression of the freezing temperature, and provides a qualitative estimate of the solvation free energy. The vapour pressure of aqueous brines is predicted accurately, as is the density of these solutions, although not at the highest pressures considered. Calculations for the vapour-liquid and liquid-liquid equilibria of salts in water+methanol and water+n-butan-1-ol are presented. In addition, it is shown that the salting-out of carbon dioxide in sodium chloride solutions is captured well using a predictive model.

  15. Coordination number of Li+ in nonaqueous electrolyte solutions determined by molecular rotational measurements.

    Science.gov (United States)

    Yuan, Kaijun; Bian, Hongtao; Shen, Yuneng; Jiang, Bo; Li, Jiebo; Zhang, Yufan; Chen, Hailong; Zheng, Junrong

    2014-04-03

    The coordination number of Li(+) in acetonitrile solutions was determined by directly measuring the rotational times of solvent molecules bound and unbound to it. The CN stretch of the Li(+) bound and unbound acetonitrile molecules in the same solution has distinct vibrational frequencies (2276 cm(-1) vs 2254 cm(-1)). The frequency difference allows the rotation of each type of acetonitrile molecule to be determined by monitoring the anisotropy decay of each CN stretch vibrational excitation signal. Regardless of the nature of anions and concentrations, the Li(+) coordination number was found to be 4-6 in the LiBF4 (0.2-2 M) and LiPF6 (1-2 M) acetonitrile solutions. However, the dissociation constants of the salt are dependent on the nature of anions. In 1 M LiBF4 solution, 53% of the salt was found to dissociate into Li(+), which is bound by 4-6 solvent molecules. In 1 M LiPF6 solution, 72% of the salt dissociates. 2D IR experiments show that the binding between Li(+) and acetonitrile is very strong. The lifetime of the complex is much longer than 19 ps.

  16. Precipitation of barium flouride microcrystals from electrolytic solutions: The influence of the composition of the precipitating solutions

    Science.gov (United States)

    Kolar, Z.; Binsma, J. J. M.; Subotić, B.

    1984-02-01

    The composition, shape and size of the particles obtained by precipitation in aqueous solutions of various barium salts (chloride, nitrate and acetate) with various fluorides (ammonium, sodium and hydrogen) have been studied by X-ray powder diffraction analysis and scanning electron microscopy. From Ba(NO 3) 2 in combination with NH 4F or NaF and from Ba(C 2H 3O 2) 2 in combination with NH 4F, NaF or HF, precipitates of pure cubic-BaF 2 (β-BaF 2) are obtained. The shape and size of β-BaF 2 particles depend on the combination of the compounds used for the precipitation and their concentrations. It appears that only when (equal volumes of) solutions of Ba(NO 3) 2 (0.125 mol dm -3) or Ba(C 2H 3O 2) 2 (0.125 and 0.150 mol dm -3) and NH 4F (0.250 or 0.300 mol dm -3) are mixed particles are formed as more or less regular cubes with smooth faces. These crystals are suitable to be used in studies of the transport of ions from crystals to the solution and vice versa with the aid of radioactive tracers ("heterogeneous isotopic exchange" studies).

  17. Titratable Macroions in Multivalent Electrolyte Solutions: Strong Coupling Dressed Ion Approach

    CERN Document Server

    Adzic, Natasa

    2016-01-01

    We present a theoretical description of the effect of polyvalent ions on the interaction between titratable macro-ions. The model system consists of two point-like macro-ions with dissociable sites, immersed in an asymmetric ionic mixture of monovalent and polyvalent salts. We formulate a {\\em dressed ion strong coupling theory}, based on the decomposition of the asymmetric ionic mixture into a weakly electrostatically coupled monovalent salt, and into polyvalent ions that are strongly electrostatically coupled to the titratable macro-ions. The charge of the macroions is not considered as fixed, but is allowed to respond to local bathing solution parameters (electrostatic potential, $pH$ of the solution, salt concentration) through a simple {\\em charge regulation} model. The approach presented, yielding an effective polyvalent-ion mediated interaction between charge-regulated macro-ions at various solution conditions, describes the strong coupling equivalent of the Kirkwood-Schumaker interaction.

  18. On the influence of molecular structure on the conductivity of electrolyte solutions - sodium nitrate in water

    Directory of Open Access Journals (Sweden)

    H. Krienke

    2013-01-01

    Full Text Available Theoretical calculations of the conductivity of sodium nitrate in water are presented and compared with experimental measurements. The method of direct correlation force in the framework of the interionic theory is used for the calculation of transport properties in connection with the associative mean spherical approximation (AMSA. The effective interactions between ions in solutions are derived with the help of Monte Carlo and Molecular Dynamics calculations on the Born-Oppenheimer level. This work is based on earlier theoretical and experimental studies of the structure of concentrated aqueous sodium nitrate solutions.

  19. Hypernatremic diarrheal dehydration treated with oral glucose-electrolyte solution containing 90 or 75 mEq/L of sodium.

    Science.gov (United States)

    Guzmán, C; Pizarro, D; Castillo, B; Posada, G

    1988-01-01

    Of 33 infants with hypernatremic dehydration (serum Na+ of greater than or equal to 150 mEq/L) 7 were excluded, 6 because severe alteration of the level of consciousness or shock precluded oral rehydration and 1 because he was given glucose-electrolyte solution plus water. We studied the remaining 27 infants. Twenty (group A) were treated with the World Health Organization-recommended oral rehydration solution (90 mEq/L Na+) and seven (group B) were treated with Pedialyte-RS (Abbott Laboratories Ltd.; 75 mEq/L Na+). The rehydrating solutions were administered in a volume equivalent to twice the clinically estimated fluid deficit. Initial serum sodium was 156.7 +/- 0.9 mEq/L for group A and 155.8 +/- 1.8 mEq/L for group B (mean +/- SEM). The mean time to achieve rehydration was 14.3 and 16.6 h for groups A and B, respectively. Twenty-four hours after commencing oral rehydration, serum Na+ had decreased to 144.8 +/- 1.8 mEq/L for group A and 144.5 +/- 0.9 mEq/L for group B. In two patients in group A, the serum Na+, which, had not decreased to less than 150 mEq/L at 24 h, did so at 48 h. Only in one case (group A) did the serum Na+ increase. This patient had high stool output and failed to become rehydrated after 24 h of unsuccessful oral rehydration. None of the patients had seizures or persistent CNS dysfunction. We conclude that the slow administration of oral rehydration solutions containing either 90 or 75 mEq/L Na+ is a safe and effective treatment of hypernatremic dehydration.

  20. Effect of alpha-cyclodextrin on drug distribution studied by electrochemistry at interfaces between immiscible electrolyte solutions.

    Science.gov (United States)

    Deryabina, Maria A; Hansen, Steen H; Østergaard, Jesper; Jensen, Henrik

    2009-05-21

    The description and understanding of noncovalent interactions and distribution of potential new drug compounds in an organism is of paramount importance for the successful development of new drugs. In this work, a new procedure based on electrochemistry at the interface between two immiscible electrolyte solutions (ITIES) for addressing and discriminating between drug compound/ligand interactions in aqueous solution and nonspecific ligand effects on oil-water distribution behavior has been developed. The procedure is demonstrated using five drug compounds with different physical chemical parameters and alpha-cyclodextrin as the aqueous phase ligand. Alpha-cyclodextrin was chosen as an aqueous phase ligand, as it is frequently used in drug formulations to enhance solubility and bioavailability of drug compounds. Supplementary capillary electrophoresis experiments provided more detailed information on alpha-cyclodextrin drug complexation and, in combination with the electrochemical studies, provided information on solvation effects affecting the oil-water distribution of the drug compounds. The use of ligand shift ion partition diagrams for data presentation is a convenient format for the visualization of ligand effects on distribution behavior of related drug compounds.

  1. Ion Association versus Ion Interaction Models in Examining Electrolyte Solutions: Application to Calcium Hydroxide Solubility Equilibrium

    Science.gov (United States)

    Menéndez, M. Isabel; Borge, Javier

    2014-01-01

    The heterogeneous equilibrium of the solubility of calcium hydroxide in water is used to predict both its solubility product from solubility and solubility values from solubility product when inert salts, in any concentration, are present. Accepting the necessity of including activity coefficients to treat the saturated solution of calcium…

  2. Red-emitting alkaline-earth rare-earth pentaoxometallates powders prepared by metal carboxylates solution

    Indian Academy of Sciences (India)

    Kyu-Seog Hwang; Sung-Dae Kim; Seung Hwangbo; Jin-Tae Kim

    2013-06-01

    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to the preparation of strontium europium aluminate (Sr2EuAlO5) powders for red-emitting phosphor under near ultraviolet radiation. Strontium naphthenate, aluminium-2-ethylhexanoate and europium-2-ethylhexanoate were dissolved with toluene to prepare starting solution. Precursor pyrolyzed at 500 °C for 240 min was finally annealed at 900–1200 °C for 240 min in Ar. X-ray diffraction analysis, field emission–scanning electron microscope and fluorescent spectrophotometer were used to evaluate structural and optical properties. For the 1000 °C-annealed powders with regular shape and narrow size distribution confirmed by FE–SEM observation, strong red emission at 615nm under the excitation of 395nm maximum was reached, then the higher annealed samples at above 1100 °C gave the lower emission intensities.

  3. Removal of lead from aqueous solutions with a treated spent bleaching earth.

    Science.gov (United States)

    Mana, Mohamed; Ouali, Mohand Said; Lindheimer, Marc; Menorval, Louis Charles de

    2008-11-30

    A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100 degrees C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the sorption of lead on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second-order kinetic model and the Weber & Morris, intraparticle diffusion model. The pH had effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A comparison between the results obtained with this material and those of the literature highlighted a good removal capacity of the treated spent bleaching earth at low cost.

  4. Removal of lead from aqueous solutions with a treated spent bleaching earth

    Energy Technology Data Exchange (ETDEWEB)

    Mana, Mohamed [Laboratoire de Valorisation des Materiaux, University of Mostaganem, B.P. 227, Mostaganem R.P. (Algeria); Ouali, Mohand Said [Laboratoire de Valorisation des Materiaux, University of Mostaganem, B.P. 227, Mostaganem R.P. (Algeria)], E-mail: ouali@univ-mosta.dz; Lindheimer, Marc; Menorval, Louis Charles de [Institut Charles Gerhardt Montpellier, UMR 5253 Universite Montpellier 2 Case Courrier 1700 Place Eugene Bataillon 34095 Montpellier Cedex 5 (France)

    2008-11-30

    A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100 deg. C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the sorption of lead on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second-order kinetic model and the Weber and Morris, intraparticle diffusion model. The pH had effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A comparison between the results obtained with this material and those of the literature highlighted a good removal capacity of the treated spent bleaching earth at low cost.

  5. 由二元亚系的数据预测混合电解质水溶液的活度系数%Prediction of Activity Coefficients for Mixed Aqueous Electrolyte Solutions from the Data of Their Binary Solutions

    Institute of Scientific and Technical Information of China (English)

    刘植昌; 刘艳升; 胡玉峰; 曾鹏; 樊栓狮; 梁德青

    2006-01-01

    The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.

  6. Solubility of NaCl in aqueous electrolyte solutions from 10 to 100°C

    Science.gov (United States)

    Clynne, M.A.; Potter, R.W.; Haas, J.L.

    1981-01-01

    The solubilities of NaCl in aqueous KCl, MgCl2, CaCl2, and mixed CaCl2-KCl solutions have been determined from 10 to 100??C. The data were fit to an equation, and the equation was used to calculate values of the change in solubility of NaCl, ???[NaCl]/???T. These values are required for calculations of the rate of migration of fluids in a thermal gradient in rock salt. The data obtained here indicate that the values of ???[NaCl]/???T are 36-73% greater for solutions containing divalent ions than for the NaCl-H2O system.

  7. Densities and solubilities of Glycylglycine and Glycyl-L-Alanine in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen; Rudolph, E. Susanne J.

    2004-01-01

    is 1.74 and 4.78 mol/kg of water, respectively. The solubility of glycylglycine in salt solutions of NaCl, Na2SO4, and (NH4)(2)SO4 show a moderate salting-in effect. The solubility of glycyl-L-alanine show a minor or no salting-in effect at low salt concentrations and a moderate salting-out effect...

  8. Determination of Coordination Configuration of Rare Earth Ionswith Aminoacids in Solutions with Cooperative Vibronic Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The use of cooperative vibronic spectroscopy to measure coordination numbers of the ligands surrounding rare earth ions in solutions was proposed and demonstrated. It is shown that the time-resolved cooperative vibronic spectroscopy is a very useful technique for the determination of the ligand type and ligand number for different coordination groups. Coordination configuration of arginine with Tb3+ in solutions with different pH values was studied. It demonstrates that the carboxyl of arginine can replace H2O to coordinate with Tb3+ and the coordination number of carboxyl increases with the increase of pH value of the solutions.

  9. 非线性光学研究水及电解质水溶液界面——空气/电解质水溶液界面特定阴阳离子效应%Nonlinear Optical Spectroscopy Studies on Water and Aqueous Solution Interfaces Specific Ion Effect Electrolyte Aqueous Solution Interfaces Electrolyte at Air/Electrolyte Aqueous Solution Interfaces

    Institute of Scientific and Technical Information of China (English)

    邓罡华; 王鸿飞; 郭源

    2012-01-01

    Water and electrolyte aqueous solution interfaces play crucial roles in many processes of physics, chemistry, environment, and biology. People have attempted to understand the structure and dynamics of water and electrolyte aqueous solution interfaces for decades. Recently, both experimental and theoretical studies have proved that larger and more polarizable anions attend to accumulate at the interface and affect the interfaeial water hydrogen bonding structure. In this review, we present recent progress of nonlinear optical spectroscopy studies on water and electrolyte aqueous solution interfaces with nonresonant second harmonic generation (SHG) and sum frequency generation vibrational spectroscopy (SFG-VS). First, we addressed the signal source of the nonresonant second harmonic generation of the air/water interface. Analysis of the experimental results showed that the SHG signal of the air/water interface can be treated fully only with dipolar contribution, which lay the foundation of nonresonant second harmonic generation in studying water and electrolyte aqueous solution interfaces. We then utilized the polarization and molecular symmetry analyses to assign the SFG-VS spectra peaks to different interfacial species at the air/water interface. These results provide detailed informations on the orientation, structure, and dynamics of water molecules at the air/water interface. Subsequently, we studied several kinds of electrolyte aqueous solution interfaces by nonresonant SHG and SFG-VS. These results showed that not only the larger and more polarizable Branion, but also the smaller and less polarizable Cl-, F- anions are enriched at the air/water interface and increased the interfacial thickness. Furthermore, we also observed the specific Na^+, K^+ cation effect on the interfacial thickness and interfacial water hydrogen bonging structure.%水及电解质溶液界面在物理、化学、环境及生物等各种过程中扮演着至关重要的角色。百年

  10. Asymmetric behavior in electrowetting of electrolyte solutions on graphene at the nanoscale: A molecular dynamics simulation

    Science.gov (United States)

    Taherian Tabasi, Fereshte; van der Vegt, Nico

    2015-03-01

    Using molecular dynamics simulations, electrowetting of aqueous solutions on graphene are studied. By doping the surface with the positive or negative charges, the counter-ions are adsorbed at the solid-liquid interface, and the co-ions are repelled from the interface, leading to the decrease of the solid-liquid surface tension and therefore the contact angle (known as electrowetting). Our simulation results show that at zero surface charge density, water molecules at the interface (located between the surface and first ionic layer) are mainly oriented parallel to the surface. However due to the smaller size of the hydrogen than the oxygen, there is a slight tendency of the water dipole moment to orient into the surface. On the charged surfaces, the orientation polarization of the interfacial water molecules are shown to be stronger on the negative surfaces than the positive ones. Such asymmetric orientation polarization of water leads to different screening of the graphene surface charge and therefore different contact angles of the solution on surfaces with opposite charges. Simulations results show more spreading of the liquid on the positively charged surfaces than the negative ones.

  11. Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Kim, S; In, J B; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-13

    Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

  12. Extravasation injury of balanced electrolyte solution simulates the clinical condition of necrotizing fasciitis: A case report

    Directory of Open Access Journals (Sweden)

    Carmine D'Acunto

    2015-10-01

    Full Text Available Extravasation injury (EI is an iatrogenic condition that occurs preferentially in neonatal and pediatric patients when the injection of fluid substances by intravenous access is required and it accidentally leaks into the adjacent tissues or in spaces outside of vascular compartment. Different types and amount of substances once undergoing extravasation can affect the EI differently [1]. In some instances immediate measures such as saline washout, local antidotes, enzymatic debridement and surgical interventions can be required in order to prevent the occurrence of a growing injury avoiding the progression of the EI to a medical emergency [6]. Here we report an unusual case of a preterm 2-month-old male patient in which the extravasation of balanced electrolyte solution on the upper right arm resulted in the development of full-thickness skin necrosis appearing as the clinical condition of necrotizing fasciitis. The management of necrotic tissue was performed using escharectomy as well as autograft skin under conditions of general anesthesia.

  13. Polyethylene Glycol Electrolyte Lavage Solution versus Colonic Hydrotherapy for Bowel Preparation before Colonoscopy: A Single Center, Randomized, and Controlled Study

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2014-01-01

    Full Text Available This single center, randomized, and controlled study aimed to compare the effectiveness and safety of polyethylene glycol electrolyte lavage (PEG-EL solution and colonic hydrotherapy (CHT for bowel preparation before colonoscopy. A total of 196 eligible outpatients scheduled for diagnostic colonoscopy were randomly assigned to the PEG-EL (n=102 or CHT (n=94 groups. Primary outcome measures included colonic cleanliness and adverse effects. Secondary outcome measures were patient satisfaction and preference, colonoscopic findings, ileocecal arrival rate, examiner satisfaction, and cecal intubation time. The results show that PEG-EL group was associated with significantly better colonic cleanliness than CHT group, fewer adverse effects, and increased examiner satisfaction. However, the CHT group had higher patient satisfaction and higher diverticulosis detection rates. Moreover, the results showed the same ileocecal arrival rate and patient preference between the two groups (P>0.05. These findings indicate that PEG-EL is the preferred option in patients who followed the preparation instructions completely.

  14. Nanoscale UO{sub 2} and novel complex U(IV)-sulphate phase formation from electrolytically reduced uranyl sulphate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gil, D.; Malmbeck, R.; Spino, J.; Fanghaenel, T. [European Commission, Joint Research Centre, Inst. for Transuranium Elements, Karlsruhe (Germany); Dinnebier, R. [Max Planck Inst. for Solid State Research, Stuttgart (Germany)

    2010-07-01

    Three different processes have been explored to determine the ranges of U-concentration and acidity (pH-value) for nanocrystalline U{sub 2+x} precipitation from electrolytically reduced uranyl sulphate solutions. Precipitation of U{sub 2+x} nanoparticles aggregates was found to occur only in the narrow range of pH {proportional_to} 4.5 to 5 and for U-concentrations of {proportional_to} 10{sup -6} to 10{sup -7} M. The solid phase crystallized with the typical UO{sub 2}-fcc structure and with a crystallite size {<=} 3 nm. The average aggregate size was mostly {<=} 80 nm. At higher U-concentrations, ranging from [U] {proportional_to} 10{sup -1} M at pH {proportional_to} 1.5 to [U] {proportional_to} 5 x 10{sup -4} M at pH {proportional_to} 4.9, formation of microscale precipitates of a novel complex U(IV)-sulphate phase occurred, which was characterized by SEM/EDX-WDX, ICP-OES and XRD-powder diffraction. The crystal structure was identified with an orthorhombic cell (space group Cmca), with the following lattice parameters: a = 1.974(0)(2) nm, b = 1.3336(2) nm and c = 2.0643(2) nm. Further composition analyses indicated a basic sulphate hydrate of the type Na{sub 3}U(SO{sub 4}){sub 3}(OH).nH{sub 2}O. (orig.)

  15. Maintaining hydration with a carbohydrate-electrolyte solution improves performance, thermoregulation, and fatigue during an ice hockey scrimmage.

    Science.gov (United States)

    Linseman, Mark E; Palmer, Matthew S; Sprenger, Heather M; Spriet, Lawrence L

    2014-11-01

    Research in "stop-and-go" sports has demonstrated that carbohydrate ingestion improves performance and fatigue, and that dehydration of ∼1.5%-2% body mass (BM) loss results in decreased performance, increased fatigue, and increased core temperature. The purpose of this investigation was to assess the physiological, performance, and fatigue-related effects of maintaining hydration with a carbohydrate-electrolyte solution (CES) versus dehydrating by ∼2% BM (no fluid; NF) during a 70-min ice hockey scrimmage. Skilled male hockey players (n = 14; age, 21.3 ± 0.2 years; BM, 80.1 ± 2.5 kg; height, 182.0 ± 1.2 cm) volunteered for the study. Subjects lost 1.94% ± 0.1% BM in NF, and 0.12% ± 0.1% BM in CES. Core temperature (Tc) throughout the scrimmage (10-50 min) and peak Tc (CES: 38.69 ± 0.10 vs. NF: 38.92 ± 0.11 °C; p thermoregulation, and decreased fatigue as compared with drinking no fluid and dehydrating by ∼2%.

  16. Electrodeposition of In{sub 2}O{sub 3} thin films from a dimethylsulfoxide based electrolytic solution

    Energy Technology Data Exchange (ETDEWEB)

    Henriquez, R.; Munoz, E.; Gomez, H. [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Curauma Valparaiso (Chile); Dalchiele, E.A.; Marotti, R.E. [Instituto de Fisica and CINQUIFIMA, Facultad de Ingenieria, Montevideo (Uruguay); Martin, F.; Leinen, D.; Ramos-Barrado, J.R. [Laboratorio de Materiales y Superficie, Departamento de Fisica Aplicada and Ingenieria Quimica, Universidad de Malaga (Spain)

    2013-02-15

    Indium (III) oxide (In{sub 2}O{sub 3}) thin films have been obtained after heat treatment of In(OH){sub 3} precursor layers grown by a potential cycling electrodeposition (PCED) method from a dimethylsulfoxide (DMSO) based electrolytic solution onto fluorine-doped tin oxide (FTO) coated glass substrates. X-ray diffraction (XRD) measurements indicate the formation of a polycrystalline In{sub 2}O{sub 3} phase with a cubic structure. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed a smooth morphology of the In{sub 2}O{sub 3} thin films after an optimized heat treatment had been developed. The surface composition and chemical state of the semiconductor films was established by X-ray photoelectron spectroscopy analysis. The nature of the semiconductor material, flat band potential and donor density were determined from Mott-Schottky plots. This study reveals that the In{sub 2}O{sub 3} films exhibited n-type conductivity with an average donor density of 2.2 x 10{sup 17} cm{sup -3}. The optical characteristics were determined through transmittance spectra. The direct and indirect band gap values obtained are according to the accepted values for the In{sub 2}O{sub 3} films of 2.83 and 3.54 eV for the indirect and direct band gap values. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Hydrogen-ion titrations of amino acids and proteins in solutions containing concentrated electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Fergg, F. [Technische Universitaet Muenchen (Germany); Kuehner, D.E.; Blanch, H.W.; Prausnitz, J.M. [Lawrence Berkeley Lab., CA (United States)

    1994-12-01

    This report describes a first attempt to quantify the net charge as a function of solution pH for lysozyme and {alpha}-chymotrypsin at 0.1 M, 1.0 M and 3.0 M ionic strength, (IS). The calculations are based on the residue (titratable group) pK{sub a}`s in the amino-acid sequence of the protein. To determine these pK{sub a}`s, a simple theory was used which assumes that the pK{sub a}`s are independent from each other in the protein and are equal to their pK{sub a} values in free amino-acid solution (Independent-Site Theory, IST). Residue pK{sub a}`s were obtained from amino-acid hydrogen-ion titrations at three different KCl concentrations corresponding to 0.1M, 1.0M and 3.0M ionic strength. After construction of a suitable apparatus, the experimental procedure and data reduction were computerized to perform a large number of titrations. Most measured pK{sub a}`s showed high reproducibility (the difference of pK{sub a} values observed between two experiments was less than 0.05). For IS = 0.1M, observed pK{sub a}`s agreed with literature values to within a few hundredths of a pH unit. Furthermore, the ionic-strength dependence of the pK{sub a}`s followed the trends reported in the literature, viz. pK{sub a} values decrease with increasing ionic strength until they reach a minimum at about IS = 0.5M. At still higher IS, pK{sub a}`s increase as the ionic strength rises to 3M. The known pK{sub a}`s of all titratable groups in a protein were used with the IST to give a first approximation of how the protein net charge varies with pH at high ionic strength. A comparison of the titration curves based on the IST with experimental lysozyme and {alpha}-chymotrypsin titration data indicates acceptable agreement at IS = 0.1M. However, comparison of measured and calculated titration curves at IS = 1M and IS = 3M indicates only quantitative agreement.

  18. La2010: A new orbital solution for the long term motion of the Earth

    CERN Document Server

    Laskar, J; Gastineau, M; Manche, H

    2011-01-01

    We present here a new solution for the astronomical computation of the orbital motion of the Earth spanning from 0 to -250 Myr. The main improvement with respect to the previous numerical solution La2004 (Laskar et al. 2004) is an improved adjustment of the parameters and initial conditions through a ?t over 1 Myr to a special version of the high accurate numerical ephemeris INPOP08 (Fienga et al. 2009). The precession equations have also been entirely revised and are no longer averaged over the orbital motion of the Earth and Moon. This new orbital solution is now valid over more than 50 Myr in the past or in the future with proper phases of the eccentricity variations. Due to chaotic behavior, the precision of the solution decreases rapidly beyond this time span, and we discuss the behavior of various solutions beyond 50 Myr. For paleoclimate calibrations, we provide several di?erent solutions that are all compatible with the most precise planetary ephemeris. We have thus reached the time where geological d...

  19. Molecular dynamics simulation of the electrokinetic flow of an aqueous electrolyte solution in nanochannels

    CERN Document Server

    Yoshida, Hiroaki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-01-01

    Electrokinetic flows of an aqueous NaCl solution in nanochannels with negatively charged surfaces are studied using molecular dynamics (MD) simulations. The four transport coefficients that characterise the response to weak electric and pressure fields, namely the coefficients for the electrical current in response to the electric field ($M^{jj}$) and the pressure field ($M^{jm}$), and those for the mass flow in response to the same fields ($M^{mj}$ and $M^{mm}$), are obtained in the linear regime using a Green-Kubo approach. Nonequilibrium simulations with explicit external fields are also carried out, and the current and mass flows are directly obtained. The two methods exhibit good agreement even for large external field strengths, and Onsager's reciprocal relation ($M^{jm} = M^{mj}$) is numerically confirmed in both approaches. The influence of the surface charge density on the flow is also considered. The values of the trans- port coefficients are found to be smaller for larger surface charge density, be...

  20. {sup 7}Li and {sup 19}F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Capiglia, C.; Saito, Y.; Kageyama, H. [Osaka National Research Inst., AIST, Ikeda (Japan); Mustarelli, P. [Consiglio Nazionale delle Ricerche, Pavia (Italy). Centro di Studio per la Termodinamica ed Elettrochimica dei Sistemi Salini Fusi e Solidi; Pavia Univ. (Italy). Ist. di Fisica Chimica; Iwamoto, T.; Tabuchi, T.; Tukamoto, H. [Japan Storage Battery Co. Ltd., Kyoto (Japan). Corporate Research and Development Center

    1999-09-01

    In this paper, electrolyte solutions of ethylene carbonate (EC) and ethylene methylene carbonate (EMC) with different salts as LiPF{sub 6}, LiBF{sub 4} and LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} were prepared and characterized using Pulsed Field Gradient (PFG) NMR and DSC. Cation transport numbers, {tau}{sup +}, ranging between 0.37 and 0.49 were obtained. The maximum value of 0.49 was obtained in the case of a 0.5 M solution of LiBF{sub 4} in 2:8 EC:EMC. The DSC data suggest that the increase of EMC stabilizes the electrolyte solution towards low temperature, and than a 2:8 EC:EMC ratio assures good stability at low temperature to the electrolyte solution. While LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} seems to score the best in terms of low temperature stability, LiPF{sub 6} may offer the best cost/performances compromise. (orig.)

  1. Fluorinated Alkoxide-Based Magnesium-Ion Battery Electrolytes that Demonstrate Li-Ion-Battery-Like High Anodic Stability and Solution Conductivity.

    Science.gov (United States)

    Crowe, Adam J; Stringham, Kyle K; Bartlett, Bart M

    2016-09-01

    Based on DFT predictions, a series of highly soluble fluorinated alkoxide-based electrolytes were prepared, examined electrochemically, and reversibly cycled. The alcohols react with ethylmagnesium chloride to generate a fluoroalkoxy-magnesium chloride intermediate, which subsequently reacts with aluminum chloride to generate the electrolyte. Solutions starting from a 1,1,1,3,3,3-hexafluoro-2-methylpropan-2-ol precursor exhibit high anodic stability, 3.2 V vs Mg(2+/0), and a record 3.5 mS/cm solution conductivity. Excellent galvanostatic cycling and capacity retention (94%) is observed with more than 300 h of cycle time while employing the standard Chevrel phase-Mo6S8 cathode material.

  2. Selective ion exchange recovery of rare earth elements from uranium mining solutions

    Science.gov (United States)

    Rychkov, Vladimir N.; Kirillov, Evgeny V.; Kirillov, Sergey V.; Bunkov, Grigory M.; Mashkovtsev, Maxim A.; Botalov, Maxim S.; Semenishchev, Vladimir S.; Volkovich, Vladimir A.

    2016-09-01

    A comparative study of rare earth, ferric and aluminum ions ion exchange behavior on gel sulfonated p;olystyrene cation exchange resins depending on the degree of the matrix cross-linking and pH of the solution is presented. Selective ion exchange of REEs is possible at the pH range of 1.5-2.0 using strongly acidic cation exchange resins containing more than 8 % of DVB. The preliminary results of testing the efficiency of REEs recovery from the industrial uranium underground leaching solutions are also presented.

  3. Investigation of the State of Radionuclides in Ultramicroconcentrations by the Method of a Horizontal Zone Electrophoresis in a Free Electrolyte. Ions of In(III) in Aqueous Solutions

    CERN Document Server

    Bontchev, G D; Priemyshev, A N; Bozhikov, G A; Filossofov, D V; Ivanov, P I; Maslov, O D; Milanov, M V; Dmitriev, S N

    2000-01-01

    Using the electromigration method in a free electrolyte the behaviour of In(III) in some water solutions has been investigated. Data on electrophoretic mobility of In(III) as well as its complexes with DTPA and EDTA in a wide range of pH and temperature have been collected. On the basis of experimental results the diffusion coefficient of In(III) and concentration stability constant of a complex [InDTPA]^2- have been estimated.

  4. A general strategy to facilely design ratiometric electrochemical sensors in electrolyte solution by directly using a bare electrode for dual-signal sensing of analytes.

    Science.gov (United States)

    Yu, Jianbo; Jin, Hui; Gui, Rijun; Wang, Zonghua; Ge, Feng

    2017-01-01

    In this paper, we have described a general strategy to facilely design ratiometric electrochemical sensors in electrolyte solutions, directly using a bare electrode for dual-signal sensing of analytes. Two types of substances (methylene blue/MB, doxorubicin/DOX) with different electrochemical signal peaks were added into electrolyte solutions (phosphate buffered saline, NaCl), where one was the analyte (DOX) and the other was used as a reference (MB). A linear plotting of DOX concentration [DOX] versus ratiometric electrochemical signal peak intensity (IDOX/IMB) was achieved, with a good linear coefficient and low detection limit of DOX (0.4nM). Experimental results implied that this ratiometric electrochemical sensor (ECS) of DOX enabled highly selective and sensitive detection of DOX in real samples, with high detection recoveries. In comparison with previous reports about ratiometric ECS, this as-proposed strategy can directly fabricate a ratiometric ECS in electrolyte solution (not on electrode), only using a bare electrode for dual- signal sensing of analytes. This strategy is not only novel and facile, but also flexible and general, as adequately confirmed in experiments, which would facilitate a further development in the facile fabrication and efficient applications of electrochemical sensors.

  5. Foaming-electrolyte fuel cell

    Science.gov (United States)

    Nanis, L.; Saunders, A. P.

    1970-01-01

    Foam structure feeds fuel gas solution into electrolyte. Fuel gas reacts at static, three-phase interface between fuel gas, electrolyte, and electrode material. The foam forms an electrical contact between main body of electrolyte and the electrode, and aids in removal of by-products of the chemical reaction.

  6. Recovery of rare earth elements from El-Sela effluent solutions

    Directory of Open Access Journals (Sweden)

    Y.M. Khawassek

    2015-10-01

    Full Text Available The study area of Gabal El Sela at Halaib environ is located at about 20 km west of Abu Ramad City, Egypt. An uraniferous ore material associated with REE was subjected to sulphuric acid leaching for the extraction of uranium mainly and REEs as a by-product. 93.9% of U and 60% of REEs content were leached using −0.5 mm ground ore with 100 g/l sulfuric acid, acid/ore ratio of 2.0 and agitate for 6 h at 40 °C. After uranium extraction, effluent solutions containing 135 ppm rare earths were treated with 30% ammonium hydroxide to pH of 9.3 to enhance the rare earth elements concentration. The precipitated cake was filtered then dried at 110 °C. The dried cake containing 16.2% rare earth elements was dissolved by hydrochloric acid at pH 1.0. The rare earths precipitated cakes of 36.9, 45.7 and 48.7% REEs were recovered successfully from the chloride leach liquor of 900 ppm rare earths by using 5% v/v from 50% HF, 6% wt/v oxalic acid and 4.8% wt/v oxalic acid to chloride solution with heating for one hour which respectively. 73.5% REEs precipitated cake was achieved by double precipitation, firstly by hydrofluoric acid followed by oxalic acid precipitation.

  7. Electrical Potential, Mass Transport and Velocity Distribution of Electro-osmotic Flow in a Nanochannel by Incorporating the Variation of Dielectric Constant of Aqueous Electrolyte Solution

    CERN Document Server

    Padidhapu, Rajendra; Brahmajirao, V

    2016-01-01

    We consider a coupled system of Navier Stokes, Maxwell Stefan and Poisson Boltzmann equations by incorporating the variation of dielectric constant, which governs the electro osmotic flow in nano channel, describing the evolution of the velocity, concentration and potential fields of dissolved constituents in an aqueous electrolyte solution. We apply the finite difference technique to solve one and two dimensional systems of these equations. The solutions give an extremely accurate prediction of the dielectric constant for a variety of salts and a wide range of concentrations.

  8. Hydrochloric acid recovery from rare earth chloride solutions by vacuum membrane distillation

    Institute of Scientific and Technical Information of China (English)

    TANG Jianjun; ZHOU Kanggen

    2006-01-01

    The possibility of the recovery of hydrochloric acid from rare earth (RE) chloride solutions was first experimentally studied by batch vacuum membrane distillation (VMD). The recovery by continuous VMD was also studied to devise methods that enabled the operation of VMD setup in a stable condition as well as to increase the membrane-operating life The results indicated that HCl separation with RE by VMD was possible, and the recovery ratio of 80% could be achieved by batch VMD. In continuous VMD, when the temperature of circular solutions, circular rate, and downstream pressure was62-63℃, 5.4 cm/s, and 9.33 kPa, respectively, the HCl concentration in circular solutions and the processing capacity per membrane area were obtained. The mathematical results were in accordance with the experimental ones.

  9. Acid-activated spent bleaching earth as a sorbent for chromium (VI) in aqueous solution.

    Science.gov (United States)

    Low, K S; Lee, C K; Lee, T S

    2003-02-01

    Spent bleaching earth, an industrial waste produced after the bleaching of crude palm oil, was investigated for its potential in removing Cr(VI) from aqueous solution. The earth was treated with different amounts of sulfuric acid and under different activation temperatures. Results show that the optimum treatment process involved 10% sulfuric acid at 350 degrees C. The effects of contact time, pH, initial concentration, sorbent dosage, temperature, sorption isotherms and the presence of other anions on its sorption capacity were studied. Isotherm data could be fitted into a modified Langmuir isotherm model implying monolayer coverage of Cr(VI) on acid activated spent bleaching earth. The maximum sorption capacity derived from the Langmuir isotherm was 21.2 mg g(-1). This value was compared with those of some other low cost sorbents. Studies of anion effect on the uptake of Cr(VI) on acid activated spent bleaching earth provided the following order of suppression: EDTA >PO4(3-)>SO4(2-)>NO3(-)>Cl(-).

  10. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Ulissi, Ulderico; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2016-05-10

    In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14 TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3 Co1/3 Mn1/3 O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14 TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g(-1) and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles.

  11. Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 °C-80 °C

    Science.gov (United States)

    Zhang, Lei; Tsay, Ken; Bock, Christina; Zhang, Jiujun

    2016-08-01

    To increase the operating temperature of the supercapacitors (SCs) without compromising their high cycle-life, several typical fluoro- and non-fluoro containing ionic liquids (EMI-mesylate, EMI-hydrogen sulfate, PP13-triflate, PP13-TFSI, and EMI-TFSI, as shown in Fig. 1) are studied as the electrolytes to prepare organic solutions for SC performance measurements using a two-electrode cell. Both cyclic voltammograms and charge/discharge curves at various temperatures such as 20, 40, 60 and 80 °C are collected. At 60 °C, the increased performance order in both rating and cyclability measurements are found to be as follows: 1) EMI-hydrogen sulfate liquids can be used for SC electrolytes operated at high temperature.

  12. OnEarth: An Open Source Solution for Efficiently Serving High-Resolution Mapped Image Products

    Science.gov (United States)

    Thompson, C. K.; Plesea, L.; Hall, J. R.; Roberts, J. T.; Cechini, M. F.; Schmaltz, J. E.; Alarcon, C.; Huang, T.; McGann, J. M.; Chang, G.; Boller, R. A.; Ilavajhala, S.; Murphy, K. J.; Bingham, A. W.

    2013-12-01

    This presentation introduces OnEarth, a server side software package originally developed at the Jet Propulsion Laboratory (JPL), that facilitates network-based, minimum-latency geolocated image access independent of image size or spatial resolution. The key component in this package is the Meta Raster Format (MRF), a specialized raster file extension to the Geospatial Data Abstraction Library (GDAL) consisting of an internal indexed pyramid of image tiles. Imagery to be served is converted to the MRF format and made accessible online via an expandable set of server modules handling requests in several common protocols, including the Open Geospatial Consortium (OGC) compliant Web Map Tile Service (WMTS) as well as Tiled WMS and Keyhole Markup Language (KML). OnEarth has recently transitioned to open source status and is maintained and actively developed as part of GIBS (Global Imagery Browse Services), a collaborative project between JPL and Goddard Space Flight Center (GSFC). The primary function of GIBS is to enhance and streamline the data discovery process and to support near real-time (NRT) applications via the expeditious ingestion and serving of full-resolution imagery representing science products from across the NASA Earth Science spectrum. Open source software solutions are leveraged where possible in order to utilize existing available technologies, reduce development time, and enlist wider community participation. We will discuss some of the factors and decision points in transitioning OnEarth to a suitable open source paradigm, including repository and licensing agreement decision points, institutional hurdles, and perceived benefits. We will also provide examples illustrating how OnEarth is integrated within GIBS and other applications.

  13. Removal of MCPA from aqueous solutions by acid-activated spent bleaching earth.

    Science.gov (United States)

    Mahramanlioglu, Mehmet; Kizilcikli, Irfan; Biçer, I Ozlem; Tuncay, Melda

    2003-11-01

    The removal of MCPA (4-chloro-2-methyl phenoxyacetic acid) from aqueous solutions by activated spent bleaching earth (SBE) was studied as a function of time, initial concentration, adsorbent concentration, and temperature. The Langmuir and Freundlich isotherms were fitted by the adsorption data obtained. The values of Langmuir and Freundlich constants were determined. The adsorption kinetics was described by the Lagergren equation. Mass transfer coefficient and thermodynamic parameters were also calculated. Column experiments were conducted and brekthrough capacities were found for different concentrations and different flow rates. The study demonstrates that acid-treated SBE could be used as an efficient adsorbent for the removal of MCPA-bearing wastewater effluents.

  14. Removal of 2,4-D from aqueous solution by the adsorbents from spent bleaching earth.

    Science.gov (United States)

    Mahramanlioğlu, M; Kizilcikli, I; Biçer, I O; Tunçay, M

    2000-03-01

    The removal of 2,4-D (2,4-dichlorophenoxyacetic acid) from aqueous solutions by activated spent bleaching earths (SBE) was studied at 20 degrees C. Experiments were performed as a function of time, initial concentration, dose and particle size of the adsorbent. The Langmuir and Freundlich adsorption equations were fitted by the adsorption data obtained. The values of Langmuir and Freundlich constants were determined. The adsorption kinetic was found to follow Lagergren equation. Both the boundary layer and intraparticle diffusion played important roles in the adsorption rate of 2,4-D. As the size of the adsorbent increased, the time to reach equilibrium increased but adsorption capacity decreased.

  15. On the electric double-layer structure at carbon electrode/organic electrolyte solution interface analyzed by ac impedance and electrochemical quartz-crystal microbalance responses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Tae; Egashira, Minato; Yoshimoto, Nobuko [Department of Applied Chemistry, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube 755-8611 (Japan); Morita, Masayuki, E-mail: morita@yamaguchi-u.ac.jp [Department of Applied Chemistry, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube 755-8611 (Japan)

    2011-08-30

    Highlights: {center_dot} We monitored resonance frequency change of smooth surface carbon electrode to determine mass changes during electrochemical polarization.{center_dot} This was done from viewpoints of ensuring the electric double-layer structure in organic electrolytes.{center_dot} Clear difference was observed in the mass changes among the electrolyte composition.{center_dot} It were related with differences in the double-layer capacitance at carbon. - Abstract: ac impedance and electrochemical quartz crystal microbalance (EQCM) techniques have been applied to analyze the structure of electric double-layer formed at carbon/organic electrolyte solution interface using a sputtered carbon electrode. The mass changes caused by electrochemical adsorption (accumulation) of ions have been estimated in the solutions of propylene carbonate (PC) dissolving tetrafluoroborate (BF{sub 4}{sup -}) salts of lithium (Li{sup +}), tetraethylammonium (TEA{sup +}) and tetra-n-butylammonium (TBA{sup +}) cations. The observed mass changes during the cathodic polarization in the solutions containing TEA{sup +} and TBA{sup +} were well consistent with those expected by the calculation based on mono-layer adsorption of the cations with giving the consideration to the surface roughness. On the other hand, the mass change observed in the solution containing Li{sup +} salt showed that the solvation of Li{sup +} with three or four molecules of PC would be the charge compensation species at the interface. Comparison of the quantity of the electricity passed during the EQCM measurements with that from theoretical calculation with simple Helmholtz-layer model revealed that the major part of the double-layer capacitance would be based on the electrostatic polarization of the solvent molecule directly adsorbed at the carbon surface.

  16. Adiponitrile-LiTFSI solution as alkylcarbonate free electrolyte for LTO/NMC Li-ion batteries.

    Science.gov (United States)

    Farhat, Douaa; Ghamouss, Fouad; Maibach, Julia; Edström, Kristina; Lemordant, Daniel

    2017-02-23

    Recently, dinitriles (NC(CH2)nCN) and especially adiponitrile (ADN, n=4) have attracted the attention as secure electrolyte solvents due to their chemical stability, high boiling points, high flash points and low vapor pressure. The good solvating properties of ADN toward lithium salts and its high electrochemical stability (~ 6V vs. Li/Li+) make it suitable for safer Li-ions cells without performances loss. In this study, ADN is used as a single electrolyte solvent with lithium bis(trimethylsulfonyl)imide (LiTFSI). This electrolyte allows the use of aluminum collectors as almost no corrosion occurs at voltages up to 4.2 V. Physico-chemical properties of ADN-LiTFSI electrolyte such as salt dissolution, conductivity and viscosity were determined. The cycling performances of batteries using Li4Ti5O12 (LTO) as anode and LiNi1/3Co1/3Mn1/3O2 (NMC) as cathode were determined. The results indicate that LTO/NMC batteries exhibit excellent rate capabilities with a columbic efficiency close to 100%. As an example, cells were able to reach a capacity of 165 mAh.g-1 at 0.1C and a capacity retention of more than 98% after 200 cycles at 0.5C. In addition, electrodes analyses by SEM, XPS and electrochemical impedance spectroscopy after cycling confirming minimal surface changes of the electrodes in the studied battery system.

  17. Thermodynamics of Binary and Ternary Solutions of Multivalent Electrolytes with Formation of 1: 1 and 1: 2 Complexes, within the Mean Spherical Approximation

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Arenas, J.; Simonin, J. P.; Bernard, O. [Univ Paris 06, PECSA, CNRS, UMR 7195, F-75252 Paris (France); Torres-Arenas, J. [Univ Guanajuato, Div Ciencias and Ingn, Guanajuato 37150 (Mexico); Ruas, A.; Moisy, Ph. [CEA Marcoule, DEN DRCP, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    The mean activity ({gamma}{+-}) and osmotic ({Phi}) coefficients for binary and ternary aqueous solutions of trivalent electrolytes (mainly made up of lanthanide salts) are described in the framework of the primitive model of ionic solutions, using the binding mean spherical approximation (BiMSA). This model, based on the Wertheim formalism, accounts for (chemical or electrostatic) association of ions. In this work, the multivalent cation and the anion are allowed to form 1: 1 (pairs) and 1: 2 (trimers) complexes. Expressions for {gamma}{+-}) and {Phi} are given which satisfy the Gibbs-Duhem relation. The model involves concentration-dependent cation size and effective relative permittivity, variations that can be interpreted in terms of solvent effects. The theory is applied to aqueous solutions of binary and ternary mixtures at 25 C with common anion. (authors)

  18. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  19. Effect of Ringer's Solution on Wear and Friction of Stainless Steel 316L after Plasma Electrolytic Nitrocarburising at Low Voltages

    Institute of Scientific and Technical Information of China (English)

    N. Afsar Kazerooni; M.E. Bahrololoom; M.H. Shariat; F.Mahzoon; T. Jozaghi

    2011-01-01

    A plasma electrolytic nitrocarburising (PEN/C) process was performed on stainless steel 316L to improve the surface properties for using as medical implants. A bath was optimised to reduce the required voltage to 150 volts. Aqueous urea-based solutions with 10% NH4Cl were prepared with slightly different amounts of Na2CO3 to optimise the electrolyte composition. The surface and the cross-section morphologies were studied by scanning electron microscopy. The microstructure and the chemical composition of samples were investigated by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) techniques. The microstructure of the outer layer of the coatings was found to be a complex oxide containing Cr and Fe. The wear properties of the samples were examined by using a pin on disk wear test with Ringer's solution and were compared with their wear properties in the ambient atmosphere. The Ringe(s solution acted as a lubricant, reducing friction coefficient. Hardness and roughness were also studied. The bath with the composition of 10% NH4CI and 3% Na2CO3 exhibited the best tribological properties. The results showed that the tribological properties of treated samples were improved and the wear mechanism was abrasion of the pin.

  20. Recovery of rare earths from acid leach solutions of spent nickel-metal hydride batteries using solvent extraction

    Institute of Scientific and Technical Information of China (English)

    夏允; 肖连生; 田吉英; 李兆洋; 曾理

    2015-01-01

    The extraction of rare earths from acid leach solutions of spent nickel-metal hydride batteries using a primary amine ex-tractant of N1923 was studied. The effects of feed pH, temperature, agitation rate and time on the extraction of rare earths, as well as stripping agent composition and concentration, phase ratio on the stripping were investigated. In addition, the extraction isotherm was determined. The pilot plant test results showed that the extraction of rare earths reached 99.98% after a five-stage counter current ex-traction. The mixed rare earths oxalates with the 99.77% purity of rare earth elements and impurity content less than 0.05% were ob-tained by the addition of oxalic acids in loaded strip liquors. The extractant exhibited good selectivity of rare earths over base metals of iron, nickel, copper and manganese.

  1. Relationship Between Designed Three-Dimensional YSZ Electrolyte Surface Area and Performance of Solution-Precursor Plasma-Sprayed La0.8Sr0.2MnO3- δ Cathodes

    Science.gov (United States)

    Zhang, Shan-Lin; Huang, Jiang-Yuan; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2016-12-01

    Active three-phase boundaries (TPBs) significantly influence cathode performance in solid oxide fuel cells, but obtaining long TPBs and understanding the mechanism underlying the improved cathode performance when the electrolyte is prepared with a smooth surface by a high-temperature sintering process remain essential challenges. In this work, we used flame spraying to deposit single-layer semimolten particles on a smooth electrolyte to build a three-dimensional surface with enlarged active surface area and thus increased TPBs. Meanwhile, La0.8Sr0.2MnO3- δ (LSM) cathodes with fine microstructure were deposited by solution-precursor plasma spraying (SPPS) on the designed electrolyte to establish a three-dimensional cathode-electrolyte interface. The deposition behavior of the semimolten particles on the smooth electrolyte and LSM cathodes on the three-dimensional electrolyte surface was studied. The effects of the area enlargement factor ( α area) on the polarization resistance of the SPPS LSM cathodes were investigated, using three-dimensional electrolytes with α area from 1.29 to 2.48. The results indicated that convex particles with different molten states bonded well with the electrolytes. SPPS LSM cathodes also showed good interfacial bonding with convex particles. Finally, the cathode polarization ( R p) decreased linearly with increase of α area. At 800 °C, R p decreased from 0.98 to 0.32 Ω cm2 when α area was increased from 1.29 to 2.48.

  2. Reduction of Oxygen Bound with Hemoglobin by Electrolytic Method Using Hydrogen Gas in Phosphate-buffered Solution

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Hemoglobin(Hb) is important as an oxygen carrier.The trace amount of oxygen in Hb was reduced by an electrolytic method using hydrogen as an electron donor.The deoxygenated Hb(deoxyHb) was stable against heat treatment at 60 ℃ with little precipitant.This method is safe,fast,and would be of potential use for large scale purification of Hb.

  3. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Valiskó, Mónika; Boda, Dezső, E-mail: boda@almos.vein.hu [Department of Physical Chemistry, University of Pannonia, P.O. Box 158, H-8201 Veszprém (Hungary)

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.

  4. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions.

    Science.gov (United States)

    Valiskó, Mónika; Boda, Dezső

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, "The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations," J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of "solvated ionic radius" assumed by earlier studies.

  5. Information Technology Infrastructure for the NASA Earth Science Enterprise Solutions Network

    Science.gov (United States)

    Aanstoos, J. V.; Shaw, D. R.; O'Hara, C. G.; Frisbie, T. E.

    2006-12-01

    The NASA Applied Sciences Program uses the term Solutions Network in the context of its Enterprise Architecture to describe the ability of different components of the enterprise to generate ideas for new ways to use NASA missions, research, and/or models in conjunction with operational decision-making processes (or decision support systems) to achieve a particular benefit to society. In this paper, we describe the development of an information technology infrastructure that will facilitate that ability. The two main components of this infrastructure are: the Research Projects Knowledge Base (RPKB); and the Partner Network Knowledge Base (PNKB). The RPKB aims to index all relevant NASA research result publications in a database that will be interoperable with the evolving NASA enterprise architecture system and will share relevant table space with it. In particular, fields from this system identifying relevant NASA missions, models, and data products will be used to cross-index the data collected on published results of research projects. Fields characterizing the research results based on the seven Earth-Sun system science focus areas and the twelve applications of national priority are included. In the course of developing the RPKB, novel uses of existing online databases and search tools have been developed. In addition, data mining tools are being developed for facilitating the location of candidate results and the indexing of relevant matches. The PNKB database will characterize the current network of NASA Earth-Sun system partners. This includes information on organizations and agencies funded by or partnered with NASA to conduct Earth-Sun system scientific research, technology, and applications projects. The relationships between NASA programs and project sponsors are also captured in this database. Both the PNKB and the RPKB will be integrated with an existing, evolving model of the NASA Earth Science Enterprise using an enterprise architecture modeling and

  6. Planetary resources and astroecology. Planetary microcosm models of asteroid and meteorite interiors: electrolyte solutions and microbial growth--implications for space populations and panspermia.

    Science.gov (United States)

    Mautner, Michael N

    2002-01-01

    Planetary microcosms were constructed using extracts from meteorites that simulate solutions in the pores of carbonaceous chondrites. The microcosms were found to support the growth of complex algal and microbial populations. Such astroecology experiments demonstrate how a diverse ecosystem could exist in fluids within asteroids, and in meteorites that land on aqueous planets. The microcosm solutions were obtained by extracting nutrient electrolytes under natural conditions from powders of the Allende (CV3) and Murchison (CM2) meteorites at low (0.02 g/ml) and high (10.0 g/ml) solid/solution ratios. The latter solutions contain > 3 mol/L electrolytes and about 10 g/L organics, that simulate natural fluids in asteroids during aqueous alteration and in the pores of meteorites, which can help prebiotic synthesis and the survival of early microorganisms. These solutions and wet solids were in fact found to support complex self-sustaining microbial communities with populations of 4 x 10(5) algae and 6 x 10(6) bacteria and fungi for long periods (> 8 months). The results show that planetary microcosms based on meteorites can: assay the fertilities of planetary materials; identify space bioresources; target astrobiology exploration; and model past and future space-based ecosystems. The results show that bioresources in the carbonaceous asteroids can sustain a biomass of 10(18) kg, comprising 10(32) microorganisms and a human population of 10(14). The results also suggest that protoplanetary nebulae can support and disperse microorganisms and can be therefore effective environments for natural and directed panspermia.

  7. Effect of solvent permittivity on the thermodynamic behavior of HCl solutions: analysis using the smaller-ion shell model of strong electrolytes.

    Science.gov (United States)

    Fraenkel, Dan

    2011-12-15

    The recently introduced smaller-ion shell (SiS) treatment of strong binary electrolyte solutions [Fraenkel, D. Mol. Phys. 2010, 108, 1435] that extends the Debye-Hückel theory to size-dissimilar ions is very effective for many electrolytes of various families up to moderate ionic concentration. The (molal) mean ionic activity coefficient, γ(±), as a function of the reciprocal screening length, κ, hence ionic strength, I, is given by an analytic mathematical expression that incorporates the three ion-size parameters (ISPs). Experimental γ(±) data are fitted with calculated values derived from ISPs that seem to adequately represent the relevant mean effective ionic sizes. The SiS analysis has been lately shown effective for aqueous HCl, HBr, HI, and HClO(4) at 25 °C, at which the solvent permittivity, ε, is 78.4 [Fraenkel, D. J. Phys. Chem. B 2011, 115, 557]. In this paper, the behavior of HCl in solvents ranging in ε between approximately 10 and 80 is analyzed and discussed. The SiS treatment is found again suitable for computing γ(±) values that agree with experiment. Within the concentration range of the available experimental data, ion pairing is not indicated and, contrary to literature claims, HCl appears fully ionized even at 0.5 m (molal) with ε ion ISPs increase linearly with 1/ε. The chemical nature of the solution has no observable effect on γ(±) and on ISPs. The present analysis supports the view that electrolyte theories in which the solvent is considered at the McMillan-Mayer level can be successful and valuable.

  8. Nanoclays: Two-dimensional shuttles for rare earth complexes in aqueous solution

    Science.gov (United States)

    Lezhnina, M. M.; Bentlage, M.; Kynast, U. H.

    2011-08-01

    Nanoclays are shown to be attractive substrates in at least two major respects. Firstly, Hectorite analogous commercial clays ("Laponite") can facilitate the usage of luminescent rare earth ions in aqueous solution, as their adherence to the clay surface strongly reduces water coordination and thus enables dramatically improved emission intensities. This also holds true for complexes of Tb 3+, which coordinate water in their native crystalline state, as demonstrated for tris(bipyiridine) complexes. For these, the laponite interaction affords a 16-fold gain in emission intensity in aqueous solution over the dissolved complex. Secondly, the two-dimensional, disk-like morphology of the clays enables a sufficient proximity of Ce 3+ and Tb 3+ to allow an energy transfer even at comparably low solution concentrations. In partially laminated, solid powders the efficiencies of the corresponding interlayer species decrease due to intimate interactions with the surrounding silicate and interlayer water, which can, however be counteracted by keeping the disks apart with long-chain, alkylammonium cations as spacers between the disks.

  9. Sulfuric acid recovery from rare earth sulphate solutions by diffusion dialysis

    Institute of Scientific and Technical Information of China (English)

    TANG Jian-jun; ZHOU Kang-gen; ZHANG Qi-xiu

    2006-01-01

    Sulfuric acid recovery from rare earth sulphate solutions by diffusion dialysis was studied. The mass transfer model of diffusion dialysis was established, the comparison between the experimental results and mathematical results was carried out, and the numerical analysis on the effects of operational parameters was studied. The results indicate that the derived mathematical model shows good quantitative relation between sulphuric acid recovery ratio and operational parameters, and the mathematical results agree with the experimental results well. The numerical analysis results indicate that it is appropriate to keep the ratio of water and feed flow rates, processing capacity per membrane area and recovery ratio of sulphuric acid to be 1, 20 L/(m2·d) and 0.7-0.8,respectively.

  10. Scientific Research for Integrated Solutions to Community Challenges: The Thriving Earth Exchange (TEX) Approach

    Science.gov (United States)

    Udu-gama, N.; Pandya, R.

    2015-12-01

    There is tremendous unmet and sometimes unrealized need for Earth and space science (ESS) expertise as part of civic decisions and local planning for climate change, natural hazards and natural resources. The Thriving Earth Exchange (TEX) helps AGU contribute that expertise to humanity in respectful, integrated ways. TEX brings ESS scientists together with local communities tackling issues of climate change, natural hazards and natural resources to co-design solutions that equitably integrate both scientific and community knowledge. To achieve this ambitious goal, TEX is partnering with organizations that are respected by and knowledgeable about communities both in the United States and internationally. Such partnerships include Rockefeller's 100 Resilient Cities Initiative, ICLEI USA, MIT's Climate Colab, among others. TEX works with these partners to approach communities who are ready to or already addressing ESS related issues. With partners, we help the communities define their goals, develop specific projects, and connect with relevant and helpful ESS scientists. We will also show how we help scientists and community leaders work productively together, and the tools we bring to support their innovation. It will highlight international examples, such as in the Pamir Mountains of Afghanistan-Tajikistan, Sri Lanka, and Ethiopia, and provide concrete examples of how these initiatives are helping TEX further expand the frontiers of collaborative research.

  11. Reviewing innovative Earth observation solutions for filling science-policy gaps in hydrology

    Science.gov (United States)

    Lehmann, Anthony; Giuliani, Gregory; Ray, Nicolas; Rahman, Kazi; Abbaspour, Karim C.; Nativi, Stefano; Craglia, Massimo; Cripe, Douglas; Quevauviller, Philippe; Beniston, Martin

    2014-10-01

    Improved data sharing is needed for hydrological modeling and water management that require better integration of data, information and models. Technological advances in Earth observation and Web technologies have allowed the development of Spatial Data Infrastructures (SDIs) for improved data sharing at various scales. International initiatives catalyze data sharing by promoting interoperability standards to maximize the use of data and by supporting easy access to and utilization of geospatial data. A series of recent European projects are contributing to the promotion of innovative Earth observation solutions and the uptake of scientific outcomes in policy. Several success stories involving different hydrologists' communities can be reported around the World. Gaps still exist in hydrological, agricultural, meteorological and climatological data access because of various issues. While many sources of data exists at all scales it remains difficult and time-consuming to assemble hydrological information for most projects. Furthermore, data and sharing formats remain very heterogeneous. Improvements require implementing/endorsing some commonly agreed standards and documenting data with adequate metadata. The brokering approach allows binding heterogeneous resources published by different data providers and adapting them to tools and interfaces commonly used by consumers of these resources. The challenge is to provide decision-makers with reliable information, based on integrated data and tools derived from both Earth observations and scientific models. Successful SDIs rely therefore on various aspects: a shared vision between all participants, necessity to solve a common problem, adequate data policies, incentives, and sufficient resources. New data streams from remote sensing or crowd sourcing are also producing valuable information to improve our understanding of the water cycle, while field sensors are developing rapidly and becoming less costly. More recent data

  12. Exact solution of earth-flattening transformation for P-SV waves: Taking surface wave as an example

    Institute of Scientific and Technical Information of China (English)

    HUANG Hui; CHEN Xiao-fei

    2008-01-01

    Taking surface wave as an example this paper proposes an exact solution of earth-flattening transformation for P-SV waves and discusses the applicability of the approximate methods. The results show that the transform parameter m has little influence on the final results, and on the condition of short wave approximation, approximate earth-flattening transformation is suitable. Moreover, the efficiency of approximate transformation is twice of that of exact transformation. For low frequency problems exact earth-flattening transformation should be used.

  13. Cyberinfrastructure at IRIS: Challenges and Solutions Providing Integrated Data Access to EarthScope and Other Earth Science Data

    Science.gov (United States)

    Ahern, T. K.; Barga, R.; Casey, R.; Kamb, L.; Parastatidis, S.; Stromme, S.; Weertman, B. T.

    2008-12-01

    While mature methods of accessing seismic data from the IRIS DMC have existed for decades, the demands for improved interdisciplinary data integration call for new approaches. Talented software teams at the IRIS DMC, UNAVCO and the ICDP in Germany, have been developing web services for all EarthScope data including data from USArray, PBO and SAFOD. These web services are based upon SOAP and WSDL. The EarthScope Data Portal was the first external system to access data holdings from the IRIS DMC using Web Services. EarthScope will also draw more heavily upon products to aid in cross-disciplinary data reuse. A Product Management System called SPADE allows archive of and access to heterogeneous data products, presented as XML documents, at the IRIS DMC. Searchable metadata are extracted from the XML and enable powerful searches for products from EarthScope and other data sources. IRIS is teaming with the External Research Group at Microsoft Research to leverage a powerful Scientific Workflow Engine (Trident) and interact with the web services developed at centers such as IRIS to enable access to data services as well as computational services. We believe that this approach will allow web- based control of workflows and the invocation of computational services that transform data. This capability will greatly improve access to data across scientific disciplines. This presentation will review some of the traditional access tools as well as many of the newer approaches that use web services, scientific workflow to improve interdisciplinary data access.

  14. Big Data challenges and solutions in building the Global Earth Observation System of Systems (GEOSS)

    Science.gov (United States)

    Mazzetti, Paolo; Nativi, Stefano; Santoro, Mattia; Boldrini, Enrico

    2014-05-01

    The Group on Earth Observation (GEO) is a voluntary partnership of governments and international organizations launched in response to calls for action by the 2002 World Summit on Sustainable Development and by the G8 (Group of Eight) leading industrialized countries. These high-level meetings recognized that international collaboration is essential for exploiting the growing potential of Earth observations to support decision making in an increasingly complex and environmentally stressed world. To this aim is constructing the Global Earth Observation System of Systems (GEOSS) on the basis of a 10-Year Implementation Plan for the period 2005 to 2015 when it will become operational. As a large-scale integrated system handling large datasets as those provided by Earth Observation, GEOSS needs to face several challenges related to big data handling and big data infrastructures management. Referring to the traditional multiple Vs characteristics of Big Data (volume, variety, velocity, veracity and visualization) it is evident how most of them can be found in data handled by GEOSS. In particular, concerning Volume, Earth Observation already generates a large amount of data which can be estimated in the range of Petabytes (1015 bytes), with Exabytes (1018) already targeted. Moreover, the challenge is related not only to the data size, but also to the large amount of datasets (not necessarily having a big size) that systems need to manage. Variety is the other main challenge since datasets coming from different sensors, processed for different use-cases are published with highly heterogeneous metadata and data models, through different service interfaces. Innovative multidisciplinary applications need to access and use those datasets in a harmonized way. Moreover Earth Observation data are growing in size and variety at an exceptionally fast rate and new technologies and applications, including crowdsourcing, will even increase data volume and variety in the next future

  15. Rural Single Wire Earth Return distribution networks - Associated problems and cost-effective solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, N. [Swinburne University of Technology, PO Box 218, Hawthorn, Vic 3122 (Australia); Mayer, J.E. [Aurecon Australia Pty Ltd., Brisbane (Australia); Wolfs, P.J. [Curtin University of Technology, Perth (Australia)

    2011-02-15

    Single Wire Earth Return (SWER) systems are used for supplying electricity at low cost, where electricity supply is required for small populations of people dispersed across wide geographical areas. It is principally used for rural electrification, but is also used for other isolated loads and light rail. The existing SWER distribution systems have been stretched with the sharp growth of their loads because of customers' change of lifestyle, which has introduced additional load of air conditioning equipment, motors driven by variable-speed drives and inverters. This paper proposes cost-effective solutions to address the problem of voltage regulation and compensation of the unbalancing effect of SWER lines on the three-phase feeder of these lines, which have been exacerbated by this load growth. To improve the voltage regulation problem, a LV switchable reactor has been designed, a prototype made and tested in the field. Also, an unbalance compensator has been designed to reduce the unbalancing effect of SWER lines. Two case networks have been used to perform simulation studies on the effectiveness of both proposed solutions. At first, a case study is used to demonstrate the impact of a switchable reactor on improving voltage regulation. Then, another case study shows that installation of a switchable reactor and an unbalance compensator simultaneously on a SWER distribution system effectively improves voltage regulation and reduces unbalancing effects. (author)

  16. Corrosion Penetration and Crystal Structure of AA5022 in HCl Solution and Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    A.A.El-Meligi; S.H. Sanad; A.A.Ismail; A.M. Baraka

    2005-01-01

    Al-alloy (AA5022) corrosion penetration (CP) and crystal structure were investigated after running static immersion corrosion tests in 1 mol/L HCl solution and different concentrations of rare earth elements (La3+), (Ce3+) and their combination, at different temperatures. X-ray diffraction (XRD) was used to examine the surface structure before and after immersion, and secondary electron detector (SED) was operated to study surface morphology. In 1 mol/L HCl solution the corrosion penetration increased with increasing temperature and immersion time. The increase of La3+ concentrations up to 1000× 10-6 g/L led to the decrease in the corrosion penetration, and the decrease in Ce3+concentrations up to 50×10-6 g/L decreases the corrosion penetration of the alloy. Mix3 (combination of La3+ and Ce3+) dramatically reduced the corrosion penetration. This suggests that a synergistic effect exists between La3+and Ce3+. The reaction kinetics both in absence and presence of La3+ and Ce3+ and their combination would follow a parabolic rate law. The XRD patterns revealed that the intensities of certain hkl phases are affected. The crystalline structure has not been deformed either before or after testing and there are no additional peaks except that of the as-received alloy. In the case of accelerating CP, the surface morphology shows that the roughness andvoids of surface are increased.

  17. Polymer electrolyte reviews. 1

    Energy Technology Data Exchange (ETDEWEB)

    Mac Callum, J.R.; Vincent, C.A.

    1987-01-01

    The development of polymer electrolytes which have potential applications in battery technology has resulted in an escalation of research into the synthesis of new macromolecular supports and the mechanisms of ionic transport within the solid matrix. Investigation of the properties of polymer electrolytes has brought together polymer chemists and electrochemists, and the understanding of the solubility and transport of electrolytes in organic polymers is now developing from this pooled experience. This book deals with experimental, theoretical and applied aspects of solid solutions of electrolytes used in coordinating polymer matrices. Attention is focused on the synthesis and properties of these new materials, the mechanisms of conduction processes and practical applications, especially with regard to battery technology.

  18. Integrated solution for the complete remote sensing process - Earth Observation Mission Control Centre (EOMC2)

    Science.gov (United States)

    Czapski, Paweł

    2016-07-01

    We are going to show the latest achievements of the Remote Sensing Division of the Institute of Aviation in the area of remote sensing, i.e. the project of the integrated solution for the whole remote sensing process ranging from acquiring to providing the end user with required information. Currently, these tasks are partially performed by several centers in Poland, however there is no leader providing an integrated solution. Motivated by this fact, the Earth Observation Mission Control Centre (EOMC2) was established in the Remote Sensing Division of the Institute of Aviation that will provide such a comprehensive approach. Establishing of EOMC2 can be compared with creating Data Center Aerial and Satellite Data Centre (OPOLIS) in the Institute of Geodesy and Cartography in the mid-70s in Poland. OPOLIS was responsible for broadly defined data processing, it was a breakthrough innovation that initiated the use of aerial image analysis in Poland. Operation center is a part of the project that will be created, which in comparison with the competitors will provide better solutions, i.e.: • Centralization of the acquiring, processing, publishing and archiving of data, • Implementing elements of the INSPIRE directive recommendations on spatial data management, • Providing the end-user with information in the near real-time, • Ability of supplying the system with images of various origin (aerial, satellite, e.g. EUMETCast, Sentinel, Landsat) and diversity of telemetry data, data aggregation and using the same algorithms to images obtained from different sources, • System reconfiguration and batch processing of large data sets at any time, • A wide range of potential applications: precision agriculture, environmental protection, crisis management and national security, aerial, small satellite and sounding rocket missions monitoring.

  19. Investigating and Modeling the Thermo-dynamic Impact of Electrolyte Solutions of Sodium Chloride and Sodium Sulfate on Prevention of the Formation of Methane Hydrate

    Directory of Open Access Journals (Sweden)

    M. Manteghian

    2013-07-01

    Full Text Available Devising methods to prevent hydrate formation is of the important issues in natural gas industry. Since a great deal of money is annually spent on using hydrate inhibitors, identification of new inhibitors with higher degrees of efficacy is economically justifiable. Bearing in mind the significant role of hydrate inhibitors in prevention of natural gas pipelines’ getting blocked, the present study attempts to investigate two compounds of NaCl and Na2SO4 as inhibitors of hydrate methane’s formation so as to respond to “what is the inhibitive thermo-dynamic impact of electrolyte compounds of NaCl and Na2SO4 on the formation of methane hydrate?” To do so, this study not only measures the equilibrium temperature and pressure of methane hydrate formation in the presence of electrolyte solutions of NaCl and Na2SO4 and compares the results obtained with the state lacking such inhibitors, but it also assesses the regression and mathematical modeling are utilized within a basic virtual environment in order to propose a model for prediction of thermo-dynamic equilibrium temperature and pressure of methane hydrate formation.

  20. Effects of Hypertonic Saline Solution on Clinical Parameters, Serum Electrolytes and Plasma Volume in the Treatment of Haemorrhagic Septicaemia in Buffaloes

    Directory of Open Access Journals (Sweden)

    M. Arif Zafar*, G. Muhammad, Zafar Iqbal1 and M. Riaz2

    2010-04-01

    Full Text Available This study was conducted to determine the efficacy of hypertonic saline solution (HSS along with antibiotic (ceftiofur HCl and non-steroidal anti-inflammatory drug (ketoprofen in the treatment of haemorrhagic septicaemia in buffaloes. For this purpose, 50 buffaloes suffering from haemorrhagic septicaemia were randomly divided in two equal groups A and B. Group A served as control and was treated with ceftiofur HCl (IM and ketoprofen (IV @ 6 and 2 mg/Kg BW, respectively, for five days. Buffaloes of group B were administered with rapid intravenous infusion of hypertonic saline solution (7.5% NaCl @ 4 ml/Kg BW once in combination with ceftiofur HCl and ketoprofen. Animals were monitored for 24 hours after initiation of treatment. Clinical parameters, serum electrolytes, plasma volume and survival index were recorded at different intervals after treatment. Survival rate (80% in group B was significantly higher (P<0.05 than 48% in group A. The heart rate and respiration rate recovered more effectively in the buffaloes administered with treatment protocol B. Plasma volume was 98% which was almost normal within 24 hours after the infusion of hypertonic saline solution to the animals of group B. It was concluded from the study that hypertonic saline solution as an adjunct to antibiotic and a non-steroidal anti-inflammatory drug more efficiently improved respiration and heart rates and effectively restored plasma volume in resuscitating the buffaloes from haemorrhagic septicaemia than the conventional treatment.

  1. Coatable Li4 SnS4 Solid Electrolytes Prepared from Aqueous Solutions for All-Solid-State Lithium-Ion Batteries.

    Science.gov (United States)

    Choi, Young Eun; Park, Kern Ho; Kim, Dong Hyeon; Oh, Dae Yang; Kwak, Hi Ram; Lee, Young-Gi; Jung, Yoon Seok

    2017-06-22

    Bulk-type all-solid-state lithium-ion batteries (ASLBs) for large-scale energy-storage applications have emerged as a promising alternative to conventional lithium-ion batteries (LIBs) owing to their superior safety. However, the electrochemical performance of bulk-type ASLBs is critically limited by the low ionic conductivity of solid electrolytes (SEs) and poor ionic contact between the active materials and SEs. Herein, highly conductive (0.14 mS cm(-1) ) and dry-air-stable SEs (Li4 SnS4 ) are reported, which are prepared using a scalable aqueous-solution process. An active material (LiCoO2 ) coated by solidified Li4 SnS4 from aqueous solutions results in a significant improvement in the electrochemical performance of ASLBs. Side-effects of the exposure of LiCoO2 to aqueous solutions are minimized by using predissolved Li4 SnS4 solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Calculation of CO2,CH4 and H2S Solubilities in Aquenous Electrolyte Solution at High Prssure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper reports an investigation into the characterisation of liquid-vapor electrolyte solutions at high pressure and high temperature,A procedure to enable calculations of methane,carbon dioxide and hydrogen sulphide solubilities in brines(0-6m.) for temperature from 25 to 350℃ and for pressures from 1 to 1800 bar is presented.The model is based on Helgeson,Kirkham and Flowers modified equations of state(HKF)and on the semi-empirical interaction model introduced by Pitzer,HKF modified equations of state are used to calculate the reference fugacity of gas species,and the Pitzer ionic interaction model is used to calculate the activity coefficient of dissolved species(i.e.ionic or neutral).The efficiency of the combination of the two models is confirmed by several comparisons with data in the literature.

  3. Comparison between fixed and fluidized bed cathodes and effect of supporting electrolyte in electrochemical removal of copper ion from dilute solutions

    Directory of Open Access Journals (Sweden)

    I.A. Khattab

    2014-03-01

    Experimental study of the role of the supporting electrolyte in electrolytic cells confirmed that, type and concentration of supporting electrolyte have a remarkable effect on the two aforementioned parameters as well as the rate of removal. Using of NaCl showed better results than Na2SO4.

  4. Solution-Processed Rare-Earth Oxide Thin Films for Alternative Gate Dielectric Application.

    Science.gov (United States)

    Zhuang, Jiaqing; Sun, Qi-Jun; Zhou, Ye; Han, Su-Ting; Zhou, Li; Yan, Yan; Peng, Haiyan; Venkatesh, Shishir; Wu, Wei; Li, Robert K Y; Roy, V A L

    2016-11-16

    Previous investigations on rare-earth oxides (REOs) reveal their high possibility as dielectric films in electronic devices, while complicated physical methods impede their developments and applications. Herein, we report a facile route to fabricate 16 REOs thin insulating films through a general solution process and their applications in low-voltage thin-film transistors as dielectrics. The formation and properties of REOs thin films are analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), spectroscopic ellipsometry, water contact angle measurement, X-ray photoemission spectroscopy (XPS), and electrical characterizations, respectively. Ultrasmooth, amorphous, and hydrophilic REO films with thickness around 10 nm have been obtained through a combined spin-coating and postannealing method. The compositional analysis results reveal the formation of RE hydrocarbonates on the surface and silicates at the interface of REOs films annealed on Si substrate. The dielectric properties of REO films are investigated by characterizing capacitors with a Si/Ln2O3/Au (Ln = La, Gd, and Er) structure. The observed low leakage current densities and large areal capacitances indicate these REO films can be employed as alternative gate dielectrics in transistors. Thus, we have successfully fabricated a series of low-voltage organic thin-film transistors based on such sol-gel derived REO films to demonstrate their application in electronics. The optimization of REOs dielectrics in transistors through further surface modification has also been studied. The current study provides a simple solution process approach to fabricate varieties of REOs insulating films, and the results reveal their promising applications as alternative gate dielectrics in thin-film transistors.

  5. Felyx : A Free Open Software Solution for the Analysis of Large Earth Observation Datasets

    Science.gov (United States)

    Piolle, Jean-Francois; Shutler, Jamie; Poulter, David; Guidetti, Veronica; Donlon, Craig

    2014-05-01

    GHRSST project, by assembling large collections of earth observation data from various sources and agencies, has also raised the need for providing the user community with tools to inter-compare them, assess and monitor their quality. The ESA /Medspiration project, which implemented the first operating node of GHRSST system for Europe, also paved the way successfully towards such generic analytics tools by developing the High Resolution Diagnostic Dataset System (HR-DDS) and Satellite to In situ Multi-sensor Match-up Databases. Building on this heritage, ESA is now funding the development by IFREMER, PML and Pelamis of felyx, a web tool merging the two capabilities into a single software solution. It will consist in a free open software solution, written in python and javascript, whose aim is to provide Earth Observation data producers and users with an open-source, flexible and reusable tool to allow the quality and performance of data streams (satellite, in situ and model) to be easily monitored and studied. The primary concept of Felyx is to work as an extraction tool, subsetting source data over predefined target areas (which can be static or moving) : these data subsets, and associated metrics, can then be accessed by users or client applications either as raw files, automatic alerts and reports generated periodically, or through a flexible web interface enabling statistical analysis and visualization. Felyx presents itself as an open-source suite of tools, written in python and javascript, enabling : * subsetting large local or remote collections of Earth Observation data over predefined sites (geographical boxes) or moving targets (ship, buoy, hurricane), storing locally the extracted data (refered as miniProds). These miniProds constitute a much smaller representative subset of the original collection on which one can perform any kind of processing or assessment without having to cope with heavy volumes of data. * computing statistical metrics over these

  6. Near Earth Objects and Cascading Effects from the Policy Perspective: Implications from Problem and Solution Definition

    Science.gov (United States)

    Lindquist, Eric

    2016-04-01

    The characterization of near-Earth-objects (NEOs) in regard to physical attributes and potential risk and impact factors presents a complex and complicates scientific and engineering challenge. The societal and policy risks and impacts are no less complex, yet are rarely considered in the same context as material properties or related factors. Further, NEO impacts are typically considered as discrete events, not as initial events in a dynamic cascading system. The objective of this contribution is to position the characterization of NEOs within the public policy process domain as a means to reflect on the science-policy nexus in regard to risks and multi-hazard impacts associated with these hazards. This will be accomplished through, first, a brief overview of the science-policy nexus, followed by a discussion of policy process frameworks, such as agenda setting and the multiple streams model, focusing events, and punctuated equilibrium, and their application and appropriateness to the problem of NEOs. How, too, for example, does NEO hazard and risk compare with other low probability, high risk, hazards in regard to public policy? Finally, we will reflect on the implications of alternative NEO "solutions" and the characterization of the NEO "problem," and the political and public acceptance of policy alternatives as a way to link NEO science and policy in the context of the overall NH9.12 panel.

  7. High performing solution-coated electrolyte-gated organic field-effect transistors for aqueous media operation

    Science.gov (United States)

    Zhang, Qiaoming; Leonardi, Francesca; Casalini, Stefano; Temiño, Inés; Mas-Torrent, Marta

    2016-12-01

    Since the first demonstration, the electrolyte-gated organic field-effect transistors (EGOFETs) have immediately gained much attention for the development of cutting-edge technology and they are expected to have a strong impact in the field of (bio-)sensors. However EGOFETs directly expose their active material towards the aqueous media, hence a limited library of organic semiconductors is actually suitable. By using two mostly unexplored strategies in EGOFETs such as blended materials together with a printing technique, we have successfully widened this library. Our benchmarks were 6,13-bis(triisopropylsilylethynyl)pentacene and 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT), which have been firstly blended with polystyrene and secondly deposited by means of the bar-assisted meniscus shearing (BAMS) technique. Our approach yielded thin films (i.e. no thicker than 30 nm) suitable for organic electronics and stable in liquid environment. Up to date, these EGOFETs show unprecedented performances. Furthermore, an extremely harsh environment, like NaCl 1M, has been used in order to test the limit of operability of these electronic devices. Albeit an electrical worsening is observed, our devices can operate under different electrical stresses within the time frame of hours up to a week. In conclusion, our approach turns out to be a powerful tool for the EGOFET manufacturing.

  8. Electrolyte Concentrates Treat Dehydration

    Science.gov (United States)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  9. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  10. Nickel adsorption in two Oxisols and an Alfisol as affected by pH, nature of the electrolyte, and ionic strength of soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Cindy Silva [Univ. de Sao Paulo (USP), Piracicaba, SP (BR). Centro de Energia Nuclear na Agricultura (CENA); Casagrande, Jose Carlos [Univ. Federal de Sao Carlos (UFSCar), Araras, SP (BR). Centro de Ciencias Agrarias (CCA); Ferracciu Alleoni, Luis Reynaldo [Univ. de Sao Paulo (USP), Piracicaba, SP (BR). Escola Superior de Agricultura Luiz de Queiroz (ESALQ); Camargo, Otavio Antonio de; Berton, Ronaldo Severiano [Instituto Agronomico de Campinas (IAC), Campinas, SP (Brazil). Solos e Recursos Ambientais

    2008-12-15

    Background, aim, and scope: The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods: The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic 'Rhodic' Acrudox (RA), a sandy-clayey textured Anionic 'Xantic' Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L{sup -1}) and two electrolyte solutions (CaCl{sub 2} or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol {sup L-1}). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion: Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni{sup 2+} and Ca{sup 2+} was higher than that between Ni{sup 2+} and Na{sup +} in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl{sup -} ions and consequent adsorption of Ni{sup 2+}. Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions: The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that

  11. Liquid-liquid extraction and separation of total rare earth (RE) metals from polymetallic manganese nodule leaching solution

    Institute of Scientific and Technical Information of China (English)

    PK Parhi; KH Park; CW Nam; JT Park

    2015-01-01

    The study on the solvent extraction for quantitative and selective separation of total rare earth metals from the polymetallic nodule leach liquor was investigated. The typical leach liquor bearing 0. 094 g/L total rare earth, 0. 23 g/L Mn, 0.697 g/L Cu, 0.2 g/L Fe, 0.01 g/L Co and 0.735 g/L Ni was subjected to the removal iron content by precipitation method using Ca(OH)2 at pH 3.95, prior to solvent extraction of rare earth metals. Three different organo-phosphoric acid reagents (D2EHPA, PC88A, Cyanex 272) were used to ascertain their performances and selectivity towards the loading of rare earth metals in presence of other base metals. Based on the results of eq. pH effect, the performances of above three extractants followed the order as:D2EHPA>PC88A>Cyanex 272. To ensure the absence of extraction of base metals (Cu, Co, Ni), the eq. pH of the solution was optimized at the level of 2.21, though higher rare earth metal extraction efficiency was observed at higher eq. pH with either of the extractants. The complete process flow diagram for substantial recovery of total rare earth was developed using D2EHPA. Extraction isotherm plot was constructed at A:O=12:1, 3-stages and pHe=2.21, using 0.8 mol/L D2EHPA and the predicted condition of this study was further confirmed by 6-Cycles Counter Current Simulation (CCS) study. The stripping of total rare earth from loaded organic phase (LO) was conducted using HCl solution. Mc-Cabe Thiele diagram study carried out at A:O=1:5 using 4 mol/L HCl showed that three theoretical stages were needed for quantitative stripping of total rare earth. The subsequent stripped solution resulted thus led to contain total rare earth of 5.6 g/L indicating a very high enrichment of total metals by solvent extraction (SX) process.

  12. Development of electrolytic process in molten salt media for light rare-earth metals production. The metallic cerium electrodeposition; Desenvolvimento de processo de eletrolise em meio de sais fundidos para a producao de metais de terras-raras leves. A obtencao do cerio metalico

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, T.A.G.

    1994-12-31

    The development of molten salt process and the respective equipment aiming rare-earth metals recovery was described. In the present case, the liquid cerium metal electrodeposition in a molten electrolytes of cerium chloride and an equimolar mixture of sodium and potassium chlorides in temperatures near 800{sup C} was studied. Due the high chemical reactivity of the rare-earth metals in the liquid state and their molten halides, an electrolytic cell was constructed with controlled atmosphere, graphite crucibles and anodes and a tungsten cathode. The electrolytic process variables and characteristics were evaluated upon the current efficiency and metallic product purity. Based on this evaluations, were suggested some alterations on the electrolytic reactor design and upon the process parameters. (author). 90 refs, 37 figs, 20 tabs.

  13. Effect of electrolyte valency, alginate concentration and pH on engineered TiO₂ nanoparticle stability in aqueous solution.

    Science.gov (United States)

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2015-12-01

    Agglomeration and disagglomeration processes are expected to play a key role on the fate of engineered nanoparticles in natural aquatic systems. These processes are investigated here in detail by studying first the stability of TiO2 nanoparticles in the presence of monovalent and divalent electrolytes at different pHs (below and above the point of zero charge of TiO2) and discussing the importance of specific divalent cation adsorption with the help of the DLVO theory as well as the importance of the nature of the counterions. Then the impact of one polysaccharide (alginate) on the stability of agglomerates formed under pH and water hardness representative of Lake Geneva environmental conditions is investigated. In these conditions the large TiO2 agglomerates (diameter>1μm) are positively charged due to Ca(2+) and Mg(2+) specific adsorption and alginate, which is negatively charged, adsorbs onto the agglomerate surface. Our results indicate that the presence of alginate at typical natural organic matter concentration (1-10 mg L(-1)) strongly modifies the TiO2 agglomerate (50 mg L(-1)) stability by inducing their partial and rapid disagglomeration. The importance of disagglomeration is found dependent on the alginate concentration with maximum of disagglomeration obtained for alginate concentration ≥8 mg L(-1) and leading to 400 nm fragments. From an environmental point of view partial restabilization of TiO2 agglomerates in the presence of alginate constitutes an important outcome. Disagglomeration will enhance their transport and residence time in aquatic systems which is an important step in the current knowledge on risk assessment associated to engineered nanoparticles.

  14. Stability of silicon and titanium carbide suspensions in electrolyte, poly(ethylene oxide), and PEO-surfactant solutions.

    Science.gov (United States)

    Barany, Sandor; Eremenko, Boris V; Malysheva, Mariya L

    2004-07-01

    It has been shown that the coagulation values of counterions for SiC and TiC suspensions with particle radius from 0.5 to 5 microm obey a z(2.5-3.5) law and there is an insufficient change in the critical concentration of 1-1 electrolytes (CCE) when the surface potential of particles increases more than two times. Also, the CCE values hardly depend on the position of counterions in the lyotropic sequence. This is explained by aggregation of SiC and TiC particles at a secondary minimum, which is proved by calculations of the potential curves of interparticle interactions using the DLVO theory. The adsorption of poly(ethylene oxide) on the surfaces studied does not cause--in contradiction to dispersions with smaller particles--an unlimited growth in the stability of suspensions. This is due to the aggregation of large particles with adsorbed PEO, as in polymer-free dispersions, under barrierless conditions in which the coordinates of the secondary minimum are determined by superposition of molecular attractive forces and steric repulsive forces of adsorbed polymeric chains, without a contribution from the electric repulsion term. PEO-anionic surfactant complexes possess higher stabilizing capacity compared to the individual components of the mixture. Our results show that the adsorbed polymer layers may hinder the aggregation both in the primary and in the secondary minimum for not very large particles only, the critical size of which depends on the dispersed phase nature and the molecular mass of the polymer.

  15. Thermal and volumetric properties of complex aqueous electrolyte solutions using the Pitzer formalism - The PhreeSCALE code

    Science.gov (United States)

    Lach, Adeline; Boulahya, Faïza; André, Laurent; Lassin, Arnault; Azaroual, Mohamed; Serin, Jean-Paul; Cézac, Pierre

    2016-07-01

    The thermal and volumetric properties of complex aqueous solutions are described according to the Pitzer equation, explicitly taking into account the speciation in the aqueous solutions. The thermal properties are the apparent relative molar enthalpy (Lϕ) and the apparent molar heat capacity (Cp,ϕ). The volumetric property is the apparent molar volume (Vϕ). Equations describing these properties are obtained from the temperature or pressure derivatives of the excess Gibbs energy and make it possible to calculate the dilution enthalpy (∆HD), the heat capacity (cp) and the density (ρ) of aqueous solutions up to high concentrations. Their implementation in PHREEQC V.3 (Parkhurst and Appelo, 2013) is described and has led to a new numerical tool, called PhreeSCALE. It was tested first, using a set of parameters (specific interaction parameters and standard properties) from the literature for two binary systems (Na2SO4-H2O and MgSO4-H2O), for the quaternary K-Na-Cl-SO4 system (heat capacity only) and for the Na-K-Ca-Mg-Cl-SO4-HCO3 system (density only). The results obtained with PhreeSCALE are in agreement with the literature data when the same standard solution heat capacity (Cp0) and volume (V0) values are used. For further applications of this improved computation tool, these standard solution properties were calculated independently, using the Helgeson-Kirkham-Flowers (HKF) equations. By using this kind of approach, most of the Pitzer interaction parameters coming from literature become obsolete since they are not coherent with the standard properties calculated according to the HKF formalism. Consequently a new set of interaction parameters must be determined. This approach was successfully applied to the Na2SO4-H2O and MgSO4-H2O binary systems, providing a new set of optimized interaction parameters, consistent with the standard solution properties derived from the HKF equations.

  16. Role of finite ionospheric conductivity on toroidal field line oscillations in the Earth's magnetosphere -- Analytic solutions

    Science.gov (United States)

    Bulusu, Jayashree; Sinha, A. K.; Vichare, Geeta

    2016-06-01

    An analytic solution has been formulated to study the role of ionospheric conductivity on toroidal field line oscillations in the Earth's magnetosphere. The effect of ionospheric conductivity is addressed in two limits, viz, (a) when conductance of Alfvén wave is much different from ionospheric Pedersen conductance and (b) when conductance of Alfvén wave is close to the ionospheric Pedersen conductance. In the former case, the damping is not significant and standing wave structures are formed. However, in the latter case, the damping is significant leading to mode translation. Conventionally, "rigid-end" and "free-end" cases refer to eigenstructures for infinitely large and vanishingly small limit of ionospheric conductivity, respectively. The present work shows that when the Pedersen conductance overshoots (undershoots) the Alfvén wave conductance, a free-end (rigid-end) mode gets transformed to rigid-end (free-end) mode with an increase (decrease) in harmonic number. This transformation takes place within a small interval of ionospheric Pedersen conductance around Alfvén wave conductance, beyond which the effect of conductivity on eigenstructures of field line oscillations is small. This regime of conductivity limit (the difference between upper and lower limits of the interval) decreases with increase in harmonic number. Present paper evaluates the damping effect for density index other than the standard density index m = 6, using perturbation technique. It is found that for a small departure from m = 6, both mode frequency and damping rate become a function of Pedersen conductivity.

  17. Solution-reaction Calorimetric Study of Coordination Compounds of Rare Earth Perchlorates with Alanine and Imidazole

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Yan-Ru(赵艳茹); HOU, An-Xin(侯安新); DONG, Jia-Xin(董家新); ZHAO, Shun-Sheng(赵顺省); LIU, Yi(刘义); QU, Song-Sheng(屈松生)

    2004-01-01

    Two coordination compounds of rare earth perchlorates with alanine and imidazole, [RE(Ala)n(Im)(H2O)](ClO4)3(s) (RE=La, n=3; RE=Nd, n=2), have been prepared and characterized. The standard molar enthalpies of reaction for the following two reactions, LaCL·7H2O(s)+3Ala(s)+Im(s)+3NaClO4(s)=[La(Ala).(Im)(H2O)]-(ClO4)3(s)+3NaCl(s)+6H2O(I)(1)and NdCl3·6H2O(s)+2Ala(s)+2Ala(s)+Im(s)+3NaClO4(s)=[Nd(Ala)2(Im)(H2O)]-(ClO4)3(s)+3NaCl(s)+5H2O(l) (2), were determined by solution-reaction calorimetry, at T=298.15 K, as 36.168 ±0.642kJ·mol-1 and 48.590±0.934kJ·mol-1 respectively. From the results and other auxiliary quantities, the standard molar enthalpies of formation of [La(Ala)3(Im)(H2O)](ClO4)3(s) and [Nd(Ala)2(Im)(H2O)] (ClO4)3(s) were derived,△fH(-)m{[La(Ala).(Im)(H2O)](ClO4)3,s}=(-2984.8±1.0)kJ·mol-1 and △fH(-)m{[Nd(Ala).(Im)(H2O)]-(ClO4)3,s}=(-2387.8±0.8)kJ·mol-1, respectively.

  18. Aggregation Kinetics and Self-Assembly Mechanisms of Graphene Quantum Dots in Aqueous Solutions: Cooperative Effects of pH and Electrolytes.

    Science.gov (United States)

    Li, Qingqing; Chen, Baoliang; Xing, Baoshan

    2017-02-07

    The cooperative effects of pH and electrolytes on the aggregation of GQDs and the aggregate morphologies are characterized. Because GQDs have an average size of 9 nm with abundant O-functionalized edges, their suspension was very stable even in a high electrolyte concentration and low pH solution. Divalent cations (Mg(2+) and Ca(2+)) excelled at aggregating the GQD nanoplates, while monovalent cations (Na(+) and K(+)) did not disturb the stability. For Na(+) and K(+), positive linear correlations were observed between the critical coagulation concentration (CCC) and pH levels. For Mg(2+) and Ca(2+), negative, but nonlinear, correlations between CCC and pH values could not be explained and predicted by the traditional DLVO theory. Three-step mechanisms are proposed for the first time to elucidate the complex aggregation of GQDs. The first step is the protonation/deprotonation of GQDs under different pH values and the self-assembly of GQDs into GQD-water-GQD. The second step is the self-assembly of small GQD pieces into large plates (graphene oxide-like) induced by the coexisting Ca(2+) and then conversion into 3D structures via π-π stacking. The third step is the aggregation of the 3D-assembled GQDs into precipitates via the suppression of the electric double layer. The self-assembly of GQDs prior to aggregation was supported by SEM and HRTEM imaging. Understanding of the colloidal behavior of ultrasmall nanoparticles like GQDs is significantly important for the precise prediction of their environmental fate and risk.

  19. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various thermopl......A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  20. Properties of Bessel Function Solution to Kepler's Equation with Application to Opposition and Conjunction of Earth-Mars

    Science.gov (United States)

    Ebaid, Abdelhalim; Al-Blowy, Ahmed B.

    2016-05-01

    In this article, a simple approach is suggested to calculate the approximate dates of opposition and conjunction of Earth and Mars since their opposition on August 28, 2003 (at perihelion of Mars). The goal of this article has been achieved via using accurate analytical solution to Kepler's equation in terms of Bessel function. The periodicity property of this solution and its particular values at specified times are discussed through some lemmas. The mathematical conditions of opposition and conjunction of the two planets are formulated. Moreover, the intervals of opposition and conjunction have been determined using the graphs of some defined functions. The calculations reveal that there are nine possible oppositions and conjunctions for Earth and Mars during 20 years started on August 28, 2003. The dates of such oppositions and conjunctions were approximately determined and listed in Tables. It is found that our calculations differ few days from the published real dates of Earth-Mars oppositions due to the neglected effects of the gravitational attraction of other planets in the Solar system on the motion of two planets. The period of 20 years can be extended for any number of years by following the suggested analysis. Furthermore, the current approach may be extended to study the opposition and conjunction of the Earth and any outer planet.

  1. Ce1-xLaxOy solid solution prepared from mixed rare earth chloride for soot oxidation

    Institute of Scientific and Technical Information of China (English)

    韩雪; 王亚飞; 郝红蕊; 郭荣贵; 胡运生; 蒋文全

    2016-01-01

    Ce1–xLaxOy solid solution was simply prepared using mixed rare earth chloride (RECl3·xH2O, RE=Ce, La>99%, containing unseparated Ce and La from rare earth metallurgical industry) as precursor by ultrasonic-assisted co-precipitation method with differ-ent ultrasonic frequencies (CLf,f=200, 400, 600, 800, 1000 Hz). A compared Ce1–xLaxOy solid solution (CL*) was also prepared by the same mothod with 10% less precipitant. X-ray diffraction results confirmed the formation of Ce1–xLaxOy solid solution, and the crystal structures of these catalysts were not very sensitive to ultrasonic frequency and precipitant amount. However, both of the fac-tors had obvious effect on morphology and surface area of CL, and precipitant amount seem to play a more crucial role than ultra-sonic frequency for Ce1–xLaxOy solid solution preparation. When soot and catalyst were tight contacted, the peak temperature (Tpeak) of soot oxidation and oxygen reducing temperature for CLf catalysts decreased linearly with increasing surface area. Under loose contact condition, theTpeak had obvious negative correlation with H2 consumption. It was inferred that good reducibility of the Ce1–xLaxOy solid solution favored the soot oxidation reaction. The Ce1–xLaxOy solid solution prepared from unseparated rare earth chloride showed a good soot oxidaiton activity. Controlling the preparation conditions to prepare a CL catalyst would high surface area will enhance its reducibility and activity.

  2. Effect of Electrolyte on the Dissolution of Aluminum from Acid Sois and the Distribution of Aluminum Forms in Soil Solution

    Institute of Scientific and Technical Information of China (English)

    XURENKOU; JIGUOLIANG

    1997-01-01

    KCl,CaCl2,NH4Cl,NaCl,K2SO4 and KF solutions were used for studying the effects of cations and anions on the dissolution of aluminum and the distribution of aluminum forms respectively.Power of exchanging and releasing aluminum of four kinds of cations was in the decreasing order Ca2+>K+>NH4+>Na+,The dissolution of aluminum increased with the cation concentration.The adsorption affinity of various soils fro aluminum was different.The aluminum in the soil with a stronger adsorption affinity was diffcult to be exchanged and released by cations.The Al-F complexes were main species of inorganic aluminum at a low concentration of cations,while Al3+ became major species of inorganic aluminum at a hiht concentration of cations .The results on the effct of anions indicated that the concentrations of total aluminum,three kinds of inorganc aluminum(Al3+,Al-F and Al-OH complexes) and organic aluminum complexes(Al-OM) when SO42- was added into soil suspension were lower than those when Cl- was added.The dissolution of aluminum from soils and the distribution of aluminum forms in solution were affected by the adsorption of F- on the soil.For soils with strong affinity for F-,the concentrations of the three inorganic aluminum species in soil solution after addition of F- were lower than those after addition of Cl-;but for soils with weak affinity for F-,the concentrations of Al3+ and Al-OM were lower and the concentrations of Al-F complexes and total inorganic aluminum after addition of F- were higher than those after addition of Cl- .The increase of F- concentration in soil solution accelerated the dissolution of aluminum from soils.

  3. Solitary, explosive, rational and elliptic doubly periodic solutions for nonlinear electron-acoustic waves in the earth's magnetotail region

    CERN Document Server

    El-Wakil, S A; El-Shewy, E K; Abd-El-Hamid, H M

    2010-01-01

    A theoretical investigation has been made of electron acoustic wave propagating in unmagnetized collisionless plasma consisting of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions. Based on the pseudo-potential approach, large amplitude potential structures and the existence of Solitary waves are discussed. The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV) equation for small but finite amplitude electrostatic waves. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the KdV equation, is used here. Numerical studies have been made using plasma parameters close to those values corresponding to Earth's plasma sheet boundary layer region reveals different solutions i.e., bell-shaped solitary pulses and singularity solutions at a finite point which called "blowup" solutions, Jaco...

  4. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    Science.gov (United States)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  5. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  6. Characterization of the deviation of the ideality of concentrated electrolytic solutions: plutonium 4 and uranium 4 nitrate salts study; Contribution a la caracterisation de l'ecart a l'idealite des solutions concentrees d'electrolytes: application aux cas de nitrates de plutonium (4) et d'uranium (4)

    Energy Technology Data Exchange (ETDEWEB)

    Charrin, N

    2000-07-01

    The purpose of this work was to establish a new binary data base by compiling the activity coefficients of plutonium and uranium at oxidation state +IV to better account for media effects in the liquid-liquid extraction operations implemented to reprocess spent nuclear fuel. Chapter 1: first reviews the basic thermodynamic concepts before describing the issues involved in acquiring binary data for the tetravalent actinides. The difficulties arise from two characteristics of this type of electrolyte: its radioactive properties (high specific activity requiring nuclearization of the experimental instrumentation) and its physicochemical properties (strong hydrolysis). After defining the notion of fictive binary data, an approach based on the thermodynamic concept of simple solutions is described in which the activity coefficient of an aqueous phase constituent is dependent on two parameters: the water activity of the system and the total concentration of dissolved constituents. The method of acquiring fictive binary electrolyte data is based on water activity measurements for ternary or quaternary actinide mixtures in nitric acid media, and binary data for nitric acid. The experimental value is then correlated with the characteristics of the fictive binary solution of the relevant electrolyte. Chapter 2: proposes more reliable binary data for nitric acid than the published equivalents, the disparities of which are discussed. The validation of the method described in Chapter 1 for acquiring fictive binary data is then addressed. The test electrolyte, for which binary data are available in the literature, is thorium(IV) nitrate. The method is validated by comparing the published binary data obtained experimentally for binary solutions with the data determined for the ternary Th(NO{sub 3}){sub 4}/HNO{sub 3}/H{sub 2}O system investigated in this study. The very encouraging results of this comparison led us to undertake further research in this area. Chapter 3 discusses

  7. Electro-hydrodynamic generation of monodisperse nanoparticles in the sub-10 nm size range from strongly electrolytic salt solutions: governing parameters of scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Maisser, Anne, E-mail: a.maisser@tudelft.nl [Delft University of Technology (Netherlands); Attoui, Michel B. [LISA, UMR CNRS University Paris Est Creteil, University Paris-Diderot (France); Ganan-Calvo, Alfonso M. [Universidad de Sevilla, ESI (Spain); Szymanski, Wladyslaw W. [University of Vienna, Faculty of Physics (Austria)

    2013-01-15

    A charge reduced electro-hydrodynamic atomization (EHDA) device has been used to generate airborne salt clusters in the sub 10 nm size range. The focus of this study on that specific sub-micron range of electrospray droplets with relatively high electrical conductivities and permittivities aims to address the still existing controversy on the scaling laws of electrosprayed droplet diameters. In this study different concentrations of sodium chloride and potassium chloride-both show strong electrolytic behavior-have been electrosprayed from solutions in pure water, or from aqueous ammonium acetate buffer liquids of varying concentrations. The dry residue salt cluster diameter generated by the EHDA process have been measured using a differential mobility analyzer. The initial droplet diameter has been determined indirectly from the measured particle size following the steps of Chen et al. (J Aerosol Sci 26:963-977, 1995). Results have been compared to existing scaling laws valid for direct droplet measurements. They can be interpreted concisely on the basis of a realistic hypothesis on possible electrochemical effects taking place and affecting the droplet and thus nanoparticle formation in EHDA. The hypothesis developed in this work and the comparison with the experimental results are shown and discussed in the manuscript.

  8. An integrated assessment instrument: Developing and validating instrument for facilitating critical thinking abilities and science process skills on electrolyte and nonelectrolyte solution matter

    Science.gov (United States)

    Astuti, Sri Rejeki Dwi; Suyanta, LFX, Endang Widjajanti; Rohaeti, Eli

    2017-05-01

    The demanding of assessment in learning process was impact by policy changes. Nowadays, assessment is not only emphasizing knowledge, but also skills and attitudes. However, in reality there are many obstacles in measuring them. This paper aimed to describe how to develop integrated assessment instrument and to verify instruments' validity such as content validity and construct validity. This instrument development used test development model by McIntire. Development process data was acquired based on development test step. Initial product was observed by three peer reviewer and six expert judgments (two subject matter experts, two evaluation experts and two chemistry teachers) to acquire content validity. This research involved 376 first grade students of two Senior High Schools in Bantul Regency to acquire construct validity. Content validity was analyzed used Aiken's formula. The verifying of construct validity was analyzed by exploratory factor analysis using SPSS ver 16.0. The result show that all constructs in integrated assessment instrument are asserted valid according to content validity and construct validity. Therefore, the integrated assessment instrument is suitable for measuring critical thinking abilities and science process skills of senior high school students on electrolyte solution matter.

  9. Rotational Diffusion of Nonpolar and Ionic Solutes in 1-Alkyl-3-methylimidazolium Tetrafluoroborate-LiBF4 Mixtures: Does the Electrolyte Induce the Structure-Making or Structure-Breaking Effect?

    Science.gov (United States)

    Prabhu, Sugosh R; Dutt, G B

    2015-12-03

    Rotational diffusion of three structurally similar solutes, 9-phenylanthracene (9-PA), fluorescein (FL), and rhodamine 110 (R110), has been investigated in 1-butyl-3-methylimidazolium tetrafluoroborate-lithium tetrafluoroborate ([BMIM][BF4]-LiBF4) mixtures to understand the influence of the added electrolyte on the mobility of nonpolar, anionic, and cationic solute molecules. It has been observed that the reorientation times of the nonpolar solute 9-PA become progressively shorter with an increase in the concentration of LiBF4 at a given viscosity (η) and temperature (T). In the case of ionic solutes also, a decrease in the reorientation times has been observed upon the addition of the electrolyte compared to those obtained in the neat ionic liquid at a given η/T. However, this decrease is found to be independent of [LiBF4]. 9-PA being a nonpolar solute is located in the nonpolar domains of the ionic liquid. An enhancement in [LiBF4] leads to an increase in the sizes of the nonpolar domains resulting in the faster rotation of the solute. Anionic solute FL and cationic solute R110, which are located in the ionic region experience specific interactions with the cation and anion of the ionic liquid, respectively. In the presence of electrolyte, however, the strengths of these specific interactions diminish as the ions of the ionic liquid are not readily accessible to the solute molecules due to the organized structure, which results in faster rotation. These observations suggest that addition of LiBF4 induces a structure-making effect in the ionic liquid.

  10. Spherical harmonic series solution of fields excited by vertical electric dipole in earth-ionosphere cavity

    Institute of Scientific and Technical Information of China (English)

    Yuanxin WANG; Wensheng FAN; Weiyan PAN; Hongqi ZHANG

    2008-01-01

    The spherical harmonic series expression of electromagnetic fields excited by ELF/SLF vertical electric dipole in the spherical earth-ionosphere cavity is derived when the earth and ionosphere are regarded as non-ideal conductors. A method of speeding numerical convergence has been presented. The electromagnetic fields in the cavity are calculated by this algorithm, and the results show that the electromagnetic fields between the earth and the ionosphere are the sum of two traveling waves in the SLF band. Moreover, the results are in complete agreement with that of the well-known spherical second-order approximation in the SLF band. The electromagnetic fields in the cavity are a type of standing wave in the ELF band and the variation of the amplitude versus frequency coincides with Schumann's resonance.

  11. Micellization behavior of mixtures of amphiphilic promazine hydrochloride and cationic aniline hydrochloride in aqueous and electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rub, Malik Abdul; Azum, Naved; Asiri, Abdullah M. [King Abdulaziz University, Jeddah (Saudi Arabia); Khan, Farah [Aligarh Muslim University, Aligarh (India); Al-Sehemi, Abdullah G. [Research Center for Advanced Materials Science, King Khalid University, Abha (Saudi Arabia)

    2015-10-15

    We studied the influence of cationic hydrotrope aniline hydrochloride on the micellization behavior of cationic amphiphilic phenothiazine drug promazine hydrochloride in the presence and absence of 50mmol kg{sup -1} NaCl. The experimental critical micelle concentration (CMC) values came out to be lower than ideal CMC (CMCid) values, signifying attractive interactions between the two components in mixed micelles. NaCl further decreases the CMC of pure PMZ and aniline hydrochloride as well as their mixture due to screening of the electrostatic repulsion among the polar head groups. The bulk properties of solution were examined by using different theoretical models for justification and comparison of results. The micellar mole fraction of aniline hydrochloride (X{sup Rub}{sub ,} X{sup M}{sub 1}, X{sup Rod}{sub 1} and X{sup id}{sub 1}) was evaluated by different proposed models, showing greater contribution of hydrotrope in mixed micelle. The negative values of interaction parameter (β) indicate synergistic interactions and negative values of β further decrease by the addition of salt in mixed systems. From the CMC values as a function of temperature, various thermodynamic properties have been evaluated and discussed in detail.

  12. Charge-patterning phase transition on a surface lattice of titratable sites adjacent to an electrolyte solution

    Science.gov (United States)

    Shore, Joel; Thurston, George

    We discuss a model for a charge-patterning phase transition on a two-dimensional square lattice of titratable sites, here regarded as protonation sites, placed on a square lattice in a dielectric medium just below the planar interface between this medium and an aqueous salt solution. Within Debye-Huckel theory, the analytical form of the electrostatic repulsion between protonated sites exhibits an approximate inverse cubic power-law decrease beyond short distances. The problem can thus be mapped onto the two-dimensional antiferromagnetic Ising model with this longer-range interaction, which we study with Monte Carlo simulations. As we increase pH, the occupation probability of a site decreases from 1 at low pH to 0 at high pH. For sufficiently-strong interaction strengths, a phase transition occurs as the occupation probability of 1/2 is approached: the charges arrange themselves into a checkerboard pattern. This ordered phase persists over a range of pH until a transition occurs back to a disordered state. This state is the analogue of the Neel state in the antiferromagnetic Ising spin model. More complicated ordered phases are expected for sufficiently strong interactions (with occupation probabilities of 1/4 and 3/4) and if the lattice is triangular rather than square. This work was supported by NIH EY018249 (GMT).

  13. Universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong electrolyte aqueous solution and its application in the NaCl-KCI-H2O system

    Institute of Scientific and Technical Information of China (English)

    Weijie Zhao; Hanjie Guo; Xuemin Yang; higang Dan

    2008-01-01

    A universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong elec-trolyte aqueous solution has been developed based on the ion and molecule coexistence theory, and verified in the NaCl-KCl-H2Oternary system at 298.15 K, To compare the difference of the thermodynamic model in binary and ternary strong electrolyte aqueous solutions, the mass action concentrations of components in the NaCI-H20 binary strong electrolyte aqueous solution were also com-puted at 298.15K. A transformation coefficient was required to compare the calculated mass action concentration and reported activ-ity because they were obtained at different standard states and concentration units. The results show that the transformation coeffi-cients between calculated mass action concentrations and reported activities of the same components change in a very narrow range.The calculated mass action concentrations of components in the NaCl-H2O and NaCl-KCl-H2O systems are in good agreement with the reported activities. This indicates that the developed thermodynamic model can reflect the structural characteristics of solutions,and the mass action concentration also strictly follows the mass action law.

  14. On-ice sweat rate, voluntary fluid intake, and sodium balance during practice in male junior ice hockey players drinking water or a carbohydrate-electrolyte solution.

    Science.gov (United States)

    Palmer, Matthew S; Logan, Heather M; Spriet, Lawrence L

    2010-06-01

    This study evaluated the repeatability of hydration and sweat measurements taken during on-ice hockey practices with players drinking only water, and determined whether having only a carbohydrate-electrolyte solution (CES) to drink during practices decreased fluid intake or affected other hydration and (or) sweat measures. All testing was conducted on elite players of an Ontario Hockey League team (+/-SE; mean age, 17.6 +/- 0.3 years; mean height, 182.9 +/- 1.4 cm; mean body mass, 83.0 +/- 1.7 kg). Players were studied 3 times over the course of 6 weekly on-ice practices (+/-SE; mean playing time, 1.58 +/- 0.07 h; mean temperature, 11.4 +/- 0.8 degrees C; mean relative humidity, 52% +/- 3%). There was strong repeatability of the measured hydration and sweat parameters between 2 similar on-ice practices when players drank only water. Limiting the players to drinking only a CES (as opposed to water) did not decrease fluid intake during practice (+/-SE; mean CES intake, 0.72 +/- 0.07 L.h-1 vs. mean water intake, 0.82 +/- 0.08 L.h-1) or affect sweat rate (1.5 +/- 0.1 L.h-1 vs. 1.5 +/- 0.1 L.h-1), sweat sodium concentration (72.4 +/- 5.6 mmol.L-1 vs. 73.0 +/- 4.4 mmol.L-1), or percent body mass loss (1.1% +/- 0.2% vs. 0.9% +/- 0.2%). Drinking a CES also improved sodium balance (-2.1 +/- 0.2 g.h-1 vs. -2.6 +/- 0.3 g.h-1) and provided the players with a significant carbohydrate (43 +/- 4 g.h-1 vs. 0 +/- 0 g.h-1) during practice. In summary, a single field sweat test during similar on-ice hockey practices in male junior hockey players is sufficient to evaluate fluid and electrolyte balance. Also, a CES does not affect voluntary fluid intake during practice, compared with water, in these players. The CES provided some salt to offset the salt lost in sweat, and carbohydrate, which may help maintain physical and mental performance in the later stages of practice.

  15. Electrokinetic effect of the Loma Prieta earthquake calculated by an entire-Earth FDTD solution of Maxwell's equations

    Science.gov (United States)

    Simpson, Jamesina J.; Taflove, Allen

    2005-05-01

    We report what we believe to be the first three-dimensional computational solution of the full-vector Maxwell's equations for hypothesized pre-seismic electromagnetic phenomena propagated within the entire Earth-ionosphere cavity. Periodic boundary conditions are used in conjunction with a variable-cell finite-difference time-domain (FDTD) space lattice wrapping around the complete Earth-sphere and extending +/-100 km radially from sea level. This technique permits a direct time-domain calculation of round-the-world ULF/ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities/anisotropies of the excitation, ionosphere, lithosphere, and oceans. In this study, we model electrokinetic currents at depths of 2.5 km and 17 km near the hypocenter of the Loma Prieta earthquake and compare the FDTD-calculated surface magnetic field to analytical results and measurements previously reported in the literature. We accommodate the complete physics introduced by impulsive electromagnetic wave propagation through the conductive Earth, and hence illustrate the importance of solving the full Maxwell's equations when modeling current sources within the Earth's crust. Our calculated spectra agree qualitatively with those reported by Fraser-Smith et al. (1990).

  16. Electrolytes Test

    Science.gov (United States)

    ... mean? High or low electrolyte levels can be caused by several conditions and diseases. Generally, they are affected by how much is consumed in the diet and absorbed by the body, the amount of water in a person's body, and the amount eliminated ...

  17. Separating iterative solution model of generalized nonlinear dynamic least squares for data processing in building of digital earth

    Institute of Scientific and Technical Information of China (English)

    陶华学; 郭金运

    2003-01-01

    Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and reliable to process the data in building the digital earth with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method was put forward to process data in building the digital earth. A separating solution model and the iterative calculation method were used to solve the generalized nonlinear dynamic least squares problem. In fact, a complex problem can be separated and then solved by converting to two sub-problems, each of which has a single variable. Therefore the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations.

  18. Structure and dynamics of humic substances and model poly-electrolytes in solution; Structure et dynamique de substances humiques et polyelectrolytes modeles en solution

    Energy Technology Data Exchange (ETDEWEB)

    Roger, G.

    2010-09-15

    In the frame of a study about the feasibility of an underground storage of radioactive wastes, we focused on the role of degraded natural organic matter in the eventual transport of radionuclides in the environment. We are more interested by the determination of electro kinetic properties of these humic substances rather than the description of speciation reaction already widely discussed in the literature. We chose to determine the size and the charge of these humic substances thanks to an original method: high precision conductometry. This technique, associated to a suited transport theory, allows to describe the mobility of charged species in solution when taking into account the pairs interactions. We have participated in the development of this transport theory and we use it in order to determine the size and the charge of humic substances and a reference polyelectrolyte in different conditions of pH and ionic strength. All these experimental results obtained by conductometry were correlated with other experimental and theoretical methods: Atomic Force Microscopy, dynamic light scattering, laser zeta-metry and Monte-Carlo simulations. The obtained results confirm the generally admitted idea that humic substances are nano-metric entities having complexing properties towards cations and that can aggregate to form supra molecular structures. The effect of the ions present in the environment (sodium, calcium, magnesium) has been investigated. Finally the complexation of europium (which is considered as a good analogue of americium 241) has also been analysed by square wave voltammetry. (author)

  19. 受限高浓度电解质溶液的电动力学输运%Electrokinetics transport of confined electrolyte solution in high concentration

    Institute of Scientific and Technical Information of China (English)

    李堃; 袁志山; 纪安平; 司伟; 蔺卡宾; 杨浩杰; 马建; 沙菁; 陈云飞

    2016-01-01

    为了解释有关纳米通道内离子输运特性的一系列违反经典流体力学和电迁移理论的实验现象的内在机理,通过分子动力学模拟的方法,研究了受限高浓度NaCl溶液的离子电流和迁移率等电动力学输运特性。结果显示,跨膜电压和接入电阻是导致单层石墨烯纳米孔的离子电流随孔径呈线性增长的重要原因。受限电解质溶液与体态溶液的本质区别是除了固液界面的边界效应外,跨膜电压造成的局部超大电场将导致电迁移速率随电场强度增加出现非线性增长的Wien效应。同时,离子迁移率随溶液浓度升高而下降。产生这些变化的微观机理除了离子氛屏蔽效应外,还有离子对形成和离子碰撞等离子间微观相互作用。%To explain the mechanism of ion transport in nanochannel behind a series of phenomena which can not be explained by classical fluid mechanics and electrical transport theory,by all-atom molecular dynamics (MD)simulations,ionic current and ion mobility as well as other electrokinetics transport properties of confined sodium chloride solution are investigated.The results indicate that transmembrane voltage and access resistance have a significant contribution to the linear growth of the ionic current of monolayer graphene nanopore with pore diameter increasing.The essential differ-ence between confined electrolyte solution and bulk solution is that despite the boundary effect on solid-liquid interface,ultra-high localized electrical field caused by transmembrane voltage leads to the Wien effect,that is,ion mobility nonlinearly increases with electrical field rising.Furthermore, the ion mobility decreases as the bulk concentration increases.In addition to the ionic atmosphere effect,the microscopic mechanism is the interaction between ions including ion pair formation and the ion-ion collisions.

  20. Progress in Studies of Organic Electrolyte Solutions for Li Metal and Li-ion Secondary Batteries%锂及锂离子蓄电池有机电解液研究进展

    Institute of Scientific and Technical Information of China (English)

    庄全超; 刘文元; 武山; 陆兆达

    2002-01-01

      Organic electrolyte solution is the major component of Li metal and Li ion secondary batteries, and it has some important effect on the batteries’ performance, such as reversible capacity, cycle properties and safety. A review on the anode stability, cathode stability and safety of organic electrolyte solutions was presented. Emphasis was focused on the compatibility of organic electrolyte solutions with the anode and cathode.%  有机电解液是锂及锂离子蓄电池的重要组成部分,对电池许多性能如可逆容量、循环性能、安全性等有着重要的影响。本文从有机电解液的阴极稳定性、阳极稳定性以及安全性三个方面,综述当前这一领域的最新研究进展。重点论述了有机电解液与电池阴极和阳极相容性。

  1. Gradient capacitance for solid particle position detection in electrolyte

    NARCIS (Netherlands)

    Solsona, Miguel; Olthuis, Wouter; van den Berg, Albert

    2016-01-01

    The conductivity of an electrolyte is a property that depends on the mobility of charged species inside a solution. Electrolyte conductivity measurements is a technique used for the study of the electrical properties of solutions and solids inside the electrolyte. Impedance measurements enable the p

  2. Gradient capacitance for solid particle position detection in electrolyte

    NARCIS (Netherlands)

    Solsona, Miguel; Olthuis, Wouter; van den Berg, Albert

    2016-01-01

    The conductivity of an electrolyte is a property that depends on the mobility of charged species inside a solution. Electrolyte conductivity measurements is a technique used for the study of the electrical properties of solutions and solids inside the electrolyte. Impedance measurements enable the

  3. Solution Growth and Characterization of Single Crystals on Earth and in Microgravity

    Science.gov (United States)

    Aggarwal, M. D.; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Crystal growth has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high-technology devices, and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this Technical Memorandum (TM) an attempt is made to give the fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, the authors proposed a new cooled-sting technique to grow crystals in space. The authors experience from conducting two Space Shuttle solution crystal growth experiments are also detailed in this TM and the complexity of solution growth experiments to grow crystals in space are also discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that shares basic principles of the solution growth technique is given, along with some flight hardware information for growth in microgravity.

  4. Electrolytic preparation of iron from aqueous solution using solar energy%利用太阳能在水溶液中电解制铁

    Institute of Scientific and Technical Information of China (English)

    董洪波; 侯明山; 刘超; 刘润藻; 李士琦

    2012-01-01

    以太阳能电池板光伏转换所得电能为电源,采用正交试验对电解氯化亚铁溶液制取纯铁的工艺进行优化,得到最佳电解参数为:FeCl2·4H2O375g/L,pH=2.0,电流密度3 A/dm2,温度50℃.在最佳工艺下,电流效率和电沉积速率分别达到88.9%和0.45 g/h,所得铁表面光滑,呈银白色金属光泽.利用太阳能电解制铁对以后的清洁能源制铁具有一定的借鉴作用.%With the electric energy obtained by photovoltaic technology using solar-cell panels as the power supply, the process parameters for preparation of pure iron from aqueous ferrous chloride solution by electrolysis were optimized by orthogonal test as follows: FeCl2-4H2O 375 g/L, pH 2.0, current density 3 A/dm2, and temperature 50 °C. Under the optimal parameters, the current efficiency and deposition rate are up to 88.95% and 0.45 g/L respectively and the surface of the obtained iron is smooth with silvery white color and metallic luster. The electrolytic preparation of iron using solar energy gives reference to the future preparation of iron with clean energy.

  5. Enthalpies of Solution of Complexes of Rare Earth Nitrate with L-α-Histidine in Water

    Institute of Scientific and Technical Information of China (English)

    刘洋; 房艳; 高胜利; 陈三平; 史启祯

    2002-01-01

    The enthalpies of solution in water of complexes of RE(NO3)3 (RE=La~Nd, Sm~Lu, Y) with L-α-Histidine (His) were measured at 298.15 K. The standard enthalpies of formation of RE(His)3+(aq) were calculated. The "tetrad effect" regularity was observed from the curve, which is the enthalpies of solution plotted against the atomic numbers of the elements in lanthanide series.

  6. Luminescence properties of solid solutions of borates doped with rare-earth ions

    Science.gov (United States)

    Levushkina, V. S.; Mikhailin, V. V.; Spassky, D. A.; Zadneprovski, B. I.; Tret'yakova, M. S.

    2014-11-01

    The structural and luminescence properties of LuxY1 - xBO3 solid solutions doped with Ce3+ or Eu+3 have been investigated. It has been found that the solid solutions crystallize in the vaterite phase with a lutetium concentration x spectra are characterized by intensive impurity emission under excitation with the synchrotron radiation in the X-ray and ultraviolet spectral ranges. It has been shown that, as the lutetium concentration x in the LuxY1 - xBO3: Ce3+ solid solutions increases, the emission intensity smoothly decreases, which is associated with a gradual shift of the Ce3+ 5 d(1) level toward the bottom of the conduction band, as well as with a decrease in the band gap. It has been established that, in the LuxY1 - xBO3: Eu3+ solid solutions with intermediate concentrations x, the efficiency of energy transfer to luminescence centers increases. This effect is explained by the limited spatial separation of electrons and holes in the solid solutions. It has been demonstrated that the calcite phase adversely affects the luminescence properties of the solid solutions.

  7. A combined GPS/GLONASS global solution for the determination of diurnal and semi-diurnal Earth rotation variations

    Science.gov (United States)

    Englich, S.; Weber, R.; Schuh, H.

    2009-04-01

    Due to the global distribution of the IGS stations and the availability of continuous tracking data, GNSS observation data is very well suited for the investigation of high-frequency variations of the Earth rotation parameters (ERP). The majority of obtainable observations stems from the GPS system, but the number of stations equipped with combined GPS/GLONASS receivers is steadily increasing. One drawback in GPS only studies is that the orbital period of the GPS satellites is in a deep 2:1 resonance with Earth rotation. Consequently orbital errors which propagate to the ERP estimation limit the accurate determination of ERP variations in this frequency band (K1, K2). The purpose of this study is to make use of the rising availability of globally distributed GLONASS data for investigating the benefits of a combined GPS/GLONASS approach for the examination of diurnal and semi-diurnal Earth rotation variations. The observation data of 2008 from more than 120 IGS sites, of which around one third track GPS as well as GLONASS satellites, was chosen for analysis. We compared coordinate repeatabilities, ERP, and subsequently derived tidal variations calculated from a GPS stand-alone and a combined GPS/GLONASS solution.

  8. Recovery of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  9. CALCULATING ACTIVITY COEFFICIENTS OF ELECTROLYTE AQUEOUS SOLUTION WITH PERTURBATION THEORY-BASED EQUATION OF STATE%用微扰理论状态方程计算电解质水溶液的活度系数

    Institute of Scientific and Technical Information of China (English)

    李春喜; 宋红燕; 李以圭; 陆九芳

    2001-01-01

    An equation of state for electrolyte aqueous solution is developed by treating the ion-ion electrostatic and ion-solvent molecule interactions with primitive MSA and perturbation theory, respectively. The effect of the dielectric constant on the ionic chemical potential and the calculation accuracy of ionic mean activity coefficients for 2∶1 and 1∶1 type halide aqueous solution are discussed.By taking ionic Pauling diameter as ionic hard sphere diameter for anions and treating the cation hard sphere diameter as ionic strength dependent, the equation can be used to calculate ionic activity coefficients in the moderate concentration range with good accuracy.

  10. Earth Rotation Parameter Solutions using BDS and GPS Data from MEGX Network

    Science.gov (United States)

    Xu, Tianhe; Yu, Sumei; Li, Jiajing; He, Kaifei

    2014-05-01

    Earth rotation parameters (ERPs) are necessary parameters to achieve mutual transformation of the celestial reference frame and earth-fix reference frame. They are very important for satellite precise orbit determination (POD), high-precision space navigation and positioning. In this paper, the determination of ERPs including polar motion (PM), polar motion rate (PMR) and length of day (LOD) are presented using BDS and GPS data of June 2013 from MEGX network based on least square (LS) estimation with constraint condition. BDS and GPS data of 16 co-location stations from MEGX network are the first time used to estimate the ERPs. The results show that the RMSs of x and y component errors of PM and PM rate are about 0.9 mas, 1.0 mas, 0.2 mas/d and 0.3 mas/d respectively using BDS data. The RMS of LOD is about 0.03 ms/d using BDS data. The RMSs of x and y component errors of PM and PM rate are about 0.2 mas, 0.2 mas/d respectively using GPS data. The RMS of LOD is about 0.02 ms/d using GPS data. The optimal relative weight is determined by using variance component estimation when combining BDS and GPS data. The accuracy improvements of adding BDS data is between 8% to 20% for PM and PM rate. There is no obvious improvement in LOD when BDS data is involved. System biases between BDS and GPS are also resolved per station. They are very stable from day to day with the average accuracy of about 20 cm. Keywords: Earth rotation parameter; International GNSS Service; polar motion; length of day; least square with constraint condition Acknowledgments: This work was supported by Natural Science Foundation of China (41174008) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (2007B51) .

  11. Schottky junction/ohmic contact behavior of a nanoporous TiO(2) thin film photoanode in contact with redox electrolyte solutions.

    Science.gov (United States)

    Kaneko, Masao; Ueno, Hirohito; Nemoto, Junichi

    2011-01-01

    The nature and photoelectrochemical reactivity of nanoporous semiconductor electrodes have attracted a great deal of attention. Nanostructured materials have promising capabilities applicable for the construction of various photonic and electronic devices. In this paper, a mesoporous TiO(2) thin film photoanode was soaked in an aqueous methanol solution using an O(2)-reducing Pt-based cathode in contact with atmospheric air on the back side. It was shown from distinct photocurrents in the cyclic voltammogram (CV) that the nanosurface of the mesoporous n-TiO(2) film forms a Schottky junction with water containing a strong electron donor such as methanol. Formation of a Schottky junction (liquid junction) was also proved by Mott-Schottky plots at the mesoporous TiO(2) thin film photoanode, and the thickness of the space charge layer was estimated to be very thin, i.e., only 3.1 nm at -0.1 V vs Ag/AgCl. On the other hand, the presence of [Fe(CN)(6)](4-) and the absence of methanol brought about ohmic contact behavior on the TiO(2) film and exhibited reversible redox waves in the dark due to the [Fe(CN)(6)](4-/3-) couple. Further studies showed that multiple Schottky junctions/ohmic contact behavior inducing simultaneously both photocurrent and overlapped reversible redox waves was found in the CV of a nanoporous TiO(2) photoanode soaked in an aqueous redox electrolyte solution containing methanol and [Fe(CN)(6)](4-). That is, the TiO(2) nanosurface responds to [Fe(CN)(6)](4-) to give ohmic redox waves overlapped simultaneously with photocurrents due to the Schottky junction. Additionally, a second step photocurrent generation was observed in the presence of both MeOH and [Fe(CN)(6)](4-) around the redox potential of the iron complex. It was suggested that the iron complex forms a second Schottky junction for which the flat band potential (E(fb)) lies near the redox potential of the iron complex.

  12. Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions

    Directory of Open Access Journals (Sweden)

    Masao Kaneko

    2011-02-01

    Full Text Available The nature and photoelectrochemical reactivity of nanoporous semiconductor electrodes have attracted a great deal of attention. Nanostructured materials have promising capabilities applicable for the construction of various photonic and electronic devices. In this paper, a mesoporous TiO2 thin film photoanode was soaked in an aqueous methanol solution using an O2-reducing Pt-based cathode in contact with atmospheric air on the back side. It was shown from distinct photocurrents in the cyclic voltammogram (CV that the nanosurface of the mesoporous n-TiO2 film forms a Schottky junction with water containing a strong electron donor such as methanol. Formation of a Schottky junction (liquid junction was also proved by Mott–Schottky plots at the mesoporous TiO2 thin film photoanode, and the thickness of the space charge layer was estimated to be very thin, i.e., only 3.1 nm at −0.1 V vs Ag/AgCl. On the other hand, the presence of [Fe(CN6]4− and the absence of methanol brought about ohmic contact behavior on the TiO2 film and exhibited reversible redox waves in the dark due to the [Fe(CN6]4−/3− couple. Further studies showed that multiple Schottky junctions/ohmic contact behavior inducing simultaneously both photocurrent and overlapped reversible redox waves was found in the CV of a nanoporous TiO2 photoanode soaked in an aqueous redox electrolyte solution containing methanol and [Fe(CN6]4−. That is, the TiO2 nanosurface responds to [Fe(CN6]4− to give ohmic redox waves overlapped simultaneously with photocurrents due to the Schottky junction. Additionally, a second step photocurrent generation was observed in the presence of both MeOH and [Fe(CN6]4− around the redox potential of the iron complex. It was suggested that the iron complex forms a second Schottky junction for which the flat band potential (Efb lies near the redox potential of the iron complex.

  13. Tests of daily time variable Earth gravity field solutions for precise orbit determination of altimetry satellites

    Science.gov (United States)

    Rudenko, Sergei; Gruber, Christian

    2016-04-01

    This study makes use of current GFZ monthly and daily gravity field products from 2002 to 2014 based on radial basis functions (RBF) instead of time variable gravity field modeling for precise orbit determination of altimetry satellites. Since some monthly solutions are missing in the GFZ GRACE RL05a solution and in order to reach a better quality for the precise orbit determination, daily generated RBF solutions obtained from Kalman filtered GRACE data processing and interpolated in case of gaps have been used. Moreover, since the geopotential coefficients of low degrees are better determined using SLR observations to geodetic satellites like Lageos, Stella, Starlette and Ajisai than from GRACE observations, these terms are co-estimated in the RBF solutions by using apriori SLR-derived values up to degree and order 4. Precise orbits for altimetry satellites Envisat (2002-2012), Jason-1 (2002-2013) and Jason-2 (2008-2014) are then computed over the given time intervals using this approach and compared with the orbits obtained when using other models such as EIGEN-6S4. An analysis of the root-mean-square values of the observation fits of SLR and DORIS observations and the orbit arcs overlaps will allow us to draw a conclusion on the quality of the RBF solution and to use these new trajectories for sea level trend estimates and geophysical application.

  14. Electrolyte for zinc anode batteries and method of making same

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, M.

    1980-09-23

    A battery is described that has a zinc or zinc alloy anode, a metal oxide or hydroxide cathode and an alkaline electrolyte comprising a solution of a salt formed by the reaction of one or more acids selected from the group consisting of boric acid, phosphoric acid and arsenic acid with an alkali or earth alkali hydroxide present in a sufficient amount to produce a stoichiometric excess of hydroxide to acid in the range of 0.02 to 3.0 equivalents per liter.

  15. The Shortlist Method for fast computation of the Earth Mover's Distance and finding optimal solutions to transportation problems.

    Directory of Open Access Journals (Sweden)

    Carsten Gottschlich

    Full Text Available Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.

  16. The Shortlist Method for fast computation of the Earth Mover's Distance and finding optimal solutions to transportation problems.

    Science.gov (United States)

    Gottschlich, Carsten; Schuhmacher, Dominic

    2014-01-01

    Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.

  17. Electric battery cell, system and method. [ambient temperature, dithionite salt in electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, R.E.

    1979-05-15

    An ambient-temperature electric cell of primary and secondary nature, characterized by the use of the dithionite salt of an active (alkali or an alkaline earth) metal as the charging agent, is described along with processes for manufacturing and for operating it. The dithionite salt is dissolved and suspended in an anhydrous electrolyte comprised of a suitable solvent, which may also contain another salt of the same active metal and may be saturated with sulfur dioxide. To form the cell, a sealed and evacuated enclosure having a negative electrode and a positive current-gathering electrode is filled with the electrolyte and subjected to a charging current sufficient to plate the active metal onto the negative electrode, while the positive electrode is saturated with sulfur dioxide. In the case of a secondary cell, the dithionite produced upon discharge is available as a partially dissolved and suspended salt in the electrolyte. Such availability may be enhanced by a system for forced circulation of the electrolyte. In the case of a primary cell, the final cell potential and discharge characteristics may be enhanced by replacing the dithionite electrolyte with other anhydrous electrolyte solutions (e.g., sulfuryl chloride or thionyl chloride) once the lithium has been plated out. The cell is characterized by extremely low internal resistance, long shelf life, and excellent performance over a wide temperature range. 72 claims.

  18. Lithium ion solvation by ethylene carbonates in lithium-ion battery electrolytes, revisited by density functional theory with the hybrid solvation model and free energy correction in solution.

    Science.gov (United States)

    Cui, Wei; Lansac, Yves; Lee, Hochun; Hong, Seung-Tae; Jang, Yun Hee

    2016-09-14

    Complex formation between lithium (Li(+)) ions and electrolyte molecules would affect the ionic conductivity through the electrolyte in lithium-ion batteries (LIBs). We hence revisit the solvation number of Li(+) in the most commonly used ethylene carbonate (EC) electrolyte. The solvation number n of Li(+)(EC)n in the first solvation shell of Li(+) is estimated on the basis of the free energy calculated by the density functional theory combined with a hybrid solvation model where the explicit solvation shell of Li(+) is immersed in a free volume of an implicit bulk solvent. This new hybrid solvation (implicit and explicit) model predicts the most probable solvation number (n = 4) and solvation free energy (-91.3 kcal mol(-1)) of Li(+) in a good agreement with those predicted by calculations employing simpler solvation models (either implicit or explicit). The desolvation (n = 2) of Li(0)(EC)n upon reduction near anodes is also well described with this new hybrid model.

  19. Electrolytic fixer.

    Science.gov (United States)

    Stevens

    1982-12-01

    Interest in the recovery of silver from radiographic film generates a need to understand the operating procedures of recovery units utilizing the electrolytic fixer principle. Tailing or terminal units and recirculation units using electrolysis are evaluated. Difficulties encountered in the number of Coulombs applied to a specific amount of fixer are discussed. Reduction of sulfiding as a result of electrolysis and variations in film volumes are noted. The quantity and quality of silver collected can be improved by being aware of alterations in chemical activity used in a silver recovery program.

  20. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?

    Science.gov (United States)

    Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.

    2015-01-01

    The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.

  1. Probing Earth's conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution

    Science.gov (United States)

    Kuvshinov, Alexey; Matzka, Jürgen; Poedjono, Benny; Samrock, Friedemann; Olsen, Nils; Pai, Sudhir

    2016-11-01

    The electric conductivity distribution of the Earth's crust and upper mantle provides a key to unraveling its structure. Information can be obtained from vector data time series of the natural variations of the magnetic and electric field in a directional stable reference frame. Applying this method, known as magnetotellurics, to oceanic regions is challenging since only vector instruments placed at the sea bottom can provide such data. Here, we discuss a concept of marine induction surveying which is based on sea-surface scalar magnetic field measurements from a modern position-keeping platform. The concept exploits scalar magnetic responses that relate variations of the scalar magnetic field at the survey sites with variations of the horizontal magnetic field at a reference site. A 3-D model study offshore Oahu Island (Hawaii) demonstrates that these responses are sensitive to the conductivity structure beneath the ocean. We conclude that the sensitivity, depending on the bathymetry gradient, is typically largest near the coast offshore. We show that such sea-surface marine induction surveys can be performed with the Wave Glider, an easy-to-deploy, autonomous, energy-harvesting floating platform with position-keeping capability.[Figure not available: see fulltext.

  2. Laboratory Evaluation of the Clean Earth Technologies Decontamination Solutions for Chemical and Biological Agents

    Science.gov (United States)

    2008-01-01

    about a 6-hr shelf - life before simulant decontamination efficacy begins to decline. The purpose of this test was to evaluate two CET decontamination...Store in a sealed beaker 2) PeridoxTM stock - Dilute (1: 10) CET in water 3) Titrant - 0.1 N sodium thiosulfate 4) Potassium iodide crystals...Procedure: To 50 mL of water in a beaker, add 1 mL of dilute CET followed by 2.5 mL of acid solution, and then 0.6 g of potassium iodide crystals. Titrate

  3. Electrodeposition of Fe powder from acid electrolytes

    Directory of Open Access Journals (Sweden)

    VESNA M. MAKSIMOVIC

    2008-08-01

    Full Text Available Polarization characteristics of the electrodeposition processes of Fe powders from sulfate and chloride electrolytes and the morphology of the obtained powders were investigated. The morphology depended on the anion presence in the electrolyte but not on the current density in the investigated range. A characteristic feature of the dendritic powder with cauliflower endings obtained from sulfate electrolyte is the presence of cone-like cavities and the crystallite morphology of the powders surface. On the other hand, Fe powders electrodeposited from chloride electrolyte appear in the form of agglomerates. A soap solution treatment applied as a method of washing and drying provides good protection from oxidation of the powders.

  4. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth

    DEFF Research Database (Denmark)

    Pan, E.; Chen, J.Y.; Bevis, M.

    2015-01-01

    the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth......We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations...... to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core...

  5. Stability Study of Rare Earth Elements in Electroless Nickel Solution%无电解镀镍液稳定性研究

    Institute of Scientific and Technical Information of China (English)

    邵国强

    2014-01-01

    Some research developments about rare earth elements on the stability of electroless nickel solution was reviewed. Influence factor and action mechanism of rare earth elements were also introduced.%综述了稀土在提高无电解镀镍液稳定性中的研究进展,并分析了稀土促进镀液稳定性的影响因素和作用机理。

  6. Comparison of activity coefficient models for electrolyte systems

    DEFF Research Database (Denmark)

    Lin, Yi; ten Kate, Antoon; Mooijer, Miranda

    2010-01-01

    Three activity coefficient models for electrolyte solutions were evaluated and compared. The activity coefficient models are: The electrolyte NRTL model (ElecNRTL) by Aspentech, the mixed solvent electrolyte model (MSE) by OLI Systems Inc., and the Extended UNIQUAC model from the Technical Univer...

  7. Fundamental solution of Laplace's equation in oblate spheroidal coordinates and Galerkin's matrix for Neumann's problem in Earth's gravity field studies

    Science.gov (United States)

    Holota, Petr; Nesvadba, Otakar

    2015-04-01

    In this paper the reciprocal distance is used for generating Galerkin's approximations in the weak solution of Neumann's problem that has an important role in Earth's gravity field studies. The reciprocal distance has a natural tie to the fundamental solution of Laplace's partial differential equation and in the paper it is represented by means of an expansion into a series of oblate spheroidal harmonics. Subsequently, the gradient vector of the reciprocal distance is constructed. In the computation of its components the expansion mentioned above is employed. The paper then focuses on the scalar product of reciprocal distance gradients in two different points and in particular on a series representation of a volume integral of the scalar product spread over an unbounded domain given by the exterior of an oblate spheroid (oblate ellipsoid of revolution). The integral yields the entries of Galerkin's matrix. The numerical interpretation of all the expansions used as well as the respective software implementation within the OpenCL framework is treated, which concerns also a numerical evaluation of Legendre functions of a real and an imaginary argument. In parallel an approximate closed formula expressing the entries of Galerkin's matrix (with an accuracy up to terms multiplied by the square of numerical eccentricity) is derived for convenience and comparison. The paper is added extensive numerical examples that illustrate the approach applied and demonstrate the accuracy of the derived formulas. Aspects related to practical applications are discussed.

  8. Polymeric electrolytes for ambient temperature lithium batteries

    Science.gov (United States)

    Farrington, G. C.

    1987-09-01

    During this reporting period a number of novel solid polymer electrolytes formed by salts of multivalent cations and polyethylene oxide (PEO) have been prepared and characterized. These materials are of interest not only because of their potential ionic conductivities, but also because some of them may have electronic conductivity and oxidizing power which would be useful for novel electrode materials in all-solid-state batteries. Two broad classes of materials were investigated: PEO solutions of Zn(2), Cd(2), and Pb(2), all of which are potential electrolytes for solid-state batteries, and PEO solutions of transition metal salts, which are of interest as possible cathode materials. Mixed compositions containing both divalent cations and lithium ions were also prepared. Electrolytes formed with small, highly-polarizing ions, such as Mg(2) and Ca(2), are essentially pure anion conductors. Electrolytes containing Zn(2) behave similarly, unless they are hydrated, in which case the Zn(2) ions are quite mobile. Electrolytes formed with larger, more polarizable cations, such as Pb(2) and Cd(2), conduct both anions and cations. Solutions of salts of transition metal cations form a third group of electrolytes. Of the electrolytes investigated so far, those formed with Ni(++) salts are the most unusual. It appears as if the transport number of Ni(2) and the electrolyte conductivity can be greatly enhanced by controlling the hydration and dehydration of the polymer.

  9. Physicochemical properties of rare earth doped ceria Ce0.9Ln0.1O1.95 (Ln = Nd, Sm, Gd) as an electrolyte material for IT-SOFC/SOEC

    Science.gov (United States)

    Chaubey, Nityanand; Wani, B. N.; Bharadwaj, S. R.; Chattopadhyaya, M. C.

    2013-06-01

    Nanosized crystallites of rare earth doped ceria Ce0.9Ln0.1O1.95 (Ln = Nd, Sm, Gd) a promising electrolyte material for Intermediate Temperature - Solid Oxide Fuel Cells/electrolysis cells have been synthesized by standard ceramic route. Detection of impurities in the samples was done by FTIR spectroscopy. X-ray diffraction studies were used for the determination of phase purity, crystal structure and average crystallite size of the samples. Kinetics involved in phase formation has been discussed. Raman study showed a major band around 465 cm-1 in all the samples, which is attributed to the cubic fluorite structure of ceria. It was also found that for samples Ce0.9Ln0.1O1.95 (Ln = Nd, Sm, Gd) the frequency of F2g shifts to lower value. Electrochemical impedance spectroscopy has been used to measure the ionic conductivity of the samples at elevated temperatures. The Gd doped sample showed the highest grain boundary and total conductivity in comparison to Sm and Nd doped sample. Bulk thermal expansion behavior, sintered densities and micro structural features of the samples have also been studied.

  10. An aqueous electrolyte of the widest potential window and its superior capability for capacitors

    Science.gov (United States)

    Tomiyasu, Hiroshi; Shikata, Hirokazu; Takao, Koichiro; Asanuma, Noriko; Taruta, Seiichi; Park, Yoon-Yul

    2017-03-01

    A saturated aqueous solution of sodium perchlorate (SSPAS) was found to be electrochemically superior, because the potential window is remarkably wide to be approximately 3.2 V in terms of a cyclic voltammetry. Such a wide potential window has never been reported in any aqueous solutions, and this finding would be of historical significance for aqueous electrolyte to overcome its weak point that the potential window is narrow. In proof of this fact, the capability of SSPAS was examined for the electrolyte of capacitors. Galvanostatic charge-discharge measurements showed that a graphite-based capacitor containing SSPAS as an electrolyte was stable within 5% deviation for the 10,000 times repetition at the operating voltage of 3.2 V without generating any gas. The SSPAS worked also as a functional electrolyte in the presence of an activated carbon and metal oxides in order to increase an energy density. Indeed, in an asymmetric capacitor containing MnO2 and Fe3O4 mixtures in the positive and negative electrodes, respectively, the energy density enlarged to be 36.3 Whkg-1, which belongs to the largest value in capacitors. Similar electrochemical behaviour was also confirmed in saturated aqueous solutions of other alkali and alkaline earth metal perchlorate salts.

  11. Electrolytes and thermoregulation

    Science.gov (United States)

    Nielsen, B.; Greenleaf, J. E.

    1977-01-01

    The influence of ions on temperature is studied for cases where the changes in ionic concentrations are induced by direct infusion or injection of electrolyte solutions into the cerebral ventricles or into specific areas of brain tissue; intravenous infusion or injection; eating food or drinking solutions of different ionic composition; and heat or exercise dehydration. It is shown that introduction of Na(+) and Ca(++) into the cerebral ventricles or into the venous system affects temperature regulation. It appears that the specific action of these ions is different from their osmotic effects. It is unlikely that their action is localized to the thermoregulatory centers in the brain. The infusion experiments demonstrate that the changes in sodium balance occurring during exercise and heat stress are large enough to affect sweat gland function and vasomotor activity.

  12. Solid electrolytes for fluoride ion batteries: ionic conductivity in polycrystalline tysonite-type fluorides.

    Science.gov (United States)

    Rongeat, Carine; Reddy, M Anji; Witter, Raiker; Fichtner, Maximilian

    2014-02-12

    Batteries based on a fluoride shuttle (fluoride ion battery, FIB) can theoretically provide high energy densities and can thus be considered as an interesting alternative to Li-ion batteries. Large improvements are still needed regarding their actual performance, in particular for the ionic conductivity of the solid electrolyte. At the current state of the art, two types of fluoride families can be considered for electrolyte applications: alkaline-earth fluorides having a fluorite-type structure and rare-earth fluorides having a tysonite-type structure. As regard to the latter, high ionic conductivities have been reported for doped LaF3 single crystals. However, polycrystalline materials would be easier to implement in a FIB due to practical reasons in the cell manufacturing. Hence, we have analyzed in detail the ionic conductivity of La(1-y)Ba(y)F(3-y) (0 ≤ y ≤ 0.15) solid solutions prepared by ball milling. The combination of DC and AC conductivity analyses provides a better understanding of the conduction mechanism in tysonite-type fluorides with a blocking effect of the grain boundaries. Heat treatment of the electrolyte material was performed and leads to an improvement of the ionic conductivity. This confirms the detrimental effect of grain boundaries and opens new route for the development of solid electrolytes for FIB with high ionic conductivities.

  13. Studies on extracting solutions of endohedral rare-earth metallofullerenes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    孙大勇; 刘志强; 刘子阳; 郭兴华; 徐文国; 刘淑莹

    1997-01-01

    Thirteen extracting solutions of rare-earth metallofullerenes containing La,Ce,Pr,Nd Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm and Yb respectively have been investigated by means of matrix-assisted laser desorpuon/ ionization time-of-flight mass spectrometry.The influences of the positive-ion/negative-ion mode,laser intensity,ma trix and mass discrimination to the analytical results are studied,based on which the optimal analytical conditions have been determined.The results show that the extracting solutions contain large quantities of rare-earth metallofullerenes besides empty fullerenes.On the basis of comparing their relative intensities,the different structure stabilities and solubilities of metallofullerenes with different rare-earth metals encapsulated into the fullerene cages,as well as some possible reasons to those differences,are discussed.

  14. Chemically Inhomogeneous RE-Fe-B Permanent Magnets with High Figure of Merit: Solution to Global Rare Earth Criticality.

    Science.gov (United States)

    Jin, Jiaying; Ma, Tianyu; Zhang, Yujing; Bai, Guohua; Yan, Mi

    2016-08-24

    The global rare earth (RE) criticality, especially for those closely-relied Nd/Pr/Dy/Tb in the 2:14:1-typed permanent magnets (PMs), has triggered tremendous attempts to develop new alternatives. Prospective candidates La/Ce with high abundance, however, cannot provide an equivalent performance due to inferior magnetic properties of (La/Ce)2Fe14B to Nd2Fe14B. Here we report high figure-of-merit La/Ce-rich RE-Fe-B PMs, where La/Ce are inhomogeneously distributed among the 2:14:1 phase. The resultant exchange coupling within an individual grain and magnetostatic interactions across grains ensure much superior performance to the La/Ce homogeneously distributed magnet. Maximum energy product (BH)max of 42.2 MGOe is achieved even with 36 wt. % La-Ce incorporation. The cost performance, (BH)max/cost, has been raised by 27.1% compared to a 48.9 MGOe La/Ce-free commercial magnet. The construction of chemical heterogeneity offers recipes to develop commercial-grade PMs using the less risky La/Ce, and also provides a promising solution to the REs availability constraints.

  15. Chemically Inhomogeneous RE-Fe-B Permanent Magnets with High Figure of Merit: Solution to Global Rare Earth Criticality

    Science.gov (United States)

    Jin, Jiaying; Ma, Tianyu; Zhang, Yujing; Bai, Guohua; Yan, Mi

    2016-08-01

    The global rare earth (RE) criticality, especially for those closely-relied Nd/Pr/Dy/Tb in the 2:14:1-typed permanent magnets (PMs), has triggered tremendous attempts to develop new alternatives. Prospective candidates La/Ce with high abundance, however, cannot provide an equivalent performance due to inferior magnetic properties of (La/Ce)2Fe14B to Nd2Fe14B. Here we report high figure-of-merit La/Ce-rich RE-Fe-B PMs, where La/Ce are inhomogeneously distributed among the 2:14:1 phase. The resultant exchange coupling within an individual grain and magnetostatic interactions across grains ensure much superior performance to the La/Ce homogeneously distributed magnet. Maximum energy product (BH)max of 42.2 MGOe is achieved even with 36 wt. % La-Ce incorporation. The cost performance, (BH)max/cost, has been raised by 27.1% compared to a 48.9 MGOe La/Ce-free commercial magnet. The construction of chemical heterogeneity offers recipes to develop commercial-grade PMs using the less risky La/Ce, and also provides a promising solution to the REs availability constraints.

  16. Energy-Dispersive X-Ray Spectroscopy Mapping of Porous Coatings Obtained on Titanium by Plasma Electrolytic Oxidation in a Solution Containing Concentrated Phosphoric Acid with Copper Nitrate

    Directory of Open Access Journals (Sweden)

    Rokosz K.

    2016-09-01

    Full Text Available The SEM and EDS study results of coatings obtained on titanium by Plasma Electrolytic Oxidation (PEO in the electrolytes containing of 600 g copper nitrate in 1 liter of concentrated phosphoric acid at 450 V for 1 and 3 minutes, are presented. The obtained coatings are porous and consist mainly of phosphorus within titanium and copper. It was found that the time of PEO oxidation has impact on the chemical composition of the coatings. The longer time of PEO treatment, the higher amount of copper inside coating. The PEO oxidation of titanium for 1 minute has resulted in the creation of coating, on which 3 phases where found, which contained up to 13.4 wt% (9 at% of copper inside the phosphate structure. In case of 1 minute PEO treatment of titanium, the 2 phases were found, which contained up to 13 wt% (8 at% of copper inside the phosphate structure. The copper-to-phosphorus ratios after 1 minute processing belong to the range from 0.28 by wt% (0.14 by at% to 0.47 by wt% (0.23 by at%, while after 3 minutes the same ratios belong to the range from 0.27 by wt% (0.13 by at% to 0.35 by wt% (0.17 by at%. In summary, it should be stated that the higher amounts of phosphorus and copper were recorded on titanium after PEO oxidation for 3 minutes than these after 1 minute.

  17. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Department of Chemistry and Chemical Engineering, Huaihua College, Huaihua 418008 (China); Yu, G., E-mail: yuganghnu@163.co [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ou, A.L.; Hu, L.; Xu, W.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2011-06-15

    Highlights: {yields} Designed an amperometric hydrogen sensor with double electrolytes. {yields} Explained the principle of determining hydrogen permeation rate. {yields} Verified good stability, reproducibility and correctness of the developed sensor. {yields} Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm{sup -3} KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  18. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of cold rolled steel in 1.0 M HCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Li Xianghong [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China)], E-mail: xianghong-li@163.com; Deng Shuduan [Department of Wood Science and Technology, Southwest Forestry University, Kunming 650224 (China); Fu Hui [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China); Mu Guannan [Department of Chemistry, Yunnan University, Kunming 650091 (China)

    2008-12-15

    The synergism between rare earth cerium(IV) ion and vanillin on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution was first investigated by weight loss, potentiodynamic polarization, ultraviolet and visible spectrophotometer (UV-vis), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The results revealed that vanillin had a moderate inhibitive effect, and the adsorption of vanillin obeyed the Temkin adsorption isotherm. For rare earth Ce{sup 4+}, it had a negligible effect. However, incorporation of Ce{sup 4+} with vanillin significantly improved the inhibition performance, and produced strong synergistic inhibition effect. Depending on the results, the synergism mechanism was proposed.

  19. DyeTiO2 interfacial structure of dye-sensitised solar cell working electrodes buried under a solution of I(-)/I3(-) redox electrolyte.

    Science.gov (United States)

    McCree-Grey, Jonathan; Cole, Jacqueline M; Holt, Stephen A; Evans, Peter J; Gong, Yun

    2017-08-17

    Dye-sensitised solar cells (DSCs) have niche prospects for electricity-generating windows that could equip buildings for energy-sustainable future cities. However, this 'smart window' technology is being held back by a lack of understanding in how the dye interacts with its device environment at the molecular level. A better appreciation of the dyeTiO2 interfacial structure of the DSC working electrodes would be particularly valuable since associated structure-function relationships could be established; these rules would provide a 'toolkit' for the molecular engineering of more suitable DSC dyes via rational design. Previous materials characterisation efforts have been limited to determining this interfacial structure within an environment exposed to air or situated in a solvent medium. This study is the first to reveal the structure of this buried interface within the functional device environment, and represents the first application of in situ neutron reflectometry to DSC research. By incorporating the electrolyte into the structural model of this buried interface, we reveal how lithium cations from the electrolyte constituents influence the dyeTiO2 binding configuration of an organic sensitiser, MK-44, via Li(+) complexation to the cyanoacrylate group. This dye is the molecular congener of the high-performance MK-2 DSC dye, whose hexa-alkyl chains appear to stabilise it from Li(+) complexation. Our in situ neutron reflectometry findings are built up from auxiliary structural models derived from ex situ X-ray reflectometry and corroborated via density functional theory and UV/vis absorption spectroscopy. Significant differences between the in situ and ex situ dyeTiO2 interfacial structures are found, highlighting the need to characterise the molecular structure of DSC working electrodes while in a fully assembled device.

  20. Electrical performance of silicon-on-insulator field-effect transistors with multiple top-gate organic layers in electrolyte solution.

    Science.gov (United States)

    Khamaisi, Bassam; Vaknin, Oshri; Shaya, Oren; Ashkenasy, Nurit

    2010-08-24

    The utilization of field-effect transistor (FET) devices in biosensing applications have been extensively studied in recent years. Qualitative and quantitative understanding of the contribution of the organic layers constructed on the device gate, and the electrolyte media, on the behavior of the device is thus crucial. In this work we analyze the contribution of different organic layers on the pH sensitivity, threshold voltage, and gain of a silicon-on-insulator based FET device. We further monitor how these properties change as function of the electrolyte screening length. Our results show that in addition to electrostatic effects, changes in the amphoteric nature of the surface also affect the device threshold voltage. These effects were found to be additive for the first (3-aminopropyl)trimethoxysilane linker layer and second biotin receptor layer. For the top streptavidin protein layer, these two effects cancel each other. The number and nature of amphoteric groups on the surface, which changes upon the formation of the layers, was shown also to affect the pH sensitivity of the device. The pH sensitivity reduces with the construction of the first two layers. However, after the formation of the streptavidin protein layer, the protein's multiple charged side chains induce an increase in the sensitivity at low ionic strengths. Furthermore, the organic layers were found to influence the device gain due to their dielectric properties, reducing the gain with the successive construction of each layer. These results demonstrate the multilevel influence of organic layers on the behavior of the FET devices.

  1. Tunable optical properties of colloidal quantum dots in electrolytic environments.

    Science.gov (United States)

    Ramadurai, D; Kohanpour, B; Alexson, D; Shi, P; Sethuraman, A; Li, Y; Saini, V; Dutta, M; Stroscio, M A

    2004-12-01

    The absorption spectra of colloidal cadmium sulfide quantum dots in electrolytic solutions are found to manifest a shift in the absorption threshold as the concentration of the electrolyte is varied. These results are consistent with a shift in the absorption threshold that would be caused by electrolytic screening of the field caused by the intrinsic spontaneous polarisation of these würtzite structured quantum dots. These electrolyte-dependent absorption properties provide a potential means of gaining insights on the variable extracellular and intracellular electrolytic concentrations that are present in biological systems.

  2. Development of Doped Lanthanum Gallate Solid Electrolytes

    Institute of Scientific and Technical Information of China (English)

    蒋凯; 王海霞; 郑立庆; 杨林; 孟健; 苏锵

    2003-01-01

    Development of the doped lanthanum gallate solid electrolytes in the recent years was reviewed. The structure and oxygen ion transference mechanism were discussed. Effects of alkali earths, transition metals, and impurities on electrical conductivity of the doped lanthanum gallates were also discussed. The applications of doped lanthanum gallate were described. The current problems and corresponding strategies were explored.

  3. Impact resistant electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Veith, Gabriel M.; Armstrong, Beth L.; Tenhaeff, Wyatt E.; Dudney, Nancy J.

    2017-03-07

    A passively impact resistant composite electrolyte composition includes an electrolyte solvent, up to 2M of an electrolyte salt, and shear thickening ceramic particles having a polydispersity index of no greater than 0.1, an average particle size of in a range of 50 nm to 1 .mu.m, and an absolute zeta potential of greater than .+-.40 mV.

  4. Study on rare earth electrolyte of SDC

    Institute of Scientific and Technical Information of China (English)

    YAN

    2010-01-01

    The grain boundaries of polycrystalline oxygen ion conductors presented a blocking effect on the oxygen ionic transport across them.It was found that the apparent specific grain boundary conductivity was 2-3 orders of magnitude lower than the bulk conductivity in the temperature range of 200-500 ℃ for normal purity Ce0.85Sm0.15O1.925(SDC)with an average grain size of 320-580 nm.The apparent specific grain boundary conductivity increased with decreasing average grain size.It was found that the space charge potential was nearly independent of grain size,and the reason was analyzed.The increase of the conduction path width was resportsible for the increase in the apparent specific grain boundary conductivity.

  5. Modeling Electrolytically Top-Gated Graphene

    Directory of Open Access Journals (Sweden)

    Mišković ZL

    2010-01-01

    Full Text Available Abstract We investigate doping of a single-layer graphene in the presence of electrolytic top gating. The interfacial phenomenon is modeled using a modified Poisson–Boltzmann equation for an aqueous solution of simple salt. We demonstrate both the sensitivity of graphene’s doping levels to the salt concentration and the importance of quantum capacitance that arises due to the smallness of the Debye screening length in the electrolyte.

  6. Effect of Magnetic Field on Crossflow Memebrane Filtration of Electrolytical Solution%磁场在膜过滤电解质溶液体系中的应用

    Institute of Scientific and Technical Information of China (English)

    舒莉; 顾春雷; 邢卫红

    2013-01-01

    Magnetic field was applied in the filtration process of electrolytical solution system by ceramic membrane. The effect of several factors on the ion permeation ratio were investigated. For sodium chloride solution, the permeate flux were not changed with magnetic filed action, but the ion permeate ratio increased in filtration process. The magnetic pole direction and increasing cross-flow velocity didn' t influence the separation performance. The effect of magnetic field on the sodium chloride filtration increased with increasing magnetic field strength, solution concentration and decreasing membrane pore size. The ion permeate ratio of calcium chloride solution and sodium sulfate solution also increased under magnetic field. The simulated suspension consisting of calcium carbonate particles and sodium chloride solution were ion cleaning of particle surface by membrane filtration. The magnetic field assisting filtration could increase the rate of cleaning ion especially for that of the lower particle concentration.%将磁场作用于陶瓷膜过滤电解质溶液体系,改变水溶液中离子的水合状态.磁场对膜过滤通量没有影响,但可以提高过滤电解质溶液时的离子透过率.磁场作用方向和膜面流速的改变对离子透过率的影响不明显.增大磁场强度、提高电解质溶液的浓度,减小膜孔径时,磁场对过滤过程的影响作用更明显.采用膜过滤的方法清洗颗粒表面的离子时,加入磁场的作用可以提高离子洗涤的速率,且颗粒浓度比较低时,清洗速度更快.

  7. 萃取分离电解锰阳极液中锰、镁离子试验研究%Separating of Manganese and Magnesium From Electrolytic Manganese Anode Solution Using P204

    Institute of Scientific and Technical Information of China (English)

    皮露; 何克杰; 罗炎; 孙维义; 丁桑岚; 苏仕军

    2015-01-01

    电解锰过程中,阳极液中的镁离子在闭路循环中会逐渐积累,使电流效率下降,能耗增大,同时也影响电解锰产品质量。研究了用P204‐磺化煤油溶液萃取分离阳极液中的锰离子和镁离子,分别考察了 P204体积分数、有机相皂化率、水相p H、相比等参数对锰离子和镁离子萃取率的影响。结果表明,在溶液温度35℃、P204体积分数25%、有机相皂化率50%、水相p H=4.0,V o ∶V a =2∶1的最佳条件下,经4级逆流萃取,锰离子萃取率达99.5%,镁离子萃取率为31.8%。%In the process of electrolytic manganese ,the magnesium ions in anode solution will gradually accumulated in closed cycle to reduce current efficiency and increase energy consumption ,and affect the quality of electrolytic manganese product .The separation of manganese and magnesium from the electrolytic manganese anode solution using P204 in sulfonated kerosene was investigated .The influence of several parameters on the extraction rate of manganese and magnesium were examined , such as P204 volume fraction in organic phase ,saponification rate of the organic phase ,water phase pH ,the ratio of organic phase volume to water phase volume .The results suggest that under the conditions of temperature of 35 ℃ ,P204 volume fraction of 25% ,organic phase saponification rate of 50% ,water phase pH of 4 .0 ,Vo ∶Va = 2∶1 ,and four‐stages countercurrent extraction ,satisfactory extraction efficiency (99 .5% ) of manganese ion is achieved ,while the extraction of magnesium is approximately 31 .8% ,manganese ion and magnesium ion are effectively separated at a low cost .

  8. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  9. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  10. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  11. EU FP7 EREAN training network offers (c)lean recycling solutions for rare-earth magnets

    OpenAIRE

    2015-01-01

    EREAN is the European Rare Earth Magnet Recycling Network which started its activities in September 2013. It trains 15 young researchers in the direct and indirect recycling of NdFeB permanent magnets. The innovative aspect of the EREAN project is that it addresses the whole materials loop from End-of-Life consumer goods to recycling and the production of new REE magnets, with an integrated life cycle assessment. As is highlighted by the European Rare Earths Competency Network (ERECON),...

  12. EU FP7 EREAN training network offers (c)lean recycling solutions for rare-earth magnets

    OpenAIRE

    Binnemans, Koen; Jones, Peter Tom

    2015-01-01

    EREAN is the European Rare Earth Magnet Recycling Network which started its activities in September 2013. It trains 15 young researchers in the direct and indirect recycling of NdFeB permanent magnets. The innovative aspect of the EREAN project is that it addresses the whole materials loop from End-of-Life consumer goods to recycling and the production of new REE magnets, with an integrated life cycle assessment. As is highlighted by the European Rare Earths Competency Network (ERECON),...

  13. Electrolytic Passivation of Nitinol Shape Memory Alloy in Different Electrolytes

    Institute of Scientific and Technical Information of China (English)

    SU Xiang-dong; WANG Tian-min; HAO Wei-chang; HE Li

    2006-01-01

    The corrosion behavior of the nitinol alloy was studied in various corrosion media of different Cl- ion concentrations. The results demonstrate that the Cl- ion concentration has significant influences on the corrosion behavior of the nitinol alloy. In order to enhance the corrosion resistance, protective films were generated on the surface of the nitinol alloy by means of the electrochemical passivation method, for which five different electrolytic solutions were investigated. The surface analysis indicates full growth of all samples passivated in the different electrolytic solutions with layers, however, showing different morphological features. Without any defects like micro-cracks and pores, the surface of the samples passivated in the molybdate solution turns out smoother and denser than those passivated in other solutions. It is shown that the electro-chemical passivation will reduce Ni content but increase Ti content in the surface, reaching the Mole ratio of Ti:Ni = 9.01:1 on the outermost surface. Potentiodynamic polarization test demonstrates that the samples electrochemically passivated in the molybdate solution present a significant increase in breakdown potential due to titanium enrichment on the outermost surface.

  14. Electrochemical performance of nonflammable polymeric gel electrolyte containing triethylphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Lalia, Boor Singh; Fujita, Takayoshi; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan)

    2009-01-01

    Nonflammable polymeric gel electrolyte has been prepared by immobilizing 1 M LiBF{sub 4}/EC + DEC + TEP (55:25:20, v/v/v, EC: ethylene carbonate, DEC: diethyl carbonate and TEP: triethylphosphate) solution in poly(vinylidene fluoride-co-hexafluoro propylene) (PVdF-HFP) where TEP acts as a fire-retardant solvent in the gel electrolyte. The polymeric gel electrolyte has a high value of ionic conductivity of 1.76 mS cm{sup -1} at 28 C. Thermal safety calorimetry (TSC) experiments show good thermal stability of the gel electrolyte. Cyclic voltammetry and charge/discharge cycling tests were performed on LiMn{sub 2}O{sub 4}/gel electrolyte and graphite/gel electrolyte half cells. The gel electrolyte works well for graphite/LiMn{sub 2}O{sub 4} cell although some improvement in the cycleability of the graphite electrode is still needed. (author)

  15. Influence of pyrazole derivatives in I{sup -}/I{sub 3}{sup -} redox electrolyte solution on Ru(II)-dye-sensitized TiO{sub 2} solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Kusama, Hitoshi; Arakawa, Hironori [Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2005-01-31

    The influence of pyrazole additives in an I{sup -}/I{sub 3}{sup -} redox electrolyte solution on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2'-bipyridine-4-carboxylic acid, 4'-carboxylate)ruthenium(II) (N719) dye-sensitized TiO{sub 2} solar cell was studied. The current-voltage characteristics of the cell were measured using 18 different pyrazole derivatives. All of the pyrazole additives enhanced the open-circuit photovoltage (V{sub oc}) and the solar energy conversion efficiency ({eta}), but reduced the short-circuit photocurrent density (J{sub sc}). Most of the pyrazoles improved fill factor (ff). The physical and chemical properties of the pyrazoles were computationally calculated in order to elucidate the reasons for the additive effects on cell performance. The greater the partial charge of the nitrogen atom at position 2 in the pyrazole group, the larger the V{sub oc,} but the smaller the J{sub sc} values. As the dipole moment of the pyrazole derivatives increased, the V{sub oc} value increased, but the J{sub sc} value decreased. The V{sub oc} of the cell also increased as the ionization energy of the pyrazoles decreased. These results suggest that the electron donicity of the pyrazole additives affected the interaction with the nanocrystalline TiO{sub 2} photoelectrode, the I{sup -}/I{sub 3}{sup -} electrolyte, and the acetonitrile solvent, which changed the Ru(II)-dye-sensitized solar cell performance.

  16. A Flow-Through High-Pressure Electrical Conductance Cell for Determining of Ion Association of Aqueous Electrolyte Solutions at High Temperature and Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, H.; Ho, P.C.; Palmer, D.A.; Wood, R.H.

    1999-09-12

    A flow-through high-pressure electrical conductance cell was designed and constructed to measure limiting molar conductances and ion association constants of dilute aqueous solutions with high precision at high temperatures and pressures. The basic concept of the cell employs the principle developed at the University of Delaware in 1995, but overall targets higher temperatures (to 600 C) and pressures (to 300 MPa). At present the cell has been tested by measuring aqueous NaCl and LiOH solutions (10{sup {minus}3} to 10{sup {minus}5} mol.kg{sup {minus}1}) to 405 C and 33 MPa with good results.

  17. Multicomponent equations of state for electrolytes

    DEFF Research Database (Denmark)

    Lin, Yi; Thomsen, Kaj; Hemptinne, Jean-Charles de

    2007-01-01

    Four equations of state have been implemented and evaluated for multicomponent electrolyte solutions at 298.15 K and 1 bar. The equations contain terms accounting for short-range and long-range interactions in electrolyte solutions. Short range interactions are described by one of the three...... equations of state, Peng-Robinson, Soave-Redlich-Kwong, or Cubic-Plus-Association (CPA). Long-range interactions are described by either the simplified mean spherical approximation (MSA) solution of the Ornstein-Zernicke equation or the simplified Debye-Huchel term. An optional Born term is added...... to these electrostatic terms. The resulting electrolyte equations of state were tested by determining the optimal model parameters for the multicomponent test system consisting of H2O, Na+, H+, Ca2+, Cl-, OH-, SO42-. To describe the thermodynamics of this multicomponent system, ion specific parameters were determined...

  18. Multi component equations of state for electrolytes

    DEFF Research Database (Denmark)

    Lin, Yi; Thomsen, Kaj; de Hemptinne, Jean-Charles

    2007-01-01

    Four equations of state have been implemented and evaluated for multi component electrolyte solutions at 298.15K and 1 bar. The equations contain terms accounting for short-range and long-range interactions in electrolyte solutions. Short range interactions are described by one of the three...... equations of state, Peng-Robinson, Soave-Redlich-Kwong, or Cubic-Plus-Association (CPA). Long range interactions are described by either the simplified mean spherical approximation (MSA) solution of the Ornstein–Zernicke equation or the simplified Debye-Hückel term. An optional Born term is added...... to these electrostatic terms. The resulting electrolyte equations of state were tested by determining the optimal model parameters for the multi component test system consisting of H2O, Na+, H+, Ca2+, Cl-, OH-, SO42-. In order to describe the thermodynamics of this multi component system, ion specific parameters were...

  19. Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System

    Science.gov (United States)

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  20. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus;

    2014-01-01

    .6% per charge-discharge cycle is observed. The electrochemical stability of the LiBH4-LiI solid solution was investigated using cyclic voltammetry and is found to be limited to 3 V. The impedance of the battery cells was measured using impedance spectroscopy. A strong correlation is found between...

  1. Multi-layered proton-conducting electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-27

    The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).

  2. Charge Transport in Nonaqueous Liquid Electrolytes: A Paradigm Shift

    Science.gov (United States)

    2015-05-18

    Partners Place, Suite 150 Norman , OK 73019 -5715 31-Aug-2014 ABSTRACT Final Report: Charge Transport in Nonaqueous Liquid Electrolytes: A Paradigm...7 This was the first step in a comparative study of low permittivity liquids and electrolytes. Acetates and their electrolyte solutions have low ...wisdom, based on a hydrodynamic picture of ion transport, states that the conductivity in propylene carbonate is relatively low because the

  3. Electrochemical potential at the interface between carbon nanotubes and electrolyte

    Institute of Scientific and Technical Information of China (English)

    LU Jian-wei; WANG Wan-lu; WU Zi-hua; WANG Yong-tian

    2004-01-01

    The dependences of electrochemical potential at the interface between carbon nanotubes and electrolyte upon temperature and electrolyte concentration are studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition with Si as the substrate. Four substances were tested: NaCl solution, KCl solution, water and alcohol. It is found that for NaCl and KCl solutions, at the interface, there is a large electrochemical potential which increases with temperature and is larger for an electrolyte of higher concentration. There is a significant field effect of carbon nanotubes with electrolyte as the gate,and the effect depends on the ionizability of the electrolyte. Such physicochemical property invests carbon nanotube a potential application in nanoelectronics.

  4. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    Science.gov (United States)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  5. Separation characteristics of rare earth elements in the TOPO/DTPA - Salting-out reagent solution system

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, S.; Koma, Yoshikazu; Koyama, Tomozo; Tanaka, Yasumasa [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Kano, J.

    1998-11-01

    A test of mutual separation of rare earth elements was carried out using an organic phosphorus extraction solvent TOPO (tri-octyl phosphorus oxide). It was found that the distribution ratio monotonously increased with the atomic number and the separation factor of La/Ln was 10{sup 3}. Under the condition that a sufficient quantity of DTPA compared with the amount of rare earth metals and pH > 1.5 in which DTPA easily formed complexes with lanthanides, the following conclusions were obtained; (i) the separation factor was not affected by pH, the kind of salting-out reagent, or the concentration, (ii) the extraction reaction with TOPO and complex formation with DTPA mainly contributed to the separation of lanthanides, and (iii) the separation factor computed by means of the distribution ratio of TOPO extraction and complex formation constant for DTPA more or less agreed with the empirical value. Separation of rare earth elements using TOPO revealed similar characteristics to those of systems with CMPO and TBP. (H. Baba)

  6. Mechanosynthesis and mechanolysis of solid solutions of La{sub 2}O{sub 3} with some rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Todorowsky, D. [Sofia Univ. (Bulgaria). Khimicheski Fakultet; Terziev, A. [Sofia Univ. (Bulgaria). Khimicheski Fakultet; Minkova, N. [Sofia Univ. (Bulgaria). Khimicheski Fakultet

    1996-12-31

    The effect of the mechanoactivation on Y{sub 2}O{sub 3}, Nd{sub 2}O{sub 3} and CeO{sub 2}, on mixtures of La{sub 2}O{sub 3} with each of these oxides as well as on the solid solutions La{sub 2}O{sub 3}-CeO{sub 2} is studied. The activation causes a decrease of the individual oxides` unit cell parameters. The formation of solid solutions of La{sub 2}O{sub 3} with the oxides studied is found. Under the conditions of activation in air no decomposition of La{sub 2}O{sub 3}-CeO{sub 2} solid solution is detected. The solution is, however, destroyed when the activation is carried out in the presence of acids. (orig.)

  7. The Theory of Non-electrolyte Solution(II0%非电解质溶液理论(二)

    Institute of Scientific and Technical Information of China (English)

    沈报恩; 金松寿

    1980-01-01

    @@二、正规溶液(Regular Solution)与溶解度参数(Solubility Parameter) Hildebrand[1]对正规溶液的定义是当极少量的一个组分从理想溶液转移到具有相同组分的该溶液时,没有熵的变化,总体积亦不变。这个定义的意思是正规溶液混合时和理想溶液一样是完全无规的,因此有相同的熵变值。但正规溶液混合时可以有热效应。

  8. Towards Prognostics of Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications...

  9. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  10. Lithium-Air Batteries with Hybrid Electrolytes.

    Science.gov (United States)

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-07

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided.

  11. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  12. A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate-electrolyte solution or water in healthy young men.

    Science.gov (United States)

    Seery, Suzanne; Jakeman, Philip

    2016-09-01

    Appropriate rehydration and nutrient intake in recovery is a key component of exercise performance. This study investigated whether the recovery of body net fluid balance (NFB) following exercise and thermal dehydration to -2 % of body mass (BM) was enhanced by a metered rate of ingestion of milk (M) compared with a carbohydrate-electrolyte solution (CE) or water (W). In randomised order, seven active men (aged 26·2 (sd 6·1) years) undertook exercise and thermal dehydration to -2 % of BM on three occasions. A metered replacement volume of M, CE or W equivalent to 150 % of the BM loss was then consumed within 2-3 h. NFB was subsequently measured for 5 h from commencement of rehydration. A higher overall NFB in M than CE (P=0·001) and W (P=0·006) was observed, with no difference between CE and W (P=0·69). After 5 h, NFB in M remained positive (+117 (sd 122) ml) compared with basal, and it was greater than W (-539 (sd 390) ml, P=0·011) but not CE (-381 (sd 460) ml, P=0·077, d=1·6). Plasma osmolality (Posm) and K remained elevated above basal in M compared with CE and W. The change in Posm was associated with circulating pre-provasopressin (r s 0·348, Pdehydration.

  13. 无机盐固熔体对高分子固体电解质电导率的影响%The Effect of Solid Solution of Inorganic Saltson the Conductivity of Solid Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    赵地顺; 李英; 刘会茹; 张星辰; 王燕燕; 赵俊芳; 熊炜

    2001-01-01

    A new type of solid polymer electrolyte (SPE) “polymer-in-salt”has been discussed. The effects of different kinds,content,and structure of inorganic salts on the conductivity of SPE are studied. The conductivity of LiCIO4-urea(mole ratio= 1:4.5)-polymer can reach 1.84×10-3S/cm,and the study results show that solid solution of inorganic salts has important effect on the conductivity of SPE.%用无机盐和脲制成固熔体,加入PEG,PVA等高分子物质制备新型的“Poly-met-in-Salt”。研究了无机盐种类、含量、结构对高分子固体电解质(SPE)电导率的影响,制备的LiClO4-脲(物质的量比为1:4.5)-高分子体系室温电导率可达1.84×10-3S·cm-1。研究表明无机盐固熔体对SPE的电导率具有重要影响。

  14. Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries

    Science.gov (United States)

    Yoshimoto, Nobuko; Niida, Yoshihiro; Egashira, Minato; Morita, Masayuki

    A nonflammable polymeric gel electrolyte has been developed for rechargeable lithium battery systems. The gel film consists of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) swollen with lithium hexafluorophosphate (LiPF 6) solution in ternary solvent containing trimethyl phosphate (TMP). High ionic conductivity of 6.2 mS cm -1 at 20 °C was obtained for the gel electrolyte consisting of 0.8 M LiPF 6/EC + DEC + TMP (55:25:20) with PVdF-HFP, which is comparable to that of the liquid electrolyte containing the same electrolytic salt. Addition of a small amount of vinylene carbonate (VC) in the gel electrolyte improved the rechargeability of a graphite electrode. The rechargeable capacity of the graphite in the gel containing VC was ca. 300 mAh g -1, which is almost the same as that in a conventional liquid electrolyte system.

  15. Flexible electrochromic windows: a comparison using liquid and solid electrolytes

    Directory of Open Access Journals (Sweden)

    Girotto Emerson Marcelo

    1999-01-01

    Full Text Available In the present work, two electrochromic devices (or electrochromic windows based on intrinsically conducting polymers were assembled and characterized. For both devices, the materials used on the assembling were the same except for the electrolyte layer. In the first, we used as electrolyte a propylene carbonate solution and in the second the elastomer poly(epichlorohydrin-co-ethylene oxide, both containing LiClO4. The conductivity of the liquid electrolyte (10-3 S cm-1 is approximately two orders of magnitude higher than for the solid electrolyte and we obtained very good electrochromic properties in both cases. The calculated electrochromic efficiency at 640 nm was 700 C cm-2 for the liquid electrolyte device and 360 C cm-2 for the solid state device. Solid state electrochromic windows have been investigated and some of its advantages over windows with liquid electrolytes are discussed.

  16. 挡土墙被动土压力的滑移线解%Slip-line solution to passive earth pressure on retaining walls

    Institute of Scientific and Technical Information of China (English)

    彭明祥

    2011-01-01

    Based on the limit equilibrium theory, the backfill is treated as a perfectly elastic-plastic material which follows the Mohr-Coulomb yield criterion, and is assumed to be an isotropic, homogeneous and incompressible (or non-expansive) perfectly continuous medium.The stress singularity and its stress boundary condition are introduced, and' a statically determinate and solvable mathematical model for the limit equilibrium boundary value problem is established without considering the stress-strain relationship.Then the slip-line field and stress field in plastic zone of the backfill are solved by use of the slip-line method, furthermore, the passive earth pressure on retaining walls and the reaction on slip surfaces are derived.Geometric and mechanical similarity principle is presented by means of dimensionless analysis.The results show that the slip-line solution to the passive earth pressure is generally less than or equal to the Coulomb's solution, and the classical Rankine's earth pressure or the classical Coulomb's earth pressure satisfying non-singularity condition is in accordance with the slip-line solution, and the Hencky's first theorem and second theorem are not generally applicable.%基于极限平衡理论,视墙后填土为服从Mohr-Coulomb屈服准则的理想弹塑性材料,并且假定它是各向同性的、均匀的以及不可压缩(膨胀)的理想连续介质.引进了应力奇点及其应力边界条件,建立了静定可解的极限平衡边值问题数学模型,而不必考虑土的应力-应变关系,采用滑移线法求解了墙后塑性区的滑移线场和应力场,进而求解了挡土墙被动土压力和滑裂面土反力.通过无量纲分析,提出了几何力学相似原理.数值分析表明,被动土压力的滑移线解一般总是小于或等于库仑解,经典朗肯土压力或满足非奇异条件的经典库仑土压力与滑移线解一致,Hencky第一定理和第二定理不具有普遍适用性.

  17. Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows: The calculation of the model parameters, λ11, λ12, λ21 and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems.In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the.calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.

  18. A Randomized Prospective Study of Bowel Preparation for Colonoscopy with Low-Dose Sodium Phosphate Tablets versus Polyethylene Glycol Electrolyte Solution

    Directory of Open Access Journals (Sweden)

    Erina Kumagai

    2014-01-01

    Full Text Available Optimal bowel preparation is essential for the safety and outcome of colonoscopy. A solution containing polyethylene glycol (PEG is often used as a bowel cleansing agent, but some patients are intolerant of PEG, and this may lead to discontinuation of colonoscopy. Sodium phosphates (NaP tablets are designed to improve patient acceptance and compliance. The objective of this study was to compare bowel preparation efficiency and patient acceptance of a 30 NaP tablet preparation (L-NaP and a 2 L PEG preparation. Patients were randomized into either the L-NaP or PEG group. The primary endpoint was the efficiency of colon cleansing as assessed by a validated four-point scale according to the Aronchick scale by endoscopists and was verified by blinded investigators. The secondary endpoints were patients’ tolerability and acceptance. Colon-cleansing efficiency was not significantly different between the two preparations. However, patients’ overall judgment was significantly in favor of L-NaP, reflecting better acceptance of L-NaP than PEG. Additionally, more patients favored L-NaP over PEG in a hypothetical future occasion requiring colonoscopy.

  19. Analysis of electrolyte transport through charged nanopores

    NARCIS (Netherlands)

    Peters, P.B.; Roij, van R.; Bazant, M.Z.; Biesheuvel, P.M.

    2016-01-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relat

  20. Hybrid silica nanoparticles for sequestration and luminescence detection of trivalent rare-earth ions (Dy{sup 3+} and Nd{sup 3+}) in solution

    Energy Technology Data Exchange (ETDEWEB)

    Topel, Seda Demirel; Legaria, Elizabeth Polido [Swedish University of Agricultural Sciences (SLU), Department of Chemistry (Sweden); Tiseanu, Carmen [National Institute for Laser, Plasma and Radiation Physics (Romania); Rocha, João [University of Aveiro, Department of Chemistry CICECO (Portugal); Nedelec, Jean-Marie [Clermont Université, ENSCCF, Institute de Chimie de Clermont-Ferrand (France); Kessler, Vadim G.; Seisenbaeva, Gulaim A., E-mail: gulaim.seisenbaeva@slu.se [Swedish University of Agricultural Sciences (SLU), Department of Chemistry (Sweden)

    2014-12-15

    New hybrid material-based adsorbents acting also as luminescent probes upon uptake of trivalent rare-earth (RE) ions Nd{sup 3+} and Dy{sup 3+} have been developed. SiO{sub 2} NPs functionalized by three different organic ligands, N-aminopropylen-amido-iminodiacetic acid (L1), pyridine-α,β-dicarboxylic acid bis(propylenamide) (L2), and N-propylen-iminodiacetic acid (L3), have been produced and fully characterized by {sup 13}C, {sup 1}H, and {sup 29}Si solid-state NMR, FTIR, TGA, XRD, TEM, nitrogen gas adsorption, and also by NTA and DLS in solution. The synthesized hybrid materials are well dispersible and stable in aqueous solutions according to NTA and consist of spheres with diameters less than 100 nm. Their affinities to the lanthanide ions Dy{sup 3+} and Nd{sup 3+} have been investigated in aqueous solution and characterized by SEM–EDS and complexometric titration, demonstrating that they can be successfully used as adsorbents for sequestration of trivalent RE ions. The adsorbed RE ions can efficiently be desorbed from saturated nanoadsorbents by addition of hydrochloric acid. The produced nanomaterials may also be used as luminescent probes for Dy{sup 3+} and Nd{sup 3+} ions in solution.

  1. Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60 °C: Experimental and modeling study

    Science.gov (United States)

    Tertre, E.; Castet, S.; Berger, G.; Loubet, M.; Giffaut, E.

    2006-09-01

    The aqueous interfacial chemistry of kaolinite and Na-montmorillonite samples was investigated by potentiometric measurements using acid/base continuous titrations and batch experiments at 25 and 60 °C. Using the batch experimental method, a continuous drift of pH was observed reflecting the mineral dissolution. Consequently, the continuous titration method appears to be the best way of studying solid surface reactions. For each clay mineral, the net proton surface excess/consumption was calculated as a function of pH and ionic strength (0.025, 0.1 and 0.5 M). At 25 °C, and according to the literature data, the pH corresponding to zero net proton consumption for montmorillonite appears to depend on ionic strength, whereas the value for kaolinite is constant and close to 5. Similar results are obtained at 60 °C, which suggests that the point of zero net proton consumption for clay minerals does not depend on temperature, at least up to 60 °C. On the other hand, the temperature rise induces a slight increase of the net proton surface excess. Finally, the diffuse double layer formalism (DDLM) is used to model the experimental data. The model involves two processes: the protonation/deprotonation of two types of edge sites (aluminol and silanol) and H +/Na + exchange reactions on basal surfaces, while a tiny proportion of the negative structural charge remains uncompensated. This last process maintains a negative surface potential whatever the pH of the solution, which is in agreement with electrokinetic data.

  2. An observational study using blood gas analysis to assess neonatal calf diarrhea and subsequent recovery with a European Commission-compliant oral electrolyte solution.

    Science.gov (United States)

    Sayers, Ríona G; Kennedy, Aideen; Krump, Lea; Sayers, Gearóid P; Kennedy, Emer

    2016-06-01

    An observational study was conducted on dairy calves (51 healthy, 31 with neonatal diarrhea) during outbreaks of diarrhea on 4 dairy farms. Clinical assessment scores (CAS) were assigned to each healthy and diarrheic calf [from 0 (healthy) to 4 (marked illness)]. Blood gas analysis [pH, base excess (BE), Na(+), K(+), Ca(2+), Cl(-), glucose, total hemoglobin, standard HCO3(-), strong ion difference (SID), and anion gap (AG)] was completed for each calf. Repeated measurements were taken in healthy animals, and pre- and postintervention measurements were taken for diarrheic calves. The mean CAS of diarrheic calves was 1.7, with 51, 30, 17, and 2% of calves scoring 1, 2, 3, and 4, respectively. The mean value for blood pH, BE, AG, and SID was 7.26, -4.93mM, 16.3mM, and 38.59mM, respectively. Calves were administered an oral rehydration and buffering solution (ORBS; Vitalife for Calves, Epsilion Ltd., Cork, Ireland) and reassessed. The mean CAS decreased to 0.38 (65% of calves scored 0 and 35% scored 1) at 6 to 18h posttreatment and to 0.03 (98% of calves scored 0 and 2% scored 1) within 24 to 48h. Significant increases in mean value for pH, BE, HCO3(-), Na(+), and SID, and significant decreases in AG, K(+), Ca(2+), and total hemoglobin were recorded posttreatment. The correlation estimates indicated that pH, HCO3(-), and BE were strongly correlated with CAS, with values exceeding 0.60 in all cases. Administration of an ORBS with a high SID and bicarbonate buffer demonstrated rapid recovery from a diarrheic episode in dairy calves. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  4. Charge-regulation phase transition on surface lattices of titratable sites adjacent to electrolyte solutions: An analog of the Ising antiferromagnet in a magnetic field

    Science.gov (United States)

    Shore, Joel D.; Thurston, George M.

    2015-12-01

    We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (p H-p K ,W ) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of p H-p K and W , and 1 /W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √{74 } lattice constants), first validating simulations

  5. Electrolytic oxidation of anthracite

    Science.gov (United States)

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  6. Solid electrolytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Masayasu; Yamauchi, Yasuhiro; Kamisaka, Mitsuo; Notomi, Kei.

    1989-04-21

    Concerning a solid electrolytic fuel cell with a gas permeable substrate pipe, a fuel electrode installed on this substrate pipe and an air electrode which is laminated on this fuel electrode with the electrolyte in between, the existing fuel cell of this kind uses crystals of CaMnO3, etc. for the material of the air electrode, but its electric resistance is big and in order to avert this, it is necessary to make the film thickness of the air electrode big. However, in such a case, the entry of the air into its inside worsens and the cell performance cannot develop satisfactorily. In view of the above, in order to obtain a high performance solid electrolytic fuel cell which can improve electric conductivity without damaging diffusion rate of the air, this invention proposes with regard to the aforementioned solid electrolytic fuel cell to install a heat resistant and conductive member inside the above air electrode. 6 figs.

  7. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A general water-based precursor solution approach to deposit earth abundant Cu2ZnSn(S,Se)4 thin film solar cells

    Science.gov (United States)

    Yang, Yanchun; Kang, Xiaojiao; Huang, Lijian; Wei, Song; Pan, Daocheng

    2016-05-01

    Earth abundant Cu2ZnSn(S,Se)4 (CZTSSe) has been considered as one of the most promising thin film solar cell absorber candidates. Here, we develop a facile water-based precursor solution approach for depositing high-efficiency Cu2ZnSn(S,Se)4 thin film solar cells. In this environmentally friendly approach, inexpensive elemental Cu, Zn, Sn and S powders are used as the starting materials and are dissolved in the aqueous solution of thioglycolic acid and methylamine, forming a homogeneous precursor solution for depositing Cu2ZnSnS4 nanocrystal thin film. As-deposited CZTS nanocrystal thin films are selenized to form the large-grain CZTSSe absorber layers. It was found that Na doping plays an important role in the formation of the extremely dense and flat CZTSSe absorber layer, and fill factor can be significantly improved for Na-doped CZTSSe solar cells, which lead to a photoelectric conversion efficiency of 6.96% with an open-circuit voltage of 378 mV, a short current density of 28.17 mA cm-2, and a fill factor of 65.4%.

  9. Preparation of Cu-Al layered double hydroxide intercalated with ethylenediaminetetraacetate by coprecipitation and its uptake of rare earth ions from aqueous solution

    Science.gov (United States)

    Kameda, Tomohito; Hoshi, Kazuaki; Yoshioka, Toshiaki

    2013-03-01

    A Cu-Al layered double hydroxide intercalated with ethylenediaminetetraacetate (edta•Cu-Al LDH) was prepared by the dropwise addition of a Cu-Al nitrate solution to an edta solution at constant pH values of 8.0, 9.0, and 10.0. The edta•Cu-Al LDH had Hedta3- in the interlayer. Furthermore, the preparation at pH 8.0 resulted in the intercalation of Cu(edta)2-. The edta•Cu-Al LDH was found to take up rare earth ions from aqueous solution. The uptake of Sc3+ and Y3+ by edta•Cu-Al LDH was attributed to both the chelating functions of the edta ion in the interlayer and the chemical properties of Cu-Al LDH itself. The uptake of La3+ by edta•Cu-Al LDH was primarily caused by the chelating function of edta ions in the interlayer. The edta ions in the edta•Cu-Al LDH interlayer formed chelate complexes in the order Sc3+ > Y3+ > La3+ due to their relative stabilities, Sc(edta)- > Y(edta)- > La(edta)-. Thus, edta ions retain their chelating function even when intercalated in a Cu-Al LDH interlayer.

  10. Dielectric saturation of the ion hydration shell and interaction between two double helices of DNA in mono- and multivalent electrolyte solutions: foundations of the epsilon-modified Poisson-Boltzmann theory.

    Science.gov (United States)

    Gavryushov, Sergei

    2007-05-17

    Potentials of mean force between single Na+, Ca2+, and Mg2+ cations and a highly charged spherical macroion in SPC/E water have been determined using molecular dynamics simulations. Results are compared to the electrostatic energy calculations for the primitive polarization model (PPM) of hydrated cations describing the ion hydration shell as a dielectric sphere of low permittivity (Gavryushov, S.; Linse, P. J. Phys. Chem. B 2003, 107, 7135). Parameters of the ion dielectric sphere and radius of the macroion/water dielectric boundary were extracted by means of this comparison to approximate the short-range repulsion of ions near the interface. To explore the counterion distributions around a simplified model of DNA, the obtained PPM parameters for Na+ and Ca2+ have been substituted into the modified Poisson-Boltzmann (MPB) equations derived for the PPM and named the epsilon-MPB (epsilon-MPB) theory. epsilon-MPB results for DNA suggest that such polarization effects are important in the case of 2:1 electrolyte and highly charged macromolecules. The three-dimensional implementation of the epsilon-MPB theory was also applied to calculation of the energies of interaction between two parallel macromolecules of DNA in solutions of NaCl and CaCl2. Being compared to results of MPB calculations without the ion polarization effects, it suggests that the ion hydration shell polarization and inhomogeneous solvent permittivity might be essential factors in the experimentally known hydration forces acting between charged macromolecules and bilayers at separations of less than 20 A between their surfaces.

  11. Automation of a procedure to find the polynomial which best fits (kappa, c1, c2, T) data of electrolyte solutions by non-linear regression analysis using MATHEMATICA software.

    Science.gov (United States)

    Cortazar, E; Usobiaga, A; Fernández, L A; de, Diego A; Madariaga, J M

    2002-02-01

    A MATHEMATICA package, 'CONDU.M', has been developed to find the polynomial in concentration and temperature which best fits conductimetric data of the type (kappa, c, T) or (kappa, c1, c2, T) of electrolyte solutions (kappa: specific conductivity; ci: concentration of component i; T: temperature). In addition, an interface, 'TKONDU', has been written in the TCL/Tk language to facilitate the use of CONDU.M by an operator not familiarised with MATHEMATICA. All this software is available on line (UPV/EHU, 2001). 'CONDU.M' has been programmed to: (i) select the optimum grade in c1 and/or c2; (ii) compare models with linear or quadratic terms in temperature; (iii) calculate the set of adjustable parameters which best fits data; (iv) simplify the model by elimination of 'a priori' included adjustable parameters which after the regression analysis result in low statistical significance; (v) facilitate the location of outlier data by graphical analysis of the residuals; and (vi) provide quantitative statistical information on the quality of the fit, allowing a critical comparison among different models. Due to the multiple options offered the software allows testing different conductivity models in a short time, even if a large set of conductivity data is being considered simultaneously. Then, the user can choose the best model making use of the graphical and statistical information provided in the output file. Although the program has been initially designed to treat conductimetric data, it can be also applied for processing data with similar structure, e.g. (P, c, T) or (P, c1, c2, T), being P any appropriate transport, physical or thermodynamic property.

  12. Synergism of Rare Earth Ce(III) Ion with Cysteine against Corrosion of P110 Carbon Steel in 3% NaCl Solutions

    Science.gov (United States)

    Liu, Xia; Yang, Jianshu; Liu, Yongping; Ji, Xiangyun; Lu, Ying; Yuan, Yizhi

    The synergism of CeCl3 (Ce) with cysteine (Cys) on the corrosion of P110 carbon steel in 3% NaCl solutions was investigated by electrochemical methods and surface analysis. The results showed that CeCl3 and cysteine do little to inhibit the corrosion of carbon steel, but the combination of CeCl3 with cysteine has obvious synergistic effect on the corrosion of carbon steel and the corrosion inhibition efficiency was improved significantly. The potentiodynamic polarization curves indicated that the mixture of CeCl3 and cysteine acts as a cathodic inhibitor. Scanning electron microscope (SEM) and Infrared (IR) reflection spectra showed the synergistic inhibition effect was formed by the complexes between rare earth Ce(III) ion and amino acid.

  13. Development and testing of FIDELE: a computer code for finite-difference solution to harmonic magnetic-dipole excitation of an azimuthally symmetric horizontally and radially layered earth

    Energy Technology Data Exchange (ETDEWEB)

    Vittitoe, C.N.

    1981-04-01

    The FORTRAN IV computer code FIDELE simulates the high-frequency electrical logging of a well in which induction and receiving coils are mounted in an instrument sonde immersed in a drilling fluid. The fluid invades layers of surrounding rock in an azimuthally symmetric pattern, superimposing radial layering upon the horizonally layered earth. Maxwell's equations are reduced to a second-order elliptic differential equation for the azimuthal electric-field intensity. The equation is solved at each spatial position where the complex dielectric constant, magnetic permeability, and electrical conductivity have been assigned. Receiver response is given as the complex open-circuit voltage on receiver coils. The logging operation is simulated by a succession of such solutions as the sonde traverses the borehole. Test problems verify consistency with available results for simple geometries. The code's main advantage is its treatment of a two-dimensional earth; its chief disadvantage is the large computer time required for typical problems. Possible code improvements are noted. Use of the computer code is outlined, and tests of most code features are presented.

  14. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi 2(PO 4) 3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO 3 and Li 2SO 4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm -2 between two platinum electrodes in 5 M LiNO 3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm -2 it can reach 2.3 V. LiTi 2(PO 4) 3 was synthesized using a Pechini method and cycled in pH-neutral Li 2SO 4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g -1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi 2(PO 4) 3 anode with cell voltages of 2 V and above. © 2010 Elsevier B.V. All rights reserved.

  15. A model of the general ocean circulation determined from a joint solution for the Earth's gravity field

    Science.gov (United States)

    Nerem, R. S.; Tapley, B. D.; Shum, C. K.; Yuan, D. N.

    1989-01-01

    If the geoid and the satellite position are known accurately, satellite altimetry can be used to determine the geostrophic velocity of the surface ocean currents. The purpose of this investigation is to simultaneously estimate the sea surface topography, zeta, the model for the gravity field, and the satellite orbit. Satellite tracking data from fourteen satellites were used; along with Seasat and Geosat altimeter data as well as surface gravity data for the solution. The estimated model of zeta compares well at long wavelengths with the hydrographic model of zeta. Covariance studies show that the geoid is separable from zeta up to degree 9, at which point geoid error becomes comparable to the signal of zeta.

  16. Interfacial behavior of polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John; Kerr, John B.; Han, Yong Bong; Liu, Gao; Reeder, Craig; Xie, Jiangbing; Sun, Xiaoguang

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combined with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.

  17. Spherical disharmonics in the Earth sciences and the spatial solution: Ridges, hotspots, slabs, geochemistry and tomography correlations

    Science.gov (United States)

    Ray, Terrill W.; Anderson, Don L.

    1994-01-01

    There is increasing use of statistical correlations between geophysical fields and between geochemical and geophysical fields in attempts to understand how the Earth works. Typically, such correlations have been based on spherical harmonic expansions. The expression of functions on the sphere as spherical harmonic series has many pitfalls, especially if the data are nonuniformly and/or sparsely sampled. Many of the difficulties involved in the use of spherical harmonic expansion techniques can be avoided through the use of spatial domain correlations, but this introduces other complications, such as the choice of a sampling lattice. Additionally, many geophysical and geochemical fields fail to satisfy the assumptions of standard statistical significance tests. This is especially problematic when the data values to be correlated with a geophysical field were collected at sample locations which themselves correlate with that field. This paper examines many correlations which have been claimed in the past between geochemistry and mantle tomography and between hotspot, ridge, and slab locations and tomography using both spherical harmonic coefficient correlations and spatial domain correlations. No conclusively significant correlations are found between isotopic geochemistry and mantle tomography. The Crough and Jurdy (short) hotspot location list shows statistically significant correlation with lowermost mantle tomography for degree 2 of the spherical harmonic expansion, but there are no statistically significant correlations in the spatial case. The Vogt (long) hotspot location list does not correlate with tomography anywhere in the mantle using either technique. Both hotspot lists show a strong correlation between hotspot locations and geoid highs when spatially correlated, but no correlations are revealed by spherical harmonic techniques. Ridge locations do not show any statistically significant correlations with tomography, slab locations, or the geoid; the

  18. Synthesis and characterization of polyethylene oxide based nano composite electrolyte

    Indian Academy of Sciences (India)

    M Malathi; K Tamilarasan

    2014-08-01

    Polyethylene oxide (PEO) – montmorillonite (MMT) composite electrolytes were synthesised by solution casting technique. The salt used for the study is Lithium perchlorate (LiClO4). The morphology and percentage of crystallinity data were obtained through X-ray Diffraction and Differential Scanning Caloriemetry. The ionic conductivity of the polymer electrolytes was studied by impedance spectroscopy. The addition of MMT resulted in an increase in conductivity over the temperature range of 25–60°C. The ionic conductivity of a composite polymer electrolyte containing 1.2 wt% MMT was 1 × 10-5 S cm−1 at 25°C, which is at least one order of magnitude higher than that of the polymer electrolyte (4 × 10-7S cm−1). The increase in ionic conductivity is explained on the basis of crystallinity of the polymer electrolyte.

  19. Synergistic inhibition effect of L-phenylalanine and rare earth Ce(IV) ion on the corrosion of copper in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Daquan, E-mail: zhangdaquan@shiep.edu.cn [Department of Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Wu Huan; Gao Lixin [Department of Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Synergistic effect of L-phenylalanine (L-Phe) and Ce(SO{sub 4}){sub 2} on the corrosion of copper on the corrosion inhibition of copper in 0.5 M HCl solution. Black-Right-Pointing-Pointer Structure of the complex film formed by the interaction of L-phenylalanine (L-Phe) and Ce(SO{sub 4}){sub 2} on the copper surface. Black-Right-Pointing-Pointer Mechanism of the improvement of the inhibition property of amino acids by the addition of rare earth compound. - Abstract: The synergistic inhibition effect of L-phenylalanine (L-Phe) and Ce(SO{sub 4}){sub 2} on the corrosion of copper in 0.5 M HCl solution was investigated by weight-loss, electrochemical methods and surface analysis. The electrochemical results showed that L-Phe has definite inhibition effects for copper, while Ce(IV) promoted the anodic process of copper corrosion. The combination L-Phe with Ce(IV) ion produced strong synergistic effect on corrosion inhibition for copper. The maximum inhibition efficiency was 82.7% for 5 mM L-Phe + 2 mM Ce(IV). The results of EIS and potentiodynamic polarization are in good agreement. SEM showed that L-Phe and Ce(IV) can form a dense protective film on the copper surface.

  20. Gel electrolytes and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  1. Seebeck effect in electrolytes.

    Science.gov (United States)

    Chikina, I; Shikin, V; Varlamov, A A

    2012-07-01

    We study Seebeck effect in liquid electrolytes, starting from its simple neutral analog--thermodiffusion (so-called Ludwig-Soret or Soret effect). It is observed that when two or more subsystems of mobile particles are subjected to the temperature gradient, various types of them respond to it differently. In the case when these fractions, with different mobility parameters (Soret coefficients), are oppositely charged (a case typical for electrolytes), the nonhomogeneous internal electric field is generated. The latter field prevents these fractions from space separation and determines the intensity of the appearing Seebeck effect.

  2. Multichannel discharge between jet electrolyte cathode and jet electrolyte anode

    NARCIS (Netherlands)

    Shakirova, E. F.; Gaitsin, Al. F.; Son, E. E.

    2011-01-01

    We present the results of an experimental study of multichannel discharge between a jet electrolyte cathode and jet electrolyte anode within a wide range of parameters. We pioneer the reveal of the burning particularities and characteristics of multichannel discharge with jet electrolyte and droplet

  3. Temperature during soybean seed storage and the amount of electrolytes of soaked seeds solution Tempertatura de armazenamento e quantidade de lixiviados na solução de embeição de sementes de soja

    Directory of Open Access Journals (Sweden)

    Roberval Daiton Vieira

    2008-01-01

    Full Text Available The electrical conductivity test measures the electrolytes that leach out of seeds when they are immersed in water and this leakage is an indication of seed vigor. The level of standardization reached by the procedures of this test is such that the test is recommended for pea seeds and suggested for other large seeded legumes, including soybean [Glycine max (L. Merrill]. This study was conducted to contribute to the standardization of this test for soybean seeds by verifying whether the seed storage temperature influences the composition of the leachate from soaked seeds solution. Two soybean seed lots of distinct physiological potential were stored in moisture-proof containers either at constant temperatures of 10ºC and 20ºC or at the temperature of 20ºC during the first seven months of storage followed by a change to 10ºC for the rest of the storage time (nine months. The chemical composition of the soaked water was evaluated every three months from January to October 1998. The highest amount of leakage was observed for potassium, followed by calcium and magnesium, iron and sodium regardless of temperature and storage period. The amount of electrolytes in the soaked water increased as the period of time and the temperature of storage increased. On the other hand the amount of leakage decrease along the time for those seeds stored at 10ºC or transferred from the temperature of 20 to that of 10ºC. The temperature at which soybean seeds remain during storage may affect the amount of electrolytes in the soaked water and consequently the results of the electrical conductivity test.O teste de condutividade elétrica mede a quantidade de eletrólitos liberada das sementes quando imersas em água, sendo um indicador do vigor da semente. O teste é recomendado para sementes de ervilha e sugerido para outras leguminosas, incluindo a soja [Glycine max (L. Merrill]. O presente trabalho visa contribuir para a padronização do referido teste para

  4. Experimental antegrade enema: effects on water, electrolyte and acid-base balances with different solutions Enema anterógrado experimental: equilíbrio hídrico eletrolítico e ácido-base em coelhos submetidos a enema com diferentes soluções

    Directory of Open Access Journals (Sweden)

    Laura Helman

    2007-10-01

    Full Text Available PURPOSE: To study the effects on the water, electrolyte, and acid-base balances in rabbits submitted to antegrade enema with different solutions through appendicostomy. METHODS: Forty male New Zealand rabbits were submitted to appendicostomy, and distributed in 4 groups, according to the antegrade enema solution: PEG group, polyethylene glycol electrolyte solution (n=10; ISS group, isotonic saline solution (n=10; GS group, glycerin solution (n=10; SPS group, sodium phosphate solution (n=10. After being weighed, arterial blood gas analysis, red blood count, creatinine and electrolytes were measured at 4 times: preoperatively (T1; day 6 postop, before enema (T2; 4h after enema (T3; and 24h after T3 (T4. RESULTS: In PEG group occurred Na retention after 4h, causing alkalemia, sustained for 24h with HCO3 retention. In ISS group occurred isotonic water retention and hyperchloremic acidosis after 4h, which was partially compensated in 24h. GS group showed metabolic acidosis after 4h, compensated in 24h. In SPS group occurred hypernatremic dehydration, metabolic acidosis in 4h, and hypokalemia, hypocalcemia, hypomagnesemia, and metabolic alkalosis with partially compensated dehydration in 24h. CONCLUSIONS: All solutions used in this study caused minor alterations on water, electrolyte or acid-base balances. The most intense ones were caused by hypertonic sodium phosphate solution (SPS and isotonic saline solution (ISS and the least by polyethyleneglycol electrolyte solution (PEG and glycerin solution 12% (GS.OBJETIVO: Estudar os efeitos no equilíbrio hídrico, eletrolítico e ácido-base, do enema anterógrado com diferentes soluções em coelhos através de apendicostomia. MÉTODOS: 40 coelhos Nova Zelândia, machos, submetidos a apendicostomia, distribuídos em quatro grupos segundo a solução de enema: grupo PEG (n = 10 solução de polietilenoglicol com eletrólitos; grupo SF (n = 10 solução fisiológica; grupo SG (n = 10 solução glicerinada

  5. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  6. Lithium-Organic Electrolyte Batteries for Sensor and Communications Equipment

    Science.gov (United States)

    1975-08-01

    This solution was chosen for the final cell build. The Li/2M LiAsF6 + 0.4M LiBF4 :MF/VOs electrochemical system has undergone considerable investigation...electrode solubility is not anticipated. 2. Electrolyte Typical properties of the 2M LiAsF6 + 0. 4M LiBF4 /MF electrolyte system at +75*F are: Viscosity 1.419...resistance welded in the cell case. D. CELL DEVELOPMENT 1. 2M LiBFs:MA Electrolyte During the earlier phases of the development work, the Li/ZM LiBF4

  7. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest

    Directory of Open Access Journals (Sweden)

    T. Raatikainen

    2005-01-01

    Full Text Available In this work, existing and modified activity coefficient models are examined in order to assess their capabilities to describe the properties of aqueous solution droplets relevant in the atmosphere. Five different water-organic-electrolyte activity coefficient models were first selected from the literature. Only one of these models included organics and electrolytes which are common in atmospheric aerosol particles. In the other models, organic species were solvents such as alcohols, and important atmospheric ions like NH4+ could be missing. The predictions of these models were compared to experimental activity and solubility data in aqueous single electrolyte solutions with 31 different electrolytes. Based on the deviations from experimental data and on the capabilities of the models, four predictive models were selected for fitting of new parameters for binary and ternary solutions of common atmospheric electrolytes and organics. New electrolytes (H+, NH4+, Na+, Cl-, NO3- and SO42- and organics (dicarboxylic and some hydroxy acids were added and some modifications were made to the models if it was found useful. All new and most of the existing parameters were fitted to experimental single electrolyte data as well as data for aqueous organics and aqueous organic-electrolyte solutions. Unfortunately, there are very few data available for organic activities in binary solutions and for organic and electrolyte activities in aqueous organic-electrolyte solutions. This reduces model capabilities in predicting solubilities. After the parameters were fitted, deviations from measurement data were calculated for all fitted models, and for different data types. These deviations and the calculated property values were compared with those from other non-electrolyte and organic-electrolyte models found in the literature. Finally, hygroscopic growth factors were calculated for four 100 nm organic-electrolyte particles and these predictions were compared to

  8. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  9. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L.; Bayoudh, S. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Herlem, G. [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1996-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  10. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Lochala, Joshua A. [Chemistry & Biochemistry Department, University of Arkansas, Fayetteville AR 72701 USA; Kwok, Alexander [Chemistry & Biochemistry Department, University of Arkansas, Fayetteville AR 72701 USA; Deng, Zhiqun Daniel [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xiao, Jie [Chemistry & Biochemistry Department, University of Arkansas, Fayetteville AR 72701 USA

    2017-03-31

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices, for example, batteries. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 M based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 M) have received additional attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally different from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanism are discussed. New insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.

  11. Removal of ammonia from aqueous solutions by catalytic oxidation with copper-based rare earth composite metal materials: catalytic performance, characterization, and cytotoxicity evaluation

    Institute of Scientific and Technical Information of China (English)

    Chang-Mao Hung

    2011-01-01

    Ammonia (NH3) has an important use in the chemical industry and is widely found in industrial wastewater.For this investigation of copper-based rare earth composite metal materials,aqueous solutions containing 400 mg/L of ammonia were oxidized in a batch-bed reactor with a catalyst prepared by the co-precipitation of copper nitrate,lanthanum nitrate and cerium nitrate.Barely any of the dissolved ammonia was removed by wet oxidation without a catalyst,but about 88% of the ammonia was reduced during wet oxidation over the catalysts at 423 K with an oxygen partial pressure of 4.0 MPa.The catalytic redox behavior was determined by cyclic voltammetry (CV).Furthermore,the catalysts were characterized using thermogravimetric analyzer (TGA) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX),which showed that the catalytic behavior was related to the metal oxide properties of the catalyst.In addition,the copper-lanthanum-cerium composite-induced cytotoxicity in the human lung MRC-5 cell line was tested,and the percentage cell survival was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-zolium (MTS) analysis in vitro.No apparent cytotoxicity was observed when the human lung cells were exposed to the copper-lanthanum-cerium composite.

  12. Mechanochemical synthesis, structure, and properties of solid solutions of alkaline earth metal fluorides: Ma1-xMbxF2 (M: Ca, Sr, Ba)

    Science.gov (United States)

    Heise, M.; Scholz, G.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2016-10-01

    The capability of mechanochemical synthesis for the formation of solid solutions of alkaline earth metal fluorides Ma1-xMbxF2 (M: Ca, Sr, Ba) was tested by fluorination of metal acetates and metal hydroxides with ammonium fluoride directly at milling. Evidence was found for a mutual substitution of cations on their lattice positions in Ca1-xSrxF2 and Ba1-xSrxF2 samples. For the Ba/Ca-system this synthesis route is only partially successful. X-ray diffraction and 19F MAS NMR spectroscopy were used to characterize all samples concerning their crystal structure and local fluorine coordination. Calculations of 19F chemical shifts with the superposition model along with probability calculations for the intensity of the individual 19F lines, performed in dependence on the molar composition of the samples, perfectly agree with the experimental findings. The fluoride ion conductivity of as-prepared samples, determined by temperature dependent DC conductivity measurements, is significantly higher than those of crystalline binary fluorides. Moreover, a higher F- ion conductivity is observed for samples with higher mixing grade in the Ca/Sr-and the Ba/Sr-systems.

  13. Electrolytes for advanced batteries

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, G.E. [Energizer, Westlake, OH (United States)

    1999-09-01

    The choices of the components of the electrolyte phase for advanced batteries (lithium and lithium ion batteries) are very sensitive to the electrodes which are used. There are also a number of other requirements for the electrolyte phase, which depend on the cell design and the materials chosen for the battery. The difficulty of choice is compounded when the cell is a rechargeable one. This paper looks at each of these requirements and the degree to which they are met for lithium and lithium ion batteries. The discussion is broken into sections on anode or negative electrode stability requirements, cathode or positive electrode stability requirements, conductivity needs, viscosity and wetting requirements. The effects of these properties and interactions on the performance of batteries are also discussed. (orig.)

  14. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  15. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  16. Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Anji Reddy Polu

    2011-01-01

    Full Text Available Ionic conductivity of poly(ethylene glycol (PEG - ammonium chloride (NH4Cl based polymer electrolytes can be enhanced by incorporating ceramic filler TiO2 into PEG-NH4Cl matrix. The electrolyte samples were prepared by solution casting technique. FTIR studies indicates that the complex formation between the polymer, salt and ceramic filler. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with TiO2 concentration and temperature. The highest room temperature conductivity of the electrolyte of 7.72×10−6 S cm-1 was obtained at 15% by weight of TiO2 and that without TiO2 filler was found to be 9.58×10−7 S cm−1. The conductivity has been improved by 8 times when the TiO2 filler was introduced into the PEG–NH4Cl electrolyte system. The conductance spectra shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the conductivity of the polymer electrolytes seems to obey the VTF relation. The conductivity values of the polymer electrolytes were reported and the results were discussed. The imaginary part of dielectric constant (εi decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region.

  17. Frequency response of electrolyte-gated graphene electrodes and transistors

    Science.gov (United States)

    Drieschner, Simon; Guimerà, Anton; Cortadella, Ramon G.; Viana, Damià; Makrygiannis, Evangelos; Blaschke, Benno M.; Vieten, Josua; Garrido, Jose A.

    2017-03-01

    The interface between graphene and aqueous electrolytes is of high importance for applications of graphene in the field of biosensors and bioelectronics. The graphene/electrolyte interface is governed by the low density of states of graphene that limits the capacitance near the Dirac point in graphene and the sheet resistance. While several reports have focused on studying the capacitance of graphene as a function of the gate voltage, the frequency response of graphene electrodes and electrolyte-gated transistors has not been discussed so far. Here, we report on the impedance characterization of single layer graphene electrodes and transistors, showing that due to the relatively high sheet resistance of graphene, the frequency response is governed by the distribution of resistive and capacitive circuit elements along the graphene/electrolyte interface. Based on an analytical solution for the impedance of the distributed circuit elements, we model the graphene/electrolyte interface both for the electrode and the transistor configurations. Using this model, we can extract the relevant material and device parameters such as the voltage-dependent intrinsic sheet and series resistances as well as the interfacial capacitance. The model also provides information about the frequency threshold of electrolyte-gated graphene transistors, above which the device exhibits a non-resistive response, offering an important insight into the suitable frequency range of operation of electrolyte-gated graphene devices.

  18. Electrolyte materials - Issues and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Balbuena, Perla B. [Department of Chemical Engineering, and Department of Materials Science and Engineering, Texas A and M University, College Station, Texas, 77843 (United States)

    2014-06-16

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes.

  19. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries

    Science.gov (United States)

    Shinkle, Aaron A.; Pomaville, Timothy J.; Sleightholme, Alice E. S.; Thompson, Levi T.; Monroe, Charles W.

    2014-02-01

    Properties of supporting electrolytes and solvents were examined for use with vanadium acetylacetonate - a member of the class of metal(β-diketonate) active species - in non-aqueous redox flow batteries. Twenty supporting-electrolyte/solvent combinations were screened for ionic conductivity and supporting-electrolyte solubility. Hexane, tetrahydrofuran, and dimethylcarbonate solvents did not meet minimal conductivity and solubility criteria for any of the electrolytes used, which included tetraethylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, and (1-butyl, 3-methyl)imidazolium bis(trifluoromethanesulfonyl)imide. Ionic conductivities and solubilities for solutions of these electrolytes passed screening criteria in acetonitrile and dimethylformamide solvents, in which maximum supporting-electrolyte and active-species solubilities were determined. Active-species electrochemistry was found to be reversible in several solvent/support systems; for some systems the voltammetric signatures of unwanted side reactions were suppressed. Correlations between supporting-solution properties and performance metrics suggest that an optimal solvent for a vanadium acetylacetonate RFB should have a low solvent molar volume for active-species solubility, and a high Hansen polarity for conductivity.

  20. Charge neutrality breakdown in confined aqueous electrolytes: Theory and simulation.

    Science.gov (United States)

    Colla, Thiago; Girotto, Matheus; Dos Santos, Alexandre P; Levin, Yan

    2016-09-01

    We study, using Density Functional theory (DFT) and Monte Carlo simulations, aqueous electrolyte solutions between charged infinite planar surfaces, in contact with a bulk salt reservoir. In agreement with recent experimental observations [Z. Luo et al., Nat. Commun. 6, 6358 (2015)], we find that the confined electrolyte lacks local charge neutrality. We show that a DFT based on a bulk-HNC expansion properly accounts for strong electrostatic correlations and allows us to accurately calculate the ionic density profiles between the charged surfaces, even for electrolytes containing trivalent counterions. The DFT allows us to explore the degree of local charge neutrality violation, as a function of plate separation and bulk electrolyte concentration, and to accurately calculate the interaction force between the charged surfaces.

  1. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  2. Reversible control of electrochemical properties using thermally-responsive polymer electrolytes.

    Science.gov (United States)

    Kelly, Jesse C; Pepin, Mark; Huber, Dale L; Bunker, Bruce C; Roberts, Mark E

    2012-02-14

    A thermally responsive copolymer is designed to modulate the properties of an electrolyte solution. The copolymer is prepared using pNIPAM, which governs the thermal properties, and acrylic acid, which provides the electrolyte ions. As the polymer undergoes a thermally activated phase transition, the local environment around the acid groups is reversibly switched, decreasing ion concentration and conductivity. The responsive electrolyte is used to control the activity of redox electrodes with temperature.

  3. Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Bon-Heun KOO; Chan-Gyu LEE; Young-Joo KIM; Sung-Hun LEE; Eungsun BYON

    2009-01-01

    Plasma electrolytic oxidation(PEO) processes were carried out to produce ceramic layers on 6061 aluminum substrates in four kinds of electrolytes such as silicate and aluminate solution with and without sodium fluorosilicate. The PEO processes were carried out under a hybrid voltage (260 V DC combined with 200 V, 60 Hz AC amplitude) at room temperature for 5 min. The composition, microstructure and element distribution analyses of the PEO-treated layers were carried out by XRD and SEM & EDS. The effect of the electrolyte contents on the growth mechanism, element distribution and properties of oxide layers were studied. It is obvious that the layers generated in aluminate solutions show smoother surfaces than those in silicate solutions. Moreover, an addition of fluorine ion can effectively control the layer porosity; therefore, it can enhance the properties of the layers.

  4. Dye-sensitized solar cell using 4-chloro-7-nitrobenzofurazan incorporated polyvinyl alcohol polymer electrolyte

    Science.gov (United States)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.; Arof, A. K.

    2016-11-01

    The influence of 4-chloro-7-nitrobenzofurazan (CNBF) on ionic conductivity of polyvinyl alcohol/KI/I2 (PVA/KI/I2) electrolytes was investigated in the present study. The pure and CNBF incorporated PVA/KI/I2 electrolyte films were prepared by solution casting method using dimethyl sulfoxide as a solvent. These polymer electrolyte films were characterized using Fourier transform infrared spectroscopy, X-ray diffractometer, UV-Vis spectrophotometer and impedance analysis. The ionic conductivities of polymer electrolyte films were calculated from impedance analysis. The pure PVA/KI/I2 electrolyte exhibited the ionic conductivity of 1.649 × 10-5 S cm-1 at room temperature and this value was significantly increased to 1.490 × 10-4 S cm-1 when CNBF was incorporated into the PVA/KI/I2 electrolyte. This might be due to the decrease in the crystallinity of the polymer and increase in the ionic mobility of charge carriers. The performance of the DSSCs using both pure and CNBF incorporated PVA/KI/I2 electrolytes were compared. A DSSC fabricated with CNBF incorporated PVA/KI/I2 electrolyte showed an improved power conversion efficiency of 3.89 % than that of the pure PVA/KI/I electrolyte (1.51 %). These results suggest that CNBF incorporated PVA/KI/I2 electrolyte could be used as a potential electrolyte for DSSC.

  5. Research on Solution Chemistry of the Electrolyte of Redox Flow Battery, General Technology Report%液流电池电解质的溶液化学研究最终报告

    Institute of Scientific and Technical Information of China (English)

    刘素琴; 越华

    2016-01-01

    针对高稳定性、高活性全钒液流电池电解液以及高能量密度单液流电池沉积型电对及固体电极电化学性能与电解质溶液之间构效关系、高稳定性浓电解质溶液化学理论及作用机制等关键科学问题,以具备较大应用潜力的全钒双液流以及锌/镍、全铅单液流电池体系电解质的溶液化学为研究重点,通过电化学测试与材料物性表征相结合,深入研究了电解质溶液对全钒双液流以及碱性沉积型锌负极和电池性能的影响,阐明了电解液流速、锌沉积面容量和电流密度的关联;考察了不同种类的无机、有机添加剂以及添加剂中的官能团对电解液的热稳定性以及电化学活性的影响,深入研究了电解液溶液及添加剂对固体氧化镍正极活性和稳定性的影响,探讨了电解液添加剂与锌负极和氧化镍正极的相容性;研究了全铅单液流电池电解质溶液的物化性质,探明电解液组成对电极性能的影响规律;研究了电解液添加剂对全铅单液流电池电极性能的影响及其作用机制;考察了支持电解质对电解液的热力学稳定性、电化学活性以及循环稳定性等的影响,优化了电解液的组成,提高了电池充放电的能量效率和循环稳定性。重要的创新点包括以下方面:(1)确定了对于全钒液流电池电解液的热稳定性和电化学性能具有积极作用的添加剂结构和支持电解质组成;(2)阐明全铅单液流电池电解液中铅活性离子对电极性能的影响规律,优化了铅离子浓度;(3)提出电解液中添加电解PbO2,降低沉积型PbO2电极极化,抑制铅累积和枝晶的新方法,获得了高活性、高沉积均匀性Pb负极和PbO2正极。%The all vanadium redox flow battery, Zn/Ni, PbO2/Zn、PbO2/Cu(Cd) and all lead single flow battery systems with great application potential and electrolyte of high concentration are taken

  6. Graphene quantum dots as the electrolyte for solid state supercapacitors

    Science.gov (United States)

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization.

  7. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  8. ELECTROLYTIC MEMBRANE DIALYSIS FOR TREATING WASTEWATER STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Timpe

    2000-04-01

    This project will determine whether electrolytic dialysis has promise in the separation of charged particles in an aqueous solution. The ability to selectively move ions from one aqueous solution to another through a semipermeable membrane will be studied as a function of emf, amperage, and particle electrical charge. The ions selected for the study are Cl{sup -} and SO{sub 4}{sup 2-}. These ions are of particular interest because of their electrical conduction properties in aqueous solution resulting with their association with the corrosive action of metals. The studies will be performed with commercial membranes on solutions prepared in the laboratory from reagent salts. pH adjustments will be made with dilute reagent acid and base. Specific objectives of the project include testing a selected membrane currently available for electrolytic dialysis, membrane resistance to extreme pH conditions, the effectiveness of separating a mixture of two ions selected on the basis of size, the efficiency of the membranes in separating chloride (Cl{sup 1-}) from sulfate (SO{sub 4}{sup 2-}), and separation efficiency as a function of electromotive force (emf).

  9. The effect of electrolytes on dolomite dissolution: nanoscale observations using in situ Atomic Force Microscopy

    Science.gov (United States)

    Urosevic, Maja; Ruiz-Agudo, Encarnacion; Putnis, Christine V.; Cardell, Carolina; Rodriguez-Navarro, Carlos; Putnis, Andrew

    2010-05-01

    Dissolution of carbonate minerals is one of the main chemical reactions occurring at shallow levels in the crust of the Earth and has a paramount importance for a wide range of geological and biological processes. Calcite (CaCO3), and to a lesser extent dolomite (CaMg(CO3)2), are the major carbonate minerals in sedimentary rocks and building stone materials. The dissolution of calcite has been thoroughly investigated over a range of conditions and solution compositions. In contrast, dolomite dissolution studies have been traditionally hampered by its low reaction rates compared to calcite and its poorly constrained relationship between cation ordering and reactivity (Morse and Arvidson, 2002). Yet important questions like the so-called 'dolomite problem' (e.g. Higgins and Hu, 2005) remain unresolved and more experimental work is needed in order to understand the role of other dissolved species, such as soluble salts, on the kinetics and mechanism of dolomite dissolution and precipitation. We have explored the effect of different electrolytes on the dissolution rate of dolomite by using in situ Atomic Force Microcopy (AFM). Experiments were carried out by passing alkali halide, nitrate and sulfate salt solutions (NaCl, KCl, LiCl, NaI, NaNO3 and Na2SO4) with different ionic strengths (IS = 10-3, 10-2 and 10-1) over dolomite {1014} cleavage surfaces. We show that all electrolytes tested enhance dolomite dissolution. Moreover, the morphology and density of etch pits are controlled by the presence of different ions in solution. The etch pit spreading rate and dolomite dissolution rate depend on both (1) the nature of the electrolyte and (2) the ionic strength. This is in agreement with recent experimental studies on calcite dissolution (Ruiz-Agudo et al., 2010). This study highlights the role of electrolytes in dolomite dissolution and points to a common behavior for carbonate minerals. Our results suggest that soluble salts may play a critical role in the weathering of

  10. Hidratação enteral em equinos - solução eletrolítica associada ou não à glicose, à maltodextrina e ao sulfato de magnésio: resultados de laboratório Enteral fluid therapy in horses - electrolyte solution associated or not with glucose, maltodextrine and magnesium sulphate: laboratory results

    Directory of Open Access Journals (Sweden)

    Marcel Ferreira Bastos Avanza

    2009-07-01

    Full Text Available No presente estudo, foram avaliados os efeitos de soluções eletrolíticas administradas via sonda nasoesofágica de pequeno calibre sobre o hematócrito, o volume plasmático e as concentrações plasmáticas de proteínas totais, sódio, potássio, cloreto, magnésio total e cálcio iônico de eqüinos hígidos e desidratados experimentalmente. Foram utilizados quatro equinos adultos, mestiços, dois machos e duas fêmeas. No experimento 1 (E1Des, os animais foram desidratados experimentalmente, enquanto no 2 (E2Hig foram utilizados equinos hígidos. Os animais foram submetidos a cada um dos seguintes tratamentos: SE - solução eletrolítica isotônica; SEGli - solução eletrolítica isotônica + glicose; SEMalt - solução eletrolítica isotônica + maltodextrina e SEMg - solução eletrolítica isotônica + sulfato de magnésio. A solução eletrolítica foi administrada na dose de 15mL kg-1 h-1, durante 12h via sonda nasoesofágica por fluxo contínuo. Os tratamentos com as soluções eletrolíticas ocasionaram expansão do volume plasmático, ocasionando a redução nos valores das proteínas plasmáticas totais e do hematócrito, enquanto os valores dos eletrólitos avaliados permaneceram na faixa de referência.In the present study, the effects of four different electrolyte solutions on the packed cell volume (PCV, plasma volume and plasma concentrations of total protein, sodium, potassium, chloride, total magnesium, and ionized calcium in healthy and experimentally dehydrated horses were evaluated. Four crossbred horses, two males and two females were used. In experiment 1 (E1Des the animals were experimentally dehydrated, while in the second experiment (E2Hig healthy equines were used. In both experiments the animals were subjected to the following treatments: SE - isotonic electrolyte solution; SEGlu - glucose-enriched SE; SEMalt - maltodextrine-enriched SE and SEMg - magnesium sulphate-enriched SE. The electrolyte solutions used

  11. High flash point electrolyte for use in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R.W.; Kunze, M.; Passerini, S.; Winter, M. [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany); Lex-Balducci, A., E-mail: a.lex-balducci@uni-muenster.de [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany)

    2011-09-01

    Highlights: > Substitution of linear carbonates in conventional electrolytes with adiponitrile allows the realization of high flash point electrolytes. > EC:ADN based electrolytes display a higher anodic stability than a conventional electrolyte based on EC:DEC. > Graphite and NCM electrodes used in combination with the EC:ADN based electrolyte display a performance comparable with that of conventional electrolytes. - Abstract: The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 deg. C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF{sub 4}) displayed a conductivity of 2.6 mS cm{sup -1} and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF{sub 6}) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g{sup -1} at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.

  12. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2 par...

  13. Gas Hold-Up in Stirred Tank Reactors in the Presence of Inorganic Electrolytes

    NARCIS (Netherlands)

    Yawalkar, Archis A.; Heesink, Albertus B.M.; Versteeg, Geert F.; Pangarkar, Vishwas G.

    2002-01-01

    Gas hold-up (εG) in air–aqueous electrolyte solutions in stirred tank reactors (STR) is correlated using a relative gas dispersion parameter, N/Ncd and a surface tension factor (STF), (c/z)(dσ/dc)^2. For electrolyte concentration below transition concentration (ct) a single correlation in the form o

  14. Coupling between electrolyte and organic semiconductor in electrolyte-gated organic field effect transistors (Conference Presentation)

    Science.gov (United States)

    Biscarini, Fabio; Di Lauro, Michele; Berto, Marcello; Bortolotti, Carlo A.; Geerts, Yves H.; Vuillaume, Dominique

    2016-11-01

    Organic field effect transistors (OFET) operated in aqueous environments are emerging as ultra-sensitive biosensors and transducers of electrical and electrochemical signals from a biological environment. Their applications range from detection of biomarkers in bodily fluids to implants for bidirectional communication with the central nervous system. They can be used in diagnostics, advanced treatments and theranostics. Several OFET layouts have been demonstrated to be effective in aqueous operations, which are distinguished either by their architecture or by the respective mechanism of doping by the ions in the electrolyte solution. In this work we discuss the unification of the seemingly different architectures, such as electrolyte-gated OFET (EGOFET), organic electrochemical transistor (OECT) and dual-gate ion-sensing FET. We first demonstrate that these architectures give rise to the frequency-dependent response of a synapstor (synapse-like transistor), with enhanced or depressed modulation of the output current depending on the frequency of the time-dependent gate voltage. This behavior that was reported for OFETs with embedded metal nanoparticles shows the existence of a capacitive coupling through an equivalent network of RC elements. Upon the systematic change of ions in the electrolyte and the morphology of the charge transport layer, we show how the time scale of the synapstor is changed. We finally show how the substrate plays effectively the role of a second bottom gate, whose potential is actually fixed by the pH/composition of the electrolyte and the gate voltage applied.

  15. Gelled Electrolytes For Lithium Batteries

    Science.gov (United States)

    Nagasubramanian, Ganesan; Attia, Alan; Halpert, Gerald

    1993-01-01

    Gelled polymer electrolyte consists of polyacrylonitrile (PAN), LiBF4, and propylene carbonate (PC). Thin films of electrolyte found to exhibit stable bulk conductivities of order of 10 to the negative 3rd power S/cm at room temperature. Used in thinfilm rechargeable lithium batteries having energy densities near 150 W h/kg.

  16. "EARTH: The Operators' Manual" - a hybrid model (TV+online+in-person) to effectively communicate climate change science alongside sustainable energy solutions

    Science.gov (United States)

    Haines-stiles, G.; Alley, R. B.; Akuginow, E.

    2011-12-01

    Recent public opinion surveys have found that Americans underestimate the degree of agreement by climate scientists about global warming and climate change, and - despite growing evidence of ice sheet loss, ocean acidification, sea level rise and extreme weather events - believe less in warming trends in 2011 than they did earlier. The issue has become politicized and controversial. "EARTH: The Operators' Manual" is an informal science education project supported by NSF, the National Science Foundation. Its ambitious goal is to use a hybrid mix of broadcast programs appearing on public television and hosted by Penn State geoscientist, Richard Alley, together with on-site outreach events and online resources and tools, to present core climate science in engaging ways, and to combine that presentation of objective research with an overview of sustainable energy solutions. The project's content and communication strategies have been shaped in response to analyses of public opinion such as the SIX AMERICAS study and aim to address common "skeptic" arguments and share essential climate science. Social science research has also found that audiences seem more open to scientific information where the possibility of a positive response is also offered. The first hour-long PBS program aired nationally in April 2011, has since been re-broadcast, and is also available online. Two more programs will air in 2012, and the presentation at the Fall AGU Conference will preview segments from both programs. Five regionally-diverse science centers (in San Diego, Raleigh NC, St. Paul MN, Fort Worth TX and Portland OR) have hosted outreach events, with Richard Alley and other project participants, and will continue with additional activities through summer 2012. The project's website includes video clips, case studies of energy-saving initiatives world-wide and across the USA, plus an interactive "Energy Gauge" inviting users to assess their current Home, Travel, Food, and Goods and

  17. Characteristics of MOX dissolution with silver mediated electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Miki; Nakazaki, Masato; Kida, Takashi; Sato, Kenji; Kato, Tadahito; Kihara, Takehiro; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution with silver mediated electrolytic oxidation method is to be applied to the preparation of plutonium nitrate solution to be used for criticality safety experiments at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). Silver mediated electrolytic oxidation method uses the strong oxidisation ability of Ag(II) ion. This method is though to be effective for the dissolution of MOX, which is difficult to be dissolved with nitric acid. In this paper, the results of experiments on dissolution with 100 g of MOX are described. It was confirmed from the results that the MOX powder to be used at NUCEF was completely dissolved by silver mediated electrolytic oxidation method and that Pu(VI) ion in the obtained solution was reduced to tetravalent by means of NO{sub 2} purging. (author)

  18. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  19. MEXICANA DE CANANEA TO START UP BREAKTHROUGH PROCESS TO ELIMINATE ELECTROLYTE BLEEDING

    Institute of Scientific and Technical Information of China (English)

    FaniaLisa

    1997-01-01

    Copper processors using solvent extraction/electrowinning(SX/EW) have known for years that eliminating the electrolyte bleed could benefit process economics dramatically Until now.there was no practical solution to eliminate the bleed.Available processes either could nor reduce iron contaminants sufficiently,or pulled out too much valuable copper and cobalt along with the iron.Based on pilot tests of a new breed of ion exchange separatioin system at three different mine sites on representative electrolytes,an alternmative to bleeding electrolytes now exists.On this basis,processors can shelve the wasteful electrolyte bleeding practice.Already,one major copper producer is installing a fullscale system.

  20. Electrolyte management considerations in modern nickel/hydrogen and nickel/cadmium cell and battery designs

    Science.gov (United States)

    Thaller, Lawrence H.; Zimmerman, Albert H.

    In the early 1980s, the battery group at the NASA Lewis Research Center (LeRC) reviewed the design issues associated with nickel/hydrogen cells for low-earth orbit applications. In 1984, these issues included gas management, liquid management, plate expansion, and the recombination of oxygen during overcharge. The design effort by that group followed principles set forth in an earlier LeRC paper that introduced the topic of pore size engineering. Also in 1984, the beneficial effect of lower electrolyte concentrations on cycle life was verified by Hughes Aircraft as part of a LeRC-funded study. Subsequent life cycle tests of these concepts have been carried out that essentially have verified all of this earlier work. During the past decade, some of the mysteries involved in the active material of the nickel electrode have been resolved by careful research done at several laboratories. While attention has been paid to understanding and modeling abnormal nickel/hydrogen cell behaviors, not enough attention has been paid to the potassium ion content in these cells, and more recently, in batteries. Examining the potassium ion content of different portions of the cell or battery is a convenient way of following the conductivity, mass transport properties, and electrolyte volume in each of the cell or battery portions under consideration. Several of the consequences of solvent and solute changes within fuel cells have been well known for some time. However, only recently have these consequences been applied to nickel/hydrogen and nickel/cadmium cell designs. As a result of these studies, several unusual cell performance signatures can now be satisfactorily explained in terms of movement of the solvent and solute components in the electrolyte. This paper will review three general areas where the potassium ion content can impact the performance and life of nickel/hydrogen and nickel/cadmium cells. Sample calculations of the concentration or volume changes that can take

  1. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng; Liu, Yun; Li, Jianling; Wang, Xindong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Li, Qingfeng [Department of Chemistry, Technology University of Denmark, DK-2800 Lyngby (Denmark)

    2008-10-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO{sub 2} particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO{sub 2} particles to the polymer electrolyte was found to enhance the tensile strength, electrolyte uptake, ion conductivity and the electrolyte/electrode interfacial stability of the membrane. (author)

  2. CONDUCTIVITY STUDIES OF (PEO +KHCO3 SOLID ELECTROLYTE SYSTEM AND ITS APPLICATION AS AN ELECTROCHEMICAL CELL

    Directory of Open Access Journals (Sweden)

    K. VIJAY KUMAR

    2010-06-01

    Full Text Available Solid polymer electrolyte system, polyethylene oxide (PEO complexed with potassium bicarbonate (KHCO3 salt was prepared by solution-cast technique. Several experimental techniques such as infrared radiation (IR, differential scanning calorimeter (DSC, and composition dependence conductivity, temperature dependence conductivity in the temperature range of 308–368 K and transport number measurements were employed to characterize this polymer electrolyte system. The conductivity of the (PEO+KHCO3 electrolyte was found to be about 3 times larger than that of pure PEO at room temperature. The transference data indicated that the charge transport in these polymer electrolyte systems is predominantly due to K+ ions. Using this polymer electrolyte an electrochemical cell with configuration K+/(PEO+KHCO3/(I2+C+electrolyte was fabricated and its discharge characteristics are studied. A number of other cell parameters associated with the cell were evaluated and are reported in this paper.

  3. Radio-frequency capacitive discharge with non-flow-type and droplet-jet electrolytic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gaisin, A. F., E-mail: LShGasimova@kai.ru [Kazan Tupolev National Research Technical University (Russian Federation); Abdullin, I. Sh., E-mail: almaz87@mail.ru [Kazan National Research Technological University (Russian Federation); Basyrov, R. Sh.; Khaziev, R. M.; Samitova, G. T.; Shakirova, E. F. [Kazan Tupolev National Research Technical University (Russian Federation)

    2014-12-15

    Results are presented from experimental studies of the shape, structure, and spectral characteristics of an RF capacitive discharge operating between a droplet-jet electrolytic electrode and an electrolytic cell in air at pressures of P = 10{sup 3}–10{sup 5} Pa, as well as of a discharge burning between a copper rod and the surface of non-flow electrolyte at atmospheric pressure. It is found that, at voltages of U ≥ 3500 V, the multichannel discharge burning between the rod and the electrolyte (saturated solution of NaCl in technical water) surface transforms into a torch discharge. Specific features of the burning of a discharge with a droplet electrolytic electrode are investigated. Different forms of discharges burning on the surface of a copper tube and an electrolyte jet are revealed.

  4. Decoupling effective Li+ ion conductivity from electrolyte viscosity for improved room-temperature cell performance

    Science.gov (United States)

    Giffin, Guinevere A.; Moretti, Arianna; Jeong, Sangsik; Passerini, Stefano

    2017-02-01

    Ionic liquids are attractive materials for alternative electrolytes to combat the safety issues associated with conventional organic carbonate-based electrolytes. However, the performance of ionic liquid-based cells is generally not competitive as the high viscosity and low conductivity limits the rate performance. The work presented here demonstrates that the drawbacks in terms of rate capability can be overcome through the use of the high lithium concentration Pyr12O1FTFSI0.6LiFTFSI0.4 electrolyte. Despite an order of magnitude difference in the conductivity and viscosity, this high concentration electrolyte outperforms the lithium-dilute electrolyte with the same components in terms of rate capability in Li metal/LFP cells and LTO/LFP cells. The results suggest that the effective Li ion transport in the concentrated electrolyte is higher than in the dilute solution.

  5. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  6. On electrochemical devices using alkaline polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, L. [Wuhan Univ., Wuhan (China). Dept. of Chemistry

    2010-07-01

    Solid polymer electrolytes (SPEs) enable a compact assembly of fuel cells and electrolyzers, thereby increasing the space-specific conversion efficiency and avoiding electrolyte leakage. The most widely used SPE in proton exchange membrane fuel cells (PEMFC) and chloro-alkali electrolyzers is Nafion. However, this strongly acidic polyelectrolyte allows only noble metals to be used as the catalysts in the electrochemical devices, which poses a problem in terms of price and resource limits. In principle, alkaline polymer electrolytes (APEs) should be used to eliminate the dependence on noble metal catalysts. The general structure of alkaline polymer electrolytes is a positively charged polymer, notably, a polymer chain attached with fixed cations such as quaternary ammonia group, and dissociated anion, OH-, to act as the charge carrier. This presentation described the challenges of developing APEs in terms of the chemical stability of quaternary ammonia group, the mobility of OH-, and high ionic concentration. The authors have been working on developing high-performance APEs since 2001. The most recent APEs were quaternary ammonia polysulfone (QAPS), which were found to be suitable for fuel cell and electrolyzer applications. The ionic conductivity was high and the crosslinked membrane had excellent mechanical strength, enabling operation at 90 degrees C. Non-precious metal catalysts were used in the APEs. For APE-based fuel cells (APEFC), chromium decorated nickel was used as the anode catalyst for hydrogen oxidation, and silver was used as the cathode catalyst for oxygen reduction. The preliminary performance of such an APEFC with non-Pt catalysts was found to be much better than that of traditional water electrolyzers using KOH solutions. 2 refs.

  7. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  8. Solid-liquid extraction of Gd(Ⅲ) and separation possibilities of rare earths from phosphoric acid solutions using Tulsion CH-93 and Tulsion CH-90 resins

    Institute of Scientific and Technical Information of China (English)

    S.Radhika; V.Nagaraju; B.Nagaphani Kumar; M.Lakshmi Kantam; B.Ramachandra Reddy

    2012-01-01

    Solid-liquid extraction of gadolinium was investigated from phosphoric acid medium using commercial amino phosphonic acid resin,Tulsion CH-93.The experimental conditions studied included equilibration time,acid concentration,mass of the resin,metal concentration,loading and elution.The percent extraction of Gd(Ⅲ) was studied as a function of phosphoric acid (0.05-3 mol/L) using Tulsion CH-93 resin.The corresponding lgD vs.equilibrium pH plot gave straight line with a slope of 1.8.The percent extraction decreased with acid concentration increasing,conforming ion exchange mechanism.Under observed experimental conditions the loading capacity of Tulsion CH-93 for gadolinium was 10.6 mg/g.Among several eluants screened,the quantitative elution of Gd(Ⅲ) from loaded Tulsion CH-93 was obtained with ammonium oxalate (0.15 mol/L).The extraction behavior of commonly associated metals with gadolinium was studied as a function of phosphoric acid concentration.Tulsion CH-93 resin showed selective extraction towards heavy rare earths (Lu and Yb) which could be separated from other rare earths at 3 mol/L H3PO4,similar to wet phosphoric acid (3-5 mol/L).On the other hand Gd(Ⅲ) and other rare earths were studied with chelating resin Tulsion CH-90.Light rare earths were highly extracted and these could be separated from heavy rare earths and Gd.

  9. Thermal stability of the C106 dye in robust electrolytes

    DEFF Research Database (Denmark)

    Lund, Torben; Phuong, Nguyen Tuyet; Pechy, Peter

    of the particles were prepared in electrolyte mixture B. The solutions were thermally treated at 80 ◦C for 0-2000 hours followed by dye extraction and analysis by HPLC coupled to UV/Vis and electro spray mass spectrometry [2]. Figure 1 shows the concentration profiles of C106 samples prepared under ambient...

  10. Dye···TiO{sub 2} Interfacial Structure of Dye-Sensitised Solar Cell Working Electrodes Buried under a Solution of I-/I{sub 3}- Redox Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    McCree-Grey, Jonathan; Cole, Jacqueline M.; Holt, Stephen A.; Evans, Peter J.; Gong, Yun

    2017-08-28

    Dye-sensitised solar cells (DSCs) have niche prospects for electricity-generating windows that could equip buildings for energy-sustainable future cities. However, this 'smart window' technology is being held back by a lack of understanding in how the dye interacts with its device environment at the molecular level. A better appreciation of the dye center dot center dot center dot TiO2 interfacial structure of the DSC working electrodes would be particularly valuable since associated structure-function relationships could be established; these rules would provide a 'toolkit' for the molecular engineering of more suitable DSC dyes via rational design. Previous materials characterisation efforts have been limited to determining this interfacial structure within an environment exposed to air or situated in a solvent medium. This study is the first to reveal the structure of this buried interface within the functional device environment, and represents the first application of in situ neutron reflectometry to DSC research. By incorporating the electrolyte into the structural model of this buried interface, we reveal how lithium cations from the electrolyte constituents influence the dye center dot center dot center dot TiO2 binding configuration of an organic sensitiser, MK-44, via Li+ complexation to the cyanoacrylate group. This dye is the molecular congener of the high-performance MK-2 DSC dye, whose hexa-alkyl chains appear to stabilise it from Li+ complexation. Our in situ neutron reflectometry findings are built up from auxiliary structural models derived from ex situ X-ray reflectometry and corroborated via density functional theory and UV/vis absorption spectroscopy. Significant differences between the in situ and ex situ dye center dot center dot center dot TiO2 interfacial structures are found, highlighting the need to characterise the molecular structure of DSC working electrodes while in a fully assembled device.

  11. Dissolution of Ce from Cd Solution Containing U/Ce Elements by Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Hyung; Kim, Gha-Young; Lee, Seung-jai; Kim, Taek-Jin; Paek, Seungwoo; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The U-TRU metal alloy can be supplied by the Pyroprocessing, specifically UTRU recovery process using liquid cadmium cathode (LCC). In a certain case, a lot of rare earth (RE) element could be recovered on the LCC with the TRU element during the Pyroprocessing when the concentration of RE ions is higher than that of the TRU ions in the salt. In this case, most of the RE element needs to be removed from the Cd solution containing U/TRU/RE elements. RAR(Residual Actinides Recovery) technique used the mixed electrolytic-chemical process. In this study, only electrolysis technique was utilized to remove Ce element from Cd solution containing U/Ce elements. U-TRU alloy having less impurity is necessary for the fabrication of SFR fuel and these U-TRU elements can be prepared by Pyroprocessing. Electrolytic method was used to reduce the amount of Ce elements from the Cd solution containing U/Ce elements. It is judged from this study that electrolytic dissolution can be one of the methods to reduce RE elements from the Cd solution containing U-TRU-RE elements.

  12. Photopolymerized Electrolytes For Electrochromic Devices

    Science.gov (United States)

    Cogan, Stuart; Rauh, R. David

    1994-01-01

    Thin ion-conducting electrolyte films for use in electrochromic devices now fabricated relatively easily and quickly with any of class of improved formulations containing ultraviolet-polymerizable components. Formulations are liquids in their monomeric forms and self-supporting, transparent solids in their polymeric forms. Thin solid electrolytes form quickly and easily between electrode-bearing substrates. Film thus polymerized acts not only as solid electrolyte but also as glue holding laminate together: feature simplifies fabrication by reducing need for sealants and additional mechanical supports.

  13. Organic electrolytes for sodium batteries

    Science.gov (United States)

    Vestergaard, B.

    1992-09-01

    A summary of earlier given status reports in connection with the project on organic electrolytes for sodium batteries is presented. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  14. Process for electrolytic deposition of metals on zirconium materials

    Science.gov (United States)

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  15. An electrolyte CPA equation of state for mixed solvent electrolytes

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Thomsen, Kaj; Kontogeorgis, Georgios M.

    2015-01-01

    that the predictive capabilities could be improved through the development of an electrolyte equation of state. In this work, the Cubic Plus Association (CPA) Equation of State is extended to handle mixtures containing electrolytes by including the electrostatic contributions from the Debye-Hückel and Born terms...... depression. Finally, the model is applied to predict VLE, LLE, and SLE in aqueous salt mixtures as well as in mixed solvents....

  16. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    Science.gov (United States)

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  17. Expanding earth

    Energy Technology Data Exchange (ETDEWEB)

    Carey, S.W.

    1976-01-01

    Arguments in favor of an expanding earth are presented. The author believes that the theory of plate tectonics is a classic error in the history of geology. The case for the expanding earth is organized in the following way: introductory review - face of the earth, development of expanding earth concept, necessity for expansion, the subduction myth, and definitions; some principles - scale of tectonic phenomena, non-uniformitarianism, tectonic profile, paleomagnetism, asymmetry of the earth, rotation of the earth, and modes of crustal extension; regional studies - western North America, Central America, South-East Asia, and the rift oceans; tests and cause of expansion. 824 references, 197 figures, 11 tables. (RWR)

  18. Hemogasometria em cães com desidratação experimental tratados com soluções eletrolíticas comerciais administradas por via intravenosa Blood gas analysis in dogs with experimental dehidration treated with commercial electrolytes solutions by intravenous route

    Directory of Open Access Journals (Sweden)

    José Dantas Ribeiro Filho

    2008-10-01

    Full Text Available No presente estudo, foram comparados os efeitos da administração intravenosa de três soluções eletrolíticas comerciais sobre o equilíbrio ácido-base em cães desidratados experimentalmente por restrição hídrica e poliúria. Os animais foram aleatoriamente distribuídos em três grupos e tratados com três diferentes soluções eletrolíticas comerciais durante 12 horas: Ringer com lactato de sódio (RL, Ringer simples (RS e Glicofisiológico (GF. Entre os tratamentos testados, a fluidoterapia intravenosa com solução de Ringer com lactato de sódio (RL foi o tratamento que apresentou efeito alcalinizante, sinalizado por pequeno aumento nos valores do pH(a, cHCO3(aP, ctCO2(aP e cBase(a, podendo ser utilizada no tratamento de animais com acidose metabólica de intensidade discreta a moderada. As soluções Ringer simples (RS e glicofisiológica (GF determinaram discreta diminuição na concentração de base titulável do sangue arterial (cBase, demonstrando efeito acidificante, o que as tornam uma opção para tratar cães com alcalose metabólica.Three commercial intravenous electrolyte solutions were compared as for their effects on the blood acid-base status in dogs experimentally dehydrated by withholding water and inducing polyuria. Animals were randomly divided into three groups which were rehydrated with the following commercial electrolyte solutions during 12 hours: Lactate Ringer´s solution (RL, Ringer´s solution (RS and a normal saline solution (0.9% sodium chloride containing 5% dextrose (GF. The RL´s intravenous fluid therapy resulted in an alkalinizing effect demonstrated by a mild increase in arterial blood pH, ctCO2, bicarbonate (cHCO-3, and arterial blood base concentration (cBase and, thus, can be used in animals exhibiting mild to moderate metabolic acidosis. In contrast, the RS and GF therapies led to a mild decrease in the concentration of arterial blood tritiable base (cBase inducing an acidifying effect, which

  19. Effects of electrolytes on ion transport in Chitosan membranes

    Science.gov (United States)

    Rupiasih, N. N.

    2016-11-01

    Recently, charged polymer membranes are widely used for water purification applications involving control of water and ion transport, such as reverse osmosis and electrodialysis. In this study, we have explored the effects of electrolyte solutions on ion transport properties of chitosan synthetic membranes via concentration gradient driven transport. Also, the water uptake of those membranes, before (control) as well used membranes have studied. The membrane used was chitosan membrane 2%. The electrolyte solutions used were HCl, KCl, CaCl2, MgCl2 and AlCl3, with various concentrations of 0.1 mM, 1 mM, 10 mM, 100 mM and 1000 mM. Ion transport experiments were carried out in a cell membrane model which composed of two compartments and the potential difference of membrane was measured using Ag/AgCl calomel electrodes. Those measurements were conducted at ambient temperature 28.8 °C. The results showed that the current density (J) increased with increased in concentration gradient of solution. The current density was higher in electrolyte solution which has higher molar conductivity than those of a solution with a small molar conductivity. Meanwhile the current density was smaller in electrolyte solution which has larger Stokes radii than those of a solution with small Stokes radii. Except membrane which has been used in HCl solution, the water uptakes of the used membranes were greater than the control membrane. These results can develop and validate a common framework to interpret data of concentration gradient driven transport in chitosan synthetic membranes and to use it to design of membranes with improved performance.

  20. Solid lithium ion conducting electrolytes and methods of preparation

    Science.gov (United States)

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  1. Non-aqueous electrolytes for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  2. Recent Advances in Study on Thermodynamic Models for Real Systems Including Electrolytes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A comprehensive review of recent advances in study on thermodynamic models for real electrolyte solutions is presented. The differences between primitive and non-primitive electrolyte models are demonstrated. Some new thermodynamic models for electrolyte solutions based on the mean spherical approximation and perturbation theory are introduced. An extended scaled-particle theory and modified CleggPitz er equation are presented for physical and chemical absorption processes with mixed solvents, respectively. A pseudo one-component two-Yukawa equation of state is used for the aqueous two-phase extraction process in charged colloidal systems.

  3. Composite solid polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  4. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  5. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wei; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-30

    Highlights: • PPy/CFs have been fabricated by electrodepositing polypyrrole on carbon fibers. • The electrolytes in deposition solution have effect on PPy/CFs’ capacitive behavior. • Cells of PPy/CFs obtained from NaH{sub 2}PO{sub 4} electrolyte has good stability in PVA/H{sub 3}PO{sub 4}. - Abstract: In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H{sub 3}PO{sub 4}/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH{sub 2}PO{sub 4}·2H{sub 2}O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  6. Corrosion behavior of Mg/graphene composite in aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, M. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saminathan, K., E-mail: ksaminath@gmail.com [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Siva, P. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saha, P. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, India-769008 (India); Rajendran, V. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India)

    2016-04-01

    In the present work, the electrochemical corrosion behavior of magnesium (Mg) and thin layer graphene coated Mg (Mg/graphene) are studied in different salt electrolyte such as NaCl, KCl and Na{sub 2}SO{sub 4}. The phase structure, crystallinity, and surface morphology of the samples are investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDAX), and Raman spectroscopy techniques. The electrochemical corrosion behavior of the Mg and graphene coated Mg are also investigated using Electrochemical Impedance Spectroscopy (EIS) analysis. The tafel plot reveals that the corrosion of Mg drastically drops when coated with thin layer graphene (Mg/graphene) compared to Mg in KCl electrolyte. Moreover, the EIS confirms that Mg/graphene sample shows improve corrosion resistance and lower corrosion rate in KCl solution compare to all other electrolytes studied in the present system. - Highlights: • The corrosion behavior of magnesium alloy (AZ91) was investigated in three different electrolyte solution. • To study the anti-corrosion behavior of graphene coated with magnesium alloy. • To improve the corrosion resistance for magnesium alloy. • Nyquist plots confirms that MgG shows better corrosion resistance and lower corrosion rate in KCl solution.

  7. Theory of electrolyte crystallization in magnetic field

    DEFF Research Database (Denmark)

    Madsen, Hans Erik Lundager

    2007-01-01

    Crystallization from aqueous solution of a sparingly soluble electrolyte is accelerated by magnetic field if the crystalizing phase is a diamagnetic salt of a weak acid, and crystallization is from neutral or acid solution in ordinary (not heavy) water. Since the effect of Lorentz force...... is negligible, if not absent, the key property is likely to be the spin of protons which, by virtue of their half-integral spin, are fermions. An effect on crystal growth kinetics has been demonstrated, and the apparent effect on nucleation concerns the growth rate of nuclei. We are thus dealing with surface...... phenomena. The basis of the theory is a crystal model of a sparingly soluble salt with NaCl structure, where the ions are divalent, and the anion is a base. It is assumed that almost all the anions in the surface layer are protonized, and that an approaching metal ion pushes the proton away...

  8. Low Mach Number Fluctuating Hydrodynamics for Electrolytes

    CERN Document Server

    Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2016-01-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...

  9. Prediction of Water Activity for Mixed Aqueous Solutions from the Data of Their Binary Constituent Solutions

    Institute of Scientific and Technical Information of China (English)

    刘艳升; 徐春明; 胡玉峰; 严骏

    2004-01-01

    The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predict water activities of 56 ternary aqueous solutions in terms of the data of their binary subsystems. Both equation of Patwardhan and Kumar and the linear isopiestic relation can provide good predictions for water activities of the present 40 electrolyte solutions, and the linear isopiestic relation generally yields better predictions. The predictions of the extended equation of Patwardhan and Kumar and the linear isopiestic relation are in general quite reasonable for the present 8 ternary solutions of electrolytes and non-electrolytes, and the results of the linear isopiestic relation are usually better. The predictions of these two methods generally agree well with the experimental data for the 8 non-electrolyte mixtures being studied, and the linear isoniestic relation is better.

  10. Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C

    Science.gov (United States)

    Brandon, Erik; Smart, Marshall; West, William

    2010-01-01

    A previous NASA Tech Brief ["Low-Temperature Supercapacitors" (NPO-44386) NASA Tech Briefs, Vol. 32, No 7 (July 2008), page 32] detailed ongoing efforts to develop non-aqueous supercapacitor electrolytes capable of supporting operation at temperatures below commercially available cells (which are typically limited to charging and discharging at > or equal to -40 C). These electrolyte systems may enable energy storage and power delivery for systems operating in extreme environments, such as those encountered in the Polar regions on Earth or in the exploration of space. Supercapacitors using these electrolytes may also offer improved power delivery performance at moderately low temperatures (e.g. -40 to 0 C) relative to currently available cells, offering improved cold-cranking and cold-weather acceleration capabilities for electrical or hybrid vehicles. Supercapacitors store charge at the electrochemical double-layer, formed at the interface between a high surface area electrode material and a liquid electrolyte. The current approach to extending the low-temperature limit of the electrolyte focuses on using binary solvent systems comprising a high-dielectric-constant component (such as acetonitrile) in conjunction with a low-melting-point co-solvent (such as organic formates, esters, and ethers) to depress the freezing point of the system, while maintaining sufficient solubility of the salt. Recent efforts in this area have led to the identification of an electrolyte solvent formulation with a freezing point of -85.7 C, which is achieved by using a 1:1 by volume ratio of acetonitrile to 1,3-dioxolane

  11. Final progress report for linking ion solvation and lithium battery electrolyte properties

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Wesley [North Carolina State Univ., Raleigh, NC (United States)

    2014-08-29

    The research objective of this proposal was to provide a detailed analysis of how solvent and anion structure govern the solvation state of Li+ cations in solvent-LiX mixtures and how this, in turn, dictates the electrolyte physicochemical and electrochemical properties which govern (in part) battery performance. Lithium battery electrolytes remain a poorly understood and hardly studied topic relative to the research devoted to battery electrodes. This is due to the fact that it is the electrodes which determine the energy (capacity) of the battery. The electrolyte, however, plays a crucial role in the practical energy density, power, low and/or high temperature performance, lifetime, safety, etc. which is achievable. The development within this project of a "looking glass" into the molecular interactions (i.e., solution structure) in bulk electrolytes through a synergistic experimental approach involving three research thrusts complements work by other researchers to optimize multi-solvent electrolytes and efforts to understand/control the electrode-electrolyte interfaces, thereby enabling the rational design of electrolytes for a wide variety of battery chemistries and applications (electrolytes-on-demand). The three research thrusts pursued include: (1) conduction of an in-depth analysis of the thermal phase behavior of diverse solvent-LiX mixtures, (2) exploration of the ionic association/solvate formation behavior of select LiX salts with a wide variety of solvents, and (3) linking structure to properties-determination of electrolyte physicochemical and electrochemical properties for comparison with the ionic association and phase behavior.

  12. Partitioning of the rare earths and actinides between R7T7 nuclear glass alteration products and solution according to disposal conditions; Partage des terres rares et des actinides entre solution et produits d`alteration du verre nucleaire type R7T7 en fonction des conditions de stockage

    Energy Technology Data Exchange (ETDEWEB)

    Menard, O.

    1995-10-25

    The alteration of nuclear glass by water is liable to release radionuclides into the environment. Determining the release kinetics of these elements and their aqueous chemical forms are therefore essential steps in establishing the safety of a geological repository site. Leach tests were conducted with a nonradioactive specimen of the French ``R7T7`` light water containment glass spiked with U and Th, and with two R7T7 specimens spiked with {sup 237}Np and {sup 239}Pu, respectively. The alteration solution compositions were representative of deep groundwater and contained carbonate, sulfate, phosphate, fluorine and chlorine ions. The release of U, Th, Np and Pu, as well as of the rare earths La, Ce and Nd were monitored by ICP mass spectrometry and by {alpha} spectrometry. Scanning and transmission electron microscopic examination of the nonradioactive altered glass surfaces was also performed to assess the partitioning balance for the rare earths, U and Th between the glass alteration products and solution. The mobility of these elements depends on two competing mechanisms. The rare earths and thorium are incorporated in the alteration products (gel); the retention process is assumed to involve chemisorption or coprecipitation, enhanced in the gel layer by the presence of phosphate ions in particular. Conversely, the aqueous species in the alteration solutions (mainly anions) form complexes with the actinides and rare earths; this phenomenon is particularly evident with U and Np. The presence of carbonate ions favors this mobility. Plutonium differs from U and Np in that it is adsorbed mainly on colloids formed by glass dissolution, the principal factors governing its chemical evolution in solution. (author). refs., 122 figs., 185 tabs.

  13. Liquid electrolytes for lithium and lithium-ion batteries

    Science.gov (United States)

    Blomgren, George E.

    A number of advances in electrolytes have occurred in the past 4 years, which have contributed to increased safety, wider temperature range of operation, better cycling and other enhancements to lithium-ion batteries. The changes to basic electrolyte solutions that have occurred to accomplish these advances are discussed in detail. The solvent components that have led to better low-temperature operation are also considered. Also, additives that have resulted in better structure of the solid electrolyte interphase (SEI) are presented as well as proposed methods of operation of these additives. Other additives that have lessened the flammability of the electrolyte when exposed to air and also caused lowering of the heat of reaction with the oxidized positive electrode are discussed. Finally, additives that act to open current-interrupter devices by releasing a gas under overcharge conditions and those that act to cycle between electrodes to alleviate overcharging are presented. As a class, these new electrolytes are often called "functional electrolytes". Possibilities for further progress in this most important area are presented. Another area of active work in the recent past has been the reemergence of ambient-temperature molten salt electrolytes applied to alkali metal and lithium-ion batteries. This revival of an older field is due to the discovery of new salt types that have a higher voltage window (particularly to positive potentials) and also have greatly increased hydrolytic stability compared to previous ionic liquids. While practical batteries have not yet emerged from these studies, the increase in the number of active researchers and publications in the area demonstrates the interest and potentialities of the field. Progress in the field is briefly reviewed. Finally, recent results on the mechanisms for capacity loss on shelf and cycling in lithium-ion cells are reviewed. Progress towards further market penetration by lithium-ion cells hinges on improved

  14. Electrolyte-Gated Graphene Ambipolar Frequency Multipliers for Biochemical Sensing.

    Science.gov (United States)

    Fu, Wangyang; Feng, Lingyan; Mayer, Dirk; Panaitov, Gregory; Kireev, Dmitry; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-04-13

    In this Letter, the ambipolar properties of an electrolyte-gated graphene field-effect transistor (GFET) have been explored to fabricate frequency-doubling biochemical sensor devices. By biasing the ambipolar GFETs in a common-source configuration, an input sinusoidal voltage at frequency f applied to the electrolyte gate can be rectified to a sinusoidal wave at frequency 2f at the drain electrode. The extraordinary high carrier mobility of graphene and the strong electrolyte gate coupling provide the graphene ambipolar frequency doubler an unprecedented unity gain, as well as a detection limit of ∼4 pM for 11-mer single strand DNA molecules in 1 mM PBS buffer solution. Combined with an improved drift characteristics and an enhanced low-frequency 1/f noise performance by sampling at doubled frequency, this good detection limit suggests the graphene ambipolar frequency doubler a highly promising biochemical sensing platform.

  15. Determination of metals and rare earths in leach solution of phosphogypsum by instrumental neutron activation analysis (INAA); Determinacao de metais e terras raras em solucao lixiviada de fosfogesso por AANI

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Gabriela J.L., E-mail: glcosta@ipen.br [Universidade Nove de Julho, Sao Paulo, SP (Brazil); Saueia, Catia H.R.; Mazzilli, Barbara P., E-mail: chsaueia@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The phosphogypsum is a sub-product of the fertilizer industries and is composed of the gypsum matrix (CaSO{sub 4}.2H{sub 2}O) which naturally contains high tenors of impurities such as 2P{sub O}5 and metals coming from the original phosphat rock. The Brazilian phosphogypsum and the various uses has been researched through his elementary and radiochemistry characterization. This work determine the metals (As, Ba, Co and Se) and rare earths (La, Ce, Sm, Eu, Tb and Lu) presents in samples of phosphogypsum leach solutions

  16. Electrospun PVDF nanofiber web as polymer electrolyte or separator

    Energy Technology Data Exchange (ETDEWEB)

    Sung-Seen Choi [Sejong University, Seoul (Korea). College of Natural Sciences, Department of Applied Chemistry; Young Soo Lee; Chang Whan Joo; Seung Goo Lee [Chungnam National University, Daejeon (Korea). Department of Textile Engineering; Jong Kyoo Park; Kyoo-Seung Han [Chungnam National University, Daejeon (Korea). Department of Fine Chemicals Engineering and Chemistry

    2004-11-30

    Electrospinning is an useful technique to produce nanofiber webs. Since electrospun nanofiber webs have a nanoporous structure, they have a potential application for a polymer electrolyte or a separator. Poly(vinylidene fluoride) (PVDF) is used as one of polymer electrolyte binders. We studied application of electrospun PVDF nanofiber webs as an electrolyte binder or a separator for a battery. Diameters of the electrospun PVDF nanofibers were 100-800 nm. The electrospun PVDF nanofiber web was thermally treated at 150-160 {sup o}C to improve the physical property and dimensional stability. The tensile strength and elongation at break as well as the tensile modulus were notably improved by the thermal treatment. Level of crystallinity of the electrospun PVDF nanofiber was increased by the thermal treatment. The ion conductivity of the polymer electrolyte formed from the electrospun PVDF nanofiber web and 1 M LiN(CF{sub 3}SO{sub 2}){sub 2} electrolyte solution was 1.6-2.0 x 10{sup -3} S/cm. The electrospun PVDF nanofiber mat was treated with ethylene plasma to use as a separator. The ethylene plasma-treated mat showed a role of shutter by melting the polyethylene (PE) layer grafted on the PVDF nanofibers. (author)

  17. PEO nanocomposite polymer electrolyte for solid state symmetric capacitors

    Indian Academy of Sciences (India)

    Nirbhay K Singh; Mohan L Verma; Manickam Minakshi

    2015-10-01

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites. The composites have been synthesized by the completely dry (solution-free) hot-press method. The addition of filler in fractional amount to the solid polymer matrix at room temperature further enhances the ionic conductivity. Nature of the NPEs were studied using X-ray diffraction and energy-dispersive spectra analyses. Thermal stability of the resulting electrolyte was analysed by thermogravimetric analysis and differential scanning calorimetric studies. Morphology changes occurred during the addition of fillers was evidenced by scanning electronic microscope images. Solid polymer electrolytes exhibiting these parameters was found to be suitable for solid state capacitors. The results obtained from the electrolytes with an optimum compositions (PEO70AgI30)93 (Al2O3)7 and (PEO70AgI30)95 (SiO2)5 used in the (PEO70AgI30)70 (AC)30 electrodes for symmetric capacitor applications and their performances were analysed by impedance spectroscopic, Bode plot, cyclic voltammetry, discharge characteristics and leakage current profile.

  18. Gastric emptying of oral rehydration solutions in acute cholera.

    Science.gov (United States)

    Collins, B J; Van Loon, F P; Molla, A; Molla, A M; Alam, N H

    1989-08-01

    Gastric emptying of rice powder electrolyte solution and of glucose electrolyte solution was measured by a marker dilution double sampling technique in 14 and in 16 adult patients respectively after intravenous rehydration during an attack of acute cholera. Six patients who received rice powder electrolyte solution and seven who received glucose electrolyte solution re-attended for a repeat study with the same test meal 16 days later, when fully recovered from cholera. No differences in gastric emptying patterns of the two electrolyte solutions were observed, either in the acute or in the recovered patients. Similarly, gastric emptying of both solutions was rapid during acute cholera and comparable to that observed in recovered patients. This study indicates that gastric emptying is not impaired in acute cholera and that the rate of emptying of oral rehydration solutions is adequate to account for their observed clinical efficacy in fast purging patients with acute cholera.

  19. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  20. Fluid and Electrolyte Nutrition

    Science.gov (United States)

    Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.

    1999-01-01

    Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.

  1. Chloride supporting electrolytes for all-vanadium redox flow batteries.

    Science.gov (United States)

    Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo

    2011-10-28

    This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications.

  2. [Application of the Peusner's network thermodynamics to interpretation of the passive membrane transport of binary non-electrolytic solution: evaluation the P(ij) coefficients of polymeric membrane in polarization concentration conditions].

    Science.gov (United States)

    Slezak, Andrzej

    2011-01-01

    In this paper the Kedem-Katchalsky equations were derived, using hybrid transformation of Peusner's network. These equations were applied to interpretation of a transport through polymeric membrane of binary nonelectrolyte solutions under concentration polarization conditions. The values of coefficients P(ij)* (i, j = 1, 2) were calculated for Nephrophan membrane and aqueous glucose solutions. From the calculations it results that the coefficient values P(11)*, P(12)*, P(21)* and P(22)* are nonlinear depend on a solution concentration (C) and configuration of the membrane system. Moreover, the values of coefficients P(11)*, P(12)*, P(21)* and P(22)* were compared to the values of coefficients H(11), H(12), H(21) and H(22), calculated for conditions of solution homogeneity for the same values C and varied configurations of membrane system. It is shown that a threshold value exists and when exceeded, coefficients relations P(11)*/P(11), P(12)*/P(12) and P(22)/P(22) depend on a configuration of the membrane system.

  3. Anion exchange polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  4. Stability of zirconia sol in the presence of various inorganic electrolytes

    Directory of Open Access Journals (Sweden)

    Marković Jelena P.

    2013-01-01

    Full Text Available Zirconia sol was prepared from zirconium oxychloride solutions by forced hydrolysis at 102ºC. The prepared sol consisted of almost spherical, monoclinic, hydrated zirconia particles 61 nm in diameter. The stability of zirconia sol in the presence of various inorganic electrolytes (LiCl, NaCl, KCl, CsCl, KBr, KI, KNO3, and K2SO4 was studied by potentiometric titration method. Dependence of the critical concentration of coagulation (CCC on the dispersion pH was determined for all studied electrolytes. The critical coagulation concentration values, for all investigated electrolytes, are lower at higher pH. These values for all 1:1 electrolytes are equal in the range of experimental error. For a given pH value, CCCs of K2SO4 are 3-4 orders of magnitude lower than the corresponding values for 1:1 electrolytes. [Projekat Ministarstva nauke republike Srbije, br. III 45012

  5. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya

    2016-12-17

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  6. Method to manufacture the thickened electrolyte for primary galvanic current sources. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Belyschev, L.L.; Chuvpilo, A.V.; Trizno, V.V.; Naumenko, V.A.; Penkova, L.F.; Gorochov, V.L.; Apirina, E.G.; Gantman, S.A.

    1978-06-16

    The method consists in mixing the aqueous solution of calcium chloride, zinc chloride and ammonium chloride with tannic acid and starch at room temperature and in allowing the obtained mixture to stand until the formation of the thickened electrolyte is of a viscosity sufficient for the cohesion of the electrolyte layer with the negative electrode of the primary cell. According to the invention, the mixture obtained is allowed to stand for a while necessary for the thickening of the electrolyte of 0.05 to 0.85kp/m/sup 2/ compressive strength. After the waiting time the thickened electrolyte is pressed through at least one casting filter at a rate of at least 0.05 m/s to obtain the sufficient viscosity to coat the electrolyte layer onto the negative electrode of the primary cell.

  7. Effects of current density on preparation of grainy electrolytic manganese dioxide

    Institute of Scientific and Technical Information of China (English)

    GUO Hua-jun; ZHU Bing-quan; LI Xin-hai; ZHANG Xin-ming; WANG Zhi-xing; PENG Wen-jie; LIU Lu-ping

    2005-01-01

    Grainy electrolytic manganese dioxide was prepared by electrodeposition in a 0.9 mol/L MnSO4 and 2.5 mol/L H2SO4 solution. The structure, particle size and appearance of the grainy electrolytic manganese dioxide were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrographs measurements. Current density has important effects on cell voltage, anodic current efficiency and particle size of the grainy electrolytic manganese dioxide, and the optimum current density is 30 A/dm 2. The grainy electrolytic manganese dioxide electrodeposited under the optimum conditions consists of γ-MnO2 with an orthorhombic lattice structure; the grainy electrolytic manganese dioxide has a spherical or sphere-like appearance and a narrow particle size distribution with an average particle diameter of 7.237 μm.

  8. XPS investigations of electrolyte/electrode interactions for various Li-ion battery materials

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, S.; Mikhailova, D.; Scheiba, F.; Reichel, P.; Fiedler, A.; Ehrenberg, H. [IFW Dresden, Dresden (Germany)

    2011-05-15

    For future Li-ion battery applications the search for both new design concepts and materials is necessary. The electrodes of the batteries are always in contact with electrolytes, which are responsible for the transport of Li ions during the charging and discharging process. A broad range of materials is considered for both electrolytes and electrodes so that very different chemical interactions between them can occur, while good cycling behavior can only be obtained for stable solid-electrolyte interfaces. X-ray photoelectron spectroscopy (XPS) was used to study the most relevant interactions between various electrode materials in contact with different electrolyte solutions. It is shown how XPS can provide useful information on reactivities and thus preselect suitable electrode/electrolyte combinations, prior to electrochemical performance tests. (orig.)

  9. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  10. Diabetes mellitus and electrolyte disorders

    Science.gov (United States)

    Liamis, George; Liberopoulos, Evangelos; Barkas, Fotios; Elisaf, Moses

    2014-01-01

    Diabetic patients frequently develop a constellation of electrolyte disorders. These disturbances are particularly common in decompensated diabetics, especially in the context of diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. These patients are markedly potassium-, magnesium- and phosphate-depleted. Diabetes mellitus (DM) is linked to both hypo- and hyper-natremia reflecting the coexistence of hyperglycemia-related mechanisms, which tend to change serum sodium to opposite directions. The most important causal factor of chronic hyperkalemia in diabetic individuals is the syndrome of hyporeninemic hypoaldosteronism. Impaired renal function, potassium-sparing drugs, hypertonicity and insulin deficiency are also involved in the development of hyperkalemia. This article provides an overview of the electrolyte disturbances occurring in DM and describes the underlying mechanisms. This insight should pave the way for pathophysiology-directed therapy, thus contributing to the avoidance of the several deleterious effects associated with electrolyte disorders and their treatment. PMID:25325058

  11. Mathematical modeling of polymer electrolyte fuel cells

    Science.gov (United States)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  12. A cyclically actuated electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 μg min-1 was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system. © The Royal Society of Chemistry 2015.

  13. On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aqua and chloro complexes

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    Synchrotron X-ray spectroscopy experiments were made on the Gd(III) aqua and chloro complexes in low pH aqueous solutions at temperatures ranging from 25 to 500????C and at pressures up to 480??MPa using a hydrothermal diamond anvil cell. Analysis of fluorescence Gd L3-edge X-ray absorption fine structure (XAFS) spectra measured from a 0.006m Gd/0.16m HNO3 aqueous solution at temperatures up to 500????C and at pressures up to 260??MPa shows that the Gd-O distance of the Gd3+ aqua ion decreases steadily at a rate of ??? 0.007??A??/100????C whereas the number of coordinated H2O molecules decreases from 9.0 ?? 0.5 to 7.0 ?? 0.4. The loss of water molecules in the Gd3+ aqua ion inner hydration shell over this temperature range (a 22% reduction) is smaller than exhibited by the Yb3+ aqua ion (42% reduction) indicating that the former is significantly more stable than the later. We conjecture that the anomalous enrichment of Gd reported from measurement of REE concentrations in ocean waters may be attributed to the enhanced stability of the Gd3+ aqua ion relative to other REEs. Gd L3-edge XAFS measurements of 0.006m and 0.1m GdCl3 aqueous solutions at temperatures up to 500????C and pressures up to 480??MPa reveal that the onset of significant Gd3+-Cl- association occurs around 300????C. Partially-hydrated stepwise inner-sphere complexes most likely of the type Gd(H2O)??-nCln+3-n occur in the chloride solutions at higher temperatures, where ?? ??? 8 at 300????C decreasing slightly to an intermediate value between 7 and 8 upon approaching 500????C. This is the first direct evidence for the occurrence of partially-hydrated REE Gd (this study) and Yb [Mayanovic, R.A., Jayanetti, S., Anderson, A.J., Bassett, W.A., Chou, I-M., 2002a. The structure of Yb3+ aquo ion and chloro complexes in aqueous solutions at up to 500 ??C and 270 MPa. J. Phys. Chem. A 106, 6591-6599.] chloro complexes in hydrothermal solutions. The number of chlorides (n) of the partially-hydrated Gd

  14. Characterization of a non-aggregating silicon(IV) phthalocyanine in aqueous solution: toward red-light-driven photocatalysis based on earth-abundant materials.

    Science.gov (United States)

    Uslan, Canan; Oppelt, Kerstin T; Reith, Lorenz M; Sesalan, Behice Şebnem; Knör, Günther

    2013-09-21

    Photophysical and photochemical characterization of a novel cationic silicon phthalocyanine with excellent water solubility properties is reported. The robust red-light responsive compound shows very attractive features as a sensitizer for reductive and oxidative quenching processes to trigger photocatalytic substrate conversion in aqueous solution.

  15. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye-sensitized solar cells

    Science.gov (United States)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.

    2016-02-01

    The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10-6 S cm-1 and this value was increased to 7.43×10-5 S cm-1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.

  16. Thermoelectricity in confined liquid electrolytes

    CERN Document Server

    Dietzel, Mathias

    2015-01-01

    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which -for narrow channels- may cause thermo-voltages larger in magnitude than for the classical Soret equilibrium.

  17. Ocorrências adversas com medicação em Unidade de Terapia Intensiva: análise da administração de soluções hidroeletrolíticas e antibióticos Adverse occurences with drugs in Intensive Care Unit: analysis of the administration of electrolyte solutions and antibiotics

    Directory of Open Access Journals (Sweden)

    Simone Manenti

    1998-12-01

    Full Text Available O presente estudo teve por objetivos: 1 verificar a incidência de ocorrências adversas (OAs com medicação relacionadas ao tempo de infusão das soluções hidroeletrolíticas e ao número de doses de antibióticos prescritos e administrados aos pacientes; 2 caracterizar a natureza dessas ocorrências. A investigação foi realizada em duas UTIs de um hospital geral do Município de São Paulo. Fizeram parte do estudo os dados contidos nos prontuários de 51 pacientes que estiveram internados naquelas Unidades no mês de Agosto de 1996. Quanto à caracterização dos pacientes, 60% tinham idade acima de 60 anos, 58,8% eram mulheres, 49,1% permaneceram na UTI entre 1 e 5 dias e, ao saírem dela, 41,2 % foram para a Unidade de Cuidados Semi-Intensivos. Referente à incidência de 0As relacionadas ao tempo de administração das soluções hidroeletrolíticas e ao número de doses de antibióticos, constatou-se o não cumprimento das prescrições médicas dos pacientes, em 76,3% e 38,6%, respectivamente. A maior freqüência de irregularidades quanto aos soros (60,2% foi referente a administração em tempo menor que o prescrito (adiantamentos e, no caso dos antibióticos, a redução do número de doses (85%. Considerando-se tais irregularidades como ocorrências indesejáveis na prática da enfermagem na UTI, há que se investir na busca de medidas preventivas dessas ocorrências.The aims of this study were: 1 to verify the incidence of adverse occurences (AO with medication related to the time of electrolyte solutions infusion and the frequency of doses of antibiotics prescribed and administered to the patients; 2 to characterize the nature of those occurences. The study was developed in two ICUs of a general hospital of São Paulo City. The population was composed by 51 patients that were in the ICUs in August of 1996. Sixty percent of the patients were older than 60 years, 58,8% were women, 49,1% remained in ICU from 1 to 4 days and 41

  18. Hemogasometria e ânion gap em equinos tratados com soluções eletrolíticas enterais contendo diferentes fontes de energia Blood gas analysis and anion gap in horses treated with enteral electrolyte solutions containing different energy sources

    Directory of Open Access Journals (Sweden)

    Sheila Kreutzfeld de Farias

    2011-09-01

    Full Text Available No presente estudo, foram comparados os efeitos de soluções eletrolíticas contendo diferentes fontes de energia administradas via enteral por sonda naso-esofágica de pequeno calibre em fluxo contínuo sobre o equilíbrio ácido base em equinos. Foram utilizadas seis fêmeas adultas em dois quadrados latinos 6x3 simultâneos em modelo misto. Os animais foram distribuídos em três grupos e submetidos a cada um dos seguintes tratamentos: SEDext - 5g de cloreto de sódio, 0,5g de cloreto de potássio, 0,2g de pidolato de magnésio, 1g de gluconato de cálcio e 10g de dextrose diluídos em 1.000mL de água. Osmolaridade mensurada 228mOsmol L-1; SEMalt - 5g de cloreto de sódio, 0,5g de cloreto de potássio, 0,2g de pidolato de magnésio, 1g de gluconato de cálcio e 10g de maltodextrina diluídos em 1.000mL de água. Osmolaridade mensurada: 181 mOsmol L-1 e SEProp - 5g de cloreto de sódio, 0,5g de cloreto de potássio, 0,2g de pidolato de magnésio e 10g de propionato de cálcio diluídos em 1.000mL de água. Osmolaridade mensurada: 282mOsm L-1. As soluções eletrolíticas foram administradas na dose de 15mL kg-1 h-1, durante 12 horas. Os tratamentos com soluções eletrolíticas enterais contendo dextrose, maltodextrina ou propionato de cálcio não alteraram os valores da hemogasometria.The present study compared the effects of electrolyte solutions containing different sources of energy that were administrated through enteral route by naso-esophageal probe of small-caliber with continuous flow on the acid base balance in horses. Six adult females were used in two simultaneous 6x3 latin squares mixed model. The animals were divided into three groups and received the following treatments: SEDext - 5g of sodium chloride, 0.5g of potassium chloride, 0.2g of magnesium pidolate, 1g of calcium gluconate and 10g of dextrose diluted in 1.000mL of water. The osmolality measured was of 228mOsmol L-1; SEMalt - 5g of sodium chloride, 0.5g of potassium

  19. Lithium Polymer Electrolytes and Solid State NMR

    Science.gov (United States)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  20. Quasi-Solid-State Dye-Sensitized Solar Cell Fabricated from Ionic Gel Electrolyte with High Gel-to-Solution Transition Temperature%高相转变温度的离子凝胶电解质基准固态染料敏化太阳电池

    Institute of Scientific and Technical Information of China (English)

    桃李; 霍志鹏; 王露; 戴松元

    2015-01-01

    染料敏化太阳电池(DSC)以其低价、高效等优势,成为学术界和工业界的研究热点.传统液态电解质由于易挥发、易泄漏等问题,导致基于液态电解质的电池难以保持长期稳定,影响光伏技术的应用.本文合成了N,N'-1,5-戊二基双月桂酰胺,将其作为有机小分子胶凝剂(LMOG)胶凝离子液体电解质(ILE)制备了离子凝胶电解质(IGE)并组装成准固态电池(QS-DSCs).差示扫描量热测试显示该凝胶电解质的相转变温度(Tgel)为104.7°C,具有良好的本征热稳定性.利用循环伏安法、电化学阻抗谱、调制光电压/光电流谱分别研究了液态电池和准固态电池内部电子传输和复合动力学过程.结果表明,凝胶电解质的三维网络结构加速了TiO2光阳极/电解质界面电子与电解质中I3-的复合过程,使电子寿命降低,导致准固态电池的光电转换效率略低于液态电池.在AM 1.5(100 mW∙cm-2)及50°C条件下的加速老化测试结果显示,持续老化1000 h 后其光电转换效率(η)无衰减,而液态电池的光电转换效率衰减为初始值的86%,表明准固态电池具有良好的光热稳定性.%Dye-sensitized solar cel s (DSCs) have aroused much interest because of their low cost and comparatively high power conversion efficiency. Stability is paramount for any photovoltaic technology. Traditional liquid electrolytes tend to leak and evaporate, which limits the long-term performance of the DSC. N,N'-1,5-Pentanediylbis-dodecanamide was synthesized and used as a low molecular mass organogelator (LMOG), to gelate an ionic liquid electrolyte (ILE) and fabricate a quasi-solid-state DSC (QS-DSC). Differential scanning calorimetry indicated that the gel-to-solution transition temperature of the ionic gel electrolyte (IGE) was 104.7 °C, which indicated good intrinsic stability. Electron transport and recombination were investigated by cyclic voltammetric (CV) and electrochemical impedance measurements

  1. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    Science.gov (United States)

    Kelly, Jesse C.

    Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on

  2. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  3. Evaluation of electrolyte imbalance among tuberculosis patients ...

    African Journals Online (AJOL)

    Adebimpe Wasiu Olalekan

    2015-02-24

    Feb 24, 2015 ... electrolyte and acid-base derangements frequently encountered in AIDS and TB, have ..... tuberculosis. Electrolyte and acid-base balance monitoring in ... National Agency for the Control of HIV/AIDS NACA. Preva- lence of ...

  4. Equilibrium, kinetic and mass transfer studies and column operations for the removal of arsenic(III) from aqueous solutions using acid treated spent bleaching earth.

    Science.gov (United States)

    Mahramanlioglu, M; Güçlü, K

    2004-09-01

    In the present study, a new adsorbent was produced from spent bleaching earth by H2SO4 impregnation method. The sorption of arsenic(III) by acid treated spent bleaching earth was studied to examine the possibility of utilizing this material in water treatment systems. The effect of time, pH, initial concentration, temperature on the adsorption of arsenic(III) was studied. Maximum adsorption was found to occur at pH 9.0. The adsorption process followed the first order Lagergren equation. Mass transfer coefficients and rate constants of intraparticle diffusion were calculated. The experimental data points were fitted to the Langmuir equation in order to calculate the adsorption capacity (Q0) of the adsorbent and the value of Q0 was found to be 0.46 mmol g(-1). In order to understand the adsorption mechanism, Dubinin-Radushkevich (DR) isotherm was used. The magnitude of E calculated from DR equation was found to be 5.12 kJ mol(-1). The heat of adsorption (deltaH0 = -30367 J mol(-1)) implied that the adsorption was physical exothermic adsorption. The column studies were also carried out to simulate water treatment processes. The capacity values obtained in column studies were found to be greater than the capacity values obtained in batch studies. This result was explained by the difference between batch system and column system. The factors that affect the capacity values of column and batch systems were explained. The effect of other anions on the adsorption of arsenic(III) in the presence of NO3-, SO4(2-), Cl-, Br- was studied. The presence of these anions did not affect the adsorption of arsenic(III) significantly.

  5. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jeong Rae Kim [Hanyang University, Seoul (France). Applied Chemical Engineering Division; Korea Institute of Science and Technology, Seoul (Korea). Polymer Hybrid Research Center; Sung Won Choi [Yonsei University, Seoul (Korea). Department of Chemistry; Seong Mu Jo; Wha Seop Lee [Korea Institute of Science and Technology, Seoul (Korea). Polymer Hybrid Research Center; Byung Chul Kim [Hanyang University, Seoul (France). Applied Chemical Engineering Division

    2004-11-15

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 {mu}m have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 {mu}m, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10{sup -3} s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF{sub 6}-EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD. The interfacial resistance (R{sub i}) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO{sub 2}) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 {sup o}C. (author)

  6. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Rae [Applied Chemical Engineering Division, Hanyang University, 17, Haengdang-dong, Seongdong-Ku, Seoul 133-791 (Korea, Republic of); Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Sung Won [Department of Chemistry, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Jo, Seong Mu [Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: smjo@kist.re.kr; Lee, Wha Seop [Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Byung Chul [Applied Chemical Engineering Division, Hanyang University, 17, Haengdang-dong, Seongdong-Ku, Seoul 133-791 (Korea, Republic of)

    2004-11-15

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 {mu}m have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 {mu}m, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10{sup -3} s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF{sub 6}-EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R{sub i}) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO{sub 2}) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C.

  7. Dye-Sensitized Solar Cells with Optimal Gel Electrolyte Using the Taguchi Design Method

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2013-01-01

    Full Text Available The Taguchi method was adopted to determine the optimal gel electrolyte used in dye-sensitized solar cells (DSSCs. Since electrolyte is a very important factor in fabrication of high performance and long-term stability DSSCs, to find the optimal composition of gel electrolyte is desired. In this paper, the common ingredients used in the liquid electrolyte were chosen. The ingredients then mixed with cheap ionic liquids and poly(vinylidenefluoride-co-hexafluoropropylene (PVDF-HFP were added to form colloidal electrolyte (gel. The optimal composition of each materials in the gel electrolyte determined by Taguchi method consists of 0.03 M I2, 0.15 M KI, 0.6 M LiI, 0.5 M 4-tertbutylpyridine (TBP, and 10% PVDF-HFP dissolved in the acetonitrile and 3-methoxypropionitrile (MPN solution with volume ratio of 2 : 1. The short circuit current density of 14.11 mA/cm2, the conversion efficiency (η of 5.52%, and the lifetime of over 110 days were observed for the dye-sensitized solar cell assembled with optimal gel electrolyte. The lifetime increases 10 times when compared with the conventional dye-sensitized solar cell assembled with liquid electrolyte.

  8. Invalidation manner and mechanism of new type NbO electrolytic capacitor anode

    Institute of Scientific and Technical Information of China (English)

    LI Jian; YI Dan-qing; WEN Jun-jie; LIU Hui-qun; ZHONG Hui

    2005-01-01

    Niobium suboxide powder was pressed and sintered in vacuum into NbO electrolytic capacitor sintered anode..High voltage and constant current formation experiment was performed on NbO electrolytic capacitor anode,during which electrolyte was 0.01 % Ha PO4 solution, temperature was 90 C and current was 50 mA per gram sample. Through the relationship between anode voltage and time and scanning electron microscopy(SEM) images of invalidated anode and normal forming anode, invalidation manner and mechanism of NbO electrolytic capacitor anode were discussed. The results show that, the main invalidation manner of NbO electrolytic capacitor anode is not short circuit but open circuit, which is different to that of traditional Ta electrolytic capacitor anode. The reason of invalidation is that anode oxide film whose thickness increases gradually penetrates the "connection neck" among anode powder particles, which leads to the open circuit invalidation of anode. Compared with Ta electrolytic capacitor,NbO electrolytic capacitor has better security.

  9. [Some aspects of water electrolysis with the use of a solid polymer electrolyte].

    Science.gov (United States)

    Zorina, N G

    2006-01-01

    Electrochemical process in cells with a solid polymer electrolyte is dependent on catalyst durability in harsh environments and catalyst sputtering technology to ensure efficient power consumption. Active polymer electrolytes will permit to reduce substantially non-productive layouts and design a cost-effective, compact and safe system generator of high-purity oxygen and hydrogen. The existing designs of combined oxide systems integrating rear-earth and earth metals with a structure of Ln3+x Me2+1-x CoO3 containing perofskites were shown to be active catalysts in cells with a solid polymer electrolyte, and the sputtering technology was proven to reduce non-productive layouts in 2 or 2.5 times.

  10. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.

    Science.gov (United States)

    Karthika, Prasannan; Rajalakshmi, Natarajan; Dhathathreyan, Kaveripatnam S

    2013-11-11

    A low-cost polyester cellulose paper has been used as a substrate for a flexible supercapacitor device that contains aqueous carbon nanotube ink as the electrodes and a polyvinyl alcohol (PVA)-based gel as the electrolyte. Gel electrolytes have attracted much interest due to their solvent-holding capacity and good film-forming capability. The electrodes are characterized for their conductivity and morphology. Because of its high conductivity, the conductive paper is studied in supercapacitor applications as active electrodes and as separators after coating with polyvinylidene fluoride. Carbon nanotubes deposited on porous paper are more accessible to ions in the electrolyte than those on flat substrates, which results in higher power density. A simple fabrication process is achieved and paper supercapacitors are tested for their performance in both aqueous and PVA gel electrolytes by using galvanostatic and cyclic voltammetry methods. A high specific capacitance of 270 F g(-1) and an energy density value of 37 W h kg(-1) are achieved for devices with PVA gel electrolytes. Furthermore, this device can maintain excellent specific capacitance even under high currents. This is also confirmed by another counter experiment with aqueous sulfuric acid as the electrolyte. The cycle life, one of the most critical parameters in supercapacitor operations, is found to be excellent (6000 cycles) and less than 0.5 % capacitance loss is observed. Moreover, the supercapacitor device is flexible and even after twisting does not show any cracks or evidence of breakage, and shows almost the same specific capacitance of 267 F g(-1) and energy density of 37 W h kg(-1) . This work suggests that a paper substrate can be a highly scalable and low-cost solution for high-performance supercapacitors.

  11. Initial study of Nickel Electrolyte for EnFACE Process

    Directory of Open Access Journals (Sweden)

    Tri Widayatno

    2015-03-01

    Full Text Available Nickel electrolyte for a micro-pattern transfer process without photolithography, EnFACE, has been developed. Previous work on copper deposition indicated that a conductivity of ~2.7 Sm-1 is required. Electrochemical parameters of electrolyte i.e. current density and overpotential are also crucial to govern a successful pattern replication. Therefore, the investigation focused on the measurement of physicochemical properties and electrochemical behaviour of the electrolyte at different nickel concentrations and complexing agents of chloride and sulfamate. Nickel electrolytes containing sulfamate, chloride and combined sulfamate-chloride with concentrations between 0.14 M and 0.3 M were investigated. Physicochemical properties i.e. pH and conductivity were measured to ensure if they were in the desired value. The electrochemical behaviour of the electrolytes was measured by polarisation experiments in a standard three-electrode cell. The working electrode was a copper disc (surface area of 0.196 cm2 and the counter electrode was platinum mesh. The potential was measured againts a saturated calomel reference electrode (SCE. The experiments were carried out at various scan rate and Rotating Disc Electrode (RDE rotation speed to see the effect of scan rate and agitation. Based on the measured physicochemical properties, the electrolyte of 0.19 M nickel sulfamate was chosen for experimentation. Polarisation curve of agitated solution suggested that overall nickel electrodeposition reaction is controlled by a combination of kinetics and mass transfer.  Reduction potential of nickel was in the range of -0.7 to -1.0 V. The corresponding current densities for nickel deposition were in the range of -0.1 to -1.5 mA cm-2.

  12. 无电镀镍浸金处理电路板在 NaHSO3溶液中的腐蚀电化学行为与失效机制%Corrosion behavior and failure mechanism of electroless nickel immersion gold processing circuit boards in NaHSO3 electrolyte solution

    Institute of Scientific and Technical Information of China (English)

    丁康康; 李晓刚; 董超芳; 易盼; 刘明; 肖葵

    2015-01-01

    采用交流阻抗谱研究了无电镀镍浸金处理电路板在模拟电解质溶液(0.1 mol·L-1 NaHSO3)中的电化学腐蚀行为,并结合体视学显微镜、扫描电镜、X射线能谱分析等手段分析了试样表面腐蚀产物形貌、组成和镀层失效机制.无电镀镍浸金处理电路板在NaHSO3溶液中的耐蚀性较差,浸泡12 h试样表面局部即发生变色,伴随有微裂纹的产生.电解液能够通过裂纹直接侵蚀Cu基底,并在微裂纹周围生成较多的枝晶状结晶产物,其主要组分为Cu2 S.该结晶腐蚀产物的不断生成使局部区域中间Ni过渡层与Cu基底结合部位存在较大的横向剪切应力,最终造成Ni镀层的脱离与鼓泡现象.%ABSTRACT Electrochemical impedance spectroscopy ( EIS) was used to study the corrosion behavior of electroless nickel immer-sion gold processing printed circuit boards (PCB- ENIG) in a simulated electrolyte solution (0.1 mol·L-1 NaHSO3), and the mor-phology, composition of corrosion products as well as the failure mechanism of the plating layer were analyzed with the aid of stereo mi-croscopy and scanning electron microscopy ( SEM) combined with energy dispersive spectrometry ( EDS) . It is found that the corro-sion resistance of PCB-ENIG in NaHSO3 solution is relative poor. Partial discolor appears in PCB- ENIG just immersing for 12 h, along with micro-crack generation. The electrolyte can directly erode the Cu substrate through micro-cracks, forming dendritic crystal-line products around these micro-cracks, whose main composition should be Cu2 S. Continuous generation of these corrosion products results in large transverse shear stress between the Ni intermediate layer and Cu substrate, and eventually bubbling and shedding of the Ni plating layer occur.

  13. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  14. Electrokinetic Properties of the Pristine and Oxidized MWCNT Depending on the Electrolyte Type and Concentration

    Science.gov (United States)

    Skwarek, Ewa; Bolbukh, Yuliia; Tertykh, Valentyn; Janusz, Władysław

    2016-03-01

    Electrostatic stabilization is reduced in its efficiency in an electrolyte-containing environment. The effect of electrolyte concentration is mostly described as negative factor for dispersion stabilization. Usually, zeta potential and physical stability decrease at increasing electrolyte concentration. The purpose of the present study was to measure the surface properties of nanotubes in aqueous solution of monovalent electrolytes at different concentration. Characteristics such as size distribution, surface chemistry, surface charge, and dispersability in aqueous phase have been identified. Hydrodynamic size and zeta potential in aqueous multiwalled carbon nanotube (MWCNT) suspensions were determined at different pH with the desired concentrations of electrolyte of the cationic group (NaCl, KCl, CsCl) and the anionic group (NaClO4). The correlations between the response of the surface functionality of pristine and oxidized multiwalled carbon nanotubes and electrical double layer (EDL) forming at different ionic environments in the vicinity of a nanotube surface were determined. The nanotube dispersion stabilization was found to be more affected by ion size and pH medium then electrolyte concentration. The data obtained confirms the predominant role of surface reactions. The most stable dispersion of nanotubes was achieved in KCl electrolyte solution at less negative charge of the surface.

  15. Analysis of electrolyte transport through charged nanopores

    CERN Document Server

    Peters, P B; Bazant, M Z; Biesheuvel, P M

    2015-01-01

    We revisit the classical problem of the flow of an electrolyte solution through charged capillaries (nanopores). In the limit where the length of the capillary is much larger than its radius, the problem can be simplified to a one-dimensional averaged flux-force formalism that relates the relevant fluxes (electrical current, salt flux, fluid velocity) to their respective driving forces (difference in electric potential, salt concentration, pressure). Calculations in literature mainly consider the limit of non-overlapping electrical double layers (EDLs) in the pores and the absence of salt concentration gradients in the axial direction. In the present work these simplifications are relaxed and we discuss the general case with overlapping EDLs and nonzero axial salt concentration gradients. The 3x3 matrix that relates these quantities exhibits Onsager symmetry and for one of the cross coefficients we report a new significant simplification. We describe how Onsager symmetry is preserved under change of variables...

  16. Electrolyte-Mediated Assembly of Charged Nanoparticles

    Science.gov (United States)

    Kewalramani, Sumit; Bedzyk, Michael; Guerrero-García, Guillermo; Moreau, Liane; Zwanikken, Jos; Mirkin, Chad; Olvera de La Cruz, Monica

    Solutions at high salt concentrations are used to crystallize or segregate colloids, proteins and polyelectrolytes via an unknown mechanism referred to as ``salting-out''. Here, we show salting-out is a long-range interaction controlled by electrolyte concentration and nanoparticle charge density. Small-angle X-ray scattering (SAXS) shows that DNA-coated Au nanoparticles designed to prevent inter-particle assembly via Watson-Crick hybridization undergo ``gas'' to FCC to ``glass-like'' transitions with increasing NaCl or CaCl2 concentration. Simulations reveal that the crystallization is concomitant with inter-particle interactions changing from purely repulsive to a long-range potential well condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces. Our work reveals the mechanism behind salting-out and suggests new routes for the successful crystallization of colloids and proteins using concentrated salts.

  17. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications

    KAUST Repository

    Wessells, Colin

    2010-01-01

    The electrolytic stability windows of several aqueous electrolytes were investigated by a constant current method. The electrode potential range depended upon the value of the imposed current. The magnitude of this behavior varied with the salt solution, its concentration, and pH of the electrolyte. At a leakage current density of 50 μA/cm2, a 5 M solution of LiNO3 had an electrolytic window of 2.3 V, spanning from -0.55 to 1.75 V with respect to the standard hydrogen electrode. These results demonstrate the feasibility of operating lithium batteries at voltages appreciably above the theoretical decomposition voltage of water. © 2010 The Electrochemical Society.

  18. Study and characterization of positive electrolytes for application in the aqueous all-copper redox flow battery

    Science.gov (United States)

    Sanz, Laura; Lloyd, David; Magdalena, Eva; Palma, Jesús; Anderson, Marc; Kontturi, Kyösti

    2015-03-01

    In recent studies, the employment of the aqueous solution system comprised of Cu(II)-Cu(I)-Cl system was addressed for massive energy storage in Redox Flow Batteries (RFBs) [5,6], providing important practical advantages compared to the widespread all-vanadium or Zn/Br systems [5]. The substitution of vanadium electrolytes by copper-chloride electrolytes allows the simplification of the process and notably reduces the cost, allowing for a better commercialization of RFBs. Here, a complete physico-chemical characterization of positive copper electrolytes and their electrochemical performance using different supporting electrolytes, HCl and CaCl2, is presented. Once the physical properties and the electrochemical performance of each one of the supporting electrolytes were determined, the final composition of supporting electrolyte for this Cu(II)/Cu(I) redox couple could be optimized by mixing different sources of chloride, regarding its practical application in the all-copper RFB.

  19. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Energy Technology Data Exchange (ETDEWEB)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004, India. (India)

    2016-05-06

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10{sup −4} Scm{sup −1}. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ε’, Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  20. Study on the Ion Association in PVdF-based Gel Polymer Electrolyte

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Gel polymer electrolytes based on the poly (vinylidene fluoride) (PVdF) and the electrolyte of LiClO4 in propylene carbonate (PC) were prepared by the solution casting technique. The ionic conductivity of the gel electrolytes was concentration of lithium salt. Because of the strong coulombiq attractions, the dissolved salt ions might aggregate into ion pairs and multiple ion aggregates. The analysis of DSC and X-ray diffraction revealed that the ions association occurred at higher concentration of lithium salt.

  1. Electrolytes for magnesium electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  2. Evaluating Transport Properties and Ionic Dissociation of LiPF6 in Concentrated Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhange; Higa, Kenneth; Han, Kee Sung; Srinivasan, Venkat

    2017-08-17

    The presence of lithium hexafluorophosphate (LiPF6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This work, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and the generalized. Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.

  3. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  4. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Thomas F. [Univ. of California, Berkeley, CA (United States)

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25°C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  5. Ionogel Electrolytes through Sol-Gel Processing

    Science.gov (United States)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica

  6. Solid electrolyte properties of LaF3

    NARCIS (Netherlands)

    Schoonman, J.; Oversluizen, G.; Wapenaar, K.E.D.

    1980-01-01

    The small-signal ac response of cells with LaF3 or the solid solutions La1-xBaxF3-x and ionically blocking electrodes has been measured in the frequency range 0.1-3 × 104Hz, and for temperatures from 220 to 650 K. The bulk electrolyte conductivity of LaF3 crystals is anisotropic up to 415 K. For pol

  7. Electrohydrodynamics of binary electrolytes driven by modulated surface potentials

    DEFF Research Database (Denmark)

    Mortensen, Asger; Olesen, Laurits Højgaard; Belmon, L.;

    2005-01-01

    problem and obtain analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential. We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our work provides the theoretical foundations of circuit models...... discussed in the literature. The nonequilibrium approach also reveals unexpected high-frequency dynamics not predicted by circuit models....

  8. Solid electrolyte properties of LaF3

    NARCIS (Netherlands)

    Schoonman, J.; Oversluizen, G.; Wapenaar, K.E.D.

    The small-signal ac response of cells with LaF3 or the solid solutions La1-xBaxF3-x and ionically blocking electrodes has been measured in the frequency range 0.1-3 × 104Hz, and for temperatures from 220 to 650 K. The bulk electrolyte conductivity of LaF3 crystals is anisotropic up to 415 K. For

  9. Fluoro-Compounds in Electrolytes for Energy Storage Devices

    Institute of Scientific and Technical Information of China (English)

    Makoto; Ue

    2007-01-01

    1 Results Electrochemical energy storage devices such as lithium-ion batteries[1-2] and double-layer capacitors[3-4] have attracted a great deal of attention because of their potential application to electric hybrid vehicles. They utilize nonaqueous electrolyte solutions comprising from organic solvents and lithium or quaternary ammonium salts with fluorine-containing anions. This is because the relatively large anions with electron-withdrawing atoms enable ionic dissociation in dipolar aprotic solvents...

  10. Effect of Electrolyte on the Surface and Thermodynamic Properties of Amphiphilic Penicillins.

    Science.gov (United States)

    Taboada; Attwood; Ruso; García; Sarmiento; Mosquera

    1999-12-15

    Critical micelle concentrations and surface properties of the penicillins cloxacillin, dicloxacillin, and nafcillin in aqueous solution at 303 K and at electrolyte concentrations over the range 0.0-0.4 mol dm(-3) were determined by surface tension measurements. A mass action model, modified for application to associating systems of low aggregation number, was used to calculate the standard Gibbs energy of micellization of these drugs at each electrolyte concentration. Copyright 1999 Academic Press.

  11. Direct ethanol fuel cell using hydrotalcite clay as a hydroxide ion conductive electrolyte.

    Science.gov (United States)

    Tadanaga, Kiyoharu; Furukawa, Yoshihiro; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2010-10-15

    An alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts is proposed. So-called hydrotalcite clay, Mg–Al layered double hydroxide intercalated with CO₃²⁻, is shown to be a hydroxide ion conductor. An alkaline-type DEFC using this natural clay as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibits excellent electrochemical performance from room temperature to 80 °C.

  12. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These

  13. Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes

    Directory of Open Access Journals (Sweden)

    C. K. Das

    2012-12-01

    Full Text Available A porous nanocomposite based on polypyrrole (PPy and sodium alginate (SA has been synthesized by easy, inexpensive, eco-friendly method. As prepared nanocomposite showed fibrillar morphology in transmission electron microscopic (TEM analysis. The average diameter of ~100 nm for the nanofibers was observed from scanning electron microscopic (SEM analysis. As prepared nanofiber, was investigated as an electrode material for supercapacitor application in different aqueous electrolyte solutions. PPy nanofiber showed enhanced electrochemical performances in 1M KCl solution as compared to 1M Na2SO4 solution. Maximum specific capacitance of 284 F/g was found for this composite in 1 M KCl electrolyte. It showed 76% specific capacitance retention after 600 cycles in 1 M KCl solution. Electrochemical Impedance Spectra showed moderate capacitive behavior of the composite in both the electrolytes. Further PPy nanofiber demonstrated higher thermal stability as compared to pure PPy.

  14. STUDIES ON PERMEABILITY OF MEMBRANES : VII. CONDUCTIVITY OF ELECTROLYTES WITHIN THE MEMBRANE.

    Science.gov (United States)

    Green, A A; Weech, A A; Michaelis, L

    1929-01-20

    Two methods of measuring the electrical conductivity of the dried collodion membrane in contact with an electrolyte solution are described and the results of such measurements with different electrolytes in different ranges of concentration recorded. Some of the difficulties encountered in making these measurements are outlined. Of special interest was the fact that each membrane with each electrolyte showed a maximum level of resistance at a certain point in the dilution scale, a level which was not surpassed by further dilution. It is believed that this level was fixed by the collodion itself rather than by the contiguous electrolyte solution. Its existence limited the results available for reasonable interpretation. In relatively concentrated solutions the conductivity was shown to be approximately proportional to the concentration. With different electrolytes in the same concentration it was shown that the conductivities varied much more than in simple solutions without a membrane and that they fell in the order HCl > KCl > NaCl > LiCl. A method was described whereby the electrolyte content of a membrane in contact with different chloride solutions could be determined. It was shown that a membrane saturated with either 0.5 N HCl or 0.5 N KCl had practically the same total electrolyte content whereas the same membrane in contact with 0.5 N LiCl contained only half the quantity. These results were used in interpreting the conductivity data, the evidence presented strongly suggesting that two factors are operative in causing the widely divergent conductivities recorded with different electrolytes. The first factor depended on the quantity of electrolyte which can enter the membrane pores, a quantity dependent on the size of the pores and the volume of the larger of the two hydrated ions of the electrolyte. This factor was the chief one in determining the difference in conductivity between KCl and LiCl. The second factor was concerned with differences in the

  15. Regulation of body fluid volume and electrolyte concentrations in spaceflight

    Science.gov (United States)

    Smith, S. M.; Krauhs, J. M.; Leach, C. S.

    1997-01-01

    Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian

  16. Enhanced Microwave Resonance Properties of Pseudo-Tungsten-Bronze Ba6-3xR8+2xTi18O54 (R = Rare Earth) Solid Solutions Explained by Electron-Phonon Interaction

    Science.gov (United States)

    Wunderlich, Wilfried; Ohsato, Hitoshi

    2013-09-01

    Microwave dielectrics consisting of pseudo-tungsten-bronze solid solutions form compositional ordering at x = 2/3 with the Ba6-3xR8+2xTi18O54 (R = La, Nd, Pr, Sm, Eu, and Gd) formula. The Qf value of the x = 2/3 composition shows the highest value for Sm, but a discontinuity at Eu. When doping with heavier rare earth species, the crystal structure becomes unstable and needs stabilization with Nd. In this paper, we suggest for the first time that the electron-phonon interaction is responsible for this phenomenon. As the unit cells without Ba ions in the perovskite blocks caused tensile stress, the dielectric constant and dielectric losses increase by means of the ionic size of the dopant in the octahedral sites, but only when elements with a low electron-phonon interaction are used.

  17. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  18. CO2 capture performance of bi-functional activated bleaching earth modified with basic-alcoholic solution and functionalization with monoethanolamine: isotherms, kinetics and thermodynamics.

    Science.gov (United States)

    Pongstabodee, Sangobtip; Pornaroontham, Phuwadej; Pintuyothin, Nuthapol; Pootrakulchote, Nuttapol; Thouchprasitchai, Nutthavich

    2016-10-01

    CO2 capture performance of bifunctional activated bleaching earth (ABE) was investigated at atmospheric pressure. The sorbents were characterized by means of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Caron-Hydrogen-Nitrogen analysis (CHN), Fourier transform infrared (FT-IR) and thermal gravimetric analysis (TGA). The CO2 capacity was enhanced via basic-modification and monoethanolamine (MEA) loading of the ABE sorbent to obtain a bifunctional surface property. Here, basic-modified calcined ABE with a 30wt.% MEA loading (SAB-30) showed the highest CO2 capture capacity, but this was decreased with excess MEA loading (>30wt.%). At a 10% (V/V) initial CO2 concentration feed, the maximum capacity of SAB-30 increased from 2.71mmol/g at 30°C (without adding moisture to the feed) to 3.3mmol/g at 50°C when adding 10% (V/V) moisture to the feed. Increasing the moisture concentration further reduced the maximum CO2 capacity due to the blocking effect of the excess moisture on the sorbent surface. However, SAB-30 could completely capture CO2 even in a 100% (V/V) initial CO2 concentration feed. A maximum CO2 capacity of 5.7mmol/g for SAB-30 was achieved at 30°C. Varying the ratio of sorbent weight to total flow rate of the gas stream had no discernible effect on the equilibrium CO2 capture capacity. Avrami's equation and Toth's isotherm model provided a good fitting for the data and suggested the presence of more than one reaction pathway in the CO2 capture process and the heterogeneous adsorption surface of SAB-30. Thermodynamics studies revealed that CO2 capture on the bifunctional SAB-30 is feasible, spontaneous and exothermic in nature.

  19. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  20. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).