WorldWideScience

Sample records for earth chelate species

  1. Progress on Study of Luminescence of Rare Earth Organic Chelates

    Institute of Scientific and Technical Information of China (English)

    杨燕生; 安保礼; 龚孟濂; 史华红; 雷衡毅; 孟建新

    2002-01-01

    Based on the investigation of the luminescence of a series of rare earth organic chelates, some relationships between luminescence and the structure of the chelates were proposed: the intensity of sensitized luminescence of central lanthanide ions(Ln3+) in a rare earth organic chelate depends on (1)the suitability of the energy gap between the excited triplet energy level of the ligands and the lowest excited energy level of Ln3+ ions; (2)the rigidity and planarity of the structure of the chelate molecule; (3)the existence of a suitable secondary ligand which may increase rigidity and the stability of the chelate molecule; and (4) the existence of a suitable π-conjugated system in the chelate molecule. According to the above relationships, 25 novel organic ligands were designed and synthesized, and their lanthanide chelates were prepared. Investigation of the photoluminescence for the new chelates shows that some of the chelates are strongly luminescent, and are applied to fluoroimmunoassay for determination of human immunoglobulin(IgG), to preparation of fluorescent plastics, and to determination of growth hormone for plants. Two novel spectroscopy-probe techniques for structure of coordination compounds and biological molecules were proposed and developed based on vibronic spectroscopy of Tb3+ complexes and fluorescence of Ce3+.

  2. Kinetic Studies on Forming Iso-nuclear -type Chelates of Rare Earths with p-Sulphoaminobromophosphonazo

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The kinetic behavior of forming the iso-nuclear b -type chelates of rare earth ions (RE3+) with p-sulphoaminobromophosphonazo (BPA-pSN) in ClCH2COOH-CH3COONa buffer solutions were studied by a spectrophotometric method.

  3. Mechanism of Hetero-nuclear β-type Chelates Formed by Rare Earths with p-sulphoaminobromophosphonazo

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The reaction behavior of forming the hetero-nuclear β-type chelates of rare earth ions (RE3+) with p-sulphoaminobromophosphonazo(BPA-pSN) in ClCH2COOH-CH3COONa buffer solutions were studied by a spectrophotometric method. The interaction of RE3+ with BPA-pSN, which can forms hetero-nuclear β-type chelates having composition ratio of RE1 (light rare earth):BPA-pSN:RE2(heavy rare earth ion)=1∶3∶1, is a first-order reaction. Meanwhile, BPA-pSN can only forms homo-nuclear β-type chelates with heavy rare earth ions, having a composition ratio of RE∶BPA-pSN=1∶2 and being a second-order reaction. The rate constants of forming homo-and hetero-nuclear β-type chelates were obtained and the mechanism of forming hetero-nuclear β-type chelates was proposed.

  4. Styrene-divinylbenzene copolymers loaded with organophosphorus chelating agents for rare earths separation; Copolimeros de estireno-divinilbenzeno impregnados com agentes complexantes organofosforados para separacao de terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Celina C.R. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Teixeira, Viviane G.; Coutinho, Fernanda M.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    1998-12-01

    Styrene-divinylbenzene copolymers used in extraction chromatography were synthesized in presence of selective chelating agents for rare earths: DEHPA, bis (2-ethylhexyl) phosphoric acid, and EHEHPA, bis (2-ethylhexyl) phosphonic acid. The copolymers were prepared by suspension polymerization technique using the pure chelating agents and its mixture with toluene (TOL) as diluents. The influence of synthesis conditions such as chelating agent/TOL ratios, dilution degree of monomers and amount of DVB on the porous structure of the copolymers were studied. The porous structure was characterized by the apparent density, fixed pore volume, surface area and by optical and scanning electron microscopy. The performance of the copolymers in the separation process of rare earths was evaluated. The total chelating capacity of each copolymer and the chelating kinetics in relation to gadolinium ion were determined. The chelating agent content of the copolymers depend on the amount of chelating agents employed in the synthesis. The highest amount of chelating agent that can be used in the synthesis in order to produce copolymers with high chelating capacity and good mechanical properties was determined. The total chelating capacity varied with the content of the chelating agents in the copolymer and the chelating kinetics was dependent mainly on the pore diameter, because this parameter determines the diffusion rate of the ions though the copolymer structure. (author)

  5. pH-metric and thermodynamic studies of rare earth metal chelates

    Institute of Scientific and Technical Information of China (English)

    Alok Vyas; R. P. Mathur

    2009-01-01

    Proton ligand stability constants of hydroxybenzoic acid containing nitro group (2-Hydroxy-4-nitrobenzoic acid and 3-Hydroxy-4-nitrobenzoic acid) were determined through Irving-Rossoti pH titration technique. The stability constants of rare earth metal chelates con-taining 2-Hydroxy-4-nitrobenzoic acid and 3-Hydroxy-4-nitrobenzoic acid as ligands were studied in aqueous medium at different ionic strength (μ=0.01, 0.05 and 0.1 mol/L) and temperatures (298, 308 and 318±0.1 K). The values of stability constant were evaluated through different computational methods like successive approximation, least square treatment, correction term method, and convergence method. The observed value of thermodynamic parameters (△G°, △H° and △S°) favors the complex formation between metal and ligands. The order of stability constant was found to be Pr(Ⅲ)

  6. Direct Spectrophotometric Determination of the Total Amount of Light Rare Earths with Arsenazo-DBS as a Chelator

    Institute of Scientific and Technical Information of China (English)

    Yuan Fuzhen

    1999-01-01

      A direct spectrophotometric method for the determination of the total light rare earths has been developed. In this method, arsenazo-DBS is used as a chelating agent with light rare earth elements in strong acidic medium (0.04-0.48 mol l-1 of acidity). The concentrations of total rare earths in 0-15 μg /(25 ml) range can be determined accurately by this method. An absorption maximum was observed at 630 nm at which a molar absorptivity of 1.14x105 l mol-1 cm-1 was determined. The method offers high selectivity and good sensitivity towards light rare earths and features simplicity and rapidity in operation. It has been applied to the determination of light rare earths in cast iron and Ni-Fe alloys.

  7. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents

    Directory of Open Access Journals (Sweden)

    Lucas Anjos Souza

    2013-08-01

    Full Text Available Soil contamination by heavy metals is a challenge faced by many countries, and engineering technologies to solve this problem are expensive and can cause negative impacts on the environment. One way to minimise the levels of heavy metals in the soil is to use plants that can absorb and accumulate heavy metals into harvestable parts, a process called phytoextraction. Typical plant species used in research involving phytoextraction are heavy metal hyperaccumulators, but plants from this group are not good biomass producers and grow more slowly than most species; thus, they have an important role in helping scientists understand the mechanisms involved in accumulating high amounts of heavy metals without developing symptoms or dying. However, because of their slow growth, it is not practical to use these species for phytoextraction. An alternative approach is to use non-hyperaccumulator plants assisted by chelating agents, which may improve the ability of plants to accumulate more heavy metals than they would naturally. Chelating agents can be synthetic or organic acids, and the advantages and disadvantages of their use in improving the phytoextraction potential of non-hyperaccumulator plants are discussed in this article. We hope to draw attention to ways to improve the phytoextraction potential of non-hyperaccumulator plants that produce a large amount of biomass and to stimulate more research on phytoextraction-inducing substances.

  8. Species-dependent effective concentration of DTPA in plasma for chelation of 241Am.

    Science.gov (United States)

    Sueda, Katsuhiko; Sadgrove, Matthew P; Jay, Michael; Di Pasqua, Anthony J

    2013-08-01

    Diethylenetriaminepentaacetic acid (DTPA) is a chelating agent that is used to facilitate the elimination of radionuclides such as americium from contaminated individuals. Its primary site of action is in the blood, where it competes with various biological ligands, including transferrin and albumin, for the binding of radioactive metals. To evaluate the chelation potential of DTPA under these conditions, the competitive binding of Am between DTPA and plasma proteins was studied in rat, beagle, and human plasma in vitro. Following incubation of DTPA and Am in plasma, the Am-bound ligands were fractionated by ultrafiltration and ion-exchange chromatography, and each fraction was assayed for Am content by gamma scintillation counting. Dose response curves of DTPA for Am binding were established, and these models were used to calculate the 90% maximal effective concentration, or EC90, of DTPA in each plasma system. The EC90 were determined to be 31.4, 15.9, and 10.0 μM in rat, beagle, and human plasma, respectively. These values correspond to plasma concentrations of DTPA that maximize Am chelation while minimizing excess DTPA. Based on the pharmacokinetic profile of DTPA in humans, after a standard 30 μmol kg intravenous bolus injection, the plasma concentration of DTPA remains above EC90 for approximately 5.6 h. Likewise, the effective duration of DTPA in rat and beagle were determined to be 0.67 and 1.7 h, respectively. These results suggest that species differences must be considered when translating DTPA efficacy data from animals to humans and offer further insights into improving the current DTPA treatment regimen.

  9. Species-dependent chelation of (241)Am by DTPA Di-ethyl ester.

    Science.gov (United States)

    Huckle, James E; Sadgrove, Matthew P; Mumper, Russell J; Jay, Michael

    2015-04-01

    Diethylenetriaminepentaacetic acid (DTPA) is an FDA-approved chelating agent for enhancing the elimination of transuranic elements such as americium from the body. Early access to therapy minimizes deposition of these radionuclides in tissues such as the bone. Due to its poor oral bioavailability, DTPA is administered as an IV injection, delaying access. Therefore, a diethyl-ester analog of DTPA, named C2E2, was synthesized as a means to increase oral absorption. As a hexadentate ligand, it was hypothesized that C2E2 was capable of binding americium directly. Therefore, the protonation constants and americium stability constant for C2E2 were determined by potentiometric titration and a solvent extraction method, respectively. C2E2 was shown to bind americium with a log K of 19.6. The concentrations of C2E2, its metabolite C2E1, and DTPA required to achieve effective binding in rat, beagle, and human plasma were studied in vitro. Dose response curves for each ligand were established, and the 50% maximal effective concentrations were determined for each species. As expected, higher concentrations of C2E2 were required to achieve the same degree of binding as DTPA. The results indicated that chelation in beagle plasma is more representative of the human response than rats. Finally, the pharmacokinetics of C2E2 were investigated in beagles, and the data was fit to a two-compartment model with elimination from the central compartment, along with first-order absorption. Based on the in vitro data, a 100 mg kg dose of C2E2 can be expected to have an effective duration of action of 3.8 h in beagles.

  10. Species-Dependent Chelation of 241Am by DTPA Di-ethyl Ester

    Science.gov (United States)

    Huckle, James E.; Sadgrove, Matthew P.; Mumper, Russell J.; Jay, Michael

    2014-01-01

    Diethylenetriaminepentaacetic acid (DTPA) is an FDA approved chelating agent for enhancing the elimination of transuranic elements such as americium from the body. Early access to therapy minimizes deposition of these radionuclides in tissues such as the bone. Due to its poor oral bioavailability, DTPA is administered as an IV injection, delaying access. Therefore a diethyl-ester analog of DTPA, named C2E2, was synthesized as a means to increase oral absorption. As a hexadentate ligand, it was hypothesized that C2E2 was capable of binding americium directly. Therefore, the protonation constants and americium stability constant for C2E2 were determined by potentiometric titration and a solvent extraction method, respectively. C2E2 was shown to bind americium with a log K of 19.6. The concentrations of C2E2, its metabolite C2E1, and DTPA required to achieve effective binding in rat, beagle, and human plasma were studied in vitro. Dose response curves for each ligand were established and the 50% maximal effective concentrations were determined for each species. As expected, higher concentrations of C2E2 were required to achieve the same degree of binding as DTPA. The results indicated that chelation in beagle plasma is more representative of the human response than rats. Finally, the pharmacokinetics of C2E2 were investigated in beagles and the data was fit to a two-compartment model with elimination from the central compartment, along with first-order absorption. Based on the in vitro data, a 100 mg kg−1 dose of C2E2 can be expected to have an effective duration of action of 3.8 hours in beagles. PMID:25706138

  11. A new N-hydroxyethyliminodiacetic acid modified core-shell silica phase for chelation ion chromatography of alkaline earth, transition and rare earth elements.

    Science.gov (United States)

    McGillicuddy, Nicola; Nesterenko, Ekaterina P; Nesterenko, Pavel N; Stack, Elaine M; Omamogho, Jesse O; Glennon, Jeremy D; Paull, Brett

    2013-12-20

    Bare core-shell silica (1.7μm) has been modified with iminodiacetic acid functional groups via standard silane chemistry, forming a new N-hydroxyethyliminodiacetic acid (HEIDA) functionalised core-shell stationary phase. The column was applied in high-performance chelation ion chromatography and evaluated for the retention of alkaline earth, transition and heavy metal cations. The influence of nitric acid eluent concentration, addition of complexing agent dipicolinic acid, eluent pH and column temperature on the column performance was investigated. The efficiencies obtained for transition and heavy metal cations (and resultant separations) were comparable or better than those previously obtained for alternative fully porous silica based chelation stationary phases, and a similarly modified monolithic silica column, ranging from ∼15 to 56μm HETP. Increasing the ionic strength of the eluent with the addition of KNO3 (0.75M) and increasing the column temperature (70°C) facilitated the isocratic separation of a mixture of 14 lanthanides and yttrium in under 12min, with HETP averaging 18μm (7μm for Ce(III)). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Complexation of labile aluminium species by chelating resins Iontosorb--a new method for Al environmental risk assessment.

    Science.gov (United States)

    Matús, Peter; Kubová, Jana

    2005-09-01

    The utilization of chelating ion-exchange by the method based on binding strength and kinetic discrimination for aluminium fractionation was studied. Two chelating cellulose resins, Iontosorb Oxin (IO) and Iontosorb Salicyl (IS), were used for the determination of quickly reacting labile aluminium species. The possibilities of aluminium fractionation on these chelating resins were investigated by a solid phase extraction technique. The study of the pH (2.5-6.0) influence on the Al complexation by both resins indicates that at low pH the IS has lower sorption capacity but better adsorptive kinetic properties than IO. The optimal resin complexation time for reactive Al species was experimentally found after aluminium sorption study at pH 4.0 in synthetic solutions containing some inorganic and organic ligands, which simulate the composition of analysed acid soil and water samples. The negative influence of sulphate and iron on the Al complexation by IS resin was found and investigated. The flame atomic absorption spectrometry was used for the aluminium quantification.

  13. STUDIES REGARDING THE CHELATE-INDUCED HYPERACCUMULATION OF CU AND FE USING LOLIUM PERENNE SPECIES IN MINING AREAS

    Directory of Open Access Journals (Sweden)

    ANCA-DIANA PRICOP

    2013-07-01

    Full Text Available The plant capacity to absorb high amounts of metal for a short period of time is the major factor that influences the efficiency of phytoextraction. The hyperaccumulating plants uptake high amounts in their tissues correlated to the metal concentrations in soil. Chelating agents have the capacity to induce the metal accumulation in biomass. They increase metal bioavailability for plants by releasing the metal in accessible forms. The present study emphasizes that in the case of EDTA use, the obtained biomass is smaller compared to the other variants, showing a lower tolerance to this chelating agent of Lolium perenne species. Cu and Fe phytoextraction by Lolium perenne species is higher in the case of EDTA use. Cu bioaccumulation has higher values in variants with compost-sterile mixture ratio of 1:4 in comparison with Fe. In the case of the best compost-sterile mixture ratio of 1:3 the highest biomass is obtained in all the variants, biosolids’ effect being stronger compared to the chelating agent.

  14. Chelation ion chromatography of alkaline earth and transition metals a using monolithic silica column with bonded N-hydroxyethyliminodiacetic acid functional groups.

    Science.gov (United States)

    McGillicuddy, Nicola; Nesterenko, Ekaterina P; Nesterenko, Pavel N; Jones, Phil; Paull, Brett

    2013-02-08

    A commercially available porous silica monolithic column (Onyx Monolithic Si, 100 mm×4.6 mm I.D.) was 'in-column' covalently functionalised with 2-hydroxyethyliminodiacetic acid (HEIDA) groups, and applied to the simultaneous and rapid separation of alkaline earth and transition metal ions, using high-performance chelation ion chromatography (HPCIC). With a 0.3mM dipicolinic acid (DPA) containing eluent, the baseline separation of various common transition and heavy metal ions and the four alkaline earth metal ions could be achieved in under 14 min with a flow rate of just 0.8 mL/min. Detection was achieved using spectrophotometric detection at 540 nm after post-column reaction (PCR) with 4-(2-pyridylazo)-resorcinol (PAR). Significant effects from variation of eluent nature, concentration and temperature upon selectivity and retention were demonstrated with the new monolithic silica chelating phase. Under optimised conditions (0.165 M LiNO(3) eluent, pH 2.5), peak efficiencies of 54,000, 60,000 and 64,000 N/m, for Zn(2+), Mn(2+) and Cd(2+), respectively, were recorded, far exceeding that previously reported for IDA based chelation ion exchange columns.

  15. Removal of heavy metal species from industrial sludge with the aid of biodegradable iminodisuccinic acid as the chelating ligand.

    Science.gov (United States)

    Wu, Qing; Duan, Gaoqi; Cui, Yanrui; Sun, Jianhui

    2015-01-01

    High level of heavy metals in industrial sludge was the obstacle of sludge disposal and resource recycling. In this study, iminodisuccinic acid (IDS), a biodegradable chelating ligand, was used to remove heavy metals from industrial sludge generated from battery industry. The extraction of cadmium, copper, nickel, and zinc from battery sludge with aqueous solution of IDS was studied under various conditions. It was found that removal efficiency greatly depends on pH, chelating agent's concentration, as well as species distribution of metals. The results showed that mildly acidic and neutral systems were not beneficial to remove cadmium. About 68 % of cadmium in the sample was extracted at the molar ratio of IDS to heavy metals 7:1 without pH adjustment (pH 11.5). Copper of 91.3 % and nickel of 90.7 % could be removed by IDS (molar ratio, IDS: metals = 1:1) with 1.2 % phosphoric acid effectively. Removal efficiency of zinc was very low throughout the experiment. Based on the experimental results, IDS could be a potentially useful chelant for heavy metal removal from battery industry sludge.

  16. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.

    Energy Technology Data Exchange (ETDEWEB)

    Hakim Boukhalfa

    2006-03-28

    Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.

  17. Responses of two grass species to plant growth regulators, fertilizer N, chelated Fe, salinity and water stress

    OpenAIRE

    Nabati, Daryoosh A.

    1991-01-01

    A series of studies were initiated to investigate growth responses of Kentucky bluegrass (Poa praetensis L.) and creeping bentgrass (Agrostis palustris Huds.) to foliar applications of two plant growth regulators (PGR) and/or chelated Fe (Na Fe diethylene triamine pentaacetate). Environmental variables considered were N levels, soil moisture regimes, and saline irrigations The two materials investigated for PGR properties were a commercial product called Roots (a cold-water extract of seaw...

  18. Copolímeros de estireno-divinilbenzeno impregnados com agentes complexantes organofosforados para separação de terras raras Styrene-divinylbenzene copolymers loaded with organophosphorus chelating agents for rare earths separation

    Directory of Open Access Journals (Sweden)

    Celina C. R. Barbosa

    1998-12-01

    Full Text Available RESUMO: Copolímeros de estireno-divinilbenzeno para aplicação em cromatografia de extração foram sintetizados em presença de agentes complexantes seletivos para terras raras, o fosfato monoácido de bis(2-etil-hexila, DEHPA e o 2-etil-hexil fosfonato monoácido de 2-etil-hexila, EHEHPA. Os copolímeros foram preparados através de polimerização em suspensão utilizando como diluentes os agentes complexantes puros ou combinados com o solvente tolueno (TOL. A influência das condições de síntese, tais como: a razão agente complexante/TOL; o grau de diluição dos monômeros e o teor de divinilbenzeno, na estrutura porosa dos copolímeros foi investigada através de suas características físicas tais como densidade aparente, volume de poros fixos, área específica e através de microscopia ótica e eletrônica de varredura. Os copolímeros foram avaliados em relação ao processo de separação de terras raras. Assim foram determinadas a capacidade total e a cinética de complexação em relação ao íon gadolínio. O teor de agente complexante impregnado em cada suporte foi função da quantidade do agente complexante nas misturas. Foi otimizada a quantidade máxima do agente complexante que pode ser utilizada na síntese, de modo a obter suportes com alta capacidade de complexação, sem o comprometimento de sua resistência mecânica. A capacidade total de complexação variou com a quantidade de agente complexante impregnado no suporte e a cinética de complexação variou principalmente com o diâmetro médio de poros, pois este determina a velocidade de difusão dos íons no suporte.ABSTRACT: Styrene-divinylbenzene copolymers used in extraction chromatography were synthesized in presence of selective chelating agents for rare earths: DEHPA, bis(2-ethylhexyl phosphoric acid, and EHEHPA, bis(2-ethylhexyl phosphonic acid. The copolymers were prepared by suspension polymerization technique using the pure chelating agents and its

  19. Sulfur radical species form gold deposits on Earth.

    Science.gov (United States)

    Pokrovski, Gleb S; Kokh, Maria A; Guillaume, Damien; Borisova, Anastassia Y; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-11-01

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3(-), form very stable and soluble complexes with Au(+) in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10-100 times more efficiently than sulfide and chloride only. As a result, S3(-) exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3(-) during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere.

  20. Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingjie [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin, E-mail: binhu@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2010-02-15

    The on-line incorporation of cloud point extraction (CPE) with/without 8-hydroxyquinoline (8-Ox) as chelating agent into flow injection analysis associated with inductively coupled plasma optical emission spectrometry (ICP-OES) for determining trace rare earth elements (REEs) is presented and evaluated. The significant parameters affecting on-line cloud point extraction of REEs such as sample pH, flow rate, 8-Ox concentration, Triton X-114 concentration were systematically studied. Under the optimized conditions, with the consumption of 3.0 mL sample solution, the limits of detection (3{sigma}) were ranged from 41.4 pg mL{sup -1} (Yb) to 448 pg mL{sup -1} (Gd) with relative standard deviations (RSDs) of 1.0% (Eu)-5.9% (Sm) for on-line CPE-ICP-OES with 8-Ox as chelating agent, and 69.0 pg mL{sup -1} (Sc) to 509.5 pg mL{sup -1} (Sm) with RSDs of 2.9% (Yb)-7.5% (Ho) for on-line CPE-ICP-OES without 8-Ox as chelating agent, respectively. The sample throughput of 17 samples h{sup -1} was obtained for both systems. The developed methods of on-line CPE-ICP-OES were validated by the analysis of certified reference material (GBW07605, tea leaves) and real biological samples of pig liver, Auricularia auricula and mushroom.

  1. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  2. A new species of earth snake (Dipsadidae, Geophis) from Mexico

    Science.gov (United States)

    Canseco-Márquez, Luis; Pavón-Vázquez, Carlos J.; López-Luna, Marco Antonio; Nieto-Montes de Oca, Adrián

    2016-01-01

    Abstract A new species of the Geophis dubius group is described from the mountains of the Sierra Zongolica in west-central Veracruz and the Sierra de Quimixtlán in central-east Puebla. The new species is most similar to Geophis duellmani and Geophis turbidus, which are endemic to the mountains of northern Oaxaca and the Sierra Madre Oriental of Puebla and Hidalgo, respectively. However, the new species differs from Geophis duellmani by the presence of postocular and supraocular scales and from Geophis turbidus by having a bicolor dorsum. With the description of the new species, the species number in the genus increases to 50 and to 12 in the Geophis dubius group. Additionally, a key to the species of the Geophis dubius group is provided. PMID:27587979

  3. A new species of earth snake (Dipsadidae, Geophis) from Mexico.

    Science.gov (United States)

    Canseco-Márquez, Luis; Pavón-Vázquez, Carlos J; López-Luna, Marco Antonio; Nieto-Montes de Oca, Adrián

    2016-01-01

    A new species of the Geophis dubius group is described from the mountains of the Sierra Zongolica in west-central Veracruz and the Sierra de Quimixtlán in central-east Puebla. The new species is most similar to Geophis duellmani and Geophis turbidus, which are endemic to the mountains of northern Oaxaca and the Sierra Madre Oriental of Puebla and Hidalgo, respectively. However, the new species differs from Geophis duellmani by the presence of postocular and supraocular scales and from Geophis turbidus by having a bicolor dorsum. With the description of the new species, the species number in the genus increases to 50 and to 12 in the Geophis dubius group. Additionally, a key to the species of the Geophis dubius group is provided.

  4. Deferasirox is a powerful NF-κB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging

    Science.gov (United States)

    Messa, Emanuela; Carturan, Sonia; Maffè, Chiara; Pautasso, Marisa; Bracco, Enrico; Roetto, Antonella; Messa, Francesca; Arruga, Francesca; Defilippi, Ilaria; Rosso, Valentina; Zanone, Chiara; Rotolo, Antonia; Greco, Elisabetta; Pellegrino, Rosa M.; Alberti, Daniele; Saglio, Giuseppe; Cilloni, Daniela

    2010-01-01

    Background Usefulness of iron chelation therapy in myelodysplastic patients is still under debate but many authors suggest its possible role in improving survival of low-risk myelodysplastic patients. Several reports have described an unexpected effect of iron chelators, such as an improvement in hemoglobin levels, in patients affected by myelodysplastic syndromes. Furthermore, the novel chelator deferasirox induces a similar improvement more rapidly. Nuclear factor-κB is a key regulator of many cellular processes and its impaired activity has been described in different myeloid malignancies including myelodysplastic syndromes. Design and Methods We evaluated deferasirox activity on nuclear factor-κB in myelodysplastic syndromes as a possible mechanism involved in hemoglobin improvement during in vivo treatment. Forty peripheral blood samples collected from myelodysplastic syndrome patients were incubated with 50 μM deferasirox for 18h. Results Nuclear factor-κB activity dramatically decreased in samples showing high basal activity as well as in cell lines, whereas no similar behavior was observed with other iron chelators despite a similar reduction in reactive oxygen species levels. Additionally, ferric hydroxyquinoline incubation did not decrease deferasirox activity in K562 cells suggesting the mechanism of action of the drug is independent from cell iron deprivation by chelation. Finally, incubation with both etoposide and deferasirox induced an increase in K562 apoptotic rate. Conclusions Nuclear factor-κB inhibition by deferasirox is not seen from other chelators and is iron and reactive oxygen species scavenging independent. This could explain the hemoglobin improvement after in vivo treatment, such that our hypothesis needs to be validated in further prospective studies. PMID:20534700

  5. Using Google Earth Surface Metrics to Predict Plant Species Richness in a Complex Landscape

    Directory of Open Access Journals (Sweden)

    Sebastián Block

    2016-10-01

    Full Text Available Google Earth provides a freely available, global mosaic of high-resolution imagery from different sensors that has become popular in environmental and ecological studies. However, such imagery lacks the near-infrared band often used in studying vegetation, thus its potential for estimating vegetation properties remains unclear. In this study, we assess the potential of Google Earth imagery to describe and predict vegetation attributes. Further, we compare it to the potential of SPOT imagery, which has additional spectral information. We measured basal area, vegetation height, crown cover, density of individuals, and species richness in 60 plots in the oak forests of a complex volcanic landscape in central Mexico. We modelled each vegetation attribute as a function of surface metrics derived from Google Earth and SPOT images, and selected the best-supported linear models from each source. Total species richness was the best-described and predicted variable: the best Google Earth-based model explained nearly as much variation in species richness as its SPOT counterpart (R2 = 0.44 and 0.51, respectively. However, Google Earth metrics emerged as poor predictors of all remaining vegetation attributes, whilst SPOT metrics showed potential for predicting vegetation height. We conclude that Google Earth imagery can be used to estimate species richness in complex landscapes. As it is freely available, Google Earth can broaden the use of remote sensing by researchers and managers in low-income tropical countries where most biodiversity hotspots are found.

  6. Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation

    Directory of Open Access Journals (Sweden)

    Mohammad Anwar Hossain

    2012-01-01

    Full Text Available Heavy metal (HM toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS and methylglyoxal (MG, both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH, or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.

  7. Copper(II) mixed chelate compounds induce apoptosis through reactive oxygen species in neuroblastoma cell line CHP-212.

    Science.gov (United States)

    Gutiérrez, Anllely Grizett; Vázquez-Aguirre, Adriana; García-Ramos, Juan Carlos; Flores-Alamo, Marcos; Hernández-Lemus, Enrique; Ruiz-Azuara, Lena; Mejía, Carmen

    2013-09-01

    In the present work we report the antiproliferative activity of Cu(II) coordination compounds, CasIIgly ([Cu(4,7-dimethyl-1,10-phenanthroline) (glycinato) (H2O)]NO3), CasIIIia ([Cu(4,4'-dimethyl-2,2'-bipyridine) (glycinato) (H2O)]NO3), and CasIIIEa ([Cu(4,7-dimethyl-1,10-phenanthroline) (acetylacetonato) (H2O)]NO3), against human tumoral cell line CHP-212 (estromal neuroblastoma). Additionally, the molecular structure of CasIIIEa was reported. The IC50 values obtained for the evaluated compounds are in the range 18 to 47 μM, representing an inhibition potency increase of 5 to 12 times compared with cisplatin (IC50=226.7 μM). After 2h of incubation with the evaluated compounds, cells showed high levels of reactive oxygen species and a considerable GSH depletion, besides an important disruption of the mitochondrial membrane with release of cytochrome C and besides the presence of caspase-3, an effector caspase that is activated in the last step of apoptosis cascade. The results confirm that cell death in neuroblastoma CHP-212 treated with Casiopeínas occurs via apoptosis. Due to the lack of expression of caspase-8, cell death is principally by the mitochondrial pathway. Thus, one of the most interesting findings of this work is the identification of a very important damage in neuroblastoma cells induced by Cu(II) coordination compounds in a very short exposition times. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Oral iron chelators.

    Science.gov (United States)

    Kwiatkowski, Janet L

    2010-02-01

    Effective chelation therapy can prevent or reverse organ toxicity related to iron overload, yet cardiac complications and premature death continue to occur, largely related to difficulties with compliance in patients who receive parenteral therapy. The use of oral chelators may be able to overcome these difficulties and improve patient outcomes. A chelator's efficacy at cardiac and liver iron removal and side-effect profile should be considered when tailoring individual chelation regimens. Broader options for chelation therapy, including possible combination therapy, should improve clinical efficacy and enhance patient care.

  9. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  10. Preconcentration of Rare Earth Elements with 8-Hydroxyquinoline-5-sulfonic Acid Chelated Cellulose Filter Prior to Determination by Inductively Coupled Plasma Atomic Emission Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    8-Hydroxyquinoline-5-sulfonic acid,covalently bound to filter cellulose,was used for preconcentrating trace rare earth element(REE) ions from complex matrices and matrix separation,respectively.Multi-REE ions were preconcentrated on the column filled with 8-hydroxyquinoline-5-sulfonic acid cellulose filter and analysed by ICP-AES after being eluted with dilute HNO3.In the given pH range,alkali and alkaline earth metal ions can be separated as matrix elements;a high concentration factor is obtained and the eluates can be measured without interference.The usefulness of the method is shown by the control analyses of standard reference materials.

  11. Iron Chelation and Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Kelsey J. Weigel

    2014-01-01

    Full Text Available Histochemical and MRI studies have demonstrated that MS (multiple sclerosis patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen.

  12. The Chelate Effect Redefined.

    Science.gov (United States)

    da Silva, J. J. R. Frausto

    1983-01-01

    Discusses ambiguities of the accepted definition of the chelate effect, suggesting that it be defined in terms of experimental observation rather than mathematical abstraction. Indicates that the effect depends on free energy change in reaction, ligand basicity, pH of medium, type of chelates formed, and concentration of ligands in solution. (JN)

  13. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  14. Chelation in metal intoxication

    DEFF Research Database (Denmark)

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the incon......The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due...... to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new...

  15. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  16. Scientific Opinion on the safety and efficacy of copper compounds (E4 as feed additives for all species: cupric chelate of amino acids hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc.

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-02-01

    Full Text Available Cupric chelate of amino acids hydrate is safe for all animal species/categories up to the authorised maximum of total copper content in complete feed. Consumption surveys include copper from foodstuffs of animal origin. Since the supplementation of animal feed with copper-containing compounds has not essentially changed over the last decade, no change in the contribution of foodstuffs originating from supplemented animals to the overall copper intake of consumers is expected. No concerns for consumer safety are expected from the use of cupric chelate of amino acids hydrate in animal nutrition, which would substitute for other copper sources. The additive should be considered as a skin and eye irritant and, owing to its amino acid/peptide component, as a skin/respiratory sensitiser. Potential risks to soil organisms have been identified as a result of the application of piglet manure. Levels of copper in other types of manure are too low to create a potential risk within the timescale considered. There might also be a potential environmental concern related to the contamination of sediment resulting from drainage and the run-off of copper to surface water. In order to draw a final conclusion, further model validation is needed and some further refinement to the assessment of copper-based feed additives in livestock needs to be considered, for which additional data would be required. The use of copper-containing additives in aquaculture up to the authorised maximum of total copper content in complete feeds is not expected to pose an appreciable risk to the environment. The extent to which copper-resistant bacteria contribute to the overall antibiotic resistance situation cannot be quantified at present. Cupric chelate of amino acids hydrate is recognised as an efficacious source of copper to meet animal requirements.

  17. Data gaps in anthropogenically driven local‐scale species richness change studies across the Earth's terrestrial biomes

    National Research Council Canada - National Science Library

    Murphy, Grace E. P; Romanuk, Tamara N

    2016-01-01

    .... Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change...

  18. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    Science.gov (United States)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  19. Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  20. Iron chelating agents for iron overload diseases

    Directory of Open Access Journals (Sweden)

    Guido Crisponi

    2014-09-01

    Full Text Available Although iron is an essential element for life, an excessive amount may become extremely toxic both for its ability to generate reactive oxygen species, and for the lack in humans of regulatory mechanisms for iron excretion. Chelation therapy has been introduced in clinical practice in the seventies of last century to defend thalassemic patients from the effects of iron overload and, in spite of all its limitations, it has dramatically changed both life expectancy and quality of life of patients. It has to be considered that the drugs in clinical use present some disadvantages too, this makes urgent new more suitable chelating agents. The requirements of an iron chelator have been better and better defined over the years and in this paper they will be discussed in detail. As a final point the most interesting ligands studied in the last years will be presented.

  1. Chelation Therapy for Mercury Poisoning

    OpenAIRE

    Rong Guan; Han Dai

    2009-01-01

    Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role o...

  2. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    Science.gov (United States)

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic.

  3. Chelated minerals for poultry

    Directory of Open Access Journals (Sweden)

    SL Vieira

    2008-06-01

    Full Text Available Organic minerals have been subject of an increasing number of investigations recently. These compounds can be considered the most significant event regarding commercial forms of minerals targeting animal supplementation in the last decades. Minerals, especially metals, are usually supplemented in poultry feeds using cheap saline sources and have never required a lot of attention in terms of quality. On the other hand, definitions of organic minerals are very broad and frequently lead to confusion when decision-making becomes necessary. Organic minerals include any mineral bound to organic compounds, regardless of the type of existing bond between mineral and organic molecules. Proteins and carbohydrates are the most frequent candidates in organic mineral combinations. Organic fraction size and bond type are not limitations in organic mineral definition; however, essential metals (Cu, Fe, Zn, and Mn can form coordinated bonds, which are stable in intestinal lumen. Metals bound to organic ligands by coordinated bonds can dissociate within animal metabolism whereas real covalent bonds cannot. Chelated minerals are molecules that have a metal bound to an organic ligand through coordinated bonds; but many organic minerals are not chelates or are not even bound through coordinated bonds. Utilization of organic minerals is largely dependent on the ligand; therefore, amino acids and other small molecules with facilitated access to the enterocyte are supposed to be better utilized by animals. Organic minerals with ligands presenting long chains may require digestion prior to absorption. After absorption, organic minerals may present physiological effects, which improve specific metabolic responses, such as the immune response. Many studies have demonstrated the benefits of metal-amino acid chelates on animal metabolism, but the detection positive effects on live performance is less consistent.

  4. Extraction of metals using supercritical fluid and chelate forming legand

    Science.gov (United States)

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  5. Extraction of metals using supercritical fluid and chelate forming ligand

    Science.gov (United States)

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  6. Macroreticular chelating ion-exchangers.

    Science.gov (United States)

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  7. Supercritical Fluid Extraction of Metal Chelate: A Review.

    Science.gov (United States)

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO3) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  8. Data gaps in anthropogenically driven local-scale species richness change studies across the Earth's terrestrial biomes.

    Science.gov (United States)

    Murphy, Grace E P; Romanuk, Tamara N

    2016-05-01

    There have been numerous attempts to synthesize the results of local-scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local-scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome-driver combinations we have identified as most critical in terms of where local-scale species richness change studies are lacking include the following: land-use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local-scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.

  9. Invasive species: Ocean ecosystem case studies for earth systems and environmental sciences

    Science.gov (United States)

    Schofield, Pam; Brown, Mary E.

    2016-01-01

    Marine species are increasingly transferred from areas where they are native to areas where they are not. Some nonnative species become invasive, causing undesirable impacts to environment, economy and/or human health. Nonnative marine species can be introduced through a variety of vectors, including shipping, trade, inland corridors (such as canals), and others. Effects of invasive marine species can be dramatic and irreversible. Case studies of four nonnative marine species are given (green crab, comb jelly, lionfish and Caulerpa algae).

  10. Effects of Alkali and Alkaline Earth Metals on N-Containing Species Release during Rice Straw Pyrolysis

    Directory of Open Access Journals (Sweden)

    Pan Gao

    2015-11-01

    Full Text Available To study the effects of inherent and external alkali and alkaline earth metallic species (AAEMs, i.e., K, Ca and Mg on the behavior of N-containing species release during rice straw (RS pyrolysis, different pretreatments were applied in numerous experiments. Results indicate that ammonia (NH3 and hydrogen cyanide (HCN are the major N-containing species and that the yields of isocyanic acid (HNCO and nitric oxide (NO are relatively low. The removal of inhert AAEMs shifts N-containing species release to a high-temperature zone according to volatile release behavior because of the increase in activation energy. The formation selectivity of NH3, HNCO, and NO increases by demineralized pretreatment, whereas HCN selectivity decreases. The formation of HNCO is mainly affected by alkaline earth metal. N-containing species release occurs in low temperatures with the addition of external AAEMs. The activation energy of samples impregnated with CaCl2 and MgCl2 sharply decreases compared to the original RS. The total yields of N-containing species are reduced significantly in the presence of KCl, CaCl2, and MgCl2 as additives. The inhibition ability of AAEMs follows the sequence MgCl2 > CaCl2 > KCl. The inhibition effect of MgCl2 can be improved by solution immersion compared with solid powder mixing. The clean biomass pyrolysis and gasification technology with low N-containing species content may be developed according to the results.

  11. Environmental genomics reveals a single species ecosystem deep within the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Chivian, Dylan; Brodie, Eoin L.; Alm, Eric J.; Culley, David E.; Dehal, Paramvir S.; DeSantis, Todd Z.; Gihring, Thomas M.; Lapidus, Alla; Lin, Li-Hung; Lowry, Stephen R.; Moser, Duane P.; Richardson, Paul; Southam, Gordon; Wanger, Greg; Pratt, Lisa M.; Andersen, Gary L.; Hazen, Terry C.; Brockman, Fred J.; Arkin, Adam P.; Onstott, Tullis C.

    2008-09-17

    DNA from low biodiversity fracture water collected at 2.8 km depth in a South African gold mine was sequenced and assembled into a single, complete genome. This bacterium, Candidatus Desulforudis audaxviator, comprises>99.9percent of the microorganisms inhabiting the fluid phase of this particular fracture. Its genome indicates a motile, sporulating, sulfate reducing, chemoautotrophic thermophile that can fix its own nitrogen and carbon using machinery shared with archaea. Candidatus Desulforudis audaxviator is capable of an independent lifestyle well suited to long-term isolation from the photosphere deep within Earth?s crust, and offers the first example of a natural ecosystem that appears to have its biological component entirely encoded within a single genome.

  12. Uptake and Effects of Six Rare Earth Elements (REEs) on Selected Native and Crop Species Growing in Contaminated Soils

    Science.gov (United States)

    Carpenter, David; Boutin, Céline; Allison, Jane E.; Parsons, Jessica L.; Ellis, Deanna M.

    2015-01-01

    Rare earth elements (REEs) have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium) on three native plants (Asclepias syriaca L., Desmodium canadense (L.) DC., Panicum virgatum L.) and two crop species (Raphanus sativus L., Solanum lycopersicum L.) in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50) causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18) fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12) falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that phytotoxicity may be a

  13. Uptake and Effects of Six Rare Earth Elements (REEs on Selected Native and Crop Species Growing in Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    David Carpenter

    Full Text Available Rare earth elements (REEs have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium on three native plants (Asclepias syriaca L., Desmodium canadense (L. DC., Panicum virgatum L. and two crop species (Raphanus sativus L., Solanum lycopersicum L. in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50 causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18 fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12 falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that

  14. Treating Lead Toxicity: Possibilities beyond Synthetic Chelation

    Directory of Open Access Journals (Sweden)

    Shambhavi Tannir

    2013-01-01

    Full Text Available Lead, a ubiquitous metal, is one of the most abundant elements present on earth. Its easy availability and cost effectiveness made it an extremely popular component in the industrial revolution. However, its hazardous health effects were not considered at the time. Over the last few decades, with the adverse effects of lead coming to the forefront, nations across the world have started to recognize and treat lead toxicity. The most reliable and used method until now has been chelation therapy. Recent research has suggested the use of natural products and sources to treat lead poisoning with minimal or no side effects. This review has tried to summarize a few of the natural products/sources being investigated by various groups.

  15. The scientific basis for chelation: animal studies and lead chelation.

    Science.gov (United States)

    Smith, Donald; Strupp, Barbara J

    2013-12-01

    This presentation summarizes several of the rodent and non-human studies that we have conducted to help inform the efficacy and clinical utility of succimer (meso-2,3-dimercaptosuccincinic acid) chelation treatment. We address the following questions: (1) What is the extent of body lead, and in particular brain lead reduction with chelation, and do reductions in blood lead accurately reflect reductions in brain lead? (2) Can succimer treatment alleviate the neurobehavioral impacts of lead poisoning? And (3) does succimer treatment, in the absence of lead poisoning, produce neurobehavioral deficits? Results from our studies in juvenile primates show that succimer treatment is effective at accelerating the elimination of lead from the body, but chelation was only marginally better than the complete cessation of lead exposure alone. Studies in lead-exposed adult primates treated with a single 19-day course of succimer showed that chelation did not measurably reduce brain lead levels compared to vehicle-treated controls. A follow-up study in rodents that underwent one or two 21-day courses of succimer treatment showed that chelation significantly reduced brain lead levels, and that two courses of succimer were significantly more efficacious at reducing brain lead levels than one. In both the primate and rodent studies, reductions in blood lead levels were a relatively poor predictor of reductions in brain lead levels. Our studies in rodents demonstrated that it is possible for succimer chelation therapy to alleviate certain types of lead-induced behavioral/cognitive dysfunction, suggesting that if a succimer treatment protocol that produced a substantial reduction of brain lead levels could be identified for humans, a functional benefit might be derived. Finally, we also found that succimer treatment produced lasting adverse neurobehavioral effects when administered to non-lead-exposed rodents, highlighting the potential risks of administering succimer or other metal-chelating

  16. Overview of current chelation practices

    Directory of Open Access Journals (Sweden)

    Y. Aydinok

    2011-12-01

    Full Text Available Deferoxamine (DFO is reference standard therapy for transfusional iron overload since the 1980s. Although it is a highly effective iron chelator, the compliance problem to subcutaneous administration of DFO remains as the major problem. The oral chelator Deferiprone (DFP has no marketing licence in North America, however, it has been licensed in India since 1994 and the European Union (EU granted marketing approval for DFP in 1999, specifically for patients with thalassemia major when DFO is inadequate, intolerable or unacceptable. There are still limited data available on the use of DFP in children between 6 and 10 years of age, and no data on DFP use in children under 6 years of age. Subsequently the oral chelator Deferasirox (DFX was approved by FDA and EMA for the treatment of patients with transfusional iron overload -older than 2 years of age- as first line therapy, in 2005 and 2006 respectively. The primary objective of iron chelation is to maintain body iron at safe levels at all times but once iron is accumulated, the objective of iron chelation is to reduce tissue iron to safe levels which is a slow process. The chelation regimen, dose and frequency of administration, of the chelator(s are mainly determined based on body iron burden, presence of myocardial iron and the transfusional iron loading rate. A proper monitoring of chelation is of importance for measuring the response rate to a particular regimen and providing dose adjustments to enhance chelation efficacy and to avoid toxicity. Efficacy of a chelation regimen may exhibit individual variability resulting from factors such as absorbtion and metabolism of the chelator. Tolerability and compliance are also individual variables effecting the response to chelation. Understanding of advantages and limitations of chelators, accurately determining chelation needs of patients with iron overload and designing individualized chelation regimens with less toxicity but optimum efficacy

  17. Study of Competitive Chelating Reaction between Lanthanum and Tribromoarsenazo in the Medium of Weak Acid by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    胡涌刚; 周培疆; 邓延倬; 程介克

    2003-01-01

    Two kinds of metal chelates of rare earth elements reacted with tribrimoarsenazo formed under the condition of critic acid were observed by simultaneous technique of capillary electrophoresisphotothermal interference spectrometry. The tendency of the conversion between these chelates as functions of the mole ratio of the reagent and the metal, pH value and the elapsing time was investigated. Kinetic equation of competitive chelating reaction between the TBA-La (Ⅲ) and La (Ⅲ) -critic acid were established. It was found that the competitive chelating reaction follows secondorder kinetics, for this second-order reaction, k=5.55 L·mol-1·S-1.

  18. Chelation for Coronary Heart Disease

    Science.gov (United States)

    ... V W X Y Z Chelation for Coronary Heart Disease Share: © AHA Coronary heart disease is a leading cause of death among both ... health approach . The use of disodium EDTA for heart disease has not been approved by the U.S. Food ...

  19. Ab initio coordination chemistry for nickel chelation motifs.

    Science.gov (United States)

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  20. Ab initio coordination chemistry for nickel chelation motifs.

    Directory of Open Access Journals (Sweden)

    R Jesu Jaya Sudan

    Full Text Available Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  1. Predicting the spatiotemporal distributions of marine fish species utilizing earth system data in a maximum entropy modeling framework

    Science.gov (United States)

    Wang, L.; Kerr, L. A.; Bridger, E.

    2016-12-01

    Changes in species distributions have been widely associated with climate change. Understanding how ocean conditions influence marine fish distributions is critical for elucidating the role of climate in ecosystem change and forecasting how fish may be distributed in the future. Species distribution models (SDMs) can enable estimation of the likelihood of encountering species in space or time as a function of environmental conditions. Traditional SDMs are applied to scientific-survey data that include both presences and absences. Maximum entropy (MaxEnt) models are promising tools as they can be applied to presence-only data, such as those collected from fisheries or citizen science programs. We used MaxEnt to relate the occurrence records of marine fish species (e.g. Atlantic herring, Atlantic mackerel, and butterfish) from NOAA Northeast Fisheries Observer Program to environmental conditions. Environmental variables from earth system data, such as sea surface temperature (SST), sea bottom temperature (SBT), Chlorophyll-a, bathymetry, North Atlantic oscillation (NAO), and Atlantic multidecadal oscillation (AMO), were matched with species occurrence for MaxEnt modeling the fish distributions in Northeast Shelf area. We developed habitat suitability maps for these species, and assessed the relative influence of environmental factors on their distributions. Overall, SST and Chlorophyll-a had greatest influence on their monthly distributions, with bathymetry and SBT having moderate influence and climate indices (NAO and AMO) having little influence. Across months, Atlantic herring distribution was most related to SST 10th percentile, and Atlantic mackerel and butterfish distributions were most related to previous month SST. The fish distributions were most affected by previous month Chlorophyll-a in summer months, which may indirectly indicate the accumulative impact of primary productivity. Results highlighted the importance of spatial and temporal scales when using

  2. Some inconvenient truths about biosignatures involving two chemical species on Earth-like exoplanets

    CERN Document Server

    Rein, Hanno; Spiegel, David S

    2014-01-01

    The detection of strong thermochemical disequilibrium in the atmosphere of an extrasolar planet is thought to be a potential biosignature. In this article we present a new kind of false positive that can mimic a disequilibrium or any other biosignature that involves two chemical species. We consider a scenario where the exoplanet hosts a moon that has its own atmosphere and neither of the atmospheres is in chemical disequilibrium. Our results show that the integrated spectrum of the planet and the moon closely resembles that of a single object in strong chemical disequilibrium. We derive a firm limit on the maximum spectral resolution that can be obtained for both directly-imaged and transiting planets. The spectral resolution of even idealized space-based spectrographs that might be achievable in the next several decades is in general insufficient to break the degeneracy. Both chemical species can only be definitively confirmed in the same object if absorption features of both chemicals can be unambiguously ...

  3. Binding and selectivity of phenazino-18-crown-6-ether with alkali, alkaline earth and toxic metal species: A DFT study

    Science.gov (United States)

    Islam, Nasarul; Chimni, Swapandeep Singh

    2017-02-01

    The interactions of phenazino-crown ether ligands with alkali, alkaline earth and selected toxic species were investigated using density functional theory modelling by employing B3PW91/6-311G ++ (d, p) level of theory. The complex stability was analysed in terms of binding energies, perturbation energies, position of highest molecular orbital and energy gap values. In general, the complexes formed by P18C6-1a ligand with metal cations were found to be more stable than those with P18C6-1b. Among alkali and alkaline earth metals complexes having highest stability was observed for the complex formed by P18C6-1a with Be2+. Computational calculations of P18C6 ligand with toxic metal ions reveals that the P18C6-Cr6+ metal complexes acquire envelop like geometry, leading to higher binding energy values. Comparing the binding energies of neutral and monocations of Ag and Hg, the former had higher value both in neutral as well as monocation state. Thus, the stability of metal complexes is determined not only by the ligand but also by the type of metal ion. In solvent systems the stability constants of metal complexes were found increasing with decreasing permittivity of the solvent. This reflects the inherited polar character of the protic solvents stabilises the cation, resulting in decrease of effective interaction of ligand with the metal ion.

  4. Some inconvenient truths about biosignatures involving two chemical species on Earth-like exoplanets.

    Science.gov (United States)

    Rein, Hanno; Fujii, Yuka; Spiegel, David S

    2014-05-13

    The detection of strong thermochemical disequilibrium in the atmosphere of an extrasolar planet is thought to be a potential biosignature. In this article we present a previously unidentified kind of false positive that can mimic a disequilibrium or any other biosignature that involves two chemical species. We consider a scenario where the exoplanet hosts a moon that has its own atmosphere and neither of the atmospheres is in chemical disequilibrium. Our results show that the integrated spectrum of the planet and the moon closely resembles that of a single object in strong chemical disequilibrium. We derive a firm limit on the maximum spectral resolution that can be obtained for both directly imaged and transiting planets. The spectral resolution of even idealized space-based spectrographs that might be achievable in the next several decades is in general insufficient to break the degeneracy. Both chemical species can only be definitively confirmed in the same object if absorption features of both chemicals can be unambiguously identified and their combined depth exceeds 100%.

  5. Luminescent lanthanide chelates and methods of use

    Science.gov (United States)

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  6. Chelators for investigating zinc metalloneurochemistry.

    Science.gov (United States)

    Radford, Robert J; Lippard, Stephen J

    2013-04-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  7. Combination therapies in iron chelation

    Directory of Open Access Journals (Sweden)

    Raffaella Origa

    2014-12-01

    Full Text Available The availability of oral iron chelators and new non-invasive methods for early detection and treatment of iron overload, have significantly improved the life expectancy and quality of life of patients with b thalassemia major. However, monotherapy is not effective in all patients for a variety of reasons. We analyzed the most relevant reports recently published on alternating or combined chelation therapies in thalassemia major with special attention to safety aspects and to their effects in terms of reduction of iron overload in different organs, improvement of complications, and survival. When adverse effects, such as gastrointestinal upset with deferasirox or infusional site reactions with deferoxamine are not tolerable and organ iron is in an acceptable range, alternating use of two chelators (drugs taken sequentially on different days, but not taken on the same day together may be a winning choice. The association deferiprone and deferoxamine should be the first choice in case of heart failure and when dangerously high levels of cardiac iron exist. Further research regarding the safety and efficacy of the most appealing combination treatment, deferiprone and deferasirox, is needed before recommendations for routine clinical practice can be made.

  8. Efficacy of chelation therapy to remove aluminium intoxication.

    Science.gov (United States)

    Fulgenzi, Alessandro; De Giuseppe, Rachele; Bamonti, Fabrizia; Vietti, Daniele; Ferrero, Maria Elena

    2015-11-01

    There is a distinct correlation between aluminium (Al) intoxication and neurodegenerative diseases (ND). We demonstrated how patients affected by ND showing Al intoxication benefit from short-term treatment with calcium disodium ethylene diamine tetraacetic acid (EDTA) (chelation therapy). Such therapy further improved through daily treatment with the antioxidant Cellfood. In the present study we examined the efficacy of long-term treatment, using both EDTA and Cellfood. Slow intravenous treatment with the chelating agent EDTA (2 g/10 mL diluted in 500 mL physiological saline administered in 2 h) (chelation test) removed Al, which was detected (using inductively coupled plasma mass spectrometry) in urine samples collected from patients over 12 h. Patients that revealed Al intoxication (expressed in μg per g creatinine) underwent EDTA chelation therapy once a week for ten weeks, then once every two weeks for a further six or twelve months. At the end of treatment (a total of 22 or 34 chelation therapies, respectively), associated with daily assumption of Cellfood, Al levels in the urine samples were analysed. In addition, the following blood parameters were determined: homocysteine, vitamin B12, and folate, as well as the oxidative status e.g. reactive oxygen species (ROS), total antioxidant capacity (TAC), oxidized LDL (oxLDL), and glutathione. Our results showed that Al intoxication reduced significantly following EDTA and Cellfood treatment, and clinical symptoms improved. After treatment, ROS, oxLDL, and homocysteine decreased significantly, whereas vitamin B12, folate and TAC improved significantly. In conclusion, our data show the efficacy of chelation therapy associated with Cellfood in subjects affected by Al intoxication who have developed ND.

  9. Fates and roles of alkali and alkaline earth metal species during the pyrolysis and gasification of a Victorian lignite

    Energy Technology Data Exchange (ETDEWEB)

    Mody, D.; Wu, H.; Li, C. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    The transformation of alkali and alkaline earth metal (AAEM) species in a Victorian lignite during the pyrolysis and subsequent gasification in CO{sub 2} was studied in a novel quartz fluidised-bed reactor. Lignite samples prepared by physically adding NaCl and ion-exchanging Na{sup +} and Ca{sup ++} into the lignite were used to investigate the effects of chemical forms and valency of the AAEM species in the substrate lignite on their transformation during pyrolysis and gasification. Carboxyl-bound Na was found to be less volatile than Na present as NaCl, but more volatile than carboxyl-bound Ca during pyrolysis at temperatures between 400 and 900{sup o}C. However, the carboxyl-bound Na was volatilised to a much greater extent than the carboxyl-bound Ca in the same lignite during pyrolysis. It was seen that the loading of NaCl into the lignite did not significantly affect the char reactivity in the fluidised-bed reactor at 900{sup o}C.

  10. Role of chelates in treatment of cancer

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2007-01-01

    Full Text Available Chelates are used in cancer as cytotoxic agent, as radioactive agent in imaging studies and in radioimmunotherapy. Various chelates based on ruthenium, copper, zinc, organocobalt, gold, platinum, palladium, cobalt, nickel and iron are reported as cytotoxic agent. Monoclonal antibodies labeled with radioactive metals such as yttrium-90, indium-111 and iodine-131 are used in radioimmunotherapy. This review is an attempt to compile the use of chelates as cytotoxic drugs and in radioimmunotherapy.

  11. [Extraction of Heavy Metals from Sludge Using Biodegradable Chelating Agent N,N-bis(carboxymethyl) Glutamic Acid Tetrasodium].

    Science.gov (United States)

    Wu, Qing; Cui, Yan-rui; Tang, Xiao-xiao; Yang, Hui-juan; Sun, Jian-hui

    2015-05-01

    N, N-bis (carboxymethyl) glutamic acid tetrasodium (GLDA), a novel biodegradable and green chelating agent, has excellent metal chelating ability. Batch experiment was conducted to study the extraction process of Cd, Ni, Cu and Zn in industrial sludge using GLDA. The effects of contact time, pH of the system, content of chelating agent were investigated, and the forms of heavy metals in sludge pre- and post-extraction using the modified BCR sequential extraction procedure were studied. The results showed that GLDA was effective for cadmium extraction in sludge. Several heavy metals could be effectively extracted under the condition of pH 4 and molar ratio of chelating agent to total heavy metal 3:1. Residual fraction took the largest fraction in Zn, which caused the low extraction efficiency of this metal. Chelating properties were related not only to contact time, pH, chelating agent's concentration, and stability constant but also to species distribution of metals.

  12. Iron chelators do not reduce cold-induced cell injury in the isolated perfused rat kidney model.

    NARCIS (Netherlands)

    Bartels-Stringer, M.; Wetzels, J.F.M.; Wouterse, A.C.; Steenbergen, E.; Russel, F.G.M.; Kramers, C.

    2005-01-01

    BACKGROUND: In vitro, cold-induced injury is an important contributor to renal tubular cell damage. It is mediated by iron-dependent formation of reactive oxygen species and can be prevented by iron chelation. We studied whether iron chelators can prevent cold-induced damage in the isolated perfused

  13. Beliefs about chelation among thalassemia patients

    Directory of Open Access Journals (Sweden)

    Trachtenberg Felicia L

    2012-12-01

    Full Text Available Abstract Background Understanding patients’ views about medication is crucial to maximize adherence. Thalassemia is a congenital blood disorder requiring chronic blood transfusions and daily iron chelation therapy. Methods The Beliefs in Medicine Questionnaire (BMQ was used to assess beliefs in chelation in thalassemia patients from North America and London in the Thalassemia Longitudinal Cohort (TLC of the Thalassemia Clinical Research Network (TCRN. Chelation adherence was based on patient report of doses administered out of those prescribed in the last four weeks. Results Of 371 patients (ages 5-58y, mean 24y, 93% were transfused and 92% receiving chelation (26% deferoxamine (DFO; a slow subcutaneous infusion via portable pump, 63% oral, 11% combination. Patients expressed high “necessity” for transfusion (96%, DFO chelation (92% and oral chelation (89%, with lower “concern” about treatment (48%, 39%, 19% respectively. Concern about oral chelation was significantly lower than that of DFO (p Conclusions Despite their requirement for multimodal therapy, thalassemia patients have positive views about medicine, more so than in other disease populations. Patients may benefit from education about the tolerability of chelation and strategies to effectively cope with side effects, both of which might be beneficial in lowering body iron burden. Clinicaltrials.gov identifier NCT00661804

  14. The effect of ferrous-chelating hairtail peptides on iron deficiency and intestinal flora in rats.

    Science.gov (United States)

    Lin, Hui-Min; Deng, Shang-Gui; Huang, Sai-Bo; Li, Ying-Jie; Song, Ru

    2016-06-01

    Chelating agents, such as small peptides, can decrease free iron content and increase iron bioavailability. They may have promising therapeutic potential and may prevent the pro-oxidant effects of low molecular weight iron. Hairtail is a species of fish that is rich in easily digestible proteins. We extended this strategy for iron delivery by using an enzymatic hydrolysate of hairtail as the chelating agent and found that the ferrous-chelating hairtail peptides have anti-anaemic activity in Sprague-Dawley rats with anaemia. The anti-anaemic activity of ferrous-chelating hairtail peptides prepared by enzymatic hydrolysis of the hairtail and ferrous chelation was studied in rat models of iron deficiency anaemia. After the end of the 35 d experiment, we noted significant differences in haemoglobin, mean corpuscular volume, haemoglobin distribution width, and ferritin concentrations between those animals supplemented with ferrous-chelating hairtail peptides and FeSO4 and healthy animals. There were no negative side effects on the animals' growth or behaviour. There was no obvious inflammation in the intestinal mucosa lamina propria and no unbalance of intestinal flora. The novel ferrous-chelating hairtail peptides may be a suitable fortificant for improving iron-deficiency status. Our findings demonstrated that this multi-tracer technique has many applications in nutritional research. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Metal ions, Alzheimer's disease and chelation therapy.

    Science.gov (United States)

    Budimir, Ana

    2011-03-01

    In the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases.

  16. Importance of iron chelation therapy

    Directory of Open Access Journals (Sweden)

    A. Varoğlu

    2011-12-01

    Full Text Available It is necessary to remember that today patients have different options of chelation treatment, as desferrioxamine, deferiprone and deferasirox are available. However, a patient has to be compliant with treatments. They have always to remember that too much iron causes different complications and could be a barrier for a definitive cure from thalassemia. 由于出现了去铁胺、去铁酮和去铁斯若等药物,病人现在可以选择不同的螯合治疗方式。 然而,病人必须适应这几种治疗方式。 他们必须时刻记住太多的铁元素会引发多种并发症,并对地中海贫血的彻底治疗造成阻碍。

  17. Synthesis, characterization and in vitro anticancer evaluations of two novel derivatives of deferasirox iron chelator.

    Science.gov (United States)

    Salehi, Samie; Saljooghi, Amir Sh; Shiri, Ali

    2016-06-15

    Iron (Fe) chelation therapy was initially designed to alleviate the toxic effects of excess Fe evident in Fe-overload diseases. However, the novel toxicological properties of some Fe chelator-metal complexes have shifted significant attention to their application in cancer chemotherapy. The present study investigates the new role of deferasirox as an anticancer agent due to its ability to chelate with iron. Because of aminoacids antioxidant effect, deferasirox and its two novel amino acid derivatives have been synthesized through the treatment of deferasirox with DCC as well as glycine or phenylalanine methyl ester. All new compounds have been characterized by elemental analysis, FT-IR NMR and mass spectrometry. Therefore, the cytotoxicity of these compounds was screened for antitumor activity against some cell lines using cisplatin as a comparative standard by MTT assay and Flow cytometry. The impact of iron in the intracellular generation of reactive oxygen species was assessed on HT29 and MDA-MB-231 cells. The potential of the synthesized iron chelators for their efficacy to protect cells against model oxidative injury induced was compared. The reactive oxygen species intracellular fluorescence intensity were measured and the result showed that the reactive oxygen species intensity after iron incubation increased while after chelators incubation the reactive oxygen species intensity were decreased significantly. Besides, the effect of the synthesized compounds on mouse fibroblast cell line (L929) was simultaneously evaluated as control. The pharmacological results showed that deferasirox and its two novel aminoacid derivatives were potent anticancer agents.

  18. Impact of plant species, substrate types and porosity on the fractionation of rare-earth elements in plants

    Science.gov (United States)

    Semhi, K.; Clauer, N.; Chaudhuri, S.

    2009-04-01

    The distribution and content of rare-earth elements (REEs) were determined in two radish species (Raphanus sativus and Raphanus raphanistrum) that were grown under laboratory-controlled conditions, in three substrates consisting in illite for one and in smectite for the two others, the two latter being of the same type but with different porosities. The plants were split into two segments: the leaves and the stems+roots. The results indicate that both species pick up systematically higher amounts of REEs when grown in the illite substrate, considering that the smectite contains about 3 times more REEs. In R. sativus, the REE concentration of the leaves and of the stems+roots, whatever the substrate, ranges from 1.4 to 1.9 g/g. After normalization to the substrate in which they grew, the distribution patterns for the leaves of those from illite substrate are nearly flat, but irregular with a positive Eu anomaly. Those for the stems+roots are similar, but enriched in heavy REEs, also with a positive Eu anomaly. The REE concentrations of the leaves and the stems+roots of R. sativus grown in smectite are analytically similar at 1.6 and 1.4 g/g, respectively. The REE distribution patterns for the two organs, normalized again to those of the substrate, are very similar, flat with a distinct Eu anomaly. The heavy REE of the stems+roots of R. sativus grown on illite are enriched relative to those of the leaves, and a distinct positive Eu anomaly is observed in both the leaves and stems+roots from species grown on both illite and smectite. In the case of R. raphanistrum, the REE concentrations of the leaves and the stems+roots for those grown in the illite substrate were found to be significantly different at 11.0 and 6.6 g/g, respectively. The REE distribution patterns for the two different plant organs normalized to those of the substrates were found to be quite similar, all being quite flat, with a more or less pronounced Ce negative anomaly, and a prominent

  19. Questions and Answers on Unapproved Chelation Products

    Science.gov (United States)

    ... of the marketing scheme to convince consumers to purchase unapproved OTC chelation products. These test kits are ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  20. SYNTHESIS AND APPLICATION OF IMINOCARBOXYLIC CHELATING FIBERS

    Institute of Scientific and Technical Information of China (English)

    LiHangqiu; ZhouShaoji

    1997-01-01

    In this paper,fibrous chelating exchangers with-N(CH2COOH)2 group have been prepared for the first time by a weakly basic anion exchange fiber (aminated fiber)as the starting materials.The fibers were quite effective for the adsorption of heavy metal ion such as Cu2+.In addition,IR spectrum of the structure of fibers confirms that it is feasible to prepare iminocarboxylic chelating fiber through direct carboxylation reaction.

  1. Effects of micronutrients deficiency and inoculation with arbuscular mycorrhizal fungi on chelator exudation by tomato root

    Directory of Open Access Journals (Sweden)

    E. Shirmohammadi

    2010-12-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF can affect their host plants growth through nutrient uptake enhancement. Determination of chelators (siderophores and phytosiderophores in root leachates is of importance in order to account for the effects of AMF on nutrient uptake by plants. In this study, tomato plants were inoculated with either Glomus intraradices or Glomus etunicatum or left un-inoculated as non-mycorrhizal control, in pots containing sterile and acid washed perlite. Rorison’s nutrient solution harbouring three levels of Fe, Mn, Zn and Cu (full strength, half strength and without micronutrients was applied to the pots during three month- growth period. Root leachates were collected and total chelator concentration was quantified by titration with DTPA. Plant roots showed lower mycorrhizal colonization in this condition. The amounts of chelators produced by roots were significantly different in AMF species. In plants inoculated with G. intraradices, the highest chelator production occurred in the absence of micronutrients and in its half strength as well, but the micronutrient levels had no significant effect on chelator production in plants inoculated with G. etunicatum. In the absence of micronutrients, chelator production was higher in G.intraradices inoculated plants compared to the G. etunicatum ones.

  2. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Science.gov (United States)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  3. Theoretical studies of molecular structure, electronic structure, spectroscopic properties and the ancillary ligand effect: A comparison of tris-chelate ML 3-type and ML 2X-type species for gallium(III) complexes with N, O-donor phenolic ligand, 2-(2-hydroxyphenyl)benzothiazole

    Science.gov (United States)

    Tong, Yi-Ping; Lin, Yan-Wen

    2011-02-01

    Two Ga(III) complexes with main ligand, 2-(2-hydroxyphenyl)benzothiazole (HL'), namely mixed-ligand ML 2X-type [GaL' 2X'] ( 1) (HX' = acetic acid, as ancillary ligand) and the meridianal tris-chelate [GaL' 3] ( 2) have been investigated by the density functional theory (DFT/TDDFT) level calculations. Both 1 and 2 can be presented as a similar "mixed-ligand ML 2X-type" species. The molecular geometries, electronic structures, metal-ligand bonding property of Ga-O (N) (main ligand), Ga-O (N) (ancillary ligand) interactions, and the ancillary ligand effect on their HOMO-LUMO gap, their absorption/emission property, and their absorption/emission wavelengths/colors for them have been discussed in detail based on the orbital interactions, the partial density of states (PDOS), and so on. The current investigation also indicates that it is quite probable that by introduction of different ancillary ligands, a series of new mixed-ligand ML 2X-type complexes for group 13 metals can be designed with their absorption/emission property and the absorption/emission wavelengths and colors being tuned.

  4. Earth Observation Data for Mapping and Evaluation of Ecosystem Services to Improve Human Livelihoods and Conserve Species

    Science.gov (United States)

    Shapiro, Aurelie C.; Bhagabati, Nirmal

    2010-12-01

    Mapping and evaluating ecosystem services is of increasing concern and urgency for conservation organizations such as WWF. Coupling biodiversity assessments with ecosystem services e.g., carbon sequestration, water regulation, sediment reduction, is an effective way to visualize additional financial and human benefits of conservation for decision makers. WWF is eager to apply various Earth Observation data to conservation applications for consistent mapping and monitoring of natural ecosystems and the potential impacts of their loss on humans and wildlife alike. Such examples include forest carbon mapping, integrated evaluation of ecosystem services (via the InVEST tool) and bundling endangered Tiger habitat with various ecosystem services for bundled benefits.

  5. Bis-NHC chelate complexes of nickel(0) and platinum(0).

    Science.gov (United States)

    Brendel, Matthias; Braun, Carolin; Rominger, Frank; Hofmann, Peter

    2014-08-11

    For a long time d(10)-ML2 fragments have been known for their potential to activate unreactive bonds by oxidative addition. In the development of more active species, two approaches have proven successful: the use of strong σ-donating ligands leading to electron-rich metal centers and the employment of chelating ligands resulting in a bent coordination geometry. Combining these two strategies, we synthesized bis-NHC chelate complexes of nickel(0) and platinum(0). Bis(1,5-cyclooctadiene)nickel(0) and -platinum(0) react with bisimidazolium salts, deprotonated in situ at room temperature, to yield tetrahedral or trigonal-planar bis-NHC chelate olefin complexes. The synthesis and characterization of these complexes as well as a first example of C-C bond activation with these systems are reported. Due to the enforced cis arrangement of two NHCs, these compounds should open interesting perspectives for bond-activation chemistry and catalysis.

  6. Application of iron chelates in hydrodesulphurisation

    NARCIS (Netherlands)

    Wubs, Harm Jan

    1994-01-01

    Several iron chelate based methods for removing hydrogen sulphide from gas streams have been developed over the years. Notwithstanding the number of hydrodesulphurisation plants already in operation, the development of these processes has been more a kind of an art rather than a result of rational p

  7. Recent developments centered on orally active iron chelators

    Directory of Open Access Journals (Sweden)

    Robert Hider

    2014-09-01

    Full Text Available Over the past twenty years there has been a growing interest in the orally active iron chelators, deferiprone and deferasirox, both have been extensively studied. The ability of these compounds to mobilize iron from the heart and endocrine tissue has presented the clinician with some advantages over desferrioxamine, the first therapeutic iron chelator. Other orally active iron chelators are currently under development. The critical features necessary for the design of therapeutically useful orally active iron chelators are presented in this review, together with recent studies devoted to the design of such chelators. This newly emerging range of iron chelators will enable clinicians to apply iron chelation methodology to other disease states and to begin to design personalized chelation regimes.

  8. Mechanism and efficiency of cell death of type II photosensitizers: effect of zinc chelation.

    Science.gov (United States)

    Pavani, Christiane; Iamamoto, Yassuko; Baptista, Maurício S

    2012-01-01

    A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.

  9. Chapter 5 - Development of iron chelator-nanoparticle conjugates as potential therapeutic agents for Alzheimer disease.

    Science.gov (United States)

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A

    2009-01-01

    Oxidative stress is known to play a key role in the initiation and promotion of the neurodegeneration that characterizes the pathogenesis of Alzheimer disease (AD). An accumulation of redox active transition metals, including iron and copper, is likely a major generator of reactive oxidative species and other free radicals and is thought to induce a detrimental cycle of oxidative stress, amyloid-beta aggregation, and neurodegeneration. As such, metal chelators may provide an alternative therapeutic approach to sequester redox active metals and prevent the onslaught of oxidative damage. Unfortunately, however, metal chelation approaches are currently limited in their potential, since many cannot readily pass the blood-brain barrier (BBB), due to their hydrophilicity, and many are neurotoxic at high concentrations. To circumvent such issues, here we describe the development of iron chelator-nanoparticle conjugation that allows delivery of target chelator to the brain in the absence of neurotoxicity. Such nanoparticle delivery of iron chelators will likely provide a highly advantageous mode of attack on the oxidative stress that plagues AD as well as other conditions characterized by excess metal accumulation.

  10. Intracellular reduction/activation of a disulfide switch in thiosemicarbazone iron chelators

    Science.gov (United States)

    Akam, Eman A.; Chang, Tsuhen M.; Astashkin, Andrei V.

    2014-01-01

    Iron scavengers (chelators) offer therapeutic opportunities in anticancer drug design by targeting the increased demand for iron in cancer cells as compared to normal cells. Prochelation approaches are expected to avoid systemic iron depletion as chelators are liberated under specific intracellular conditions. In the strategy described herein, a disulfide linkage is employed as a redox-directed switch within the binding unit of an antiproliferative thiosemicarbazone prochelator, which is activated for iron coordination following reduction to the thiolate chelator. In glutathione redox buffer, this reduction event occurs at physiological concentrations and half-cell potentials. Consistent with concurrent reduction and activation, higher intracellular thiol concentrations increase cell susceptibility to prochelator toxicity in cultured cancer cells. The reduction of the disulfide switch and intracellular iron chelation are confirmed in cell-based assays using calcein as a fluorescent probe for paramagnetic ions. The resulting low-spin Fe(III) complex is identified in intact Jurkat cells by EPR spectroscopy measurements, which also document a decreased concentration of active ribonucleotide reductase following exposure to the prochelator. Cell viability and fluorescence-based assays show that the iron complex presents low cytotoxicity and does not participate in intracellular redox chemistry, indicating that this antiproliferative chelation strategy does not rely on the generation of reactive oxygen species. PMID:25100578

  11. Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review.

    Science.gov (United States)

    Flora, S J S; Bhadauria, Smrati; Kannan, G M; Singh, Nutan

    2007-04-01

    Arsenic is a naturally occurring metalloid, ubiquitously present in the environment in both organic and inorganic forms. Arsenic contamination of groundwater in the West Bengal basin in India is unfolding as one of the worst natural geoenvironmental disaster to date. Chronic exposure of humans to high concentration of arsenic in drinking water is associated with skin lesions, peripheral vascular disease, hypertension, Blackfoot disease and high risk of cancer The underlying mechanism of toxicity includes the interaction with the sulphydryl groups and the generation of reactive oxygen species leading to oxidative stress. Chelation therapy with chelating agents like British Anti Lewisite (BAL), sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), meso 2,3 dimercaptosuccinic acid (DMSA) etc., is considered to be the best known treatment against arsenic poisoning. The treatment with these chelating agents however is compromised with certain serious drawbacks/side effects. The studies show that supplementation of antioxidants along with a chelating agent prove to be a better treatment regimen. This review attempts to provide the readers with a comprehensive account of recent developments in the research on arsenic poisoning particularly the role of oxidative stress/free radicals in the toxic manifestation, an update about the recent strategies for the treatment with chelating agents and a possible beneficial role of antioxidants supplementation to achieve the optimum effects.

  12. Overview of chelation recommendations for thalassaemia and sickle cell disease

    Directory of Open Access Journals (Sweden)

    Banu Kaya

    2014-12-01

    Full Text Available The long term consequences of iron toxicity are mostly reversible with effective iron chelation therapy. Recommendations for use of chelation therapy in transfusion dependent thalassaemia (TDT, sickle cell disease (SCD and non transfusion dependent thalassaemia (NTDT continue to evolve as our knowledge and clinical experience increases. Improved chelation options including drug combinations and a better understanding of condition specific factors may help to improve efficiency of chelation regimens and meet the needs of patients more effectively.

  13. Neurodegenerative diseases and therapeutic strategies using iron chelators.

    Science.gov (United States)

    Ward, Roberta J; Dexter, David T; Crichton, Robert R

    2015-01-01

    This review will summarise the current state of our knowledge concerning the involvement of iron in various neurological diseases and the potential of therapy with iron chelators to retard the progression of the disease. We first discuss briefly the role of metal ions in brain function before outlining the way by which transition metal ions, such as iron and copper, can initiate neurodegeneration through the generation of reactive oxygen and nitrogen species. This results in protein misfolding, amyloid production and formation of insoluble protein aggregates which are contained within inclusion bodies. This will activate microglia leading to neuroinflammation. Neuroinflammation plays an important role in the progression of the neurodegenerative diseases, with activated microglia releasing pro-inflammatory cytokines leading to cellular cell loss. The evidence for metal involvement in Parkinson's and Alzheimer's disease as well as Friedreich's ataxia and multiple sclerosis will be presented. Preliminary results from trials of iron chelation therapy in these neurodegenerative diseases will be reviewed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Quyn, Dimple Mody; Li, Chun-Zhu [CRC for Clean Power from Lignite, Department of Chemical Engineering, PO Box 36, Monash University, Victoria 3800 (Australia); Hayashi, Jun-ichiro [Centre for Advanced Research of Energy Conversion Materials, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628 (Japan)

    2005-08-25

    A Victorian brown coal was gasified in a bench-scale quartz fluidised-bed/fixed-bed reactor in order to study the volatilisation of Na, Ca, and Mg during devolatilisation and gasification and their roles in the reactivity of chars. It was found that the majority of Na was volatilised at 900 {sup o}C under all conditions and that a Na retention limit was achieved in the char with the progress of CO{sub 2} gasification. In some cases, the presence of CO{sub 2} during devolatilisation enhanced the Na retention in the char. In contrast, the retention of Ca (and Mg) was unaffected by CO{sub 2} during devolatilisation at 900C but decreased drastically upon nascent char gasification. The fundamental differences in volatilisation between the alkali and alkaline earth metallic species are discussed in this paper.

  15. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    Science.gov (United States)

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  16. Influence of Chelating Agents on Chromium Fate in Sediment

    Institute of Scientific and Technical Information of China (English)

    WANGXIAOCHANG; SUNJINHE; 等

    1996-01-01

    A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment.The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the removal of Cr(Ⅲ)by sediment from solutions and the inhibiting effect was in the order:citric acid>tartaric acid>EDTA,Salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.

  17. EMIC-wave-moderated flux limitations of ring current energetic ion intensities in the multi-species plasmas of Earth's inner magnetosphere

    Science.gov (United States)

    Mauk, B.

    2013-12-01

    One of the early sophisticated integrations of theory and observations of the space age was the development in 1966 of the integral Kennel-Petschek flux limit for trapped energetic electrons and ions within Earth's inner magnetosphere. Specifically, it was proposed that: 1) trapped particle distributions in the magnetic bottle configuration of the inner magnetosphere are intrinsically unstable to the generation various plasma waves and 2) ionospheric reflection of some waves back into the trapped populations leads to runaway growth of the waves and dramatic loss of particles for particle integral intensities that rise above a fairly rigidly specified upper limit. While there has been a long hiatus in utilization of the KP limit in inner magnetospheric research, there have been recent highly successful reconsiderations of more general forms of the KP limit for understanding radiation belt electron intensities and spectral shapes, resulting from improvements in theoretical tools. Such a reconsideration has not happened for energetic trapped ions, perhaps due to the perceived immense complexity of the generation of the Electromagnetic Ion Cyclotron (EMIC) waves, that scatter the energetic ions, for plasmas containing multiple ionic species (H, He, O). Here, a differential Kennel-Petschek (KP) flux limit for magnetospheric energetic ions is devised taking into account multiple ion species effects on the EMIC waves. This new theoretical approach is applied to measured Earth magnetosphere energetic ion spectra (~ keV to ~ 1 MeV) for radial positions (L) 3 to 6.7 RE. The flatness of the most intense spectral shapes for mechanism, but modifications of traditional KP parameters are needed to account for maximum intensities up to 5 times greater than expected. Future work using the Van Allen Probes mission will likely resolve outstanding uncertainties.

  18. Current recommendations for chelation for transfusion-dependent thalassemia.

    Science.gov (United States)

    Kwiatkowski, Janet L

    2016-03-01

    Regular red cell transfusions used to treat thalassemia cause iron loading that must be treated with chelation therapy. Morbidity and mortality in thalassemia major are closely linked to the adequacy of chelation. Chelation therapy removes accumulated iron and detoxifies iron, which can prevent and reverse much of the iron-mediated organ injury. Currently, three chelators are commercially available--deferoxamine, deferasirox, and deferiprone--and each can be used as monotherapy or in combination. Close monitoring of hepatic and cardiac iron burden is central to tailoring chelation. Other factors, including properties of the individual chelators, ongoing transfusional iron burden, and patient preference, must be considered. Monotherapy generally is utilized if the iron burden is in an acceptable or near-acceptable range and the dose is adjusted accordingly. Combination chelation often is employed for patients with high iron burden, iron-related organ injury, or where adverse effects of chelators preclude administration of an appropriate chelator dose. The combination of deferoxamine and deferiprone is the best studied, but increasing data are available on the safety and efficacy of newer chelator combinations, including deferasirox with deferoxamine and the oral-only combination of deferasirox with deferiprone. The expanding chelation repertoire should enable better control of iron burden and improved outcomes.

  19. Federal regulation of unapproved chelation products.

    Science.gov (United States)

    Lee, Charles E

    2013-12-01

    Chelation products can be helpful in the treatment of metal poisoning. However, many unapproved products with unproven effectiveness and safety are marketed to consumers, frequently via the internet. This paper describes the primary responsibility of the Health Fraud and Consumer Outreach Branch of the United States Food and Drug Administration to identify and address health fraud products. Efforts to prevent direct and indirect hazards to the population's health through regulatory actions are described.

  20. IRON CHELATION THERAPY IN THALASSEMIA SYNDROMES

    Directory of Open Access Journals (Sweden)

    Paolo Cianciulli

    2009-06-01

    Full Text Available Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as  thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce  complications, and improve survival and quality of life of transfused patients

  1. Chelation and stabilization of berkelium in oxidation state +IV

    Science.gov (United States)

    Deblonde, Gauthier J.-P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; An, Dahlia D.; Illy, Marie-Claire; Ralston, Corie Y.; Brabec, Jiri; de Jong, Wibe A.; Strong, Roland K.; Abergel, Rebecca J.

    2017-09-01

    Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin—a mammalian metal transporter—in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

  2. THE USE OF CHELATING AGENTS FOR ACCELERATING EXCRETION OF RADIOELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Harry; Hamilton, Joseph G.

    1951-06-14

    from internal radiation emitters had been directed to attempts to hasten the elimination of the noxious agent. These have included such methods as low calcium diets, parathormone, viosterol, ammonium chloride, calcium gluconate, and low phosphorus diets. Of these the decalcifying type of treatment was reported to have some measure of effectiveness. The results of the other types of therapy were equivocal. The most successful approach was reported in the work of Schubert. Using zirconium citrate complex, administered 3 hours after the injection of radioyttrium and plutonium into rats, he was able to increase the urinary excretion of the injected radio elements many times over that of the excretion in the untreated rats, in some instance up by a factor of 50 for the first day of excretion. However, when used at later time periods, i.e., in a dog at 150 days, the increase in urinary excretion was only a factor of 2 to 3 over the control period. The fecal excretion of the radio elements was not influenced by the treatment. The present study reports a different approach for accelerating the excretion of radioelements, namely the use of chelating agents. Many of the rare earth and actinide series of elements form water-soluble chelates with various organic compounds. This consideration suggested the possibility that this property of chelating agents might be used 'in vivo' to mobilize radio elements fixed within the body. Of the many compounds considered, ethylenediamine tetracetic acid (EDTA) was chosen for this study. The EDTA was selected because it forms a very stable chelate with many metal ions and hence has a strong tendency to remove such ions from insoluble combinations, i.e., it will dissolve such salts as calcium oxalate, barium sulfate, and lead phosphate in neutral and alkaline solutions. Moreover, it has suitable characteristics for 'in vivo' application. It forms serum soluble chelates which are not readily broken down in the body but are

  3. Successively separation method of uranium and rare earth element having supercritical fluid as extracting medium

    Energy Technology Data Exchange (ETDEWEB)

    Iso, Shuichi; Meguro, Yoshihiro; Yoshida, Yoshiyuki

    1996-08-30

    In a method of separating by extraction of coolants uranium and rare earth elements by using supercritical fluid in a supercritical state and a hydrophobic organic chelating agent, a plurality of extraction steps having different extraction efficiencies are provided. As the fluid in the supercritical state, carbon dioxide, carbon monoxide, ammonia, sulfur tetrafluoride and nitrogen are mentioned. A hydrophobic organic chelating agent can form a chelating compound with uranium and rare earth elements, and the formed complex compounds are easily dissolved into the supercritical fluid thereby enabling to provide an excellent extraction effect. A suitable hydrophobic organic chelating agent includes organic phosphor compounds, {beta}-diketone compounds and microcyclic compounds. Then, there can be provided an extraction method using a supercritical liquid as an extraction medium capable of successively separating uranium and rare earth elements selectively having high safety and performed safely and also performed in a case where a plurality of rare earth elements exist together. (N.H.)

  4. f-Element Ion Chelation in Highly Basic Media - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Paine, R.T.

    2000-12-12

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelator s for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  5. Modern Chemistry Techniques Applied to Metal Behavior and Chelation in Medical and Environmental Systems ? Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Andresen, B; Burastero, S R; Chiarappa-Zucca, M L; Chinn, S C; Coronado, P R; Gash, A E; Perkins, J; Sawvel, A M; Szechenyi, S C

    2005-02-03

    This report details the research and findings generated over the course of a 3-year research project funded by Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development (LDRD). Originally tasked with studying beryllium chemistry and chelation for the treatment of Chronic Beryllium Disease and environmental remediation of beryllium-contaminated environments, this work has yielded results in beryllium and uranium solubility and speciation associated with toxicology; specific and effective chelation agents for beryllium, capable of lowering beryllium tissue burden and increasing urinary excretion in mice, and dissolution of beryllium contamination at LLNL Site 300; {sup 9}Be NMR studies previously unstudied at LLNL; secondary ionization mass spec (SIMS) imaging of beryllium in spleen and lung tissue; beryllium interactions with aerogel/GAC material for environmental cleanup. The results show that chelator development using modern chemical techniques such as chemical thermodynamic modeling, was successful in identifying and utilizing tried and tested beryllium chelators for use in medical and environmental scenarios. Additionally, a study of uranium speciation in simulated biological fluids identified uranium species present in urine, gastric juice, pancreatic fluid, airway surface fluid, simulated lung fluid, bile, saliva, plasma, interstitial fluid and intracellular fluid.

  6. Novel Terbium Chelate Doped Fluorescent Silica Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Ning Qiaoyu; Meng Jianxin; Wang Haiming; Liu Yingliang; Man Shiqing

    2006-01-01

    Novel terbium chelate doped silica fluorescent nanoparticles were prepared and characterized.The preparation was carried out in water-in-oil (W/O) microemulsion containing monomer precursor (pAB-DTPAA-APTEOS), Triton X-100, n-hexanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate and 3-aminopropyl-triethyloxysilane.The nanoparticles are spherical and uniform in size, about 30 nm in diameter, strongly fluorescent, and highly stable.The amino groups directly introduced to the surface of the nanoparticles using APTEOS during preparation made the surface modification and bioconjugation of the nanoparticles easier.The nanoparticles are expected as an efficient time-resolved luminescence biological label.

  7. Metal regeneration of iron chelates in nitric oxide scrubbing

    Science.gov (United States)

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  8. Chelates of molybdenyl with o-hydroxyazomethines

    Energy Technology Data Exchange (ETDEWEB)

    Abramenko, V.L.; Garnovskii, A.D.; Surpina, L.V.; Kuzharov, A.S.

    1986-05-01

    Chelates of dioxomolybdenum(VI) with Schiff bases derived from salicylaldehyde and aliphatic, aromatic, and heterocyclic amines and diamines have been synthesized by ligand exchange and template synthesis methods. Complexes with the general formula MoO/sub 2/L/sub 2/ form of N-alkyl- and N-arylsalicylidenimines (HL). Chelates with molybdenum-ligand ratios equal to 1:1 and 1:2 are realized with heterocyclic azomethines. Bis(salicylidene) diimines form only complexes with a 1:1 composition. The compounds isolated are finely crystalline substances, which predominantly have a yellow color and limited solubility in methanol and dimethyl sulfoxide. On the basis of data from conductometry, UV, IR, and /sup 1/H NMR spectroscopy it has been postulated that the complexes have an octahedral structure with maintenance of the cis configuration of the MoO/sub 2/ group. A dimeric or polymeric structure has been proposed for the 1:1 complexes. The thermal decomposition of the azomethine complexes of molybdenum(VI) under dynamic conditions takes place in two stages and ultimately results in the formation of MoO/sub 3/.

  9. Myelodysplastic Syndromes and Iron Chelation Therapy

    Science.gov (United States)

    Angelucci, Emanuele; Urru, Silvana Anna Maria; Pilo, Federica; Piperno, Alberto

    2017-01-01

    Over recent decades we have been fortunate to witness the advent of new technologies and of an expanded knowledge and application of chelation therapies to the benefit of patients with iron overload. However, extrapolation of learnings from thalassemia to the myelodysplastic syndromes (MDS) has resulted in a fragmented and uncoordinated clinical evidence base. We’re therefore forced to change our understanding of MDS, looking with other eyes to observational studies that inform us about the relationship between iron and tissue damage in these subjects. The available evidence suggests that iron accumulation is prognostically significant in MDS, but levels of accumulation historically associated with organ damage (based on data generated in the thalassemias) are infrequent. Emerging experimental data have provided some insight into this paradox, as our understanding of iron-induced tissue damage has evolved from a process of progressive bulking of organs through high-volumes iron deposition, to one of ‘toxic’ damage inflicted through multiple cellular pathways. Damage from iron may, therefore, occur prior to reaching reference thresholds, and similarly, chelation may be of benefit before overt iron overload is seen. In this review, we revisit the scientific and clinical evidence for iron overload in MDS to better characterize the iron overload phenotype in these patients, which differs from the classical transfusional and non-transfusional iron overload syndrome. We hope this will provide a conceptual framework to better understand the complex associations between anemia, iron and clinical outcomes, to accelerate progress in this area. PMID:28293409

  10. Anti-Oxidative, Metal Chelating and Radical Scavenging Effects of ...

    African Journals Online (AJOL)

    scavenging (6.93 mg/mL), iron chelating (116.4 µg/mL) and copper chelating activity (2136.9 µg/mL) ... optimum temperatures of each protease, namely ..... only due to their high abundance as well as their ... Oxidation and DNA Damage.

  11. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and

  12. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    Science.gov (United States)

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  13. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and lysi

  14. Luminescence of a conjugated polymer containing europium (III) chelate

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Hao; Xie, Fang, E-mail: xiefang4498@126.com

    2013-12-15

    A europium (III) chelate has been incorporated in a conjugated polymer, poly-[2,2′-bipyridine-5,5′-diyl-(2,5-dihexyl-1,4-phenylene)]. From the absorbance and emission spectra measurement and using the Judd–Ofelt theory, an efficient energy transfer between the conjugated polymer and the europium (III) chelate has been confirmed. The luminescence lifetime of Eu{sup 3+} ion in the conjugated polymer is 0.352 ms and the emission cross section of this material is 3.11×10{sup −21} cm{sup 2}. -- Highlights: • A europium chelate has been incorporated in a conjugated polymer. • Energy transfer in the conjugated polymer containing europium chelate is efficient. • The conjugated polymer containing europium chelate is a promising optical material.

  15. Quantitative measurement of metal chelation by fourier transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika E. Miller

    2015-12-01

    Full Text Available Nutritionally important minerals are more readily absorbed by living systems when complexed with organic acids, resulting in higher consumer demand and premium prices for these products. These chelated metals are produced by reaction of metal oxides and acids in aqueous solution. However, unreacted dry blends are sometimes misrepresented as metal chelates, when in reality they are only simple mixtures of the reactants typically used to synthesize them. This practice has increased interest in developing analytical methods that are capable of measuring the extent of metal chelation for quality control and regulatory compliance. We describe a novel method to rapidly measure the percent chelation of citric and malic acids with calcium, magnesium, and zinc. Utilization of attenuated total reflectance (FTIR-ATR provides for the direct, rapid measurement of solid samples. The inclusion of an internal standard allows independent determination of either free or chelated acids from integrated areas in a single spectrum.

  16. Chelating ionic liquids for reversible zinc electrochemistry.

    Science.gov (United States)

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  17. Relationship between conformational flexibility and chelate cooperativity.

    Science.gov (United States)

    Misuraca, M Cristina; Grecu, Tudor; Freixa, Zoraida; Garavini, Valentina; Hunter, Christopher A; van Leeuwen, Piet W N M; Segarra-Maset, M Dolores; Turega, Simon M

    2011-04-15

    A family of four biscarbamates (AA) and four bisphenols (DD) were synthesized, and H-bonding interactions between all AA•DD combinations were characterized using (1)H NMR titrations in carbon tetrachloride. A chemical double mutant cycle analysis shows that there are no secondary electrostatic interactions or allosteric cooperativity in these systems, and the system therefore provides an ideal platform for investigating the relationship between chemical structure and chelate cooperativity. Effective molarities (EMs) were measured for 12 different systems, where the number of rotors in the chains connecting the two H-bond sites was varied from 5 to 20. The association constants vary by less than an order of magnitude for all 12 complexes, and the variation in EM is remarkably small (0.1-0.9 M). The results provide a relationship between EM and the number of rotors in the connecting chains (r): EM ≈ 10r(-3/2). The value of 10 M is the upper limit for the value of EM for a noncovalent intramolecular interaction. Introduction of rotors reduces the value of EM from this maximum in accord with a random walk analysis of the encounter probability of the chain ends (r(-3/2)). Noncovalent EMs never reach the very high values observed for covalent processes, which places limitations on the magnitudes of the effects that one is likely to achieve through the use of chelate cooperativity in supramolecular assembly and catalysis. On the other hand, the decrease in EM due to the introduction of conformational flexibility is less dramatic than one might expect based on the behavior of covalent systems, which limits the losses in binding affinity caused by poor preorganization of the interaction sites.

  18. Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens.

    Science.gov (United States)

    Santos, Fabiana S; Hernández-Allica, Javier; Becerril, José M; Amaral-Sobrinho, Nelson; Mazur, Nelson; Garbisu, Carlos

    2006-09-01

    Chelate-induced phytoextraction with high biomass plant species has been proposed for the clean-up of heavy metal polluted soils. In the current work, the effect of the application of two different chelating agents, i.e. EDTA and EDDS, on the metal phytoextraction capacity of Brachiaria decumbens was studied. Although EDTA was, in general, more effective in soil metal solubilization, EDDS, a chelate less harmful to the environment, was more efficient inducing metal accumulation in B. decumbens shoots than EDTA. Indeed, in a moderately heavy metal polluted soil, EDDS caused a 2.54, 2.74 and 4.30-fold increase in Cd, Zn, and Pb shoot metal concentration, respectively, as compared to control plants. In this same soil, EDTA caused a 1.77, 1.11 and 1.87-fold increase in Cd, Zn, and Pb shoot metal concentration, respectively, as compared to control plants. EDDS was also more effective than EDTA in stimulating the translocation of metals from roots to shoots. B. decumbens plants were able to grow in the metal polluted soils showing no visible symptoms of phytotoxicity, which suggests their metal tolerance. Finally, B. decumbens, a fast-growing, high biomass, aluminum tolerant plant species, that has a well-established agronomic system, fulfills most of the requirements for chemically-induced phytoextraction.

  19. New series of chelated organochromium(III) complexes. [1,4,8,12-Tetraazacyclopentaedecane

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, G.J.

    1979-01-01

    A kinetic and mechanistic study of the preparation of a new family of chelated organochromium(III) complexes was completed. These species were formed from organic halides and (1,4,8,12 tetraazacyclopentadecane) chromium(II) by a mechanism which involves initial halogen atom abstraction followed by subsequent radical capture by another Cr(II) complex. The rates of reaction follow the pattern expected for a S/sub H/2 process, 3/sup 0/ > 2/sup 0/ > 1/sup 0/ and I > Br > Cl. These organochromium(III) chelate complexes have the trans configuration. Electrophilic cleavage reactions by mercuric and methylmercuric ions were studied. These reactions proceed by a S/sub E/2 (open) mechanism with the reaction rates being approx. 100 times slower for the chelated species. The activation parameters were determined for five reactions. The crystal structure of (trans-chloroaquo(1,4,8,12-tetraazacyclopentadecane)chromium(III))diiodide-dihydrate is also reported. The macrocycle assumes the lowest energy conformation as predicted by strain energy calculations.

  20. Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Singh Rakesh K

    2010-02-01

    Full Text Available Abstract Background Metal chelators have gained much attention as potential anti-cancer agents. However, the effects of chelators are often linked solely to their capacity to bind iron while the potential complexation of other trace metals has not been fully investigated. In present study, we evaluated the effects of various lipophilic aroylhydrazone chelators (AHC, including novel compound HNTMB, on various ovarian cancer cell lines (SKOV-3, OVCAR-3, NUTU-19. Methods Cell viability was analyzed via MTS cytotoxicity assays and NCI60 cancer cell growth screens. Apoptotic events were monitored via Western Blot analysis, fluorescence microscopy and TUNEL assay. FACS analysis was carried out to study Cell Cycle regulation and detection of intracellular Reactive Oxygen Species (ROS Results HNTMB displayed high cytotoxicity (IC50 200-400 nM compared to previously developed AHC (oVtBBH, HNtBBH, StBBH/206, HNTh2H/315, HNI/311; IC50 0.8-6 μM or cancer drug Deferoxamine, a hexadentate iron-chelator (IC50 12-25 μM. In a NCI60 cancer cell line screen HNTMB exhibited growth inhibitory effects with remarkable differences in specificity depending on the cell line studied (GI50 10 nM-2.4 μM. In SKOV-3 ovarian cancer cells HNTMB treatment led to chromatin fragmentation and activation of the extrinsic and intrinsic pathways of apoptosis with specific down-regulation of Bcl-2. HNTMB caused delayed cell cycle progression of SKOV-3 through G2/M phase arrest. HNTMB can chelate iron and copper of different oxidation states. Complexation with copper lead to high cytotoxicity via generation of reactive oxygen species (ROS while treatment with iron complexes of the drug caused neither cytotoxicity nor increased ROS levels. Conclusions The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other

  1. Antioxidant and Chelating Activity of Nontoxic Jatropha curcas L. Protein Hydrolysates Produced by In Vitro Digestion Using Pepsin and Pancreatin

    Directory of Open Access Journals (Sweden)

    Santiago Gallegos Tintoré

    2015-01-01

    Full Text Available The antioxidant and metal chelating activities in J. curcas protein hydrolysates have been determined. The hydrolysates were produced by treatment of a nontoxic genotype with the digestive enzymes pepsin and pancreatin and then were characterized by fast protein liquid chromatography and reverse phase chromatography. Peptidic fractions with higher radical scavenging activity were analysed by matrix-assisted laser desorption/ionization mass spectrometry. The antioxidant activity was determined by measuring inhibition of the oxidative degradation of β-carotene and by measuring the reactive oxygen species (ROS in Caco-2 cell cultures. Cu2+ and Fe2+ chelating activities were also determined. The hydrolysates inhibited the degradation of β-carotene and the formation of ROS in Caco-2 cells. The lower molecular weight peptidic fractions from FPLC had stronger antioxidant activity in cell cultures compared with the hydrolysates, which correlated with a higher content in antioxidant and chelating amino acids. These fractions were characterized by a large presence of peptides with different molecular masses. The hydrolysates exhibited both Cu2+ and Fe2+ chelating activity. It was concluded that J. curcas is a good source of antioxidant and metal chelating peptides, which may have a positive impact on the economic value of this crop, as a potential source of food functional components.

  2. Fixation kinetics of chelated and non-chelated zinc in semi-arid alkaline soils: application to zinc management

    Science.gov (United States)

    Udeigwe, Theophilus K.; Eichmann, Madeleine; Menkiti, Matthew C.

    2016-07-01

    This study was designed to examine the fixation pattern and kinetics of zinc (Zn) in chelated (ethylenediaminetetraacetic acid, EDTA) and non-chelated mixed micronutrient systems of semi-arid alkaline soils from the Southern High Plains, USA. Soils were characterized for a suite of chemical and physical properties and data obtained from extraction experiments fitted to various kinetic models. About 30 % more plant-available Zn was fixed in the non-chelated system within the first 14 days with only about 18 % difference observed between the two systems by day 90, suggesting that the effectiveness of the chelated compounds tended to decrease over time. The strengths of the relationships of change in available Zn with respect to other micronutrients (copper, iron, and manganese) were higher and more significant in the non-chelated system (average R2 of 0.83), compared to the chelated (average R2 of 0.42). Fixation of plant-available Zn was best described by the power-function model (R2 = 0.94, SE = 0.076) in the non-chelated system, and was poorly described by all the models examined in the chelated system. Reaction rate constants and relationships generated from this study can serve as important tools for micronutrient management and for future micronutrient modeling studies on these soils and other semi-arid regions of the world.

  3. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qing; Cui, Yanrui; Li, Qilu; Sun, Jianhui, E-mail: sunjh@htu.cn

    2015-02-11

    Highlights: • A novel readily biodegradable chelating ligand was employed to remove heavy metals. • The effects of different conditions on the extraction with GLDA were probed. • Species distribution of metals before and after extraction with GLDA was analyzed. • GLDA was effective for Cd extraction from sludge samples under various conditions. • GLDA offers special insights in the effective removal of heavy metals. - Abstract: Tetrasodium of N,N-bis(carboxymethyl) glutamic acid (GLDA), a novel readily biodegradable chelating ligand, was employed for the first time to remove heavy metals from industrial sludge generated from a local battery company. The extraction of cadmium, nickel, copper, and zinc from battery sludge with the presence of GLDA was studied under different experimental conditions such as contact times, pH values, as well as GLDA concentrations. Species distribution of metals in the sludge sample before and after extraction with GLDA was also analyzed. Current investigation showed that (i) GLDA was effective for Cd extraction from sludge samples under various conditions. (ii) About 89% cadmium, 82% nickel and 84% copper content could be effectively extracted at the molar ratio of GLDA:M(II) = 3:1 and at pH = 4, whereas the removal efficiency of zinc was quite low throughout the experiment. (iii) A variety of parameters, such as contact time, pH values, the concentration of chelating agent, stability constant, as well as species distribution of metals could affect the chelating properties of GLDA.

  4. DNA nuclease activity of Rev-coupled transition metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Keuper, Kevin D; Cowan, J A

    2012-06-07

    Artificial nucleases containing Rev-coupled metal chelates based on combinations of the transition metals Fe(2+), Co(2+), Ni(2+), and Cu(2+) and the chelators DOTA, DTPA, EDTA, NTA, tripeptide GGH, and tetrapeptide KGHK have been tested for DNA nuclease activity. Originally designed to target reactive transition metal chelates (M-chelates) to the HIV-1 Rev response element mRNA, attachment to the arginine-rich Rev peptide also increases DNA-binding affinity for the attached M-chelates. Apparent K(D) values ranging from 1.7 to 3.6 µM base pairs for binding of supercoiled pUC19 plasmid DNA by Ni-chelate-Rev complexes were observed, as a result of electrostatic attraction between the positively-charged Rev peptide and negatively-charged DNA. Attachment of M-chelates to the Rev peptide resulted in enhancements of DNA nuclease activity ranging from 1-fold (no enhancement) to at least 13-fold (for Cu-DTPA-Rev), for the rate of DNA nicking, with second order rate constants for conversion of DNA(supercoiled) to DNA(nicked) up to 6 × 10(6) M(-1) min(-1), and for conversion of DNA(nicked) to DNA(linear) up to 1 × 10(5) M(-1) min(-1). Freifelder-Trumbo analysis and the ratios of linearization and nicking rate constants (k(lin)/k(nick)) revealed concerted mechanisms for nicking and subsequent linearization of plasmid DNA for all of the Rev-coupled M-chelates, consistent with higher DNA residency times for the Rev-coupled M-chelates. Observed rates for Rev-coupled M-chelates were less skewed by differing DNA-binding affinities than for M-chelates lacking Rev, as a result of the narrow range of DNA-binding affinities observed, and therefore relationships between DNA nuclease activity and other catalyst properties, such as coordination unsaturation, the ability to consume ascorbic acid and generate diffusible radicals, and the identity of the metal center, are now clearly illustrated in light of the similar DNA-binding affinities of all M-chelate-Rev complexes. This work

  5. Determination of molybdate in environmental water by ion chromatography coupled with a preconcentration method employing a selective chelating resin.

    Science.gov (United States)

    Nakashima, Yasuo; Inoue, Yoshinori; Yamamoto, Takahisa; Kamichatani, Waka; Kagaya, Sigehiro; Yamamoto, Atsushi

    2012-01-01

    A simple and sensitive suppressed ion chromatography (IC) method with conductivity detection for the determination of molybdate in environmental water is proposed. Molybdate in highly saline water was extracted and preconcentrated. Preconcentration was accomplished by using a chelating resin using a chelating resin immobilized with carboxymethylated polyethylenimine (Presep(®) PolyChelate). This resin is able to trap a variety of metal elements without any interference of alkali and alkaline-earth metals. A 30-mL volume of brackish water was adjusted for appropriate pH and then flushed through 100 mg of the chelating resin. Molybdate concentrated on the resin could be easily eluted with 6 mL of 0.1 M NaOH. A large volume injection method for IC was achieved with in-line neutralization of the effluent. The determination of 0.6 μg L(-1) molybdate in highly saline water was made possible with a 500-μL injection. Samples of brackish water were taken at various distances from the river mouth. The determined concentrations of molybdate correlated closely with concentrations of chloride.

  6. Nanoparticle and other metal chelation therapeutics in Alzheimer disease.

    Science.gov (United States)

    Liu, Gang; Garrett, Matthew R; Men, Ping; Zhu, Xiongwei; Perry, George; Smith, Mark A

    2005-09-25

    Current therapies for Alzheimer disease (AD) such as the anticholinesterase inhibitors and the latest NMDA receptor inhibitor, Namenda, provide moderate symptomatic delay at various stages of disease, but do not arrest disease progression or supply meaningful remission. As such, new approaches to disease management are urgently needed. Although the etiology of AD is largely unknown, oxidative damage mediated by metals is likely a significant contributor since metals such as iron, aluminum, zinc, and copper are dysregulated and/or increased in AD brain tissue and create a pro-oxidative environment. This role of metal ion-induced free radical formation in AD makes chelation therapy an attractive means of dampening the oxidative stress burden in neurons. The chelator desferioxamine, FDA approved for iron overload, has shown some benefit in AD, but like many chelators, it has a host of adverse effects and substantial obstacles for tissue-specific targeting. Other chelators are under development and have shown various strengths and weaknesses. In this review, we propose a novel system of chelation therapy through the use of nanoparticles. Nanoparticles conjugated to chelators show a unique ability to cross the blood-brain barrier (BBB), chelate metals, and exit through the BBB with their corresponding complexed metal ions. This method may prove to be a safe and effective means of reducing the metal load in neural tissue thus staving off the harmful effects of oxidative damage and its sequelae.

  7. Nanoparticle and iron chelators as a potential novel Alzheimer therapy.

    Science.gov (United States)

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A

    2010-01-01

    Current therapies for Alzheimer disease (AD) such as the acetylcholinesterase inhibitors and the latest NMDA receptor inhibitor, Namenda, provide moderate symptomatic delay at various stages of the disease, but do not arrest the disease progression or bring in meaningful remission. New approaches to the disease management are urgently needed. Although the etiology of AD is largely unknown, oxidative damage mediated by metals is likely a significant contributor since metals such as iron, aluminum, zinc, and copper are dysregulated and/or increased in AD brain tissue and create a pro-oxidative environment. This role of metal ion-induced free radical formation in AD makes chelation therapy an attractive means of dampening the oxidative stress burden in neurons. The chelator desferrioxamine, FDA approved for iron overload, has shown some benefit in AD, but like many chelators, it has a host of adverse effects and substantial obstacles for tissue-specific targeting. Other chelators are under development and have shown various strengths and weaknesses. Here, we propose a novel system of chelation therapy through the use of nanoparticles. Nanoparticles conjugated to chelators show unique ability to cross the blood-brain barrier (BBB), chelate metals, and exit through the BBB with their corresponding complexed metal ions. This method may provide a safer and more effective means of reducing the metal load in neural tissue, thus attenuating the harmful effects of oxidative damage and its sequelae. Experimental procedures are presented in this chapter.

  8. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    Directory of Open Access Journals (Sweden)

    Margaret E. Sears

    2013-01-01

    Full Text Available Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease.

  9. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    Science.gov (United States)

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  10. Minimal role of metallothionein in decreased chelator efficacy for cadmium.

    Science.gov (United States)

    Waalkes, M P; Watkins, J B; Klaassen, C D

    1983-05-01

    Chelator efficacy in Cd poisoning drops precipitously if therapy is not commenced almost immediately after exposure. Metallothionein (MT), a low-molecular-weight metal-binding protein with high affinity for Cd, may be important for this phenomenon. To more fully assess this role of MT in the acute drop in chelator efficacy following Cd poisoning, rats were injected iv with radioisotopic Cd (1mg/kg as CdCl2; 50 muCi/kg) followed by diethylenetriaminepentaacetic acid (DTPA; 90 mg/kg ip) at various times (0, 15, 30, 60, and 120 min) after Cd. Ther percentage of the Cd dose remaining in major organs 24 hr following Cd was determined. Although DTPA reduced Cd content in the various organs when given immediately after Cd, the chelator was ineffective at all later times. Increases in hepatic and renal MT did not occur until 2 hr after Cd, and did not coincide with the earlier drop in chelator efficacy. Blockade of MT synthesis by actinomycin D treatment (1.25 mg/kg, 1 hr before Cd) failed to prolong the chelators effectiveness. Furthermore, newborn rats have high levels of hepatic MT which had no effect on the time course of chelator effectiveness since DTPA still decreased Cd organ contents if given immediately following Cd but had no effect if given 2 hr after Cd. Therefore, if appears that MT does not have an important role in the acute decrease in efficacy of chelation therapy for Cd poisoning. The quick onset of chelator ineffectiveness may be due to the rapid uptake of Cd into tissues which makes it relatively unavailable of chelation.

  11. Expanding earth

    Energy Technology Data Exchange (ETDEWEB)

    Carey, S.W.

    1976-01-01

    Arguments in favor of an expanding earth are presented. The author believes that the theory of plate tectonics is a classic error in the history of geology. The case for the expanding earth is organized in the following way: introductory review - face of the earth, development of expanding earth concept, necessity for expansion, the subduction myth, and definitions; some principles - scale of tectonic phenomena, non-uniformitarianism, tectonic profile, paleomagnetism, asymmetry of the earth, rotation of the earth, and modes of crustal extension; regional studies - western North America, Central America, South-East Asia, and the rift oceans; tests and cause of expansion. 824 references, 197 figures, 11 tables. (RWR)

  12. STUDY ON THERMAL DECOMPOSITION KINETICS OF URUSHIOL METAL CHELATE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    HU Binghuan; CHEN Riyao; LIN Jinhuo; CHEN Wending

    1994-01-01

    The thermal decomposition kinetics of urushiol-Cu, urushiol-Nd and urushiol-Ti chelate polymers has been studied by non-isothermal thermogravimetry. The results suggest that the thermal decomposition kinetics of three chelate polymers are all of first order. Their average activation energy values of the thermal decomposition calculated by Ozawa-(Ⅰ) method are 110.79,136.98 and 163.64 kJ mol-1respectively,which increase linearly with the metal valence of the metal chelate polymers

  13. The Earth as an extrasolar transiting planet - II: HARPS and UVES detection of water vapour and biogenic species O$_2$ and O$_3$

    CERN Document Server

    Arnold, Luc; Vidal-Madjar, Alfred; Dumusque, Xavier; Nitschelm, Christian; Querel, Richard R; Hedelt, Pascal; Berthier, Jérôme; Lovis, Christophe; Moutou, Claire; Ferlet, Roger; Crooker, David

    2014-01-01

    The atmospheric composition of transiting exoplanets can be characterized during transit by spectroscopy. For an Earth twin, models predict that oxygen and ozone biogenic gases should be detectable, as well as water vapour, a molecule linked to habitability as we know it on Earth. The aim is to measure the Earth radius versus wavelength at the highest spectral resolution available to fully characterize the signature of the Earth seen as a transiting exoplanet. We present observations of Dec. 21, 2010 Moon eclipse. The Earth observed from the Moon during a lunar eclipse transits in front of the Sun and opens access to the Earth atmosphere transmission spectrum. We used two different ESO spectrographs to take penumbra and umbra high-resolution spectra from 3100 to 10400\\AA. A change in moisture above the telescope compromised the UVES data. We explain how we correct this effect. The data are analyzed by three different methods, the first method being the method described in Vidal-Madjar et al. 2010 based on the...

  14. Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.

    Directory of Open Access Journals (Sweden)

    Gloria Miller

    2008-12-01

    Full Text Available Lead (Pb, depending upon the reactant surface, pH, redox potential and other factors can bind tightly to the soil with a retention time of many centuries. Soil-metal interactions by sorption, precipitation and complexation processes, and differences between plant species in metal uptake efficiency, transport, and susceptibility make a general prediction of soil metal bioavailability and risks of plant metal toxicity difficult. Moreover, the tight binding characteristic of Pb to soils and plant materials make a significant portion of Pb unavailable for uptake by plants. This experiment was conducted to determine whether the addition of ethylenediaminetetraacetic acid (EDTA, ethylene glycol tetraacetic acid (EGTA, or acetic acid (HAc can enhance the phytoextraction of Pb by making the Pb soluble and more bioavailable for uptake by coffeeweed (Sesbania exaltata Raf.. Also we wanted to assess the efficacy of chelates in facilitating translocation of the metal into the above-ground biomass of this plant. To test the effect of chelates on Pb solubility, 2 g of Pb-spiked soil (1000 mg Pb/kg dry soil were added to each 15 mL centrifuge tube. Chelates (EDTA, EGTA, HAc in a 1:1 ratio with the metal, or distilled deionized water were then added. Samples were shaken on a platform shaker then centrifuged at the end of several time periods. Supernatants were filtered with a 0.45 μm filter and quantified by inductively coupled plasma-optical emission spectrometry (ICP-OES to determine soluble Pb concentrations. Results revealed that EDTA was the most effective in bringing Pb into solution, and that maximum solubility was reached 6 days after chelate amendment. Additionally, a greenhouse experiment was conducted by planting Sesbania seeds in plastic tubes containing top soil and peat (2:1, v:v spiked with various levels (0, 1000, 2000 mg Pb/kg dry soil of lead nitrate. At six weeks after emergence, aqueous solutions of EDTA and/or HAc (in a 1:1 ratio

  15. Effects of microplusin, a copper-chelating antimicrobial peptide, against Cryptococcus neoformans.

    Science.gov (United States)

    Silva, Fernanda D; Rossi, Diego C P; Martinez, Luis R; Frases, Susana; Fonseca, Fernanda L; Campos, Claudia Barbosa L; Rodrigues, Marcio L; Nosanchuk, Joshua D; Daffre, Sirlei

    2011-11-01

    Microplusin is an antimicrobial peptide isolated from the cattle tick Rhipicephalus (Boophilus) microplus. Its copper-chelating ability is putatively responsible for its bacteriostatic activity against Micrococcus luteus as microplusin inhibits respiration in this species, which is a copper-dependent process. Microplusin is also active against Cryptococcus neoformans (MIC(50) = 0.09 μM), the etiologic agent of cryptococcosis. Here, we show that microplusin is fungistatic to C. neoformans and this inhibitory effect is abrogated by copper supplementation. Notably, microplusin drastically altered the respiratory profile of C. neoformans. In addition, microplusin affects important virulence factors of this fungus. We observed that microplusin completely inhibited fungal melanization, and this effect correlates with the inhibition of the related enzyme laccase. Also, microplusin significantly inhibited the capsule size of C. neoformans. Our studies reveal, for the first time, a copper-chelating antimicrobial peptide that inhibits respiration and growth of C. neoformans and modifies two major virulence factors: melanization and formation of a polysaccharide capsule. These features suggest that microplusin, or other copper-chelation approaches, may be a promising therapeutic for cryptococcosis.

  16. Metal chelate process to remove pollutants from fluids

    Science.gov (United States)

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  17. A Brief Review of Chelators for Radiolabeling Oligomers

    Directory of Open Access Journals (Sweden)

    Yuxia Liu

    2010-05-01

    Full Text Available The chemical modification of oligomers such as DNA, PNA, MORF, LNA to attach radionuclides for nuclear imaging and radiotherapy applications has become a field rich in innovation as older methods are improved and new methods are introduced. This review intends to provide a brief overview of several chelators currently in use for the labeling of oligomers with metallic radionuclides such as 99mTc, 111In and 188Re. While DNA and its analogs have been radiolabeled with important radionuclides of nonmetals such as 32P, 35S, 14C, 18F and 125I, the labeling methods for these isotopes involve covalent chemistry that is quite distinct from the coordinate-covalent chelation chemistry described herein. In this review, we provide a summary of the several chelators that have been covalently conjugated to oligomers for the purpose of radiolabeling with metallic radionuclides by chelation and including details on the conjugation, the choice of radionuclides and labeling methods.

  18. Metal chelate process to remove pollutants from fluids

    Science.gov (United States)

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  19. Synthetic Lubricating Oil Greases Containing Metal Chelates of Schiff Bases

    Science.gov (United States)

    1992-09-15

    greases comprising the addition to said greases of effective amounts of a chelated Schiff base derived from the condensation of approximately stoichiometic amounts of at least one aldehyde and a polyamine.

  20. NIR emitting ytterbium chelates for colourless luminescent solar concentrators.

    Science.gov (United States)

    Sanguineti, Alessandro; Monguzzi, Angelo; Vaccaro, Gianfranco; Meinardi, Franco; Ronchi, Elisabetta; Moret, Massimo; Cosentino, Ugo; Moro, Giorgio; Simonutti, Roberto; Mauri, Michele; Tubino, Riccardo; Beverina, Luca

    2012-05-14

    A new oxyiminopyrazole-based ytterbium chelate enables NIR emission upon UV excitation in colorless single layer luminescent solar concentrators for building integrated photovoltaics. This journal is © the Owner Societies 2012

  1. Development of Multi-Functional Chelators Based on Sarcophagine Cages

    Directory of Open Access Journals (Sweden)

    Shuanglong Liu

    2014-04-01

    Full Text Available A new class of multifunctionalized sarcophagine derivatives was synthesized for 64Cu chelation. The platform developed in this study could have broad applications in 64Cu-radiopharmaceuticals.

  2. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    Science.gov (United States)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  3. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.

    Science.gov (United States)

    Chiu, K K; Ye, Z H; Wong, M H

    2005-09-01

    Vetiveria zizaniodes (vetiver) is commonly known for its effectiveness in soil and sediment erosion control. It can tolerate to extreme soil conditions and produce a high biomass even growing in contaminated areas. Zea mays (maize) can also produce a very high biomass with a fast growth rate and possesses some degree of metal tolerance. A greenhouse study was conducted to investigate the feasibility of using vetiver and maize for remediation of arsenic (As)-, zinc (Zn-), and copper (Cu)-amended soils and evaluate the effects of chelating agents on metal uptake by these plants. Vetiver had a better growth (dry weight yield of root and shoot) than maize under different treatment conditions. The effects of different chelating agents on As, Zn, and Cu extraction from soil to soil solution were studied. Among the nine chelating agents used, it was noted that 20 mmol NTA could maximize As and Zn bioavailability, while 20 mmol HEIDA could maximize Cu bioavailability in the soil solution. The surge time in maximizing metal uptake ranged from 16 to 20 days which indicated that timing on plant harvest was an important factor in enhanced metal accumulation. In general, vetiver was a more suitable plant species than maize in terms of phytoextraction of metals from metal-contaminated soil. Application of NTA in As-amended soil and HEIDA in Cu-amended soil at the rate of 20 mmol kg(-1) increased 3-4-fold of As and Cu in shoot of both plants, whereas application of NTA (20 mmol kg(-1)) increased 37- and 1.5-fold of Zn accumulation in shoot of vetiver and maize, respectively. The potential environmental risk of metal mobility caused by chelating agents used for phytoextraction should not be overlooked.

  4. Targeted Iron Chelation Will Improve Recovery after Spinal Cord Injury

    Science.gov (United States)

    2014-10-01

    Neuroprotection Ferritin Introduction recovery after traumatic spinal cord injury (SCI). An optimal treatment to reverse or prevent damage...Hider and Zhou, 2005). However, this intracellular chelation may still be beneficial by preventing free iron from participating in free radical...active iron-chelating agent in patients with transfusion-dependent iron overload due to beta- thalassemia . J. Clin. Pharmacol. 43 (6), 565-572. Hider

  5. Iron Chelation Adherence to Deferoxamine and Deferasirox in Thalassemia

    OpenAIRE

    Trachtenberg, Felicia; Vichinsky, Elliott; Haines, Dru; Pakbaz, Zahra; Mednick, Lauren; Sobota, Amy; Kwiatkowski, Janet; Thompson, Alexis A.; Porter, John; Coates, Thomas; Giardina, Patricia J.; Olivieri, Nancy; Yamashita, Robert; Neufeld, Ellis J.

    2011-01-01

    The Thalassemia Clinical Research Network collected adherence information from 79 patients on deferoxamine and 186 on deferasirox from 2007 to 2009. Chelation adherence was defined as percent of doses administered in the last 4 weeks (patient report) out of those prescribed (chart review). Chelation history since 2002 was available for 97 patients currently on deferoxamine and 217 on deferasirox, with crude estimates of adherence from chart review. Self-reported adherence to both deferoxamine...

  6. Deferasirox, an oral chelator in the treatment of iron overload

    OpenAIRE

    I. Portioli

    2013-01-01

    BACKGROUND Deferasirox is a once-daily oral iron chelator developed for treating iron overload complicating long-term transfusion therapy in patients with diseases such as beta-thalassemia and myelodysplastic syndromes. Iron overload can damage the liver, pancreas and the heart. Deferoxamine, the only other drug approved for iron chelation, can prevent these effects but requires parenteral administration. Deferasirox has been approved after a one-year, open-label trial in patients ≥ 2 years o...

  7. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis. PMID:21563826

  8. Iron chelation adherence to deferoxamine and deferasirox in thalassemia.

    Science.gov (United States)

    Trachtenberg, Felicia; Vichinsky, Elliott; Haines, Dru; Pakbaz, Zahra; Mednick, Lauren; Sobota, Amy; Kwiatkowski, Janet; Thompson, Alexis A; Porter, John; Coates, Thomas; Giardina, Patricia J; Olivieri, Nancy; Yamashita, Robert; Neufeld, Ellis J

    2011-05-01

    The Thalassemia Clinical Research Network collected adherence information from 79 patients on deferoxamine and 186 on deferasirox from 2007 to 2009. Chelation adherence was defined as percent of doses administered in the last 4 weeks (patient report) out of those prescribed(chart review). Chelation history since 2002 was available for 97 patients currently on deferoxamine and 217 on deferasirox, with crude estimates of adherence from chart review. Self-reported adherence to both deferoxamine and deferasirox were quite high, with slightly higher adherence to the oral chelator (97 vs. 92%). Ninety percent of patients on deferasirox reported at least 90% adherence, compared with 75% of patients on deferoxamine. Adherence to both chelators was highest in children, followed by adolescents and older adults.Predictors of lower deferoxamine adherence were smoking in the past year, problems sticking themselves (adults only), problems wearing their pump, and fewer transfusions in the past year. Predictors of lower deferasirox adherence were bodily pain and depression. Switching chelators resulted in increased adherence, regardless of the direction of the switch, although switching from deferoxamine to deferasirox was far more common. As adherence to deferoxamine is higher than previously reported, it appears beneficial for patients to have a choice in chelators.

  9. Μethods of iron chelation therapy: a bibliographic review

    Directory of Open Access Journals (Sweden)

    Maria Agapiou

    2012-01-01

    Full Text Available "Iron Chelation Therapy" is a term used to describe the procedure of removing excess iron from the body, which is applied after a total of approximately 20 blood transfusions or when serum ferritin levels rise above 1000 ng/ml. Aim: The purpose of the present paper is a retrospective search in bibliography, concerning the methods of iron chelation treatment for patients with hemochromatosis owing to their undergoing multiple blood transfusions. Method: The methology followed, included the search for review and research studies, in electronic databases as well as scientific haematology journals, mostly regarding recent entries in greek and international bibliography. Results: According to the bibliography, chelation therapy compounds have significantly changed the patients' clinical features and have substantially improved their quality of life, along with their outcome over time. However, the level of patient compliance to treatment still remains the basic problem of iron chelation therapy. Conclusions: Even though the discovery of orally administered chelating agents can qualify as an auspicious accomplishment, research fields should cover a much wider spectrum, in order to improve the effectiveness of iron chelation treatment.

  10. Iron Chelation Adherence to Deferoxamine and Deferasirox in Thalassemia

    Science.gov (United States)

    Trachtenberg, Felicia; Vichinsky, Elliott; Haines, Dru; Pakbaz, Zahra; Mednick, Lauren; Sobota, Amy; Kwiatkowski, Janet; Thompson, Alexis A.; Porter, John; Coates, Thomas; Giardina, Patricia J.; Olivieri, Nancy; Yamashita, Robert; Neufeld, Ellis J.

    2015-01-01

    The Thalassemia Clinical Research Network collected adherence information from 79 patients on deferoxamine and 186 on deferasirox from 2007 to 2009. Chelation adherence was defined as percent of doses administered in the last 4 weeks (patient report) out of those prescribed (chart review). Chelation history since 2002 was available for 97 patients currently on deferoxamine and 217 on deferasirox, with crude estimates of adherence from chart review. Self-reported adherence to both deferoxamine and deferasirox were quite high, with slightly higher adherence to the oral chelator (97 vs. 92%). Ninety percent of patients on deferasirox reported at least 90% adherence, compared with 75% of patients on deferoxamine. Adherence to both chelators was highest in children, followed by adolescents and older adults. Predictors of lower deferoxamine adherence were smoking in the past year, problems sticking themselves (adults only), problems wearing their pump, and fewer transfusions in the past year. Predictors of lower deferasirox adherence were bodily pain and depression. Switching chelators resulted in increased adherence, regardless of the direction of the switch, although switching from deferoxamine to deferasirox was far more common. As adherence to deferoxamine is higher than previously reported, it appears beneficial for patients to have a choice in chelators. PMID:21523808

  11. Solubility and accumulation of metals in Chinese brake fern, vetiver and rostrate sesbania using chelating agents.

    Science.gov (United States)

    Lou, L Q; Ye, Z H; Wong, M H

    2007-01-01

    Greenhouse experiments were conducted to study the effects of chelating agents on the growth and metal accumulation of Chinese brake fern (Pteris vittata L.), vetiver (Vetiveria zizanioides L.), and rostrate sesbania (Sesbania rostrata L.) in soil contaminated with arsenic (As), Cu, Pb, and Zn. Among the five chelating agents used [ethylenediaminetriacetic acid (EDTA), hydroxyethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), oxalic acid (OA), and phytic acid (PA)], OA was the best to mobilize As, EDTA to mobilize Cu and Pb, and HEDTA to mobilize Zn from soil, respectively. The biomass of vetiver was the highest, followed by rostrate sesbania. All chelating agents inhibited the growth of Chinese brake fern and rostrate sesbania, but HEDTA significantly increased the aboveground biomass of vetiver. Dry weights of both Chinese brake fern and rostrate sesbania decreased with increasing EDTA concentrations amended in the soil, especially in treatments with high EDTA concentrations. EDTA and HEDTA enhanced Cu, Zn, and Pb, but lowered As accumulation in all three plant species, except for As in vetiver, while OA significantly enhanced As accumulation in the aboveground part of vetiver. Concentrations of Cu, Zn, and Pb in the aboveground parts of plants increased significantly with the increase of EDTA concentrations and treatment time. In addition to As, Chinese brake fern also accumulated the highest Cu, Pb, and Zn in its aboveground parts among the three plant species grown in metal-contaminated soil with EDTA/HEDTA treatments. This species, therefore, can be used to simultaneously clean up As, Cu, Pb, and Zn from contaminated soils with the aid of EDTA or HEDTA.

  12. THE STUDIES ON CHELATING FIBER V.ADSORPTION BEHAVIOR OF Au3+ ONTO CHELATING FIBER CONTAINING AMIDOXIME GROUPS

    Institute of Scientific and Technical Information of China (English)

    LINWeiping; LUYun; 等

    1992-01-01

    The adsorption behavior of ionic gold onto chelating fiber containing amidoxime groups was investigated. The chelating fiber presents high adsorption capacity for ionic gold Au3+(up to 626mg/g,when the content of amidoxime group reaches 7.59mmol/g),and possesses the ability to reduce the Au3+ into metallic gold,In the redox process,the amidoxime group is oxidized into carboxyl group.

  13. Primary Study on Effects of New Rare Earth Agro-Materials on Potato

    Institute of Scientific and Technical Information of China (English)

    Yang Qifeng; Mao Wanhu; Wang Jiachen; Xing Guo; Yang Jun; Liu Xiangsheng

    2004-01-01

    Using common phosphate as a check, we studied the growth and yield of potato by new rare earth agro-materials including rare earth phosphate (base fertilizer), rare earth whole plant nutrient fertilizer, and amino acid chelated rare earth ( top dressing), which were used in a single or mixed way in Dingxi city, Gansu Province.The results are as follows that ( 1 ) After using new rare earth materials, the plant height increases by 0.4 ~ 5.6 cm and the ripen period is delayed by 4 ~ 9 d.(2) They can improve the potato economic characteristics, enhance productivity, decrease black leg and late blight.The disease index is decreased by 1.6% ~ 10.6%, single plant potato number increases by 0.3 ~ 0.5, and single plant yield increases by 80 g ~ 130 g.(3) The effect of increased yield is significant, and mixed use is better than single use.In the single material treatments, rare earth phosphate is the best, rare earth whole plant nutrient fertilizer and amino acid chelated rare earth are the second, and the increased rate are 14.5%, 8.4%, 9.2% so the material mixture-rare earth phosphate mixed of rare earth whole plant nutrient fertilizer or with amino acid chelated rare earth is economically useable, and increase rate are 25.2% and 24.4% compared with common phosphate.

  14. The Effect of Different Tea Varieties on Iron Chelation

    Science.gov (United States)

    Truong, S. K.; Karim, R.

    2016-12-01

    The chief objectives of this experiment are to distinguish which type of tea of four variants, pomegranate blackberry green, green, lemon chamomile (herbal), and earl grey (black), are capable of chelating the most iron (III) chloride (FeCl3) through titration. We hypothesized that if each tea variety chelates differing amounts of iron chloride, and if we conduct an experiment in which four different teas are mixed in the same amount of water, iron chloride, and iron chloride indicator EDTA, then the pomegranate blackberry green tea will bind to the most iron due to its large amount of fruit antioxidants. To summarize our methodology, we prepared three solutions of each tea, dissolved with 1 gram of FeCl3 to test three trials per tea variety. The chelation process took place overnight as teas cooled. Six drops of iron chloride indicator added to each solution began the titration. The necessary amount of 0.1M EDTA (ethylenediaminetetraacetic acid) drops required for each solution to turn to a universal amber color from its original dark tone indicates how many free iron molecules were left unbound by the tea solution. After careful analysis of the data, we discovered that blackberry pomegranate green tea possessed the best chelating abilities with 97.48% of FeCl3 adsorbed. Green tea followed with 96.67%. Herbal tea chelated 94.24% of the iron while earl grey absorbed the least amount at 93.43%. From our conclusion, we drew that since blackberry pomegranate green tea contained the highest amount of polyphenols and antioxidants as well as epigallocatechin gallate (EGCG) found in green teas, it was able to chelate the most amount of iron. The substances mentioned in blackberry pomegranate green tea possess the ability to form strong bonds with multiple heavy metals, such as iron (III) chloride atoms. Overall, each variety of tea contains different organic substances. Each of these substances possesses a unique chelating ability, determining how well the type of tea can

  15. Predicting the spatial and temporal distributions of marine fish species utilizing earth system data in a MaxEnt model framework

    Science.gov (United States)

    Wang, L.; Kerr, L. A.; Bridger, E.

    2016-02-01

    Changes in species distributions have been widely associated with climate change. Understanding how ocean temperatures influence species distributions is critical for elucidating the role of climate in ecosystem change as well as for forecasting how species may be distributed in the future. As such, species distribution modeling (SDM) is increasingly useful in marine ecosystems research, as it can enable estimation of the likelihood of encountering marine fish in space or time as a function of a set of environmental and ecosystem conditions. Many traditional SDM approaches are applied to species data collected through standardized methods that include both presence and absence records, but are incapable of using presence-only data, such as those collected from fisheries or through citizen science programs. Maximum entropy (MaxEnt) models provide promising tools as they can predict species distributions from incomplete information (presence-only data). We developed a MaxEnt framework to relate the occurrence records of several marine fish species (e.g. Atlantic herring, Atlantic mackerel, and butterfish) to environmental conditions. Environmental variables derived from remote sensing, such as monthly average sea surface temperature (SST), are matched with fish species data, and model results indicate the relative occurrence rate of the species as a function of the environmental variables. The results can be used to provide hindcasts of where species might have been in the past in relation to historical environmental conditions, nowcasts in relation to current conditions, and forecasts of future species distributions. In this presentation, we will assess the relative influence of several environmental factors on marine fish species distributions, and evaluate the effects of data coverage on these presence-only models. We will also discuss how the information from species distribution forecasts can support climate adaptation planning in marine fisheries.

  16. Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes.

    Science.gov (United States)

    Svanedal, Ida; Boija, Susanne; Almesåker, Ann; Persson, Gerd; Andersson, Fredrik; Hedenström, Erik; Bylund, Dan; Norgren, Magnus; Edlund, Håkan

    2014-04-29

    Coordination complexes of some divalent metal ions with the DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of chelation and solution behavior. The headgroup of 4-C12-DTPA contains eight donor atoms that can participate in the coordination of a metal ion. Conditional stability constants for five transition metal complexes with 4-C12-DTPA were determined by competition measurements between 4-C12-DTPA and DTPA, using electrospray ionization mass spectrometry (ESI-MS). Small differences in the relative strength between the coordination complexes of DTPA and 4-C12-DTPA indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. The coordination of Cu(2+) ions was investigated in particular, using UV-visible spectroscopy. By constructing Job's plots, it was found that 4-C12-DTPA could coordinate up to two Cu(2+) ions. Surface tension measurements and NMR diffusometry showed that the coordination of metal ions affected the solution behavior of 4-C12-DTPA, but there were no specific trends between the studied divalent metal complexes. Generally, the effects of the metal ion coordination could be linked to the neutralization of the headgroup charge of 4-C12-DTPA, and the resulting reduced electrostatic repulsions between adjacent surfactants in micelles and monolayers. The pH vs concentration plots, on the other hand, showed a distinct difference between 4-C12-DTPA complexes of the alkaline earth metals and the transition metals. This was explained by the difference in coordination between the two groups of metal ions, as predicted by the hard and soft acid and base (HSAB) theory.

  17. REGIONAL SIDEROSIS: A NEW CHALLENGE FOR IRON CHELATION THERAPY

    Directory of Open Access Journals (Sweden)

    Zvi Ioav Cabantchik

    2013-12-01

    Full Text Available The traditional role of iron chelation therapy has been to reduce body iron burden via chelation of excess metal from organs and fluids and its excretion via biliary-fecal and/or urinary routes. In their present use for hemosiderosis, chelation regimens might not be suitable for treating disorders of iron maldistribution, as those are characterized by toxic islands of siderosis appearing in a background of normal or subnormal iron levels (e.g. sideroblastic anemias, neuro- and cardio-siderosis in Friedreich ataxia- and neurosiderosis in Parkinson’s disease. We aimed at clearing local siderosis from aberrant labile metal that promotes oxidative damage, without interfering with essential local functions or with hematological iron-associated properties. For this purpose we introduced a conservative mode of iron chelation based on dual activity based on scavenging labile metal but also redeploying it to cell acceptors or to physiological transferrin. The scavenging and redeployment mode of action was designed both for correcting aberrant iron distribution and also for minimizing/preventing systemic loss of chelated metal. We first examine cell models that recapitulate iron maldistribution and associated dysfunctions identified with Friedreich ataxia and Parkinson’s disease and use them to explore the ability of the double-acting agent deferiprone, an orally active chelator, to mediate iron scavenging and redeployment and thereby causing functional improvement. We subsequently evaluate the concept in translational models of disease and finally assess its therapeutic potential in prospective double-blind pilot clinical trials. We claim that any chelator applied to diseases of regional siderosis, cardiac, neuronal or endocrine ought to preserve both systemic and regional iron levels. The proposed deferiprone-based therapy has provided a paradigm for treating regional types of siderosis without affecting hematological parameters and systemic

  18. In vitro copper-chelating properties of flavonoids.

    Science.gov (United States)

    Ríha, Michal; Karlícková, Jana; Filipský, Tomáš; Jahodár, Ludek; Hrdina, Radomír; Mladenka, Premysl

    2014-10-01

    Copper is an indispensable trace element for human body and the association between a disruption of copper homeostasis and a series of pathological states has been well documented. Flavonoids influence the human health in a complex way and the chelation of transient metal ions indisputably contributes to their mechanism of the action, however, the information about their copper-chelating properties have been sparse. This in vitro study was thus aimed at the detailed examination of flavonoids-copper interactions by two spectrophotometric assays at four (patho)physiologically relevant pH conditions (4.5-7.5), with the emphasis on the structure-activity relationship. The tested flavonoids were compared with the clinically used copper chelator, trientine. Most of the 26 flavonoids chelated copper ions, however, in a variable extent. Only flavones and flavonols were able to form stable complexes with both cupric and cuprous ions. The 3-hydroxy-4-keto group and 5,6,7-trihydroxyl group represented the most efficient chelation sites in flavonols and flavones, respectively, and the 2,3-double bond was essential for the stable copper chelation. Interestingly, the 3´,4´-dihydroxyl (catechol) group was associated only with a weak activity. Although none of the tested flavonoids were more potent than trientine at physiological or slightly acidic conditions, 3-hydroxyflavone, kaempferol and partly baicalein surpassed trientine at acidic conditions. Conclusively, flavonoids containing appropriate structural features were efficient copper chelators and some of them were even more potent than trientine under acidic conditions. Copyright © 2014. Published by Elsevier Inc.

  19. Chelated Nitrogen-Sulphur-Codoped TiO2: Synthesis, Characterization, Mechanistic, and UV/Visible Photocatalytic Studies

    Directory of Open Access Journals (Sweden)

    Hayat Khan

    2017-01-01

    Full Text Available This study presents in detail the physicochemical, photoluminescent, and photocatalytic properties of carboxylic acid chelated nitrogen-sulphur-codoped TiO2. From the Fourier transform infrared spectroscopic study, it was revealed that the formate group formed bidentate bridging linkage while the acetate group coordinated in a bidentate chelating mode with a titanium precursor. In compliance with X-ray diffraction data, the anatase to rutile transformation temperature was extended due to carboxylic acid chelation and NS codoping. Raman analysis indicated four Raman peaks at 146, 392, 512, and 632 cm−1 for the precalcined chelated TiO2; on incorporation with NS dopants, an increase in Raman intensity for these peaks was recorded, indicating the structure stability of the anatase phase. Furthermore, X-ray photoelectron spectroscopic study revealed the presence of anionic doping of nitrogen and cationic doping of sulphur in the lattice of TiO2. When evaluating the UV-visible photodegradation rate of 4-chlorophenol, the modified TiO2 (NS0.06-TFA showed the highest photocatalytic activity. In connection with the activity tests, several scavenger agents were employed to elucidate the significance of the different reactive oxidizing species during the photocatalytic process. Moreover, the transfer pathways of photogenerated carriers and the photocatalytic reaction mechanism of modified TiO2 were also explained in detail.

  20. Studies on the antifungal activities of the novel synthesized chelating co-polymer emulsion lattices and their silver complexes

    Directory of Open Access Journals (Sweden)

    Abd-El-Ghaffar M.A.

    2008-01-01

    Full Text Available The novel binary chelating co-polymers of butyl acrylate with itaconic and maleic acids were prepared by emulsion polymerization process. The chelating co-polymers of butyl acrylate-co-itaconic acid (BuA/IA and butyl acrylate-co-maleic acid (BuA/MA and their silver complexes were characterized and identified using IR spectroscopy and differential scanning calorimetry (DSC measurements. The biological activities of these compounds were studied against various types of fungal species. The dose and the rate of leached silver ions were controlled by the type of the co-polymers used and the solubility in the medium. The results provided laboratory support for the concept that the polymers containing chemically bound biocide are useful for controlling microbial growth. The silver uptake by strains of different fungal species was studied to determine their difference in behavior to the antifungal activities of these compounds. The uptake strategy was examined by transmission electron microscopy (TEM.

  1. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  2. Chelation-assisted, copper(II)-acetate-accelerated azide-alkyne cycloaddition.

    Science.gov (United States)

    Kuang, Gui-Chao; Michaels, Heather A; Simmons, J Tyler; Clark, Ronald J; Zhu, Lei

    2010-10-01

    We described in a previous communication a variant of the popular Cu(I)-catalyzed azide-alkyne cycloaddition (AAC) process where 5 mol % of Cu(OAc)(2) in the absence of any added reducing agent is sufficient to enable the reaction. 2-Picolylazide (1) and 2-azidomethylquinoline (2) were found to be by far the most reactive carbon azide substrates that convert to 1,2,3-triazoles in as short as a few minutes under the discovered conditions. We hypothesized that the abilities of 1 and 2 to chelate Cu(II) contribute significantly to the observed high reaction rates. The current work examines the effect of auxiliary ligands near the azido group other than pyridyl for Cu(II) on the efficiency of the Cu(OAc)(2)-accelerated AAC reaction. The carbon azides capable of binding to the catalytic copper center at the alkylated azido nitrogen in a chelatable fashion were indeed shown to be superior substrates under the reported conditions. The chelation between carbon azide 11 and Cu(II) was demonstrated in an X-ray single-crystal structure. In a limited set of examples, the ligand tris(benzyltriazolylmethyl)amine (TBTA), developed by Fokin et al. for assisting the original Cu(I)-catalyzed AAC reactions, also dramatically enhances the Cu(OAc)(2)-accelerated AAC reactions involving nonchelating azides. This observation leads to the hypothesis of an additional effect of chelating azides on the efficiencies of Cu(OAc)(2)-accelerated AAC reactions, which is to facilitate the rapid reduction of Cu(II) to highly catalytic Cu(I) species. Mechanistic studies on the AAC reactions with particular emphasis on the role of carbon azide/copper interactions will be conducted based on the observations reported in this work. Finally, the immediate utility of the product 1,2,3-triazole molecules derived from chelating azides as multidentate metal coordination ligands is demonstrated. The resulting triazolyl-containing ligands are expected to bind with transition metal ions via the N(2) nitrogen of

  3. Novel synergism by complex ligands in solvent extraction of rare earth metals(III) with {beta}-diketones

    Energy Technology Data Exchange (ETDEWEB)

    Imura, H. [Department of Environmental Sciences, Faculty of Science, Ibaraki University, Mito 310-8512 (Japan)]. E-mail: imura@mx.ibaraki.ac.jp; Ebisawa, M. [Department of Environmental Sciences, Faculty of Science, Ibaraki University, Mito 310-8512 (Japan); Kato, M. [Department of Environmental Sciences, Faculty of Science, Ibaraki University, Mito 310-8512 (Japan); Ohashi, K. [Department of Environmental Sciences, Faculty of Science, Ibaraki University, Mito 310-8512 (Japan)

    2006-02-09

    The extraction of rare earth metals(III) (RE) with hexafluoroacetylacetone (Hhfa) and 2-thenoyltrifluoroacetone (Htta) was studied in the presence of some cobalt(III) chelates such as tris(acetylacetonato)cobalt(III), tris(4-isopropyltropolonato)cobalt(III), tris(8-quinolinolato)cobalt(III), tris(8-quinolinethiolato)cobalt(III), and tris(diethyldithiocarbamato)cobalt(III) in benzene or toluene. The synergistic enhancement of the extraction of RE, especially of lanthanum(III) was found in all the systems. Therefore, those cobalt(III) chelates act as synergists or complex ligands. The equilibrium analysis and IR spectroscopic study were performed to evaluate the present synergistic mechanism. It was found that the RE-{beta}-diketone chelates form 1:1 adducts, i.e., binuclear complexes, with the cobalt(III) chelates in the organic phase. The formation constants ({beta} {sub s,1}) were determined and compared with those reported previously. The spectroscopic studies demonstrated that adducts have two different structures with inner- and outer-sphere coordination. In the former the cobalt(III) chelate directly coordinated to the RE ion and displaced the coordinated water molecules. In the latter the hydrogen-bonding was formed between the coordinating oxygen or sulfur atoms of cobalt(III) chelate and hydrogen atoms of the coordinated water molecules in the RE-{beta}-diketone chelate. The types of the adducts are mainly due to the steric factors of the RE-{beta}-diketone chelates and the cobalt(III) chelates.

  4. Three plutonium chelation cases at Los Alamos National Laboratory.

    Science.gov (United States)

    Bertelli, Luiz; Waters, Tom L; Miller, Guthrie; Gadd, Milan S; Eaton, Michelle C; Guilmette, Raymond A

    2010-10-01

    Chelation treatments with dosages of 1 g of either Ca-DTPA (Trisodium calcium diethylenetriaminepentaacetate) or Zn-DTPA (Trisodium zinc diethylenetriaminepentaacetate) were undertaken at Los Alamos Occupational Medicine in three recent cases of wounds contaminated with metallic forms of Pu. All cases were finger punctures, and each chelation injection contained the same dosage of DTPA. One subject was treated only once, while the other two received multiple injections. Additional measurements of wound, urine, and excised tissues were taken for one of the cases. These additional measurements served to improve the estimate of the efficacy of the chelation treatment. The efficacy of the chelation treatments was compared for the three cases. Results were interpreted using models, and useful heuristics for estimating the intake amount and final committed doses were presented. In spite of significant differences in the treatments and in the estimated intake amounts and doses amongst the three cases, a difference of four orders of magnitude was observed between the highest excretion data point and the values observed at about 100 d for all cases. Differences between efficacies of Zn-DTPA and Ca-DTPA could not be observed in this study. An efficacy factor of about 50 was observed for a chelation treatment, which was administered at about 1.5 y after the incident, though the corresponding averted dose was very small (LA-UR 09-02934).

  5. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  6. Albumin microspheres labeled with Ga-67 by chelation: concise communication.

    Science.gov (United States)

    Hnatowich, D J; Schlegel, P

    1981-07-01

    Albumin microspheres have been synthesized eith EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +/- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +/- 16)% of the activity localizes in the lungs at 5 min, with (60 +/- 7)% remaining after 2 hr. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  7. Synthesis and Characteristics of A Novel Heavy Metal Ions Chelator

    Institute of Scientific and Technical Information of China (English)

    LIU Zhuannian; SONG Yejing; HAN Xiaogang

    2012-01-01

    Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents.The effects of reaction parameters (sodium hydroxide,material ratio,temprature and contact time) were monitored to specify the best synthesis conditions.PUS was chemically characterized by means of infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis).The simultaneous chelation performance of PUS towards selected heavy metals ions,Ni2+,Cu2+,Pb2+,Zn2+,Cd2+ was discussed,showing that Ni2+,Cu2+,Pb2+,Zn2+ could be better chelated.It is indicated that the synthesized PUS is a potential remediation material when used for the treatment of wastewater containing metal ions.

  8. Preparation and Properties of Iminodiacetic Acid Chelate Fiber

    Directory of Open Access Journals (Sweden)

    QIAN Jin-xin

    2016-07-01

    Full Text Available The iminodiacetic acid chelate fiber(IDACF which has a property of selective adsorption, was fabricated by amination and carboxylation using chloramethylated polypropylene grafted styrene fiber as raw material. Orthogonal experiment was adopted to study the effect of temperature, time, liquor ratio and the amount of chloroacetic acid on carboxylation reaction. The maximum adsorption capacity of iminodiacetic acid chelate fiber to Cu2+ is 65.54mg·g-1, which is 10.52 times of that of Fe3+. Elementary analysis(EA, Fourier transform infrared spectrum(FT-IR, scanning electron microscopy(SEM and thermogrametry(TG were used to characterize the structure and the properties of the iminodiacetic acid chelate fiber. The results show that iminodiacetic acid has been transformed to the raw fiber successfully after amination and carboxymethylation, and IDACF has good thermal stability.

  9. Inositol hexa-phosphate: a potential chelating agent for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, D.; Tapia, A.; Real, A.; Morcillo, M.A. [Radiobiology Laboratory, Radiation Dosimetry Unit, Department of Environment, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain)

    2007-07-01

    Chelation therapy is an optimal method to reduce the radionuclide-related risks. In the case of uranium incorporation, the treatment of choice is so far i.v infusion of a 1.4% sodium bicarbonate solution, but the efficacy has been proved to be not very high. In this study, we examine the efficacy of some substances: bicarbonate, citrate, diethylenetriamine pentaacetic acid (DTPA), ethidronate (EHBP) and inositol hexa-phosphate (phytic acid) to chelate uranium using a test developed by Braun et al. Different concentrations of phytic acid, an abundant component of plant seeds that is widely distributed in animal cells and tissues in substantial levels, were tested and compared to the same concentrations of sodium citrate, bicarbonate, EHBP and DTPA. The results showed a strong affinity of inositol hexa-phosphate for uranium, suggesting that it could be an effective chelating agent for uranium in vivo. (authors)

  10. Chelation therapy in intoxications with mercury, lead and copper

    DEFF Research Database (Denmark)

    Cao, yang; Skaug, Marit Aralt; Andersen, Ole;

    2015-01-01

    mobilize deposits of mercury as well as of lead into the urine. These drugs can be administered orally and have relatively low toxicity compared to the classical antidote dimercaptopropanol (BAL). d-Penicillamine has been widely used in copper overload, although 2,3-dimercaptosuccinic acid......In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively...... or tetrathiomolybdate may be more suitable alternatives today. In copper-toxicity, a free radical scavenger might be recommended as adjuvant to the chelator therapy...

  11. Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition.

    Science.gov (United States)

    Kuang, Gui-Chao; Guha, Pampa M; Brotherton, Wendy S; Simmons, J Tyler; Stankee, Lisa A; Nguyen, Brian T; Clark, Ronald J; Zhu, Lei

    2011-09-07

    A mechanistic model is formulated to account for the high reactivity of chelating azides (organic azides capable of chelation-assisted metal coordination at the alkylated azido nitrogen position) and copper(II) acetate (Cu(OAc)(2)) in copper(II)-mediated azide-alkyne cycloaddition (AAC) reactions. Fluorescence and (1)H NMR assays are developed for monitoring the reaction progress in two different solvents, methanol and acetonitrile. Solvent kinetic isotopic effect and premixing experiments give credence to the proposed different induction reactions for converting copper(II) to catalytic copper(I) species in methanol (methanol oxidation) and acetonitrile (alkyne oxidative homocoupling), respectively. The kinetic orders of individual components in a chelation-assisted, copper(II)-accelerated AAC reaction are determined in both methanol and acetonitrile. Key conclusions resulting from the kinetic studies include (1) the interaction between copper ion (either in +1 or +2 oxidation state) and a chelating azide occurs in a fast, pre-equilibrium step prior to the formation of the in-cycle copper(I)-acetylide, (2) alkyne deprotonation is involved in several kinetically significant steps, and (3) consistent with prior experimental and computational results by other groups, two copper centers are involved in the catalysis. The X-ray crystal structures of chelating azides with Cu(OAc)(2) suggest a mechanistic synergy between alkyne oxidative homocoupling and copper(II)-accelerated AAC reactions, in which both a bimetallic catalytic pathway and a base are involved. The different roles of the two copper centers (a Lewis acid to enhance the electrophilicity of the azido group and a two-electron reducing agent in oxidative metallacycle formation, respectively) in the proposed catalytic cycle suggest that a mixed valency (+2 and +1) dinuclear copper species be a highly efficient catalyst. This proposition is supported by the higher activity of the partially reduced Cu(OAc)(2) in

  12. Chelation of heavy metals by potassium butyl dithiophosphate

    Institute of Scientific and Technical Information of China (English)

    Ying Xu; Zhigang Xie; Lu Xue

    2011-01-01

    Potassium butyl dithiophosphate (PBD) was developed and introduced as a new chelating agent for heavy metal removal.The synthesized PBD were characterized by IR and NMR.The effects of pH, chelating agent dosage, and other heavy metal ions on the performance of PBD in Cd2+ removal from water are investigated.Experimental results showed that the chelating agent could be used to treat acidic heavy metal wastewater.The Cd2+ removal was not affected by solution pH value within the range of 2 to 6.The Cd2+ removal rate could reach over 99%.Therefore, the deficiency of the precipitation process using hydroxide under alkaline condition can be overcome.Without the need for pH adjustment, the method could save on costs.If Cd2+ co-exists with Pb2+ and Cu2+, the affinity of the chelating agent with these three heavy metal ions was in the order of: Cu2+ > Pb2+ > Cd2+.Through PBD chelating precipitation,all the contents of Pb2+, Cd2+, and Cu2+ in wastewater met the standard levels through a one-step treatment.The one-step treatment process was superior to the process (sectional treatment is required) of precipitation with hydroxide.When the pH was between 3 and 11, the amount of leached chelated Cd2+ was much lower than that obtained by precipitation with hydroxide.Therefore, the risk of environmental pollution could be further reduced.

  13. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  14. Cationic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration.

    Science.gov (United States)

    Kamalinia, Golnaz; Khodagholi, Fariba; Shaerzadeh, Fatemeh; Tavssolian, Faranak; Chaharband, Farkhondeh; Atyabi, Fatemeh; Sharifzadeh, Mohammad; Amini, Mohsen; Dinarvand, Rassoul

    2015-11-01

    The critical role of metal ions and in particular iron in oxidative stress and protein aggregation offers chelation therapy as a sensible pharmaceutical strategy in oxidative stress-induced neuronal damages. In this research, we conjugated an iron-chelating agent, deferasirox, to cationized human serum albumin molecules in order to develop a novel brain delivery system for the management of neurodegenerative disorders due to the significant role of oxidative stress-induced neuronal injury in such diseases. Cationized albumin is known to be able to transport to brain tissue via adsorptive-mediated transcytosis. The developed structures were molecularly characterized, and their conjugation ratio was determined. PC12 cell line was utilized to evaluate the neuroprotective features of these newly developed molecules in the presence of hydrogen peroxide neuronal damage and to identify the mechanisms behind the observed neuronal protection including apoptotic and autophagic pathways. Furthermore, a rat model of Alzheimer's disease was utilized to evaluate the impact of conjugated structures in vivo. Data analysis revealed that the conjugated species were able to hinder apoptotic cell death while enhancing autophagic process. The developed conjugated species were also able to attenuate amyloid beta-induced learning deficits when administered peripherally.

  15. The importance of energetic particle injections and cross-energy and -species interactions to the acceleration and loss of relativistic electrons in Earth's outer radiation belt (invited talk)

    Science.gov (United States)

    Turner, Drew; Gkioulidou, Matina; Ukhorskiy, Aleksandr; Gabrielse, Christine; Runov, Andrei; Angelopoulos, Vassilis

    2014-05-01

    Earth's radiation belts provide a natural laboratory to study a variety of physical mechanisms important for understanding the nature of energetic particles throughout the Universe. The outer electron belt is a particularly variable population, with drastic changes in relativistic electron intensities occurring on a variety of timescales ranging from seconds to decades. Outer belt variability ultimately results from the complex interplay between different source, loss, and transport processes, and all of these processes are related to the dynamics of the inner magnetosphere. Currently, an unprecedented number of spacecraft are providing in situ observations of the inner magnetospheric environment, including missions such as NASA's THEMIS and Van Allen Probes and ESA's Cluster and operational monitors such as NOAA's GOES and POES constellations. From a sampling of case studies using multi-point observations, we present examples showcasing the significant importance of two processes to outer belt dynamics: energetic particle injections and wave-particle interactions. Energetic particle injections are transient events that tie the inner magnetosphere to the near-Earth magnetotail; they involve the rapid inward transport of plasmasheet particles into the trapping zone in the inner magnetosphere. We briefly review key concepts and present new evidence from Van Allen Probes, GOES, and THEMIS of how these injections provide: 1. the seed population of electrons that are subsequently accelerated locally to relativistic energies in the outer belt and 2. the source populations of ions and electrons that produce a variety of ULF and VLF waves, which are also important for driving outer belt dynamics via wave-particle interactions. Cases of electron acceleration by chorus waves, losses by plasmaspheric hiss and EMIC waves, and radial transport driven by ULF waves will also be presented. Finally, we discuss the implications of this developing picture of the system, namely how

  16. Iron-chelating agent, deferasirox, inhibits neutrophil activation and extracellular trap formation.

    Science.gov (United States)

    Kono, Mari; Saigo, Katsuyasu; Yamamoto, Shiori; Shirai, Kohei; Iwamoto, Shuta; Uematsu, Tomoko; Takahashi, Takayuki; Imoto, Shion; Hashimoto, Makoto; Minami, Yosuke; Wada, Atsushi; Takenokuchi, Mariko; Kawano, Seiji

    2016-10-01

    Iron-chelating agents, which are frequently prescribed to transfusion-dependent patients, have various useful biological effects in addition to chelation. Reactive oxygen species (ROS) produced by neutrophils can cause pulmonary endothelial cell damage, which can lead to acute lung injury (ALI). We previously reported that deferasirox (DFS), an iron-chelating agent, inhibits phorbol myristate acetate (PMA) or formyl-methionyl-leucyl-phenylalanine (fMLP)-induced ROS production in neutrophils, in vitro. Here, we investigate whether DFS inhibits vacuolization in neutrophils and neutrophil extracellular trap (NET) formation. Human neutrophils were incubated with DFS and stimulated with PMA or fMLP. Human neutrophils were separated from heparinized peripheral blood using density gradient centrifugation, and subsequently incubated with DFS. After 10 minutes, neutrophils were stimulated by PMA or fMLP. Vacuole formation was observed by electron microscopy. For observing NET formations using microscopes, immunohistological analyses using citrullinated histone H3 and myeloperoxidase antibodies, and SYTOX Green (an impermeable DNA detection dye) staining, were conducted. NET formation was measured as the quantity of double-stranded DNA (dsDNA), using the AccuBlue Broad Range dsDNA Quantitation Kit. DFS (50 μmol/L) inhibited vacuole formation in the cytoplasm and NET formation. Additionally, 5-100 μmol/L concentration of DFS inhibited the release of dsDNA in a dose-independent manner. We demonstrate that DFS inhibits not only ROS production but also vacuolization and NET formation in neutrophils. These results suggest the possibility of protective effects of DFS against NET-related adverse effects, including ALI and thrombosis.

  17. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  18. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA.

    Science.gov (United States)

    Wu, Qing; Cui, Yanrui; Li, Qilu; Sun, Jianhui

    2015-01-01

    Tetrasodium of N,N-bis(carboxymethyl) glutamic acid (GLDA), a novel readily biodegradable chelating ligand, was employed for the first time to remove heavy metals from industrial sludge generated from a local battery company. The extraction of cadmium, nickel, copper, and zinc from battery sludge with the presence of GLDA was studied under different experimental conditions such as contact times, pH values, as well as GLDA concentrations. Species distribution of metals in the sludge sample before and after extraction with GLDA was also analyzed. Current investigation showed that (i) GLDA was effective for Cd extraction from sludge samples under various conditions. (ii) About 89% cadmium, 82% nickel and 84% copper content could be effectively extracted at the molar ratio of GLDA:M(II)=3:1 and at pH=4, whereas the removal efficiency of zinc was quite low throughout the experiment. (iii) A variety of parameters, such as contact time, pH values, the concentration of chelating agent, stability constant, as well as species distribution of metals could affect the chelating properties of GLDA.

  19. Iron chelator daphnetin against Pneumocystis carinii in vitro

    Institute of Scientific and Technical Information of China (English)

    叶彬; 郑玉强; 武卫华; 张静

    2004-01-01

    Background Although there are several drugs and drug combinations for the treatment of Pneumocystis carinii (P. carinii) pneumonia, all drugs have the toxicity as well as low efficacy. Iron chelators have been proposed as a source of new drugs for combating these infections. We hypothesized that iron chelators would suppress the growth of P. carinii by deprivation of the nutritional iron required for growth. In this study, a short-term axenic culture system of P. carinii was established. Daphnetin (7,8-dihydroxycoumarin), a known iron chelator, was demonstrated to exhibit in vitro activity against P. carinii in this system. Methods P. carinii organisms were obtained from the lungs of immunosuppressed rats. The culture system consisted of Iscove Dulbecco Eagle's Minimum Essential Medium (IMDM), supplemented with S-adenosyl-L-methionine, N-acetylglucosamine, putrescine, L-cysteine, L-glutamine, 2-mercaptoethanol, and fetal bovine serum, and was maintained at 37℃, in 5% CO2, 95% O2, at the optimal pH of 8.0. The culture system was used to assess the effect of daphnetin on the proliferation of P. carinii organisms. The ultrastructures of the treated organisms were observed by transmission electron microscopy.Conclusions Daphnetin can suppress the growth of P. carinii in vitro. The efficacy of daphnetin in suppressing the the growth of P. carinii in vitro is related to its ability to chelate iron.

  20. Chelation of aluminum by combining deferasirox and deferiprone in rats.

    Science.gov (United States)

    Saljooghi, Amir Shokooh

    2012-09-01

    The hypothesis that two known chelators deferasirox and deferiprone (L1) might be more efficient as combined treatment than as single therapies in removing aluminum from the body was tested in a new acute rat model. Seven-week-old male Wistar rats received chelators: deferasirox (orally [p.o.]), L1 (p.o.) or deferasirox + L1 as 100 or 200 mg/kg dose half an hour after a single intraperitoneal administration of 6 mg Al/kg body weight in the form of chloride. Serum aluminum concentration, urinary aluminum and iron excretions were determined by graphite furnace atomic absorption spectrometry. Both chelators were effective only at the higher dose level. While deferasirox was more effective than L1 in enhancing urinary aluminum excretion, L1 was more effective than deferasirox in enhancing urinary iron excretion. In the combined treatment group, deferasirox did not increase the L1 effect on aluminum and L1 did not increase the effect of deferasirox on iron elimination. Our results support the usefulness of this animal model for preliminary in vivo testing of aluminum chelators. Urinary values were more useful due to the high variability of serum results.

  1. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  2. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    Science.gov (United States)

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life.

  3. Supported Oxide Catalysts from Chelating Precursors

    Science.gov (United States)

    Prieto-Centurion, Dario

    Supported Fe catalysts and, in particular, Fe and substituted MFI zeolites have attracted industrial and academic attention due to their ability to promote selective catalytic reduction of NOx and selective partial oxidation of hydrocarbons. It is generally accepted that some form of highly dispersed, binuclear or atomically-isolated metal species are involved in the selective processes catalyzed these materials. Several studies have sought to reproduce the structures and reactivity of these substituted zeolites on dierent supports. Given that specialized reagents or preparation conditions that are required in some of these preparation methods, and that multiple surface structures are often formed, this dissertation aimed to develop a route to highly dispersed supported transition metals using commonly available reactants and synthesis routes. Described here is a straightforward and effective procedure to control dispersion and surface speciation of Fe on SiO2 and CeO2 through incipient wetness impregnation (IWI) of the support with aqueous, anionic complexes of Fe3+ and ethylenediaminetetraacetic acid (EDTA) followed by oxidative heat-treatment. On SiO2, this method preferentially creates isolated surface structures up to loading of 0.9 Fe nm-2 if using alkali counter-cations. This isolated species display classic 'single-site' behavior|constant turn over frequency (TOF) with increasing Fe surface density|in the oxidation of adamantane with H 2O2, indicating active sites are equally accessible and equally active within this range of surface density. Additionally, TOF increases linearly with electronegativity of the alkali counter-cation, suggesting electronic promotion. Conversely, IWI of unprotected Fe3+ produces agglomerates less active in this reaction. On CeO2, the sterics and negative charge imparted on Fe 3+ by EDTA4- inhibits incorporation of Fe into surface vacancies. Instead, formation of two-dimensional oligomeric structures which can undergo Fe3+-Fe2

  4. Iron(III)-chelating resins. X. Iron detoxification of human plasma with iron(III)-chelating resins

    NARCIS (Netherlands)

    Feng, M.; Feng, M.H.; van der Does, L.; Bantjes, A.; Bantjes, A.

    1994-01-01

    Iron detoxification of human blood plasma was studied with resins containing desferrioxamine B (DFO) or 3-hydroxy-2-methyl-4(1H)-pyridinone (HMP) as iron(III)-chelating groups. The behaviour of four resins was investigated: DFO-Sepharose, HMP-Sepharose and crosslinked copolymers of

  5. Chelation-Assisted, Copper(II) Acetate-Accelerated Azide-Alkyne Cycloaddition

    Science.gov (United States)

    Kuang, Gui-Chao; Michaels, Heather A.; Simmons, J. Tyler; Clark, Ronald J.; Zhu, Lei

    2010-01-01

    We described in a previous communication (ref. 13) a variant of the popular CuI-catalyzed azide-alkyne cycloaddition (AAC) process where 5 mol% Cu(OAc)2 in the absence of any added reducing agent is sufficient to enable the reaction. 2-Picolylazide (1) and 2-azidomethylquinoline (2) were found to be by far the most reactive carbon azide substrates that convert to 1,2,3-triazoles in as short as a few minutes under the discovered conditions. We hypothesized that the abilities of 1 and 2 to chelate CuII contribute significantly to the observed high reaction rates. The current work examines the effect of auxiliary ligands near the azido group other than pyridyl for CuII on the efficiency of the Cu(OAc)2-accelerated AAC reaction. The carbon azides capable of binding to the catalytic copper center at the alkylated azido nitrogen in a chelatable fashion were indeed shown to be superior substrates under the reported conditions. The chelation between carbon azide 11 and CuII was demonstrated in an X-ray single crystal structure. In a limited set of examples, the ligand tris(benzyltriazolylmethyl)amine (TBTA), developed by Fokin et al. for assisting the original CuI-catalyzed AAC reactions (ref. 8), also dramatically enhances the Cu(OAc)2-accelerated AAC reactions involving non-chelating azides. This observation leads to the hypothesis of an additional effect of chelating azides on the efficiencies of Cu(OAc)2-accelerated AAC reactions, which is to facilitate the rapid reduction of CuII to highly catalytic CuI species. Mechanistic studies on the AAC reactions with particular emphasis on the role of carbon azide/copper interactions will be conducted based on the observations reported in this work. Finally, the immediate utility of the product 1,2,3-triazole molecules derived from chelating azides as multidentate metal coordination ligands is demonstrated. The resulting triazolyl-containing ligands are expected to bind with transition metal ions via the N(2) nitrogen of the 1

  6. An unprecedented photochromic system with cis-oriented dithienyl-dithiolenes supported by metal chelation.

    Science.gov (United States)

    Wang, Jiang; Shi, Lin-Xi; Wang, Jin-Yun; Chen, Jin-Xiang; Liu, Sheng-Hua; Chen, Zhong-Ning

    2017-02-14

    4,5-Bis(2-methyl-5-phenylthiophen-3-yl)-1,3-dithiol-2-one (L1o) was elaborately designed to afford dithienyl-dithiolene as a new photochromic ligand. We describe herein the preparation and characterization of unprecedented photochromic dithienyl-dithiolene complexes with cis-orientation of dithienylethene (DTE) stabilized by metal chelation instead of conventional cyclopentene. The treatment of L1o with sodium methoxide in methanol afforded a disodium salt of dithiolate dianion, which reacts with M(dppe)Cl2 (dppe = 1,2-bis(diphenylphosphino)ethane, M = Ni, Pd) to give neutral compounds M(dppe)(dithiolate) as established by X-ray crystallography. The reaction of L1o with NiCl2 in the presence of sodium methoxide allows the isolation of an anionic nickel(ii) bis(dithienyl-dithiolene) complex with photochemical inertness. In contrast, the corresponding reaction with ZnCl2 afforded a dianionic zinc(ii) complex chelated by two dianionic dithienyl-dithiolenes, which displays stepwise photocyclization upon irradiation with UV light at 312 nm as demonstrated experimentally and theoretically. Only when dithienyl-dithiolene behaves as a dicationic ligand instead of neutral or monoanionic species, it is possible to achieve reversible photochromism in the corresponding metal complexes.

  7. Targeting mitochondrial cell death pathway to overcome drug resistance with a newly developed iron chelate.

    Directory of Open Access Journals (Sweden)

    Avishek Ganguly

    Full Text Available BACKGROUND: Multi drug resistance (MDR or cross-resistance to multiple classes of chemotherapeutic agents is a major obstacle to successful application of chemotherapy and a basic problem in cancer biology. The multidrug resistance gene, MDR1, and its gene product P-glycoprotein (P-gp are an important determinant of MDR. Therefore, there is an urgent need for development of novel compounds that are not substrates of P-glycoprotein and are effective against drug-resistant cancer. METHODOLOGY/PRINCIPAL FINDINGS: In this present study, we have synthesized a novel, redox active Fe (II complex (chelate, iron N- (2-hydroxy acetophenone glycinate (FeNG. The structure of the complex has been determined by spectroscopic means. To evaluate the cytotoxic effect of FeNG we used doxorubicin resistant and/or sensitive T lymphoblastic leukemia cells and show that FeNG kills both the cell types irrespective of their MDR phenotype. Moreover, FeNG induces apoptosis in doxorubicin resistance T lymphoblastic leukemia cell through mitochondrial pathway via generation reactive oxygen species (ROS. This is substantiated by the fact that the antioxidant N-acetyl-cysteine (NAC could completely block ROS generation and, subsequently, abrogated FeNG induced apoptosis. Therefore, FeNG induces the doxorubicin resistant T lymphoblastic leukemia cells to undergo apoptosis and thus overcome MDR. CONCLUSION/SIGNIFICANCE: Our study provides evidence that FeNG, a redox active metal chelate may be a promising new therapeutic agent against drug resistance cancers.

  8. Spectral, biological screening of metal chelates of chalcone based Schiff bases of N-(3-aminopropyl) imidazole.

    Science.gov (United States)

    Kalanithi, M; Rajarajan, M; Tharmaraj, P; Sheela, C D

    2012-02-15

    Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol(HL(1)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol(HL(2)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol(HL(3)). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry.

  9. Spectral, biological screening of metal chelates of chalcone based Schiff bases of N-(3-aminopropyl) imidazole

    Science.gov (United States)

    Kalanithi, M.; Rajarajan, M.; Tharmaraj, P.; Sheela, C. D.

    2012-02-01

    Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol( HL1), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol( HL2), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol( HL3). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry.

  10. Examining the fixation kinetics of chelated and non-chelated copper and the applications to micronutrient management in semiarid alkaline soils

    Science.gov (United States)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.; Kusi, N. Y. O.

    2016-02-01

    This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semiarid soils of the Southern High Plains, USA, using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system compared to the chelated within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrients over time, highlighting the significance of timing even when chelated micronutrients are used. The strengths of the relationship of change in available Cu with respect to other micronutrients (iron (Fe), manganese (Mn), and zinc (Zn)) were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81), with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated system. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second-order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semiarid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  11. Snowball Earth

    OpenAIRE

    2016-01-01

    In the ongoing quest to better understand where life may exist elsewhere in the Universe, important lessons may be gained from our own planet. In particular, much can be learned from planetary glaciation events that Earth suffered ∼600 million years ago, so-called `Snowball Earth' episodes. I begin with an overview of how the climate works. This helps to explain how the ice-albedo feedback effect can destabilise a planet's climate. The process relies on lower temperatures causing more ice to ...

  12. Gene trees, species trees and Earth history combine to shed light on the evolution of migration in a model avian system.

    Science.gov (United States)

    Voelker, Gary; Bowie, Rauri C K; Klicka, John

    2013-06-01

    The evolution of migration in birds has fascinated biologists for centuries. In this study, we performed phylogenetic-based analyses of Catharus thrushes, a model genus in the study of avian migration, and their close relatives. For these analyses, we used both mitochondrial and nuclear genes, and the resulting phylogenies were used to trace migratory traits and biogeographic patterns. Our results provide the first robust assessment of relationships within Catharus and relatives and indicate that both mitochondrial and autosomal genes contribute to overall support of the phylogeny. Measures of phylogenetic informativeness indicated that mitochondrial genes provided more signal within Catharus than did nuclear genes, whereas nuclear loci provided more signal for relationships between Catharus and close relatives than did mitochondrial genes. Insertion and deletion events also contributed important support across the phylogeny. Across all taxa included in the study, and for Catharus, possession of long-distance migration is reconstructed as the ancestral condition, and a North American (north of Mexico) ancestral area is inferred. Within Catharus, sedentary behaviour evolved after the first speciation event in the genus and is geographically and temporally correlated with Central American distributions and the final closure of the Central American Seaway. Migratory behaviour subsequently evolved twice in Catharus and is geographically and temporally correlated with a recolonization of North America in the late Pleistocene. By temporally linking speciation events with changes in migratory condition and events in Earth history, we are able to show support for several competing hypotheses relating to the geographic origin of migration. © 2013 John Wiley & Sons Ltd.

  13. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  14. Utilizing NASA Earth Observing System (EOS) Data to Determine Ideal Planting Locations for Wetland Tree Species in St. Bernard Parish, Louisiana

    Science.gov (United States)

    Reahard, Ross; Arguelles, Maria; Strong, Emma; Ewing, Michael; Kelly, Chelsey

    2012-01-01

    St. Bernard Parish, in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a combination of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have worked not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for coastal forests. Using NASA EOS, NRCS soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of wetland trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using LIDAR data and classifying existing land cover in the study area from ASTER multispectral satellite data. Low altitude AVIRIS hyperspectral imagery was used to assess the health of vegetation over an area near the intersection of the Mississippi River Gulf Outlet Canal (MRGO) and Bayou la Loutre. Historic extent of coastal forests was mapped using aerial photos from USGS collected between 1952 and 1956. The final products demonstrated the utility of combining NASA EOS with other geospatial data in assessing, monitoring, and restoring of coastal ecosystems in Louisiana. This methodology also provides a useful template for other ecological forecasting and coastal restoration applications.

  15. Removal of cadmium from fish sauce using chelate resin.

    Science.gov (United States)

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities.

  16. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    Energy Technology Data Exchange (ETDEWEB)

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  17. Lanthanides caged by the organic chelates; structural properties.

    Science.gov (United States)

    Smentek, Lidia

    2011-04-13

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  18. Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers.

    Science.gov (United States)

    Dzhardimalieva, Gulzhian I; Uflyand, Igor E

    2017-08-08

    The synthetic methodologies, physico-chemical peculiarities, properties, and structure of metal chelate dendrimers and star and hyperbranched polymers are considered. These compounds are subdivided into molecular, intracomplex, and macrocyclic types which in turn are classified depending on the nature of the donor atoms (N,N-, N,O-, N,S-, O,O-, O,S-, S,S-, P,P-chelates, etc.). Special attention is paid to the features of the preparation of metal chelate star polymers by "arm-first", "core-first" and click-to-chelate approaches. The main data on the synthesis, spatial structure and properties of the metal chelate hyperbranched polymers are summarized. The basic concepts and synthetic strategies leading to the different types of supramolecular metal chelate dendrimers are analyzed. The problems and future prospects of metal chelate dendrimers and star and hyperbranched polymers are outlined. The bibliography includes papers published after 2010.

  19. Extraction of heavy metals from soils using biodegradable chelating agents.

    Science.gov (United States)

    Tandy, Susan; Bossart, Karin; Mueller, Roland; Ritschel, Jens; Hauser, Lukas; Schulin, Rainer; Nowack, Bernd

    2004-02-01

    Metal pollution of soils is widespread across the globe, and the clean up of these soils is a difficulttask. One possible remediation technique is ex-situ soil washing using chelating agents. Ethylenediaminetetraacetic acid (EDTA) is a very effective chelating agent for this purpose but has the disadvantage that it is quite persistent in the environment due to its low biodegradability. The aim of our work was to investigate the biodegradable chelating agents [S,S]-ethylenediaminedisuccinic acid (EDDS), iminodisuccinic acid (IDSA), methylglycine diacetic acid (MGDA), and nitrilotriacetic acid (NTA) as potential alternatives and compare them with EDTA for effectiveness. Kinetic experiments showed for all metals and soils that 24 h was the optimum extraction time. Longer times only gave minor additional benefits for heavy metal extraction but an unwanted increase in iron mobilization. For Cu at pH 7, the order of the extraction efficiency for equimolar ratios of chelating agent to metal was EDDS > NTA> IDSA > MGDA > EDTA and for Zn it was NTA > EDDS > EDTA >MGDA > IDSA. The comparatively low efficiency of EDTA resulted from competition between the heavy metals and co-extracted Ca. For Pb the order of extraction was EDTA > NTA >EDDS due to the much stronger complexation of Pb by EDTA compared to EDDS. At higher concentration of complexing agent, less difference between the agents was found and less pH dependence. There was an increase in heavy metal extraction with decreasing pH, but this was offset by an increase in Ca and Fe extraction. In sequential extractions EDDS extracted metals almost exclusively from the exchangeable, mobile, and Mn-oxide fractions. We conclude that the extraction with EDDS at pH 7 showed the best compromise between extraction efficiency for Cu, Zn, and Pb and loss of Ca and Fe from the soil.

  20. Decontamination of process equipment using recyclable chelating solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.; Lenore, C.; Ulbricht, S. [Babcock & Wilcox, Co., R& DD, Alliance, OH (United States)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  1. Flue gas desulfurization/denitrification using metal-chelate additives

    Science.gov (United States)

    Harkness, John B. L.; Doctor, Richard D.; Wingender, Ronald J.

    1986-01-01

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  2. Mineral Levels in Thalassaemia Major Patients Using Different Iron Chelators.

    Science.gov (United States)

    Genc, Gizem Esra; Ozturk, Zeynep; Gumuslu, Saadet; Kupesiz, Alphan

    2016-03-01

    The goal of the present study was to determine the levels of minerals in chronically transfused thalassaemic patients living in Antalya, Turkey and to determine mineral levels in groups using different iron chelators. Three iron chelators deferoxamine, deferiprone and deferasirox have been used to remove iron from patients' tissues. There were contradictory results in the literature about minerals including selenium, zinc, copper, and magnesium in thalassaemia major patients. Blood samples from the 60 thalassaemia major patients (the deferoxamine group, n = 19; the deferiprone group, n = 20 and the deferasirox group, n = 21) and the controls (n = 20) were collected. Levels of selenium, zinc, copper, magnesium, and iron were measured, and all of them except iron showed no significant difference between the controls and the patients regardless of chelator type. Serum copper levels in the deferasirox group were lower than those in the control and deferoxamine groups, and serum magnesium levels in the deferasirox group were higher than those in the control, deferoxamine and deferiprone groups. Iron levels in the patient groups were higher than those in the control group, and iron levels showed a significant correlation with selenium and magnesium levels. Different values of minerals in thalassaemia major patients may be the result of different dietary intake, chelator type, or regional differences in where patients live. That is why minerals may be measured in thalassaemia major patients at intervals, and deficient minerals should be replaced. Being careful about levels of copper and magnesium in thalassaemia major patients using deferasirox seems to be beneficial.

  3. Examining the fixation kinetics of chelated and non-chelated copper micronutrient and the applications to micronutrient management in semi-arid alkaline soils

    Science.gov (United States)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.

    2015-10-01

    The relationship between the deficiency of a nutrient in plants and its total concentration in the soil is complex. This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (Ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semi-arid soils of the Southern High Plains, US using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrient over time, highlighting the significance of timing even when chelated micronutrients are applied. The strengths of the relationship of change in available Cu with respect to other micronutrients [iron (Fe), manganese (Mn), and zinc (Zn)] were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81) with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semi-arid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  4. Hydroxyurea could be a good clinically relevant iron chelator.

    Directory of Open Access Journals (Sweden)

    Khushnooma Italia

    Full Text Available Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  5. Elucidating Interactions between DMSO and Chelate-Based Ionic Liquids.

    Science.gov (United States)

    Chen, Hang; Wang, Xinyu; Yao, Jia; Chen, Kexian; Guo, Yan; Zhang, Pengfei; Li, Haoran

    2015-12-21

    The C-D bond stretching vibrations of deuterated dimethyl sulfoxide ([D6 ]DMSO) and the C2 -H bond stretching vibrations of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (hfac) ligand in anion are chosen as probes to elucidate the solvent-solute interaction between chelate-based ionic liquids (ILs) and DMSO by vibrational spectroscopic studies. The indirect effect from the interaction of the adjacent S=O functional group of DMSO with the cation [C10 mim](+) and anion [Mn(hfac)3 ](-) of the ILs leads to the blue-shift of the C-D stretching vibrations of DMSO. The C2 -H bond stretching vibrations in hfac ligand is closely related to the ionic hydrogen bond strength between the cation and anion of chelate-based ILs. EPR studies reveal that the crystal field of the central metal is kept when the chelate-based ILs are in different microstructure environment in the solution.

  6. Tumor targeting of radiolabeled antibodies using HYNIC chelate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Sup; Chung, Wee Sup; Woo, Kwang Sun; Choi, Tae Hyun; Chung, Hye Kyung; Lee, Myung Jin; Kim, So Yeon; Jung, Jae Ho; Choi, Chang Woon; Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of); Darwati, Siti [National Nuclear Energy Agency, Tangerang (Indonesia)

    2004-07-01

    There is an increasing interest in the use of labeled antibodies for diagnosis of cancers as well as for therapy. Various radiolabeling methods have been used in order to obtain better tumor specific targeting for detection and therapy. It was generally used to tumor targeted immunotherapy and immunodetection that lym-1, mouse monoclonal antibody, was specific binding to surface antigen of Raji. The 3E8 antibody was produced from humanized anti-TAG-72 monoclonal antibody (AKA) by amino acid change in 95-99 residues of heavy chain complementary determinant regions (HCDRs) 3 using phage displayed library technology. In this study, we are investigating the usefulness of HYNIC chelate as a bifunctional chelating agent in radioimmunodetecton of tumor. Two types of antibodies, Lym-1 and 3E8, were used for the conjugation with HYNIC chelate. Lym-1 and 3E8 are specific antibodies to surface antigen of Non-Hogkin's lymphoma and TAG-72 antigen of colorectal carcinoma, respectively. We prepare HYNIC-antibody conjugates, determine radiolabeling yield with {sup 99m}Tc and evaluate tumor targeting in tumor bearing nude mice model.

  7. Chelate forms of biometalls. Theoretical aspects of obtaining and characteristics

    Directory of Open Access Journals (Sweden)

    A. Kapustyan

    2017-04-01

    Full Text Available The problem of microelements bioavailability is highlighted and the correct ways of its solution are substantiated as a result of generalization of theoretical aspects of obtaining of the biometals chelate forms. The characteristics of the main biogenic elements, their physiological significance, electrochemical properties are presented. The main examples of the participation of biometals in various biological processes are given. The properties and the structure peculiarities of biometals coordination complexes are considered in detail. It is shown that in obtaining of biometals chelate forms, there is the mutual selectivity and the affinity of biometals and ligands. The main factors of obtaining a hard metal complex are given. Potential bioligands for obtaining bioavailable forms of microelements are detailed. Among them there are amino acids, peptides, proteins, nucleic acids, carbohydrates. The possible character of complexation depending on the nature of the bioligand is indicated. Practical examples of preparation of biometals mixed ligand complexes are given. The expediency of using metabolic products and processing of lactic acid bacteria as promising components of mixed ligand chelate complexes is substantiated. These substances contain in their composition a mass of potential donor atoms that are capable to form covalent and coordination bonds with biomethalles, and also possess high biological and immunotropic activities. The use of this system in the biocoordination compounds of the "metals of life" can provide a synergistic effect of the components, significantly to expand the range of their physiological activity and to increase the degree of assimilation by the body.

  8. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  9. Capture of Co(II) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan.

    Science.gov (United States)

    Repo, Eveliina; Malinen, Leena; Koivula, Risto; Harjula, Risto; Sillanpää, Mika

    2011-03-15

    The adsorption of Co(II) by diethylenetriaminepentaacetic acid (DTPA)-modified silica gel and chitosan in the presence of EDTA and other interfering species was studied. Co(II) removal ranged from 93% to 96% from the solutions where Co(II) was totally chelated by EDTA. The amount of oxalate or Fe(II) did not affect the adsorption of Co(II) in the case of DTPA-chitosan. However, increasing the amount of oxalate enhanced the adsorption performance of DTPA-silica gel, probably due to the formation of new active sites on the silica gel surface. DTPA-chitosan was also effective in simulated decontamination solutions. For DTPA-silica gel, the rate of adsorption of free Co(II) was controlled by pore diffusion, but the rate of adsorption of Co(II)EDTA was controlled by the surface chelation reaction, which was attributed to the inhibited diffusion of Co(II)EDTA inside the silica gel mesopores. However, the macroporous structure of DTPA-chitosan enabled pore diffusion of both Co(II) and Co(II)EDTA. The equilibrium isotherms of DTPA-silica gel were best described by a BiLangmuir model, in which there are two different adsorption sites on the silica gel surface assigned to different speciations of DTPA. For DTPA-chitosan, the data fit best with a Sips model, which indicates system heterogeneity. Finally, measurements with capillary electrophoresis showed an increase in dissolved EDTA during adsorption, demonstrating the ability of DTPA-modified adsorbents to release Co(II) from its EDTA chelate. This promising result can provide a basis for applying the studied materials to the treatment of water effluents containing Co(II) chelated by EDTA by a simple one-step adsorption process. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Antiparkinson drug--Mucuna pruriens shows antioxidant and metal chelating activity.

    Science.gov (United States)

    Dhanasekaran, Muralikrishnan; Tharakan, Binu; Manyam, Bala V

    2008-01-01

    Parkinson's disease is a neurodegenerative disorder for which no neurorestorative therapeutic treatment is currently available. Oxidative stress plays an important role in the pathophysiology of Parkinson's disease. The ancient Indian medical system, Ayurveda, traditionally uses Mucuna pruriens to treat Parkinson's disease. In our earlier studies, Mucuna pruriens has been shown to possess antiparkinson and neuroprotective effects in animal models of Parkinson's disease. The antioxidant activity of Mucuna pruriens was demonstrated by its ability to scavenge DPPH radicals, ABTS radicals and reactive oxygen species. Mucuna pruriens significantly inhibited the oxidation of lipids and deoxyribose sugar. Mucuna pruriens exhibited divalent iron chelating activity and did not show any genotoxic/mutagenic effect on the plasmid DNA. These results suggest that the neuroprotective and neurorestorative effect of Mucuna pruriens may be related to its antioxidant activity independent of the symptomatic effect. In addition, the drug appears to be therapeutically safe in the treatment of patients with Parkinson's disease.

  11. Efficiency of cadmium chelation by phytochelatins in Nitzschia palea (Kützing) W. Smith.

    Science.gov (United States)

    Figueira, Etelvina; Freitas, Rosa; Guasch, Helena; Almeida, Salomé F P

    2014-03-01

    Phytochelatins (PCs) are thiol-rich peptides, enzymatically synthesized by plants and algae under exposure to certain metals (Cd, Pb, Zn, Ag, As, Cu). Due to their ability to bind metal ions, they play an important role in the cellular detoxification, forming stable metal-PC complexes that minimize the intracellular deleterious effects of metals. The aim of the present work was to evaluate the efficiency of PC-Cd chelation in the freshwater diatom Nitzschia palea under 0, 0.1 and 0.2 mg Cd L(-1), which induced different levels of oxidative stress. This objective was accomplished by the isolation of PC-Cd complexes through size exclusion chromatography. Two peaks were identified, corresponding to high molecular weight (HMW) and low molecular weight (LMW) complexes. In each of the complexes, Cd was quantified by inductively coupled plasma-mass spectrometry, thiol composition was determined by HPLC analysis and the efficiency of Cd chelation calculated by -SH/Cd ratios in HMW and LMW complexes at both Cd concentrations. Results showed that the majority of intracellular Cd was complexed with PCs (75.2-91.2 %). PCs-binding efficiency in this diatom species was higher at HMW than at LMW complexes and enhanced with the increase of Cd concentration exposure. Our work evidenced the important role of PCs as the main intracellular tolerance mechanism in this species. The efficiency increase of Cd-PC binding is related to the increment of PCs synthesis and to the number of Cd ions coordinately bonded to -SH groups in LMW and HMW complexes.

  12. Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, Bernard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-21

    Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magnetic iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.

  13. Chelation therapy in Wilson's disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators.

    Science.gov (United States)

    Delangle, Pascale; Mintz, Elisabeth

    2012-06-01

    Wilson's disease is an orphan disease due to copper homeostasis dysfunction. Mutations of the ATP7B gene induces an impaired functioning of a Cu-ATPase, impaired Cu detoxification in the liver and copper overload in the body. Indeed, even though copper is an essential element, which is used as cofactor by many enzymes playing vital roles, it becomes toxic when in excess as it promotes cytotoxic reactions leading to oxidative stress. In this perspective, human copper homeostasis is first described in order to explain the mechanisms promoting copper overload in Wilson's disease. We will see that the liver is the main organ for copper distribution and detoxification in the body. Nowadays this disease is treated life-long by systemic chelation therapy, which is not satisfactory in many cases. Therefore the design of more selective and efficient drugs is of great interest. A strategy to design more specific chelators to treat localized copper accumulation in the liver will then be presented. In particular we will show how bioinorganic chemistry may help in the design of such novel chelators by taking inspiration from the biological copper cell transporters.

  14. Final report submitted to the Department of Energy [Encapsulation of metal chelate and oxo catalysts in nanoporous hosts

    Energy Technology Data Exchange (ETDEWEB)

    Bein, Thomas

    2000-10-27

    The focus of this project is directed at the design of novel zeolite-based hybrid catalysts, based on encapsulated transition metal chelate complexes and metal oxo species. One goal is to achieve improved control over the active species in heterogeneous catalysis, as well as improved reactant and product selectivities. This is achieved by combining the catalytic activity of transition metal catalysts with the large surface area of microporous and mesoporous hosts. Furthermore, shape selectivity may be achieved through the well-defined pore structure of zeolites. Several families of complexes have been studied, including nitrogen chelate complexes, chiral salen complexes, and supported molybdenum-oxo species. In the group of nitrogen-containing metal chelate complexes, some are derived from triazacyclononane, while others are derived from tetradentate cyclam-type ligands. These complexes have been studied in solution, encapsulated in the cages of zeolites, and attached to the channel walls of the novel mesoporous MCM-41-type materials. The latter approach is based on covalent grafting of the ligand to the host, followed by metalation. These heterogenized complexes show good activity in highly selective olefin epoxidation reactions. Furthermore, we have investigated the encapsulation of chiral metal chelate complexes, including manganese salen complexes in the cages of EMT zeolite. This large-pore host allowed us to synthesize the entire complex in the zeolite in a multistep sequence. The epoxidation activity of these hybrid systems is truly encapsulated in the host cages: large substrate molecules such as cholesterol were not oxidized. Chiral epoxidation with enantiomeric excess of 80% was achieved. Zeolite-supported molybdenum-oxo species have also been synthesized and investigated. These systems are also very active and selective epoxidation catalysts. Comprehensive characterization with spectroscopic and structural techniques has been performed, including EXAFS

  15. DOWNSIZED CHELATING RESIN-PACKED MINICOLUMN PRECONCENTRATION FOR MULTIELEMENT DETERMINATION OF TRACE METALS BY ICP-MS

    Directory of Open Access Journals (Sweden)

    Dwinna Rahmi

    2010-11-01

    Full Text Available Chelating resin-packed minicolumn preconcentration was used for multielement determination of trace metals inseawater by inductively coupled plasma mass spectrometry (ICP-MS. The chelating resin-packed minicolumn wasconstructed with two syringe filters (DISMIC 13HP and Millex-LH and an iminodiacetate chelating resin (Chelex 100,200-400 mesh, with which trace metals in 50 mL of original seawater sample were concentrated into 0.50 mL of 2 Mnitric acid, and then 100-fold preconcentration of trace metals was achieved. Then, 0.50 mL analysis solution wassubjected to the multielement determination by ICP-MS equipped with a MicroMist nebulizer for micro-samplingintroduction. The preconcentration and elution parameters such as the sample-loading flow rate, the amount of 1 Mammonium acetate for elimination of matrix elements and the amount of 2 M nitric acid for eluting trace metals wasoptimized to obtain good recoveries and analytical detection limits for trace metals. The analytical results for V, Mn, Co,Ni, Cu, Zn, Mo, Cd, Pb, and U in three kinds of seawater certified reference materials (CRMs; CASS-3, NASS-4, andNASS-5 agreed well with their certified values. The observed values of rare earth elements (REEs in the aboveseawater CRMs were also consistent with the reference values. Therefore, the compiled reference values for theconcentrations of REEs in CASS-3, NASS-4, and NASS-5 were proposed based on the observed values and referencedata for REEs in these CRMs

  16. Natural iron chelators: Protective role in A549 cells of flavonoids-rich extracts of Citrus juices in Fe(3+)-induced oxidative stress.

    Science.gov (United States)

    Ferlazzo, Nadia; Visalli, Giuseppa; Cirmi, Santa; Lombardo, Giovanni Enrico; Laganà, Pasqualina; Di Pietro, Angela; Navarra, Michele

    2016-04-01

    Exogenous iron in particulate matter and imbalanced iron homeostasis cause deleterious effects on health. Natural and synthetic iron chelators may be of therapeutic benefit, therefore we evaluated the protective effect of Citrus flavonoids-rich extracts from bergamot and orange juices in iron overloaded human lung epithelial cells. Cytofluorimetric, biochemical and genotoxic analyses were performed in Fe2(SO4)3 exposed A549, pretreated with each extract whose chemical composition was previously detected. Chelating activity was assessed in cells by a calcein ester. Both extracts reduced the generation of reactive oxygen species and membrane lipid peroxidation, improved mitochondrial functionality, and prevented DNA-oxidative damage in iron-exposed cells. Antioxidant effects were attributed to the chelating property, blocking upstream the redox activity of iron. Flavonoid-rich extracts also induced antioxidant catalase. The bergamot and orange juice extracts had a broad-spectrum protective effect. Their use prevents iron oxidative injury and these natural iron chelators could be used as therapeutic agents.

  17. Preparation of Polysulfone-supported Phosphoramidic Acid Type Chelate Membrane and Its Sorption Properties for Ag+

    Institute of Scientific and Technical Information of China (English)

    WANG Bing; CUI Yong-fang; DU Qi-yun; PEI Guang-ling

    2002-01-01

    A blending chelate filter membrane with high chelate capacity for Ag+ has been prepared by blending of phosphoramidic acid resin and polysulfone. The major parameters influencing structure of the chelate filter membranes such as the blending ratio, phosphoramidic acid resin grain size and temperature of casting solution have been studied. The relationship among the chelate amount of Ag+, pH value, Ag+ concentration and phosphoramidic acid resin grain diameter were examined. The chelate filter membrane had a capacity of1438μg/cm2 for Ag+ under appropriate conditions.Sorption isotherm of Ag + could be expressed with the Freundlich sorption model. The dynamic chelate experiments proved that the sorption and desorption of membranes could be realized simultaneously for Ag+.

  18. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties

    Science.gov (United States)

    Zhu, Congqing; Yang, Caixia; Wang, Yongheng; Lin, Gan; Yang, Yuhui; Wang, Xiaoyong; Zhu, Jun; Chen, Xiaoyuan; Lu, Xin; Liu, Gang; Xia, Haiping

    2016-01-01

    The coordinating atoms in polydentate chelates are primarily heteroatoms. We present the first examples of pentadentate chelates with all binding atoms of the chelating agent being carbon atoms, denoted as CCCCC chelates. Having up to five metal-carbon bonds in the equatorial plane has not been previously observed in transition metal chemistry. Density functional theory calculations showed that the planar metallacycle has extended Craig-Möbius aromaticity arising from 12-center–12-electron dπ-pπ π-conjugation. These planar chelates have broad absorption in the ultraviolet-visible–near-infrared region and, thus, notable photothermal performance upon irradiation by an 808-nm laser, indicating that these chelates have potential applications in photothermal therapy. The combination of facile synthesis, high stability, and broad absorption of these complexes could make the polydentate carbon chain a novel building block in coordination chemistry. PMID:27574707

  19. A Review on Iron Chelators in Treatment of Iron Overload Syndromes

    Science.gov (United States)

    Mobarra, Naser; Shanaki, Mehrnoosh; Ehteram, Hassan; Nasiri, Hajar; Sahmani, Mehdi; Saeidi, Mohsen; Goudarzi, Mehdi; Pourkarim, Hoda; Azad, Mehdi

    2016-01-01

    Iron chelation therapy is used to reduce iron overload development due to its deposition in various organs such as liver and heart after regular transfusion. In this review, different iron chelators implicated in treatment of iron overload in various clinical conditions have been evaluated using more up-to-date studies focusing on these therapeutic agents. Deferoxamine, Deferiprone and Deferasirox are the most important specific US FDA-approved iron chelators. Each of these chelators has their own advantages and disadvantages, various target diseases, levels of deposited iron and clinical symptoms of the afflicted patients which may affect their selection as the best modality. Taken together, in many clinical disorders, choosing a standard chelator does not have an accurate index which requires further clarifications. The aim of this review is to introduce and compare the different iron chelators regarding their advantages and disadvantages, usage dose and specific applications. PMID:27928480

  20. Zinc chelation reduces hippocampal neurogenesis after pilocarpine-induced seizure.

    Directory of Open Access Journals (Sweden)

    Jin Hee Kim

    Full Text Available Several studies have shown that epileptic seizures increase hippocampal neurogenesis in the adult. However, the mechanism underlying increased neurogenesis after seizures remains largely unknown. Neurogenesis occurs in the subgranular zone (SGZ of the hippocampus in the adult brain, although an understanding of why it actively occurs in this region has remained elusive. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ. Previously, we demonstrated that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia. Using a lithium-pilocarpine model, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after seizure. Then, we injected the zinc chelator, clioquinol (CQ, 30 mg/kg, into the intraperitoneal space to reduce brain zinc availability. Neuronal death was detected with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after seizure. The total number of degenerating and live neurons was similar in vehicle and in CQ treated rats at 1 week after seizure. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX immunostaining 1 week after seizure. The number of BrdU, Ki67 and DCX positive cell was increased after seizure. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. Intracellular zinc chelator, N,N,N0,N-Tetrakis (2-pyridylmethyl ethylenediamine (TPEN, also reduced seizure-induced neurogenesis in the hippocampus. The present study shows that zinc chelation does not prevent neurodegeneration but does reduce seizure-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal neurogenesis after seizure.

  1. Speciation of arsenic using chelation solvent extraction and high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Cathum, Shamil J.; Obenauf, Alison; Punt, Monique [SAIC Canada, Ottawa, Ontario (Canada); Brown, Carl E. [Emergencies Engineering Technology Office, Environmental Technology Centre, Environment Canada, Ottawa, Ontario (Canada)

    2007-02-15

    Research interest in speciation of arsenic stems from its species dependent behavior in the environment and in living organisms. The complexity of the matrix to be analyzed and low concentrations of target arsenic species that may be labile or difficult to chromatogram, indicate that a suitable pre-treatment methodology is required. This study investigated the usefulness of chelation solvent extraction - high performance liquid chromatography (CSE-HPLC) for the speciation of arsenic in water. It involved reacting arsenic with the chelant known for its affinity towards arsenic, followed by extraction, separation, and identification of the arsenic-chelant-arsenic complex. Arsenic species having different physicochemical properties were investigated. Species, such as, As{sub 2}O{sub 3}, As{sub 3}O{sub 5}, KH{sub 2}AsO{sub 4}, Na{sub 2}HAsO{sub 4}, and NaAsO{sub 2}were detected as a group of closely eluted peaks with different retention times and spectral properties, whereas, the organic arsenic species CH {sub 3}Na {sub 2}AsO {sub 3}, o-arsanilic acid, roxarson and triphenyl arsine separated quite well on the EnviroseP-CM HPLC column. Key method parameters, such as, type of HPLC column, composition of mobile phase and organic solvents affecting peak resolution and sensitivity were optimized. Real environmental matrices contaminated with arsenic were analyzed under varying wavelengths ({lambda}{sub max} = 190, 210, 220, 234, 244, and 282 nm), with good precision. Different arsenic species were detected in these samples with excellent background and signal-to-noise ratios demonstrating the robustness of the method. The detection limit, reproducibility, selectivity, accuracy, and dynamic range of the calibration curves were evaluated. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  2. Complexation and Antimicrobial Studies of Some Divalent Metal Chelates

    Directory of Open Access Journals (Sweden)

    Suparna Ghosh

    2010-01-01

    Full Text Available Metal chelates of Ni(II and Cu(II with the ligand 5-acetamido-1,3,4-thiadiazole-2-sulphonamide have been synthesized. The isolated compounds have been characterized by elemental analysis, molar conductivity, magnetic moment, electronic and IR spectral studies. The analytical data reflects the metal to ligand stoichiometry to be 1: 2. The conductivity data of the complexes also suggests their non-electrolytic nature. The stability constants and free energy change for the complexes have been calculated.. Ligand and their complexes have been screened for their biological activity and the data show good activity of these complexes and ligands.

  3. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles

    DEFF Research Database (Denmark)

    Hervella, Pablo; Ortiz, Elisa Parra; Needham, David

    2016-01-01

    MOTIVATION: In the field of imaging, (18)F-fluorodeoxyglucose (FDG) PET imaging allows evaluation of glucose metabolism and is the most widely used imaging agent clinically for metastatic cancer. While it can certainly detect the metastatic disease, in order to provide a more fully "individualized...... Trioleate (Triolein) with copper using the hydrophobic chelator Octaethyl porphyrin (OEP). RESEARCH PLAN AND METHODS: The research plan for this study was to (1) Formulate nanoparticles and control nanoparticle size using a modification of the solvent injection technique, named fast ethanol injection; (2...

  4. Combined Chelation Therapy with Deferasirox and Deferoxamine in Thalassemia

    OpenAIRE

    Lal, Ashutosh; Porter, John; Sweeters, Nancy; Ng, Vivian; Evans, Patricia; Neumayr, Lynne; Kurio, Gregory; Harmatz, Paul; Vichinsky, Elliott

    2012-01-01

    Iron overload is the primary cause of mortality and morbidity in thalassemia major despite advances in chelation therapy. We performed a pilot clinical trial to evaluate the safety and efficacy of combined therapy with deferasirox (DFX, 20-30 mg/kg daily) and deferoxamine (DFO, 35-50 mg/kg on 3-7 days/week) in 22 patients with persistent iron overload or organ damage. In the 18 subjects completing 12 months of therapy, median liver iron concentration decreased by 31% from 17.4 mg/g (range 3.9...

  5. Synthesis and Adsorption Properties of Polystyrene-supported Chelating Resins Containing Heterocyclic Functional Groups

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A series of new chelating resins with incorporating heterocyclic functional groups:pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of polyethylene glycol co ntaining sulfur. These chelating resins were found to show high adsorption capacities for Ag+, Hg2+, Au3+ and Pd2+, and the presence of spacer arm can enhance adsorption ability due to increase the hydrophilicity of the chelating resins.

  6. Alkenes as Chelating Groups in Diastereoselective Additions of Organometallics to Ketones.

    Science.gov (United States)

    Raffier, Ludovic; Gutierrez, Osvaldo; Stanton, Gretchen R; Kozlowski, Marisa C; Walsh, Patrick J

    2014-10-13

    Alkenes have been discovered to be chelating groups to Zn(II), enforcing highly stereoselective additions of organozincs to β,γ-unsaturated ketones. (1)H NMR studies and DFT calculations provide support for this surprising chelation mode. The results expand the range of coordinating groups for chelation-controlled carbonyl additions from heteroatom Lewis bases to simple C-C double bonds, broadening the 60 year old paradigm.

  7. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    Science.gov (United States)

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while maintaining food quality.

  8. Prospects for trivalent rare earth molecular vapor lasers for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Krupke, W.F.

    1976-04-12

    The dynamical properties of three types of RE/sup 3 +/ molecular vapors were considered: (1) rare earth trihalogens, (2) rare earth trihalogens complexed with transition metal trihalogens, and (3) rare earth chelates. Radiative and nonradiative (unimolecular and bimolecular) transition probabilities have been calculated using phenomenological models predicted on the unique electronic structure of the triply ionized RE ion (well shielded ground electronic configuration of equivalent of electrons). Although all the lanthanide ions have been treated in some detail, specific results are presented for the Nd/sup 3 +/ and Tb/sup 3 +/ ions to illustrate the systematics of these vapors as a class of new laser media. Once verified, these phenomenological models will provide a powerful tool for the directed experimental exploration of these systems. Because of the structural similarity to the triply ionized actinides, comments offered here for the lanthanide rare earth series generally apply to gaseous actinide lasers which are also under consideration.

  9. Effect of metal chelators on the oxidative stability of model wine.

    Science.gov (United States)

    Kreitman, Gal Y; Cantu, Annegret; Waterhouse, Andrew L; Elias, Ryan J

    2013-10-02

    Oxidation is a major problem with respect to wine quality, and winemakers have few tools at their disposal to control it. In this study, the effect of exogenous Fe(II) (bipyridine; Ferrozine) and Fe(III) chelators (ethylenediaminetetraacetic acid, EDTA; phytic acid) on nonenzymatic wine oxidation was examined. The ability of these chelators to affect the formation of 1-hydroxyethyl radicals (1-HER) and acetaldehyde was measured using a spin trapping technique with electron paramagnetic resonance (EPR) and by HPLC-PDA, respectively. The chelators were then investigated for their ability to prevent the oxidative loss of an important aroma-active thiol, 3-mercaptohexan-1-ol (3MH). The Fe(II)-specific chelators were more effective than the Fe(III) chelators with respect to 1-HER inhibition during the early stages of oxidation and significantly reduced oxidation markers compared to a control during the study. However, although the addition of Fe(III) chelators was less effective or even showed an initial pro-oxidant activity, the Fe(III) chelators proved to be more effective antioxidants compared to Fe(II) chelators after 8 days of accelerated oxidation. In addition, it is shown for the first time that Fe(II) and Fe(III) chelators can significantly inhibit the oxidative loss of 3MH in model wine.

  10. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  11. Iron acquisition and regulation systems in Streptococcus species.

    Science.gov (United States)

    Ge, Ruiguang; Sun, Xuesong

    2014-05-01

    Gram-positive Streptococcus species are responsible for millions of cases of meningitis, bacterial pneumonia, endocarditis, erysipelas and necrotizing fasciitis. Iron is essential for the growth and survival of Streptococcus in the host environment. Streptococcus species have developed various mechanisms to uptake iron from an environment with limited available iron. Streptococcus can directly extract iron from host iron-containing proteins such as ferritin, transferrin, lactoferrin and hemoproteins, or indirectly by relying on the employment of specialized secreted hemophores (heme chelators) and small siderophore molecules (high affinity ferric chelators). This review presents the most recent discoveries in the iron acquisition system of Streptococcus species - the transporters as well as the regulators.

  12. Selective separation of indium by iminodiacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, M.C.B.; Benedetto, J.S. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Martins, A.H. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ahmartin@demet.ufmg.br

    2007-04-15

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite{sup R} IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite{sup R} IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm{sup 3} sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite{sup R} IRC748. (author)

  13. Chelating polymeric beads as potential therapeutics for Wilson's disease.

    Science.gov (United States)

    Mattová, Jana; Poučková, Pavla; Kučka, Jan; Skodová, Michaela; Vetrík, Miroslav; Stěpánek, Petr; Urbánek, Petr; Petřík, Miloš; Nový, Zbyněk; Hrubý, Martin

    2014-10-01

    Wilson's disease is a genetic disorder caused by a malfunction of ATPase 7B that leads to high accumulation of copper in the organism and consequent toxic effects. We propose a gentle therapy to eliminate the excessive copper content with oral administration of insoluble non-resorbable polymer sorbents containing selective chelating groups for copper(II). Polymeric beads with the chelating agents triethylenetetramine, N,N-di(2-pyridylmethyl)amine, and 8-hydroxyquinoline (8HQB) were investigated. In a preliminary copper uptake experiment, we found that 8HQB significantly reduced copper uptake (using copper-64 as a radiotracer) after oral administration in Wistar rats. Furthermore, we measured organ radioactivity in rats to demonstrate that 8HQB radiolabelled with iodine-125 is not absorbed from the gastrointestinal tract after oral administration. Non-resorbability and the blockade of copper uptake were also confirmed with small animal imaging (PET/CT) in mice. In a long-term experiment with Wistar rats fed a diet containing the polymers, we have found that there were no signs of polymer toxicity and the addition of polymers to the diet led to a significant reduction in the copper contents in the kidneys, brains, and livers of the rats. We have shown that polymers containing specific ligands could potentially be novel therapeutics for Wilson's disease.

  14. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    Science.gov (United States)

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.

  15. Magnetic memory effect in chelated zero valent iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, N., E-mail: nilotpal@vit.ac.in [School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu (India); Mandal, B.K.; Mohan Kumar, K. [School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu (India)

    2012-11-15

    We report the study of nonequilibrium magnetic behavior of air stable zero valent iron nanoparticles synthesized in presence of N-cetyl-N,N,N-trimethyl ammonium bromide chelating agent. X-ray photoelectron spectroscopy study has suggested the presence of iron oxides on nZVI surfaces. Zero-field-cooled and field-cooled magnetization measurements have been carried out at 20-300 K and 100 Oe. For field-cooled measurements with 1 h stops at 200, 100 and 50 K when compared with the warming cycle, we found the signature of magnetic memory effect. A study of magnetic relaxation at the same temperatures shows the existence of two relaxation times. - Highlights: Black-Right-Pointing-Pointer Zero valent iron nanoparticles are synthesized with CTAB chelating agent. Black-Right-Pointing-Pointer X-ray photoelectron spectroscopy study has shown the presence of iron oxide. Black-Right-Pointing-Pointer Magnetization measurement has displayed signature of magnetic memory. Black-Right-Pointing-Pointer Magnetization measurement with time suggested presence of 2 relaxation times.

  16. Using iron chelating agents to enhance dermatological PDT

    Science.gov (United States)

    Curnow, Alison; Dogra, Yuktee; Winyard, Paul; Campbell, Sandra

    2009-06-01

    Topical protoporphyrin IX (PPIX) induced photodynamic therapy (PDT) of basal cell carcinoma (BCC) produces good clinical outcomes with excellent cosmesis as long as the disease remains superficial. Efficacy for nodular BCC however appears inferior to standard treatment unless repeat treatments are performed. Enhancement is therefore required and is possible by employing iron chelating agents to temporarily increase PPIX accumulation above the levels normally obtained using aminolevulinic acid (ALA) or the methyl ester of ALA (MAL) alone. In vitro studies investigated the effect of the novel iron chelator, CP94 on necrotic or apoptotic cell death in cultured human skin fibroblasts and epidermal carcinoma cells incubated with MAL. Furthermore, following a dose escalating safety study conducted with ALA in patients, an additional twelve nodular BCCs were recruited for topical treatment with standard MAL-PDT +/- increasing doses of CP94. Six weeks later following clinical assessment, the whole treatment site was excised for histological analysis. CP94 produced greater cell death in vitro when administered in conjunction with MAL than this porphyrin precursor could produce when administered alone. Clinically, PDT treatment using Metvix + CP94 was a simple and safe modification associated with a trend of reduced tumor thickness with increasing CP94 dose.

  17. Deferasirox, an oral chelator in the treatment of iron overload

    Directory of Open Access Journals (Sweden)

    I. Portioli

    2013-05-01

    Full Text Available BACKGROUND Deferasirox is a once-daily oral iron chelator developed for treating iron overload complicating long-term transfusion therapy in patients with diseases such as beta-thalassemia and myelodysplastic syndromes. Iron overload can damage the liver, pancreas and the heart. Deferoxamine, the only other drug approved for iron chelation, can prevent these effects but requires parenteral administration. Deferasirox has been approved after a one-year, open-label trial in patients ≥ 2 years old with beta-thalassemia and transfusional emosiderosis randomized to once-daily oral 5, 10, 20, 30 mg/kg/day in comparison of subcutaneous deferoxamine 20-60 mg/mg/kg/day x 5/week. CONCLUSIONS Deferasirox 20-30 mg/kg/day produced reductions in liver iron concentration (LIC similar to those with deferoxamine. Adverse effect of deferasirox (increases of serum creatinine and aminotransferases, including the gastrointestinal ones, are similar but more frequent than those occurring with deferoxamine. Information is lacking on the effects of deferasirox on cardiac iron and cardiac dysfunction which is the most serious complication of transfusional iron overload.

  18. Selective separation of indium by iminodiacetic acid chelating resin

    Directory of Open Access Journals (Sweden)

    M. C. B. Fortes

    2007-06-01

    Full Text Available Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite®IRC748 (Rohm and Haas Co.-USA. High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite®IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5mol/dm³ sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite®IRC748.

  19. Phytic acid: an alternative root canal chelating agent.

    Science.gov (United States)

    Nassar, Mohannad; Hiraishi, Noriko; Tamura, Yukihiko; Otsuki, Masayuki; Aoki, Kazuhiro; Tagami, Junji

    2015-02-01

    The objectives of this study were to investigate the effect of phytic acid, inositol hexakisphosphate (IP6), as a final rinse on the surface of instrumented root canals and smear-layered flat dentin surfaces treated with sodium hypochlorite (NaOCl) and to evaluate its effect on the viability and alkaline phosphatase activity of osteoblast-like cells (MC3T3-E1). The universally accepted chelating agent EDTA was used as the control in all conducted experiments. Root canals of human canines were instrumented with rotary files and irrigated with 5% NaOCl, followed by a final rinse of 17% EDTA (1 minute), 1% IP6 (1 minute or 30 seconds), or distilled water. NaOCl-treated flat coronal dentin surfaces were also treated with 17% EDTA (1 minute), 1% IP6 (1 minute or 30 seconds), or distilled water. The presence or absence of smear layer was evaluated with scanning electron microscopy. Cell viability and alkaline phosphatase assays were performed to evaluate the effect of IP6 and EDTA on cultured MC3T3-E1 cells. The results demonstrated the ability of IP6 to remove the smear layer from instrumented root canals and flat coronal dentin surfaces. When compared with EDTA, IP6 was less cytotoxic and did not affect the differentiation of MC3T3-E1 cells. IP6 shows the potential to be an effective and biocompatible chelating agent. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Multivalent chelators for spatially and temporally controlled protein functionalization.

    Science.gov (United States)

    You, Changjiang; Piehler, Jacob

    2014-05-01

    Site-specific protein modification-e.g. for immobilization or labelling-is a key prerequisite for numerous bioanalytical applications. Although modification by use of short peptide tags is particularly attractive, efficient and bio-orthogonal systems are still lacking. Here, we review the application of multivalent chelators (MCH) for high-affinity yet reversible recognition of oligohistidine (His)-tagged proteins. MCH are based on multiple nitrilotriacetic acid (NTA) moieties grafted on to molecular scaffolds suitable for conjugation to surfaces, probes or other biomolecules. Reversible interaction with the His-tag is mediated via transition metal ions chelated by the NTA moieties. The small size and biochemical compatibility of these recognition units and the possibility of rapid dissociation of the interaction with His-tagged proteins despite sub-nanomolar binding affinity, enable distinct and versatile handling and modification of recombinant proteins. In this review, we briefly introduce the key principles and features of MCH-His-tag interactions and recapitulate the broad spectrum of bioanalytical applications with a focus on quantitative protein interaction analysis on micro or nano-patterned solid surfaces and specific protein labelling in living cells.

  1. STUDY ON DETERMINATION OF TRACE Cu(Ⅱ) BY DDCT CHELATING RESIN PRECONCENTRATION AND THIN LAYER RESIN PHASE SPECTROPHOTOMETRY

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; YAN Yongsheng; SONG Huanyu; WANG Yun

    2006-01-01

    A new method for determination of Cu(Ⅱ) by DDCT chelating resin preconcentration and thin layer resin phase spectrophotometry was developed. The method has a high sensitivity (ε435 =3.6×105 L/mol· cm), which is 33 times higher than that of liquid phase spectrophotometry. It has a good selectivity (most coexisting ions could not influence determination) and an ideal precision [30μg Cu(Ⅱ), n=6, RSD= 1.67%]. The content of Cu(Ⅱ) in water, high purity rare earth and its oxide was determined. The detection limit of Cu(Ⅱ) is 5.3μg/L, and the linear range is 0~7.2 μg/ml. The result is satisfactory.

  2. Gold nanoparticles functionalised with fast water exchanging Gd3+ chelates: linker effects on the relaxivity.

    Science.gov (United States)

    Ferreira, Miguel F; Gonçalves, Janaina; Mousavi, Bibimaryam; Prata, Maria I M; Rodrigues, Sérgio P J; Calle, Daniel; López-Larrubia, Pilar; Cerdan, Sebastian; Rodrigues, Tiago B; Ferreira, Paula M; Helm, Lothar; Martins, José A; Geraldes, Carlos F G C

    2015-03-07

    The relaxivity displayed by Gd(3+) chelates immobilized onto gold nanoparticles is the result of the complex interplay between the nanoparticle size, the water exchange rate and the chelate structure. In this work we study the effect of the length of ω-thioalkyl linkers, anchoring fast water exchanging Gd(3+) chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd(3+) chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(α-amino)propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM(-1) s(-1) (30 MHz, 25 °C), were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles was determined mainly by size. Small nanoparticles (HD = 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD = 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggest that functionalized gold nanoparticles hold great potential for further investigation as MRI contrast agents. This study contributes to a better understanding of the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd(3+) complexes. It is a relevant contribution towards "design rules" for nanostructures functionalized with Gd(3+) chelates as Contrast Agents for MRI and multimodal imaging.

  3. Uranyl binary and ternary chelates of tenoxicam. Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals

    Science.gov (United States)

    El-Gamel, Nadia E. A.

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) chelates with tenoxicam (Ten) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO 2(II) binary chelate was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary chelates were isolated in 1:1:1 (M:H 2L 1:L 2) ratios and have the general formulae [M(H 2L 1)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 2), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 3)); [M(H 2L 1)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  4. Studies on antibacterial activities against S. aureus of chitosan metal chelates prepared in magnetic field.

    Science.gov (United States)

    Wang, Chunbao; Duan, Lihong; Qin, Jian; Wu, Zhengzhi; Guo, Siyuan

    2016-07-04

    In order to study the antibacterial activity of chitosan metal chelates prepared in magnetic effect, the antibacterial activities of these chelates on Staphylococcus aureus were investigated by the agar diffusion paper method. The minimum inhibition concentrations of chitosan-metal chelates were measured. With different degrees of substitution, the inhibition efficiency of the chitosan-metal chelates is different. The inhibition of chitosan on S. aureus increased with the chitosan concentration. Among the chitosan-metal chelates, the inhibition efficiency of CS-Cr is the best. The inhibition efficiency of chitosan-metal chelates prepared in the magnetic field of 400 kA/m on S. aureus is higher than the inhibition efficiency of chitosan-metal chelates prepared without the magnetic field enhanced. The minimum inhibitory concentrations are, respectively, as CS-Cu: 12.5 mg/mL, CS-Pb: 6.25 mg/mL, CS-Cr: 3.125 mg/mL. It is well known from the results that chitosan-metal chelates maybe applied in antibacterial process.

  5. THE SYNTHESIS OF URUSHIOL TITANIUM CHELATE POLYMERS AND THEIR STRUCTURAL CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    HU Binghuan; CHEN Wending; LIN Jinhuo

    1993-01-01

    The synthetic method and structural characteristics of urushiol-titanium chelates (UT) and urushiol-titanium chelate polymer for anticorrosive coatings have been studied.Two kinds of coating films made from UT polymer show excellent physico-mechanical properties and possess good chemical resistance to strong acids and alkalis, many kinds of salt solutions and organic solvents,stable at high temperature.

  6. KINETICS OF THE OXIDATION OF FERROUS CHELATES OF EDTA AND HEDTA IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    WUBS, HJ; BEENACKERS, AACM

    1993-01-01

    The kinetics of the reaction of oxygen with ferrous chelates of EDTA and HEDTA was studied in a stirred cell reactor under industrial conditions. The temperature was varied from 20 to 60-degrees-C and the concentration of the ferrous chelate ranged from 0 to 100 mol/m3. The initial pH was 7.5. Under

  7. Supercritical fluid extraction of mercury species.

    Science.gov (United States)

    Foy, G P; Pacey, G E

    2003-12-23

    Supercritical fluid extraction was used to recover organic and inorganic mercury species. Variations in pressure, water, methanol, and chelator create methods that allowed separation of inorganic from organic mercury species. When extracted using a compromised set of extraction conditions, the order of extraction was methyl, phenyl and inorganic mercury. For the individually optimized conditions, quantitative recoveries were observed. Level as low as 20 ppb were extracted and then determined using ICP.

  8. Brazilian Thalassemia Association protocol for iron chelation therapy in patients under regular transfusion

    Directory of Open Access Journals (Sweden)

    Monica Pinheiro de Almeida Verissimo

    2013-01-01

    Full Text Available In the absence of an iron chelating agent, patients with beta-thalassemia on regular transfusions present complications of transfusion-related iron overload. Without iron chelation therapy, heart disease is the major cause of death; however, hepatic and endocrine complications also occur. Currently there are three iron chelating agents available for continuous use in patients with thalassemia on regular transfusions (desferrioxamine, deferiprone, and deferasirox providing good results in reducing cardiac, hepatic and endocrine toxicity. These practice guidelines, prepared by the Scientific Committee of Associação Brasileira de Thalassemia (ABRASTA, presents a review of the literature regarding iron overload assessment (by imaging and laboratory exams and the role of T2* magnetic resonance imaging (MRI to control iron overload and iron chelation therapy, with evidence-based recommendations for each clinical situation. Based on this review, the authors propose an iron chelation protocol for patients with thalassemia under regular transfusions.

  9. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Science.gov (United States)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  10. Red Blood Cell Transfusion Independence Following the Initiation of Iron Chelation Therapy in Myelodysplastic Syndrome

    Directory of Open Access Journals (Sweden)

    Maha A. Badawi

    2010-01-01

    Full Text Available Iron chelation therapy is often used to treat iron overload in patients requiring transfusion of red blood cells (RBC. A 76-year-old man with MDS type refractory cytopenia with multilineage dysplasia, intermediate-1 IPSS risk, was referred when he became transfusion dependent. He declined infusional chelation but subsequently accepted oral therapy. Following the initiation of chelation, RBC transfusion requirement ceased and he remained transfusion independent over 40 months later. Over the same time course, ferritin levels decreased but did not normalize. There have been eighteen other MDS patients reported showing improvement in hemoglobin level with iron chelation; nine became transfusion independent, nine had decreased transfusion requirements, and some showed improved trilineage myelopoiesis. The clinical features of these patients are summarized and possible mechanisms for such an effect of iron chelation on cytopenias are discussed.

  11. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Bahti, Husein H.; Hastiawan, Iwan [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Permanasari, Anna [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia)

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  12. Design and synthesis of zinc-selective chelators for extracellular applications.

    Science.gov (United States)

    Kawabata, Eri; Kikuchi, Kazuya; Urano, Yasuteru; Kojima, Hirotatsu; Odani, Akira; Nagano, Tetsuo

    2005-01-26

    Zinc (Zn2+) is found in every cell in human bodies. A few millimolar of free Zn2+ exists in the vesicles of presynaptic neurons in the mammalian brain and is released by synaptic activity or depolarization, modulating the function of certain ion channels and receptors. Although various chemical tools for measuring Zn2+ in biological samples, such as fluorescent probes for Zn2+, have been developed, Zn2+-selective chelators have room to be improved. Research on Zn2+ signals in the brain has traditionally employed several chelators, which have several shortcomings for biological applications. Here we report the design, synthesis, and properties of new membrane-impermeable chelators selective for Zn2+ and describe biological applications in hippocampal slices. As a result, our newly designed chelator revealed the first biological implication that presynaptic Zn2+ can be released in the CA1 region. This confirms the utility of these new chelatotrs as extracellular Zn2+ chelators for biological applications.

  13. A NOVEL METAL CHELATE AFFINITY ADSORBENT FOR PROTEIN UPTAKE

    Institute of Scientific and Technical Information of China (English)

    WANGYongjian; BAIShu; 等

    2001-01-01

    In this article,a spherical chitosan gel crosslinked by epichlorohydrin was prepared.It was then loaded with copper ions to produce a metal chelate affinity adsorbent for protein.The uptake of bovine serum albumin(BSA)by the affinity adsorbent was investigated.and the adsorption capacity for BSA as high as 40mg/g-wet beads was observed.The adsorption equilibrium data was well correlated by the Langmuir equation.The adsorption was considerably affected by pH.In additio.The amount of BSA adsorbed onto the beads decreased with the increasing of aqueous phase ionic strength,so adsorbed BAS can be desorbed by adjusting pH orionic strength of the solution.

  14. Beryllium Chelation by Dicarboxylic Acids in Aqueous Solution.

    Science.gov (United States)

    Schmidt, Michael; Bauer, Andreas; Schmidbaur, Hubert

    1997-05-07

    Maleic and phthalic acids are found to react with Be(OH)(2), generated in situ from BeSO(4)(aq) and Ba(OH)(2)(aq), in aqueous solution at pH 3.0 or 4.4, respectively (25 degrees C), to give solutions containing the complexes (H(2)O)(2)Be[(OOCCH)(2)] (1) and (H(2)O)(2)Be[(OOC)(2)C(6)H(4)] (3). The products can be isolated in high yield and identified by microanalytical data. With 2 equiv of the dicarboxylic acids and the pH adjusted to 5.5 and 5.9, respectively, by addition of ammonia, the bis-chelate complexes [(NH(4))(+)](2){[Be[(OOCCH)(2)](2)}(2)(-) (2) and [(NH(4))(+)](2){Be[(OOC)(2)C(6)H(4)](2)}(2)(-) (4) are obtained, which can also be isolated. The compounds show distinct (9)Be, (1)H, and (13)C resonances in their NMR spectra in aqueous solutions. Layering of an aqueous solution of compound 4 with acetone at ambient temperature leads to the precipitation of single crystals suitable for an X-ray structure determination. This salt (5) was found to contain the bis-chelated dianion {Be[(OOC)(2)C(6)H(4)](2)}(2)(-) with the beryllium atom in the spiro center of two seven-membered rings and an overall geometry approaching closely C(2) symmetry. These anions are associated with two crystallographically independent but structurally similar counterions [MeC(O)CH(2)CMe(2)NH(3)](+), which are the product of a condensation reaction of the ammonium cation with the acetone solvent. In the crystal the ammonium hydrogen atoms of the cations form N-H.O hydrogen bonds with the oxo functions of the dianion.

  15. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    Science.gov (United States)

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  16. Mechanistic basis for overcoming platinum resistance using copper chelating agents.

    Science.gov (United States)

    Liang, Zheng D; Long, Yan; Tsai, Wen-Bin; Fu, Siqing; Kurzrock, Razelle; Gagea-Iurascu, Mihai; Zhang, Fan; Chen, Helen H W; Hennessy, Bryan T; Mills, Gordon B; Savaraj, Niramol; Kuo, Macus Tien

    2012-11-01

    Platinum-based antitumor agents are widely used in cancer chemotherapy. Drug resistance is a major obstacle to the successful use of these agents because once drug resistance develops, other effective treatment options are limited. Recently, we conducted a clinical trial using a copper-lowering agent to overcome platinum drug resistance in ovarian cancer patients and the preliminary results are encouraging. In supporting this clinical study, using three pairs of cisplatin (cDDP)-resistant cell lines and two ovarian cancer cell lines derived from patients who had failed in platinum-based chemotherapy, we showed that cDDP resistance associated with reduced expression of the high-affinity copper transporter (hCtr1), which is also a cDDP transporter, can be preferentially resensitized by copper-lowering agents because of enhanced hCtr1 expression, as compared with their drug-sensitive counterparts. Such a preferential induction of hCtr1 expression in cDDP-resistant variants by copper chelation can be explained by the mammalian copper homeostasis regulatory mechanism. Enhanced cell-killing efficacy by a copper-lowering agent was also observed in animal xenografts bearing cDDP-resistant cells. Finally, by analyzing a public gene expression dataset, we found that ovarian cancer patients with elevated levels of hCtr1 in their tumors, but not ATP7A and ATP7B, had more favorable outcomes after platinum drug treatment than those expressing low hCtr1 levels. This study reveals the mechanistic basis for using copper chelation to overcome cDDP resistance in clinical investigations.

  17. Clinically approved iron chelators influence zebrafish mortality, hatching morphology and cardiac function.

    Directory of Open Access Journals (Sweden)

    Jasmine L Hamilton

    Full Text Available Iron chelation therapy using iron (III specific chelators such as desferrioxamine (DFO, Desferal, deferasirox (Exjade or ICL-670, and deferiprone (Ferriprox or L1 are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.

  18. Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Oversupply of rare earths led to the significant price drop of rare earth mineral products and separated products in Chinese domestic market. To stabilize the price, prevent waste of resources, further improve regulation capability on domestic rare earth market and rare earth price and maintain sustaining and healthy development of rare earth industry, partial rare earth producers in Baotou and Jiangxi province projected to cease the production for one month.

  19. MR imaging of lung ventilation with aerosolized Gadolinium-chelates; MR-Bildgebung der Lungenventilation mittels aerosolierter Gadolinium-Chelate

    Energy Technology Data Exchange (ETDEWEB)

    Haage, P.; Karaagac, S.; Spuentrup, E.; Guenther, R.W. [RWTH Aachen (Germany). Klinik fuer Radiologische Diagnostik; Adam, G. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie

    2003-02-01

    Purpose: To evaluate the feasibility of magnetic resonance assessment of human lung ventilation with aerosolized Gd-chelates in healthy volunteers. Materials and Methods: Five healthy adults (mean age 37 years) were studied with a 1.5 T unit. The volunteers were instructed to inhale the aerosol through an airtight facial mask for 10 minutes. The aerosol was generated with a jet-type small particle nebulizer with attached heater. Ventilation imaging was performed using a respiration-gated dynamic T{sub 1}-weighted turbo spin echo sequence (T{sub R}=199 ms, T{sub E}=8.5 ms, 12 signal averages, slice thickness 10 mm). Pulmonary signal intensity changes were calculated before and after nebulization. Results: The investigation was successfully carried out in all volunteers. An acute or delayed allergic reaction to the aerosolized contrast medium was not observed. In 4 of 5 experiments (80%), a homogeneous signal intensity increase was readily visualized with an average signal increase of 35% after 10 minutes; in one experiment, the aerosol distribution was slightly heterogeneous. (orig.) [German] Ziel: Bestimmung der Durchfuehrbarkeit einer kernspintomographischen Darstellung der Lungenventilation mittels aerosolierter Gd-Chelate bei gesunden Probanden. Methoden: 5 Probanden (Durchschnittsalter 37 Jahre) wurden in einem 1,5T System untersucht. Die Probanden atmeten spontan aerosoliertes Gd-DTPA ueber eine Atemmaske fuer eine Dauer von 10 Minuten. Das Kontrastmittel-Aerosol wurde ueber einen leistungsfaehigen druckluftbetriebenen Vernebler generiert. Die Illustration der Ventilation erfolgte mit einer atemgegateten dynamischen T{sub 1}-gewichteten Turbo-Spin-Echosequenz. Zur Quantitifizerung der Lungenventilation wurden die Signalintensitaeten im Lungengewebe vor und nach Verneblung berechnet. Ergebnisse: Alle Untersuchungen wurden komplikationslos durchgefuehrt und beendet. Eine akute oder verzoegerte Kontrastmittelreaktion wurde nicht beobachtet. In 4 von 5

  20. An in vitro model for the in vivo mobilization of cadmium by chelating agents using 113Cd-NMR spectroscopy.

    Science.gov (United States)

    Beaty, J A; Jones, M M; Wilson, D J; Ma, L

    1992-01-01

    An in vitro method, based on 113Cd-NMR spectroscopy, that provides an alternative to the use of animals for an initial screening of cadmium antagonists is presented. The relative values of the effective stability constants of potential chelating antagonists for cadmium are estimated by using 113Cd-NMR spectroscopy to determine the concentrations of the cadmium species involved in appropriate competitive equilibria. This is accomplished via an examination of the competition between the proposed antagonist and EDTA (ethylenediaminetetraacetic acid) for cadmium-113; previously, EDTA has been shown to be capable of removing cadmium from such in vivo binding sites as metallothionein. The reactions proceed via the stepwise addition of three dithiocarbamate groups to the cadmium accompanied by the concurrent stepwise release of donor groups from the EDTA. The resulting 113Cd-NMR data allow for the determination of the overall stability constant for the complex formed between cadmium and N-methyl-D-glucamine dithiocarbamate, iminodiacetic acid dithiocarbamate, proline dithiocarbamate, sarcosine dithiocarbamate. The use of 113Cd-NMR spectroscopy has the potential for providing direct evidence on the effectiveness of chelate antagonists to compete with endogenous ligands for other toxic metal ions. This technique could prove very useful for other compounds that are not stable enough toward acid and/or base to be examined by standard titrimetric methods.

  1. HPTLC Fingerprinting and Cholinesterase Inhibitory and Metal-Chelating Capacity of Various Citrus Cultivars and Olea europaea

    Directory of Open Access Journals (Sweden)

    Fatma Sezer Senol

    2016-01-01

    Full Text Available Inhibitory activity of thirty-one ethanol extracts obtained from albedo, flavedo, seed and leaf parts of 17 cultivars of Citrus species from Turkey, the bark and leaves of Olea europaea L. from two locations (Turkey and Cyprus as well as caff eic acid and hesperidin was tested against acetylcholinesterase (AChE and butyrylcholinesterase (BChE, related to the pathogenesis of Alzheimer’s disease, using ELISA microtiter assays at 500 μg/mL. Metal-chelating capacity of the extracts was also determined. BChE inhibitory effect of the Citrus sp. extracts was from (7.7±0.7 to (70.3±1.1 %, whereas they did not show any inhibition against AChE. Cholinesterase inhibitory activity of the leaf and bark ethanol extracts of O. europaea was very weak ((10.2±3.1 to (15.0±2.3 %. The extracts had either no or low metal-chelating capacity at 500 μg/mL. HPTLC fingerprinting of the extracts, which indicated a similar phytochemical pattern, was also done using the standards of caffeic acid and hesperidin with weak cholinesterase inhibition. Among the screened extracts, the albedo extract of C. limon ‘Interdonato’, the flavedo extracts of ‘Kara Limon’ and ‘Cyprus’ cultivars and the seed extract of C. maxima appear to be promising as natural BChE inhibitors.

  2. Revolutions that made the earth

    CERN Document Server

    Lenton, Tim

    2013-01-01

    The Earth that sustains us today was born out of a few remarkable, near-catastrophic revolutions, started by biological innovations and marked by global environmental consequences. The revolutions have certain features in common, such as an increase in the complexity, energy utilization, and information processing capabilities of life. This book describes these revolutions, showing the fundamental interdependence of the evolution of life and its non-living environment. We would not exist unless these upheavals had led eventually to 'successful' outcomes - meaning that after each one, at length, a new stable world emerged. The current planet-reshaping activities of our species may be the start of another great Earth system revolution, but there is no guarantee that this one will be successful. This book explains what a successful transition through it might look like, if we are wise enough to steer such a course. This book places humanity in context as part of the Earth system, using a new scientific synthe...

  3. Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation

    Institute of Scientific and Technical Information of China (English)

    WANG Lu; YAN WenChao; CHEN JiaChuan; HUANG Feng; GAO PeiJi

    2008-01-01

    An ultrafiltered low-molecular-weight preparation of chelating compounds was isolated from a wood-containing culture of the white-rot basidiomycete Coriolus versicolor. This preparation could chelate Fe3+ and reduce Fe3+ to Fe2+, demonstrating that the substance may serve as a ferric chelator,oxygen-reducing agent, and redox-cycling molecule, which would include functioning as the electron transport carrier in Fenton reaction. Lignin was treated with the iron-binding chelator and the changes in structure were investigated by 1H-NMR, 13C-NMR, difference spectrum caused by ionization under alkaline conditions and nitrobenzene oxidation. The results indicated that the iron-binding chelator could destroy the β-O-4 bonds in etherified lignin units and insert phenolic hydroxyl groups. The low-molecular-weight chelator secreted by C. versicolor resulted in new phenolic substructures in the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase. Thus, the synergic action of the iron-binding chelator and the lignocellulolytic enzymes made the substrate more accessible to degradation.

  4. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  5. Recovery Properties of Polysulfone Hollow Fiber Chelating Membrane Modified with Thiourea for Mercury ( Ⅱ )

    Institute of Scientific and Technical Information of China (English)

    WANG Bing; XIAO Feng; HUANG Lei

    2007-01-01

    The adsorption isotherms of the polysulfone hollow fiber chelating membrane modified with thiourea as chelating groups for Hg2+ were determined. The effects of mobile phase conditions and the operating parameters on removal performance of the chelating membrane for Hg2+ were also investigated. The recovery of Hg2+ decreased at low pH and the optimum range of pH was from 6 to 7. The feed concentration effected on recovery of Hg2+ at the specified loading amount of Hg2+. The Hg2+ could be removed from different concentration feed solution by chelating membrane. The increase of feed flow rate led to slight decrease of recovery of Hg2+ at the specified loading amount of Hg2+. The chelating membrane could be operated at height feed flow rate and a large-scale removal of Hg2+ could be realized. With the increase of load amount, Hg2+ recovery decreased, but the saturation degree of chelating membrane increased. According to required recovery of Hg2+ and the saturation degree of chelating membrane, the optimum loading amount of Hg2+ should be selected in the actual removal of Hg2+.

  6. Generation, Fractionation, and Characterization of Iron-Chelating Protein Hydrolysate from Palm Kernel Cake Proteins.

    Science.gov (United States)

    Zarei, Mohammad; Ghanbari, Rahele; Tajabadi, Naser; Abdul-Hamid, Azizah; Bakar, Fatimah Abu; Saari, Nazamid

    2016-02-01

    Palm kernel cake protein was hydrolyzed with different proteases namely papain, bromelain, subtilisin, flavourzyme, trypsin, chymotrypsin, and pepsin to generate different protein hydrolysates. Peptide content and iron-chelating activity of each hydrolysate were evaluated using O-phthaldialdehyde-based spectrophotometric method and ferrozine-based colorimetric assay, respectively. The results revealed a positive correlation between peptide contents and iron-chelating activities of the protein hydrolysates. Protein hydrolysate generated by papain exhibited the highest peptide content of 10.5 mM and highest iron-chelating activity of 64.8% compared with the other hydrolysates. Profiling of the papain-generated hydrolysate by reverse phase high performance liquid chromatography fractionation indicated a direct association between peptide content and iron-chelating activity in most of the fractions. Further fractionation using isoelectric focusing also revealed that protein hydrolysate with basic and neutral isoelectric point (pI) had the highest iron-chelating activity, although a few fractions in the acidic range also exhibited good metal chelating potential. After identification and synthesis of papain-generated peptides, GGIF and YLLLK showed among the highest iron-chelating activities of 56% and 53%, whereas their IC50 were 1.4 and 0.2 μM, respectively.

  7. MRI marrow observations in thalassemia: the effects of the primary disease, transfusional therapy, and chelation

    Energy Technology Data Exchange (ETDEWEB)

    Levin, T.L. [Department of Pediatric Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital, New York, NY (United States); Sheth, S.S. [Department of Pediatrics, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital, 3959 Broadway, New York, NY 10032 (United States); Ruzal-Shapiro, C. [Department of Pediatric Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital, New York, NY (United States); Abramson, S. [Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States); Piomelli, S. [Department of Pediatrics, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital, 3959 Broadway, New York, NY 10032 (United States); Berdon, W.E. [Department of Pediatric Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital, New York, NY (United States)

    1995-11-01

    The magnetic resonance bone marrow patterns in thalassemia were evaluated to determine changes produced by transfusion and chelation therapy. Thirteen patients had T1- and T2-weighted images of the spine, pelvis and femurs. Three received no therapy (age range 2.5-3 years). Three were ``hypertransfused`` (transfused to maintain a hemoglobin greater than 10 g/dl) and not chelated because of age (age range 6 months-8 years). Seven were ``hypertransfused`` and chelated (age range 12-35 years). Signal characteristics of marrow were compared with those of surrounding muscle and fat. Fatty marrow (isointense with subcutaneous fat) was compared with red marrow (hypointense to fat and slightly hyperintense to muscle). Marrow hypointense to muscle was identified as iron deposition within red marrow. The untreated group demonstrated signal consistent with red marrow throughout the central and peripheral skeleton. Hypertransfused but not chelated patients demonstrated marked iron deposition in the central and peripheral skeleton. Hypertransfused and chelated patients demonstrated iron deposition in the central skeleton and a mixed appearance of marrow in the peripheral skeleton. The MR appearance of marrow in thalassemia is a reflection of the patient`s transfusion and chelation therapy. Iron deposition occurs despite chelation therapy in sites of active red marrow. As red marrow retreats centrally with age, so does the pattern of iron deposition. The long-term biological effects of this iron deposition are unknown. (orig.). With 8 figs., 1 tab.

  8. Iron chelators can protect against oxidative stress through ferryl heme reduction.

    Science.gov (United States)

    Reeder, Brandon J; Hider, Robert C; Wilson, Michael T

    2008-02-01

    Iron chelators such as desferrioxamine have been shown to ameliorate oxidative damage in vivo. The mechanism of this therapeutic action under non-iron-overload conditions is, however, complex, as desferrioxamine has properties that can impact on oxidative damage independent of its capacity to act as an iron chelator. Desferrioxamine can act as a reducing agent to remove cytotoxic ferryl myoglobin and hemoglobin and has recently been shown to prevent the formation of a highly cytotoxic heme-to-protein cross-linked derivative of myoglobin. In this study we have examined the effects of a wide range of iron chelators, including the clinically used hydroxypyridinone CP20 (deferriprone), on the stability of ferryl myoglobin and on the formation of heme-to-protein cross-linking. We show that all hydroxypyridinones, as well as many other iron chelators, are efficient reducing agents of ferryl myoglobin. These compounds are also effective at preventing the formation of cytotoxic derivatives of myoglobin such as heme-to-protein cross-linking. These results show that the use of iron chelators in vivo may ameliorate oxidative damage under conditions of non-iron overload by at least two mechanisms. The antioxidant effects of chelators in vivo cannot, therefore, be attributed solely to iron chelation.

  9. Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation.

    Science.gov (United States)

    Wang, Lu; Yan, WenChao; Chen, JiaChuan; Huang, Feng; Gao, PeiJi

    2008-03-01

    An ultrafiltered low-molecular-weight preparation of chelating compounds was isolated from a wood-containing culture of the white-rot basidiomycete Coriolus versicolor. This preparation could chelate Fe3+ and reduce Fe3+ to Fe2+, demonstrating that the substance may serve as a ferric chelator, oxygen-reducing agent, and redox-cycling molecule, which would include functioning as the electron transport carrier in Fenton reaction. Lignin was treated with the iron-binding chelator and the changes in structure were investigated by 1H-NMR, 13C-NMR, difference spectrum caused by ionization under alkaline conditions and nitrobenzene oxidation. The results indicated that the iron-binding chelator could destroy the beta-O-4 bonds in etherified lignin units and insert phenolic hydroxyl groups. The low-molecular-weight chelator secreted by C. versicolor resulted in new phenolic substructures in the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase. Thus, the synergic action of the iron-binding chelator and the lignocellulolytic enzymes made the substrate more accessible to degradation.

  10. Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An ultrafiltered low-molecular-weight preparation of chelating compounds was isolated from a wood-containing culture of the white-rot basidiomycete Coriolus versicolor. This preparation could chelate Fe3+ and reduce Fe3+ to Fe2+, demonstrating that the substance may serve as a ferric chelator, oxygen-reducing agent, and redox-cycling molecule, which would include functioning as the electron transport carrier in Fenton reaction. Lignin was treated with the iron-binding chelator and the changes in structure were investigated by 1H-NMR, 13C-NMR, difference spectrum caused by ionization under alkaline conditions and nitrobenzene oxidation. The results indicated that the iron-binding chelator could destroy the β-O-4 bonds in etherified lignin units and insert phenolic hydroxyl groups. The low-molecular-weight chelator secreted by C. versicolor resulted in new phenolic substructures in the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase. Thus, the synergic action of the iron-binding chelator and the lignocellulolytic enzymes made the substrate more acces- sible to degradation.

  11. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Saibo Huang

    2015-12-01

    Full Text Available The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE, longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone.

  12. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    Science.gov (United States)

    Huang, Saibo; Lin, Huimin; Deng, Shang-gui

    2015-01-01

    The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH) were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH) were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE), longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone. PMID:26633476

  13. Isomerism in benzyl-DOTA derived bifunctional chelators: implications for molecular imaging.

    Science.gov (United States)

    Payne, Katherine M; Woods, Mark

    2015-02-18

    The bifunctional chelator IB-DOTA has found use in a range of biomedical applications given its ability to chelate many metal ions, but in particular the lanthanide(III) ions. Gd(3+) in particular is of interest in the development of new molecular imaging agents for MRI and is highly suitable for chelation by IB-DOTA. Given the long-term instability of the aryl isothiocyanate functional group we have used the more stable nitro derivative (NB-DOTA) to conduct a follow-up study of some of our previous work on the coordination chemistry of chelates of these BFCs. Using a combination of NMR and HPLC to study the Eu(3+) and Yb(3+) chelates of NB-DOTA, we have demonstrated that this ligand will produce two discrete regioisomeric chelates at the point at which the metal ion is introduced into the BFC. These regioisomers are defined by the position of the benzylic substituent on the macrocyclic ring: adopting an equatorial position either at the corner or the side of the [3333] ring conformation. These regioisomers are incapable of interconversion and are distinct, separate structures with different SAP/TSAP ratios. The side isomer exhibits an increased population of the TSAP isomer, pointing to more rapid water exchange kinetics in this regioisomer. This has potential ramifications for the use of these two regioisomers of Gd(3+)-BFC chelates in MRI applications. We have also found that, remarkably, there is little or no freedom of rotation about the first single bond extending from the macrocyclic ring to the benzylic substituent. Since this is the linkage through which the chelate is conjugated to the remainder of the molecular imaging probe, this result implies that there may be reduced local rotation of the Gd(3+) chelate within a molecular imaging probe. This implies that this type of BFC could exhibit higher relaxivities than other types of BFC.

  14. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates.

    Science.gov (United States)

    Huang, Saibo; Lin, Huimin; Deng, Shang-Gui

    2015-12-01

    The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH) were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH) were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl₂ treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE), longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone.

  15. Calcium-Mediated Control of Polydopamine Film Oxidation and Iron Chelation

    Science.gov (United States)

    Klosterman, Luke; Bettinger, Christopher J.

    2016-01-01

    The facile preparation of conformal polydopamine (PDA) films on broad classes of materials has prompted extensive research into a wide variety of potential applications for PDA. The constituent molecular species in PDA exhibit diverse chemical moieties, and therefore highly variable properties of PDA-based devices may evolve with post-processing conditions. Here we report the use of redox-inactive cations for oxidative post-processing of deposited PDA films. PDA films incubated in alkaline CaCl2 solutions exhibit accelerated oxidative evolution in a dose-dependent manner. PDA films incubated in CaCl2 solutions exhibit 53% of the oxidative charge transfer compared to pristine PDA films. Carboxylic acid groups generated from the oxidation process lower the isoelectric point of PDA films from pH = 4.0 ± 0.2 to pH = 3.1 ± 0.3. PDA films exposed to CaCl2 solutions during post-processing also enhance Fe2+/Fe3+ chelation compared to pristine PDA films. These data illustrate that the molecular heterogeneity and non-equilibrium character of as-deposited PDA films afford control over the final composition by choosing post-processing conditions, but also demands forethought into how the performance of PDA-incorporated devices may change over time in salt solutions. PMID:28025498

  16. Calcium-Mediated Control of Polydopamine Film Oxidation and Iron Chelation

    Directory of Open Access Journals (Sweden)

    Luke Klosterman

    2016-12-01

    Full Text Available The facile preparation of conformal polydopamine (PDA films on broad classes of materials has prompted extensive research into a wide variety of potential applications for PDA. The constituent molecular species in PDA exhibit diverse chemical moieties, and therefore highly variable properties of PDA-based devices may evolve with post-processing conditions. Here we report the use of redox-inactive cations for oxidative post-processing of deposited PDA films. PDA films incubated in alkaline CaCl2 solutions exhibit accelerated oxidative evolution in a dose-dependent manner. PDA films incubated in CaCl2 solutions exhibit 53% of the oxidative charge transfer compared to pristine PDA films. Carboxylic acid groups generated from the oxidation process lower the isoelectric point of PDA films from pH = 4.0 ± 0.2 to pH = 3.1 ± 0.3. PDA films exposed to CaCl2 solutions during post-processing also enhance Fe2+/Fe3+ chelation compared to pristine PDA films. These data illustrate that the molecular heterogeneity and non-equilibrium character of as-deposited PDA films afford control over the final composition by choosing post-processing conditions, but also demands forethought into how the performance of PDA-incorporated devices may change over time in salt solutions.

  17. Cytotoxicity of superoxide dismutase 1 in cultured cells is linked to Zn2+ chelation.

    Directory of Open Access Journals (Sweden)

    Ann-Sofi Johansson

    Full Text Available Neurodegeneration in protein-misfolding disease is generally assigned to toxic function of small, soluble protein aggregates. Largely, these assignments are based on observations of cultured neural cells where the suspect protein material is titrated directly into the growth medium. In the present study, we use this approach to shed light on the cytotoxic action of the metalloenzyme Cu/Zn superoxide dismutase 1 (SOD1, associated with misfolding and aggregation in amyotrophic lateral sclerosis (ALS. The results show, somewhat unexpectedly, that the toxic species of SOD1 in this type of experimental setting is not an aggregate, as typically observed for proteins implicated in other neuro-degenerative diseases, but the folded and fully soluble apo protein. Moreover, we demonstrate that the toxic action of apoSOD1 relies on the protein's ability to chelate Zn(2+ ions from the growth medium. The decreased cell viability that accompanies this extraction is presumably based on disturbed Zn(2+ homeostasis. Consistently, mutations that cause global unfolding of the apoSOD1 molecule or otherwise reduce its Zn(2+ affinity abolish completely the cytotoxic response. So does the addition of surplus Zn(2+. Taken together, these observations point at a case where the toxic response of cultured cells might not be related to human pathology but stems from the intrinsic limitations of a simplified cell model. There are several ways proteins can kill cultured neural cells but all of these need not to be relevant for neurodegenerative disease.

  18. Heavy metal accumulation of urban domestic rubbish compost in turfgrass by DTA chelating

    Institute of Scientific and Technical Information of China (English)

    DUO Lian; GAO Yu-bao; ZHAO Shu-lan

    2005-01-01

    Seven kinds of heavy metal accumulation of rubbish compost in turfgrass by EDTA chelating were investigated. With EDTA application, heavy metal accumulation by two species of turfgrass was increased significantly. The enrichment coefficients of Lolium perenne L(L) and Festuca arundinacea L(F) to Cr reached 9.45 and 6.15 respectively. In the range of EDTA dosages given, heavy metal accumulation in turfgrass increased with increasing EDTA level. There were significant differences in remediation of different metals by applying EDTA. L had high ability to accumulate Cr, Cd, Ni and Zn, showing better remediation to heavy metals of rubbish compost.In contrast, F showed high ability to accumulate Cr, Ni, Cu and Zn. Low EDTA level increased aboveground net primary production (ANP) of turfgrass, but EDTA would considerably inhibit it when EDTA was higher than 20 mmol/kg. The results demonstrated that the optimum dosage of EDTA for remediating heavy metals in rubbish compost by turfgrass was between 10 mmol/kg and 20 mmol/kg.

  19. Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study.

    Science.gov (United States)

    Montargès-Pelletier, Emmanuelle; Chardot, Vanessa; Echevarria, Guillaume; Michot, Laurent J; Bauer, Allan; Morel, Jean-Louis

    2008-05-01

    We have investigated the accumulation of nickel in a hyperaccumulating plant from the Brassicacae family Leptoplax emarginata (Boiss.) O.E. Schulz. Two supplementary hyperaccumulating plants, which have been the subject of a high number of publications, Alyssum murale Waldst. & Kit and Thlaspi caerulescens J.&C. Presl, and a nonaccumulating species Aurinia saxatilis were also studied for reference. The plants were grown during 4 months in specific rhizoboxes with Ni-bearing minerals as a source of nickel. Nickel speciation was analyzed through X-ray absorption spectroscopy at Ni K-edge (X-ray absorption near edge spectroscopy and extended X-ray absorption fine structure spectroscopy) in the different parts of the plants (leaves, stems and roots) and compared with aqueous solutions containing different organo-Ni(II) complexes. Carboxylic acids (citrate, malate) appeared as the main ligands responsible of nickel transfer within those plants. Citrate was found as the predominant ligand for Ni in stems of Leptoplax and Alyssum, whereas in leaves of the three plants, malate appeared as the chelating organic acid of accumulated metal. Histidine could not be detected either in leaves, stems nor roots of any studied plant sample.

  20. Calcium-Mediated Control of Polydopamine Film Oxidation and Iron Chelation.

    Science.gov (United States)

    Klosterman, Luke; Bettinger, Christopher J

    2016-12-22

    The facile preparation of conformal polydopamine (PDA) films on broad classes of materials has prompted extensive research into a wide variety of potential applications for PDA. The constituent molecular species in PDA exhibit diverse chemical moieties, and therefore highly variable properties of PDA-based devices may evolve with post-processing conditions. Here we report the use of redox-inactive cations for oxidative post-processing of deposited PDA films. PDA films incubated in alkaline CaCl₂ solutions exhibit accelerated oxidative evolution in a dose-dependent manner. PDA films incubated in CaCl₂ solutions exhibit 53% of the oxidative charge transfer compared to pristine PDA films. Carboxylic acid groups generated from the oxidation process lower the isoelectric point of PDA films from pH = 4.0 ± 0.2 to pH = 3.1 ± 0.3. PDA films exposed to CaCl₂ solutions during post-processing also enhance Fe(2+)/Fe(3+) chelation compared to pristine PDA films. These data illustrate that the molecular heterogeneity and non-equilibrium character of as-deposited PDA films afford control over the final composition by choosing post-processing conditions, but also demands forethought into how the performance of PDA-incorporated devices may change over time in salt solutions.

  1. Highly stable acyclic bifunctional chelator for {sup 64}Cu PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Abada, S.; Lecointre, A.; Christine, C.; Charbonniere, L. [CNRS/UDS, EPCM, Strasbourg (France). Lab. d' Ingenierie Appliquee a l' Analyse; Dechamps-Olivier, I. [Univ. de Reims Champagne Ardenne, Reims (France). Group Chimie de Coordination; Platas-Iglesias, C. [Univ. da Coruna (Spain). Dept. de Quimica Fundamental; Elhabiri, M. [CNRS/UDS, EPCM, Strasbourg (France). Lab. de Physico-Chimie Bioinorganique

    2011-07-01

    Ligand L{sup 1}, based on a pyridine scaffold, functionalized by two bis(methane phosphonate)aminomethyl groups, was shown to display a very high affinity towards Cu(II) (log K{sub CuL}=22.7) and selectivity over Ni(II), Co(II), Zn(II) and Ga(III) ({delta} log K{sub ML}>4) as shown by the values of the stability constants obtained from potentiometric measurements. Insights into the coordination mode of the ligand around Cu(II) cation were obtained by UV-Vis absorption and EPR spectroscopies as well as density functional theory (DFT) calculations (B3LYP model) performed in aqueous solution. The results point to a pentacoordination pattern of the metal ion in the fully deprotonated [CuL{sup 1}]{sup 6-} species. Considering the beneficial thermodynamic parameters of this ligand, kinetic experiments were run to follow the formation of the copper(II) complexes, indicating a very rapid formation of the complex, appropriate for {sup 64}Cu complexation. As L{sup 1} represents a particularly interesting target within the frame of {sup 64}Cu PET imaging, a synthetic protocol was developed to introduce a labeling function on the pyridyl moiety of L{sup 1}, thereby affording L{sup 2}, a potential bifunctional chelator (BFC) for PET imaging.

  2. A preliminary study on the interaction of ferritin single crystals with chelating agents

    Science.gov (United States)

    Domininguez-Vera, Jose M.; Rondón, Deyanira; Moreno, Abel; García-Ruiz, Juan Ma.

    1996-10-01

    The crystallization of ferritin and the subsequent in situ study of the process of iron removal from the crystals by using chelating agents is reported. The chelating agents, oxalate and acetohydroxamate, were chosen because of their high iron(III) affinity. The formation of the corresponding soluble iron(III) complexes arising from the reaction with the iron cores was detected by UV-visible spectroscopy. Furthermore, we show that for a given concentration range of the chelating agents, the iron removal process takes place without crystal destruction. This ferritin-apoferritin (or iron-depleted ferritin) conversion was followed by video-microscopy and checked by X-ray diffraction.

  3. Chelate effects in sulfate binding by amide/urea-based ligands.

    Science.gov (United States)

    Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2015-07-01

    The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.

  4. The Effect of Chelating Copolymer Additive on the Yttrium Iron Garnet Nanoparticle Formation

    Institute of Scientific and Technical Information of China (English)

    Wang; Cheng-chien

    2007-01-01

    1 Results Yttrium iron garnet (YIG) is a well-known ferromagnetic garnet material and has widely used in electronic devices[1].A new acrylic chelating polymer was developed to act as the additive of the preparation of YIG precursor in our previous study[2].The sintering temperature of YIG nanocrystal obtained by this YIG precursor (ACP) was magnificently descended from 1 000 to 600 ℃.In this study,we were further to study the effect of amount of chelating polymer and the compositions of chelating polyme...

  5. AAZTA: an ideal chelating agent for the development of {sup 44}Sc PET imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Gabor; Szikra, Dezso; Trencsenyi, Gyoergy [Scanomed Ltd., Debrecen (Hungary); University of Debrecen, Medical Imaging Clinic (Hungary); Fekete, Aniko [University of Debrecen, Medical Imaging Clinic (Hungary); Garai, Ildiko [Scanomed Ltd., Debrecen (Hungary); Giani, Arianna M.; Negri, Roberto [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); Masciocchi, Norberto [Dipartimento di Scienza e Alta Tecnologia e To.Sca.Lab, Universita degli Studi dell' Insubria, Como (Italy); Maiocchi, Alessandro; Uggeri, Fulvio [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Toth, Imre [Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary); Aime, Silvio [Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Centro di Imaging Molecolare e Preclinico, Universita degli Studi di Torino (Italy); Giovenzana, Giovanni B. [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); CAGE Chemicals srl, Novara (Italy); Baranyai, Zsolt [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary)

    2017-02-13

    Unprecedented fast and efficient complexation of Sc{sup III} was demonstrated with the chelating agent AAZTA (AAZTA=1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)] amino-6-methylperhydro-1,4-d iazepine) under mild experimental conditions. The robustness of the {sup 44}Sc(AAZTA){sup -} chelate and conjugated biomolecules thereof is further shown by in vivo PET imaging in healthy and tumor mice models. The new results pave the way towards development of efficient Sc-based radiopharmaceuticals using the AAZTA chelator. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  7. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  8. Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS): an investigation of rare earth element signatures in otolith microchemistry

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Zikri; Paulson, Anthony J

    2003-01-10

    Uptake of trace elements into fish otoliths is governed by several factors such as life histories and environment in addition to stock and species differences. In an attempt to elucidate the elemental signatures of rare earth elements (REEs) in otoliths, a solid phase extraction (SPE) protocol was used in combination with electrothermal vaporization (ETV) as a sample introduction procedure for the determinations by inductively coupled plasma quadrupole mass spectrometry (ICP-MS). Effects of various parameters, such as carrier gas flow rate, atomization temperature and chemical modification, were examined for optimization of the conditions by ETV-ICP-MS. Atomization was achieved at 2800 deg. C. Lower temperatures (i.e. 2600 deg. C) resulted in severe memory problems due to incomplete atomization. Palladium was used as a chemical modifier. It was found that an increase in Pd concentration up to 0.5 {mu}g in the injection volume (70 {mu}l) led up to four-fold enhancement in the integrated signals. This phenomenon is attributed to the carrier effect of Pd rather than the stabilization since no significant losses were observed for high temperature drying around 700 deg. C even in the absence of Pd. Preconcentration was performed on-line at pH 5 by using a mini-column of Toyopearl AF-Chelate 650M chelating resin, which also eliminated the calcium matrix of otolith solutions. After preconcentration of 6.4 ml of solution, the concentrate was collected in 0.65 ml of 0.5% (v/v) HNO{sub 3} in autosampler cups, and then analyzed by ETV-ICP-MS. The method was validated with the analysis of a fish otolith certified reference material (CRM) of emperor snapper, and then applied to samples. Results obtained from otoliths of fish captured in the same habitat indicated that otolith rare earth element concentrations are more dependent on environmental conditions of the habitat than on species differences.

  9. Earth from Above

    Science.gov (United States)

    Stahley, Tom

    2006-01-01

    Google Earth is a free online software that provides a virtual view of Earth. Using Google Earth, students can view Earth by hovering over features and locations they preselect or by serendipitously exploring locations that catch their fascination. Going beyond hovering, they can swoop forward and even tilt images to make more detailed…

  10. Rare Earth Resolution

    Institute of Scientific and Technical Information of China (English)

    Mei Xinyu

    2012-01-01

    BEFORE the early 1970s, China had no rare earth exports, and the world rare earth market was dominated by the United States, Europe and Japan. In the 1970s, China began to enter the world rare earth market and its share has picked up sharply in the following decades. Today, having the monopoly over global rare earth production, China must improve the benefits from rare earth production, not only from producing individual rare earth products, but also from mastering the intensive processing of rare earth products.

  11. Chelating and antibacterial properties of chitosan nanoparticles on dentin

    Science.gov (United States)

    Bramante, Clovis Monteiro; Duarte, Marco Antonio Hungaro; de Moura, Marcia Regina; Aouada, Fauze Ahmad; Kishen, Anil

    2015-01-01

    Objectives The use of chitosan nanoparticles (CNPs) in endodontics is of interest due to their antibiofilm properties. This study was to investigate the ability of bioactive CNPs to remove the smear layer and inhibit bacterial recolonization on dentin. Materials and Methods One hundred bovine dentin sections were divided into five groups (n = 20 per group) according to the treatment. The irrigating solutions used were 2.5% sodium hypochlorite (NaOCl) for 20 min, 17% ethylenediaminetetraacetic acid (EDTA) for 3 min and 1.29 mg/mL CNPs for 3 min. The samples were irrigated with either distilled water (control), NaOCl, NaOCl-EDTA, NaOCl-EDTA-CNPs or NaOCl-CNPs. After the treatment, half of the samples (n = 50) were used to assess the chelating effect of the solutions using portable scanning electronic microscopy, while the other half (n = 50) were infected intra-orally to examine the post-treatment bacterial biofilm forming capacity. The biovolume and cellular viability of the biofilms were analysed under confocal laser scanning microscopy. The Kappa test was performed for examiner calibration, and the non-parametric Kruskal-Wallis and Dunn tests (p irrigant during root canal treatment with the dual benefit of removing the smear layer and inhibiting bacterial recolonization on root dentin. PMID:26295022

  12. mer and fac isomerism in tris chelate diimine metal complexes.

    Science.gov (United States)

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.

  13. New method to estimate stability of chelate complexes

    CERN Document Server

    Grigoriev, F V; Romanov, A N; Kondakova, O A; Sulimov, V B

    2009-01-01

    A new method allowing calculation of the stability of chelate complexes with Mg2+ ion in water have been developed. The method is based on two-stage scheme for the complex formation. The first stage is the ligand transfer from an arbitrary point of the solution to the second solvation shell of the Mg2+ ion. At this stage the ligand is considered as a charged or neutral rigid body. The second stage takes into account disruption of coordinate bonds between Mg2+ and water molecules from the first solvation shell and formation of the bonds between the ligand and the Mg2+ ion. This effect is considered using the quantum chemical modeling. It has been revealed that the main contribution to the free energy of the complex formation is caused by the disruption/formation of the coordinate bonds between Mg2+, water molecules and the ligand. Another important contribution to the complex formation energy is change of electrostatic interactions in water solvent upon the ligand binding with Mg2+ ion. For all complexes under...

  14. The Incidence of Ototoxicity in Patients Using Iron Chelators.

    Science.gov (United States)

    Derin, Serhan; Azık, Fatih Mehmet; Topal, Yaşar; Topal, Hatice; Karakuş, Volkan; Çetinkaya, Petek Uzay; Şahan, Murat; Azık, Tansel Erdem; Kocabaş, Can Naci

    2017-04-01

    In this study, we aimed to detect the incidences of ototoxicity in patients with hemoglobinopathies taking deferoxamine (DFO), deferiprone, and deferasirox using the National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) scale to obtain more objective data. Fifty-five transfusion-dependent patients were evaluated in this study. The NCI CTCAE scale was used to assess ototoxicity levels. The average ferritin and hemoglobin levels, the type of iron chelator, and the duration of therapy of all the patients were recorded. Ototoxicity was observed in 15 patients (31.9 %), all of whom were taking DFO. The median age was 19.5 (6-43) in patients without ototoxicity and 29 (16-50) in those with ototoxicity; this difference was statistically significant (pototoxicity and 986.7 ng/mL and 9.24 mg/dL, respectively, in those without ototoxicity; these differences were not significant (p>0.05). Ototoxicity was not observed in the eight patients who used only deferasirox and deferiprone. The ototoxicity incidence with DFO at doses below 50 mg/kg/day was 27.3%. Deferiprone and deferasirox were not associated with ototoxic effects in patients taking these drugs.

  15. Curcumin inhibits growth of Saccharomyces cerevisiae through iron chelation.

    Science.gov (United States)

    Minear, Steven; O'Donnell, Allyson F; Ballew, Anna; Giaever, Guri; Nislow, Corey; Stearns, Tim; Cyert, Martha S

    2011-11-01

    Curcumin, a polyphenol derived from turmeric, is an ancient therapeutic used in India for centuries to treat a wide array of ailments. Interest in curcumin has increased recently, with ongoing clinical trials exploring curcumin as an anticancer therapy and as a protectant against neurodegenerative diseases. In vitro, curcumin chelates metal ions. However, although diverse physiological effects have been documented for this compound, curcumin's mechanism of action on mammalian cells remains unclear. This study uses yeast as a model eukaryotic system to dissect the biological activity of curcumin. We found that yeast mutants lacking genes required for iron and copper homeostasis are hypersensitive to curcumin and that iron supplementation rescues this sensitivity. Curcumin penetrates yeast cells, concentrates in the endoplasmic reticulum (ER) membranes, and reduces the intracellular iron pool. Curcumin-treated, iron-starved cultures are enriched in unbudded cells, suggesting that the G(1) phase of the cell cycle is lengthened. A delay in cell cycle progression could, in part, explain the antitumorigenic properties associated with curcumin. We also demonstrate that curcumin causes a growth lag in cultured human cells that is remediated by the addition of exogenous iron. These findings suggest that curcumin-induced iron starvation is conserved from yeast to humans and underlies curcumin's medicinal properties.

  16. A membrane-specific tyrosinase chelate: the mitotic regulator?

    Science.gov (United States)

    Kharasch, J A

    1987-06-01

    Cancer's random, reversible, unstable transitions to "normal" structures imply their functional relation. Similar random, continuous, reversible oncogene "mutational transformation" also lacks a consistent hybrid. Positing cancer's "mutationally altered genotype" leads to medically foreign causes, qualities, inducers, suppressors, immune proteins, and viruses. Its random variation, however, opposes the functionally discrete, ordered, stable, irreversible hybrid variation and single-valued transforms of molecular genetics. There, "causal mutational operators" remain unspecified; only consistent single-valued DNA base and amino acid change, as "transform operand", are made explicit. A mitotically "blocked" (normal) and "unblocked" (malignant) stem cell "phenotype", operationally constructed from microscopic data, is therefore viewed within the homeostatic context of open-system enzyme-regulatory equilibrium. This functional, stochastic field distribution between "structurally bound" and "freely dividing" stem cell number discloses their putative regulatory mitotic-blocking factor. A tyrosinase complex, interacting by Cu2+-Fe2+ chelation with a proline hydroxylase divisional enzyme near stem cell ribosomes, maintains steady-state mitotic equilibrium. Based upon familiar medical, biochemical, and energy principles this confronts cancer's pigmentary-depigmentary signs, glycolytic metabolism, elevated serum tyrosinase, defective collagen production, exposed membrane binding sites, and tyrosine's recent growth control role.

  17. Development of organic chelating agent and environment friendly varieties%有机螯合剂及其环保型品种的开发

    Institute of Scientific and Technical Information of China (English)

    陈荣圻

    2011-01-01

    1/2左右的染整加工疵品是因为水质中的碱土金属和重金属产生的.通过实践知道解决的办法是在前处理、染色、印花和后整理工艺配方中添加螯合剂以去除有害金属离子.从螯合剂的络合稳定常数lgK和螯合容量2大指标性参数的有关问题入手,介绍氨基羧酸类、膦酸盐类、羟基羧酸类、氨基酸类和聚羧酸类5大有机螯合剂.重点评述因生态环保问题将退出市场的氨基三乙酸钠(NTA)、乙二胺四乙酸(EDTA)、二乙烯三胺五乙酸(DTPA)和取而代之的有机膦酸盐类螯合剂.虽然在制备过程中涉及甲醛,但如经妥善处理,残留在纺织品上的甲醛含量将低于国内外有关法规的限量,而且不会造成水体富营养化.%About half of dyeing and finishing defective products derived from alkaline-earth metals and heavy metals in water.The solution was found through the practice to remove hazardous metal ions by adding chelating agent in the formulation of pretreatment, dyeing, printing and finishing process.Staring with the relative problems of complex stability constants of chelating agent and chelating capacity indicating parameters, amino acid type, phosphate salts, hydroxyl carboxylic acids, amino acids and polycarboxylic acid five major chelating agents were introduced.Organic phosphate salts chelating agent was mainly reviewed, which would replace amino triethylene sodium (NTA), ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta acetic acid (DTPA) being out of market due to ecological and environmental protection issues.Although there is formaldehyde in the preparation procedure, if properly handled, the residual formaldehyde content in textiles would be lower than the limit of domestic and foreign laws and regulations, and would not cause water eutrophication.

  18. Mass Extinctions in Earth's History

    Science.gov (United States)

    Ward, P. D.

    2002-12-01

    Mass extinctions are short intervals of elevated species death. Possible causes of Earth's mass extinctions are both external (astronomical) and internal (tectonic and biotic changes from planetary mechanisms). Paleontologists have identified five "major" mass extinctions (>50 die-off in less than a million years) and more than 20 other minor events over the past 550 million years. Earlier major extinction events undoubtedly also occurred, but we have no fossil record; these were probably associated with, for example, the early heavy bombardment that cleared out the solar system, the advent of oxygen in the atmosphere, and various "snowball Earth" events. Mass extinctions are viewed as both destructive (species death ) and constructive, in that they allow evolutionary innovation in the wake of species disappearances. From an astrobiological perspective, mass extinctions must be considered as able both to reduce biodiversity and even potentially end life on any planet. Of the five major mass extinctions identified on Earth, only one (the Cretaceous/Tertiary event 65 million years ago that famously killed off the dinosaurs ) is unambiguously related to the impact of an asteroid or comet ( 10-km diameter). The Permian/Triassic (250 Myr ago) and Triassic/Jurassic (202 Myr ago) events are now the center of debate between those favoring impact and those suggesting large volume flooding by basaltic lavas. The final two events, Ordovician (440 Myr ago) and Devonian (370 Myr ago) have no accepted causal mechanisms.

  19. Iron chelation therapy in transfusion-dependent thalassemia patients: current strategies and future directions

    Directory of Open Access Journals (Sweden)

    Saliba AN

    2015-06-01

    Full Text Available Antoine N Saliba, Afif R Harb, Ali T Taher Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut, Beirut, Lebanon Abstract: Transfusional iron overload is a major target in the care of patients with transfusion-dependent thalassemia (TDT and other refractory anemias. Iron accumulates in the liver, heart, and endocrine organs leading to a wide array of complications. In this review, we summarize the characteristics of the approved iron chelators, deferoxamine, deferiprone, and deferasirox, and the evidence behind the use of each, as monotherapy or as part of combination therapy. We also review the different guidelines on iron chelation in TDT. This review also discusses future prospects and directions in the treatment of transfusional iron overload in TDT whether through innovation in chelation or other therapies, such as novel agents that improve transfusion dependence. Keywords: thalassemia, transfusion-dependent thalassemia, iron overload, iron chelation therapy, transfusion

  20. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2011-01-01

    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  1. Highly Diastereoselective Chelation-controlled Additions to α-Silyloxy Ketones

    Science.gov (United States)

    Stanton, Gretchen R.; Koz, Gamze

    2011-01-01

    The polar Felkin-Anh, Cornforth, and Cram-chelation models predict that the addition of organometallic reagents to silyl–protected α–hydroxy ketones proceeds via a non-chelation pathway to give anti-diol addition products. This prediction has held true for the vast majority of additions reported in the literature and few methods for chelation-controlled additions of organometallic reagents to silyl–protected α–hydroxy ketones have been introduced. Herein, we present a general and highly diastereoselective method for the addition of dialkylzincs and (E)-di-, (E)-tri- and (Z)-disubstituted vinylzinc reagents to α-silyloxy ketones using alkyl zinc halide Lewis acids, RZnX, to give chelation-controlled products (dr ≥18:1). The compatibility of organozinc reagents with other functional groups makes this method potentially very useful in complex molecule synthesis. PMID:21534530

  2. Absorption of nitric oxide into aqueous solutions of ferrous chelates accompanied by instantaneous reaction

    NARCIS (Netherlands)

    Demmink, J.F; vanGils, I.C.F.; Beenackers, A.A C M

    1997-01-01

    The absorption of nitric oxide (NO) into aqueous solutions of ferrous chelates of nitrilotriacetic acid (NTA), ethylene diaminetetraacetic acid (EDTA), hydroxyethylenediaminetriacetic acid (HEDTA), and diethylenetriaminepentaacetic acid (DTPA) was studied in a stirred cell reactor. Experimental cond

  3. CATALYTIC HYDROGENATION OF ACRYLATE ASMMETRIC Dd(Ⅱ)—CHELATING RESINS CONTAINING AMINO ACID LIGANDS

    Institute of Scientific and Technical Information of China (English)

    Wangying; WangHongzuo; 等

    1995-01-01

    The catalytic hydrogenation of palladium chelating resins containing chiral amino acid ligands based on lower crosslinked poly(chloroethyl acrylate) and some effects on the rate of hydrogenation were studied.

  4. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  5. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  6. Subclinical renal abnormalities in young thalassemia major and intermedia patients and its relation to chelation therapy

    Directory of Open Access Journals (Sweden)

    Amira A.M. Adly

    2014-10-01

    Conclusion: Subclinical renal affection can start earlier in TM patients compared to TI. Poor chelation is associated with early signs of renal affection. Periodic renal assessment of those patients is mandatory as they may be affected by hidden renal dysfunction.

  7. Nonionic metal-chelating surfactants mediated solvent-free thermo-induced separation of uranyl

    Energy Technology Data Exchange (ETDEWEB)

    Larpent, Ch.; Prevost, S. [Versailles-St-Quentin Univ., Institut Lavoisier, UMR-CNRS 8180, 78 - Versailles (France); Prevost, S.; Zemb, Th.; Testard, F. [CEA Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules (DSM/DRECAM/SCM/LIONS), 91 - Gif sur Yvette (France); Berthon, L. [CEA Valrho, Site de Marcoule, Dept. Radiochimie et Procedes (DEN/DRCP/SCPS/LCSE), 30 (France)

    2007-08-15

    Thermo-responsive metal-chelating surfactants permit the solvent-free, cloud point extraction of uranyl nitrate and afford a real molecular economy compared to conventional separation techniques. (authors)

  8. The Management of Iron Chelation Therapy: Preliminary Data from a National Registry of Thalassaemic Patients

    Directory of Open Access Journals (Sweden)

    Adriana Ceci

    2011-01-01

    Full Text Available Thalassaemia and other haemoglobinopathies constitute an important health problem in Mediterranean countries, placing a tremendous emotional, psychological, and economic burden on their National Health systems. The development of new chelators in the most recent years had a major impact on the treatment of thalassaemia and on the quality of life of thalassaemic patients. A new initiative was promoted by the Italian Ministry of Health, establishing a Registry for thalassaemic patients to serve as a tool for the development of cost-effective diagnostic and therapeutic approaches and for the definition of guidelines supporting the most appropriate management of the iron-chelating therapy and a correct use of the available iron-chelating agents. This study represents the analysis of the preliminary data collected for the evaluation of current status of the iron chelation practice in the Italian thalassaemic population and describes how therapeutic interventions can widely differ in the different patients' age groups.

  9. The Management of Iron Chelation Therapy: Preliminary Data from a National Registry of Thalassaemic Patients

    Science.gov (United States)

    Ceci, Adriana; Mangiarini, Laura; Felisi, Mariagrazia; Bartoloni, Franco; Ciancio, Angela; Capra, Marcello; D'Ascola, Domenico; Cianciulli, Paolo; Filosa, Aldo

    2011-01-01

    Thalassaemia and other haemoglobinopathies constitute an important health problem in Mediterranean countries, placing a tremendous emotional, psychological, and economic burden on their National Health systems. The development of new chelators in the most recent years had a major impact on the treatment of thalassaemia and on the quality of life of thalassaemic patients. A new initiative was promoted by the Italian Ministry of Health, establishing a Registry for thalassaemic patients to serve as a tool for the development of cost-effective diagnostic and therapeutic approaches and for the definition of guidelines supporting the most appropriate management of the iron-chelating therapy and a correct use of the available iron-chelating agents. This study represents the analysis of the preliminary data collected for the evaluation of current status of the iron chelation practice in the Italian thalassaemic population and describes how therapeutic interventions can widely differ in the different patients' age groups. PMID:21738864

  10. Absorption of nitric oxide into aqueous solutions of ferrous chelates accompanied by instantaneous reaction

    NARCIS (Netherlands)

    Demmink, J.F; vanGils, I.C.F.; Beenackers, A.A C M

    1997-01-01

    The absorption of nitric oxide (NO) into aqueous solutions of ferrous chelates of nitrilotriacetic acid (NTA), ethylene diaminetetraacetic acid (EDTA), hydroxyethylenediaminetriacetic acid (HEDTA), and diethylenetriaminepentaacetic acid (DTPA) was studied in a stirred cell reactor. Experimental

  11. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands

    OpenAIRE

    Berry, David J; Ma, Yongmin; Ballinger, James R.; Tavaré, Richard; Koers, Alexander; Sunassee, Kavitha; Zhou, Tao; Nawaz, Saima; Mullen, Gregory E. D.; Robert C. Hider; Blower, Philip J.

    2011-01-01

    A new tripodal tris(hydroxypyridinone) bifunctional chelator for gallium allows easy production of 68Ga-labelled proteins rapidly under mild conditions in high yields at exceptionally high specific activity and low concentration.

  12. Click-to-Chelate: Development of Technetium and Rhenium-Tricarbonyl Labeled Radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Thomas L. Mindt

    2013-03-01

    Full Text Available The Click-to-Chelate approach is a highly efficient strategy for the radiolabeling of molecules of medicinal interest with technetium and rhenium-tricarbonyl cores. Reaction of azide-functionalized molecules with alkyne prochelators by the Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction enables the simultaneous synthesis and conjugation of tridentate chelating systems for the stable complexation of the radiometals. In many cases, the functionalization of (biomolecules with the ligand system and radiolabeling can be achieved by convenient one-pot procedures. Since its first report in 2006, Click-to-Chelate has been applied to the development of numerous novel radiotracers with promising potential for translation into the clinic. This review summarizes the use of the Click-to-Chelate approach in radiopharmaceutical sciences and provides a perspective for future applications.

  13. Factors influencing the DNA nuclease activity of iron, cobalt, nickel, and copper chelates.

    Science.gov (United States)

    Joyner, Jeff C; Reichfield, Jared; Cowan, J A

    2011-10-05

    A library of complexes that included iron, cobalt, nickel, and copper chelates of cyclam, cyclen, DOTA, DTPA, EDTA, tripeptide GGH, tetrapeptide KGHK, NTA, and TACN was evaluated for DNA nuclease activity, ascorbate consumption, superoxide and hydroxyl radical generation, and reduction potential under physiologically relevant conditions. Plasmid DNA cleavage rates demonstrated by combinations of each complex and biological co-reactants were quantified by gel electrophoresis, yielding second-order rate constants for DNA(supercoiled) to DNA(nicked) conversion up to 2.5 × 10(6) M(-1) min(-1), and for DNA(nicked) to DNA(linear) up to 7 × 10(5) M(-1) min(-1). Relative rates of radical generation and characterization of radical species were determined by reaction with the fluorescent radical probes TEMPO-9-AC and rhodamine B. Ascorbate turnover rate constants ranging from 3 × 10(-4) to 0.13 min(-1) were determined, although many complexes demonstrated no measurable activity. Inhibition and Freifelder-Trumbo analysis of DNA cleavage supported concerted cleavage of dsDNA by a metal-associated reactive oxygen species (ROS) in the case of Cu(2+)(aq), Cu-KGHK, Co-KGHK, and Cu-NTA and stepwise cleavage for Fe(2+)(aq), Cu-cyclam, Cu-cyclen, Co-cyclen, Cu-EDTA, Ni-EDTA, Co-EDTA, Cu-GGH, and Co-NTA. Reduction potentials varied over the range from -362 to +1111 mV versus NHE, and complexes demonstrated optimal catalytic activity in the range of the physiological redox co-reactants ascorbate and peroxide (-66 to +380 mV).

  14. On-line continuous generation of zinc chelates in the vapor phase by reaction with sodium dithiocarbamates and determination by atomic fluorescence spectrometry

    Science.gov (United States)

    Duan, Xuchuan; Sun, Rui; Fang, Jinliang

    2017-02-01

    The present study shows for the first time that a volatile zinc chelate species can be generated by the on-line continuous merging of an acidified sample solution with an aqueous sodium diethyldithiocarbamate solution followed by rapid separation using a frit-based bubble gas-liquid separator at room temperature. The operating conditions for the generation of the vaporous zinc chelate were preliminarily investigated by non-dispersive atomic fluorescence spectrometry. The possible mechanism of zinc vapor generation is discussed. The study shows that the volatile species is an intermediate species with very similar properties to diethyldithiocarbamic acid and a very short half-life in the acidic solution. Moreover, this species can only be generated by on-line mixing and rapid separation. The efficiency of generation was 33-85% depending on acidity. Under optimal conditions, the flow rates of the sample and Na-DDTC solution were 1.3 ml min- 1, the carrier argon flow rate was 225 ml min- 1, the acid concentration of the sample solution and the concentration of Na-DDTC were 0.05 M and 0.4% (m/v), respectively, the detection limit of zinc was 0.33 (3σ) ng ml- 1, and the relative standard deviation (RSD) was 1.3%. The accuracy of the method was verified by the determination of zinc in the plant reference materials GBW10015 (spinach) and GBW10045 (rice). The results were in good agreement with the certified reference values.

  15. The iron chelator deferasirox protects mice from mucormycosis through iron starvation

    OpenAIRE

    2007-01-01

    Mucormycosis causes mortality in at least 50% of cases despite current first-line therapies. Clinical and animal data indicate that the presence of elevated available serum iron predisposes the host to mucormycosis. Here we demonstrate that deferasirox, an iron chelator recently approved for use in humans by the US FDA, is a highly effective treatment for mucormycosis. Deferasirox effectively chelated iron from Rhizopus oryzae and demonstrated cidal activity in vitro against 28 of 29 clinical...

  16. Chelation therapy and cardiovascular disease: connecting scientific silos to benefit cardiac patients.

    Science.gov (United States)

    Peguero, Julio G; Arenas, Ivan; Lamas, Gervasio A

    2014-08-01

    Medical practitioners have treated atherosclerotic disease with chelation therapy for over 50 years. Lack of strong of evidence led conventional practitioners to abandon its use in the 1960s and 1970s. This relegated chelation therapy to complementary and alternative medicine practitioners, who reported good anecdotal results. Concurrently, the epidemiologic evidence linking xenobiotic metals with cardiovascular disease and mortality gradually accumulated, suggesting a plausible role for chelation therapy. On the basis of the continued use of chelation therapy without an evidence base, the National Institutes of Health released a Request for Applications for a definitive trial of chelation therapy. The Trial to Assess Chelation Therapy (TACT) was formulated as a 2 × 2 factorial randomized controlled trial of intravenous EDTA-based chelation vs. placebo and high-dose oral multivitamins and multiminerals vs. oral placebo. The composite primary endpoint was death, reinfarction, stroke, coronary revascularization, or hospitalization for angina. A total of 1708 post-MI patients who were 50 years or older with a creatinine of 2.0 or less were enrolled and received 55,222 infusions of disodium EDTA or placebo with a median follow-up of 55 months. Patients were on evidence-based post-MI medications including statins. EDTA proved to be safe. EDTA chelation therapy reduced cardiovascular events by 18%, with a 5-year number needed to treat (NNT) of 18. Prespecified subgroup analysis revealed a robust benefit in patients with diabetes mellitus with a 41% reduction in the primary endpoint (5-year NNT = 6.5), and a 43% 5-year relative risk reduction in all-cause mortality (5-year NNT = 12). The magnitude of benefit is such that it suggests urgency in replication and implementation, which could, due to the excellent safety record, occur simultaneously.

  17. The Role of Chelation in the Treatment of Arsenic and Mercury Poisoning

    OpenAIRE

    Kosnett, Michael J

    2013-01-01

    Chelation for heavy metal intoxication began more than 70 years ago with the development of British anti-lewisite (BAL; dimercaprol) in wartime Britain as a potential antidote the arsenical warfare agent lewisite (dichloro[2-chlorovinyl]arsine). DMPS (unithiol) and DMSA (succimer), dithiol water-soluble analogs of BAL, were developed in the Soviet Union and China in the late 1950s. These three agents have remained the mainstay of chelation treatment of arsenic and mercury intoxication for mor...

  18. Synthesis, Characterization and Chelating Properties of 4-Butyrylsemicarbazone-1-phenyl-3-methyl-2-pyrazolin-5-one

    Directory of Open Access Journals (Sweden)

    J. D. Patel

    2010-01-01

    Full Text Available 4-Butyrylsemicarbazone-1-phenyl-3-methyl-2-pyrazolin-5-one (BUMP-SC was prepared and its metal chelates of Cu2+, Ni2+, Co2+, Mn2+, Fe2+, Fe3+, Cr3+, UO2 and OV were prepared. The ligands and its chelates were characterized by elemental analysis, metal:ligand (M:L stoichiometry, IR-electronic spectral studies and magnetic properties. The compounds also were screened for their antimicrobial activity.

  19. Role of the Symmetry of Multipoint Hydrogen Bonding on Chelate Cooperativity in Supramolecular Macrocyclization Processes.

    Science.gov (United States)

    Montoro-García, Carlos; Camacho-García, Jorge; López-Pérez, Ana M; Mayoral, María J; Bilbao, Nerea; González-Rodríguez, David

    2016-01-01

    Herein, we analyze the intrinsic chelate effect that multipoint H-bonding patterns exert on the overall energy of dinucleoside cyclic systems. Our results indicate that the chelate effect is regulated by the symmetry of the H-bonding pattern, and that the effective molarity is reduced by about three orders of magnitude when going from the unsymmetric ADD-DAA or DDA-AAD patterns to the symmetric DAD-ADA pattern.

  20. ORGANIC CHELATING REAGENT ON REDOX ADSORPTION OF ACTIVATED CARBON FIBER TOWARDS Au3+

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Organic chelating reagent influences upon the redox adsorption of activated carbon fibertowards Au3- were systematically investigated. The experimental results indicated that the presenceof organic chelating reagent on activated carbon fiber strongly affects adsorption capacity ofactivated carbon fiber towards Au3+. The reduction-adsorption amount of Au3+ increased three timesby the presence of 8-quinolinol. Furthermore, The reduction-adsorption amount of Au3+ depended onthe pH value of adsorption and temperature.

  1. Regulation of quinolinic acid neosynthesis in mouse, rat and human brain by iron and iron chelators in vitro.

    Science.gov (United States)

    Stachowski, Erin K; Schwarcz, Robert

    2012-02-01

    Several lines of evidence indicate that excess iron may play an etiologically significant role in neurodegenerative disorders. This idea is supported, for example, by experimental studies in animals demonstrating significant neuroprotection by iron chelation. Here, we tested whether this effect might be related to a functional link between iron and the endogenous excitotoxin quinolinic acid (QUIN), a presumed pathogen in several neurological disorders. In particular, the present in vitro study was designed to examine the effects of Fe(2+), a known co-factor of oxygenases, on the activity of QUIN's immediate biosynthetic enzyme, 3-hydroxyanthranilic acid dioxygenase (3HAO), in the brain. In crude tissue homogenate, addition of Fe(2+) (2-40 μM) stimulated 3HAO activity 4- to 6-fold in all three species tested (mouse, rat and human). The slope of the iron curve was steepest in rat brain where an increase from 6 to 14 μM resulted in a more than fivefold higher enzyme activity. In all species, the Fe(2+)-induced increase in 3HAO activity was dose-dependently attenuated by the addition of ferritin, the main iron storage protein in the brain. The effect of iron was also readily prevented by N,N'-bis(2-hydroxybenzyl) ethylenediamine-N,N'-diacetic acid (HBED), a synthetic iron chelator with neuroprotective properties in vivo. All these effects were reproduced using neostriatal tissue obtained postmortem from normal individuals and patients with end-stage Huntington's disease. Our results suggest that QUIN levels and function in the mammalian brain might be tightly controlled by endogenous iron and proteins that regulate the bioavailability of iron.

  2. Optimization of chelators to enhance uranium uptake from tailings for phytoremediation.

    Science.gov (United States)

    Jagetiya, Bhagawatilal; Sharma, Anubha

    2013-04-01

    A greenhouse experiment was set up to investigate the ability of citric acid (CA), oxalic acid (OA), nitrilotriacetic acid (NTA) and EDTA for phytoremediation of uranium tailings by Indian mustard [Brassica juncea (L.) Czern. et Coss]. Uranium tailings were collected from Umra mining region and mixed with 75% of garden soil which yielded a 25:75 mixture. Prepared pots were divided into four sets and treated with following different concentrations - 0.1, 0.5, 2.5 and 12.5 mmol kg(-1) soil additions for each of the four chelators. Control pots which were not treated with chelators. Experiments were conducted in completely randomized block design with triplicates. The optimum concentrations of these chelators were found on the basis of biomass production, tolerance and accumulation potential. The data collected were expressed statistically. EDTA produced maximum growth depression whereas, minimum occurred in the case of NTA. Maximum U uptake (3.5-fold) in the roots occurred at 2.5 mmol of CA, while NTA proved to be the weakest for the same purpose. Severe toxicity in the form of reduced growth and plant death was recorded at 12.5 mmol of each chelator. Minimum growth inhibition produced by chelators occurred in NTA which was followed by OA, moderate in CA and maximum was traced in EDTA applications. Chelator strengthened U uptake in the present study follows the order: CA>EDTA>OA>NTA.

  3. Donor-Appended N,C-Chelate Organoboron Compounds: Influence of Donor Strength on Photochromic Behaviour.

    Science.gov (United States)

    Mellerup, Soren K; Yuan, Kang; Nguyen, Carmen; Lu, Zheng-Hong; Wang, Suning

    2016-08-22

    Recently, four-coordinated N,C-chelate organoboron compounds have been found to show many interesting photochemical transformations depending on the nature of their chelating framework. As such, the effect of substitution on the chelate ligand has been well-established and understood, but the impact of the aryl groups attached to the boron atom remains less clear. To investigate the effect of enhanced charge-transfer character, a series of new N,C-chelate organoboron compounds with donor-functionalized aryl groups have been synthesized and characterized using NMR, UV/Vis, and electrochemical methods. These compounds were found to possess bright and tunable charge-transfer luminescence which is dependent on the donor strength of the amino substituent. In addition, some of these compounds undergo photochromic switching, producing dark isomers of various colors. This work establishes that donor-functionalization of the aryl groups in N,C-chelate boron compounds is an effective strategy for tuning both the photophysical and photochemical properties of such systems. The new findings also help elucidate the influence of electronic structure on the photoreactivity of N,C-chelate organoboron compounds which appears to be as important as steric crowding around the boron atom.

  4. Effects of single and combined heavy metals and their chelators on aphid performance and preferences.

    Science.gov (United States)

    Stolpe, Clemens; Müller, Caroline

    2016-12-01

    When present at elevated levels in the environment, heavy metals are toxic for most organisms. However, so-called hyperaccumulator plants tolerate heavy metals and use chelators for their internal long-distance transport. Thus, phloem-sucking insects may come in contact with the chelated metals. In the present study, the effects of individual and combined heavy metals, zinc (Zn) and cadmium (Cd), as well as of common chelators, nicotianamine and phytochelatin, were investigated on the performance, preferences, and metal accumulation of the generalist aphid Myzus persicae, using artificial diets. Added Zn increased aphid growth, whereas Cd reduced the survival of aphids. Chelators had neither protective nor negative effects on aphids. The combination of the 2 heavy metals in chelated or nonchelated form caused a potentiation effect that led to an extinction of the aphids within less than 2 wk, before they could reproduce. Both Cd and Zn accumulated in the aphids, indicating a possible biomagnification. In choice assays, aphids preferred diets amended with Zn with or without nicotianamine compared to a control diet. In contrast, a Cd-containing diet led to neither attraction nor aversion. The present study provides insight into how mixtures of heavy metals and their chelators influence the life history of a generalist aphid. The results have implications for the use of phytoremediation to remove heavy metals from contaminated soils. Environ Toxicol Chem 2016;35:3023-3030. © 2016 SETAC. © 2016 SETAC.

  5. The role of chelation in the treatment of arsenic and mercury poisoning.

    Science.gov (United States)

    Kosnett, Michael J

    2013-12-01

    Chelation for heavy metal intoxication began more than 70 years ago with the development of British anti-lewisite (BAL; dimercaprol) in wartime Britain as a potential antidote the arsenical warfare agent lewisite (dichloro[2-chlorovinyl]arsine). DMPS (unithiol) and DMSA (succimer), dithiol water-soluble analogs of BAL, were developed in the Soviet Union and China in the late 1950s. These three agents have remained the mainstay of chelation treatment of arsenic and mercury intoxication for more than half a century. Animal experiments and in some instances human data indicate that the dithiol chelators enhance arsenic and mercury excretion. Controlled animal experiments support a therapeutic role for these chelators in the prompt treatment of acute poisoning by arsenic and inorganic mercury salts. Treatment should be initiated as rapidly as possible (within minutes to a few hours), as efficacy declines or disappears as the time interval between metal exposure and onset of chelation increases. DMPS and DMSA, which have a higher therapeutic index than BAL and do not redistribute arsenic or mercury to the brain, offer advantages in clinical practice. Although chelation following chronic exposure to inorganic arsenic and inorganic mercury may accelerate metal excretion and diminish metal burden in some organs, potential therapeutic efficacy in terms of decreased morbidity and mortality is largely unestablished in cases of chronic metal intoxication.

  6. Hydroxypyri(mi)dine-based chelators as antidotes of toxicity due to aluminum and actinides.

    Science.gov (United States)

    Santos, M A; Esteves, M A; Chaves, S

    2012-01-01

    This review is focused on recent developments on hydroxypyri(mi)dines, as aluminum and actinide chelating agents to combat the toxicity due to accumulations of these metal ions in human body resulting from excessive metal exposure. After a brief update revision of the most common processes of aluminum (Al) exposure, as well as the associated toxicities and pathologies, we will focus on the current available Al chelators and future perspective as potential antidotes of Al toxicity. Due to the similarity between Al and Fe, a major emphasis is given to the hydroxypyridinone and hydroxypyrimidinone chelators, since they are analogues of the current iron chelators in clinical use (DFP and DFO). This review includes issues such as molecular design strategies and corresponding effects on the associated physico-chemical properties, lipo-hydrophilic balance, toxicity, in vivo bioassays and current clinical applications. The hydroxypyri(mi)dine chelators are also suitable for other hard metal ions, such as the radiotoxic actinides, and so a brief review is included on the applications of these chelators in actinides scavenging.

  7. ELECTED PROBLEMS RELATED TO ENVIRONMENTAL HEAVY METALS EXPOSURE AND CHELATION THERAPY

    Directory of Open Access Journals (Sweden)

    Anna Skoczyńska

    2010-09-01

    Full Text Available Background: Exposure to heavy metals leads to functional and metabolic disturbances and many of them are included in pathogenesis of common diseases (arterial hypertension, atherosclerosis, neurodegenerative processes. In this context new therapeutic and prophylactic strategies are necessary. Patients diagnosed with chronic heavy metals intoxication usually require chelation to increase mobilisation of metals from tissues and elimination of them via urine. Acute poisoning with toxic metal may be difficult to diagnosis, especially in case of accidental intoxication or suicidal intention. Patients also require chelation after causative factor is identified. Objectives: To describe some problems connected with toxicity of metals poisoning and to review pharmacologic therapies that could have a role in poisoning with metals. Methods: A review of the literature was carried out and expert opinion expressed. Results/conclusion: Chelation is a common therapy in case of poisoning with toxic metals but it is satisfied only partially. A combined therapy with structurally different chelators or long-term acting chelators could become viable alternatives in the future. A combined therapy with an antioxidant plus chelator may be a good choice in patients chronically poisoned with metals. Exposure to lead should be taken into account during estimation of global cardiovascular risk.

  8. Antidiabetic effect of glucosaminic acid-cobalt (II chelate in streptozotocin-induced diabetes in mice

    Directory of Open Access Journals (Sweden)

    Talba T

    2011-04-01

    Full Text Available Tahirou Talba1, Xia Wen Shui1, Qinyuan Cheng1,2, Xin Tian21Key Laboratory of Food Processing Technology, 2School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu, People's Republic of ChinaBackground: The purpose of this study was to assess the in vivo ability of glucosaminic acid-cobalt (II chelate to reduce glycemia.Methods: Different concentrations of chelate solution were administrated to mice with diabetes induced by streptozotocin. Daily oral administration of chelate solution 0.4 mL at various concentrations (0.32–0.4 g/mL led to reduction in water intake by the diabetic mice after 5 days of treatment, with a subsequent reduction in glucose levels observed 2 weeks later. Daily food intake was related to both chelate concentration as well as glycemia reduction. The food intake of mice treated with glucosaminic acid-cobalt (II chelate solution was 1.5-fold that of untreated mice.Keywords: glucosaminic acid, cobalt, chelate, streptozotocin, glycemia reduction

  9. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  10. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  11. Iron Hydride Detection and Intramolecular Hydride Transfer in a Synthetic Model of Mono-Iron Hydrogenase with a CNS Chelate.

    Science.gov (United States)

    Durgaprasad, Gummadi; Xie, Zhu-Lin; Rose, Michael J

    2016-01-19

    We report the identification and reactivity of an iron hydride species in a synthetic model complex of monoiron hydrogenase. The hydride complex is derived from a phosphine-free CNS chelate that includes a Fe-C(NH)(═O) bond (carbamoyl) as a mimic of the active site iron acyl. The reaction of [((O═)C(HN)N(py)S(Me))Fe(CO)2(Br)] (1) with NaHBEt3 generates the iron hydride intermediate [((O═)C(HN)N(py)S(Me))Fe(H)(CO)2] (2; δFe-H = -5.08 ppm). Above -40 °C, the hydride species extrudes CH3S(-) via intramolecular hydride transfer, which is stoichiometrically trapped in the structurally characterized dimer μ2-(CH3S)2-[((O═)C(HN)N(Ph))Fe(CO)2]2 (3). Alternately, when activated by base ((t)BuOK), 1 undergoes desulfurization to form a cyclometalated species, [((O═)C(NH)NC(Ph))Fe(CO)2] (5); derivatization of 5 with PPh3 affords the structurally characterized species [((O═)C(NH)NC)Fe(CO)(PPh3)2] (6), indicating complex 6 as the common intermediate along each pathway of desulfurization.

  12. Zinc glycine chelate absorption characteristics in Sprague Dawley rat.

    Science.gov (United States)

    Yue, M; Fang, S L; Zhuo, Z; Li, D D; Feng, J

    2015-06-01

    This study was conducted to investigate absorption characteristics of zinc glycine chelate (Zn-Gly) by evaluating tissues zinc status and the expression of zinc transporters in rats. A total of 24 male rats were randomly allocated to three treatments and administered either saline or 35 mg Zn/kg body weight from zinc sulphate (ZnSO4 ) or Zn-Gly by feeding tube separately. Four rats per group were slaughtered and tissues were collected at 2 and 6 h after gavage respectively. Our data showed that Zn-Gly did more effectively in increasing (p < 0.05) serum zinc levels, and the activities of serum and liver alkaline phosphatase (ALP) and liver Cu/Zn superoxide dismutase (Cu/Zn SOD) at 2 and 6 h. By 2 h after the zinc load, the mRNA and protein abundance of intestinal metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) were higher (p < 0.05), and zinc transporter SLC39A4 (Zip4) lower (p < 0.05) in ZnSO4 compared to other groups. Zinc transporter SLC39A5 (Zip5) mRNA expression was not zinc responsive, but Zip5 protein abundance was remarkably (p < 0.05) increased in ZnSO4 2 h later. Overall, our results indicated that in short-term periods, Zn-Gly was more effective in improving body zinc status than ZnSO4 , and ZnSO4 did more efficiently on the regulation of zinc transporters in small intestine.

  13. Resinas quelantes amidoxímicas Amidoxime chelating resins

    Directory of Open Access Journals (Sweden)

    Fernanda M. B. Coutinho

    1999-12-01

    Full Text Available Resinas quelantes com grupos amidoxima foram sintetizadas por copolimerização em suspensão de acrilonitrila (AN e divinilbenzeno (DVB e subsequente modificação química dos grupos ciano por reação com hidroxilamina. Na copolimerização, a proporção de divinilbenzeno e o grau de diluição foram variados. Gelatina e carbonato de cálcio foram usados como estabilizadores de suspensão e sulfato de sódio foi adicionado para reduzir a solubilidade da acrilonitrila em água, por meio do efeito salting out. Os copolímeros de AN/DVB e as resinas amidoxímicas obtidos foram caracterizados por meio de densidade aparente, área específica, volume de poros e teor de nitrogênio. As resinas amidoxímicas foram também avaliadas em relação a capacidade de complexação de íons cobre.Chelating resins with amidoxime groups were synthesized by suspension copolymerization of acrylonitrile (AN and divinylbenzene (DVB and subsequent chemical modification of cyano groups by reaction with hydroxylamine. In the copolymerization, the proportion of divinylbenzene and the dilution degree were varied. Gelatin and calcium carbonate were used as suspension stabilizers and sodium sulphate was added in order to reduce acrylonitrile solubility in water, by salting out effect. The AN/DVB copolymers and amidoxime resins obtained were characterized by apparent density, surface area, pore volume and by the content of nitrogen. The amidoxime resins were also evaluated in relation to the complexation capacity of copper ion.

  14. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance.

    Science.gov (United States)

    Liu, Gang; Men, Ping; Harris, Peggy L R; Rolston, Raj K; Perry, George; Smith, Mark A

    2006-10-09

    Accumulating evidence suggests that oxidative stress may be a major etiologic factor in initiating and promoting neurodegeneration in Alzheimer disease. Contributing to this, there is a dyshomeostasis of metal ions in Alzheimer disease with abnormally high levels of redox-active metals, particularly iron, in affected areas of the brain. Although it is unclear whether metal excesses are the sole cause of oxidative stress and neurodegeneration or a by-product of neuronal loss, the finding that metal chelators can partially solubilize amyloid-beta deposits in Alzheimer disease suggests a promising therapeutic role for chelating agents. However, the blood-brain barrier and toxicity of known chelators limit their utility. In this study, we suggest that covalent conjugation of iron chelators with nanoparticles may help overcome the limitations in blood-brain barrier permeability of existing chelation therapy. Using in vitro studies, we have shown that a chelator-nanoparticle system and the chelator-nanoparticle system complexed with iron, when incubated with human plasma, preferentially adsorb apolipoprotein E and apolipoprotein A-I, that would facilitate transport into and out of the brain via mechanisms used for transporting low-density lipoprotein. Our studies suggest a unique approach, utilizing nanoparticles, to transport chelators and chelator-metal complexes in both directions across the blood-brain barrier, thus providing safer and more effective chelation treatment in Alzheimer disease and other neurodegenerative diseases.

  15. Understanding rhizosphere processes to enhance phytoextraction of germanium and rare earth elements

    Science.gov (United States)

    Wiche, Oliver

    2017-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that are not actually rare in terms of concentrations in soils but they are hardly available for plant uptake due to interactions with organic matter (SOM), secondary soil constituents such as Fe/Mn oxides and P bearing soil fractions. Processes in the rhizosphere might influence availability of Ge and REEs in the soil-plant system, since lowering of the pH and presence of carboxylates and siderophores (small molecules that strongly chelate Fe and other elements) strongly influences the chemical speciation of Ge and REEs in soil and consequently this comprehensive knowledge helps us to improve phytomining. In a series of field and greenhouse experiments 16 plant species from the functional groups of grasses, herbs and legumes were tested with regard to their accumulation efficiency of Ge and REEs in shoots. Subsequently, we conducted mixed culture experiments in which inefficient species (e.g. cereals like Avena sativa, Hordeum vulgare, Panicum miliaceum) were cultivated in mixed cultures with efficient species (Lupinus albus, Lupinus angustifolius). Based on the plant concentrations a principal component analysis (PCA) was performed to identify significant factors that explain the accumulation behavior of different plant species with regard to Ge, REEs, Si, Fe and Mn. In this analysis Mn was used to identify plant species with efficient mechanisms to access sparingly available P-resources in soils. Particularly in nonmycorrhizal species concentrations of Mn in leaves often indicate a carboxylate based P-mobilising strategy. Herbaceous plant species accumulated significantly higher amounts of REEs while grasses accumulated significantly higher amounts of Ge. Concentrations of Ge in shoots of grasses correlated significantly positive with Si, but negatively with concentrations of Mn. Indeed, the results of the PCA clearly show that plants with high Mn concentrations tend to have

  16. Enhancing Potentially Plant-Available Lead Concentrations in Contaminated Residential Soils Using a Biodegradable Chelating Agent

    Science.gov (United States)

    Andra, S.; Datta, R.; Sarkar, D.; Saminathan, S.

    2007-12-01

    Chelation of heavy metals is an important factor in enhancing metal solubility and, hence, metal availability to plants to promote phytoremediation. In the present study, we compared the effects of application of a biodegradable chelating agent, namely, ethylenediaminedisuccinic acid (EDDS) on enhancing plant available form of lead (Pb) in Pb-based paint contaminated residential soils compared to that of a more commonly used, but non-biodegradable chelate, i.e., ethylenediaminetetraacetic acid (EDTA). Development of a successful phytoremediation model for metals such as Pb depends on a thorough understanding of the physical and chemical properties of the soil, along with the optimization of a chelate treatment to mobilize Pb from `unavailable' pools to potentially plant available fraction. In this context, we set out to perform batch incubation experiments to investigate the effectiveness of the two aforementioned chelates in enhancing plant available Pb at four different concentrations (0, 5, 10 and 15 mM/kg soil) and three treatment durations (0, 10 and 30 days). We selected 12 contaminated residential soils from two major metropolitan areas (San Antonio, TX and Baltimore, MD) with varying soil physico-chemical properties - the soils from San Antonio were primarily alkaline and those from Baltimore were typically acidic. Total soil Pb concentrations ranged between 256 mg/kg and 4,182 mg/kg. Our results show that both chelates increased the solubility of Pb, otherwise occluded in the complex soil matrix. For both EDTA and EDDS, the exchangeable concentrations of soil Pb also increased with increase in chelate concentration and incubation time. The most effective treatment was 15 mM chelate kg-1 soil incubated for 30 days, which caused many fold increase in potentially plant available Pb (a combination of the soluble and exchangeable fractions) relative to the unamended controls. Step wise multiple linear regression analysis using chelate-extractable Pb and soil

  17. EarthKAM

    Data.gov (United States)

    National Aeronautics and Space Administration — Sponsored by NASA, EarthKAM (Earth Knowledge Acquired by Middle School Students) is an educational outreach program allowing middle school students to take pictures...

  18. Earth on the Move.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Provides background information on the layers of the earth, the relationship between changes on the surface of the earth and its insides, and plate tectonics. Teaching activities are included, with some containing reproducible worksheets and handouts to accompany them. (TW)

  19. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  20. CARDIAC FUNCTION AND IRON CHELATION IN THALASSEMIA MAJOR AND INTERMEDIA: A REVIEW OF THE UNDERLYING PATHOPHYSIOLOGY AND APPROACH TO CHELATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Athanasios Aessopos

    2009-07-01

    Full Text Available Heart disease is the leading cause of mortality and one of the main causes of morbidity in beta-thalassemia. Patients with homozygous thalassemia may have either a severe phenotype which is usually transfusion dependent or a milder form that is thalassemia intermedia.  The two main factors that determine cardiac disease in homozygous β thalassemia are the high output state that results from chronic tissue hypoxia, hypoxia-induced compensatory reactions and iron overload.  The high output state playing a major role in thalassaemia intermedia and the iron load being more significant in the major form. Arrhythmias, vascular involvement that leads to an increased pulmonary vascular resistance and an increased systemic vascular stiffness and valvular abnormalities also contribute to the cardiac dysfunction in varying degrees according to the severity of the phenotype.  Endocrine abnormalities, infections, renal function and medications can also play a role in the overall cardiac function.  For thalassaemia major, regular and adequate blood transfusions and iron chelation therapy are the mainstays of management. The approach to thalassaemia intermedia, today, is aimed at monitoring for complications and initiating, timely, regular transfusions and/or iron chelation therapy.  Once the patients are on transfusions, then they should be managed in the same way as the thalassaemia major patients.  If cardiac manifestations of dysfunction are present in either form of thalassaemia, high pre transfusion Hb levels need to be maintained in order to reduce cardiac output and appropriate intensive chelation therapy needs to be instituted.  In general recommendations on chelation, today, are usually made according to the Cardiac Magnetic Resonance findings, if available.  With the advances in the latter technology and the ability to tailor chelation therapy according to the MRI findings as well as the availability of three iron chelators, together with

  1. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  2. Capturing Near Earth Objects

    OpenAIRE

    Baoyin, Hexi; CHEN Yang; Li, Junfeng

    2011-01-01

    Recently, Near Earth Objects (NEOs) have been attracting great attention, and thousands of NEOs have been found to date. This paper examines the NEOs' orbital dynamics using the framework of an accurate solar system model and a Sun-Earth-NEO three-body system when the NEOs are close to Earth to search for NEOs with low-energy orbits. It is possible for such an NEO to be temporarily captured by Earth; its orbit would thereby be changed and it would become an Earth-orbiting object after a small...

  3. HIV-1 IN strand transfer chelating inhibitors: a focus on metal binding.

    Science.gov (United States)

    Bacchi, Alessia; Carcelli, Mauro; Compari, Carlotta; Fisicaro, Emilia; Pala, Nicolino; Rispoli, Gabriele; Rogolino, Dominga; Sanchez, Tino W; Sechi, Mario; Neamati, Nouri

    2011-04-01

    Most active and selective strand transfer HIV-1 integrase (IN) inhibitors contain chelating functional groups that are crucial feature for the inhibition of the catalytic activities of the enzyme. In particular, diketo acids and their derivatives can coordinate one or two metal ions within the catalytic core of the enzyme. The present work is intended as a contribution to elucidate the mechanism of action of the HIV-IN inhibitors by studying the coordinative features of H₂L¹ (L-708,906), an important member of the diketo acids family of inhibitors, and H₂L₂, a model for S-1360, another potent IN inhibitor. Magnesium(II) and manganese(II) complexes of H₂L¹ and H₂L² were isolated and fully characterized in solution and in the solid state. The crystal structures of the manganese complex [Mn(HL₂)₂(CH₃OH)₂]·2CH₃OH were solved by X-ray diffraction analysis. Moreover, the speciation models for H₂L₂ with magnesium(II) and manganese(II) ions were performed and the formation constants of the complexes were measured. M(HL₂)₂ (M = Mg²+, Mn²+) was the most abundant species in solution at physiological pH. All the synthesized compounds were tested for their anti-IN activity, showing good results both for the ligand and the corresponding complexes. From analysis of the speciation models and of the biological data we can conclude that coordination of both metal cofactors could not be strictly necessary and that inhibitors can act as complexes and not only as free ligands.

  4. Study Of Fe(iii)-nta Chelates Stability For Applicability In Photo-fenton At Neutral Ph

    OpenAIRE

    De Luca; Antonella; Dantas; Renato F.; Esplugas; Santiago (Archidiócesis) . Arzobispo (Agustín Antolínez).

    2016-01-01

    The stability of ferric nitrilotriacetate chelates (Fe(III)-NTA) was studied under thermal, oxidative and photochemical stress. The knowledge of chelate stability is fundamental to correctly implement the management system of wastewater treatment plant for application of chelates as catalyst in photo-Fenton process at neutral pH. Fe(III)-NTA solution stability was monitored under different temperature conditions (T=10-30 degrees C), in presence and absence of UV-A irradiation and by adding th...

  5. N-acetylcysteine protects rats with chronic renal failure from gadolinium-chelate nephrotoxicity.

    Directory of Open Access Journals (Sweden)

    Leonardo Victor Barbosa Pereira

    Full Text Available The aim of this study was to evaluate the effect of Gd-chelate on renal function, iron parameters and oxidative stress in rats with CRF and a possible protective effect of the antioxidant N-Acetylcysteine (NAC. Male Wistar rats were submitted to 5/6 nephrectomy (Nx to induced CRF. An ionic-cyclic Gd (Gadoterate Meglumine was administrated (1.5 mM/KgBW, intravenously 21 days after Nx. Clearance studies were performed in 4 groups of anesthetized animals 48 hours following Gd- chelate administration: 1--Nx (n = 7; 2--Nx+NAC (n = 6; 3--Nx+Gd (n = 7; 4--Nx+NAC+Gd (4.8 g/L in drinking water, initiated 2 days before Gd-chelate administration and maintained during 4 days (n = 6. This group was compared with a control. We measured glomerular filtration rate, GFR (inulin clearance, ml/min/kg BW, proteinuria (mg/24 hs, serum iron (µg/dL; serum ferritin (ng/mL; transferrin saturation (%, TIBC (µg/dL and TBARS (nmles/ml. Normal rats treated with the same dose of Gd-chelate presented similar GFR and proteinuria when compared with normal controls, indicating that at this dose Gd-chelate is not nephrotoxic to normal rats. Gd-chelate administration to Nx-rats results in a decrease of GFR and increased proteinuria associated with a decrease in TIBC, elevation of ferritin serum levels, transferrin oversaturation and plasmatic TBARS compared with Nx-rats. The prophylactic treatment with NAC reversed the decrease in GFR and the increase in proteinuria and all alterations in iron parameters and TBARS induced by Gd-chelate. NAC administration to Nx rat did not modify the inulin clearance and iron kinetics, indicating that the ameliorating effect of NAC was specific to Gd-chelate. These results suggest that NAC can prevent Gd-chelate nephrotoxicity in patients with chronic renal failure.

  6. Effect of different chelated zinc sources on the growth and yield of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    M. Tahir

    2009-05-01

    Full Text Available A field study was conducted at Agronomic Research Area, University of Agriculture, Faisalabad during spring, 2007 to evaluate the effect of different chelated zinc sources on growth and yield of maize (Zea mays L.. Crop was sown on well prepared soil in 1st week of March, 2007. The experiment was laid out according to randomized complete block design. The treatments comprised of different chelated zinc sources: ZnSO4-DTPA, ZnSO4-Fulvate, ZnSO4-Lignosulphonate, ZnSO4-EDTA and ZnSO4-H2O along with control (no zinc, repeated three times. Results showed that number of cobs plant-1, grain rows cob-1 and oil contents did not differ significantly. However, differences among treatments for plant height at harvest (cm, leaf area plant-1 (cm2, stem diameter (cm, cob length (cm, cob diameter (cm, 100-grains weight (g, number of grains cob-1, grains weight cob-1(g, biological yield (tons ha-1, grain yield (tons ha-1 and protein contents (% were significantly higher. Moreover, results also revealed that ZnSO4-DPTA was found the most effective Zn chelated source among all the treatments. Rest of the chelating agents were not too impressive as they showed varied response for different variables. The result of this experiment suggest further experimentation to explore behaviour of Zn-DTPA with other macro and micro nutrients and to calculate cost benefit ratio for use ofZn chelated compounds.

  7. Which psychosocial factors are related to chelation adherence in thalassemia? A systematic review.

    Science.gov (United States)

    Evangeli, Michael; Mughal, Kulsoom; Porter, John B

    2010-06-01

    Good adherence to iron chelation therapy in thalassemia is crucial. Although there is evidence that adherence is related to regimen factors, there has been less emphasis on the relationship between psychosocial (psychological, demographic and social) factors and adherence. We present a systematic review of psychosocial correlates of chelation adherence in thalassemia. Nine studies met the inclusion criteria. Information was extracted regarding the study characteristics and the relationship between psychosocial factors and chelation adherence. Methodological quality was rated. The studies took place in a range of countries, were mostly cross sectional in design, and examined adherence to deferoxamine (DFO) only. Sample sizes ranged from 15 to 1573. A variety of psychosocial variables were examined. Definitions of adherence varied between studies and non adherence rates were also variable (9 to 66%). Older age was consistently associated with lower levels of chelation adherence. There were few other consistent findings. The methodological quality of studies was variable. There is a need for more methodologically sophisticated and theoretically informed studies on psychosocial correlates of chelation adherence. We offer specific suggestions.

  8. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations.

    Science.gov (United States)

    Machuca, A; Pereira, G; Aguiar, A; Milagres, A M F

    2007-01-01

    To investigate the in vitro production of metal-chelating compounds by ectomycorrhizal fungi collected from pine plantations in southern Chile. Scleroderma verrucosum, Suillus luteus and two isolates of Rhizopogon luteolus were grown in solid and liquid modified Melin-Norkans (MMN) media with and without iron addition and the production of iron-chelating compounds was determined by Chrome Azurol S (CAS) assay. The presence of hydroxamate and catecholate-type compounds and organic acids was also investigated in liquid medium. All isolates produced iron-chelating compounds as detected by CAS assay, and catecholates, hydroxamates as well as oxalic, citric and succinic acids were also detected in all fungal cultures. Scleroderma verrucosum produced the greatest amounts of catecholates and hydroxamates whereas the highest amounts of organic acids were detected in S. luteus. Nevertheless, the highest catecholate, hydroxamate and organic acid concentrations did not correlate with the highest CAS reaction which was observed in R. luteolus (Yum isolate). Ectomycorrhizal fungi produced a variety of metal-chelating compounds when grown in liquid MMN medium. However, the addition of iron to all fungi cultures reduced the CAS reaction, hydroxamate and organic acid concentrations. Catecholate production was affected differently by iron, depending on the fungal isolate. The ectomycorrhizal fungi described in this study have never been reported to produce metal-chelating compound production. Moreover, apart from some wood-rotting fungi, this is the first evidence of the presence of catecholates in R. luteolus, S. luteus and S. verrucosum cultures.

  9. Increased Uptake of Chelated Copper Ions by Lolium perenne Attributed to Amplified Membrane and Endodermal Damage

    Directory of Open Access Journals (Sweden)

    Anthea Johnson

    2015-10-01

    Full Text Available The contributions of mechanisms by which chelators influence metal translocation to plant shoot tissues are analyzed using a combination of numerical modelling and physical experiments. The model distinguishes between apoplastic and symplastic pathways of water and solute movement. It also includes the barrier effects of the endodermis and plasma membrane. Simulations are used to assess transport pathways for free and chelated metals, identifying mechanisms involved in chelate-enhanced phytoextraction. Hypothesized transport mechanisms and parameters specific to amendment treatments are estimated, with simulated results compared to experimental data. Parameter values for each amendment treatment are estimated based on literature and experimental values, and used for model calibration and simulation of amendment influences on solute transport pathways and mechanisms. Modeling indicates that chelation alters the pathways for Cu transport. For free ions, Cu transport to leaf tissue can be described using purely apoplastic or transcellular pathways. For strong chelators (ethylenediaminetetraacetic acid (EDTA and diethylenetriaminepentaacetic acid (DTPA, transport by the purely apoplastic pathway is insufficient to represent measured Cu transport to leaf tissue. Consistent with experimental observations, increased membrane permeability is required for simulating translocation in EDTA and DTPA treatments. Increasing the membrane permeability is key to enhancing phytoextraction efficiency.

  10. Increased Uptake of Chelated Copper Ions by Lolium perenne Attributed to Amplified Membrane and Endodermal Damage.

    Science.gov (United States)

    Johnson, Anthea; Singhal, Naresh

    2015-10-23

    The contributions of mechanisms by which chelators influence metal translocation to plant shoot tissues are analyzed using a combination of numerical modelling and physical experiments. The model distinguishes between apoplastic and symplastic pathways of water and solute movement. It also includes the barrier effects of the endodermis and plasma membrane. Simulations are used to assess transport pathways for free and chelated metals, identifying mechanisms involved in chelate-enhanced phytoextraction. Hypothesized transport mechanisms and parameters specific to amendment treatments are estimated, with simulated results compared to experimental data. Parameter values for each amendment treatment are estimated based on literature and experimental values, and used for model calibration and simulation of amendment influences on solute transport pathways and mechanisms. Modeling indicates that chelation alters the pathways for Cu transport. For free ions, Cu transport to leaf tissue can be described using purely apoplastic or transcellular pathways. For strong chelators (ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA)), transport by the purely apoplastic pathway is insufficient to represent measured Cu transport to leaf tissue. Consistent with experimental observations, increased membrane permeability is required for simulating translocation in EDTA and DTPA treatments. Increasing the membrane permeability is key to enhancing phytoextraction efficiency.

  11. Reversible adsorption of catalase onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogels.

    Science.gov (United States)

    Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2015-05-01

    In this presented study, poly(acrylamide-glycidyl methacrylate) [poly(AAm-GMA)] cryogels were synthesized by cryopolymerization technique at sub-zero temperature. Prepared cryogels were then functionalized with iminodiacetic acid (IDA) and chelated with Fe(3+) ions in order produce the metal chelate affinity matrix. Synthesized cryogels were characterized with FTIR, ESEM and EDX analysis, and it was found that the cryogel had sponge like structure with interconnected pores and their pore diameter was about 200 μm. Fe(3+) chelated poly(AAm-GMA)-IDA cryogels were used for the adsorption of catalase and optimum adsorption conditions were determined by varying the medium pH, initial catalase concentration, temperature and ionic strength. Maximum catalase adsorption onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was found to be 12.99 mg/g cryogel at 25 °C, by using pH 5.0 acetate buffer. Adsorbed catalase was removed from the cryogel by using 1.0M of NaCl solution and desorption yield was found to be 96%. Additionally, reusability profile of the Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was also investigated and it was found that, adsorption capacity of the cryogels didn't decrease significantly at the end of the 40 reuses. Catalase activity studies were also tested and it was demonstrated that desorbed catalase retained 70% of its initial activity.

  12. Iron Chelation Inhibits Osteoclastic Differentiation In Vitro and in Tg2576 Mouse Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Jun-Peng Guo

    Full Text Available Patients of Alzheimer's disease (AD frequently have lower bone mineral density and higher rate of hip fracture. Tg2576, a well characterized AD animal model that ubiquitously express Swedish mutant amyloid precursor protein (APPswe, displays not only AD-relevant neuropathology, but also age-dependent bone deficits. However, the underlying mechanisms remain poorly understood. As APP is implicated as a regulator of iron export, and the metal chelation is considered as a potential therapeutic strategy for AD, we examined iron chelation's effect on the osteoporotic deficit in Tg2576 mice. Remarkably, in vivo treatment with iron chelator, clinoquinol (CQ, increased both trabecular and cortical bone-mass, selectively in Tg2576, but not wild type (WT mice. Further in vitro studies showed that low concentrations of CQ as well as deferoxamine (DFO, another iron chelator, selectively inhibited osteoclast (OC differentiation, without an obvious effect on osteoblast (OB differentiation. Intriguingly, both CQ and DFO's inhibitory effect on OC was more potent in bone marrow macrophages (BMMs from Tg2576 mice than that of wild type controls. The reduction of intracellular iron levels in BMMs by CQ was also more dramatic in APPswe-expressing BMMs. Taken together, these results demonstrate a potent inhibition on OC formation and activation in APPswe-expressing BMMs by iron chelation, and reveal a potential therapeutic value of CQ in treating AD-associated osteoporotic deficits.

  13. Iron Chelation Inhibits Osteoclastic Differentiation In Vitro and in Tg2576 Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Guo, Jun-Peng; Pan, Jin-Xiu; Xiong, Lei; Xia, Wen-Fang; Cui, Shun; Xiong, Wen-Cheng

    2015-01-01

    Patients of Alzheimer's disease (AD) frequently have lower bone mineral density and higher rate of hip fracture. Tg2576, a well characterized AD animal model that ubiquitously express Swedish mutant amyloid precursor protein (APPswe), displays not only AD-relevant neuropathology, but also age-dependent bone deficits. However, the underlying mechanisms remain poorly understood. As APP is implicated as a regulator of iron export, and the metal chelation is considered as a potential therapeutic strategy for AD, we examined iron chelation's effect on the osteoporotic deficit in Tg2576 mice. Remarkably, in vivo treatment with iron chelator, clinoquinol (CQ), increased both trabecular and cortical bone-mass, selectively in Tg2576, but not wild type (WT) mice. Further in vitro studies showed that low concentrations of CQ as well as deferoxamine (DFO), another iron chelator, selectively inhibited osteoclast (OC) differentiation, without an obvious effect on osteoblast (OB) differentiation. Intriguingly, both CQ and DFO's inhibitory effect on OC was more potent in bone marrow macrophages (BMMs) from Tg2576 mice than that of wild type controls. The reduction of intracellular iron levels in BMMs by CQ was also more dramatic in APPswe-expressing BMMs. Taken together, these results demonstrate a potent inhibition on OC formation and activation in APPswe-expressing BMMs by iron chelation, and reveal a potential therapeutic value of CQ in treating AD-associated osteoporotic deficits.

  14. Preparation of amine group-containing chelating fiber for thorough removal of mercury ions.

    Science.gov (United States)

    Ma, Nianfang; Yang, Ying; Chen, Shuixia; Zhang, Qikun

    2009-11-15

    An aminated chelating fiber (AF) with high adsorption capacity for mercury ions was prepared by grafting copolymerization of acrylonitrile onto polypropylene fiber, followed by aminating with chelating molecule diethylenetriamine. Effects of reaction conditions such as temperature, reaction time, bath ratio and dosage of catalyst on the grafting yield were studied. Chemical structure, tensile strength and thermal stability of AF were characterized. The adsorption performances for mercury were evaluated by batch adsorption experiments and kinetic experiments. The results show that AF is effective for the removal of mercury over a wide range of pH. The chelating fiber also shows much higher adsorption capacities for mercury, the equilibrium adsorption amount could be as high as 657.9 mg/g for mercury. The high adsorption capacity of Hg(2+) on AF is resulted from the strong chelating interaction between amine groups and mercury ions. Two amine groups coordinate with one mercury ion could be speculated from the adsorption capacity and amine group content on AF. The kinetic adsorption results indicate that the adsorption rates of AF for mercury are very rapid. Furthermore, the residual concentration was less than 1 microg/L with feed concentration of mercury below 1mg/L, which can meet the criterion of drinking water, which indicates that the chelating fiber prepared in this study could be applied to low-level Hg contaminated drinking water purification.

  15. Management of transfusional iron overload – differential properties and efficacy of iron chelating agents

    Directory of Open Access Journals (Sweden)

    Kwiatkowski JL

    2011-09-01

    Full Text Available Janet L Kwiatkowski The Children's Hospital of Philadelphia, Division of Hematology and University of Pennsylvania School of Medicine, Philadelphia, PA, USA Abstract: Regular red cell transfusion therapy ameliorates disease-related morbidity and can be lifesaving in patients with various hematological disorders. Transfusion therapy, however, causes progressive iron loading, which, if untreated, results in endocrinopathies, cardiac arrhythmias and congestive heart failure, hepatic fibrosis, and premature death. Iron chelation therapy is used to prevent iron loading, remove excess accumulated iron, detoxify iron, and reverse some of the iron-related complications. Three chelators have undergone extensive testing to date: deferoxamine, deferasirox, and deferiprone (although the latter drug is not currently licensed for use in North America where it is available only through compassionate use programs and research protocols. These chelators differ in their modes of administration, pharmacokinetics, efficacy with regard to organ-specific iron removal, and adverse-effect profiles. These differential properties influence acceptability, tolerability and adherence to therapy, and, ultimately, the effectiveness of treatment. Chelation therapy, therefore, must be individualized, taking into account patient preferences, toxicities, ongoing transfusional iron intake, and the degree of cardiac and hepatic iron loading. Keywords: transfusion, iron, chelation, magnetic resonance imaging

  16. Synthesis, characterization and cyclic voltammetric study of copper(II) and nickel(II) polymer chelates.

    Science.gov (United States)

    Azmeera, Venkanna; Rastogi, Pankaj Kumar; Adhikary, Pubali; Ganesan, Vellaichamy; Krishnamoorthi, S

    2014-09-22

    Graft copolymers based on dextran (Dx) and 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) were synthesized by free radical initiated solution polymerization technique using ceric ammonium nitrate as initiator. These graft copolymers were used to prepare Cu(II) and Ni(II) chelates by reactions with Cu(II) and Ni(II) metal ions respectively. Graft copolymer and metal chelates were characterized by elemental analysis, intrinsic viscosity, FT-IR, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and powder X-ray diffraction (XRD). Elemental analysis, intrinsic viscosity and FT-IR studies revealed the incorporation of metal ions to form metal chelates. SEM studies showed the change in morphology due to metal incorporation. From AFM studies it was observed that there was increase in Root mean square (RMS) roughness values in case of metal complexes. Metal chelates were observed to be thermally more stable than graft copolymer from TGA. UV-vis spectroscopy study revealed increase in absorbance values and cyclic voltammetric (CV) studies showed more than tenfold increase in redox current due to formation of Cu(II) and Ni(II) metal chelates. The binding constants of each complex determined by using UV-visible spectroscopy revealed that Cu(II) has more binding ability than Ni(II).

  17. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications.

    Science.gov (United States)

    Nagai, Ryoji; Murray, David B; Metz, Thomas O; Baynes, John W

    2012-03-01

    This article outlines evidence that advanced glycation end product (AGE) inhibitors and breakers act primarily as chelators, inhibiting metal-catalyzed oxidation reactions that catalyze AGE formation. We then present evidence that chelation is the most likely mechanism by which ACE inhibitors, angiotensin receptor blockers, and aldose reductase inhibitors inhibit AGE formation in diabetes. Finally, we note several recent studies demonstrating therapeutic benefits of chelators for diabetic cardiovascular and renal disease. We conclude that chronic, low-dose chelation therapy deserves serious consideration as a clinical tool for prevention and treatment of diabetes complications.

  18. Comparison of oral and subcutaneous iron chelation therapies in the prevention of major endocrinopathies in beta-thalassemia major patients.

    Science.gov (United States)

    Wang, Chung-Hsing; Wu, Kang-Hsi; Tsai, Fuu-Jen; Peng, Ching-Tien; Tsai, Chang-Hai

    2006-01-01

    While hypertransfusion and subcutaneous iron chelation therapy have increased longevity of patients with beta-thalassemia (thal) major, endocrinopathies have become more common and impair the quality of their lives. Additionally, subcutaneous iron chelation therapy is an uncomfortable experience and can prevent patients from regular compliance with iron chelation therapy. We compared the efficacy of oral deferiprone (L1) to subcutaneous desferrioxamine (DFO) chelation therapy for the prevention of major endocrinopathies (growth hormone insufficiency, diabetes mellitus and gonadal dysfunction) among patients with beta-thal major to see if we could offer these patients an easier and more painless way to reduce their body iron load and related endocrine complications.

  19. Thumbnail Sketches: EDTA-Type Chelating Agents in Everyday Consumer Products: Some Medicinal and Personal Care Products.

    Science.gov (United States)

    Hart, J. Roger

    1984-01-01

    Discusses various ethylenediaminetetraacetate (EDTA)-type chelating agents found in ophthalmic products, personal care products, and disinfectants. Also discusses the properties and action of these EDTA agents. (JN)

  20. Public health department response to mercury poisoning: the importance of biomarkers and risks and benefits analysis for chelation therapy.

    Science.gov (United States)

    McKay, Charles A

    2013-12-01

    Chelation therapy is often used to treat mercury poisoning. Public health personnel are often asked about mercury toxicity and its treatment. This paper provides a public health department response to use of a mercury-containing cosmetic in Minnesota, a perspective on two unpublished cases of chelation treatment for postulated mercury toxicity, and comments on the use of a nonsystemic treatment for removal of mercury following the Iraqi seed coat poisoning incident. Physicians should evaluate sources of exposure, biomarkers, and risks and benefits before recommending chelation therapy for their patients. Potential risks to chelation therapy and its little understood subtle or latent effects are areas of public health concern.

  1. The hexadentate hydroxypyridinonate TREN-(Me-3,2-HOPO) is a more orally active iron chelator than its bidentate analogue.

    Science.gov (United States)

    Yokel, R A; Fredenburg, A M; Durbin, P W; Xu, J; Rayens, M K; Raymond, K N

    2000-04-01

    Bidentate hydroxypyridinone chelators effectively complex and facilitate excretion of trivalent iron. To test the hypothesis that hexadentate chelators are more effective than bidentate chelators at low concentrations, urinary and biliary Fe excretions were determined in Fe-loaded rats before and after administration of a bidentate chelator, Pr-(Me-3,2-HOPO), or its hexadentate analogue, TREN-(Me-3,2-HOPO). The bidentate chelator slightly increased biliary Fe excretion in Fe-loaded rats after IV (90 micromol/kg) and PO (90 or 270 micromol/kg) administration, but chelation efficiency did not exceed 1%. The hexadentate chelator markedly increased biliary Fe excretion, achieving overall chelation efficiencies of 14% after IV administration of 30 micromol/kg and 8 or 3% after PO (30 or 90 micromol/kg) administration. The hexadentate chelator was significantly more effective than the bidentate chelator after IV injection and oral dosing. In chelator-treated Fe-loaded or saline-injected rats, >90% of the excreted Fe was in the bile. Oral TREN-(Me-3,2-HOPO), given to non-Fe-loaded rats, did not appreciably change Fe output, indicating that there was little Fe depletion in the absence of Fe overload. These results support the hypothesis that greater Fe chelation efficiency can be achieved with hexadentate than with bidentate chelators at lower, and presumably safer, concentrations. The results also demonstrate that TREN-(Me-3, 2-HOPO) is a promising, orally effective, Fe chelator.

  2. Antimicrobial activity of coffee melanoidins-a study of their metal-chelating properties.

    Science.gov (United States)

    Rufián-Henares, José A; de la Cueva, Silvia P

    2009-01-28

    Melanoidins comprise a substantial proportion of severely heat-treated foods such as baked cereals or roasted coffee and are widely consumed dietary components. The antimicrobial activity of coffee melanoidins against different pathogenic bacteria has been studied, finding that such activity is due to their metal-chelating properties. Three different mechanisms have been observed: at low concentrations melanoidins exerted a bacteriostatic activity mediated by iron chelation from the culture medium; in the case of bacterial strains that are able to produce siderophores for iron acquisition, melanoidins chelate the siderophore-Fe3+ complex, which could decrease the virulence of such pathogenic bacteria; and, finally, coffee melanoidins also exerted a bactericide activity at high concentrations by removing Mg2+ cations from the outer membrane, promoting the disruption of the cell membrane and allowing the release of intracellular molecules.

  3. The effect of metal chelators on the production of hydroxyl radicals in thylakoids.

    Science.gov (United States)

    Snyrychová, Iva; Pospísil, Pavel; Naus, Jan

    2006-06-01

    The effect of metal chelators (EDTA, DTPA and Desferal) on the metal-catalyzed decomposition of hydrogen peroxide was studied using EPR spin-trapping spectroscopy. The formation of hydroxyl radicals (OH*) in both chemical (Fenton reaction) and biological (thylakoids) systems was stimulated by EDTA. DTPA promoted the generation of OH* in the presence of strong reducing agents, whereas in their absence it acted as an antioxidant. Desferal suppressed OH* production even in the presence of reductants. In our study, we have shown that metal chelators can both stimulate and suppress the formation of OH*, depending on the experimental conditions. In illuminated thylakoids we have observed prooxidant effect of EDTA and DTPA, possibly due to their reduction by some component of the electron transport chain. According to our results, metal chelators should not be used as antioxidants without prior testing of their effect in given samples.

  4. Synthesis and Preparation of Polysulfone Hollow Fiber Chelating Membrane Modified with Thiourea

    Institute of Scientific and Technical Information of China (English)

    WANG Bing; HUANG Lei; XIAO Feng

    2006-01-01

    Several kinds of chloromethyl polysulfones (CMPF) with different chlorinity and reactive groups were synthesized by Friedel-crafts reaction, which could be utilized as reactively matrix membrane materials. The CMPF hollow matrix membranes were prepared with phase inversion by utilization of CMPF/additive/DMAC casting solution and CMPF as membrane materials. It was found that the effects of additive content, bore liquid and dry spinning distance on the structure of CMPF hollow fiber matrix membrane were different. A high qualified polysulfone hollow fiber chelating membrane modified with thiourea as chelating groups was prepared using CMPF as membrane matrix materials,through the reaction between thiourea and CMPF hollow fiber matrix membrane to afford the methyl iso-thiourium polysulfone. The experimental results showed that thermal drawing could increase the mechanical properties of matrix membrane, and the thermal treatment could increase the homogeneity and stability of the structure of polysulfone hollow fiber chelating membrane modified with thiourea.

  5. Synthesis and Characterization of 2-Decyl-DTPA and Its Gd(Ⅲ) Chelate

    Institute of Scientific and Technical Information of China (English)

    FENG Zhi-ming; LI Feng; CHEN Rong; ZHU Xiao-juan; LI Xiao-ru

    2004-01-01

    The present paper covers the synthesis and the characterization of ligand 2-decyl-3, 6, 9-tris(carboxymethyl)-3,6,9-triazaundecan-1,11-dioic acid, H5L, and its Gd(Ⅲ) chelate. The protonation constants for H5L(lgKHi=10.90, 8.50, 4.55, 2.92, 2.20) and the stability constant for GdL2- (lgKGdL2-=22.80) were determined by means of potentiometric titration. They are similar to the corresponding values of DTPA and Gd-DTPA, respectively. The results obtained show that the basicity of the ligand and the stability constant of its Gd(Ⅲ) chelate are not obviously altered after the introduction of a linear chain decyl group into the terminal acetic acid residue of DTPA. The Gd(Ⅲ) chelate may be a potential contrast agent with liver-specificity for magnetic resonance imaging(MRI).

  6. Radiopharmaceutical stannic Sn-117m chelate compositions and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Suresh C. (Setauket, NY); Meinken, George E. (Middle Island, NY)

    2001-01-01

    Radiopharmaceutical compositions including .sup.117m Sn labeled stannic (Sn.sup.4+) chelates are provided. The chelates are preferably polyhydroxycarboxylate, such as oxalates, tartrates, citrates, malonates, gluconates, glucoheptonates and the like. Methods of making .sup.117m Sn-labeled (Sn.sup.4+) polyhydroxycarboxylic chelates are also provided. The foregoing pharmaceutical compositions can be used in methods of preparing bone for scintigraphical analysis, for radiopharmaceutical skeletal imaging, treatment of pain resulting from metastatic bone involvement, treatment of primary bone cancer, treatment of cancer resulting from metastatic spread to bone from other primary cancers, treatment of pain resulting from rheumatoid arthritis, treatment of bone/joint disorders and to monitor radioactively the skeletal system.

  7. Separation of metal chelates and organometallic compounds by SFC and SFE/GC.

    Science.gov (United States)

    Wai, C M; Wang, S

    2000-07-05

    Supercritical fluid chromatography (SFC) combines the high diffusion coefficients of gas chromatography (GC) and the solubility properties of liquid chromatography (LC). SFC generally requires lower temperatures for chromatographic separations and thus is more suitable for analyzing thermally labile compounds including a number of metal chelates and organometallic compounds. SFC also allows interfacing between supercritical fluid extraction (SFE) and chromatographic analysis of metal-containing compounds. A large number of metal chelates and organometallic compounds can be separated by SFC. This article summarizes SFC separation of various chelates of transition metals, heavy metals, lanthanides and actinides as well as organometallic compounds of lead, mercury, and tin reported in the recent literature. This article also discusses SFC detection systems and the determination of solubility of organometallic compounds by SFC.

  8. REVIEW ARTICLE:Future of Lead Chelation – Distribution and Treatment

    Directory of Open Access Journals (Sweden)

    Venkatesh Thuppil

    2012-01-01

    Full Text Available Lead is the major environmental toxin resulting in the ill health and deleterious effect on almost all organs in the human body in a slow and effective manner. The best treatment for lead poisoning is chelation therapy which is next only to prevention. The authors describe the disruption of homeostasis of the human body by lead in various tissues like blood, bones, liver, kidneys and brain; and the ability of lead to enter the cell using calcium channels and calcium receptors like Ca++ dependant K+ ion channels, transient receptor potential channels, T-tubules, calmodulin receptors, inositol trisphosphate receptors and ryanodine receptors. We report a few novel chelating agents like ionophores, decadentate ligands, picolinate ligands, octadentate ligand, allicin, thiamine, that show good potential for being used in chelation therapy. Future of leadpoisoning is a challenge to all and it needs to be meticulously studies to have an economic and health approach.

  9. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal.

    Science.gov (United States)

    Lin, Jiahong; Liu, Yingju; Chen, Shi; Le, Xueyi; Zhou, Xiaohua; Zhao, Zhiyong; Ou, Yiyi; Yang, Jianhua

    2016-03-01

    Increasing attention has been given to nanobiocatalysis for commercial applications. In this study, laccase was reversibly immobilized onto Cu(ΙΙ)- and Mn(ΙΙ)-chelated magnetic microspheres and successfully applied to remove bisphenol A (BPA) from water. The results indicated that the loading of laccase onto the metal-ion-chelated magnetic microspheres was approximately 100mg/g. After five successive adsorption-desorption cycles, the laccase adsorption capacities did not change. In comparison with free laccase, the thermal and storage stabilities of immobilized laccase were significantly improved. Immobilized laccase exhibited a high removal efficiency for BPA under the combined actions of biodegradation and adsorption. Greater than 85% of BPA was removed under optimum conditions. The effects of various factors on the BPA removal efficiency of immobilized laccase were analysed. The results showed that metal-ion-chelated magnetic microspheres have great potential for industrial applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.; Bose, M.A.; Kumar, S. [Indian Inst. of Technology, Kanpur (India). Dept Civil Engineering, Environmental Engineering & Management Programme

    2002-11-01

    Industrial wastewater containing heavy metals and cyanide must be treatment for removal of both metals and cyanide before disposal. The study described evaluated treatment strategies involving some indigenous adsorbents and a low-cost chelating agent for treatment of a simulated wastewater containing copper and zinc, complexed with cyanide. Treatment strategies involving three adsorbents, sulfonated coal, biosorbent G. lucidum, and iron oxide coated sand (IOCS), and a chelating agent, insoluble agro-based starch xanthate (IAX), were tested. The evaluation procedure involved comparison of the performance of these treatment strategies with that of conventional treatment. Results indicate that treatment using the chelating agent IAX has the greatest potential as an alternative to the conventional treatment technique. The three adsorbents tested, although reported to be very effective in removing copper and zinc from pure systems, exhibit diminished metal removal capacity in the presence of cyanide, and hence are unsuitable.

  11. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte

    1999-01-01

    in the mutant receptors not by normal catecholamine ligands but instead either by free zinc ions or by zinc or copper ions in complex with small hydrophobic metal-ion chelators. Chelation of the metal ions by small hydrophobic chelators such as phenanthroline or bipyridine protected the cells from the toxic......Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor......, in this paper we construct an activating metal-ion site between the amine-binding Asp-113 in TM-III-or a His residue introduced at this position-and a Cys residue substituted for Asn-312 in TM-VII. No increase in constitutive activity was observed in the mutant receptors. Signal transduction was activated...

  12. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility.

    Science.gov (United States)

    Isabettini, Stéphane; Massabni, Sarah; Hodzic, Arnel; Durovic, Dzana; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Windhab, Erich J; Walde, Peter; Kuster, Simon

    2017-08-09

    Lanthanide ion (Ln(3+)) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln(3+) deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln(3+) chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln(3+) complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy(3+) and parallel alignment of those containing Tm(3+). Moreover, samples with chelated Yb(3+) were more alignable than the Tm(3+) chelating counterparts. Such a possibility has never been demonstrated for planar Ln(3+) chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln(3+) complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart

  13. Ethyl acetoacetate ligand distribution in the course of titanium n-butoxide chelation

    Energy Technology Data Exchange (ETDEWEB)

    Kurajica, S., E-mail: stankok@fkit.hr; Škorić, I.; Lozić, I.; Mandić, V.

    2014-10-15

    Sols obtained by chelation of titanium n-butoxide with ethyl acetoacetate, Eaa, in various ratios have been subjected to FTIR, {sup 1}H and {sup 13}C NMR, HSQC and UV–Vis spectroscopy in order to provide insight in the compounds obtained, their structure and quantitative relationships. Three compounds, the bis-chelated monomer, Ti(O{sup n}Bu){sub 2}(Eaa){sub 2}, bis-chelated dimer, (Ti(O{sup n}Bu){sub 3}Eaa){sub 2} and monochelated dimer, Ti{sub 2}(O{sup n}Bu){sub 7}Eaa have been established. As the molar ratio Eaa/Ti(O{sup n}Bu){sub 4} increases, the coordination changes from the monochelated and bis-chelated dimer to the bis-chelated monomer. Additionally, the transesterification reaction, influencing the chemical composition of the compounds was noted. The hydrolysis of the prepared sols was partial, leaving some residual butoxy and ethyl acetoacetate groups attached to titanium. Thermal treatment of the prepared amorphous gels at 350 °C yielded with the formation of nanocrystalline anatase. It was noted that high Eaa/Tnb ratio slightly retards the anatase formation. - Highlights: • Titanium n-butoxide was modified with ethyl acetoacetate in various ratios. • Among other chelate phases, previously undescribed Ti{sub 2}(O{sup n}Bu){sub 7}Eaa was obtained. • NMR-based mass balance procedure was introduced to obtain quantitative relationships. • The transesterification reaction has been noted. • Nanocrystalline anatase has been obtained by thermal treatment at 350 °C.

  14. Stereoselective coordination: a six-membered P,N-chelate tailored for asymmetric allylic alkylation.

    Science.gov (United States)

    Császár, Z; Farkas, G; Bényei, A; Lendvay, G; Tóth, I; Bakos, J

    2015-10-01

    Six-membered chelate complexes [Pd(1a-b)Cl2], (2a-b) and [Pd(1a-b)(η(3)-PhCHCHCHPh)]BF4, (3a-b) of P,N-type ligands 1a, ((2S,4S)-2-diphenyl-phosphino-4-isopropylamino-pentane) and 1b, ((2S,4S)-2-diphenyl-phosphino-4-methylamino-pentane) have been prepared. The Pd-complexes have been characterized in solution by 1D and 2D NMR spectroscopy. The observed structures were confirmed by DFT calculations and in the case of 2a also by X-ray crystallography. Unexpectedly, the coordination of the all-carbon-backbone aminophosphine 1a resulted in not only a stereospecific locking of the donor nitrogen atom into one of the two possible configurations but also the conformation of the six-membered chelate rings containing three alkyl substituents was forced into the same single chair structure showing the axially placed isopropyl group on the coordinated N-atom. The stereodiscriminative complexation of 1a led to the formation of a palladium catalyst with a conformationally rigid chelate having a configurationally fixed nitrogen and electronically different coordination sites due to the presence of P and N donors. The stereochemically fixed catalyst provided excellent ee's (up to 96%) and activities in asymmetric allylic alkylation reactions. In contrast, the chelate rings formed by 1b exist in two different chair conformations, both containing axial methyl groups, but with the opposite configurations of the coordinated N-atom. Pd-complexes of 1b provided low enantioselectivities in similar alkylations, therefore emphasizing the importance of the stereoselective coordination of N-atoms in analogous P-N chelates. The factors determining the coordination of the ligands were also studied with respect to the chelate ring conformation and the nitrogen configuration.

  15. Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for (64)Cu Radiotracers.

    Science.gov (United States)

    Dale, Ajit V; An, Gwang Il; Pandya, Darpan N; Ha, Yeong Su; Bhatt, Nikunj; Soni, Nisarg; Lee, Hochun; Ahn, Heesu; Sarkar, Swarbhanu; Lee, Woonghee; Huynh, Phuong Tu; Kim, Jung Young; Gwon, Mi-Ri; Kim, Sung Hong; Park, Jae Gyu; Yoon, Young-Ran; Yoo, Jeongsoo

    2015-09-08

    Bifunctional chelators have been successfully used to construct (64)Cu-labeled radiopharmaceuticals. Previously reported chelators with cross-bridged cyclam backbones have various essential features such as high stability of the copper(II) complex, high efficiency of radiolabeling at room temperature, and good biological inertness of the radiolabeled complex, along with rapid body clearance. Here, we report a new generation propylene-cross-bridged chelator with hybrid acetate/phosphonate pendant groups (PCB-TE1A1P) developed with the aim of combining these key properties in a single chelator. The PCB-TE1A1P was synthesized from cyclam with good overall yield. The Cu(II) complex of our chelator showed good robustness in kinetic stability evaluation experiments, such as acidic decomplexation and cyclic voltammetry studies. The Cu(II) complex of PCB-TE1A1P remained intact under highly acidic conditions (12 M HCl, 90 °C) for 8 d and showed quasi-reversible reduction/oxidation peaks at -0.77 V in electrochemical studies. PCB-TE1A1P was successfully radiolabeled with (64)Cu ions in an acetate buffer at 60 °C within 60 min. The electrophoresis study revealed that the (64)Cu-PCB-TE1A1P complex has net negative charge in aqueous solution. The biodistribution and in vivo stability study profiles of (64)Cu-PCB-TE1A1P indicated that the radioactive complex was stable under physiological conditions and cleared rapidly from the body. A whole body positron emission tomography (PET) imaging study further confirmed high in vivo stability and fast clearance of the complex in mouse models. In conclusion, PCB-TE1A1P has good potential as a bifunctional chelator for (64)Cu-based radiopharmaceuticals, especially those involving peptides.

  16. Chelator-induced phytoextraction of zinc and copper by rice seedlings.

    Science.gov (United States)

    Yu, Xiao-Zhang; Wang, Dun-Qiu; Zhang, Xue-Hong

    2014-05-01

    Solution culture was carried to investigate capacity of synthetic aminopolycarboxylic acids (ethylenediamine tetraacetate, N-hydroxyethylenediaminetriacetic acid, and diethylenetriamine-pentaacetate) for enhancing botanical removal and transport of heavy metals (Cu and Zn) by plants. Biodegradable organic acids (citric acid, malic acid, and oxalic acid) were also selected as alternatives to compare them with synthesized chelating agents for effectiveness. Young rice seedlings (Oryza sativa L. cv. XZX 45) were grown in nutrient solutions treated with single or combined metal solutions in presence or absence of chelating compounds. Calculation by chemical equilibrium program VISUAL MINTEQ showed that different chelating compounds had various complex potential with Cu(2+) and Zn(2+) ions, in which synthetic chelators exhibited higher complexed capability than biodegradable organic acids. All applied synthetic aminopolycarboxylic acids significantly decreased removal of metal from nutrient solution (p 0.05), compared with the treatment without metal ligands. Synthetic aminopolycarboxylic acids significantly decreased metal concentrations in plant materials in all treatments (p < 0.01). However, biodegradable organic acids decreased metal concentrations in roots (p < 0.01), but enhanced them in shoots (p < 0.01). Results obtained indicated that synthetic aminopolycarboxylic acids decreased uptake of metals by rice seedlings, but translocation of metals complexed within plant materials was evident. Although exogenous biodegradable organic acids showed negligible effect on botanical removal of metals, metals complexed with organic acids was more mobile than those complexed with other chelating agents. These information collected here had important implication for the use of biodegradable metal chelators in transport of essential micronutrients in plant nutrition.

  17. The preparation and characterization of novel human-like collagen metal chelates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chenhui; Sun, Yan [Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering Northwest University, Xi' an 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Xi' an 710069 (China); Wang, Yaoyu [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi' an 710069 (China); Luo, Yane, E-mail: luoyane@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering Northwest University, Xi' an 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Xi' an 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering Northwest University, Xi' an 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Xi' an 710069 (China)

    2013-07-01

    In order to develop the nutritional trace elements which could be absorbed and utilized effectively, protein chelates were adopted. Calcium, copper and manganese were considered based on their physiological functions, and the new chelates of HLC-Ca, HLC-Cu and HLC-Mn were formed in MOPS or MES buffer and purified by gel chromatography, and then freeze-dried. And they were detected and analyzed by atomic absorption spectrophotometry, ultraviolet–visible absorption (UV–vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, fluorescence quenching method, circular dichroism (CD) and differential scanning calorimetry (DSC). The results showed that some chemical reactions happened between HLC and the three metal ions to form new chemical compounds. The thermodynamic parameters, ∆H, ∆G and ∆S, showed that the chelation process between HLC and metal ions was performed spontaneously. Fluorescence quenching spectra of HLC indicated that the quenching mechanism was static in nature. According to the data of DSC, the new chelates were more stable than the free HLC. And HLC-metal complex was non-toxic to the BHK21 cell through MTT assay. - Highlights: ► HLC-Ca, HLC-Cu and HLC-Mn were new chemical compounds and different to free HLC. ► Possible sites for Ca{sup 2+}, Cu{sup 2+} and Mn{sup 2+} to bind with HLC were presented. ► The chelation process between HLC and metal ions was performed spontaneously. ► The thermodynamic stability of the new chelates was higher than that of free HLC.

  18. Arsenic and lead induced free radical generation and their reversibility following chelation.

    Science.gov (United States)

    Flora, S J S; Flora, G; Saxena, G; Mishra, M

    2007-04-15

    Health hazards caused by heavy metals have become a great concern to the population. Lead and arsenic are one of the most important current global environmental toxicants. Their toxic manifestations are being considered caused primarily due to the imbalance between pro-oxidant and antioxidant homeostasis and also due to a high affinity of these metals for thiol groups on functional proteins. They also interfere with a number of other body functions and are known to affect central nervous system (CNS), hematopoietic system, liver and kidneys and produce serious disorders. They produce both acute and chronic poisoning, of which chronic poisoning is more dangerous as its very difficult to revert back to normal condition after chronic exposure to these insidious metals present in our life. Despite many years of research, we are still far from an effective treatment of chronic plumbism and arsenicosis. Current approved treatment lies in the administration of chelating agents that forms an insoluble complex with the metal and removes it. They have been used clinically as antidotes for treating acute and chronic poisoning. The most widely used chelating agents are calcium disodium ethylenediamine tetra acetic acid (CaNa2EDTA), D-penicillamine and British anti-lewisite (BAL). Meso 2,3 dimercaptosuccinic acid (DMSA), an analogue of BAL, has been tried successfully in animals as well as in humans. But it is unable to remove the metal from intracellular sites. Effective chelation therapy for intoxication by heavy metals depends on whether the chelating agents are able to reach the intracellular site where the heavy metal is firmly bound. One of the important approaches has been the use of combination therapy. This includes use of structurally different chelators or a combination of an adjuvant/ antioxidant/ herbal extracts and a chelator to provide better clinical/ biochemical recovery. A number of other strategies have been suggested to minimize the numerous problems. This

  19. The Earth's Magnetic Field

    OpenAIRE

    Edda Lína Gunnarsdóttir 1988

    2012-01-01

    The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...

  20. Uderstanding Snowball Earth Deglaciation

    Science.gov (United States)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  1. Chelation in Metal Intoxication XLVI:Synthesis of Some α-Mercapto-β-Substituted Aryl Acrylic Acids and Their In vitro Cadmium Chelating Ability

    Institute of Scientific and Technical Information of China (English)

    MADHUMITA CHATTERJEE; VINOD K. DWIVEDI; KIRTI KHANDEKAR; SUSHIL K. TANDON

    2004-01-01

    Objective To synthesize some new α-mercapto-β-substituted aryl acrylic acids, characterize them and investigate their in vitro cadmium chelating ability. Methods Six α-mercapto-β-substituted aryl acrylic acids were prepared by the alkaline hydrolysis of 5-(aryl methylene)rhodanines, obtained from the condensation of substituted aldehydes and rhodanine following the reported procedure. The new compounds were characterized by elemental analysis, infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy. The liver and kidney from cadmium chloride pre-administered rats were homogenized and their nuclear mitochondrial fraction (NMF) and supernatant cytosol fraction (SCF) were separated. A measured volume of each fraction was dialyzed separately using "dialysis sack" against buffered-KCl medium containing a compound in the final concentration of 1×10-3 mol/L for 3 h at 37℃C. The whole content of "sack" was subjected to cadmiumestimation following digestion with conc. Nitric acid was detected using flame atomic absorption spectrometer. Results The in vitro screening showed that α-mercapto-β-(p-methoxyphenyl)acrylic acid (compound 2) and α-mercapto-β-(m-methoxy, p-hydroxyphenyl) acrylic acid (compound 4) were more effective than α-mercapto-β-thienyl acrylic acid (compound 1) and α-mercapto-β-(p-dimethylaminophenyl) acrylic acid (compound 3) in mobilizing cadmium as their dialyzable chelates. The presence of a methoxy group on the phenyl moiety (compounds 2 and 4) increases the metal chelating ability of mercapto acrylic acids. Conclusions Compounds 2 and 4 seem to have accessibility to the cellular system and capability of chelating-out the intracellularly bound cadmium.

  2. STUDY ON THE KINETICS OF POLYMERIZATION OF MMA BY COPPER(Ⅱ) CHELATING RESINS

    Institute of Scientific and Technical Information of China (English)

    WangHongzuo; JiangYuanzhang; 等

    1993-01-01

    The polymerization of MMA initiated by copper(Ⅱ) chelating resins/CCl4 system was studied.From the kinetic data,the kinetic equation of polymerization can be expressed as Rp=Ke-56400/RT[MMA]1.57[CCl4]m[RESIN-Cu]0.18 where m:3-4.5,when[CCl4] 0.1-6.93M.The free radical polymerization mechanism is proposed.The primary radicals are formed by the process of complexation-chlorine transformation among the copper(Ⅱ) chelating resin,CCl4 and methacrylate.

  3. Rationale for the Successful Management of EDTA Chelation Therapy in Human Burden by Toxic Metals.

    Science.gov (United States)

    Ferrero, Maria Elena

    2016-01-01

    Exposure to environmental and occupational toxicants is responsible for adverse effects on human health. Chelation therapy is the only procedure able to remove toxic metals from human organs and tissue, aiming to treat damage related to acute and/or chronic intoxication. The present review focuses on the most recent evidence of the successful use of the chelating agent ethylenediaminetetraacetic acid (EDTA). Assessment of toxic-metal presence in humans, as well as the rationale of EDTA therapy in cardiovascular and neurodegenerative diseases, is reported.

  4. DCCP and DICP: Construction and Analyses of Databases for Copper- and Iron-Chelating Proteins

    Institute of Scientific and Technical Information of China (English)

    Hao Wu; Yan Yang; Sheng-Juan Jiang; Ling-Ling Chen; Hai-Xia Gao; Qing-Shan Fu; Feng Li; Bin-Guang Ma; Hong-Yu Zhang

    2005-01-01

    Copper and iron play important roles in a variety of biological processes, especially when being chelated with proteins. The proteins involved in the metal binding,transporting and metabolism have aroused much interest. To facilitate the study on this topic, we constructed two databases (DCCP and DICP) containing the known copper- and iron-chelating proteins, which are freely available from the website http:∥sdbi.sdut.edu.cn/en. Users can conveniently search and browse all of the entries in the databases. Based on the two databases, bioinformatic analyses were performed, which provided some novel insights into metalloproteins.

  5. Treatment of metal-containing wastewater by adsorption of metal-chelate complexes onto activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Shay, M.A.

    1989-01-01

    To eliminate difficulties associated with interference of chelating or complexing agents on precipitation of heavy metals from wastewaters, the feasibility of a process which utilized chelating agents in the removal of the heavy metals was investigated. Heavy metal ions were removed from simulated metal plating wastewater by sorption of a heavy metal chelate complex onto activated carbon. In this process, a chelate which might be present in a wastewater could be used in removal of a heavy metal, rather than interfere with its removal. System development of a continuous flow process consisted of bench scale column tests to answer questions about key adsorption column operating parameters. The metals investigated were Cu(II), Ni(II) and Zn(II). Hydrogen ion concentration had the largest effect on removal of heavy metalchelate complexes, but contact time and heavy metal:chelate ratio were important. The normal contact time for activated carbon columns of 30 to 60 minutes was found adequate to achieve heavy metal-chelate removals of at least 90% for citrate or EDTA complexes. For citrate complexes better removals were achieved at heavy metal:chelate ratios greater than 1:1. For EDTA, there was no advantage to ratios greater than 1:1. Increasing pH, at least to pH 9.0, increased the heavy metal chelate removal; however, for EDTA, removals greater than 90% could be achieved at a pH as low as 3.0. The maximum amount of Cu(II)-citrate complex that could be removed was 2.8 mg per gram of carbon, the maximum amount for Zn(II)citrate complex was 1.2 mg per gram of carbon, and for Ni(II)-citrate, the maximum was 1.3 mg per gram of carbon. For the EDTA complexes, the maximum removal was 2.1 mg of Cu(II)-EDTA complex per gram of carbon, 6.9 mg of Zn(II)-EDTA complex per gram of carbon, and 3.2 mg of Ni(II)-EDTA complex per gram of carbon.

  6. The Earth's early evolution.

    Science.gov (United States)

    Bowring, S A; Housh, T

    1995-09-15

    The Archean crust contains direct geochemical information of the Earth's early planetary differentiation. A major outstanding question in the Earth sciences is whether the volume of continental crust today represents nearly all that formed over Earth's history or whether its rates of creation and destruction have been approximately balanced since the Archean. Analysis of neodymium isotopic data from the oldest remnants of Archean crust suggests that crustal recycling is important and that preserved continental crust comprises fragments of crust that escaped recycling. Furthermore, the data suggest that the isotopic evolution of Earth's mantle reflects progressive eradication of primordial heterogeneities related to early differentiation.

  7. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  8. Chelation behavior of various flavonols and transfer of flavonol-chelated zinc(II) to alanylaspartic dipeptide: A PCM/DFT investigation

    Science.gov (United States)

    Yasarawan, Nuttawisit; Thipyapong, Khajadpai; Ruangpornvisuti, Vithaya

    2016-03-01

    Alanylaspartic dipeptide (AlaAsp) and zinc(II)-flavonol complex could represent a metal-binding site in proteins and a metal-ion releasing agent, respectively. Chelation of zinc(II) by either AlaAsp or flavonol ligands in aqueous solution has been examined using DFT methods with polarizable continuum model (PCM/DFT). Coordination geometry, complexation stoichiometry, coordination bond strength, preferable metal-binding site on ligands and effect of water coordination on the stability of complexes have been addressed. In several cases, the long-range corrected density functional CAM-B3LYP allows the most accurate prediction of both structural and spectroscopic data. The preferential transfer of flavonol-chelated zinc(II) to AlaAsp under solvation is attainable through the ligand-exchange reaction. The energy barrier of such reaction is significantly dependent on the degree of hydrogen bonding within the transition state. In summary, either hydroxylation or methoxylation at particular positions on the 3-hydroxyflavone backbone significantly affects the reactivity of flavonol chelates in the metal-ion transfer.

  9. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  10. Experimental and computational investigation of the group 11-group 2 diatomic molecules: First determination of the AuSr and AuBa bond energies and thermodynamic stability of the copper- and silver-alkaline earth species

    Science.gov (United States)

    Ciccioli, A.; Gigli, G.; Lauricella, M.

    2012-05-01

    The dissociation energies of the intermetallic molecules AuSr and AuBa were for the first time determined by the Knudsen effusion mass spectrometry method. The two species were produced in the vapor phase equilibrated with apt mixtures of the constituent elements, and the dissociation equilibria were monitored mass-spectrometrically in the temperature range 1406-1971 K (AuSr) and 1505-1971 K (AuBa). The third-law analysis of the equilibrium data gives the following dissociation energies (D_0°, in kJ/mol): 244.4 ± 4.8 (AuSr) and 273.3 ± 6.3 (AuBa), so completing the series of D_0°s for the AuAE (AE = group 2 element) diatomics. The AuAE species were also studied computationally at the coupled cluster including single, double and perturbative triple excitation [CCSD(T)] level with basis sets of increasing zeta quality, and various complete basis set limit extrapolations were performed to calculate the dissociation energies. Furthermore, the entire series of the heteronuclear diatomic species formed from one group 11 (Cu, Ag) and one group 2 (Be, Mg, Ca, Sr, Ba) metal was studied by DFT with the hybrid meta-GGA TPSSh functional and the def2-QZVPP basis set, selected after screening a number of functional-basis set combinations using the AuAE species as benchmark. Dissociation energies, internuclear distances, vibrational frequencies, and anharmonic constants were determined for the CuAE and AgAE species and their thermal functions evaluated therefrom. On this basis, a thermodynamic evaluation of the formation of these species was carried out under various conditions.

  11. Experimental and computational investigation of the group 11-group 2 diatomic molecules: first determination of the AuSr and AuBa bond energies and thermodynamic stability of the copper- and silver-alkaline earth species.

    Science.gov (United States)

    Ciccioli, A; Gigli, G; Lauricella, M

    2012-05-14

    The dissociation energies of the intermetallic molecules AuSr and AuBa were for the first time determined by the Knudsen effusion mass spectrometry method. The two species were produced in the vapor phase equilibrated with apt mixtures of the constituent elements, and the dissociation equilibria were monitored mass-spectrometrically in the temperature range 1406-1971 K (AuSr) and 1505-1971 K (AuBa). The third-law analysis of the equilibrium data gives the following dissociation energies (D(0)°, in kJ/mol): 244.4 ± 4.8 (AuSr) and 273.3 ± 6.3 (AuBa), so completing the series of D(0)°s for the AuAE (AE = group 2 element) diatomics. The AuAE species were also studied computationally at the coupled cluster including single, double and perturbative triple excitation [CCSD(T)] level with basis sets of increasing zeta quality, and various complete basis set limit extrapolations were performed to calculate the dissociation energies. Furthermore, the entire series of the heteronuclear diatomic species formed from one group 11 (Cu, Ag) and one group 2 (Be, Mg, Ca, Sr, Ba) metal was studied by DFT with the hybrid meta-GGA TPSSh functional and the def2-QZVPP basis set, selected after screening a number of functional-basis set combinations using the AuAE species as benchmark. Dissociation energies, internuclear distances, vibrational frequencies, and anharmonic constants were determined for the CuAE and AgAE species and their thermal functions evaluated therefrom. On this basis, a thermodynamic evaluation of the formation of these species was carried out under various conditions.

  12. Effects of nutrient trace metal speciation on algal growth in the presence of the chelator [S,S]-EDDS

    NARCIS (Netherlands)

    Schowanek, D.; McAvoy, D.; Versteeg, D.; Hanstveit, A.

    1996-01-01

    This study tests the hypothesis that the apparent toxicity of strong chelators in standard algal growth inhibition tests (e.g. method OECD 201, EC C.3., ISO 8692) is related to essential trace metal bioavailability. This hypothesis was investigated for the chelator [S,S]-ethylene diamine disuccinate

  13. Extraction of Micronutrient Metals from Peat-based Media Using Various Chelate-ligand and Iron-source Extractants

    Science.gov (United States)

    Objectives of the study were to determine effects of chelate-ligand (experiment 1) and iron-source (experiment 2) unbuffrered extractant solutions on substrate pH and Cu, Fe, Mn, and Zn extraction from peat-based media. Chelate-ligand extractants consisted of 5 mM solutions of ethylenediaminedisucc...

  14. Nanoparticle-Chelator Conjugates as Inhibitors of Amyloid-β Aggregation and Neurotoxicity: A Novel Therapeutic Approach for Alzheimer Disease

    Science.gov (United States)

    Liu, Gang; Men, Ping; Kudo, Wataru; Perry, George; Smith, Mark A.

    2009-01-01

    Oxidative stress and amyloid-β are considered major etiological and pathological factors in the initiation and promotion of neurodegeneration in Alzheimer disease (AD). Insomuch as causes of such oxidative stress, transition metals, such as iron and copper, which are found in high concentrations in the brains of AD patients and accumulate specifically in the pathological lesions, are viewed as key contributors to the altered redox state. Likewise, the aggregation and toxicity of amyloid-β is dependent upon transition metals. As such, chelating agents that selectively bind to and remove and/or “redox silence” transition metals have long been considered an attractive therapeutic target for AD. However, the blood-brain barrier and neurotoxicity of many traditional metal chelators has limited their utility in AD or other neurodegenerative disorders. To circumvent this, we previously suggested that nanoparticles conjugated to iron chelators may have the potential to deliver chelators into the brain and overcome such issues as chelator bioavailability and toxic side-effects. In this study, we synthesized a prototype nanoparticle-chelator conjugate (Nano-N2PY) and demonstrated its ability to protect human cortical neurons from amyloid-β-associated oxidative toxicity. Furthermore, Nano-N2PY nanoparticle-chelator conjugates effectively inhibited amyloid-β aggregate formation. Overall, this study indicates that Nano-N2PY, or other nanoparticles conjugated to metal chelators, may provide a novel therapeutic strategy for AD and other neurodegenerative diseases associated with excess transition metals. PMID:19429118

  15. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease.

    Science.gov (United States)

    Liu, Gang; Men, Ping; Kudo, Wataru; Perry, George; Smith, Mark A

    2009-05-22

    Oxidative stress and amyloid-beta are considered major etiological and pathological factors in the initiation and promotion of neurodegeneration in Alzheimer disease (AD). Insomuch as causes of such oxidative stress, transition metals, such as iron and copper, which are found in high concentrations in the brains of AD patients and accumulate specifically in the pathological lesions, are viewed as key contributors to the altered redox state. Likewise, the aggregation and toxicity of amyloid-beta is dependent upon transition metals. As such, chelating agents that selectively bind to and remove and/or "redox silence" transition metals have long been considered as attractive therapies for AD. However, the blood-brain barrier and neurotoxicity of many traditional metal chelators has limited their utility in AD or other neurodegenerative disorders. To circumvent this, we previously suggested that nanoparticles conjugated to iron chelators may have the potential to deliver chelators into the brain and overcome such issues as chelator bioavailability and toxic side-effects. In this study, we synthesized a prototype nanoparticle-chelator conjugate (Nano-N2PY) and demonstrated its ability to protect human cortical neurons from amyloid-beta-associated oxidative toxicity. Furthermore, Nano-N2PY nanoparticle-chelator conjugates effectively inhibited amyloid-beta aggregate formation. Overall, this study indicates that Nano-N2PY, or other nanoparticles conjugated to metal chelators, may provide a novel therapeutic strategy for AD and other neurodegenerative diseases associated with excess transition metals.

  16. Study on Chelating Resins XXXI Syntheses and Adsorption Properties of a New Type of Bead Resins Containing S and N

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new type of bead crosslinked chelating resins containing coordinate atoms N and S were synthesized by the reaction of polyethyleneimine with chloromethylthiirane in suitable sovent at temperature of 2080C. These chelating resins exhibited excellent adsorption properties for precious metal ions.

  17. Reactivity and molecular modeling of new solvatochromic mixed-ligand copper(II) chelates of 2-acetylbutyrolactone and dinitrogen bases.

    Science.gov (United States)

    Taha, A; Adly, Omima M I; Shebl, Magdy

    2015-04-01

    A new series of solvatochromic mononuclear mixed ligand chelates with the general formula: Cu(AcBL)(L)X; where AcBL=2-acetylbutyrolactonate, L=N,N,N',N'-tetramethylethylenediamine (Me4en), N,N,N',N'-tetramethylpropylene diamine (Me4pn), 1,10-phenanthroline (Phen) or 2,2'-bipyridyl (Bipy) and X=ClO4-, NO3- or Br- have been synthesized and characterized by the analytical and spectral methods, as well as magnetic and molar conductance measurements. The d-d absorption bands of Me4en-chelates as Nujol mulls or weak donor solvents solutions revealed square-planar, distorted octahedral and/or distorted trigonal bipyramid geometries for the perchlorate, nitrate and bromide chelates, respectively. However, an octahedral structure is identified for chelates in strong donor solvents. Perchlorate chelates show a remarkable color change from violet to green as the Lewis basicity of the donor solvent increases, whereas bromide chelates are mainly affected by the Lewis acidity of solvent. Specific and non-specific interactions of solvent molecules with the chelates were investigated on the basis of unified solvation model. Structural parameters of the free ligands and their Cu(II)-chelates have been calculated on the basis of semiempirical PM3 level and correlated with the experimental data.

  18. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-03-01

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

  19. Effects of nutrient trace metal speciation on algal growth in the presence of the chelator [S,S]-EDDS

    NARCIS (Netherlands)

    Schowanek, D.; McAvoy, D.; Versteeg, D.; Hanstveit, A.

    1996-01-01

    This study tests the hypothesis that the apparent toxicity of strong chelators in standard algal growth inhibition tests (e.g. method OECD 201, EC C.3., ISO 8692) is related to essential trace metal bioavailability. This hypothesis was investigated for the chelator [S,S]-ethylene diamine disuccinate

  20. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  1. The Earth's Core.

    Science.gov (United States)

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  2. Selection of Chelated Fe (III)/Fe (II) Catalytic Oxidation Agents for Desulfurization Based on Iron Complexation Method

    Institute of Scientific and Technical Information of China (English)

    Luo Ying; Liu Youzhi; Qi Guisheng; Guo Huidong; Zhu Zhengfeng

    2014-01-01

    Optimization of factors inlfuencing the experiments on reactions involving 8 different chelating agents and sol-uble Fe (III)/Fe (II) salts was carried out to yield chelated iron complexes. A combination of optimized inlfuencing factors has resulted in a Fe chelating capacity of the iron-based desulfurization solution to be equal to 6.83-13.56 g/L at a redox potential of 0.185-0.3. The desulfurization performance of Fe (III)/Fe (II) chelating agents was investigated on a simulated sulfur-containing industrial gas composed of H2S and N2 in a cross-lfow rotating packed bed. Test results have revealed that the proposed iron-based desulfurization solution showed a sulfur removal efifciency of over 99%along with a Fe chelating capacity exceeding 1.35 g/L. This desulfurization technology which has practical application prospect is currently in the phase of commercial scale-up study.

  3. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  4. SYNTHESIS AND MESOMORPHIC PROPERTIES OF PALLADIUM CHELATES OF LIQUID CRYSTAL POLYSILOXANE WITH β-DIKETONE-BASED SIDE CHAINS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhaohui; DAI Daorong; ZHANG Rongben

    1992-01-01

    A new type of palladium chelate of β-diketone-based side chain liquid crystal polysiloxane(Pd-DKLCP) has been synthesized by chelation reaction of palladium dichloride with polymeric ligand, β-diketone polysiloxane (DKLCP), using THF as solvent at R .T.. The Pd-chelation results in greatly increasing the phase transition temperature TK and the enthalpy change AHK from crystal to liquid crystal state and making the temperature range of LC state AT (A T=Tc1- TK) widened.All these chelates Pd-DKLCP's do not show TCl until decomposition at 205 ℃. It is noteworthy that the Pd-chelation can exert more positive effect on the mesomorphic behaviour of the polymer ligand than the counterpart Cu-DKLCP does. It is probable due to the bigger size of disc-like mesogen formed from β-diketone and Pd +2 ion with 4d orbital.

  5. Effect of chelating agent on oxidation rate of aniline in ferrous ion activated persulfate system at neutral pH

    Institute of Scientific and Technical Information of China (English)

    张永清; 谢晓芳; 黄少斌; 梁海云

    2014-01-01

    In the interest of accelerating aniline degradation, Fe2+and chelated Fe2+activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate (EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn’t follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.

  6. Determination of o,oEDDHA - a xenobiotic chelating agent used in Fe fertilizers - in plant tissues by liquid chromatography/electrospray mass spectrometry: overcoming matrix effects.

    Science.gov (United States)

    Orera, Irene; Abadía, Anunciación; Abadía, Javier; Alvarez-Fernández, Ana

    2009-06-01

    The Fe(III)-chelate of ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid (o,oEDDHA) is generally considered as the most efficient and widespread Fe fertilizer for fruit crops and intensive horticulture. The determination of the xenobiotic chelating agent o,oEDDHA inside the plant is a key issue in the study of this fertilizer. Both the low concentrations of o,oEDDHA expected and the complexity of plant matrices have been important drawbacks in the development of analytical methods for the determination of o,oEDDHA in plant tissues. The determination of o,oEDDHA in plant materials has been tackled in this study by liquid chromatography coupled to mass spectrometry using several plant species and tissues. Two types of internal standards have been tested: Iron stable isotope labeled compounds and a structural analogue compound, the Fe(III) chelate of ethylenediamine-N,N'-bis(2-hydroxy-4-methylphenylacetic) acid (o,oEDDHMA). Iron stable isotope labeled internal standards did not appear to be suitable because of the occurrence of isobaric endogenous compounds and/or isotope exchange reactions between plant native Fe pools and the Fe stable isotope of the internal standard. However, the structural analogue Fe(III)-o,oEDDHMA is an adequate internal standard for the determination of both isomers of o,oEDDHA (racemic and meso) in plant tissues. The method was highly sensitive, with limits of detection and quantification in the range of 3-49 and 11-162 pmol g(-1) fresh weight, respectively, and analyte recoveries were in the range of 74-116%. Using this methodology, both o,oEDDHA isomers were found in all tissues of sugar beet and tomato plants treated with 90 microM Fe(III)-o,oEDDHA for 24 h, including leaves, roots and xylem sap. This methodology constitutes a useful tool for studies on o,oEDDHA plant uptake, transport and allocation.

  7. Solid Earth: Introduction

    Science.gov (United States)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  8. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    J. F. Brennecke; M. A. Stadtherr

    1999-12-10

    The overall objectives of this project were to gain a fundamental understanding of the solubility and phase behavior of metal chelates in supercritical CO{sub 2}. Extraction with CO{sub 2} is an excellent way to remove organic compounds from soils, sludges and aqueous solutions, and recent research has demonstrated that, together with chelating agents, it is a viable way to remove metals, as well. In this project the authors sought to gain fundamental knowledge that is vital to computing phase behavior, and modeling and designing processes using CO{sub 2} to separate organics and metal compounds from DOE mixed wastes. The overall program was a comprehensive one to measure, model and compute the solubility of metal chelate complexes in supercritical CO{sub 2} and CO{sub 2}/cosolvent mixtures. Through a combination of phase behavior measurements, spectroscopy and the development of a new computational technique, the authors have achieved a completely reliable way to model metal chelate solubility in supercritical CO{sub 2} and CO{sub 2}/co-contaminant mixtures. Thus, they can now design and optimize processes to extract metals from solid matrices using supercritical CO{sub 2}, as an alternative to hazardous organic solvents that create their own environmental problems, even while helping in metals decontamination.

  9. Comprehensive radiolabeling, stability, and tissue distribution studies of technetium-99m single amino acid chelates (SAAC).

    Science.gov (United States)

    Maresca, Kevin P; Hillier, Shawn M; Femia, Frank J; Zimmerman, Craig N; Levadala, Murali K; Banerjee, Sangeeta R; Hicks, Justin; Sundararajan, Chitra; Valliant, John; Zubieta, Jon; Eckelman, William C; Joyal, John L; Babich, John W

    2009-08-19

    Technetium tricarbonyl chemistry has been a subject of interest in radiopharmaceutical development over the past decade. Despite the extensive work done on developing chelates for Tc(I), a rigorous investigation of the impact of changing donor groups and labeling conditions on radiochemical yields and/or distribution has been lacking. This information is crucially important if these platforms are going to be used to develop molecular imaging probes. Previous studies on the coordination chemistry of the {M(CO)(3)}(+) core have established alkylamine, aromatic nitrogen heterocycles, and carboxylate donors as effective chelating ligands. These observations led to the design of tridentate ligands derived from the amino acid lysine. Such amino acid analogues provide a tridentate donor set for chelation to the metal and an amino acid functionality for conjugation to biomolecules. We recently developed a family of single amino acid chelates (SAAC) that serve this function and can be readily incorporated into peptides via solid-phase synthesis techniques. As part of these continuing studies, we report here on the radiolabeling with technetium-99m ((99m)Tc) and stability of a series of SAAC analogues of lysine. The complexes studied include cationic, neutral, and anionic complexes. The results of tissue distribution studies with these novel complexes in normal rats demonstrate a range of distribution in kidney, liver, and intestines.

  10. Organic acids rather than histidine predominate in Ni chelation in Alyssum hyperaccumulator xylem exudate

    Science.gov (United States)

    A better understanding of Ni uptake mechanisms by hyperaccumulator plants is necessary to improve Ni uptake efficiency for phytoremediation technologies i.e. phytomining. It is known that an important aspect of Ni translocation involves Ni chelation with organic ligands. However, it is still not cle...

  11. Removal of Cooper and Zinc from Swine Wastewater by DTC Chelator

    Directory of Open Access Journals (Sweden)

    ZHANG Xiu

    2015-06-01

    Full Text Available The dithiocarbamate chelator (DTC was prepared to remove Cu, Zn from swine wastewater by xanthic acid reaction of linking DTC-groups into chitosan. The results showed that the removal efficiency with DTC chelator was affected by initial pH value and the chelator amount added but had little affection from the initial concentration of Cu, Zn and temperature. The pH value had a suitable range from 3.0 to 5.0, and the removal efficiency gradually increased with DTC amount, but the increasing rate slowed down gradually. When the pH value was about 5, the added chelator amount was 2.0 g·L-1 (wasterwater, the initial concentrations of both Cu and Zn were 25~200 mg·L-1, the removal efficiency of Cu and Zn reached to 99%, and the concentrations of Cu and Zn in effluent were lower than those stipulated in the national standard (GB 8978—1996. Langmuir equation could well describe the isothermal adsorption process, and the equilibrium time was determined as 20 minutes by the kinetic process.

  12. Observation of unusual slow-relaxation of the magnetisation in a Gd-EDTA chelate.

    Science.gov (United States)

    Holmberg, Rebecca J; Ho, Le Tuan Anh; Ungur, Liviu; Korobkov, Ilia; Chibotaru, Liviu F; Murugesu, Muralee

    2015-12-21

    A Gadolinium EDTA chelate displays characteristic isotropic behaviour common of Gd(III) complexes under zero applied magnetic field, and anisotropic behaviour arising from dipolar coupling and weak spin-phonon coupling under an applied magnetic field. This surprising magnetic behaviour for Gd(III) is investigated using SQUID magnetometry and rationalized through theoretical calculations.

  13. Thermodynamic Analysis of Allosteric and Chelate Cooperativity in Di- and Trivalent Ammonium/Crown-Ether Pseudorotaxanes.

    Science.gov (United States)

    Nowosinski, Karol; von Krbek, Larissa K S; Traulsen, Nora L; Schalley, Christoph A

    2015-10-16

    A detailed thermodynamic analysis of the axle-wheel binding in di- and trivalent secondary ammonium/[24]crown-8 pseudorotaxanes is presented. Isothermal titration calorimetry (ITC) data and double mutant cycle analyses reveal an interesting interplay of positive as well as negative allosteric and positive chelate cooperativity thus providing profound insight into the effects governing multivalent binding in these pseudorotaxanes.

  14. Ruthenium(II) and iridium(III) complexes featuring NHC-sulfonate chelate.

    Science.gov (United States)

    Rajaraman, A; Sahoo, A R; Hild, F; Fischmeister, C; Achard, M; Bruneau, C

    2015-10-28

    Three new complexes bearing a chelating (κ(2)C,O) NHC-SO3 ligand have been prepared. An original method for the synthesis of the imidazolium-sulfonate NHC precursor is described. The 5-membered ruthena- and irida-cycle containing complexes were fully characterized and evaluated in a series of catalytic transformations involving hydrogen auto-transfer processes.

  15. The effects of Fe-chelate type and PH on substrate grown roses

    NARCIS (Netherlands)

    Voogt, W.; Sonneveld, C.

    2009-01-01

    Substrate grown roses appear to be susceptible to chlorosis, which indicates problems with Fe or Mn uptake and hence yield reduction. In common practice this problem is often treated by the addition of extra Fe-chelate, or the use of Fe-EDDHA instead of Fe-DTPA. In previous tests, it was shown that

  16. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].

    Science.gov (United States)

    Liu, Xia; Wang, Jian-Tao; Zhang, Meng; Wang, Li; Yang, Ya-Ti

    2013-04-01

    Because of its strong chelation, solubilization characteristics, the chelating agents and biosurfactant are widely used in remediation of heavy metals and organic contaminated soils. Ethylenediamine tetraacetic acid (EDTA), citric acid (CIT) and dirhamnolipid (RL2) were selected as the eluent. Batch experiments and column experiments were conducted to investigate the leaching effect of the three kinds of eluent, as well as the mixture of biosurfactant and chelating agent for Cu, Pb contaminated loess soil. The results showed that the leaching efficiencies of different eluent on Cu, Pb contaminated loess soil followed the sequence of EDTA > CIT > RL2. At an eluent concentration of 0.02 mol x L(-1), the Cu leaching efficiency was 62.74% (EDTA), 52.28% (CIT) and 15.35% (RL2), respectively; the Pb leaching efficiency was 96.10% (EDTA), 23.08% (CIT) and 14.42% (RL2), respectively. When the concentration of RL2 was 100 CMC, it had synergistic effects on the other two kinds of chelating agent in Cu leaching, and when the concentration of RL2 was 200 CMC, it had antagonism effects. The effect of RL2 on EDTA in Pb leaching was similar to that in Cu leaching. Pb leaching by CIT was inhibited in the presence of RL2. EDTA and CIT could effectively remove Cu and Pb in exchangeable states, adsorption states, carbonate salts and organic bound forms; RL2 could effectively remove Cu and Pb in exchangeable and adsorbed states.

  17. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid].

    Science.gov (United States)

    Zhou, Jian-min; Dang, Zhi; Chen, Neng-chang; Xu, Sheng-guang; Xie, Zhi-yi

    2007-09-01

    The environmental risk of chelating agents such as EDTA application to the heavy metals polluted soils and the stress on plant roots due to the abrupt increase metals concentration limit the wide commercial use of chelate-induced phytoextraction. Chelating agent ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) and auxin indole-3-acetic acid (IAA) were used for enhancing heavy metals uptake from soils by Zea mays L. (corn) in pot experiments. The metals content in plant tissues was quantified using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the combination of IAA and EDTA increased the biomass by about 40.0% and the contents of Cu, Zn, Cd and Pb in corn shoots by 27.0%, 26.8%, 27.5% and 32.8% respectively, as compared to those in EDTA treatment. While NTA&IAA treatment increased the biomass by about 29.9% and the contents of Cu, Zn, Cd and Pb in corn shoots by 31.8%, 27.6%, 17.0% and 26.9% respectively, as compared to those in NTA treatment. These results indicated that corn growth was promoted, and the biomass and the accumulation of heavy metals in plant shoots were increased significantly with the addition of IAA, which probably helps to change the cell membrane properties and the biomass distribution, resulting in the alleviation of the phytotoxicity of metals and the chelating agents.

  18. Searching for new aluminium chelating agents: a family of hydroxypyrone ligands.

    Science.gov (United States)

    Toso, Leonardo; Crisponi, Guido; Nurchi, Valeria M; Crespo-Alonso, Miriam; Lachowicz, Joanna I; Mansoori, Delara; Arca, Massimiliano; Santos, M Amélia; Marques, Sérgio M; Gano, Lurdes; Niclós-Gutíerrez, Juan; González-Pérez, Josefa M; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Szewczuk, Zbigniew

    2014-01-01

    Attention is devoted to the role of chelating agents in the treatment of aluminium related diseases. In fact, in spite of the efforts that have drastically reduced the occurrence of aluminium dialysis diseases, they so far constitute a cause of great medical concern. The use of chelating agents for iron and aluminium in different clinical applications has found increasing attention in the last thirty years. With the aim of designing new chelators, we synthesized a series of kojic acid derivatives containing two kojic units joined by different linkers. A huge advantage of these molecules is that they are cheap and easy to produce. Previous works on complex formation equilibria of a first group of these ligands with iron and aluminium highlighted extremely good pMe values and gave evidence of the ability to scavenge iron from inside cells. On these bases a second set of bis-kojic ligands, whose linkers between the kojic chelating moieties are differentiated both in terms of type and size, has been designed, synthesized and characterized. The aluminium(III) complex formation equilibria studied by potentiometry, electrospray ionization mass spectroscopy (ESI-MS), quantum-mechanical calculations and (1)H NMR spectroscopy are here described and discussed, and the structural characterization of one of these new ligands is presented. The in vivo studies show that these new bis-kojic derivatives induce faster clearance from main organs as compared with the monomeric analog. © 2013.

  19. The iron chelator deferasirox protects mice from mucormycosis through iron starvation

    Science.gov (United States)

    Clinical and animal model data indicate that the presence of elevated available serum iron predisposes the host to mucormycosis. Here we demonstrate that deferasirox, an iron chelator recently approved for use in humans by the United States (US) Food and Drug Administration (FDA), is a highly effec...

  20. Lanthanide Chelates as Bilayer Alignment Tools in NMR Studies of Membrane-Associated Peptides

    Science.gov (United States)

    Prosser, R. S.; Bryant, H.; Bryant, R. G.; Vold, Regitze R.

    1999-12-01

    Theequimolar complex, consisting of the lipid-like, amphiphilic chelating agent 1,11-bis[distearylamino]-diethylenetriamine pentaacetic acid (DTPA-18) and Tm3+, is shown by deuterium (2H) NMR to be useful in aligning bicelle-like model membranes, consisting of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC). As shown previously (1996, R. S. Prosser et al., J. Am. Chem. Soc. 118, 269-270), in the absence of chelate, the lanthanide ions bind loosely with the lipid phosphate groups and confer the membrane with a sufficient positive magnetic anisotropy to result in parallel alignment (i.e., average bilayer normal along the field). Apparently, DTPA-18 sequesters the lanthanide ions and inserts into the phospholipid bilayer in such a manner that bilayer morphology is preserved over a wide temperature range (35-70°C). The inherent paramagnetic shifts and line broadening effects are illustrated by 2H NMR spectra of the membrane binding peptide, Leu-enkephalin (Lenk-d2, Tyr-(Gly-d2)-Gly-Phe-Leu-OH), in the presence of varying concentrations of Tm3+, and upon addition of DTPA-18. Two conclusions could be drawn from this study: (1) The addition of Tm3+ to the bicelle system is consistent with a conformational change in the surface associated peptide, and this effect is shown to be reversed by addition of the chelate, and (2) The paramagnetic shifts are shown to be significantly reduced by addition of chelate.

  1. Comparison of the antibacterial activity of chelating agents using the agar diffusion method

    Science.gov (United States)

    The agar diffusion assay was used to examine antibacterial activity of 2 metal chelators. Concentrations of 0 to 40 mM of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N,N’-disuccinic acid (EDDS) were prepared in 1.0 M potassium hydroxide (KOH). The pH of the solutions was adjusted to 1...

  2. Modeling the effect of succimer (DMSA; dimercaptosuccinic acid) chelation therapy in patients poisoned by lead

    NARCIS (Netherlands)

    van Eijkeren, Jan C H; Olie, J. Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Clewell, Harvey J.; Meulenbelt, Jan; Hunault, Claudine C

    CONTEXT: Kinetic models could assist clinicians potentially in managing cases of lead poisoning. Several models exist that can simulate lead kinetics but none of them can predict the effect of chelation in lead poisoning. Our aim was to devise a model to predict the effect of succimer

  3. Design and Application of Latent Olefin Metathesis Catalysts Featuring S-Chelating Alkylidene Ligands

    Science.gov (United States)

    Szadkowska, Anna; Grela, Karol

    This review article is devoted to recent advances in the design and application of so-called “dormant” or “latent” ruthenium olefin metathesis catalysts bearing S-chelating alkylidene ligands. Selected ruthenium complexes containing S-donor ligands, which possess controllable initiation behaviour are presented. Applications of these complexes in olefin metathesis are described.

  4. Essential trace metal excretion from rats with lead exposure and during chelation therapy.

    Science.gov (United States)

    Victery, W; Miller, C R; Goyer, R A

    1986-02-01

    Urinary excretion of lead, zinc, calcium, magnesium, iron, copper, sodium, and potassium was measured in rats daily for 1 week after a 6-week exposure to 10,000 micrograms/ml lead in drinking water. Beginning on the third day, half of the lead-exposed and control rats were injected intraperitoneally with calcium disodium ethylenediaminetetraacetate (EDTA) daily for 3 days. Whole blood, plasma, and kidney metal concentrations were determined from samples obtained at the end of the experiment. Exposure to lead increased urinary excretion, not only of lead, but also of calcium, magnesium, zinc, copper, and iron. Excretion of sodium and potassium was not altered. Chelation therapy further increased excretion of lead, zinc, copper, and iron, but not magnesium. The increase in calcium excretion during chelation treatment (beyond that resulting from lead exposure per se) was accounted for by the Ca content of CaNa2-EDTA. EDTA treatment increased renal concentration of zinc but lowered renal concentration of lead, copper, and iron. These multimetal alterations may have implications for essential metal supplementation, particularly zinc, in persons being given chelation agents for excess lead exposure and in infants and children with low-level lead exposure not necessarily requiring chelation therapy.

  5. The impact of succimer chelation on blood cadmium in children with background exposures: a randomized trial.

    Science.gov (United States)

    Cao, Yang; Chen, Aimin; Bottai, Matteo; Caldwell, Kathleen L; Rogan, Walter J

    2013-08-01

    Succimer lowers blood lead concentrations in children, and the structure of succimer chelates of lead and cadmium are similar. Using blood samples from a randomized trial of succimer for lead poisoning, however, we found that succimer did not lower blood cadmium in children with background exposure.

  6. Catechol-Bisphosphonate Conjugates:New Potential Chelating Agents for Metal Intoxication Therapy

    Institute of Scientific and Technical Information of China (English)

    Guang Yu XU; Chun Hao YANG; Bo LIU; Xi Han WU; Yu Yuan XIE

    2004-01-01

    In a quest for better chelating therapy drugs for the treatment of intoxication by Fe, Al, or actinides, two new series of mixed catechol-bisphosphonate through amide linkage were synthesized.Benzyl group was used as protecting group to avoid the breakage of amide by acid hydrolysis or imcomplete reaction in silylation-dealkylation using bromotrimethylsilane.

  7. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    J. F. Brennecke; M. A. Stadtherr

    1999-12-10

    The overall objectives of this project were to gain a fundamental understanding of the solubility and phase behavior of metal chelates in supercritical CO{sub 2}. Extraction with CO{sub 2} is an excellent way to remove organic compounds from soils, sludges and aqueous solutions, and recent research has demonstrated that, together with chelating agents, it is a viable way to remove metals, as well. In this project the authors sought to gain fundamental knowledge that is vital to computing phase behavior, and modeling and designing processes using CO{sub 2} to separate organics and metal compounds from DOE mixed wastes. The overall program was a comprehensive one to measure, model and compute the solubility of metal chelate complexes in supercritical CO{sub 2} and CO{sub 2}/cosolvent mixtures. Through a combination of phase behavior measurements, spectroscopy and the development of a new computational technique, the authors have achieved a completely reliable way to model metal chelate solubility in supercritical CO{sub 2} and CO{sub 2}/co-contaminant mixtures. Thus, they can now design and optimize processes to extract metals from solid matrices using supercritical CO{sub 2}, as an alternative to hazardous organic solvents that create their own environmental problems, even while helping in metals decontamination.

  8. Metal Ions Extraction with Glucose Derivatives as Chelating Reagents in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Guo Chen YANG; Hai Jian YANG

    2006-01-01

    A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-1-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr2+ and Pb2+ extraction in supercritical carbon dioxide.

  9. Use of organometallic chelates in broiler diet: effect on the performance and bone structure. Preliminary results

    Directory of Open Access Journals (Sweden)

    Biagina Chiofalo

    2010-01-01

    Full Text Available On 26,000 Ross 508 broiler chickens (two groups of 13,000 per pen the effect of dietary substitution with in organic trace minerals or organometallic chelates on performances and bones tructure c trace minerals or organometallic chelates on performances and bone structure was studied. Treatments consisted of a commercial diet integrated with 0.5% of a vitamin-mineral premix containing inorganic trace minerals (CTR or organometallic chelates (MHA using Methionine Hydroxy Analog. Production performance was measured during the 52 d trial period and bone structure was evalu- ated at the slaughter (52 d. Significant (P=0.038 higher values were observed in the finishing period (41 to 52 d for the body weight of the treated group (3560 g vs. 3358 g. The same trend was observed for the ADG (MHA 87.6 g/d vs. CTR 71 g/d; P<0.05. Concerning ash percentage significant higher values were observed in the CTR group for femur (49.01% vs. 51.45%; P<0.01 and tibia (53.87% vs. 49.79%; P<0.001; femur showed also higher values for bone radiopacity (MHA 0.21 px vs. CTR 0.26 px; P=0.035. MHA group showed significant higher value for morphometric measures of the femur and tibia. Results suggest that organometallic chelates can be included in the diet without compromising broiler performance.

  10. Toxicity of copper chelates of azomethines and amino acids for Chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, G.K.; Rukhadze, E.G.; Talyzenkova, G.P.

    1979-01-01

    The authors have attempted to assess the toxicity of copper-containing compounds from the point of view of their interrelationship with the structural characteristics of the chelate compound and the structure of the ligand. The copper chelates of the azomethines tested may be provisionally divided into three types: A - complexes with N-alkly-azomethines; B - complexes with N-aryl-azomethines; C - binuclear complexes. Consideration was also given to chelates with aromatic and heterocyclic amino acids and to heteroligand chelates in which the copper atom coordinates azomethine and an amino acid simultaneously. Toxicity was determined by the method previously described and expressed as a critical concentration (C/sub cr/, mg Cu/liter) and in relative toxicity units (T/sub c/). The compounds investigated were obtained from the interaction between a bidentant ligand of an azomethine or anamino acid and copper acetate in a water-alcohol medium at pH 6-8. Since they are not very soluble in water, true solutions were obtained by using dimethyl sulfoxide.

  11. Affinity purification of copper-chelating peptides from sunflower protein hydrolysates.

    Science.gov (United States)

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-08-08

    Copper-chelating peptides were purified from sunflower protein hydrolysates by affinity chromatography using immobilized copper. A variety of protein hydrolysates were obtained by incubation with the proteases Alcalase and Flavourzyme for different periods of time. Chelating activity was indirectly determined by measuring the inhibitory effect of hydrolysates on the oxidation of beta-carotene by copper. Copper-binding peptides purified from the two hydrolysates that inhibited oxidation by copper the most contained 25.4 and 42.0% histidine and inhibited beta-carotene oxidation 8 and 3 times more than the original hydrolysates, which had 2.4 and 2.6% histidine, respectively. Thus, histidine content is not the only factor involved in antioxidant activity, and probably other factors such as peptide size and amino acid sequence are also important. This work shows that affinity chromatography can be used for the purification of copper-chelating peptides and probably other metals of nutritional interest such as calcium, iron, and zinc. In addition to their antioxidant potential, chelating peptides are of nutritional interest because they increase bioavailability of minerals.

  12. Iron chelation therapy in the management of thalassemia: the Asian perspectives.

    Science.gov (United States)

    Viprakasit, Vip; Lee-Lee, Chan; Chong, Quah Thuan; Lin, Kai-Hsin; Khuhapinant, Archrob

    2009-11-01

    Worldwide, thalassemia is the most commonly inherited hemolytic anemia, and it is most prevalent in Asia and the Middle East. Iron overload represents a significant problem in patients with transfusion-dependent beta-thalassemia. Chelation therapy with deferoxamine has traditionally been the standard therapeutic option but its usage is tempered by suboptimal patient compliance due to the discomfort and demands associated with the administration regimen. Therefore, a great deal of attention has been focused on the development of oral chelating agents. Deferiprone, even though available for nearly two decades in Asia with recent encouraging data on cardiac iron removal and long-term efficacy, has serious adverse effects including agranulocytosis and neutropenia which has impeded it from routine clinical practice. A novel oral chelator; deferasirox is effective throughout a 24 h dosing period and both preclinical and clinical data indicate that it successfully removes both hepatic and cardiac iron. In Asia, optimal management of severe thalassemia patients and the availability and access to oral iron chelators still presents a major challenge in many countries. In this regard, the development and implementation of consensus guidelines for management of Asian patients with transfusion-dependent thalassemia will be a major step towards improving and maintaining the continuity of patient care.

  13. The Mechanism of Cumene Peroxidation Catalyzed by Cobalt(Ⅱ)-Chelated Copolymer

    Institute of Scientific and Technical Information of China (English)

    Cheng-Chien Wang; Hui-Chun Chen; Chuh-Yean Chen; Chuh-Yung Chen

    2005-01-01

    @@ 1Introduction The functionalised polymers, especially for chelating polymer, have been employed to considerable effects in organic synthesis for several decades. The use of polymer groups as ligands permits the ligand surroundings to be varied and regulation of the catalytic properties of the complexes because of the flexibility of the polymer chains, their ability to adopt various conformations, and the possibility of creating various spatial distributions of metal centers immobilized on the polymer chains[1,2]. In our recently studies[3-5], the chelating copolymer with imino-diacetic acid chelating group in the polymer side chain was manufactured, and which can increase effectively amount of the chelating group within the polymer. Meanwhile, the high catalysis performance in organic synthesis had also been proved via benzaldehyde and cumene peroxidation. For cumene peroxidation,it is hardly to find such a simple catalyst with high conversion and selectivity due to hydroperoxide decomposition by a radical mechanism. The cumene peroxidation by catalyst system and its reaction mechanism as well as the kinetic study are popularly investigated object for many researchers[6-9]. However, the reaction mechanism still does not clear owing to the by-products will be produced following the different catalysts used.

  14. Inhibitor Ranking Through QM based Chelation Calculations for Virtual Screening of HIV-1 RNase H inhibition

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Svendsen, Casper Steinmann; Kongsted, Jacob

    2014-01-01

    Quantum mechanical (QM) calculations have been used to predict the binding affinity of a set of ligands towards HIV-1 RT associated RNase H (RNH). The QM based chelation calculations show improved binding affinity prediction for the inhibitors compared to using an empirical scoring function. Furt....... Thus, the computational models tested in this study could be useful as high throughput filters for searching HIV-1 RNase H active-site molecules in the virtual screening process.......Quantum mechanical (QM) calculations have been used to predict the binding affinity of a set of ligands towards HIV-1 RT associated RNase H (RNH). The QM based chelation calculations show improved binding affinity prediction for the inhibitors compared to using an empirical scoring function...... of the methods based on the use of a training set of molecules, QM based chelation calculations were used as filter in virtual screening of compounds in the ZINC database. By this, we find, compared to regular docking, QM based chelation calculations to significantly reduce the large number of false positives...

  15. Molecular characterization of whey protein hydrolysate fractions with ferrous chelating and enhanced iron solubility capabilities.

    Science.gov (United States)

    O'Loughlin, Ian B; Kelly, Phil M; Murray, Brian A; FitzGerald, Richard J; Brodkorb, Andre

    2015-03-18

    The ferrous (Fe2+) chelating capabilities of WPI hydrolysate fractions produced via cascade membrane filtration were investigated, specifically 1 kDa permeate (P) and 30 kDa retentate (R) fractions. The 1 kDa-P possessed a Fe2+ chelating capability at 1 g L(-1) equivalent to 84.4 μM EDTA (for 30 kDa-R the value was 8.7 μM EDTA). Fourier transformed infrared (FTIR) spectroscopy was utilized to investigate the structural characteristics of hydrolysates and molecular interactions with Fe2+. Solid-phase extraction was employed to enrich for chelating activity; the most potent chelating fraction was enriched in histidine and lysine. The solubility of ferrous sulfate solutions (10 mM) over a range of pH values was significantly (P<0.05) improved in dispersions of hydrolysate fraction solutions (10 g protein L(-1)). Total iron solubility was improved by 72% in the presence of the 1 kDa-P fraction following simulated gastrointestinal digestion (SGID) compared to control FeSO4·7H2O solutions.

  16. Chelating agents improve enzymatic solubilization of pectinaceous co-processing streams

    DEFF Research Database (Denmark)

    Ravn, Helle Christine; Meyer, Anne S.

    2014-01-01

    /substrate] at 60 °C, pH 6.0 for 1 min. Characterization of the released fractions demonstrated a significantly improved effect of chelating agents for polysaccharide solubilization from FiberBind 400, PUF, and citrus peel, whereas only low amounts of polysaccharides were solubilized from the sugar beet pulp...

  17. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands.

    Science.gov (United States)

    Berry, David J; Ma, Yongmin; Ballinger, James R; Tavaré, Richard; Koers, Alexander; Sunassee, Kavitha; Zhou, Tao; Nawaz, Saima; Mullen, Gregory E D; Hider, Robert C; Blower, Philip J

    2011-07-07

    A new tripodal tris(hydroxypyridinone) bifunctional chelator for gallium allows easy production of (68)Ga-labelled proteins rapidly under mild conditions in high yields at exceptionally high specific activity and low concentration. This journal is © The Royal Society of Chemistry 2011

  18. FTIR, magnetic, mass spectral, XRD and thermal studies of metal chelates of tenoxicam

    Science.gov (United States)

    Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2007-09-01

    Metal chelates of anti-inflammatory drug, tenoxicam (Ten), are synthesized and characterized using elemental analyses, IR, solid reflectance, magnetic, mass spectra, thermal analyses (TGA and DTA) and X-ray powder diffraction techniques. The chelates are found to have the general formulae [M(H 2L) 2(H 2O) x] (A) 2· yH 2O (where H 2L = neutral Ten, A = Cl in case of Ni(II) and Co(II) or AcO in case of Cu(II) and Zn(II) ions, x = 0-2 and y = 0-2.5) and [M(H 2L) 3](A) z· yH 2O (A = SO 4 in case of Fe(II) ion ( z = 1) or Cl in case of Fe(III) ( z = 3) and y = 0-4). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions through the pyridyl- N and carbonyl- O of the amide moiety. The solid reflectance spectra and magnetic moment measurements reveal that these chelates have tetrahedral, square planar and octahedral geometrical structures. Mass spectra are also used to confirm the proposed formulae and the possible fragments resulted from fragmentation of Ten and its Zn(II) and Cu(II) chelates are suggested. The thermal behaviour of the chelates (TG/DTG, DTA) are discussed in detailed manner and revealed that water molecules of crystallization together with anions are removed in the first and second steps while the Ten molecules are removed in the subsequent steps. Different thermodynamic parameters are evaluated and the relative thermal stabilities of the complexes are discussed. X-ray powder diffraction patterns are used to indicate the polymorphic form of Ten and if the complexes have molecular similarity with respect to type of coordination.

  19. Chelation technology: a promising green approach for resource management and waste minimization.

    Science.gov (United States)

    Chauhan, Garima; Pant, K K; Nigam, K D P

    2015-01-01

    Green chemical engineering recognises the concept of developing innovative environmentally benign technologies to protect human health and ecosystems. In order to explore this concept for minimizing industrial waste and for reducing the environmental impact of hazardous chemicals, new greener approaches need to be adopted for the extraction of heavy metals from industrial waste. In this review, a range of conventional processes and new green approaches employed for metal extraction are discussed in brief. Chelation technology, a modern research trend, has shown its potential to develop sustainable technology for metal extraction from various metal-contaminated sites. However, the interaction mechanism of ligands with metals and the ecotoxicological risk associated with the increased bioavailability of heavy metals due to the formation of metal-chelant complexes is still not sufficiently explicated in the literature. Therefore, a need was felt to provide a comprehensive state-of-the-art review of all aspects associated with chelation technology to promote this process as a green chemical engineering approach. This article elucidates the mechanism and thermodynamics associated with metal-ligand complexation in order to have a better understanding of the metal extraction process. The effects of various process parameters on the formation and stability of complexes have been elaborately discussed with respect to optimizing the chelation efficiency. The non-biodegradable attribute of ligands is another important aspect which is currently of concern. Therefore, biotechnological approaches and computational tools have been assessed in this review to illustrate the possibility of ligand degradation, which will help the readers to look for new environmentally safe mobilizing agents. In addition, emerging trends and opportunities in the field of chelation technology have been summarized and the diverse applicability of chelation technology in metal extraction from

  20. Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato.

    Science.gov (United States)

    Kong, Danyu; Chen, Chunlin; Wu, Huilan; Li, Ye; Li, Junming; Ling, Hong-Qing

    2013-11-20

    Ferric-chelate reductase which functions in the reduction of ferric to ferrous iron on root surface is a critical protein for iron homeostasis in strategy I plants. LeFRO1 is a major ferric-chelate reductase involved in iron uptake in tomato. To identify the natural variations of LeFRO1 and to assess their effect on the ferric-chelate reductase activity, we cloned the coding sequences of LeFRO1 from 16 tomato varieties collected from different regions, and detected three types of LeFRO1 (LeFRO1(MM), LeFRO1(Ailsa) and LeFRO1(Monita)) with five amino acid variations at the positions 21, 24, 112, 195 and 582. Enzyme activity assay revealed that the three types of LeFRO1 possessed different ferric-chelate reductase activity (LeFRO1(Ailsa) > LeFRO1(MM) > LeFRO1(Monita)). The 112th amino acid residue Ala of LeFRO1 is critical for maintaining the high activity of ferric-chelate reductase, because modification of this amino acid resulted in a significant reduction of enzyme activity. Further, we showed that the combination of the amino acid residue Ile at the site 24 with Lys at the site 582 played a positive role in the enzyme activity of LeFRO1. In conclusion, the findings are helpful to understand the natural adaptation mechanisms of plants to iron-limiting stress, and may provide new knowledge to select and manipulate LeFRO1 for improving the iron deficiency tolerance in tomato.

  1. Functionalization of Krebs-type polyoxometalates with N,O-chelating ligands: a systematic study.

    Science.gov (United States)

    Artetxe, Beñat; Reinoso, Santiago; San Felices, Leire; Vitoria, Pablo; Pache, Aroa; Martín-Caballero, Jagoba; Gutiérrez-Zorrilla, Juan M

    2015-01-01

    The first organic derivatives of 3d-metal-disubstituted Krebs-type polyoxometalates have been synthesized under mild bench conditions via straightforward replacement of labile aqua ligands with N,O-chelating planar anions on either preformed or in situ-generated precursors. Nine hybrid clusters containing carboxylate derivatives of five- or six-membered aromatic N-heterocycles as antenna ligands have been obtained as pure crystalline phases and characterized by elemental and thermal analyses, infrared spectroscopy, and single-crystal X-ray diffraction. They all show the general formula [{M(II)L(H2O)}2(WO2)2(B-β-XW9O33)2](n-) and can be classified as follows: 1-SbM, where L = 1H-imidazole-4-carboxylate (imc), X = Sb(III), n = 12, and M(II) = Mn, Co, Ni, Zn; 1-TeM, where L = imc, X = Te(IV), n = 10, and M(II) = Mn, Co; 2-SbNi, where L = 1H-pyrazole-3-carboxylate (pzc), X = Sb(III), n = 12, and M(II) = Ni; and 3-SbM, where L = pyrazine-2-carboxylate (pyzc), X =Sb(III), n = 12, and M(II) = Co, Zn. The 3d-metal-disubstituted tungstotellurate(IV) skeleton of compounds 1-TeM is unprecedented in polyoxometalate chemistry. The stability of these hybrid Krebs-type species in aqueous solution has been confirmed by (1)H NMR spectroscopy performed on the diamagnetic 1-SbZn and 3-SbZn derivatives. Our systematic study of the reactivity of disubtituted Krebs-type polyoxotungstates toward diazole-, pyridine-, and diazinecarboxylates demonstrates that organic derivatization is strongly dependent on the nature of the ligand, as follows: imc displays a "universal ligand" character, as functionalization takes place regardless of the external 3d metal and heteroatom; pzc and pyzc show selectivity toward specific 3d metals; pyridazine-3-carboxylate and pyrimidine-4-carboxylate promote partial decomposition of specific precursors, leading to [M(II)L2(H2O)2] complexes; and picolinate is inert under all conditions tested.

  2. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  3. Sun-Earth Days

    Science.gov (United States)

    Thieman, J.; Ng, C.; Lewis, E.; Cline, T.

    2010-08-01

    Sun-Earth Day is a well-coordinated series of programs, resources and events under a unique yearly theme highlighting the fundamentals of heliophysics research and missions. A menu of activities, conducted throughout the year, inspire and educate participants. Sun-Earth Day itself can vary in date, but usually is identified by a celebration on or near the spring equinox. Through the Sun-Earth Day framework we have been able to offer a series of coordinated events that promote and highlight the Sun, its connection to Earth and the other planets. Sun-Earth Day events are hosted by educators, museums, amateur astronomers and scientists and occur at schools, community groups, parks, planetaria and science centers around the globe. Sun-Earth Day raises the awareness and knowledge of formal and informal education audiences concerning space weather and heliophysics. By building on the success of Sun-Earth Day yearly celebrations, we seek to affect people of all backgrounds and ages with the wonders of heliophysics science, discovery, and exploration in ways that are both tangible and meaningful to their lives.

  4. Accretion of the Earth.

    Science.gov (United States)

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  5. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  6. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  7. Transits of Earth-Like Planets

    CERN Document Server

    Kaltenegger, L

    2009-01-01

    Transmission spectroscopy of Earth-like exoplanets is a potential tool for habitability screening. Transiting planets are present-day "Rosetta Stones" for understanding extrasolar planets because they offer the possibility to characterize giant planet atmospheres and should provide an access to biomarkers in the atmospheres of Earth-like exoplanets, once they are detected. Using the Earth itself as a proxy we show the potential and limits of the transiting technique to detect biomarkers on an Earth-analog exoplanet in transit. We quantify the Earths cross section as a function of wavelength, and show the effect of each atmospheric species, aerosol, and Rayleigh scattering. Clouds do not significantly affect this picture because the opacity of the lower atmosphere from aerosol and Rayleigh losses dominates over cloud losses. We calculate the optimum signal-to-noise ratio for spectral features in the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star and also M stars, for a 6.5-m telesco...

  8. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  9. Using lanthanide chelates and uranyl compounds for diagnostic by fluoroimmunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Elen G.; Tomiyama, Claudia S.; Kodaira, Claudia A.; Felinto, Maria C.F.C., E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lourenco, Ana V. S.; Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f; Brito, Maria E.F., E-mail: britomef@cpqam.fiocruz.b [Centro de Pesquisas Aggeu Magalhaes (CPqAM/Fiocruz), Recife, PE (Brazil)

    2009-07-01

    The importance of the luminescence of lanthanide ions and UO{sub 2}{sup 2+} is related to its peculiar characteristics, e.g. long lifetime and line-like emission bands in the visible, which make these ions unique among the species that are known to luminescence. Recent developments in the field of supramolecular chemistry have allowed the design of ligands capable of encapsulating lanthanide ions, thus forming kinetically inert complexes. By introduction of chromophoric groups in these ligands, an intense luminescence of the ion can be obtained via the 'antenna effect', defined as a light conversion process involving distinct absorbing (ligand) and emitting (metal ion) components. In such a process, the quantities that contribute to the luminescence intensity are the efficiency of the absorption, the efficiency of the ligand-metal energy transfer, and the efficiency of the metal luminescence. Encapsulation of lanthanide ions with suitable ligands may therefore give rise to 'molecular devices' capable to emit strong, long-lived luminescence. Besides the intrinsic interest in their excited state properties, compounds of lanthanide ions, in particular of the Eu{sup 3+} and Tb{sup 3+} ions, and now UO{sub 2}{sup 2+} are important for their potential use as luminescent labels for biological species in fluoroimmunoassays (FIAs). This is most interesting because fluorimetric labeling represents an alternative method to the use of radioactive labels, which has long been the most common way of quantifying immunoreactions. In this article we report information about luminescent materials, which gave a good signal to quantify biological molecules by TR-FIA, DELFIA , DSLFIA, RIA and FRET. (author)

  10. Efficacy of a novel chelator BPCBG for removing uranium and protecting against uranium-induced renal cell damage in rats and HK-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Yizhong; Wang, Dan [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Li, Zhiming [Department of Chemistry, Fudan University, Shanghai 200433 (China); Hu, Yuxing; Xu, Aihong [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Wang, Quanrui [Department of Chemistry, Fudan University, Shanghai 200433 (China); Shao, Chunlin [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Chen, Honghong, E-mail: hhchen@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China)

    2013-05-15

    Chelation therapy is a known effective method to increase the excretion of U(VI) from the body. Until now, no any uranium chelator has been approved for emergency medical use worldwide. The present study aimed to evaluate the efficacy of new ligand BPCBG containing two catechol groups and two aminocarboxylic acid groups in decorporation of U(VI) and protection against acute U(VI) nephrotoxicity in rats, and further explored the detoxification mechanism of BPCBG for U(VI)-induced nephrotoxicity in HK-2 cells with comparison to DTPA-CaNa{sub 3}. Chelating agents were administered at various times before or after injections of U(VI) in rats. The U(VI) levels in urine, kidneys and femurs were measured 24 h after U(VI) injections. Histopathological changes in the kidney and serum urea and creatinine and urine protein were examined. After treatment of U(VI)-exposed HK-2 cells with chelating agent, the intracellular U(VI) contents, formation of micronuclei, lactate dehydrogenase (LDH) activity and production of reactive oxygen species (ROS) were assessed. It was found that prompt, advanced or delayed injections of BPCBG effectively increased 24 h-urinary U(VI) excretion and decreased the levels of U(VI) in kidney and bone. Meanwhile, BPCBG injection obviously reduced the severity of the U(VI)-induced histological alterations in the kidney, which was in parallel with the amelioration noted in serum indicators, urea and creatinine, and urine protein of U(VI) nephrotoxicity. In U(VI)-exposed HK-2 cells, immediate and delayed treatment with BPCBG significantly decreased the formation of micronuclei and LDH release by inhibiting the cellular U(VI) intake, promoting the intracellular U(VI) release and inhibiting the production of intracellular ROS. Our data suggest that BPCBG is a novel bi-functional U(VI) decorporation agent with a better efficacy than DTPA-CaNa{sub 3}. - Highlights: ► BPCBG accelerated the urine U(VI) excretion and reduced the tissues U(VI) in rats.

  11. Anatomical mercury speciation in bay scallops by thio-bearing chelating resin concentration and GC-electron capture detector determination.

    Science.gov (United States)

    Zhang, Qihua; Yang, Guipeng

    2014-01-01

    The highly toxic methyl-, ethyl- and phenylmercury species that may exist in the three main anatomical parts - the adductor muscle, the mantle and the visceral mass - of bay scallops (Argopecten irradias) were quantitatively released by cupric chloride, zinc acetate, sodium chloride and hydrochloric acid (HCl) under ultrasonic extraction. After centrifugation, the mercury species in the supernatant were concentrated by thio (SH)-bearing chelating resins, eluted with HClO4 and HCl and extracted with toluene. Separation was achieved by capillary GC equipped with programmed temperatures, a constant nitrogen flow and detected by a micro-electron capture detector (μECD). Under optimised conditions, the LODs for methyl-, ethyl- and phenylmercury in bay scallop samples were 1.1, 0.65 and 0.80 ng g(-1), respectively. The maximum RSD for three replicate determinations of methyl-, ethyl- and phenylmercury in bay scallop samples were 13.7%, 14.0% and 11.2%, respectively. In the concentration range of 4-200 ng g(-1) in bay scallop samples, the calibration graphs were linear with correlation coefficients not less than 0.997. Recoveries for spiked samples were in the range of 92.7-103.5% (methylmercury), 87.5-108.3% (ethylmercury) and 91.6-106.0% (phenylmercury), respectively. The method was verified by the determination of methylmercury in a CRM GBW10029 (Total Mercury and Methyl Mercury in Fish Tissue), with results in good agreement with the certified values. Methylmercury - the only existing species in bay scallops - was successfully determined by the method.

  12. A chelate-stabilized ruthenium(sigma-pyrrolato) complex: resolving ambiguities in nuclearity and coordination geometry through 1H PGSE and 31P solid-state NMR studies.

    Science.gov (United States)

    Foucault, Heather M; Bryce, David L; Fogg, Deryn E

    2006-12-11

    Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.

  13. Whole-Earth Decompression Dynamics

    OpenAIRE

    Herndon, J. Marvin

    2005-01-01

    The principles of Whole-Earth Decompression Dynamics are disclosed leading to a new way to interpret whole-Earth dynamics. Whole-Earth Decompression Dynamics incorporates elements of and unifies the two seemingly divergent dominant theories of continential displacement, plate tectonics theory and Earth expansion theory. Whole-Earth decompression is the consequence of Earth formation from within a Jupiter-like protoplanet with subsequent loss of gases and ices and concomitant rebounding. The i...

  14. Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons.

    Directory of Open Access Journals (Sweden)

    Pabla Aguirre

    Full Text Available Neuronal death in Parkinson's disease (PD is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.

  15. Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons.

    Science.gov (United States)

    Aguirre, Pabla; Mena, Natalia P; Carrasco, Carlos M; Muñoz, Yorka; Pérez-Henríquez, Patricio; Morales, Rodrigo A; Cassels, Bruce K; Méndez-Gálvez, Carolina; García-Beltrán, Olimpo; González-Billault, Christian; Núñez, Marco T

    2015-01-01

    Neuronal death in Parkinson's disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.

  16. Earth rotation and geodynamics

    Science.gov (United States)

    Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta

    2015-12-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.

  17. Earth science: Extraordinary world

    Science.gov (United States)

    Day, James M. D.

    2016-09-01

    The isotopic compositions of objects that formed early in the evolution of the Solar System have been found to be similar to Earth's composition -- overturning notions of our planet's chemical distinctiveness. See Letters p.394 & p.399

  18. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  19. Astronomy: Earth's seven sisters

    Science.gov (United States)

    Snellen, Ignas A. G.

    2017-02-01

    Seven small planets whose surfaces could harbour liquid water have been spotted around a nearby dwarf star. If such a configuration is common in planetary systems, our Galaxy could be teeming with Earth-like planets. See Letter p.456

  20. Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ July 20~31 Rare earth market still went downward, which was mainly led by sluggish demand for didymium products. Weak demand by domestic NdFeB market was attributed to continuous price falling of didymium mischmetal.

  1. Analyzing earth's surface data

    Science.gov (United States)

    Barr, D. J.; Elifrits, C. D.

    1979-01-01

    Manual discusses simple inexpensive image analysis technique used to interpret photographs and scanner of data of Earth's surface. Manual is designed for those who have no need for sophisticated computer-automated analysis procedures.

  2. Managing Planet Earth.

    Science.gov (United States)

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  3. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  4. Earth/Lands

    OpenAIRE

    2011-01-01

    Earth is an essentially original and misunderstood raw material with great potential, from the positive environmental and energy ratio, to its admirable capacity to integrate other materials such as stone, wood, brick, lime, vegetable fibres, etc., capable also of constituting the sole material for whole buildings in climactical and geographically extreme situations. Earth offers a great capacity to respond to the housing needs of millions of human beings, not only quantitative needs compa...

  5. Earth rotation and geodynamics

    OpenAIRE

    Bogusz Janusz; Brzezinski Aleksander; Kosek Wieslaw; Nastula Jolanta

    2015-01-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals wit...

  6. CaNa2EDTA chelation attenuates cell damage in workers exposed to lead--a pilot study.

    Science.gov (United States)

    Čabarkapa, A; Borozan, S; Živković, L; Stojanović, S; Milanović-Čabarkapa, M; Bajić, V; Spremo-Potparević, B

    2015-12-05

    Lead induced oxidative cellular damage and long-term persistence of associated adverse effects increases risk of late-onset diseases. CaNa2EDTA chelation is known to remove contaminating metals and to reduce free radical production. The objective was to investigate the impact of chelation therapy on modulation of lead induced cellular damage, restoration of altered enzyme activities and lipid homeostasis in peripheral blood of workers exposed to lead, by comparing the selected biomarkers obtained prior and after five-day CaNa2EDTA chelation intervention. The group of smelting factory workers diagnosed with lead intoxication and current lead exposure 5.8 ± 1.2 years were administered five-day CaNa2EDTA chelation. Elevated baseline activity of antioxidant enzymes Cu, Zn-SOD and CAT as well as depleted thiols and increased protein degradation products-carbonyl groups and nitrites, pointing to Pb induced oxidative damage, were restored toward normal values following the treatment. Lead showed inhibitor potency on both RBC AChE and BChE in exposed workers, and chelation re-established the activity of BChE, while RBC AChE remained unaffected. Also, genotoxic effect of lead detected in peripheral blood lymphocytes was significantly decreased after therapy, exhibiting 18.9% DNA damage reduction. Administration of chelation reversed the depressed activity of serum PON 1 and significantly decreased lipid peroxidation detected by the post-chelation reduction of MDA levels. Lactate dehydrogenase LDH1-5 isoenzymes levels showed evident but no significant trend of restoring toward normal control values following chelation. CaNa2EDTA chelation ameliorates the alterations linked with Pb mediated oxidative stress, indicating possible benefits in reducing health risks associated with increased oxidative damage in lead exposed populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Electrospray ionization collision-induced dissociation mass spectrometry: a tool to characterize synthetic polyaminocarboxylate ferric chelates used as fertilizers.

    Science.gov (United States)

    Orera, Irene; Orduna, Jesús; Abadía, Javier; Alvarez-Fernández, Ana

    2010-01-01

    Fertilizers based on synthetic polyaminocarboxylate ferric chelates have been known since the 1950s to be successful in supplying Fe to plants. In commercial Fe(III)-chelate fertilizers, a significant part of the water-soluble Fe-fraction consists of still uncharacterized Fe byproducts, whose agronomical value is unknown. Although collision-induced dissociation (CID) tandem mass spectrometry (MS/MS) is a valuable tool for the identification of such compounds, no fragmentation data have been reported for most Fe(III)-chelate fertilizers. The aim of this study was to characterize the CID-MS(2) fragmentation patterns of the major synthetic Fe(III)-chelates used as Fe-fertilizers, and subsequently use this technique for the characterization of commercial fertilizers. Quadrupole-time-of-flight (QTOF) and spherical ion trap mass analyzers equipped with an electrospray ionization (ESI) source were used. ESI-CID-MS(2) spectra obtained were richer when using the QTOF device. Specific differences were found among Fe(III)-chelate fragmentation patterns, even in the case of positional isomers. The analysis of a commercial Fe(III)-chelate fertilizer by high-performance liquid chromatography (HPLC) coupled to ESI-MS(QTOF) revealed two previously unknown, Fe-containing compounds, that were successfully identified by a comprehensive comparison of the ESI-CID-MS(2)(QTOF) spectra with those of pure chelates. This shows that HPLC/ESI-CID-MS(2)(QTOF), along with the Fe(III)-chelate fragmentation patterns, could be a highly valuable tool to directly characterize the water-soluble Fe fraction in Fe(III)-chelate fertilizers. This could be of great importance in issues related to crop Fe-fertilization, both from an agricultural and an environmental point of view.

  8. Toward other Earths

    Science.gov (United States)

    Hatzes, Artie P.

    2016-04-01

    How common are habitable Earth-like planets? This is a key question that drives much of current research in exoplanets. To date, we have discovered over one thousand exoplanets, mostly through the transit method. Among these are Earth-size planets, but these orbit very close to the star (semi-major axis approximately 0.01 Astronomical Units). Potentially rocky planets have also been discovered in a star's habitable zone, but these have approximately twice the radius of the Earth. These certainly do not qualify as Earth "twins". Several hundreds of multi-planet systems have also been discovered, but these are mostly ultra-compact systems with up to seven planets all with orbital distances less than that of Mercury in our solar system. The detection of a planetary system that is the direct analog of our solar system still eludes us. After an overview of the current status of exoplanet discoveries I will discuss the prospects and challenges of finding such Earth analogs from the ground and from future space missions like PLATO. After over two decades of searching, we may well be on the brink of finding other Earths.

  9. Environmental Problems on the Earth and Life Beyond the Earth

    Science.gov (United States)

    McKenney, Denise; Listiak, Tamara; Matthews, Ethel

    The adaptability and metabolic resourcefulness of microbial life was highlighted during a bioremediation study. The soil in need of remediation was contained in a pit located next to crude oil storage tanks where overflow oil and saltwater had been collecting for at least 30 years. The pit was located in West Texas in a semi-arid environment known for high summer temperatures and low rainfall. The lighter oil fractions had vaporized, leaving only the heave end hydrocarbons known as weathered crude. Analysis of the soil showed low nitrogen, low phosphorous, high salt, high iron levels and high chromium levels, as well as high concentrations of the heavy end hydrocarbons that inhibited water absorption. The extreme environment found in the pit presented biological problems for the organisms living there, and yet both bacterial and fungal species were isolated that could use the hydrocarbons for their energy needs. The ability of organisms on Earth to survive and thrive in such an environment illustrates both their use in solving pollution problems here on Earth, and also that extreme extraterrestrial environments could support life.

  10. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.

    Science.gov (United States)

    Robert, Anne; Liu, Yan; Nguyen, Michel; Meunier, Bernard

    2015-05-19

    With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that

  11. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions

    Science.gov (United States)

    Burke, Benjamin P.; Baghdadi, Neazar; Kownacka, Alicja E.; Nigam, Shubhanchi; Clemente, Gonçalo S.; Al-Yassiry, Mustafa M.; Domarkas, Juozas; Lorch, Mark; Pickles, Martin; Gibbs, Peter; Tripier, Raphaël; Cawthorne, Christopher; Archibald, Stephen J.

    2015-09-01

    The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no

  12. Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (Hydr)oxides.

    Science.gov (United States)

    Stewart, Brandy D; Girardot, Crystal; Spycher, Nicolas; Sani, Rajesh K; Peyton, Brent M

    2013-01-02

    Microbially mediated reduction of soluble U(VI) to U(IV) with subsequent precipitation of uraninite, UO(2(S)), has been proposed as a method for limiting uranium (U) migration. However, microbially reduced UO(2) may be susceptible to reoxidation by environmental factors, with Fe(III) (hydr)oxides playing a significant role. Little is known about the role that organic compounds such as Fe(III) chelators play in the stability of reduced U. Here, we investigate the impact of citrate, DFB, EDTA, and NTA on biogenic UO(2) reoxidation with ferrihydrite, goethite, and hematite. Experiments were conducted in anaerobic batch systems in PIPES buffer (10 mM, pH 7) with bicarbonate for approximately 80 days. Results showed EDTA accelerated UO(2) reoxidation the most at an initial rate of 9.5 μM day(-1) with ferrihydrite, 8.6 μM day(-1) with goethite, and 8.8 μM day(-1) with hematite. NTA accelerated UO(2) reoxidation with ferrihydrite at a rate of 4.8 μM day(-1); rates were less with goethite and hematite (0.66 and 0.71 μM day(-1), respectively). Citrate increased UO(2) reoxidation with ferrihydrite at a rate of 1.8 μM day(-1), but did not increase the extent of reaction with goethite or hematite, with no reoxidation in this case. In all cases, bicarbonate increased the rate and extent of UO(2) reoxidation with ferrihydrite in the presence and absence of chelators. The highest rate of UO(2) reoxidation occurred when the chelator promoted both UO(2) and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO(2) dissolution did not occur, UO(2) reoxidation likely proceeded through an aqueous Fe(III) intermediate with lower reoxidation rates observed. Reaction modeling suggests that strong Fe(II) chelators promote reoxidation whereas strong Fe(III) chelators impede it. These results indicate that chelators found in U contaminated sites may play a significant role in mobilizing U, potentially affecting bioremediation efforts.

  13. Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa.

    Science.gov (United States)

    Wilton, Mike; Wong, Megan J Q; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D; Lewenza, Shawn; Dong, Tao G

    2016-08-01

    Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg(2+) or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities.

  14. Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Saygi, Kadriye Ozlem; Tuzen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com; Elci, Latif [Pamukkale University, Faculty of Science and Arts, Chemistry Department, 20020 Denizli (Turkey)

    2008-05-30

    A solid phase extraction procedure has been established for chromium speciation in natural water samples prior to determination by atomic absorption spectrometry. The procedure is based on the solid phase extraction of the Cr(VI)- Dowex M 4195 chelating resin. After oxidation of Cr(III) to Cr(VI) by using H{sub 2}O{sub 2}, the presented method was applied to the determination of the total chromium. The level of Cr(III) is calculated by difference of total chromium and Cr(VI) levels. The procedure was optimized for some analytical parameters including pH, eluent type, flow rates of sample and eluent, matrix effects, etc. The presented method was applied for the speciation of chromium in natural water samples with satisfactory results (recoveries >95%, RSDs <10%). In the determinations of chromium species, flame atomic absorption spectrometer was used. The results were checked by using NIST SRM 2711 Montana soil and GBW 07603 Bush branched and leaves.

  15. Iron Deficiency-induced Increase of Root Branching Contributes to the Enhanced Root Ferric Chelate Reductase Activity

    Institute of Scientific and Technical Information of China (English)

    Chong-Wei Jin; Wei-Wei Chen; Zhi-Bin Meng; Shao-Jian Zheng

    2008-01-01

    In various plant species, Fe deficiency increases lateral root branching. However, whether this morphological alteration contributes to the Fe deficiency-induced physiological responses still remains to be demonstrated. In the present research, we demonstrated that the lateral root development of red clover (Trifolium pretense L.) was significantly enhanced by Fe deficient treatment, and the total lateral root number correlated well with the Fe deficiency-induced ferric chelate reductase (FCR) activity. By analyzing the results from Dasgan et al. (2002), we also found that although the two tomato genotypes line227/1 (P1) and Roza (P2) and their reciprocal F1 hybrid lines ("P1 × P2" and "P2 × P1 ") were cultured under two different lower Fe conditions (10-6 and 10-7 M FeEDDHA), their FCR activities are significantly correlated with the lateral root number. More interestingly, the -Fe chlorosis tolerant ability of these four tomato lines displays similar trends with the lateral root density. Taking these results together, it was proposed that the Fe deficiency-induced increases of the lateral root should play an important role in resistance to Fe deficiency, which may act as harnesses of a useful trait for the selection and breeding of more Fe-efficiant crops among the genotypes that have evolved a Fe deficiency-induced Fe uptake system.

  16. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection

    Science.gov (United States)

    Funao, Haruki; Nagai, Shigenori; Sasaki, Aya; Hoshikawa, Tomoyuki; Tsuji, Takashi; Okada, Yasunori; Koyasu, Shigeo; Toyama, Yoshiaki; Nakamura, Masaya; Aizawa, Mamoru; Matsumoto, Morio; Ishii, Ken

    2016-03-01

    Various silver-coated implants have been developed to prevent implant-associated infections, and have shown dramatic effects in vitro. However, the in vivo results have been inconsistent. Recent in vitro studies showed that silver exerts antibacterial activity by mediating the generation of reactive oxygen species in the presence of oxygen. To maintain its antibacterial activity in vivo, the silver should remain in an ionic state and be stably bound to the implant surface. Here, we developed a novel bacteria-resistant hydroxyapatite film in which ionic silver is immobilized via inositol hexaphosphate chelation using a low-heat immersion process. This bacteria-resistant coating demonstrated significant antibacterial activity both in vitro and in vivo. In a murine bioluminescent osteomyelitis model, no bacteria were detectable 21 days after inoculation with S. aureus and placement of this implant. Serum interleukin-6 was elevated in the acute phase in this model, but it was significantly lower in the ionic-silver group than the control group on day 2. Serum C-reactive protein remained significantly higher in the control group than the ionic-silver group on day 14. Because this coating is produced by a low-heat immersion process, it can be applied to complex structures of various materials, to provide significant protection against implant-associated infections.

  17. Predicting ESR Peaks in Copper (II Chelates Having Quadrupolar Coordinating Sites by NMR, ESR and NQR Techniques: A DFT Study

    Directory of Open Access Journals (Sweden)

    Harminder Singh

    2015-06-01

    Full Text Available Computational chemistry was helpful in predicting the number of ESR peaks in Cu (II complexes having a large number of spatially different NMR and ESR active nuclei. The presence of the large Jahn-Teller effect and the high value of spin-orbit coupling constant of the metal ion made the experimental determination of the exact number of ESR peaks quite difficult in such complexes. Fourteen distorted poly-dentate chelating Cu(II complexes included in this study were of two types such as [Cu(gly2] , [Cu(edta]4-,[Cu(tpyX2] (X= Cl, Br, I, NCS and [Cu(en2]2+, [Cu(teta]2+, Cu(tepa]2+ ,[Cu(peha]2+, [Cu(detaX2] (X= Cl, Br, I, NCS.The latter eight complexes belonged to an important class of ligands called polyethylene polyamines. Density functional theory implemented in ADF: 2010.02 was applied. Three parameters of both the ESR (A ten and NQR (NQCC, for the Cu(II and the coordinating atoms of the ligands were obtained from “ESR/EPR program” and two NMR parameters namely the shielding constants (σ and chemical shifts (δ were obtained from “NMR/EPR program” after optimization of the complexes. The species having the same values of these 5 parameters were expected to be spatially equivalent to undergo the same hyperfine interaction with Cu (II.

  18. In vitro antimicrobial activity of hydroxypyridinone hexadentate-based dendrimeric chelators alone and in combination with norfloxacin.

    Science.gov (United States)

    Zhou, Ying-Jun; Zhang, Ming-Xia; Hider, Robert C; Zhou, Tao

    2014-06-01

    The antimicrobial activity of one 3-hydroxypyridin-4-one (HPO) hexadentate (1) and three HPO hexadentate-based dendrimeric chelators (2-4) was evaluated. They were found to exhibit marked inhibitory effect on the growth of two Gram-positive bacteria and two Gram-negative bacteria. The combination treatment of dendrimeric chelator 2 with norfloxacin against Staphyloccocus aureus and Escherichia coli showed a dramatic synergistic bactericidal effect. As the dendrimeric chelator has a large molecular weight, its combination with norfloxacin may find application in the treatment of external infections. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Molecular catalysis of rare-earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Roesky, Peter W. (ed.) [Karlsruhe Institute of Technology (KIT) (Germany). Inst. of Inorganic Chemistry

    2010-07-01

    reviewed in detail. For example, the use of molecular rare-earth metal complexes as Lewis acidic catalysts is not discussed in this book. The first two chapters review different catalytic conversions, namely the catalytic {sigma}-bond metathesis (Chapter by Reznichenko and Hultzsch) and the polymerization of 1,3-conjugated dienes (Chapter by Zhang et al.). Within these chapters, different catalytic systems and applications are discussed. The final two chapters are more concentrated on recent developments of catalysts synthesis; but of course catalytic aspects are also mentioned. Therefore, these two chapters are focused on homogeneous catalysis using lanthanide amidinates and guanidinates (Chapter by Edelmann) and the synthesis of rare-earth metal post-metallocene catalysts with chelating amido ligands (Chapter by Li et al.). The organometallic lanthanide catalysts of the first generation, which are the metallocene catalysts of the general composition [({eta}{sup 5}-C{sub 5}Me{sub 5}){sub 2}LnR] (R = CH(SiMe{sub 3}){sub 2}, N(SiMe{sub 3}){sub 2}, H), are mentioned in the first two chapters, but are not covered in a separate synthetic contribution because a number of excellent reviews on this topic have been published over the recent years. In summary, the present volume of Structure and Bonding shows the substantial activity carried out in recent years in the field of synthesis of inorganic and organometallic rare-earth metal compounds and their use as catalysts for a number of different transformations. The future holds great promise for the rapid growth of this field of chemistry and for new spectacular results. (orig.)

  20. Lanthanide chelate complementation and hydrolysis enhanced luminescent chelate in real-time reverse transcription polymerase chain reaction assays for KLK3 transcripts.

    Science.gov (United States)

    Alinezhad, Saeid; Väänänen, Riina-Minna; Lehmusvuori, Ari; Karhunen, Ulla; Soukka, Tero; Kähkönen, Esa; Taimen, Pekka; Alanen, Kalle; Pettersson, Kim

    2014-01-01

    The requirement for high-performance reporter probes in real-time detection of polymerase chain reaction (PCR) has led to the use of time-resolved fluorometry of lanthanide chelates. The aim of this study was to investigate the applicability of the principle of lanthanide chelate complementation (LCC) in comparison with a method based on hydrolysis enhancement and quenching of intact probes. A real-time reverse transcription (RT) PCR assay for kallikrein-related peptidase 3 (KLK3, model analyte) was developed by using the LCC detection method. Both detection methods were tested with a standard series of purified PCR products, 20 prostatic tissues, 20 healthy and prostate cancer patient blood samples, and female blood samples spiked with LNCaP cells. The same limit of detection was obtained with both methods, and two cycles earlier detection with the LCC method was observed. KLK3 messenger RNA (mRNA) was detected in all tissue samples and in 1 of 20 blood samples identically with both methods. The background was 30 times lower, and the signal-to-background (S/B) ratio was 3 times higher, when compared with the reference method. Use of the new reporter method provided similar sensitivity and specificity as the reference method. The lower background, the improved S/B ratio, and the possibility of melting curve analysis and single nucleotide polymorphism (SNP) detection could be advantages for this new reporter probe.

  1. Determination of isotopic composition of dissolved copper in seawater by multi-collector inductively coupled plasma mass spectrometry after pre-concentration using an ethylenediaminetriacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Shotaro, E-mail: shotaro@inter3.kuicr.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Tanimizu, Masaharu [Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, 200 Monobe Otsu, Nankoku 783-8502 (Japan); Hirata, Takafumi [Laboratory for Planetary Sciences, Division of Earth and Planetary Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan); Sohrin, Yoshiki [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2013-06-19

    Graphical abstract: -- Highlights: •A simple analytical method for determining the Cu isotopic composition in seawater using an ethylenediaminetriacetic acid chelating resin was developed. •The accuracy was evaluated via addition of NIST SRM976 or {sup 65}Cu-enriched standard to seawater. •δ{sup 65}Cu of seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples from the northwestern Pacific Ocean were firstly determined. -- Abstract: Copper is an essential trace metal that shows a vertical recycled-scavenged profile in the ocean. To help elucidate the biogeochemical cycling of Cu in the present and past oceans, it is important to determine the distribution of Cu isotopes in seawater. However, precise isotopic analysis of Cu has been impaired by the low concentrations of Cu as well as co-existing elements that interfere with measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The objective of this study is to develop a simple Cu pre-concentration method using Nobias-chelate PA1 resin (Hitachi High Technologies). This extraction followed by anion exchange, allows precise analysis of the Cu isotopic composition in seawater. Using this method, Cu was quantitatively concentrated from seawater and >99.9999% of the alkali and alkaline earth metals were removed. The technique has a low procedural blank of 0.70 ng for Cu for a 2 L sample and the precision of the Cu isotopic analysis was ±0.07‰ (±2SD, n = 6). We applied this method to seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples obtained from the northwestern Pacific Ocean. The range of dissolved δ{sup 65}Cu was 0.40–0.68‰.

  2. Preparation of mixed rare earths modified chitosan for fluoride adsorption

    Institute of Scientific and Technical Information of China (English)

    梁鹏; 张艺; 汪东风; 徐莹; 罗斓

    2013-01-01

    This paper described the fluoride removal from water using a new adsorbent namely mixed rare earths modified chitosan (CR). Mixed rare earths mainly contained La followed by Ce which was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). La(III)-modified chitosan (CL) was also prepared as control. For the batch technique, the effects of various parameters such as contact time, pH, adsorbent dose, initial fluoride concentration and co-ions on fluoride adsorption were studied. Fourier trans-form infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to characterize adsorbents. It was observed that the fluo-ride adsorption capacity of CR (3.72 mgF-/g) was higher than CL (3.16 mgF-/g) at 2 h. The presence of co-ions such as bicarbonate and carbonate greatly affected the fluoride adsorption from water. Characterization experiments indicated the successful chelation between mixed rare earths and chitosan. The possible fluoride adsorption mechanism of CR was explained by a chemical reaction.

  3. Theoretical study, and infrared and Raman spectra of copper(II) chelated complex with dibenzoylmethane

    DEFF Research Database (Denmark)

    Nekoei, A.-R.; Vakili, M.; Hakimi-Tabar, M.

    2014-01-01

    There are some discrepancies in both the vibrational assignments and in the metal-ligand (M-L) bond strengths predicted in the previous studies on the copper (II) chelated complex of dibenzoylmethane, Cu(dbm)2. Also, there is a lack of theoretical structure, Raman spectrum and full vibrational...... assignment for Cu(dbm)2 in the literatures. Density functional theory (DFT) at the B3LYP level and also MP2 calculations using different basis sets, besides Natural Bond Orbital (NBO) and Atoms-in-Molecules (AIM) analyses, have been employed to investigate the effect of methyl substitution with the phenyl...... group on the stabilities of bis(acetylacetonate) copper (II), Cu(acac)2, and Cu(dbm)2 complexes and the electron delocalization in their chelated rings. Measured solid phase infrared and Raman bands for Cu(dbm)2 complex have been interpreted in terms of the calculated vibrational modes and detailed...

  4. Synthesis of Novel Chelating Adsorbents for Boron Uptake from Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    王丽那; 齐涛; 张懿

    2006-01-01

    Two kinds of novel chelating adsorbents have been synthesized to separate boron from aqueous solutions. One is the boron-specific chelating resin, synthesized by the functionalization of macroporous poly (glycidyl methacrylate-cotrimethylolpropane trimethacrylate), with N-methylglucamine. The other is the organic-inorganic hybrid mesoporous SBA-15 with polyol functional groups, prepared by a two-step post-grafting method. The resin can adsorb boron in almost all pH range, and its maximum uptake capacity reaches 1.15 mmol/g. The present study of the polyol-functionalized SBA-15 shows that the post-grafting is successful and the resulting adsorbent has the uptake capacity of 0.63 mmol/g.

  5. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama Meguroku, Tokyo, 152-8550 (Japan)

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  6. Synthesis and Characterization of α-HexadecyI-DOTA and its Gd(Ⅲ) Chelate

    Institute of Scientific and Technical Information of China (English)

    FENG,Zhi-Ming,(冯志明); LI,Feng(李峰); LEl,Chun-Hua(雷春华); CHEN,Ronga(陈蓉); LI,Xiao-Ru(李晓如)

    2004-01-01

    Synthesis and characterization of the ligand,10-(a-hexadecylcarboxymethyl)-1,4,7,10-tetraazacyclododecane1,4,7-triacetic acid (H4L),and its Gd(Ⅲ) chelate are described.Protonation constants for H4L ( lg KHi= 10.52,9.45,4.74,4.10) and the stability constant for GdL (lg KGdL- =24.50) were determined by potentiometric titrations.The results obtained show that the ligand still maintains the strong chelating properties of the parent DOTA (1,4,7,10-tetraazacyclododecane-N,N',N"N'"-tetraacetic acid) after introduction of a linear chain hexadecyl group at the acetic side chain of DOTA,and its basicity is not significantly altered.

  7. A review of pitfalls and progress in chelation treatment of metal poisonings

    DEFF Research Database (Denmark)

    Andersen, Ole; Aaseth, Jan

    2016-01-01

    Most acute and chronic human metal poisonings are due to oral or inhalation exposure. Almost 80% of published animal experiments on chelation in metal poisoning used single or repeated intraperitoneal, intramuscular or intravenous administration of metal and chelator, impeding extrapolation...... to clinical settings. Intramuscular administration of dimercaptopropanol (BAL) has until now been used in acute arsenic, lead, and mercury poisonings, but repeated BAL administration increased the brain uptake of As, Pb and Hg in experimental animals. Also, diethyl dithiocarbamate (DDC) has been used...... as antidote in acute experimental animal parenteral Cd poisoning, and both DDC and tetraethylthiuram disulfide (TTD, disulfiram, Antabuse) have been used in nickel allergic patients. However, even one dose of DDC given immediately after oral Cd or Ni increased their brain uptake considerably. The calcium salt...

  8. The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: A critical update.

    Science.gov (United States)

    Idée, Jean-Marc; Fretellier, Nathalie; Robic, Caroline; Corot, Claire

    2014-11-01

    Nephrogenic systemic fibrosis (NSF) is an iatrogenic scleroderma-like fibrosing systemic disorder occurring in patients with severe or end-stage renal disease. It was established as a new clinical entity in the year 2000. A causal role for gadolinium chelates (GC), widely used as contrast agents for magnetic resonance imaging, was suggested six years later. It rapidly appeared that the occurrence of NSF was associated with prior administration of GCs with lower thermodynamic stability, leading to warnings being published by health authorities and learned societies worldwide. Although a role for the chelated form of the less stable GCs has been proposed, the most commonly accepted hypothesis involves the gradual release of dissociated gadolinium in the body, leading to systemic fibrosis. However, the entire chain of events is still not fully understood in a causal way and many uncertainties remain.

  9. Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Chi; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw [Institute of Microelectronics and Department of Electrical Engineering, Advanced Optoelectronic Technology Center, National Cheng-Kung University, Tainan 701 Taiwan (China)

    2015-03-23

    Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect of Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.

  10. Facile synthesis of metal-chelating magnetic nanoparticles by exploiting organophosphorus coupling.

    Science.gov (United States)

    Yang, Kun; Su, Wei Wen

    2011-01-01

    A new method is described for facile synthesis of metal-chelating magnetic nanoparticles by simply mixing iron oxide nanoparticles with a bifunctional organophosphorus compound, N-(phosphonomethyl)iminodiacetic acid (PM-IDA), in aqueous solution. On charging with nickel ions, the PM-IDA functionalized iron oxide nanoparticles exhibited high His-tag protein binding capacity (0.21 and 0.58 mg/mg for His-tagged green fluorescent protein and chloramphenicol acetyltransferase, respectively) and were successfully used to purify these proteins from bacterial cell extracts to high purity in a single step. Although other synthetic schemes for metal-chelating magnetic nanoparticles have been reported, the method described here is markedly simpler and involves only low-cost reagents. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Novel enterobactin analogues as potential therapeutic chelating agents: Synthesis, thermodynamic and antioxidant studies

    Science.gov (United States)

    Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Liu, Qiangqiang; Lei, Shan; Peng, Rufang

    2016-09-01

    A series of novel hexadentate enterobactin analogues, which contain three catechol chelating moieties attached to different molecular scaffolds with flexible alkyl chain lengths, were prepared. The solution thermodynamic stabilities of the complexes with uranyl, ferric(III), and zinc(II) ions were then investigated. The hexadentate ligands demonstrate effective binding ability to uranyl ion, and the average uranyl affinities are two orders of magnitude higher than 2,3-dihydroxy-N1,N4-bis[(1,2-hydroxypyridinone-6-carboxamide)ethyl]terephthalamide [TMA(2Li-1,2-HOPO)2] ligand with similar denticity. The high affinity of hexadentate ligands could be due to the presence of the flexible scaffold, which favors the geometric agreement between the ligand and the uranyl coordination preference. The hexadentate ligands also exhibit higher antiradical efficiency than butylated hydroxyanisole (BHA). These results provide a basis for further studies on the potential applications of hexadentate ligands as therapeutic chelating agents.

  12. Design of intrahepatocyte copper(I) chelators as drug candidates for Wilson's disease.

    Science.gov (United States)

    Gateau, Christelle; Delangle, Pascale

    2014-05-01

    Wilson's disease is an autosomal recessive disease caused by mutations on the ATP7B gene found on chromosome 13. Since the corresponding ATPase is in charge of copper (Cu) distribution and excretion in the liver, its malfunctioning leads to Cu overload. This short review deals with treatments of this rare disease, which aim at decreasing Cu toxicity and are, therefore, based on chelation therapy. The drugs used since the 1950s are described first, then a novel approach developed in our laboratory is presented. Since the liver is the main organ of Cu distribution in the body, we targeted the pool of intracellular Cu in hepatocytes. This Cu pool is in the +1 oxidation state, and therefore soft sulfur ligands inspired from binding sites found in metallothioneins were developed. Their targeting to the hepatocytes by functionalization with ligands of the asialoglycoprotein receptor led to their cellular incorporation and intracellular Cu chelation.

  13. Investigating the role of metal chelation in HIV-1 integrase strand transfer inhibitors.

    Science.gov (United States)

    Bacchi, Alessia; Carcelli, Mauro; Compari, Carlotta; Fisicaro, Emilia; Pala, Nicolino; Rispoli, Gabriele; Rogolino, Dominga; Sanchez, Tino W; Sechi, Mario; Sinisi, Valentina; Neamati, Nouri

    2011-12-22

    HIV-1 integrase (IN) has been validated as an attractive target for the treatment of HIV/AIDS. Several studies have confirmed that the metal binding function is a crucial feature in many of the reported IN inhibitors. To provide new insights on the metal chelating mechanism of IN inhibitors, we prepared a series of metal complexes of two ligands (HL1 and HL2), designed as representative models of the clinically used compounds raltegravir and elvitegravir. Potentiometric measurements were conducted for HL2 in the presence of Mg(II), Mn(II), Co(II), and Zn(II) in order to delineate a metal speciation model. We also determined the X-ray structures of both of the ligands and of three representative metal complexes. Our results support the hypothesis that several selective strand transfer inhibitors preferentially chelate one cation in solution and that the metal complexes can interact with the active site of the enzyme.

  14. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    Science.gov (United States)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  15. Copper-chelating azides for efficient click conjugation reactions in complex media.

    Science.gov (United States)

    Bevilacqua, Valentina; King, Mathias; Chaumontet, Manon; Nothisen, Marc; Gabillet, Sandra; Buisson, David; Puente, Céline; Wagner, Alain; Taran, Frédéric

    2014-06-02

    The concept of chelation-assisted copper catalysis was employed for the development of new azides that display unprecedented reactivity in the copper(I)-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) reaction. Azides that bear strong copper-chelating moieties were synthesized; these functional groups allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. Efficient ligation occurred at low concentration and in complex media with only one equivalent of copper, which improves the biocompatibility of the CuAAC reaction. Furthermore, such a click reaction allowed the localization of a bioactive compound inside living cells by fluorescence measurements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Randomised controlled trials of iron chelators for the treatment of cardiac siderosis in thalassaemia major

    Directory of Open Access Journals (Sweden)

    Arun John Baksi

    2014-09-01

    Full Text Available In conditions requiring repeated blood transfusion or where iron metabolism is abnormal, heart failure may result from accumulation of iron in the heart (cardiac siderosis. Death due to heart failure from cardiac iron overload has accounted for considerable early mortality in β-thalassemia major. The ability to detect iron loading in the heart by cardiovascular magnetic resonance using T2* sequences has created an opportunity to intervene in the natural history of such conditions. However, effective and well tolerated therapy is required to remove iron from the heart. There are currently 3 approved commercially available iron chelators: deferoxamine, deferiprone and deferasirox. We review the high quality randomised controlled trials in this area for iron chelation therapy in the management of cardiac siderosis.

  17. Development and evaluation of the improved iron chelating agents EHPG, HBED and their dimethyl esters.

    Science.gov (United States)

    Hershko, C; Grady, R W; Link, G

    1984-01-01

    The phenolic EDTA analogues ethylenediamine-N,N'-bis-(2- hydroxyphenylglycine ) ( EHPG ), N,N'-bis(2-hydroxybenzyl)-ethylenediamine diacetic acid ( HBED ), and their respective dimethyl esters ( dimethylEHPG and dimethylHBED ) were studied in hypertransfused rats. Radioiron bound to these compounds was cleared mainly by the liver and excreted in the bile. After a single 40 mg i.m. injection, the percentage of radioiron removed from 59Fe-ferritin-labelled hepatocytes and excreted in the bile was 4% in untreated controls, 24% for desferral , 42% for dimethylEHPG , 58% for EHPG , 63% for HBED , and 80% for dimethylHBED . DimethylHBED combines oral effectiveness with superior chelating ability, selective hepatocellular action, and low apparent toxicity. It may represent a significant advance in the development of new iron chelating drugs.

  18. Recent advances in chelator design and labelling methodology for (68) Ga radiopharmaceuticals.

    Science.gov (United States)

    Burke, Benjamin P; Clemente, Gonçalo S; Archibald, Stephen J

    2014-04-01

    Gallium-68 has the potential to become the technetium-99m of positron emission tomography with ideal decay characteristics and a long-lived parent isotope for generator production. The work in the area of (68) Ga is focused on two key areas: (1) synthesis of a library of bifunctional chelators, which can be quickly radiolabelled to form kinetically inert complexes under mild conditions compatible with biomolecules and (2) development of radiosynthetic methodologies for clinical use and to facilitate radiolabelling of a wide range of chelators under mild conditions. Recent advances in these areas, with particular focus on the past 3 years, are covered herein. Copyright © 2014 John Wiley & Sons, Ltd.

  19. CONSERVATION METHODS OF ENDANGERED SPECIES GUNDU ...

    African Journals Online (AJOL)

    user

    conservation measure, an endangered species finally goes into extinction, that is, permanent disappearance from the earth ... plants or animal outside of its natural habitat either by removing ..... Northern States on the danger List.The. National ...

  20. Safety and Outcomes of Open-Label Deferasirox Iron Chelation Therapy for Mucormycosis▿

    OpenAIRE

    2009-01-01

    We sought to describe the safety profile of open-label, adjunctive deferasirox iron chelation therapy in eight patients with biopsy-proven mucormycosis. Deferasirox was administered for an average of 14 days (range, 7 to 21) at 5 to 20 mg/kg of body weight/day. The only adverse effects attributable to deferasirox were rashes in two patients. Deferasirox treatment was not associated with changes in renal or liver function, complete blood count, or transplant immunosuppressive levels. Thus, def...