WorldWideScience

Sample records for earth atmosphere

  1. Enforced Development Of The Earth's Atmosphere

    CERN Document Server

    Iudin, M

    2010-01-01

    We review some basic issues of the life-prescribed development of the Earth's system and the Earth's atmosphere and discourse the unity of Earth's type of life in physical and transcendental divisions. In physical division, we exemplify and substantiate the origin of atmospheric phenomena in the metabolic pathways acquired by the Earth's life forms. We are especially concerned with emergence of pro-life superficial environments under elaboration of the energy transformations. Analysis of the coupling phenomena of elaborated ozone-oxygen transformation and Arctic bromine explosion is provided. Sensing is a foundation of life and the Earth's life. We offer our explanation of human-like perception, reasoning and creativity. We suggest a number of propositions about association of transcendental and physical divisions and the purpose of existence. The study relates to the tradition of natural philosophy which it follows. The paper is suitable for the popular reading.

  2. Simulating super earth atmospheres in the laboratory

    Science.gov (United States)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  3. Homeostatic tendencies of the earth's atmosphere

    Science.gov (United States)

    Lovelock, J. E.; Margulis, L.

    1974-01-01

    The concept is developed that the atmosphere of the earth flows in a closed system controlled by and for the biosphere. The environmental factors delimiting the biosphere are examined. It is found that neither oxygen nor pressure per se limit the distribution of life as a whole. Rather the major physical variables determining the distribution of organisms are solar radiation, temperature, water abundance, and the concentrations of hydrogen and other ions and elements. An attempt is made to model temperature and atmospheric composition of a lifeless earth.

  4. Atmospheric nitrogen evolution on Earth and Venus

    Science.gov (United States)

    Wordsworth, R. D.

    2016-08-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0-3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to space oxidises the mantle, causing enhanced outgassing of nitrogen. This mechanism has implications for understanding the partitioning of other Venusian volatiles and atmospheric evolution on exoplanets.

  5. Atmospheric nitrogen evolution on Earth and Venus

    CERN Document Server

    Wordsworth, R D

    2016-01-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0 - 3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to s...

  6. Atmospheric neutrino oscillations for Earth tomography

    Science.gov (United States)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  7. Atmospheric Neutrino Oscillations for Earth Tomography

    CERN Document Server

    Winter, Walter

    2015-01-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can robustly measure the lower mantle density of the earth with a precision at the level of 4-5 percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  8. Atmospheric neutrino oscillations for Earth tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Walter, E-mail: walter.winter@desy.de

    2016-07-15

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  9. Atmospheric neutrino oscillations for earth tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Walter

    2016-04-05

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  10. Atmospheric tides in Earth-like planets

    CERN Document Server

    Auclair-Desrotour, Pierre; Mathis, Stéphane

    2016-01-01

    Atmospheric tides can strongly affect the rotational dynamics of planets. In the family of Earth-like planets, such as Venus, this physical mechanism coupled with solid tides makes the angular velocity evolve over long timescales and determines the equilibrium configurations of their spin. Contrary to the solid core, the atmosphere is submitted to both tidal gravitational potential and insolation flux coming from the star. The complex response of the gas is intrinsically linked to its physical properties. This dependence has to be characterized and quantified to study the large variety of extrasolar planetary systems. We develop a theoretical global model where radiative losses, which are predominant in slowly rotating atmospheres, are taken into account. We analytically compute the tidal perturbation of pressure, density, temperature and velocity field from which we deduce the expressions of atmospheric Love numbers and tidal torque exerted by the star. The dynamics of atmospheric tides depends on the freque...

  11. Life and the evolution of Earth's atmosphere.

    Science.gov (United States)

    Kasting, James F; Siefert, Janet L

    2002-05-10

    Harvesting light to produce energy and oxygen (photosynthesis) is the signature of all land plants. This ability was co-opted from a precocious and ancient form of life known as cyanobacteria. Today these bacteria, as well as microscopic algae, supply oxygen to the atmosphere and churn out fixed nitrogen in Earth's vast oceans. Microorganisms may also have played a major role in atmosphere evolution before the rise of oxygen. Under the more dim light of a young sun cooler than today's, certain groups of anaerobic bacteria may have been pumping out large amounts of methane, thereby keeping the early climate warm and inviting. The evolution of Earth's atmosphere is linked tightly to the evolution of its biota.

  12. Atmospheric influence of Earth's earliest sulfur cycle

    Science.gov (United States)

    Farquhar; Bao; Thiemens

    2000-08-01

    Mass-independent isotopic signatures for delta(33)S, delta(34)S, and delta(36)S from sulfide and sulfate in Precambrian rocks indicate that a change occurred in the sulfur cycle between 2090 and 2450 million years ago (Ma). Before 2450 Ma, the cycle was influenced by gas-phase atmospheric reactions. These atmospheric reactions also played a role in determining the oxidation state of sulfur, implying that atmospheric oxygen partial pressures were low and that the roles of oxidative weathering and of microbial oxidation and reduction of sulfur were minimal. Atmospheric fractionation processes should be considered in the use of sulfur isotopes to study the onset and consequences of microbial fractionation processes in Earth's early history.

  13. Atmospheric excitation of the Earth's rotation rate

    Science.gov (United States)

    Merriam, J. B.

    Modern techniques for the determination of the Earth's rotation rate: long-baseline interferometry, satellite laser ranging, and lunar laser ranging, now permit the orientation of the Earth to be determined with an accuracy of 5 cm, which corresponds to about 10-4 sec in Universal Time. This nearly order-of-magnitude improvement over what was available ten years ago makes it feasible to look at variations in the length-of-day on much shorter time-scales. At the same time, the requirements of operational weather forecasting have resulted in more detailed knowledge of the variations of the angular momentum of the atmosphere. The result has been a convincing demonstration over the last several years that virtually all of the random variations in the length-of-day, at periods between a few years and a day, are due to atmospheric variations. Geophysicists and meteorologists have both exploited this discovery. Removal of the atmospheric signal from the length-of-day, results in a data set in which other interesting phenomena of geophysical interest can be studied. Meteorologists have had some success in using the rotation data to deduce the angular momentum of the atmosphere at times in the past when sufficient global coverage was not available to do this directly. Outstanding problems are: the low frequency variations in atmospheric angular momentum, which the passage of time will correct, and the details of the mechanism by which angular momentum is exchanged with the mantle.

  14. [Photosynthesis and oxygenation of the earth's atmosphere].

    Science.gov (United States)

    Kuznetsov, A P; Vinogradov, M E; Lappo, S S

    2002-01-01

    Based on the contemporary data concerning photosynthesis as a global biogeochemical mechanism of solar energy utilization and organic matter and oxygen production, the formation of photosynthesis in the Proterozoic is considered, as well as its role in transformation of the pre-Proterozoic oceanic hydrosphere and the Earth's atmosphere from a reduced to an oxidized state. Photosynthesis is considered the longest stage of organic world evolution. The problem of production of "excessive" oxygen is considered, which entered and is entering the atmosphere through the oceanic hydrosphere and determines the process of its organization.

  15. Biological modulation of the earth's atmosphere

    Science.gov (United States)

    Margulis, L.; Lovelock, J. E.

    1974-01-01

    Review of the evidence that the earth's atmosphere is regulated by life on the surface so that the probability of growth of the entire biosphere is maximized. Acidity, gas composition including oxygen level, and ambient temperature are enormously important determinants for the distribution of life. The earth's atmosphere deviates greatly from that of the other terrestrial planets in particular with respect to acidity, composition, redox potential and temperature history as predicted from solar luminosity. These deviations from predicted steady state conditions have apparently persisted over millions of years. These anomalies may be evidence for a complex planet-wide homeostasis that is the product of natural selection. Possible homeostatic mechanisms that may be further investigated by both theoretical and experimental methods are suggested.

  16. Mars' atmosphere: Earth's sister and statistical twin

    Science.gov (United States)

    Chen, Wilbur; Lovejoy, Shaun; Muller, Jan-Peter

    2016-04-01

    Satellite-based Martian re-analyses have allowed unprecedented comparisons between our atmosphere and that of our sister planet, underlining various similarities and differences in their respective dynamics. Yet by focusing on large scale structures and deterministic mechanisms they have improved our understanding of the dynamics only over fairly narrow ranges of (near) planetary scales. However, the Reynolds numbers of the flows on both planets are larger than 1011 and dissipation only occurs at centimetric (Mars) or millimetric scales (Earth) so that over most of their scale ranges, the dynamics are fully turbulent. In this presentation, we therefore examine the high level, statistical, turbulent laws for the temperature, horizontal wind and surface pressure, finding that Earth and Mars have virtually identical statistical exponents: their statistics are very similar over wide ranges. Therefore, it would seem that with the exception of certain aspects of the largest scales (such as the role of dust in atmospheric heating on Mars, or of water in its various phases on Earth), that the nonlinear dynamics are very similar. We argue that this is a prediction of the classical laws of turbulence when extended to planetary scales, and that it supports our use of turbulent laws on both planetary atmospheres.

  17. Atmospheric tides in Earth-like planets

    Science.gov (United States)

    Auclair-Desrotour, P.; Laskar, J.; Mathis, S.

    2017-07-01

    Context. Atmospheric tides can strongly affect the rotational dynamics of planets. In the family of Earth-like planets, which includes Venus, this physical mechanism coupled with solid tides makes the angular velocity evolve over long timescales and determines the equilibrium configurations of their spin. Aims: Unlike the solid core, the atmosphere of a planet is subject to both tidal gravitational potential and insolation flux coming from the star. The complex response of the gas is intrinsically linked to its physical properties. This dependence has to be characterized and quantified for application to the wide variety of extrasolar planetary systems. Methods: We develop a theoretical global model where radiative losses, which are predominant in slowly rotating atmospheres, are taken into account. We analytically compute the perturbation of pressure, density, temperature, and velocity field caused by a thermogravitational tidal perturbation. From these quantities, we deduce the expressions of atmospheric Love numbers and tidal torque exerted on the fluid shell by the star. The equations are written for the general case of a thick envelope and the simplified one of a thin isothermal atmosphere. Results: The dynamics of atmospheric tides depends on the frequency regime of the tidal perturbation: the thermal regime near synchronization and the dynamical regime characterizing fast-rotating planets. Gravitational and thermal perturbations imply different responses of the fluid, i.e. gravitational tides and thermal tides, which are clearly identified. The dependence of the torque on the tidal frequency is quantified using the analytic expressions of the model for Earth-like and Venus-like exoplanets and is in good agreement with the results given by global climate models (GCM) simulations.Introducing dissipative processes such as radiation regularizes the tidal response of the atmosphere, otherwise it is singular at synchronization. Conclusions: We demonstrate the

  18. First Super-Earth Atmosphere Analysed

    Science.gov (United States)

    2010-12-01

    The atmosphere around a super-Earth exoplanet has been analysed for the first time by an international team of astronomers using ESO's Very Large Telescope. The planet, which is known as GJ 1214b, was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere. We now know that the atmosphere is either mostly water in the form of steam or is dominated by thick clouds or hazes. The results will appear in the 2 December 2010 issue of the journal Nature. The planet GJ 1214b was confirmed in 2009 using the HARPS instrument on ESO's 3.6-metre telescope in Chile (eso0950) [1]. Initial findings suggested that this planet had an atmosphere, which has now been confirmed and studied in detail by an international team of astronomers, led by Jacob Bean (Harvard-Smithsonian Center for Astrophysics), using the FORS instrument on ESO's Very Large Telescope. "This is the first super-Earth to have its atmosphere analysed. We've reached a real milestone on the road toward characterising these worlds," said Bean. GJ 1214b has a radius of about 2.6 times that of the Earth and is about 6.5 times as massive, putting it squarely into the class of exoplanets known as super-Earths. Its host star lies about 40 light-years from Earth in the constellation of Ophiuchus (the Serpent Bearer). It is a faint star [2], but it is also small, which means that the size of the planet is large compared to the stellar disc, making it relatively easy to study [3]. The planet travels across the disc of its parent star once every 38 hours as it orbits at a distance of only two million kilometres: about seventy times closer than the Earth orbits the Sun. To study the atmosphere, the team observed the light coming from the star as the planet passed in front of it [4]. During these transits, some of the starlight passes through the planet's atmosphere and, depending on the chemical composition and weather on the planet, specific wavelengths of light are

  19. Solar Neutron Transport in the Earth's Atmosphere

    Science.gov (United States)

    Valdes-Galicia, J. F.; Dorman, L. I.; Dorman, I. V.

    1998-11-01

    We present results of a numerical simulation and analytical solution of small scale neutron multi-scattering and attenuation in the earth atmosphere. A range of initial zenith angles and different atmpspheric depths are considered. We show that the angular distribution of neutrons remains symetrycal only for vertical arrival. For inclined arrival the distribution becomes asymetrical; the asymmetry grows with increasing zenith angle. This effect is caused by the stronger attenuation of neutrons scattered to zenith angles larger than the arrival angle. Our analytical solution shows reasonable coincidence with the numerical simulation results. These solutions are able to reproduce the normalised observed counting rates of neutron monitors for the event of 24 may 1990, the largest Solar Neutron event observed on Earth.

  20. Potential Biosignatures in Super-Earth Atmospheres

    CERN Document Server

    Rauer, H; Paris, P v; Cabrera, J; Godolt, M; Grenfell, J L; Belu, A; Selsis, F; Hedelt, P; Schreier, F

    2011-01-01

    Atmospheric temperature and mixing ratio profiles of terrestrial planets vary with the spectral energy flux distribution for different types of M-dwarf stars and the planetary gravity. We investigate the resulting effects on the spectral appearance of molecular absorption bands, that are relevant as indicators for potential planetary habitability during primary and secondary eclipse for transiting terrestrial planets with Earth-like biomass emissions. Atmospheric profiles are computed using a plane-parallel, 1D climate model coupled with a chemistry model. We then calculate simulated spectra using a line-by-line radiative transfer model. We find that emission spectra during secondary eclipse show increasing absorption of methane, water and ozone for planets orbiting quiet M0-M3 dwarfs and the active M-type star AD Leo compared to solar type central stars. However, for planets orbiting very cool and quiet M dwarfs (M4 to M7), increasing temperatures in the mid-atmosphere lead to reduced absorption signals, mak...

  1. Atmosphere-earth angular momentum exchange and ENSO cycle

    Institute of Scientific and Technical Information of China (English)

    钱维宏; 丑纪范

    1996-01-01

    The time series of the earth’s rotation rate, eastern equatorial Pacific sea surface temperature (Tss), sea level pressure (Psl) and atmospheric angular momentum (Maa) during 1976 -1989 are used to study the relation between atmosphere-earth angular momentum exchange and ENSO cycle. The result shows that (i) there are synergetic relationships among the variations of solid earth’s rotation, eastern equatorial Pacific T,, Psl, different latitude zonal Maa and global Maa; (ii) local atmosphere-ocean interaction over low-latitude area can form ENSO-like cycle through Hadley circulation; (iii) the solid earth and global atmosphere-ocean interaction can form some aperiodic behavior and asynchronous oscillations by mountain torque and earth spin anomalous friction torque acting on each component of solid earth-ocean-atmosphere system; and (iv) actual ENSO cycle is a phenomenon reflecting in Pacific basin through interaction among solid earth, global ocean and the atmosphere.

  2. Global Change in Earth's Atmosphere: Natural and Anthropogenic Factors

    Science.gov (United States)

    Lean, J.

    2013-12-01

    To what extent is human activity, such as the emission of carbon dioxide and other 'greenhouse' gases, influencing Earth's atmosphere, compared with natural variations driven by, for example, the Sun or volcanoes? Why has Earth's surface warmed barely, if at all, in the last decade? Why is the atmosphere at just 20 km above the surface cooling instead of warming? When - and will - the ozone layer recover from its two-decade decline due to chlorofluorocarbon depletion? Natural and anthropogenic factors are changing Earth's atmosphere, each with distinct temporal, geographical and altitudinal signatures. Increasing greenhouse gases, for example, warm the surface but cool the stratosphere and upper atmosphere. Aerosols injected into the stratosphere during a volcanic eruption warm the stratosphere but cool the surface. Increases in the Sun's brightness warm Earth's atmosphere, throughout. This talk will quantify and compare a variety of natural and human influences on the Earth's atmosphere, extracted statistically from multiple datasets with the goal of understanding how and why Earth's atmosphere is changing. The extent to which responses to natural influences are presently masking or exacerbating ongoing responses to human activity is examined. Scenarios for future levels of anthropogenic gases and solar activity are then used to speculate how Earth's atmosphere might evolve in future decades, according to both statistical models of the databases and physical general circulation models.

  3. Movement of earth rotation and activities of atmosphere and ocean

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The rotation of the earth, including the variation of the rotational rate and polar motion, represents the statement of the earth's overall movement and interactions among the solid earth, atmosphere and ocean on a variety of space-time scales. They make the earth's complex dynamical system under the conservation of angular momentum. The application and development of recent space geodetic tech-niques greatly promote the researches on the interactions between the earth rotation and the activities of atmosphere and ocean. This review will mainly report the progress in researches on the earth rotation and the activities of atmos-phere and ocean as well as the air-sea interaction in the tropics, and prospect the direction for future theoretical investigations.

  4. Atmospheres and evolution. [of microbial life on earth

    Science.gov (United States)

    Margulis, L.; Lovelock, J. E.

    1981-01-01

    Studies concerning the regulation of the earth atmosphere and the relation of atmospheric changes to the evolution of microbial life are reviewed. The improbable nature of the composition of the earth atmosphere in light of the atmospheric compositions of Mars and Venus and equilibrium considerations is pointed out, and evidence for the existence of microbial (procaryotic) life on earth as far back as 3.5 billion years ago is presented. The emergence of eucaryotic life in the Phanerozoic due to evolving symbioses between different procaryotic species is discussed with examples given of present-day symbiotic relationships between bacteria and eucaryotes. The idea that atmospheric gases are kept in balance mainly by the actions of bacterial cells is then considered, and it is argued that species diversity is necessary for the maintenance and origin of life on earth in its present form.

  5. Internal wave coupling processes in Earth's atmosphere

    CERN Document Server

    Yiğit, Erdal

    2014-01-01

    This paper presents a contemporary review of vertical coupling in the atmosphere and ionosphere system induced by internal waves of lower atmospheric origin. Atmospheric waves are primarily generated by meteorological processes, possess a broad range of spatial and temporal scales, and can propagate to the upper atmosphere. A brief summary of internal wave theory is given, focusing on gravity waves, solar tides, planetary Rossby and Kelvin waves. Observations of wave signatures in the upper atmosphere, their relationship with the direct propagation of waves into the upper atmosphere, dynamical and thermal impacts as well as concepts, approaches, and numerical modeling techniques are outlined. Recent progress in studies of sudden stratospheric warming and upper atmospheric variability are discussed in the context of wave-induced vertical coupling between the lower and upper atmosphere.

  6. Atmospheric dynamics of Earth-like tidally locked aquaplanets

    CERN Document Server

    Merlis, Timothy M

    2010-01-01

    We present simulations of atmospheres of Earth-like aquaplanets that are tidally locked to their star, that is, planets whose orbital period is equal to the rotation period about their spin axis, so that one side always faces the star and the other side is always dark. As extreme cases illustrating the effects of slow and rapid rotation, we consider planets with rotation periods equal to one current Earth year and one current Earth day. The dynamics responsible for the surface climate (e.g., winds, temperature, precipitation) and the general circulation of the atmosphere are discussed in light of existing theories of atmospheric circulations. For example, as expected from the increasing importance of Coriolis accelerations relative to inertial accelerations as the rotation rate increases, the winds are approximately isotropic and divergent at leading order in the slowly rotating atmosphere but are predominantly zonal and rotational in the rapidly rotating atmosphere. Free-atmospheric horizontal temperature va...

  7. Spectroscopy of the earth's atmosphere and interstellar medium

    CERN Document Server

    Rao, KN

    1992-01-01

    Spectroscopy of the Earth's Atmosphere and Interstellar Medium focuses on the characteristics of the electromagnetic spectrum of the Earth's atmosphere in the far-infrared and microwave regions. It discusses the modes of observation in field measurements and reviews the two techniques used in the spectral region. Organized into six chapters, this volume begins with an overview of the effect of water-vapor absorption, followed by a discussion on the two frequently used method for deriving atmospheric parameters from high-resolution infrared atmospheric spectra, namely, the equivalent width

  8. Crossing the Boundaries in Planetary Atmospheres - From Earth to Exoplanets

    Science.gov (United States)

    Simon-Miller, Amy A.; Genio, Anthony Del

    2013-01-01

    The past decade has been an especially exciting time to study atmospheres, with a renaissance in fundamental studies of Earths general circulation and hydrological cycle, stimulated by questions about past climates and the urgency of projecting the future impacts of humankinds activities. Long-term spacecraft and Earth-based observation of solar system planets have now reinvigorated the study of comparative planetary climatology. The explosion in discoveries of planets outside our solar system has made atmospheric science integral to understanding the diversity of our solar system and the potential habitability of planets outside it. Thus, the AGU Chapman Conference Crossing the Boundaries in Planetary Atmospheres From Earth to Exoplanets, held in Annapolis, MD from June 24-27, 2013 gathered Earth, solar system, and exoplanet scientists to share experiences, insights, and challenges from their individual disciplines, and discuss areas in which thinking broadly might enhance our fundamental understanding of how atmospheres work.

  9. Geomagnetism solid Earth and upper atmosphere perspectives

    CERN Document Server

    Basavaiah, Nathani

    2011-01-01

    This volume elaborates several important aspects of solid Earth geomagnetism. It covers all the basics of the subject, including biomagnetism and instrumentation, and offers a number of practical applications with carefully selected examples and illustrations.

  10. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07)

    Science.gov (United States)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    GRAM is a Fortran software package that can run on a variety of platforms including PC's. GRAM provides values of atmospheric quantities such as temperature, pressure, density, winds, constituents, etc. GRAM99 covers all global locations, all months, and heights from the surface to approx. 1000 km). Dispersions (perturbations) of these parameters are also provided and are spatially and temporally correlated. GRAM can be run in a stand-alone mode or called as a subroutine from a trajectory program. GRAM07 is diagnostic, not prognostic (i.e., it describes the atmosphere, but it does not forecast). The source code is distributed free-of-charge to eligible recipients.

  11. The rise of oxygen in Earth's early ocean and atmosphere

    Science.gov (United States)

    Lyons, Timothy W.; Reinhard, Christopher T.; Planavsky, Noah J.

    2014-02-01

    The rapid increase of carbon dioxide concentration in Earth's modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth's history.

  12. Earth Observation for Land-Atmosphere Interaction Science

    Science.gov (United States)

    Marconcini, M.; Fernandez-Prieto, D.; Reissell, A.; Ellis, M.; Blyth, E. M.; Burrows, J. P.; de Leeuw, G.; Gerard, F. F.; Houweling, S.; Kaminski, T.; Krol, M.; Muller, J.-P.; North, P. R. J.; Palmer, P.; Pinty, B.; Plummer, S.; Quegan, S.; Reichstein, M.; Remedios, J. J.; Roberts, G. J.; Shvidenko, A.; Scipal, K.; Sobrino, J. A.; Teuling, A. J.; van der Werf, G. R.

    2011-01-01

    The European Space Agency (ESA), iLEAPS (Integrated Land Ecosystem-Atmosphere Processes Study, i.e. the land-atmosphere core project of the International Geosphere-Biosphere Programme), and the European Geosciences Union (EGU) jointly organized the “Earth Observation for Land-Atmosphere Interaction Science” conference, which took place from 3rd to 5th November 2010 at the Italian premises of ESA in Frascati (Rome). The event represented an attempt to effectively draw together Earth-Observation (EO) and Earth-system scientists investigating land-atmosphere processes in order to better understand the current gaps in science and derive recommendations to advance in the use of EO technology in the context of this important topic. Around 200 people from more than 30 countries world- wide met and discussed for three intensive days. This paper reports key points and the main recommendations of the conference for each of the key themes addressed.

  13. Atmospheric dynamics of Earth-like tidally locked aquaplanets

    Directory of Open Access Journals (Sweden)

    Tapio Schneider

    2010-12-01

    Full Text Available We present simulations of atmospheres of Earth-like aquaplanets that are tidally locked to their star, that is, planets whose orbital period is equal to the rotation period about their spin axis, so that one side always faces the star and the other side is always dark. Such simulations are of interest in the study of tidally locked terrestrial exoplanets and as illustrations of how planetary rotation and the insolation distribution shape climate. As extreme cases illustrating the effects of slow and rapid rotation, we consider planets with rotation periods equal to one current Earth year and one current Earth day. The dynamics responsible for the surface climate (e.g., winds, temperature, precipitation and the general circulation of the atmosphere are discussed in light of existing theories of atmospheric circulations. For example, as expected from the increasing importance of Coriolis accelerations relative to inertial accelerations as the rotation rate increases, the winds are approximately isotropic and divergent at leading order in the slowly rotating atmosphere but are predominantly zonal and rotational in the rapidly rotating atmosphere. Free-atmospheric horizontal temperature variations in the slowly rotating atmosphere are generally weaker than in the rapidly rotating atmosphere. Interestingly, the surface temperature on the night side of the planets does not fall below ~240 K in either the rapidly or slowly rotating atmosphere; that is, heat transport from the day side to the night side of the planets efficiently reduces temperature contrasts in either case. Rotational waves and eddies shape the distribution of winds, temperature, and precipitation in the rapidly rotating atmosphere; in the slowly rotating atmosphere, these distributions are controlled by simpler divergent circulations. Both the slowly and rapidly rotating atmospheres exhibit equatorial superrotation. Systematic variation of the planetary rotation rate shows that the

  14. Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    CERN Document Server

    Mbarek, Rostom

    2016-01-01

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres (Kreidberg et al. 2014). Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley (2010). The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both subsolar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temper...

  15. Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    Science.gov (United States)

    Mbarek, Rostom; Kempton, Eliza M.-R.

    2016-08-01

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K2SO4 and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.

  16. Energy and angular distributions of atmospheric muons at the Earth

    CERN Document Server

    Shukla, Prashant

    2016-01-01

    A fair knowledge of the atmospheric muon distributions at Earth is a prerequisite for the simulations of cosmic ray setups and rare event search detectors. A modified power law is proposed for atmospheric muon energy distribution which gives good description of the cosmic muon data in low as well as high energy regime. Using this distribution, analytical forms for zenith angle ($\\theta$) distribution are obtained. Assuming a flat Earth, it leads to the $\\cos^{n-1}\\theta$ form where it is shown that the parameter $n$ is nothing but the power of the energy distribution. A new analytical form for zenith angle distribution is obtained without assuming a flat Earth which gives an improved description of the data at all angles even above $70^o$. These distributions are tested with the available atmospheric muon data of energy and angular distributions. The parameters of these distributions can be used to characterize the cosmic muon data as a function of energy, angle and altitude.

  17. Meteoroids Interaction With The Earth Atmosphere

    Directory of Open Access Journals (Sweden)

    Turchak Leonid I.

    2014-12-01

    Full Text Available In this study we evaluate meteoroid mass and its other properties based on the observed atmospheric trajectory. With account for aerodynamics, we formulate a problem by introducing key dimensionless parameters in the model, responsible for the drag, mass loss and rotation of meteoroid. The proposed model is suitable to categorize various impact events in terms of meteor survivability and impact damage and thus, to analyze consequences that accompany collisions of cosmic bodies with planetary atmosphere and surface. The different types of events, namely, formation of a massive single crater (Barringer, Lonar Lake, dispersion of craters and meteorites over a large area (Sikhote-Alin, absent of craters and meteorites, but huge damage (Tunguska are considered as illustrative examples. The proposed approach helps to summarize the data on existing terrestrial impacts and to formulate recommendations for further studies valuable for planetary defence. It also significantly increases chances of successful meteorite recoveries in future. In other words, the study represents a ’cheap’ possibility to probe cosmic matter reaching planetary surface and it complements results of sample-return missions bringing back pristine samples of the materials.

  18. Meteoroids Interaction With The Earth Atmosphere

    Science.gov (United States)

    Turchak, Leonid I.; Gritsevich, Maria I.

    2014-12-01

    In this study we evaluate meteoroid mass and its other properties based on the observed atmospheric trajectory. With account for aerodynamics, we formulate a problem by introducing key dimensionless parameters in the model, responsible for the drag, mass loss and rotation of meteoroid. The proposed model is suitable to categorize various impact events in terms of meteor survivability and impact damage and thus, to analyze consequences that accompany collisions of cosmic bodies with planetary atmosphere and surface. The different types of events, namely, formation of a massive single crater (Barringer, Lonar Lake), dispersion of craters and meteorites over a large area (Sikhote-Alin), absent of craters and meteorites, but huge damage (Tunguska) are considered as illustrative examples. The proposed approach helps to summarize the data on existing terrestrial impacts and to formulate recommendations for further studies valuable for planetary defence. It also significantly increases chances of successful meteorite recoveries in future. In other words, the study represents a 'cheap' possibility to probe cosmic matter reaching planetary surface and it complements results of sample-return missions bringing back pristine samples of the materials.

  19. Multi-Wavelength Spectroscopy of Super-Earth Atmospheres

    Science.gov (United States)

    Dragomir, Diana; Benneke, Björn; Crossfield, Ian; Lothringer, Joshua; Knutson, Heather

    2017-01-01

    The Kepler mission has revealed that super-Earths (planets with radii between 1 and 4 R_Earth) are the most common class of planets in the Galaxy, though none are known in our own Solar System. These planets can theoretically have a wide range of compositions which we are just beginning to explore observationally. While studies based on Kepler data have revolutionized many areas of exoplanet research, the relative faintness of most of the host stars in the Kepler field means that atmospheric characterization of these super-Earths with currently available instruments is extremely challenging. However, a handful of transiting super-Earths are within reach of existing facilities. We have pointed both the HST and Spitzer toward these systems in an effort to paint a thorough picture of their atmospheres. Our transmission spectroscopy observations explore the transition region between terrestrial planets and miniature gas giants, and contribute to distinguishing between low-density hydrogen-dominated atmospheres and compact high-metallicity atmospheres. Transmission spectroscopy over a wide wavelength range is also essential to understanding the properties and effects of clouds in these atmospheres. The results of this program will inform the direction to be taken by future multi-wavelength studies of these worlds, in particular those enabled when the HST joins forces with the upcoming JWST.

  20. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    Science.gov (United States)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  1. Ranges of Atmospheric Mass and Composition of Super Earth Exoplanets

    CERN Document Server

    Elkins-Tanton, L

    2008-01-01

    Terrestrial-like exoplanets may obtain atmospheres from three primary sources: Capture of nebular gases, degassing during accretion, and degassing from subsequent tectonic activity. Here we model degassing during accretion to estimate the range of atmospheric mass and composition on exoplanets ranging from 1 to 30 Earth masses. We use bulk compositions drawn from primitive and differentiated meteorite compositions. Degassing alone can create a wide range of masses of planetary atmospheres, ranging from less than a percent of the planet's total mass up to ~6 mass% of hydrogen, ~20 mass% of water, and/or ~5 mass% of carbon compounds. Hydrogen-rich atmospheres can be outgassed as a result of oxidizing metallic iron with water, and excess water and carbon can produce atmospheres through simple degassing. As a byproduct of our atmospheric outgassing models we find that modest initial water contents (10 mass% of the planet and above) create planets with deep surface liquid water oceans soon after accretion is compl...

  2. GCM simulations of cold dry Snowball Earth atmospheres

    Science.gov (United States)

    Voigt, A.; Held, I.; Marotzke, J.

    2009-12-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We

  3. Some results regarding the comparison of the Earth's atmospheric models

    Directory of Open Access Journals (Sweden)

    Šegan S.

    2005-01-01

    Full Text Available In this paper we examine air densities derived from our realization of aeronomic atmosphere models based on accelerometer measurements from satellites in a low Earth's orbit (LEO. Using the adapted algorithms we derive comparison parameters. The first results concerning the adjustment of the aeronomic models to the total-density model are given.

  4. Aspects of the atmospheric surface layers on Mars and Earth

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Landberg, L.

    2002-01-01

    The structures of mean flow and turbulence in the atmospheric surface boundary layer have been extensively studied on Earth, and to a far less extent on Mars, where only the Viking missions and the Pathfinder mission have delivered in-situ data. Largely the behaviour of surface-layer turbulence a...

  5. Earth's mysterious atmosphere. ATLAS 1: Teachers guide with activities

    Science.gov (United States)

    1991-11-01

    One of our mission's primary goals is to better understand the physics and chemistry of our atmosphere, the thin envelope of air that provides for human life and shields us from the harshness of space. The Space Shuttle Atlantis will carry the ATLAS 1 science instruments 296 km above Earth, so that they can look down into and through the various layers of the atmosphere. Five solar radiometers will precisely measure the amount of energy the Sun injects into Earth's environment. The chemistry at different altitudes will be measured very accurately by five other instruments called spectrometers. Much of our time in the cockpit of Atlantis will be devoted to two very exciting instruments that measure the auroras and the atmosphere's electrical characteristics. Finally, our ultraviolet telescope will probe the secrets of fascinating celestial objects. This Teacher's Guide is designed as a detective story to help you appreciate some of the many questions currently studied by scientists around the world. Many complex factors affect our atmosphere today, possibly even changing the course of global climate. All of us who live on Earth must recognize that we play an ever-growing role in causing some of these changes. We must solve this great atmospheric mystery if we are to understand all these changes and know what to do about them.

  6. New Ion-Nucleation Mechanism Relevant for the Earth's Atmosphere

    DEFF Research Database (Denmark)

    Marsh, N.D.; Svensmark, Henrik; Pedersen, Jens Olaf Pepke

    stages of particle coagulation and condensation have been performed and compared with the experimental results. The simulations indicate that a stable distribution of sub 3nm particles exists that cannot be detected using standard techniques for measuring atmospheric aerosol, and that the nucleation rate......Experimental studies of ultra-fine aerosol nucleation in clean atmospheric air, containing trace amounts of ozone, sulphur dioxide, and water vapour suggest that the production rate of critical clusters is sensitive to ionisation. To assess this sensitivity numerical simulations of the initial...... particles with the potential to influence the transparency of Earth's atmosphere. This is consistent with a number of recent studies indicating that variations in the density of cosmic rays arriving at Earth have affected climate over a wide range of time scales....

  7. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    Science.gov (United States)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  8. Vaporization of the Earth: Application to Exoplanet Atmospheres

    CERN Document Server

    Schaefer, Laura; Fegley, Bruce; Jr,

    2011-01-01

    Currently, there are about 3 dozen known super-Earth (M < 10 MEarth), of which 8 are transiting planets suitable for atmospheric follow-up observations. Some of the planets are exposed to extreme temperatures as they orbit close to their host stars, e.g., CoRot-7b, and all of these planets have equilibrium temperatures significantly hotter than the Earth. Such planets can develop atmospheres through (partial) vaporization of their crustal and/or mantle silicates. We investigated the chemical equilibrium composition of such heated systems from 500 - 4000 K and total pressures from 10-6 to 10+2 bars. The major gases are H2O and CO2 over broad temperature and pressure ranges, and Na, K, O2, SiO, and O at high temperatures and low pressures. We discuss the differences in atmospheric composition arising from vaporization of SiO2-rich (i.e., felsic) silicates (like Earth's continental crust) and MgO-, FeO-rich (i.e., mafic) silicates like the bulk silicate Earth. The computational results will be useful in plann...

  9. Tidal heating of young super-Earth atmospheres

    Science.gov (United States)

    Ginzburg, Sivan; Sari, Re'em

    2017-02-01

    Short-period Earth to Neptune-sized exoplanets (super-Earths) with voluminous gas envelopes seem to be very common. These gas atmospheres are thought to have originated from the protoplanetary disc in which the planets were embedded during their first few million years. The accretion rate of gas from the surrounding nebula is determined by the ability of the gas to cool and radiate away its gravitational energy. Here, we demonstrate that heat from the tidal interaction between the star and the young (and therefore inflated) planet can inhibit the gas cooling and accretion. Quantitatively, we find that the growth of super-Earth atmospheres halts for planets with periods of about 10 d, provided that their initial eccentricities are of the order of 0.2. Thus, tidal heating provides a robust and simple mechanism that can simultaneously explain why these planets did not become gas giants and account for the deficit of low-density planets closer to the star, where the tides are even stronger. We suggest that tidal heating may be as important as other factors (such as the nebula's lifetime and atmosphere evaporation) in shaping the observed super-Earth population.

  10. Quantifying drivers of chemical disequilibrium in the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    E. Simoncini

    2012-11-01

    Full Text Available It has long been observed that Earth's atmosphere is uniquely far from its thermochemical equilibrium state in terms of its chemical composition. Studying this state of disequilibrium is important both for understanding the role that life plays in the Earth system, and for its potential role in the detection of life on exoplanets. Here we present a methodology for assessing the strength of the biogeochemical cycling processes that drive disequilibrium in planetary systems. We apply it to the simultaneous presence of CH4 and O2 in Earth's atmosphere, which has long been suggested as a sign of life that could be detected from far away. Using a simplified model, we identify that the most important property to quantify is not the distance from equilibrium, but the power required to drive it. A weak driving force can maintain a high degree of disequilibrium if the residence times of the compounds involved are long; but if the disequilibrium is high and the kinetics fast, we can conclude that the disequilibrium must be driven by a substantial source of energy. Applying this to Earth's atmosphere, we show that the biotically-generated portion of the power required to maintain the methane-oxygen disequilibrium is around 0.67 TW, although the uncertainty in this figure is about 50% due to uncertainty in the global CH4 production. Compared to the chemical energy generated by the biota by photosynthesis, 0.67 TW represents only a very small fraction and, perhaps surprisingly, is of a comparable magnitude to abiotically-driven geochemical processes at the Earth's surface. We discuss the implications of this new approach, both in terms of enhancing our understanding of the Earth system, and in terms of its impact on the possible detection of distant photosynthetic biospheres.

  11. Meridional Transport in the Atmospheres of Earth and Mars

    CERN Document Server

    Soto, Alejandro

    2015-01-01

    As we continue to discover terrestrial exoplanets, many with orbital and planetary characteristics drastically different from anything encountered in our solar system, we are likely to encounter 'exotic' atmospheric transport processes. As an example, we show an analysis of meridional transport from simulations Mars. These simulations provide insight into the differences in meridional transport between Earth and Mars, particularly through the role of a condensation flow. The differences between Earth and Mars are a reminder that there may be a wide variety of meridional transport processes at work across the range of observed terrestrial planets.

  12. New Ion-Nucleation Mechanism Relevant for the Earth's Atmosphere

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Svensmark, Henrik; Pedersen, Jens Olaf Pepke

    An experiment has been set up in order to investigate the role of ionization in Earth's climate. We have chosen to start our investigation at the smallest scales, namely by studying the effect of cosmic ray produced ions on atmospheric aerosol nucleation and growth processes. This experiment...... is conducted at the Danish National Space Center, Center for Sun-Climate Research. It comprises a 7 m3 reaction chamber where atmospheric conditions can be simulated. The number of ions can be increased by exposure to radioactive sources and decreased by applying an electric field; this will enable experiments...

  13. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  14. Atmospheric evaporation in super-Earth exoplanet systems

    Science.gov (United States)

    Moller, Spencer; Miller, Brendan P.; Gallo, Elena; Wright, Jason; Poppenhaeger, Katja

    2017-01-01

    We investigate the influence of stellar activity on atmospheric heating and evaporation in four super-Earth exoplanets: HD 97658 b, GJ 1214 b, 55 Cnc e, and CoRoT-7 b. We use X-ray observations of the host stars to estimate planetary mass loss. We extracted net count rates from a soft band image, converted it to flux using PIMMS for a standard coronal model, calculated the intrinsic stellar luminosity, and estimated the current-epoch mass-loss rate and the integrated mass lost. Our aim is to determine under what circumstances current super-Earths will have experienced significant mass loss through atmospheric irradiation over the system lifetime. We hypothesize that closely-orbiting exoplanets receiving the greatest amount of high-energy stellar radiation will also tend to be sculpted into lower mass and more dense remnant cores.

  15. Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere.

    Science.gov (United States)

    Wordsworth, Robin; Pierrehumbert, Raymond

    2013-01-04

    Understanding how Earth has sustained surface liquid water throughout its history remains a key challenge, given that the Sun's luminosity was much lower in the past. Here we show that with an atmospheric composition consistent with the most recent constraints, the early Earth would have been significantly warmed by H(2)-N(2) collision-induced absorption. With two to three times the present-day atmospheric mass of N(2) and a H(2) mixing ratio of 0.1, H(2)-N(2) warming would be sufficient to raise global mean surface temperatures above 0°C under 75% of present-day solar flux, with CO(2) levels only 2 to 25 times the present-day values. Depending on their time of emergence and diversification, early methanogens may have caused global cooling via the conversion of H(2) and CO(2) to CH(4), with potentially observable consequences in the geological record.

  16. On concentration of $^{42}$Ar in the Earth's atmosphere

    CERN Document Server

    Barabash, A S

    2016-01-01

    Data from the DBA liquid argon ionization chamber experiment have been used to obtain an estimate on the concentration of $^{42}$Ar in the Earth's atmosphere, $6.8^{+1.7}_{-3.2}\\cdot10^{-21}$ atoms of $^{42}$Ar per atom of $^{40}$Ar corresponding to the $^{42}$Ar activity of $1.2^{+0.3}_{-0.5}$ $\\mu$Bq per cubic meter of air.

  17. On concentration of 42Ar in the Earth's atmosphere

    Science.gov (United States)

    Barabash, A. S.; Saakyan, R. R.; Umatov, V. I.

    2016-12-01

    Data from the DBA liquid argon ionization chamber experiment have been used to obtain an estimate on the concentration of 42Ar in the Earth's atmosphere, 6 .8-3.2+1.7 ·10-21 atoms of 42Ar per atom of 40Ar corresponding to the 42Ar activity of 1 .2-0.5+0.3 μBq per cubic meter of air.

  18. Entropy budget of the earth,atmosphere and ocean system

    Institute of Scientific and Technical Information of China (English)

    GAN Zijun; YAN Youfangand; QI Yiquan

    2004-01-01

    The energy budget in the system of the earth, atmosphere and ocean conforms to the first law of thermodynamics, namely the law of conservation of energy, and it is balanced when the system is in a steady-state condition. However, the entropy budget following the second law of thermodynamics is unbalanced. In this paper, we deduce the expressions of entropy flux and re-estimate the earth, atmosphere and ocean annual mean entropy budget with the updated climatologically global mean energy budget and the climatologically air-sea flux data. The calculated results show that the earth system obtains a net influx of negative entropy (-1179.3 mWm-2K-1) from its surroundings, and the atmosphere and the ocean systems obtain a net input of negative entropy at about -537.4 mWm-2K-1 and -555.6 mWm-2K-1, respectively. Calculations of the entropy budget can provide some guidance for further understanding the spatial-temporal change of the local entropy flux, and the entropy production resulting from all kinds of irreversible processes inside these systems.

  19. Atmospheric Production of Perchlorate on Earth and Mars

    Science.gov (United States)

    Claire, M.; Catling, D. C.; Zahnle, K. J.

    2009-12-01

    Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).

  20. Earth's Atmospheric Electricity Parameter Response During Venus Transit

    Directory of Open Access Journals (Sweden)

    Syam Sundar De

    2015-01-01

    Full Text Available Venus transited across the Sun on 06 June 2012, introducing significant contribution to the tidal characteristics of the solar atmosphere. _ atmosphere was perturbed due to an anomalous Coronal Mass Ejection (CME and γ-radiationγ-radiation influenced by the solar tide due to Venus transit, thereby the Earth-ionosphere waveguide characteristics were changed. In this anomalous situation we measured some atmospheric electricity parameters such as Schumann resonance (SR amplitude, very low frequency (VLF sferics, subionospheric transmitted signals and the point discharge current (PDC along with the vertical electrical potential gradient (PG at the ground surface on the day of transit. The results showed some remarkable variations during the transit as well as pre- and post-transit periods. The observed anomalies in the recorded data were interpreted in terms of the anomalous solar tidal effects initiated due to Venus transit.

  1. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    Science.gov (United States)

    Stephens, G. L.

    2015-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  2. Estimate Total Number of the Earth Atmospheric Particle with Standard Atmosphere Model

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Yi

    2001-01-01

    The total number of atmospheric particle (AP) is an important datum for planetary science and geoscience.Estimating entire AP number is also a familiar question in general physics.With standard atmosphere model,considering the number difference of AP caused by rough and uneven in the earth surface below,the sum of dry clean atmosphere particle is 1.06962 × 1044.So the whole number of AP including water vapor is 1.0740 × 1044.The rough estimation for the total number of AP on other planets (or satellites) in condensed state is also discussed on the base of it.

  3. Tidal Heating of Young Super-Earth Atmospheres

    CERN Document Server

    Ginzburg, Sivan

    2016-01-01

    Short-period Earth to Neptune size exoplanets (super-Earths) with voluminous gas envelopes seem to be very common. These gas atmospheres are thought to have originated from the protoplanetary disk in which the planets were embedded during their first few Myr. The accretion rate of gas from the surrounding nebula is determined by the ability of the gas to cool and radiate away its gravitational energy. Here we demonstrate that heat from the tidal interaction between the star and the young (and therefore inflated) planet can inhibit the gas cooling and accretion. Quantitatively, we find that the growth of super-Earth atmospheres halts for planets with periods of about 10 days, provided that their initial eccentricities are of the order of 0.2. Thus, tidal heating provides a robust and simple mechanism that can simultaneously explain why these planets did not become gas giants and account for the deficit of low-density planets closer to the star, where the tides are even stronger. We suggest that tidal heating m...

  4. Potential Biosignatures in Super-Earth Atmospheres II. Photochemical Responses

    CERN Document Server

    Grenfell, J L; Godolt, M; Palczynski, K; Rauer, H; Stock, J; Paris, P v; Lehmann, R; Selsis, F

    2013-01-01

    Spectral characterization of Super-Earth atmospheres for planets orbiting in the Habitable Zone of M-dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of one bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by Rauer et al. (2011). The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex- life. An import...

  5. Chemical Fractionation in the Silicate Vapor Atmosphere of the Earth

    CERN Document Server

    Pahlevan, Kaveh; Eiler, John; 10.1016/j.epsl.2010.10.03

    2010-01-01

    Despite its importance to questions of lunar origin, the chemical composition of the Moon is not precisely known. In recent years, however, the isotopic composition of lunar samples has been determined to high precision and found to be indistinguishable from the terrestrial mantle despite widespread isotopic heterogeneity in the Solar System. In the context of the giant-impact hypothesis, this level of isotopic homogeneity can evolve if the proto-lunar disk and post-impact Earth undergo turbulent mixing into a single uniform reservoir while the system is extensively molten and partially vaporized. In the absence of liquid-vapor separation, such a model leads to the lunar inheritance of the chemical composition of the terrestrial magma ocean. Hence, the turbulent mixing model raises the question of how chemical differences arose between the silicate Earth and Moon. Here we explore the consequences of liquid-vapor separation in one of the settings relevant to the lunar composition: the silicate vapor atmosphere...

  6. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    Science.gov (United States)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition

  7. The Effect of Recent Venus Transit on Earths Atmosphere

    OpenAIRE

    H. P. Sardar; Mandal, S. K.; Mandal, P. K.; Guha, A.; Sarkar, S. K.; Sarkar, B. K.; Adhikari, S. K.; De, B. K.; S S; Ray, M.

    2006-01-01

    Some experiments on June 8, 2004, the day of transit of Venus across the Sun, were undertaken at Kolkata (latitude: 23034? N) to observe effect, if any, of transit of Venus on FWF, ELF and VLF amplitudes. The result shows good correlation between their temporal variations during the transit. The observation was unbelievable as the Venus subtends only 1/32th of the cone subtended by Sun on Earth. This anomaly may be explained on the assumption that the height of Venusian atmosphere with high c...

  8. The effect of recent Venus transit on Earths atmosphere

    OpenAIRE

    H. P. Sardar; Mandal, S. K.; Mandal, P. K.; Guha, A.; Sarkar, S. K.; Sarkar, B. K.; Adhikari, S. K.; De, B. K.; S S; Ray, M.

    2006-01-01

    Some experiments on June 8, 2004, the day of transit of Venus across the Sun, were undertaken at Kolkata (latitude: 22°34lN) to observe the effect, if any, of transit of Venus on FWF, ELF and VLF amplitudes. The result shows a good correlation between their temporal variations during the transit. The observation was unbelievable as the Venus subtends only 1/32th of the cone subtended by Sun on Earth. This anomaly may be explained on the assumption that the height of Venusian atmosphere with h...

  9. Photochemistry of methane in the earth's early atmosphere

    Science.gov (United States)

    Kasting, J. F.; Zahnle, K J.; Walker, J. C. G.

    1983-01-01

    The photochemical behavior of methane in the early terrestrial atmosphere is investigated with a detailed model in order to determine how much CH4 might have been present and what types of higher hydroocarbons could have been formed. It is found that any primordial methane accumulated during the course of earth accretion would have been dissipated by photochemical reactions in the atmosphere in a geologically short period of time after the segregation of the core. Abiotic sources of methane are not likely to have been large enough to sustain CH4 mixing ratios as high as 10 to the -6th, the threshold for a possible methane greenhouse, with a CO-rich atmosphere being a possible exception. After the origin of life an increasing biogenic source of methane may have driven CH4 mixing ratios well above 10 to the 6th. The rise of atmospheric oxygen in the early Proterozoic may have led to a more rapid photochemical destruction of methane, lowering the mixing ratio to its present value.

  10. Aerosol in the upper layer of earth's atmosphere

    Science.gov (United States)

    Morozhenko, A. V.; Vidmachenko, A. P.; Nevodovskii, P. V.

    2013-09-01

    Aerosol layers exist in the upper atmospheres of Venus, Mars, Jupiter, Saturn and the Earth. The reason for their existence may be meteorites, rings, and removal of particles of planetary origin. Observations from 1979 to 1992 showed that the optical thickness of aerosol over the Earth's polar regions changed from tau =0.0002 up to tau =.1 for lambda = 1000 nm. The greatest values of tau were in 1984 and 1992 and they were preceded by a strong volcanic activity of El Chichon (1982) and Pinatubo (1991). We show that the above-mentioned increase in the optical thickness of the stratosphere aerosol can lead to the ozone layer decrease detected in 1970. The stratospheric aerosol nature (real part of refractive index), effective particle size r and changing tau with latitude remain un solved. Among distance methods for the determination of nr and r efficient is the analysis of the phase dependence of the polarization degree. The observational values of the intensity and pol arization degree invisible light are due to optical properties of the surface and optical thickness of the atmosphere, the values of which vary with latitude, longitude and time. Therefore, it is impossible to identify accurately the stratospheric aerosol contribution. When observing in UV at lambda negative factors can take place, namely, the emission of various gases playing depolarizing role, horizontal inhomogeneity of the effective optical thickness of ozone layer, and oriented particles (the polarization plane variation points to their presence).

  11. An atmosphere around the super-Earth 55 Cancri e

    Science.gov (United States)

    Tsiaras, Angelos; Rocchetto, Marco; Waldmann, Ingo; Venot, Olivia; Varley, Rayan; Morello, Giuseppe; Damiano, Mario; Tinetti, Giovanna; Barton, Emma; Yurchenko, Sergey; Tennyson, Jonathan; ExoLights, ExoMol

    2016-10-01

    One of the most successful instruments for observing exoplanetary atmospheres is the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST). In particular, the use of the spatial scanning technique has given us the opportunity for even more efficient observations of the brightest targets, achieving the necessary precision of 10 – 100 ppm. With such data and new advanced reduction and statistical techniques, we were able to detect modulations in the spectrum of the hot super-Earth 55 Cancri e, which suggest the existence of a light-weight atmosphere around this planet. Given the brightness of 55 Cancri, the observers adopted a very long scanning length and a very high scanning speed. We took these effects into account, as they can introduce systematics when coupled with the geometrical distortions of the instrument. Our fully Bayesian spectral retrieval code, T-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 μm. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we used a chemical model, developed with combustion specialists, to explain its pressence. This model indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio, suggesting this super-Earth is a carbon-rich environment even more exotic than previously thought.

  12. Formation of the Aerosol of Space Origin in Earth's Atmosphere

    Science.gov (United States)

    Kozak, P. M.; Kruchynenko, V. G.

    2011-01-01

    The problem of formation of the aerosol of space origin in Earth s atmosphere is examined. Meteoroids of the mass range of 10-18-10-8 g are considered as a source of its origin. The lower bound of the mass range is chosen according to the data presented in literature, the upper bound is determined in accordance with the theory of Whipple s micrometeorites. Basing on the classical equations of deceleration and heating for small meteor bodies we have determined the maximal temperatures of the particles, and altitudes at which they reach critically low velocities, which can be called as velocities of stopping . As a condition for the transformation of a space particle into an aerosol one we have used the condition of non-reaching melting temperature of the meteoroid. The simplified equation of deceleration without earth gravity and barometric formula for the atmosphere density are used. In the equation of heat balance the energy loss for heating is neglected. The analytical solution of the simplified equations is used for the analysis.

  13. Cosmic Dust and the Earth's Atmosphere (Vilhelm Bjerknes Medal Lecture)

    Science.gov (United States)

    Plane, John M. C.

    2017-04-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s-1), and ablate at heights between 80 and 120 km in the mesosphere/lower thermosphere (MLT). The resulting metallic vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke particles (MSPs)". MSPs are too small to sediment downwards and so are transported by the general circulation of the atmosphere, taking roughly 4 years to reach the surface. Smoke particles play a potentially important role as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere, where they also facilitate freezing of the clouds. There are also potential implications for climate, as the input of bio-available cosmic Fe in the Southern Ocean can increase biological productivity and stimulate CO2 drawdown from the atmosphere. However, current estimates of the magnitude of the cosmic dust mass input rate into the Earth's atmosphere range from 2 to over 200 tonnes per day, depending on whether the measurements are made in space, in the middle atmosphere, or in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there must be serious flaws in the interpretation of observations that have been used to make the estimates. Furthermore, given this degree of uncertainty, the significance of these potential atmospheric impacts remains speculative. In this lecture I will describe the results of a large study designed to determine the size of the cosmic dust input rate using a self-consistent treatment of cosmic dust from the outer solar system to the Earth's surface. An astronomical model which tracks the evolution of dust from various sources into the inner solar system was combined with a

  14. Microwave atmospheric sounder for earth limb observations from space

    Science.gov (United States)

    The Microwave Atmospheric Sounder (MAS) experiment which will be performed from a Spacelab pallet on board the Shuttle to study the dynamic structure of the mesosphere and stratosphere is described. The MAS package is the 4th mode of the microwave remote sensing experiment and comprises a SAR, a frequency scatterometer, and a passive radiometer. An elevation scan mode will involve observing through the elevation angle range of 10-16 deg at a constant velocity of 1.25 deg/sec. In a pointing mode, the pallet will operate at a fixed angle which can be changed by telemetered command to within 0.04 deg accuracy. A parabolic antenna receives the earth limb radiation at 62, 184, and 204 GHz. Radiometers down-convert the signal to around 10 GHz for spectral analysis based on chirp compressive receivers with 138 channels, each having 10 bit resolution.

  15. Uncertainty analysis of atmospheric friction torque on the solid Earth

    Institute of Scientific and Technical Information of China (English)

    Haoming Yan; Yong Huang

    2016-01-01

    The wind stress acquired from European Centre for Medium-Range Weather Forecasts (ECMWF),National Centers for Environmental Prediction (NCEP) climate models and QSCAT satellite observations are analyzed by using frequency-wavenumber spectrum method.The spectrum of two climate models,i.e.,ECMWF and NCEP,is similar for both 10 m wind data and model output wind stress data,which indicates that both the climate models capture the key feature of wind stress.While the QSCAT wind stress data shows the similar characteristics with the two climate models in both spectrum domain and the spatial distribution,but with a factor of approximately 1.25 times larger than that of climate models in energy.These differences show the uncertainty in the different wind stress products,which inevitably cause the atmospheric friction torque uncertainties on solid Earth with a 60% departure in annual amplitude,and furtherly affect the precise estimation of the Earth's rotation.

  16. Simulation of Motion of Satellite under the Effect of Oblateness of Earth and Atmospheric Drag

    CERN Document Server

    Sharma, Jaita; Pirzada, U M; Shah, Vishant

    2016-01-01

    The equations governing motion of the satellite under the effect of oblateness of Earth and atmospheric drag have been simulated, for a fixed initial position and three different initial velocities, till satellite collapses on Earth. Simulation of motion of artificial Earth satellite subject to the combined effects of oblate Earth and atmospheric drag is presented. The atmospheric model considered here takes in to account of exponential variation of the density with initial distance of Satellite from Earth's surface, scale height and radial distance. The minimum and maximum values of orbital elements and their variation over a time for different initial velocities have been reported.

  17. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    Science.gov (United States)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  18. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    Science.gov (United States)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  19. National Chemistry Week 2003: Earth's Atmosphere and Beyond. JCE Resources for Chemistry and the Atmosphere

    Science.gov (United States)

    Jacobsen, Erica K.

    2003-10-01

    This annotated bibliography collects the best that past issues of the Journal of Chemical Education have to offer for use with this year's National Chemistry Week theme: Earth's Atmosphere and Beyond. Each article has been characterized as a demonstration, experiment, activity, informational, or software/video item; several fit in more than one classification. The most recent articles are listed first. Also included is an evaluation as to which levels the article may serve. Articles that appeared adaptable to other levels, but are not designed explicitly for those levels, are labeled "poss. h.s." "poss. elem.", and so forth.

  20. Convection and waves on Small Earth and Deep Atmosphere

    Directory of Open Access Journals (Sweden)

    Noureddine Semane

    2015-06-01

    Full Text Available A scaled version of the European Centre for Medium-Range Weather Forecasts (ECMWF spectral hydrostatic forecast model (IFS has been developed with full physics using an Aqua planet configuration. This includes Kuang et al.'s Small Earth Diabatic Acceleration and REscaling (DARE/SE approach bringing the synoptic scale a factor γ closer to the convective scale by reducing the Earth radius by γ, and increasing the rotation rate and all diabatic processes by the same factor. Furthermore, the scaled version also provides an alternative system to DARE/SE, dubbed ‘Deep Atmosphere Diabatic Acceleration and REscaling’ (DARE/DA, which reduces gravity by a factor γ and thereby increases the horizontal scale of convection by γ, while only weakly affecting the large-scale flow. The two approaches have been evaluated using a T159 spectral truncation and γ = 8 with the deep convection scheme switched off. The evaluation is against the baseline unscaled model at T1279 spectral resolution without deep convection parametrisation, as well as the unscaled T159 model using the deep convection parametrisation. It is shown that the DARE/SE and DARE/DA systems provide fairly equivalent results, while the DARE/DA system seems to be the preferred choice as it damps divergent modes, providing a better climatology, and is technically easier to implement. However, neither of the systems could reproduce the motion range and modes of the high-resolution spectral model. Higher equivalent horizontal resolution in the 1–10 km range and the full non-hydrostatic system might be necessary to successfully simulate the convective and large-scale explicitly at reduced cost.

  1. What Do We Really Know About the Earth's Early Atmosphere?

    Science.gov (United States)

    Catling, D. C.; Krissansen-Totton, J.; Zahnle, K. J.

    2016-12-01

    Theory suggests that oceans collapsed from a steam atmosphere and CO2 was lost into the seafloor by 108 yrs after the Moon-forming impact [1]. Afterwards, zircons suggest continents, oceans, and even life, but the Hadean atmosphere remains obscure. Gas proportions in modern outgassing tentatively suggest that Hadean air was probably N2 and CO2 with minor CO, H2 and CH4, but little direct evidence confirms this. In contrast, evidence for oceans, an atmosphere, and land becomes unambiguous by 3.8 Ga [2], with suggestive signs of life [3]. Biological modulation, a faint Sun, and a lack of O2 all circumscribe any model of Archean air. Glacial rocks (3.5, 2.9 and 2.7 Ga) indicate climates below a global mean 20°C. Even with little land, control of CO2 by seafloor weathering should have moderated climate. Probably CO2 was always an important greenhouse gas, as indicated by new paleosol estimates [4]. Estimates of pN2demands high concentrations of greenhouse gases. Low pN2 could occur in an anoxic N cycle. Today, long-term N sources are outgassing and oxidative weathering of organics. In the Archean, the N source from oxidative weathering was absent, so pN2 was plausibly lower and would have risen at the Great Oxidation Event (GOE) [5]. Archean mass independent fractionation of S isotopes requires >20 ppmv CH4 [6]. But evidence of hydrogen escape to space (lighter ocean D/H [7] and Xe isotopes that become lighter in time [8]), suggest 2H2+CH4 levels 103 ppmv. Polar H escape that drags Xe+ions could explain the Xe isotope trend. The GOE relied upon long-term oxidation of the surface environment by removing reductants. We continue to argue that removal by H escape (the biggest net redox flux over time) pushed towards oxygenation by shifting the balance of oxygen sources and sinks [9]. [1] Zahnle K. et al. (2010) CSH Perspect. Biol. 2, doi: 10.1101/cshperspect.a004895. [2] Nutman A. P. (2006) Elements 2, 223. [3] Ohtomo Y. et al. (2014) Nat Geosci 7, 25. [4] Kanzaki Y

  2. Changes in the Earth's Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

    Science.gov (United States)

    Na, Sung-Ho; Cho, Jungho; Kim, Tu-Hwan; Seo, Kiweon; Youm, Kookhyoun; Yoo, Sung-Moon; Choi, Byungkyu; Yoon, Hasu

    2016-12-01

    The atmosphere strongly affects the Earth's spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i) the Earth orientation parameter and ii) the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth's spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth's pole has been observed. The change in the Earth's inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

  3. Ultraviolet radiation climatology of the Earth`s surface and lower atmosphere. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, S. [National Center for Atmospheric Research, Boulder, CO (United States). Atmospheric Chemistry Div.; Stamnes, K. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics

    1999-03-01

    Ultraviolet (UV) radiation is the driving force of tropospheric chemistry and is furthermore detrimental to most living tissues. A three year modeling program was carried out to characterize the UV radiation in the lower atmosphere, with the objective of development a climatology of UV biologically active radiation, and of photo-dissociation reaction rates that are key to tropospheric chemistry. A comprehensive model, the Tropospheric Ultraviolet-Visible (TUV) model, was developed and made available to the scientific community. The model incorporates updated spectroscopic data, recent advances in radiative transfer theory, and allows flexible customization for the needs of different users. The TUV model has been used in conjunction with satellite-derived measurements of total atmospheric ozone and cloud amount, to develop a global climatology of UV radiation reaching the surface of the Earth. Initial validation studies are highly encouraging, showing that model predictions agree with direct measurements to ca. 5--10% at times when environmental conditions are well known, and to 10--30% for monthly averages when local environmental conditions can only be estimated remotely from satellite-based measurements. Additional validation studies are continuing.

  4. Photochemistry in Terrestrial Exoplanet Atmospheres III: Photochemistry and Thermochemistry in Thick Atmospheres on Super Earths and Mini Neptunes

    CERN Document Server

    Hu, Renyu

    2014-01-01

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO2 rather than CH4 or CO in a H2-depleted water-dominated thick atmosphere, and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to formation of unsaturated hydrocarbons (C2H2 and C2H4). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1...

  5. Analyzing early exo-Earths with a coupled atmosphere biogeochemical model

    Science.gov (United States)

    Gebauer, Stefanie; Grenfell, John Lee; Stock, Joachim; Lehmann, Ralph; Godolt, Mareike; von Paris, Philip; Rauer, Heike

    2017-04-01

    Investigating Earth-like extrasolar planets with atmospheric models is a central focus in planetary science. Taking the development of Earth as a reference for Earth-like planets we investigate interactions between the atmosphere, planetary surface and organisms. The Great Oxidation Event (GOE) is related to feedbacks between these three. Its origin and controlling mechanisms are not well defined - requiring interdisciplinary, coupled models. We present results from our newly-developed Coupled Atmosphere Biogeochemistry (CAB) model which is unique in the literature. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles governing O2 in early Earth's atmosphere near the GOE. Complicated oxidation pathways play a key role in destroying O2 whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis.

  6. Alien skies planetary atmospheres from earth to exoplanets

    CERN Document Server

    Pont, Frédéric J

    2014-01-01

    Planetary atmospheres are complex and evolving entities, as mankind is rapidly coming to realise whilst attempting to understand, forecast and mitigate human-induced climate change. In the Solar System, our neighbours Venus and Mars provide striking examples of two endpoints of planetary evolution, runaway greenhouse and loss of atmosphere to space. The variety of extra-solar planets brings a wider angle to the issue: from scorching "hot jupiters'' to ocean worlds, exo-atmospheres explore many configurations unknown in the Solar System, such as iron clouds, silicate rains, extreme plate tectonics, and steam volcanoes. Exoplanetary atmospheres have recently become accessible to observations. This book puts our own climate in the wider context of the trials and tribulations of planetary atmospheres. Based on cutting-edge research, it uses a grand tour of the atmospheres of other planets to shine a new light on our own atmosphere, and its relation with life.

  7. High resolution transmission spectrum of the Earth's atmosphere -- Seeing Earth as an exoplanet using a lunar eclipse

    CERN Document Server

    Yan, Fei; Petr-Gotzens, Monika G; Zhao, Gang; Wang, Wei; Wang, Liang; Liu, Yujuan; Pallé, Enric

    2014-01-01

    With the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterising their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The atmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high resolution and high signal-to-noise ratio transmission spectrum of the Earth's atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2-O2, NO2 and H2O are detected, and their column densities are measured and compared with the satell...

  8. The atmospheres of the earth and the other planets: Origin, evolution and composition

    Science.gov (United States)

    Levine, Joel S.

    1988-01-01

    The current understanding of the composition, chemistry, and structure of the atmospheres of the other planets and the origin, early history, and evolution of the earth's atmosphere is reviewed. The information on the atmospheres of the other planets is based on the successful Mariner, Viking, Pioneer, and Voyager missions to these planets. The information on the origin, early history, and evolution of the atmosphere, which is somewhat speculative, is largely based on numerical studies with geochemical and photochemical models.

  9. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    Science.gov (United States)

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  10. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    Science.gov (United States)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  11. Earth curvature and atmospheric refraction effects on radar signal propagation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-01-01

    The earth isnt flat, and radar beams dont travel straight. This becomes more noticeable as range increases, particularly at shallow depression/grazing angles. This report explores models for characterizing this behavior.

  12. Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere

    Science.gov (United States)

    Kasting, James F.; Ackerman, Thomas P.

    1986-01-01

    The possible consequences of very high carbon dioxide concentrations in the earth's early atmosphere have been investigated with a radiative-convective climate model. The early atmosphere would apparently have been stable against the onset of a runaway greenhouse (that is, the complete evaporation of the oceans) for carbon dioxide pressures up to at least 100 bars. A 10- to 20-bar carbon dioxide atmosphere, such as may have existed during the first several hundred million years of the earth's history, would have had a surface temperature of approximately 85 to 110 C. The early stratosphere should have been dry, thereby precluding the possibility of an oxygenic prebiotic atmosphere caused by photodissociation of water vapor followed by escape of hydrogen to space. Earth's present atmosphere also appears to be stable against a carbon dioxide-induced runaway greenhouse.

  13. Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere

    Science.gov (United States)

    Kasting, James F.; Ackerman, Thomas P.

    1986-01-01

    The possible consequences of very high carbon dioxide concentrations in the earth's early atmosphere have been investigated with a radiative-convective climate model. The early atmosphere would apparently have been stable against the onset of a runaway greenhouse (that is, the complete evaporation of the oceans) for carbon dioxide pressures up to at least 100 bars. A 10- to 20-bar carbon dioxide atmosphere, such as may have existed during the first several hundred million years of the earth's history, would have had a surface temperature of approximately 85 to 110 C. The early stratosphere should have been dry, thereby precluding the possibility of an oxygenic prebiotic atmosphere caused by photodissociation of water vapor followed by escape of hydrogen to space. Earth's present atmosphere also appears to be stable against a carbon dioxide-induced runaway greenhouse.

  14. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b

    CERN Document Server

    Kreidberg, Laura; Désert, Jean-Michel; Benneke, Björn; Deming, Drake; Stevenson, Kevin B; Seager, Sara; Berta-Thompson, Zachory; Seifahrt, Andreas; Homeier, Derek

    2014-01-01

    Recent surveys have revealed that planets intermediate in size between Earth and Neptune ("super-Earths") are among the most common planets in the Galaxy. Atmospheric studies are the next step toward developing a comprehensive understanding of this new class of object. Much effort has been focused on using transmission spectroscopy to characterize the atmosphere of the super-Earth archetype GJ 1214b, but previous observations did not have sufficient precision to distinguish between two interpretations for the atmosphere. The planet's atmosphere could be dominated by relatively heavy molecules, such as water (e.g., a 100% water vapor composition), or it could contain high-altitude clouds that obscure its lower layers. Here we report a measurement of the transmission spectrum of GJ 1214b at near-infrared wavelengths that definitively resolves this ambiguity. These data, obtained with the Hubble Space Telescope, are sufficiently precise to detect absorption features from a high mean molecular mass atmosphere. Th...

  15. Impact of atmospheric refraction: how deeply can we probe exo-earth's atmospheres during primary eclipse observations?

    Energy Technology Data Exchange (ETDEWEB)

    Bétrémieux, Yan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kaltenegger, Lisa, E-mail: betremieux@mpia.de [Also at Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. (United States)

    2014-08-10

    Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets and tabulate the critical altitude, density, and pressure for an exoplanet identical to Earth with a 1 bar N{sub 2}/O{sub 2} atmosphere as a function of both the incident stellar flux (Venus, Earth, and Mars-like) at the top of the atmosphere and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 μm model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.

  16. Emergence of global scaling behaviour in the coupled Earth-atmosphere interaction

    CERN Document Server

    Fallah, Bijan; Sodoudi, Sahar

    2016-01-01

    Scale invariance property in the global geometry of Earth may lead to a coupled interactive behaviour between various components of the climate system. One of the most interesting correlations exists between spatial statistics of the global topography and the temperature on Earth. Here we show that the power-law behaviour observed in the Earth topography via different approaches, resembles a scaling law in the global spatial distribution of independent atmospheric parameters. We report on observation of scaling behaviour of such variables characterized by distinct universal exponents. More specifically, we find that the spatial power-law behaviour in the fluctuations of the near surface temperature over the lands on Earth, shares the same universal exponent as of the global Earth topography, indicative of the global persistent role of the static geometry of Earth to control the steady state of a dynamical atmospheric field. Such a universal feature can pave the way to the theoretical understanding of the chao...

  17. Atmospheric radiative flux divergence from Clouds and Earth Radiant Energy System (CERES)

    Science.gov (United States)

    Smith, Louis G.; Charlock, Thomas P.; Crommelynk, D.; Rutan, David; Gupta, Shashi

    1990-01-01

    A major objective of the Clouds and Earth Radiant Energy System (CERES) is the computation of vertical profiles through the atmosphere of the divergence of radiation flux, with global coverage. This paper discusses the need for radiation divergence and presents some options for its inference from CERES measurements and other data from the Earth Observating System.

  18. The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    CERN Document Server

    Kataria, Tiffany; Fortney, Jonathan J; Marley, Mark S; Freedman, Richard S

    2014-01-01

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean-molecular weight (i.e., H2-dominated) and a high mean-molecular weight (i.e. water- and CO2-dominated). We find that atmospheres with a low mean-molecular weight have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations and hence stronger superrotation. In comparison, atmospheres with a high mean-molecular weight have larger day-night and equator-to-pole temperature variations than low mean-molecular weight atmospheres, but differences in opacity structure and energy budget lead ...

  19. Geochemical and planetary dynamical views on the origin of Earth's atmosphere and oceans

    CERN Document Server

    Dauphas, Nicolas

    2013-01-01

    Earth's volatile elements (H, C, and N) are essential to maintaining habitable conditions for metazoans and simpler life forms. However, identifying the sources (comets, meteorites, and trapped nebular gas) that supplied volatiles to Earth is not straightforward because secondary processes like mantle degassing, crustal recycling, and escape to space modified the composition of the atmosphere. Here, we review two complementary approaches to investigate the origin of Earth's atmosphere and oceans. The geochemical approach uses volatile element abundances and isotopic compositions to identify the possible contributors to the atmosphere and to disentangle the processes that shaped it. In that respect, noble gases (He, Ne, Ar, Kr, and Xe), elements that are chemically inert and possess several isotopes produced by radioactivity, play a critical role. The dynamical approach uses our knowledge of planetary dynamics to track volatile delivery to the Earth, starting with dust transport in the disk to planet-building ...

  20. Effects of Plasma Drag on Low Earth Orbiting Satellites due to Heating of Earth's Atmosphere by Coronal Mass Ejections

    CERN Document Server

    Nwankwo, Victor U J

    2013-01-01

    Solar events, such as coronal mass ejections (CMEs) and solar flares, heat up the upper atmosphere and near-Earth space environment. Due to this heating and expansion of the outer atmosphere by the energetic ultraviolet, X-ray and particles expelled from the sun, the low Earth-Orbiting satellites (LEOS) become vulnerable to an enhanced drag force by the ions and molecules of the expanded atmosphere. Out of various types of perturbations, Earth directed CMEs play the most significant role. They are more frequent and intense during the active (solar maximum) phase of the sun's approximately 11-year cycle. As we are approaching another solar maximum later in 2013, it may be instructive to analyse the effects of the past solar cycles on the orbiting satellites using the archival data of space environment parameters as indicators. In this paper, we compute the plasma drag on a model LEOS due to the atmospheric heating by CMEs and other solar events as a function of the solar parameters. Using the current forecast ...

  1. Models of Polarized Light from Oceans and Atmospheres of Earth-like Extrasolar Planets

    CERN Document Server

    McCullough, P R

    2006-01-01

    Specularly reflected light, or glint, from an ocean surface may provide a useful observational tool for studying extrasolar terrestrial planets. Detection of sea-surface glints would differentiate ocean-bearing terrestrial planets, i.e. those similar to Earth, from other terrestrial extrasolar planets. The brightness and degree of polarization of both sea-surface glints and atmospheric Rayleigh scattering are strong functions of the phase angle of the extrasolar planet. We modify analytic expressions for the bi-directional reflectances previously validated by satellite imagery of the Earth to account for the fractional linear polarization of sea-surface reflections and of Rayleigh scattering in the atmosphere. We compare our models with Earth's total visual light and degree of linear polarization as observed in the ashen light of the Moon, or Earthshine. We predict the spatially-integrated reflected light and its degree of polarization as functions of the diurnal cycle and orbital phase of Earth and Earth-lik...

  2. Analysis of longwave radiation for the Earth-atmosphere system

    Science.gov (United States)

    Tiwari, S. N.; Venuru, C. S.; Subramanian, S. V.

    1983-01-01

    Accurate radiative transfer models are used to determine the upwelling atmospheric radiance and net radiative flux in the entire longwave spectral range. The validity of the quasi-random band model is established by comparing the results of this model with those of line-by-line formulations and with available theoretical and experimental results. Existing radiative transfer models and computer codes are modified to include various surface and atmospheric effects (surface reflection, nonequilibrium radiation, and cloud effects). The program is used to evaluate the radiative flux in clear atmosphere, provide sensitivity analysis of upwelling radiance in the presence of clouds, and determine the effects of various climatological parameters on the upwelling radiation and anisotropic function. Homogeneous and nonhomogeneous gas emissivities can also be evaluated under different conditions.

  3. Impact of atmospheric refraction: How deeply can we probe exo-Earth's atmospheres during primary eclipse observations?

    CERN Document Server

    Betremieux, Y

    2013-01-01

    Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density, probed during primary eclipses, as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction and show that most habitable exo-Earths cannot be probed down to their surface. We present 0.4-5.0micron model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type (O5-M9) of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.

  4. New Ion-Nucleation Mechanism Relevant for the Earth's Atmosphere

    DEFF Research Database (Denmark)

    Marsh, N.D.; Svensmark, Henrik; Pedersen, Jens Olaf Pepke

    Experimental studies of ultra-fine aerosol nucleation in clean atmospheric air, containing trace amounts of ozone, sulphur dioxide, and water vapour suggest that the production rate of critical clusters is sensitive to ionisation. To assess this sensitivity numerical simulations of the initial...

  5. Secondary Cosmic Ray Particles Due to GCR Interactions in the Earth's Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Battistoni, G.; /Milan U. /INFN, Milan; Cerutti, F.; /CERN; Fasso, A.; /SLAC; Ferrari, A.; /CERN; Garzelli, M.V.; /Milan U. /INFN, Milan; Lantz, M.; /Goteborg, ITP; Muraro, S. /Milan U. /INFN, Milan; Pinsky, L.S.; /Houston U.; Ranft, J.; /Siegen U.; Roesler, S.; /CERN; Sala, P.R.; /Milan U. /INFN, Milan

    2009-06-16

    Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

  6. Atmospheric correction of Earth-observation remote sensing images by Monte Carlo method

    Indian Academy of Sciences (India)

    Hanane Hadjit; Abdelaziz Oukebdane; Ahmad Hafid Belbachir

    2013-10-01

    In earth observation, the atmospheric particles contaminate severely, through absorption and scattering, the reflected electromagnetic signal from the earth surface. It will be greatly beneficial for land surface characterization if we can remove these atmospheric effects from imagery and retrieve surface reflectance that characterizes the surface properties with the purpose of atmospheric correction. Giving the geometric parameters of the studied image and assessing the parameters describing the state of the atmosphere, it is possible to evaluate the atmospheric reflectance, and upward and downward transmittances which take part in the garbling data obtained from the image. To that end, an atmospheric correction algorithm for high spectral resolution data over land surfaces has been developed. It is designed to obtain the main atmospheric parameters needed in the image correction and the interpretation of optical observations. It also estimates the optical characteristics of the Earth-observation imagery (LANDSAT and SPOT). The physics underlying the problem of solar radiation propagations that takes into account multiple scattering and sphericity of the atmosphere has been treated using Monte Carlo techniques.

  7. Calculation Method of Earth-Atmosphere Stray Light Illuminance on Low-orbit Space Cameras

    Directory of Open Access Journals (Sweden)

    Yujun Du

    2013-12-01

    Full Text Available The earth-atmosphere stray light can lower contrast ratio and SNR of spatial optical remote sensors, or even fail the system at certain conditions. Errors in the calculation of the stray light illuminance based on point source are very large, for the satellite’s altitude is only several hundred kilometers and far less than the radius of the earth. This paper proposed a stray light illuminance calculating method which viewed the earth as a plane stray source and introduced the method in detail. Using the calculating method, earth-atmosphere stray light illuminance on the camera image plane for a low-orbit space camera at a typical position is calculated, and the results were compared with those calculated by viewing the earth as a point source, which evidently show that, when considering the earth-atmosphere stray light’s effects on low-orbit space cameras, it’s necessary to treat the earth as a plane extended light source

  8. Cosmic rays intensity and atmosphere humidity at near earth surface

    Science.gov (United States)

    Oskomov, V. V.; Sedov, A. N.; Saduyev, N. O.; Kalikulov, O. A.; Naurzbayeva, A. Zh; Alimgazinova, N. Sh; Kenzhina, I. E.

    2016-08-01

    Experimental studies of estimation the mutual influence of humidity and flux of cosmic rays in first approximation were carried out. Normalized cross-correlation function of time series of neutron monitors count rate and level of relative atmosphere humidity near cosmic rays registration point is studied. Corrected and uncorrected on pressure minute and hour data of 6NM64 neutron monitor count rate were used for the study. Neutron monitor is located in Al-Farabi Kazakh National University, at an altitude of 850 m above sea level. Also, data from NM64 neutron monitor of Tien Shan mountain research station of Institute of Ionosphere, located at an altitude of 3340 m above sea level were used. Uncorrected on pressure cosmic rays intensity better reflects the changes in relative atmosphere humidity. Average and sometimes strong relationship is often observed by time changes of atmosphere humidity near the point of cosmic rays detection and their intensity: the value of normalized cross-correlation function of respective signals, even in case of their long duration and a large number of data (eg, for minute changes at intervals of up to several months) covers 0.5 - 0.75 range, sometimes falling to ∼⃒ 0.4.

  9. The early Earth atmosphere and early life catalysts.

    Science.gov (United States)

    Ramírez Jiménez, Sandra Ignacia

    2014-01-01

    Homochirality is a property of living systems on Earth. The time, the place, and the way in which it appeared are uncertain. In a prebiotic scenario two situations are of interest: either an initial small bias for handedness of some biomolecules arouse and progressed with life, or an initial slight excess led to the actual complete dominance of the known chiral molecules. A definitive answer can probably never be given, neither from the fields of physics and chemistry nor biology. Some arguments can be advanced to understand if homochirality is necessary for the initiation of a prebiotic homochiral polymer chemistry, if this homochirality is suggesting a unique origin of life, or if a chiral template such as a mineral surface is always required to result in an enantiomeric excess. A general description of the early Earth scenario will be presented in this chapter, followed by a general description of some clays, and their role as substrates to allow the concentration and amplification of some of the building blocks of life.

  10. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b.

    Science.gov (United States)

    Kreidberg, Laura; Bean, Jacob L; Désert, Jean-Michel; Benneke, Björn; Deming, Drake; Stevenson, Kevin B; Seager, Sara; Berta-Thompson, Zachory; Seifahrt, Andreas; Homeier, Derek

    2014-01-02

    Recent surveys have revealed that planets intermediate in size between Earth and Neptune ('super-Earths') are among the most common planets in the Galaxy. Atmospheric studies are the next step towards developing a comprehensive understanding of this new class of object. Much effort has been focused on using transmission spectroscopy to characterize the atmosphere of the super-Earth archetype GJ 1214b (refs 7 - 17), but previous observations did not have sufficient precision to distinguish between two interpretations for the atmosphere. The planet's atmosphere could be dominated by relatively heavy molecules, such as water (for example, a 100 per cent water vapour composition), or it could contain high-altitude clouds that obscure its lower layers. Here we report a measurement of the transmission spectrum of GJ 1214b at near-infrared wavelengths that definitively resolves this ambiguity. The data, obtained with the Hubble Space Telescope, are sufficiently precise to detect absorption features from a high mean-molecular-mass atmosphere. The observed spectrum, however, is featureless. We rule out cloud-free atmospheric models with compositions dominated by water, methane, carbon monoxide, nitrogen or carbon dioxide at greater than 5σ confidence. The planet's atmosphere must contain clouds to be consistent with the data.

  11. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    Energy Technology Data Exchange (ETDEWEB)

    Domagal-Goldman, Shawn D. [Planetary Environments Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S., E-mail: shawn.goldman@nasa.gov [NASA Astrobiology Institute—Virtual Planetary Laboratory (United States)

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  12. DORIS applications for solid earth and atmospheric sciences

    Science.gov (United States)

    Willis, Pascal; Soudarin, Laurent; Jayles, Christian; Rolland, Lucie

    2007-12-01

    DORIS is a French precise orbit determination system. However, in the past four years, through the creation of the International DORIS Service, a larger international cooperation was involved. Furthermore, the precision of its scientific applications (geodesy, geophysics) gradually improved and expanded to new fields (atmospheric sciences), leading, for example, to the publication of a special issue of the Journal of Geodesy. The goal of this manuscript is to present and explain these changes and to put them in perspective with current results obtained with other space geodetic techniques, such as GPS or Satellite Laser Ranging.

  13. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  14. Emergence of global scaling behaviour in the coupled Earth-atmosphere interaction

    Science.gov (United States)

    Fallah, Bijan; Saberi, Abbas Ali; Sodoudi, Sahar

    2016-01-01

    Scale invariance property in the global geometry of Earth may lead to a coupled interactive behaviour between various components of the climate system. One of the most interesting correlations exists between spatial statistics of the global topography and the temperature on Earth. Here we show that the power-law behaviour observed in the Earth topography via different approaches, resembles a scaling law in the global spatial distribution of independent atmospheric parameters. We report on observation of scaling behaviour of such variables characterized by distinct universal exponents. More specifically, we find that the spatial power-law behaviour in the fluctuations of the near surface temperature over the lands on Earth, shares the same universal exponent as of the global Earth topography, indicative of the global persistent role of the static geometry of Earth to control the steady state of a dynamical atmospheric field. Such a universal feature can pave the way to the theoretical understanding of the chaotic nature of the atmosphere coupled to the Earth’s global topography. PMID:27666675

  15. Numerical calculations of cosmic ray cascade in the Earth's atmosphere using different particle interaction models

    Science.gov (United States)

    Nesterenok, A. V.; Naidenov, V. O.

    2015-12-01

    The interaction of primary cosmic rays with the Earth's atmosphere is investigated using the simulation toolkit GEANT4. Two reference lists of physical processes - QGSP_BIC_HP and FTFP_BERT_HP - are used in the simulations of cosmic ray cascade in the atmosphere. The cosmic ray neutron fluxes are calculated for mean level of solar activity, high geomagnetic latitudes and sea level. The calculated fluxes are compared with the published results of other analogous simulations and with experimental data.

  16. The role of solar activity variations and ozonosphere state as global dimming of earth's atmosphere

    Directory of Open Access Journals (Sweden)

    Александр Вадимович Холопцев

    2014-12-01

    Full Text Available The location of the segments of the Earth's atmosphere, in which important factors of interannual variations of monthly mean values of the optical density of clouds are coincident with them over time change the corresponding values of total ozone content and the Wolf numbers have been revealed. The impact of these changes on the effect of "global dimming" will intensify with further increase in atmospheric concentrations of greenhouse gases. 

  17. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.

    Science.gov (United States)

    Baldwin, Suzanne L; Das, J P

    2015-11-17

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An (40)Ar/(39)Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that (40)Ar/(39)Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric (38)Ar/(36)Ar and (20)Ne/(22)Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known.

  18. Super-Earth Atmospheres: Self-consistent Gas Accretion and Retention

    Science.gov (United States)

    Ginzburg, Sivan; Schlichting, Hilke E.; Sari, Re'em

    2016-07-01

    Some recently discovered short-period Earth- to Neptune-sized exoplanets (super-Earths) have low observed mean densities that can only be explained by voluminous gaseous atmospheres. Here, we study the conditions allowing the accretion and retention of such atmospheres. We self-consistently couple the nebular gas accretion onto rocky cores and the subsequent evolution of gas envelopes following the dispersal of the protoplanetary disk. Specifically, we address mass-loss due to both photo-evaporation and cooling of the planet. We find that planets shed their outer layers (dozens of percent in mass) following the disk's dispersal (even without photo-evaporation), and their atmospheres shrink in a few Myr to a thickness comparable to the radius of the underlying rocky core. At this stage, atmospheres containing less particles than the core (equivalently, lighter than a few percent of the planet's mass) can be blown away by heat coming from the cooling core, while heavier atmospheres cool and contract on a timescale of Gyr at most. By relating the mass-loss timescale to the accretion time, we analytically identify a Goldilocks region in the mass-temperature plane in which low-density super-Earths can be found: planets have to be massive and cold enough to accrete and retain their atmospheres, but not too massive or cold, such that they do not enter runaway accretion and become gas giants (Jupiters). We compare our results to the observed super-Earth population and find that low-density planets are indeed concentrated in the theoretically allowed region. Our analytical and intuitive model can be used to investigate possible super-Earth formation scenarios.

  19. Abiotic Ozone and Oxygen in Atmospheres Similar to Prebiotic Earth

    CERN Document Server

    Domagal-Goldman, Shawn D; Claire, Mark W; Robinson, Tyler D; Meadows, Victoria S

    2014-01-01

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely-detectable potential biosignature is considered to be the detection of oxygen (O_2) or ozone (O_3) simultaneous to methane (CH_4) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here, we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O_2 and O_3 production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O_2 and O_3 build up, caused by fast chemical production of these gases. This results in detectable abiotic O_3 and CH_4 features in the UV-visible, but no detectable abiotic O_2 features. Thus, simultaneous detection of O_3 and CH_4 by a UV-visible mission is not a strong biosignature without proper contextual information. Discrim...

  20. Current status and challenges in optical turbulence simulations in various layers of the Earth's atmosphere

    Science.gov (United States)

    He, Ping; Nunalee, Christopher G.; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    In this study, we present a brief review on the existing approaches for optical turbulence estimation in various layers of the Earth's atmosphere. The advantages and disadvantages of these approaches are also discussed. An alternative approach, based on mesoscale modeling with parameterized turbulence, is proposed and tested for the simulation of refractive index structure parameter (C2n ) in the atmospheric boundary layer. The impacts of a few atmospheric flow phenomena (e.g., low-level jets, island wake vortices, gravity waves) on optical turbulence are discussed. Consideration of diverse geographic settings (e.g., flat terrain, coastal region, ocean islands) makes this study distinct.

  1. High-resolution numerical simulation of Venus atmosphere by AFES (Atmospheric general circulation model For the Earth Simulator)

    Science.gov (United States)

    Sugimoto, Norihiko; AFES project Team

    2016-10-01

    We have developed an atmospheric general circulation model (AGCM) for Venus on the basis of AFES (AGCM For the Earth Simulator) and performed a high-resolution simulation (e.g., Sugimoto et al., 2014a). The highest resolution is T639L120; 1920 times 960 horizontal grids (grid intervals are about 20 km) with 120 vertical layers (layer intervals are about 1 km). In the model, the atmosphere is dry and forced by the solar heating with the diurnal and semi-diurnal components. The infrared radiative process is simplified by adopting Newtonian cooling approximation. The temperature is relaxed to a prescribed horizontally uniform temperature distribution, in which a layer with almost neutral static stability observed in the Venus atmosphere presents. A fast zonal wind in a solid-body rotation is given as the initial state.Starting from this idealized superrotation, the model atmosphere reaches a quasi-equilibrium state within 1 Earth year and this state is stably maintained for more than 10 Earth years. The zonal-mean zonal flow with weak midlatitude jets has almost constant velocity of 120 m/s in latitudes between 45°S and 45°N at the cloud top levels, which agrees very well with observations. In the cloud layer, baroclinic waves develop continuously at midlatitudes and generate Rossby-type waves at the cloud top (Sugimoto et al., 2014b). At the polar region, warm polar vortex surrounded by a cold latitude band (cold collar) is well reproduced (Ando et al., 2016). As for horizontal kinetic energy spectra, divergent component is broadly (k > 10) larger than rotational component compared with that on Earth (Kashimura et al., in preparation). We will show recent results of the high-resolution run, e.g., small-scale gravity waves attributed to large-scale thermal tides. Sugimoto, N. et al. (2014a), Baroclinic modes in the Venus atmosphere simulated by GCM, Journal of Geophysical Research: Planets, Vol. 119, p1950-1968.Sugimoto, N. et al. (2014b), Waves in a Venus general

  2. Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences

    Science.gov (United States)

    Barnett, Philip; Lascar, Claudia

    2012-01-01

    The current journal titles in earth and atmospheric sciences, that are unique to each of two databases, Web of Science and Scopus, were identified using different methods. Comparing by subject category shows that Scopus has hundreds of unique titles, and Web of Science just 16. The titles unique to each database have low SCImago Journal Rank…

  3. The Viability with Respect to Temperature of Micro-Organisms Incident on the Earth's Atmosphere

    Science.gov (United States)

    Hoyle, F.; Wickramasinghe, N. C.; Al-Mufti, S.

    Using laboratory measurements of the resistance of E. coli to flash-heating, it is shown that a large fraction of interplanetary micro-organisms in prograde orbits could be added to the Earth without losing viability due to beating by the atmospheric gases.

  4. Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences

    Science.gov (United States)

    Barnett, Philip; Lascar, Claudia

    2012-01-01

    The current journal titles in earth and atmospheric sciences, that are unique to each of two databases, Web of Science and Scopus, were identified using different methods. Comparing by subject category shows that Scopus has hundreds of unique titles, and Web of Science just 16. The titles unique to each database have low SCImago Journal Rank…

  5. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    Science.gov (United States)

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  6. A Reducing Atmosphere From Out-gassing of the Early Earth

    Science.gov (United States)

    Schaefer, L.; Fegley, B., Jr.

    2005-08-01

    Earth's present atmosphere originated from out-gassing of volatile-bearing grains. We calculated the composition of volatiles out-gassed from chondritic planetary bodies. We present results for average CI, CM, CV, H, L, and EH chondrites, which are the building blocks of the Earth. From the oxygen-isotope mixing (OIM) model, we calculated a composition of 70% EH, 21% H, 5% CV, and 4% CI chondritic matter for the early Earth. The major out-gassed volatiles for these starting compositions are CH4, N2, NH3, H2, and H2O. The Miller-Urey experiment demonstrated that a reducing atmosphere like this generates amino acids and other organic compounds that are essential for the formation of life. This work is supported by the NASA Astrobiology Program. \\leavevmode \\epsfxsize=0.9\\hsize \\epsfbox{49.eps}

  7. Galactic cosmic rays on extrasolar Earth-like planets: II. Atmospheric implications

    CERN Document Server

    Grießmeier, J --M; Stadelmann, A; Grenfell, J L; Atri, D

    2016-01-01

    (abridged abstract) Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields. As described in the companion article (Paper I), a weak magnetic field results in a high flux of galactic cosmic rays to the top of the planetary atmosphere. We investigate effects that may result from a high flux of galactic cosmic rays both throughout the atmosphere and at the planetary surface. Using an air shower approach, we calculate how the atmospheric chemistry and temperature change under the influence of galactic cosmic rays for Earth-like (N_2-O_2 dominated) atmospheres. We evaluate the production and destruction rate of atmospheric biosignature molecules. We derive planetary emission and transmission spectra to study the influence of galactic cosmic rays on biosignature detectability. We then calculate the resulting surface UV flux, the surface particle flux, and the associated equivalent biological dose rates. We find that up to 20% of stratospheric ozone is destroyed by cosmic-ra...

  8. An objective frequency domain method for quantifying confined aquifer compressible storage using Earth and atmospheric tides

    Science.gov (United States)

    Acworth, R. Ian; Halloran, Landon J. S.; Rau, Gabriel C.; Cuthbert, Mark O.; Bernardi, Tony L.

    2016-11-01

    The groundwater hydraulic head response to the worldwide and ubiquitous atmospheric tide at 2 cycles per day (cpd) is a direct function of confined aquifer compressible storage. The ratio of the responses of hydraulic head to the atmospheric pressure change is a measure of aquifer barometric efficiency, from which formation compressibility and aquifer specific storage can be determined in situ rather than resorting to laboratory or aquifer pumping tests. The Earth tide also impacts the hydraulic head response at the same frequency, and a method is developed here to quantify and remove this interference. As a result, the barometric efficiency can be routinely calculated from 6-hourly hydraulic head, atmospheric pressure, and modeled Earth tide records where available for a minimum of 15 days duration. This new approach will be of critical importance in assessing worldwide problems of land subsidence or groundwater resource evaluation that both occur due to groundwater abstraction.

  9. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.

    Science.gov (United States)

    Planavsky, Noah J; Reinhard, Christopher T; Wang, Xiangli; Thomson, Danielle; McGoldrick, Peter; Rainbird, Robert H; Johnson, Thomas; Fischer, Woodward W; Lyons, Timothy W

    2014-10-31

    The oxygenation of Earth's surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth's surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans.

  10. Two cases of atmospheric escape in the Solar System: Titan and Earth

    Science.gov (United States)

    Dandouras, I.

    2012-01-01

    Escape into space of the constituents of a planetary upper atmosphere can occur either in the form of neutral gas (thermal escape or non-thermal escape), or in the form of plasma. The long-term stability of an atmosphere results from the balance between source and escape rates. Two cases will be examined: Titan and Earth. Titan is the second largest planetary satellite in the Solar System and is the only one that has an atmosphere as substantial as that of the Earth. Titan's nitrogen rich atmosphere is embedded within Saturn's magnetosphere, and is directly bombarded by energetic ions due to Titan's lack of a significant intrinsic magnetic field. In addition to thermal escape, energy input from Saturn's magnetosphere and from Solar UV radiation can drive several non-thermal escape mechanisms in Titan's upper atmosphere: sputtering, dissociation and dissociative ionization of molecular nitrogen producing pick-up ions, photochemical production of fast neutrals etc. Earth also constantly loses matter, mostly in the form of H+ and O+ ions, through various outflow processes from the upper atmosphere and ionosphere. Most of the ions are low-energy (plasma reservoir is the plasmasphere, which is a toroidal region encircling the Earth and containing cold and dense plasma. Plasma plumes, forming in the outer plasmasphere and released outwards, constitute a well-established mode for plasmaspheric material release to the magnetosphere. They are associated to geomagnetically active periods and the related electric field change. In 1992 Lemaire and Shunk proposed the existence of an additional mode for plasmaspheric material release and escape: a plasmaspheric wind, steadily transporting cold plasmaspheric plasma outwards across the geomagnetic field lines. This has been proposed on a theoretical basis. Direct detection of this wind has, however, eluded observation in the past. Analysis of ion measurements, acquired in the outer plasmasphere by the CIS experiment onboard the

  11. Contributions of high-altitude winds and atmospheric moment of inertia to the atmospheric angular momentum-earth rotation relationship

    Science.gov (United States)

    Taylor, H. A., Jr.; Mayr, H. G.; Kramer, L.

    1985-01-01

    For many years it has been recognized that recurrent modulations occur in the time series of the earth's rotation rate or, alternatively, the change in the length of the day (Delta-LOD). Studies relating Delta-LOD to global patterns of zonal winds have confirmed that the variability of atmospheric angular momentum (M) is of sufficient magnitude to account for a large portion of the gross periodicities observed in the earth rotation. The present investigation is concerned with the importance of the contributions of the moment of inertia and high-altitude winds to the angular momentum budget. On the basis of an analysis of the various factors, it is found that within the available data, contributions of high-altitude winds and atmospheric moment of inertia reach levels detectable in the atmospheric angular momentum budget. Nevertheless, for the period December 1978 to December 1979 these contributions are not sufficient to resolve the apparent short-term discrepancies which are evident between Delta-LOD and M.

  12. The Atmospheres of Earth-like Planets after Giant Impact Events

    CERN Document Server

    Lupu, R E; Marley, Mark S; Schaefer, Laura; Fegley, Bruce; Morley, Caroline; Cahoy, Kerri; Freedman, Richard; Fortney, Jonathan J

    2014-01-01

    It is now understood that the accretion of terrestrial planets naturally involves giant collisions, the moon-forming impact being a well known example. In the aftermath of such collisions the surface of the surviving planet is very hot and potentially detectable. Here we explore the atmospheric chemistry, photochemistry, and spectral signatures of post-giant-impact terrestrial planets enveloped by thick atmospheres consisting predominantly of CO2, and H2O. The atmospheric chemistry and structure are computed self-consistently for atmospheres in equilibrium with hot surfaces with composition reflecting either the bulk silicate Earth (which includes the crust, mantle, atmosphere and oceans) or Earth's continental crust. We account for all major molecular and atomic opacity sources including collision-induced absorption. We find that these atmospheres are dominated by H2O and CO2, while the formation of CH4, and NH3 is quenched due to short dynamical timescales. Other important constituents are HF, HCl, NaCl, an...

  13. Evaluating Land-Atmosphere Moisture Feedbacks in Earth System Models With Spaceborne Observations

    Science.gov (United States)

    Levine, P. A.; Randerson, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-12-01

    We have developed a set of metrics for measuring the feedback loop between the land surface moisture state and the atmosphere globally on an interannual time scale. These metrics consider both the forcing of terrestrial water storage (TWS) on subsequent atmospheric conditions as well as the response of TWS to antecedent atmospheric conditions. We designed our metrics to take advantage of more than one decade's worth of satellite observations of TWS from the Gravity Recovery and Climate Experiment (GRACE) along with atmospheric variables from the Atmospheric Infrared Sounder (AIRS), the Global Precipitation Climatology Project (GPCP), and Clouds and the Earths Radiant Energy System (CERES). Metrics derived from spaceborne observations were used to evaluate the strength of the feedback loop in the Community Earth System Model (CESM) Large Ensemble (LENS) and in several models that contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop were generally stronger in tropical and temperate regions in CMIP5 models and even more so in LENS compared to satellite observations. Our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere, which is consistent with previous studies conducted across different spatial and temporal scales.

  14. Synthesis of nitrous oxide by lightning in the early anoxic Earth's atmosphere

    Science.gov (United States)

    Navarro, K. F.; Navarro-Gonzalez, R.; McKay, C. P.

    2013-12-01

    Carbon dioxide (CO2) was the main atmospheric component of the early Earth's atmosphere and exerted a key role in climate by maintaining a hydrosphere during a primitive faint Sun [1]; however, CO2 was eventually removed from the atmosphere by rock weathering and sequestered in the Earth's crust and mantle [1]. Nitric oxide (NO) was fixed by lightning discharges at a rate of 1×1016 molecules J-1 in CO2 (50-80%) rich atmospheres [2]. As the levels of atmospheric CO2 dropped to 20%, the production rate of NO by lightning rapidly decreased to 2×1014 molecules J-1 and then slowly diminished to 1×1014 molecules J-1 at CO2 levels of about 2.5% [2]. In order to maintain the existence of liquid water in the early Earth, it is required to warm up the planet with other greenhouse gases such as methane (CH4) [3]. Here we report an experimental study of the effects of lightning discharges on the nitrogen fixation rate during the evolution of the Earth's early atmosphere from 10 to 0.8 percent of carbon dioxide with methane concentrations from 0 to 1,000 ppm in molecular nitrogen. Lightning was simulated in the laboratory by a plasma generated with a pulsed Nd-YAG laser [2]. Our results show that the production of NO by lightning is independent of the presence of methane but drops from 3×1014 molecules J-1 in 10% CO2 to 5×1013 molecules J-1 in 1% CO2. Surprisingly, nitrous oxide (N2O) is also produced at a rate of 4×1013 molecules J-1 independent of the levels of CH4 and CO2. N2O is produced by lightning in the contemporaneous oxygenated Earth's atmosphere at a comparable rate of (0.4-1.5)×1013 molecules J-1 [4, 5], but was not detected in nitrogen-carbon dioxide mixtures in the absence of oxygen [6]. The only previously reported abiotic synthesis of N2O was by corona discharges in rich CO2 atmospheres (20-80%) with a production rate of 8×1012 molecules J-1 [6]; however at lower CO2 (atmosphere was the main source of N2O in nitrogen dominated atmospheres. N2O is not

  15. Constraints on Earth degassing history from the argon isotope composition of Devonian atmosphere

    Science.gov (United States)

    Stuart, F. M.; Mark, D.

    2012-04-01

    The primordial and radiogenic isotopes of the noble gases combine to make them a powerful tool for determining the time and tempo of the outgassing of the Earth's interior. The outgassing history of the Earth is largely constrained from measurements of the isotopic composition of He, Ne, Ar and Xe in samples of modern mantle, crust and atmosphere. There have been few unequivocal measurement of the isotopic composition of noble gases in ancient atmosphere. We have re-visited whether ancient Ar is trapped in the ~400 Ma Rhynie chert [1]. We have analysed samples of pristine Rhynie chert using the ARGUS multi-collector mass spectrometer calibrated against the new determination of atmospheric Ar isotope ratios [2]. 40Ar/36Ar ratios are low, with many lower than the modern air value (298.8). Importantly these are accompanied by atmospheric 38Ar/36Ar ratios indicating that the low 40Ar/36Ar are not due to mass fractionation. We conclude that the Rhynie chert has captured Devonian atmosphere-derived Ar. The data indicate that the Devonian atmosphere 40Ar/36Ar was at least 3 % lower than the modern air value. Thus the Earth's atmosphere has accumulated at least 5 ± 0.2 x 1016 moles of 40Ar in the last 400 million years, at an average rate of 1.24 ± 0.06 x 108 mol 40Ar/year. This overlaps the rate determined from ice cores for the last 800,000 years [3] and implies that there has been no resolvable temporal change in Earth outgassing rate since mid-Palaeozoic times. The new data require the Earth outgassed early, and suggests that pristine samples of Archaean and Proterozoic chert may prove useful as palaeo-atmosphere tracers. [1] G. Turner, J. Geol. Soc. London 146, 147-154 (1989) [2] D. Mark, F.M. Stuart, M. de Podesta, Geochim. Cosmochim. Acta 75, 7494-7501 [3] M. Bender et al., Proc. Nat. Acad. Sci. 105, 8232-8237 (2008)

  16. Sensitivity of Biomarkers to Changes in Chemical Emissions in the Earth's Proterozoic Atmosphere

    CERN Document Server

    Grenfell, John Lee; von Paris, Philip; Godolt, Mareike; Hedelt, Pascal; Patzer, Beate; Stracke, Barbara; Rauer, Heike

    2010-01-01

    The search for life beyond the Solar System is a major activity in exoplanet science. However, even if an Earth-like planet were to be found, it is unlikely to be at a similar stage of evolution as the modern Earth. It is therefore of interest to investigate the sensitivity of biomarker signals for life as we know it for an Earth-like planet but at earlier stages of evolution. Here, we assess biomarkers i.e. species almost exclusively associated with life, in present-day and in 10% present atmospheric level oxygen atmospheres corresponding to the Earth's Proterozoic period. We investigate the impact of proposed enhanced microbial emissions of the biomarker nitrous oxide, which photolyses to form nitrogen oxides which can destroy the biomarker ozone. A major result of our work is regardless of the microbial activity producing nitrous oxide in the early anoxic ocean, a certain minimum ozone column can be expected to persist in Proterozoic-type atmospheres due to a stabilising feedback loop between ozone, nitrou...

  17. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    Science.gov (United States)

    Som, Sanjoy M.

    2010-11-01

    The discovery of a habitable Earth-like planet beyond our solar-system will be remembered as one of the major breakthroughs of 21st century science, and of the same magnitude as Copernicus' heliocentric model dating from the mid 16th century. The real astrobiological breakthrough will be the added results from atmospheric remote sensing of such planets to determine habitability. Atmospheres, in both concentration and composition are suggestive of processes occurring at the planetary surface and upper crust. Unfortunately, only the modern Earth's atmosphere is known to be habitable. I investigate the density and pressure of our planet's early atmosphere before the rise of oxygen 2.5 billion years ago, because our planet was very much alive microbially. Such knowledge gives us another example of a habitable atmosphere. I also investigates the atmosphere of early Mars, as geomorphic signatures on its surface are suggestive of a past where liquid water may have present in a warmer climate, conditions suitable for the emergence of life, compared with today's 6 mbar CO2-dominated atmosphere. Using tools of fluvial geomorphology, I find that the largest river-valleys on Mars do not record a signature of a sustained hydrological cycle, in which precipitation onto a drainage basin induces many cycles of water flow, substrate incision, water ponding, and return to the atmosphere via evaporation. Rather, I conclude that while episodes of flow did occur in perhaps warmer environments, those periods were short-lived and overprinted onto a dominantly cold and dry planet. For Earth, I develop a new method of investigating atmospheric density and pressure using the size of raindrop imprints, and find that raindrop imprints preserved in the 2.7 billion year old Ventersdorp Supergroup of South Africa are consistent with precipitation falling in an atmosphere of near-surface density 0.1 kg/m3, compared to a modern value of 1.2 kg/m3, further suggesting a nitrogen level of at most

  18. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  19. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    CERN Document Server

    Kasting, James F; Kopparapu, Ravi Kumar

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3-D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a 'moist greenhouse' explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing 'inverse' climate calculations to determine habitable zone boundaries using 1-D models.

  20. Earth's changing global atmospheric energy cycle in response to climate change.

    Science.gov (United States)

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P

    2017-01-24

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

  1. Teaching about the Early Earth: Evolution of Tectonics, Life, and the Early Atmosphere

    Science.gov (United States)

    Mogk, D. W.; Manduca, C. A.; Kirk, K.; Williams, M. L.

    2007-12-01

    The early history of the Earth is the subject of some of the most exciting and innovative research in the geosciences, drawing evidence from virtually all fields of geoscience and using a variety of approaches that include field, analytical, experimental, and modeling studies. At the same time, the early Earth presents unique opportunities and challenges in geoscience education: how can we best teach "uncertain science" where the evidence is either incomplete or ambiguous? Teaching about early Earth provides a great opportunity to help students understand the nature of scientific evidence, testing, and understanding. To explore the intersection of research and teaching about this enigmatic period of Earth history, a national workshop was convened for experts in early Earth research and undergraduate geoscience education. The workshop was held in April, 2007 at the University of Massachusetts at Amherst as part of the On the Cutting Edge faculty professional development program. The workshop was organized around three scientific themes: evolution of global tectonics, life, and the early atmosphere. The "big scientific questions" at the forefront of current research about the early Earth were explored by keynote speakers and follow-up discussion groups: How did plate tectonics as we know it today evolve? Were there plates in the Hadean Eon? Was the early Earth molten? How rapidly did it cool? When and how did the atmosphere and hydrosphere evolve? How did life originate and evolve? How did all these components interact at the beginning of Earth's history and evolve toward the Earth system we know today? Similar "big questions" in geoscience education were addressed: how to best teach about "deep time;" how to help students make appropriate inferences when geologic evidence is incomplete; how to engage systems thinking and integrate multiple lines of evidence, across many scales of observation (temporal and spatial), and among many disciplines. Workshop participants

  2. Study of the dynamics of meteoroids through the Earth's atmosphere and retrieval of meteorites

    Science.gov (United States)

    Guadalupe Cordero Tercero, Maria; Farah-Simon, Alejandro; Velázquez-Villegas, Fernando

    2016-07-01

    When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each and every one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors (shooting stars) are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c ) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f ) recover and study meteorites. During this meeting, the academic

  3. THEORETICAL EMISSION SPECTRA OF ATMOSPHERES OF HOT ROCKY SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuichi; Ikoma, Masahiro; Kawahara, Hajime; Nagahara, Hiroko; Kawashima, Yui [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakamoto, Taishi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-03-10

    Motivated by recent detection of transiting high-density super-Earths, we explore the detectability of hot rocky super-Earths orbiting very close to their host stars. In an environment hot enough for their rocky surfaces to be molten, they would have an atmosphere composed of gas species from the magma oceans. In this study, we investigate the radiative properties of the atmosphere that is in gas/melt equilibrium with the underlying magma ocean. Our equilibrium calculations yield Na, K, Fe, Si, SiO, O, and O{sub 2} as the major atmospheric species. We compile the radiative absorption line data of those species available in the literature and calculate their absorption opacities in the wavelength region of 0.1–100 μm. Using them, we integrate the thermal structure of the atmosphere. Then, we find that thermal inversion occurs in the atmosphere because of the UV absorption by SiO. In addition, we calculate the ratio of the planetary to stellar emission fluxes during secondary eclipse, and we find prominent emission features induced by SiO at 4 μm detectable by Spitzer, and those at 10 and 100 μm detectable by near-future space telescopes.

  4. The Solubility of Rock in Steam Atmospheres of the Early Earth and Hot Rocky Exoplanets

    Science.gov (United States)

    Fegley, Bruce

    2016-07-01

    Extensive experimental studies show all major rock-forming elements (e.g., Si, Mg, Fe, Ca, Al, Na, K) dissolve in steam to a greater or lesser extent. We use these results to compute chemical equilibrium abundances of rocky element - bearing gases in steam atmospheres equilibrated with silicate magma oceans. Rocky elements partition into steam atmospheres as volatile hydroxide gases (e.g., Si(OH)4, Mg(OH)2, Fe(OH)2, Ni(OH)2, Al(OH)3, Ca(OH)2, NaOH, KOH) and via reaction with HF and HCl as volatile halide gases (e.g., NaCl, KCl, CaFOH, CaClOH, FAl(OH)2) in much larger amounts than expected from their vapor pressures over volatile-free solid or molten rock at high temperatures expected for steam atmospheres on the early Earth and hot rocky exoplanets. We quantitatively compute the extent of fractional vaporization by defining gas/magma distribution coefficients and show Earth's sub-solar Si/Mg ratio may be due to loss of a primordial steam atmosphere. We conclude hot rocky exoplanets that are undergoing or have undergone escape of steam-bearing atmospheres may experience fractional vaporization and loss of Si, Mg, Fe, Ni, Al, Ca, Na, and K. This loss can modify their bulk composition, density, heat balance, and interior structure. This work was supported by NSF Astronomy Program Grant AST-1412175.

  5. Super-Earth Atmospheres: Self-Consistent Gas Accretion and Retention

    CERN Document Server

    Ginzburg, Sivan; Sari, Re'em

    2015-01-01

    Some recently discovered short-period Earth to Neptune sized exoplanets (super Earths) have low observed mean densities which can only be explained by voluminous gaseous atmospheres. Here, we study the conditions allowing the accretion and retention of such atmospheres. We self-consistently couple the nebular gas accretion onto solid cores and the subsequent evolution of gas envelopes following the dispersal of the protoplanetary disk. Specifically, we address mass-loss due to both photo-evaporation and cooling of the planet. We find that planets shed their outer layers (dozens of percents in mass) following the disk's dispersal (even without photo-evaporation), and their atmospheres shrink in a few Myr to a thickness comparable to the radius of the underlying solid core. At this stage, atmospheres containing less particles than the core (equivalently, lighter than a few % of the planet's mass) are blown away completely by heat coming from the cooling core, while heavier atmospheres cool and contract on a tim...

  6. Possible cometary origin of heavy noble gases in the atmospheres of Venus, earth, and Mars

    Science.gov (United States)

    Owen, Tobias; Bar-Nun, Akiva; Kleinfeld, Idit

    1992-01-01

    Due consideration of the probable history of the Martian atmosphere, as well as noble-gas data from the Mars-derived SNC meteorites and from laboratory tests on the trapping of noble gases in ice, are the bases of the presently hypothesized domination of noble gases in the atmospheres of all terrestrial planets by a mixture of internal components and a contribution from comets. If verified, this hypothesis would underscore the significance of impacts for these planets' volatile inventories. The sizes of the hypothesized comets are of the order of 120 km for Venus and only 80 km for that which struck the earth.

  7. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.;

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders...... for effective land surface representation in water resource modeling” (2009- 2012). The purpose of the new research project is to develop remote sensing based model tools capable of quantifying the relative effects of site-specific land use change and climate variability at different spatial scales....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  8. Nadir measurements of the Earth's atmosphere with the ACE FTS: first results

    Directory of Open Access Journals (Sweden)

    W. F. J. Evans

    2008-07-01

    Full Text Available The primary objective of the Canadian SCISAT mission is to investigate the processes that control the distribution of ozone in the stratosphere. The SCISAT satellite consists of two major science instruments: an Atmospheric Chemistry Experiment (ACE high-resolution Fourier-transform spectrometer (FTS and an ultraviolet/visible/near-infrared spectrograph. These instruments primarily function in occultation mode; however, during the dark portion of the orbit the Earth passes between the sun and the satellite. This configuration provides the opportunity to acquire some nadir-view FTIR spectra of the Earth. Nadir spectra obtained with the ACE FTS are presented and analyzed for methane, ozone and nitrous oxide. The measurements show that the instrument should have sufficient signal-to-noise ratio to determine column gas amounts of the major trace constituents in the atmosphere. Possible applications of these measurements to the study of global warming and air pollution monitoring are discussed.

  9. Hadley cell dynamics of a cold and virtually dry Snowball Earth atmosphere

    Science.gov (United States)

    Voigt, Aiko; Held, Isaac; Marotzke, Jochem

    2010-05-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate a cold and virtually dry Snowball Earth atmosphere that results from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2. The aim of this study is the investigation of the zonal-mean circulation of a Snowball Earth atmosphere, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. To ease comparison with theories, incoming solar insolation follows permanent equinox conditions with disabled diurnal cycle. The meridional circulation consists of a thermally direct cell extending from the equator to 45 N/S with ascent in the equatorial region, and a weak thermally indirect cell with descent between 45 and 65 N/S and ascent in the polar region. The former cell corresponds to the present-day Earth's Hadley cell, while the latter can be viewed as an eddy-driven Ferrell cell; the present-day Earth's direct polar cell is missing. The Hadley cell itself is subdivided into a vigorous cell confined to the troposphere and a weak deep cell reaching well into the stratosphere. The dynamics of the vigorous Snowball Earth Hadley cell differ substantially from the dynamics of the present-day Hadley cell. The zonal momentum balance shows that in the poleward branch of the vigorous Hadley cell, mean flow meridional advection of absolute vorticity is not only balanced by eddy momentum flux convergence but also by vertical diffusion. Inside the poleward branch, eddies are more important in the upper part and vertical diffusion is more important in the lower part. Vertical diffusion also contributes to the meridional momentum balance as it decelerates the vigorous Hadley cell by downgradient momentum mixing between its poleward and equatorward branch. Zonal winds, therefore, are not in thermal wind balance in

  10. Xe anions in stable Mg-Xe compounds: the mechanism of missing Xe in earth atmosphere

    CERN Document Server

    Miao, Mao-sheng

    2013-01-01

    The reactivity of noble gas elements is important for both fundamental chemistry and geological science. The discovery of the oxidation of Xe extended the doctrinal boundary of chemistry that a complete shell is inert to reaction. The oxidations of Xe by various geological substances have been researched in order to explain the missing Xe in earth atmosphere. Among many proposals, the chemistry mechanisms are straightforward as they identify chemical processes that can capture Xe in earth interior. However, all the mechanisms based on current noble gas chemistry face the same difficulty: the earth lower mantle and core are rich in metals and therefore their chemical environment is reductive. On the other hand, up till now, the opposite chemical inclination, the reductive propensity, i.e. gaining electrons and forming anions, has not been proposed and examined for noble gas elements. In this work, we demonstrate, using first principles calculations and an efficient structure prediction method, that Xe and Kr c...

  11. Concept of a space optoelectronic system for environmental monitoring of the near-earth space, atmosphere, and earth surface

    Science.gov (United States)

    Eltsov, Anatoli V.; Karasev, Vladimir I.; Kolotkov, Vjacheslav V.; Kondranin, Timothy V.

    1997-06-01

    The sharp increase of the man-induced pressure on the environment and hence the need to predict and monitor natural anomalies makes global monitoring of the ecosphere of planet Earth an issue of vital importance. The notion of the ecosphere covers three basic shells closely interacting with each other: the near-Earth space, the atmosphere and the Earth surface. In the near-Earth space (covering 100 to 2000 km altitudes) the primary objects of monitoring are: functioning artificial space objects, the fragments of their constructions or space rubbish (which by estimation amounts to 3.5 million pieces including 30,000 to 70,000 objects having dimensions sufficient for heavy damaging or even destroying functioning space objects) and objects of space origin (asteroids, meteorites and comets) whose trajectories come closely enough to the Earth. Maximum concentrations of space rubbish observed on orbits with altitudes of 800, 1000 and 1500 km and inclinations of 60 to 100 deg. are related in the first place to spacecraft launch requirements. Taking into account the number of launches implemented by different countries in the framework of their own space programs the probability of collision of functioning spacecraft with space rubbish may be estimation increase from (1.5 - 3.5)% at present to (15 - 40)% by 2020. Besides, registration of space radiation flow intensity and the solar activity is no less important in this space area. Subject to control in the atmosphere are time and space variations in temperature fields, humidity, tracing gas concentrations, first of all ozone and greenhouse gases, the state of the cloud cover, wind velocity, etc. The range of objects to be under environmental management of Earth surface is just as diverse and essentially should include the state of the surface and the near-surface layer of seas and oceans, internal reservoirs, the cryosphere and the land surface along with vegetation cover, natural resources and human activities. No matter

  12. Effect of the shrinking dipole on solar-terrestrial energy input to the Earth's atmosphere

    Science.gov (United States)

    McPherron, R. L.

    2011-12-01

    The global average temperature of the Earth is rising rapidly. This rise is primarily attributed to the release of greenhouse gases as a result of human activity. However, it has been argued that changes in radiation from the Sun might play a role. Most energy input to the Earth is light in the visible spectrum. Our best measurements suggest this power input has been constant for the last 40 years (the space age) apart from a small 11-year variation due to the solar cycle of sunspot activity. Another possible energy input from the Sun is the solar wind. The supersonic solar wind carries the magnetic field of the Sun into the solar system. As it passes the Earth it can connect to the Earth's magnetic field whenever it is antiparallel t the Earth's field. This connection allows mass, momentum, and energy from the solar wind to enter the magnetosphere producing geomagnetic activity. Ultimately much of this energy is deposited at high latitudes in the form of particle precipitation (aurora) and heating by electrical currents. Although the energy input by this process is miniscule compared to that from visible radiation it might alter the absorption of visible radiation. Two other processes affected by the solar cycle are atmospheric entry of galactic cosmic rays (GCR) and solar energetic protons (SEP). A weak solar magnetic field at sunspot minimum facilitates GCR entry which has been implicated in creation of clouds. Large coronal mass ejections and solar flares create SEP at solar maximum. All of these alternative energy inputs and their effects depend on the strength of the Earth's magnetic field. Currently the Earth's field is decreasing rapidly and conceivably might reverse polarity in 1000 years. In this paper we describe the changes in the Earth's magnetic field and how this might affect GCR, SEP, electrical heating, aurora, and radio propagation. Whether these effects are important in global climate change can only be determined by detailed physical models.

  13. Responses of atmospheric electric field and air-earth current to variations of conductivity profiles

    Science.gov (United States)

    Makino, M.; Ogawa, T.

    1984-05-01

    A global circuit model is constructed to study responses of air-earth current and electric field to a variation of atmospheric electrical conductivity profile. The model includes the orography and the global distribution of thunderstorm generators. The conductivity varies with latitude and exponentially with altitude. The thunderstorm cloud is assumed to be a current generator with a positive source at the top and a negative one at the bottom. The UT diurnal variations of the global current and the ionospheric potential are evaluated considering the local-time dependence of thunderstorm activity. The global distribution of the electric field and the air-earth current are affected by the orography and latitudinal effects. Assuming a variation of conductivity profile, responses of atmospheric electrical parameters are investigated. The nonuniform decrement of the conductivity with altitude increases both the electric field and the air-earth current. The result suggests a possibility that the increment of the electric field and the air-earth current after a solar flare may be caused by this scheme, due to Forbush decrease.

  14. Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth

    Directory of Open Access Journals (Sweden)

    Vivian Martins Gomes

    2013-01-01

    Full Text Available The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity are given at the periapsis of its trajectory around the Earth.

  15. The Stability of Hydrogen-Rich Atmospheres of Earth-Like Planets

    Science.gov (United States)

    Zahnle, Kevin

    2016-01-01

    Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydro- dynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than 1.6 Earth radii.

  16. A NEW HYPOTHESIS AND PHYSICAL BASES OF ORIGIN OF ROSARY LIGHTNING IN THE ATMOSPHERE OF EARTH

    Directory of Open Access Journals (Sweden)

    M.I. Baranov

    2016-05-01

    Full Text Available Purpose. Development and scientific ground of new hypothesis of origin of rosary lightning (RL is in the air atmosphere of Earth. Methodology. Electrophysics bases of technique of high (ever-higher impulsive voltage and large (weak impulsive currents, and also theoretical bases of quantum physics. Results. The substantive provisions of new hypothesis of origin are formulated RL. Taking into account these positions bases of close electrophysics theory of origin are developed in an air atmosphere RL. Basic electrophysics terms, resulting in the transition of linear lightning (LL in RL, are indicated. Originality. First on the basis of conformities to the law of quantum physics the new electrophysics mechanism of education is offered RL from LL. It is set that this mechanism the wave longitudinal distributing of drifting lone electrons is underlaid in the plasma cylindrical channel of a long spark storm digit in an air atmosphere, resulting in forming in him of «light» («hot» and «dark» («cold» longitudinal areas of periodic electronic wavepackages (EWP. It is shown that for LL information the areas of EWP periodically up-diffused along the channel of lightning are characterized the small and unnoticeable for observers lengths, and for RL − by large lengths and by sight noticeable for observers from earth. Practical value. Deepening of scientific knowledges about physics of such global atmospheric phenomenon as lightning. Expansion of scientific presentations of humanity about circumferential tellurians nature and difficult natural physical processes, flowings in it.

  17. Using the Rossiter-McLaughlin effect to observe the transmission spectrum of Earth's atmosphere

    CERN Document Server

    Yan, Fei; Petr-Gotzens, Monika G; Pallé, Enric; Zhao, Gang

    2015-01-01

    Due to stellar rotation, the observed radial velocity of a star varies during the transit of a planet across its surface, a phenomenon known as the Rossiter-McLaughlin (RM) effect. The amplitude of the RM effect is related to the radius of the planet which, because of differential absorption in the planetary atmosphere, depends on wavelength. Therefore, the wavelength-dependent RM effect can be used to probe the planetary atmosphere. We measure for the first time the RM effect of the Earth transiting the Sun using a lunar eclipse observed with the ESO HARPS spectrograph. We analyze the observed RM effect at different wavelengths to obtain the transmission spectrum of the Earth's atmosphere after the correction of the solar limb-darkening and the convective blueshift. The ozone Chappuis band absorption as well as the Rayleigh scattering features are clearly detectable with this technique. Our observation demonstrates that the RM effect can be an effective technique for exoplanet atmosphere characterization. It...

  18. XUV complex refractive indices of aerosols in the atmospheres of Titan and the primitive Earth

    Science.gov (United States)

    Gavilan, Lisseth; Neumann, Maciej; Bulkin, Pavel; Popescu, Horia; Steffan, Martin; Esser, Norbert; Carrasco, Nathalie

    2016-10-01

    The complex refractive indices of tholins, simulating aerosols in the atmosphere of Titan and the primitive earth, have been measured over a wide spectral range, including the soft X-ray, vacuum-ultraviolet (VUV), and UV-Visible. The soft X-ray and VUV spectral ranges are in particular relevant to radiative transfer models of solar irradiation of primitive atmospheres (Lammer et al. 2008) and may elucidate the (anti-)greenhouse potential of photochemical aerosols.Thin films were grown using the PAMPRE capacitively coupled plasma setup (Szopa et al. 2006; Carrasco et al. 2009). Gas mixtures consisting of CH4/N2 with 5:95 ratios were used to simulate Titan's atmospheric composition. For the primitive Earth, gas mixtures of N2/CO2/H2 and N2/CO2/CH4 were used as described in Fleury et al. (2014).State-of-the-art laboratory techniques were used to determine the refractive indices of such tholin films. These include VUV ellipsometry (performed in collaboration with the Metrology Light Source in Berlin) and synchrotron X-ray spectroscopy (performed at the SEXTANTS beamline of the SOLEIL synchrotron). While VUV spectroscopy reveals new electronic transitions due to plasmon resonances in tholins, X-ray spectra reveal the C and O absorption edges of these solids. The refractive indices are compared to results from Khare et al. (1984). Implications on the optical properties of these aerosol analogs on the radiative modeling of primitive atmospheres will be discussed.

  19. Estimation of the cosmic ray ionization in the Earth's atmosphere during GLE71

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    DYASTIMA is an application, based on Geant4, which simulates the cascades of particles that are generated due to the interactions of cosmic ray particles with the atmospheres of the planets. The first version of DYASTIMA has been successfully applied to the Earth's atmosphere, providing results that are in accordance with the publications of other models. Since then, important improvements and extensions have been made to this application, including a graphical user interface environment that allows the more effective management of the configuration parameters. Also, the actual modeling of the atmosphere has been changed allowing the definition of more complex cases and at the same time providing, in a more efficient way (with respect to the program's previous version) enhanced outputs. In this work, we combine the new version of DYASTIMA with the NMBANGLE PPOLA model, that estimates the spectrum of SEPs during relativistic proton events using ground level neutron monitor data from the worldwide network. Such a joint model has as a primary scope the simulation of a SEP event and of its secondary products at different altitudes in the Earth's atmosphere, providing at the same time an estimation of the respective ionization rates and of their spatial and temporal dependence. We apply this joint model to GLE 71, on 17 May 2012, and we discuss the results.

  20. Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets

    CERN Document Server

    Schaefer, L

    2009-01-01

    We used chemical equilibrium and chemical kinetic calculations to model chemistry of the volatiles released by heating different types of carbonaceous, ordinary and enstatite chondritic material as a function of temperature and pressure. Our results predict the composition of atmospheres formed by outgassing during accretion of the Earth and other terrestrial planets. Outgassing of CI and CM carbonaceous chondritic material produces H2O-rich (steam) atmospheres in agreement with the results of impact experiments. However, outgassing of other types of chondritic material produces atmospheres dominated by other gases. Outgassing of ordinary (H, L, LL) and high iron enstatite (EH) chondritic material yields H2-rich atmospheres with CO and H2O being the second and third most abundant gases. Outgassing of low iron enstatite (EL) chondritic material gives a CO-rich atmosphere with H2, CO2, and H2O being the next most abundant gases. Outgassing of CV carbonaceous chondritic material gives a CO2-rich atmosphere with ...

  1. Kinetic Theory of Meteor Plasma in the Earth's atmosphere: Implications for Radar Head Echo

    Science.gov (United States)

    Dimant, Y. S.; Oppenheim, M. M.

    2015-12-01

    Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to be observed visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma and how it interacts with the Earth's atmosphere. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo often accompanied by a much longer non-specular trail (see the Figure). Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma responsible for the radar head echo. This theory produces analytic expressions describing the ion and neutral velocity distributions along with the detailed 3-D spatial structure of the near-meteoroid plasma. These expressions predict a number of unexpected features such as shell-like velocity distributions. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a strongly non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for a more accurate quantitative interpretation of radar measurements, estimates of the ionization efficiency, and should help calculate meteoroid and atmosphere parameters from radar head-echo observations. This theory could also help clarify the physical nature of electromagnetic pulses observed during recent meteor showers and associated with the passage of fast-moving meteors through the

  2. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    Science.gov (United States)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate

  3. The Effect of the Earth's Atmosphere on LSST Photometry

    Energy Technology Data Exchange (ETDEWEB)

    Rahlin, Alexandra S.; /MIT /SLAC

    2006-08-30

    The Large Synoptic Survey Telescope (LSST), a ground-based telescope currently under development, will allow a thorough study of dark energy by measuring, more completely and accurately than previously, the rate of expansion of the universe and the large-scale structure of the matter in it. The telescope utilizes a broadband photometric system of six wavelength bands to measure the redshifts of distant objects. The earth's atmosphere makes it difficult to acquire accurate data, since some of the light passing through the atmosphere is scattered or absorbed due to Rayleigh scattering, molecular absorption, and aerosol scattering. Changes in the atmospheric extinction distribution due to each of these three processes were simulated by altering the parameters of a sample atmospheric distribution. Spectral energy distributions of standard stars were used to simulate data acquired by the telescope. The effects of changes in the atmospheric parameters on the photon flux measurements through each wavelength band were observed in order to determine which atmospheric conditions must be monitored most closely to achieve the desired 1% uncertainty on flux values. It was found that changes in the Rayleigh scattering parameter produced the most significant variations in the data; therefore, the molecular volume density (pressure) must be measured with at most 8% uncertainty. The molecular absorption parameters produced less significant variations and could be measured with at most 62% uncertainty. The aerosol scattering parameters produced almost negligible variations in the data and could be measured with > 100% uncertainty. These atmospheric effects were found to be almost independent of the redshift of the light source. The results of this study will aid the design of the atmospheric monitoring systems for the LSST.

  4. Detecting industrial pollution in the atmospheres of earth-like exoplanets

    CERN Document Server

    Lin, Henry W; Loeb, Abraham

    2014-01-01

    Detecting biomarkers, such as molecular oxygen, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biomarker for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope (JWST). We estimate that for an Earth-mass planet in the habitable zone of a white dwarf, methane (CH4) and nitrous oxide (N2O) can be detected at earth-like concentrations with an integration time of ~1.5 hrs and 12 hrs respectively. Detecting pollutants that are produced nearly exclusively by anthropogenic activities will be significantly more challenging. Of these pollutants, we focus on tetrafluoromethane (CF4) and trichlorofluoromethane (CCl3F), which will be the easiest to detect. We estimate that ~1.5 days (~3 days) of total integration time will be sufficie...

  5. Detection of an atmosphere around the super-Earth 55 Cancri e

    CERN Document Server

    Tsiaras, A; Waldmann, I P; Venot, O; Varley, R; Morello, G; Tinetti, G; Barton, E J; Yurchenko, S N; Tennyson, J

    2015-01-01

    Before the discovery of extrasolar planets, super-Earths belonged in the realm of science fiction. However, they appear to constitute the most common planetary type in our galaxy. We know very little about these planets beyond very basic planetary and orbital parameters. The WFC3 camera onboard the HST has enabled the spectroscopic observations of the atmospheres of two super-Earths, GJ1214b and HD97658b, with unprecedented precision; but the published spectra of these two objects are featureless, suggesting an atmosphere covered by thick clouds or made of molecular species much heavier than hydrogen. We report here the analysis of the observations performed with the WFC3 of a third, very hot, super-Earth, 55 Cancri e. Given the brightness of 55 Cancri, the observations were obtained in scanning mode, adopting a very long scanning length and a very high scanning speed. These observational parameters are coupled with the geometrical distortions of the instrument, so we have developed a specialized pipeline to ...

  6. Modeling the Entry of Micrometeoroids into the Atmospheres of Earth-like Planets

    Science.gov (United States)

    Pevyhouse, A. R.; Kress, M. E.

    2011-01-01

    The temperature profiles of micrometeors entering the atmospheres of Earth-like planets are calculated to determine the altitude at which exogenous organic compounds may be released. Previous experiments have shown that flash-heated micrometeorite analogs release organic compounds at temperatures from roughly 500 to 1000 K [1]. The altitude of release is of great importance because it determines the fate of the compound. Organic compounds that are released deeper in the atmosphere are more likely to rapidly mix to lower altitudes where they can accumulate to higher abundances or form more complex molecules and/or aerosols. Variables that are explored here are particle size, entry angle, atmospheric density profiles, spectral type of the parent star, and planet mass. The problem reduces to these questions: (1) How much atmosphere does the particle pass through by the time it is heated to 500 K? (2) Is the atmosphere above sufficient to attenuate stellar UV such that the mixing timescale is shorter than the photochemical timescale for a particular compound? We present preliminary results that the effect of the planetary and particle parameters have on the altitude of organic release.

  7. Noble gas patterns in the atmospheres of Mars and Earth: A comparison via the SNC meteorites

    Science.gov (United States)

    Pepin, R. O.; Becker, R. H.

    1985-01-01

    Noble gas and nitrogen compositions in the glassy phase of the EETA 79001 shergottite correspond closely with Viking measurements. This direct evidence for the origin of the SNC meteorites on Mars, and for trapping of an unfractionated sample of Martian atmospheric gases in the 79001 glass, provides a reasonable basis for comparing the Martian and terrestrial atmospheres with more precision than that afforded by the Viking data set. Results are that, with one exception, elemental and isotopic compositions of nonradiogenic Martian noble gases are similar to those in the Earth's atmosphere; relatively small isotopic discrepancies in Kr and perhaps Xe may be attributable to different degrees of mass fractionation of a common parent reservoir. The anomaly is in Ar composition, where Martian Ar-36/AR-38 approx. 4 is strikingly lower than the values near 5.3 that characterize both the Earth and major meteoritic gas carriers. Although a primordial Martian ratio of 5.3 could in principle be altered by some planet specific process (e.g., cosmic ray spallation of surface materials) operating over geologic time, one has not been found that works.

  8. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    Science.gov (United States)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  9. Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth's atmosphere

    Science.gov (United States)

    Golovin, Yu. M.; Zavelevich, F. S.; Nikulin, A. G.; Kozlov, D. A.; Monakhov, D. O.; Kozlov, I. A.; Arkhipov, S. A.; Tselikov, V. A.; Romanovskii, A. S.

    2014-12-01

    A spaceborne Fourier-transform infrared (FTIR) spectrometer was designed for measuring the spectra of the outgoing Earth's atmosphere radiation and serves for providing for the needs of online meteorology and climatology with regard to obtaining the following kinds of data: vertical profiles of temperature and humidity profiles in the troposphere and the lower stratosphere, the general and altitudinal ozone distribution, concentrations of small gaseous constituents, temperature of the underlying surface, etc. At present, works are underway at the Keldysh Research Centre for creating IKFS-series FTIR spectrometers for satellites in Sun-synchronous orbits: the IKFS-2 instrument for the Meteor-M spacecraft no. 2 of the Meteor-3M space complex (developed and supplied for testing together with the spacecraft) and an advanced IKFS-3 instrument for the Meteor-MP fourth-generation hydrometeorological and oceanographic space complex for Earth monitoring (at the developmental stage). The composition, functional diagram, and technical specifications of the FTIR spectrometers are presented.

  10. Thermal Characteristics of Air in the Problem of Hypersonic Motion of Bodies in the Earth's Atmosphere

    Science.gov (United States)

    Alhussan, K.; Morozov, D. O.; Stankevich, Yu. A.; Stanchits, L. K.; Stepanov, K. L.

    2014-07-01

    The thermal properties of hot air needed for describing the hypersonic motion of bodies in the Earth's atmosphere have been considered. Such motion, as is known, is accompanied by the propagation of strong shock waves analogous to waves generated by powerful explosions. Calculations have been made and data banks have been created for the equations of state and thermal characteristics of air in the temperature and density ranges corresponding to velocities of motion of bodies of up to 10 km/s at altitudes of 0-100 km. The formulation of the problem of hypersonic motion in the absence of thermodynamic equilibrium is discussed.

  11. Possible effects on Earth's climate due to reduced atmospheric ionization by GCR during Forbush Decreases

    Science.gov (United States)

    Portugal, Williamary; Echer, Ezequiel; Pereira de Souza Echer, Mariza; Pacini, Alessandra Abe

    2017-10-01

    This work presents the first results of a study about possible effects on the surface temperature during short periods of lower fluxes of Galactic Cosmic Rays at Earth, called Forbush Decreases. There is a hypothesis that the Galactic Cosmic Ray flux decreases cause changes on the physical-chemical properties of the atmosphere. We have conducted a study to investigate these possible effects on several latitudinal regions, around the ten strongest FDs occurred from 1987 to 2015. We have found a possible increase on the surface temperature at middle and high latitudes during the occurence of these events.

  12. Waiting ages for atmospheric oxygen: A titration hourglass and the oxidation of the solid Earth. (Invited)

    Science.gov (United States)

    Catling, D. C.; Claire, M.; Zahnle, K. J.

    2013-12-01

    Atmospheric O2 increased from less than 1 ppm to 0.2-2% at 2.45-2.22 Ga in the Great Oxidation Event (GOE). A minority opinion is that the GOE happened close to the time when oxygenic photosynthesis originated but evidence from the concentration of redox-sensitive elements in shales and their isotopes, as well as the setting and morphology of stromatolites supports the consensus view that oxygenic photosynthesis had originated by 2.8-2.7 Ga. Models show that O2 can be consumed rapidly by reductants in the Archean so that the air can remain anoxic even after photosynthesis began pumping out O2. Why did the world ultimately shift away from this balance? What conditions were needed to oxygenate the atmosphere in addition to oxygenic photosynthesis? A general principle is that a shift to an oxic environment from a reducing one requires net export of reductant. In planetary science, for example, the oxidation of the surfaces and atmospheres of other planets or satellites is universally attributed to the escape of hydrogen to space. Hydrogen escape explains the redness of Mars, several characteristics of the atmosphere of Venus, and the presence of tenuous O2 atmospheres on Ganymede, Europa, Rhea and Dione. For the Earth's rise of oxygen, many ideas focus on a decline in mantle or seafloor reductant fluxes (driven by internal geologic evolution) to the point where these fluxes were surpassed by biogenic oxygen fluxes. But for such a shift (without a role for hydrogen escape), the surface still has to export net reductant to the mantle. Such net export depends on the ratio of subducted ferric iron versus reduced carbon during the Archean, which remains poorly constrained. Over a decade ago, we proposed that rapid escape of hydrogen to space from the pre-GOE atmosphere would have gradually oxidized the Earth's surface and crust, accompanied by falling levels of atmospheric CH4 [1]. The idea is that Earth underwent a redox titration. A point would be reached where O2 became

  13. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Henry W. [Harvard College, Cambridge, MA 02138 (United States); Abad, Gonzalo Gonzalez; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: ggonzalezabad@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.

  14. The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model

    Science.gov (United States)

    Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.

    2013-12-01

    The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.

  15. Atmospheric, hydrological and oceanic comprehensive contributions to seasonal polar wobble of Earth Rotation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The geophysical quantitative excitation on seasonal polar wobble of Earth Rotation has not been well achieved so far. The atmospheric, hydrologic and oceanic angular momentum variations are investigated from monthly values simulated by a coupled ocean-atmosphere general circulation model. The simulated equatorial AAM functions agree well with that from the JMA operational analysis in 90°E direction, but disagree along Greenwich meridian. As for the annual cycle, not only the hydrologic and oceanic excitations partly match the residuals between geodetic functions of polar wobble and JMA AAM functions, but also the combinations with NCEP and JMA analysis AAM functions are better than those estimated from NCAR-CSM1 climate model.

  16. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingqing, E-mail: wanglq@igsnrr.ac.cn; Liang, Tao, E-mail: liangt@igsnrr.ac.cn; Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.

  17. SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Fraine, Jonathan D.; Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Gillon, Michaeel; Jehin, Emmanueel [Institute d' Astrophysique et de Geophysique, Universite de Liege, Liege (Belgium); Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Desert, Jean-Michel, E-mail: jfraine@astro.umd.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2013-03-10

    We observed the transiting super-Earth exoplanet GJ1214b using warm Spitzer at 4.5 {mu}m wavelength during a 20 day quasi-continuous sequence in 2011 May. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a reanalysis of previous transit observations by Desert et al. In total, we analyze 14 transits of GJ1214b at 4.5 {mu}m, 3 transits at 3.6 {mu}m, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe and Burrows. Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke and Seager and Howe and Burrows using a {chi}{sup 2} analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe and Burrows tholin-haze model remains the best fit, even when systematic differences among observers are considered.

  18. New Data for Modeling Hypersonic Entry into Earth's Atmosphere: Electron-impact Ionization of Atomic Nitrogen

    Science.gov (United States)

    Savin, Daniel Wolf; Ciccarino, Christopher

    2017-06-01

    Meteors passing through Earth’s atmosphere and space vehicles returning to Earth from beyond orbit enter the atmosphere at hypersonic velocities (greater than Mach 5). The resulting shock front generates a high temperature reactive plasma around the meteor or vehicle (with temperatures greater than 10,000 K). This intense heat is transferred to the entering object by radiative and convective processes. Modeling the processes a meteor undergoes as it passes through the atmosphere and designing vehicles to withstand these conditions requires an accurate understanding of the underlying non-equilibrium high temperature chemistry. Nitrogen chemistry is particularly important given the abundance of nitrogen in Earth's atmosphere. Line emission by atomic nitrogen is a major source of radiative heating during atomspheric entry. Our ability to accurately calculate this heating is hindered by uncertainties in the electron-impact ionization (EII) rate coefficient for atomic nitrogen.Here we present new EII calculations for atomic nitrogen. The atom is treated as a 69 level system, incorporating Rydberg values up to n=20. Level-specific cross sections are from published B-Spline R-Matrix-with-Pseudostates results for the first three levels and binary-encounter Bethe (BEB) calculations that we have carried out for the remaining 59 levels. These cross section data have been convolved into level-specific rate coefficients and fit with the commonly-used Arrhenius-Kooij formula for ease of use in hypersonic chemical models. The rate coefficient data can be readily scaled by the relevant atomic nitrogen partition function which varies in time and space around the meteor or reentry vehicle. Providing data up to n=20 also enables modelers to account for the density-dependent lowering of the continuum.

  19. Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic and Biogeochemical Effects

    CERN Document Server

    Thomas, B C; Jackman, C H; Laird, C M; Medvedev, M V; Stolarski, R S; Gehrels, N; Cannizzo, J K; Hogan, D P; Ejzak, L M; Thomas, Brian C.; Melott, Adrian L.; Jackman, Charles H.; Laird, Claude M.; Medvedev, Mikhail V.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.; Ejzak, Larissa M.

    2005-01-01

    Gamma-Ray Bursts (GRBs) are likely to have made a number of significant impacts on the Earth during the last billion years. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of GRBs delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have estimated DNA damage levels caused by increased solar UVB radiation, reduction in solar visible light due to $\\mathrm{NO_2}$ opacity, and deposition of nitrates through rainout of $\\mathrm{HNO_3}$. For the ``typical'' nearest burst in the last billion years, we find globally averaged ozone depletion up to 38%. Localized depletion reaches as much as 74%. Significant global depletion (at least 10%) persists up to about 7 years after the burst. Our results depend strongly on time of year and latitude over which the burst occurs. We find DNA damage of up to 16 times the normal annual global average, well above lethal levels for simple life forms such as phytopl...

  20. Study of strong interaction between atmosphere and solid Earth by using hurricane data

    Science.gov (United States)

    Tanimoto, Toshiro

    2016-04-01

    The original energy of seismic noise is in the atmosphere although the most well-known seismic noise (microseism) gets excited through the ocean, i.e. the atmosphere (winds) excites ocean waves that in turn generate seismic noise in the solid earth. The oceans work as an intermediary in this case. But there is some seismic noise that is directly caused by the atmosphere-solid earth interactions. An extreme example for such a direct interaction can be found in the case of hurricanes (tropical cyclones) when they landfall and move on land. If we had such data, we could study the process of atmosphere-solid earth interactions directly. The Earthscope TA (Transportable Array) provided a few examples of such landfallen hurricanes which moved through the TA that had both seismometers and barometers. This data set allows us to study how ground motions changed as surface pressure (i.e., the source strength) varied over time. Because effects of surface pressure show up at short distances more clearly, we first examine the correlation between pressure and ground motion for the same stations. Plots of vertical ground velocity PSD (Power Spectral Density) vs. surface pressure PSD show that there are no significant ground motions unless pressure PSD becomes larger than 10 (Pa^2/s). Above this threshold, ground motion increases as P**1.69 (P is pressure and 1.69 is close to 5/3). Horizontal ground motions are larger than vertical ground motions (in seismic data), approximately by a factor of 10-30. But we note that the variations of horizontal motions with pressure show a linear relationship. Considering the instrumental design of TA stations, this is more likely due to the tilt of the whole recording system as (lateral) strong winds apply horizontal force on it. This linear trend exists for the whole range of the observed pressure PSD data, extending to small pressure values. We interpret that tilt signals overwhelmed other seismic signals in horizontal seismograms for

  1. How large is the cosmic dust flux into the Earth's atmosphere?

    Science.gov (United States)

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Current estimates of the magnitude of the cosmic dust input rate into the Earth's atmosphere range from 2 to well over 100 tons per day, depending on whether the measurements are made in space, in the middle atmosphere, or at the surface in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there are serious flaws in the interpretation of observations that have been used to make the estimates. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s ^{-1}), and mostly ablate at heights between 80 and 120 km in a region of the atmosphere known as the mesosphere/lower thermosphere (MLT). The resulting metal vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke". These particles are too small to sediment downwards. Instead, they are transported by the general circulation of the atmosphere, taking roughly 5 years to reach the surface. There is great interest in the role smoke particles play as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere. Various new estimates of the dust input will be discussed. The first is from a zodiacal dust cloud model which predicts that more than 90% of the dust entering the atmosphere comes from Jupiter Family Comets; this model is constrained by observations of the zodiacal cloud using the IRAS, COBE and Planck satellites. The cometary dust is predicted to mostly be in a near-prograde orbit, entering the atmosphere with an average velocity around 14 km s ^{-1}. The total dust input should then be about 40 t d ^{-1}. However, relatively few of these particles are observed, even by the powerful Arecibo 430 MHz radar. Coupled models of meteoroid differential ablation

  2. Earthshine observations at high spectral resolution: Exploring and detecting metal lines in the Earth's upper atmosphere

    CERN Document Server

    González-Merino, B; Motalebi, F; Montañés-Rodríguez, P; Kissler-Patig, M

    2013-01-01

    Observations of the Earth as a planet using the earthshine technique (i.e. looking at the light reflected from the darkside of the Moon), have been used for climate and astrobiology studies. They provide information about the planetary albedo, a fundamental parameter of the Earth's energy balance. Here we present for the first time, observations of the earthshine taken at high spectral resolution. The high spectral resolution was chosen in order to investigate the possibility of detecting metallic layers in the Earth's atmosphere of geological or meteoritic origin. The SARG echelle spectrograph at the Telescopio Nazionale Galileo in La Palma was used to acquire the earthshine data. Observations were carried out on several nights in February 2011, with the spectral resolution set at 29,000, covering a spectral range from the near-ultraviolet (360 nm) to near-infrared (1011.9 nm). While we find evidence for the detection of a Na layer in the earthshine, other atomic species are not detected, perhaps due to the ...

  3. Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs

    CERN Document Server

    Tabataba-Vakili, F; Grießmeier, J -M; Rauer, H

    2016-01-01

    M-dwarf stars are generally considered favourable for rocky planet detection. However, such planets may be subject to extreme conditions due to possible high stellar activity. The goal of this work is to determine the potential effect of stellar cosmic rays on key atmospheric species of Earth-like planets orbiting in the habitable zone of M-dwarf stars and show corresponding changes in the planetary spectra. We build upon the cosmic rays model scheme of Grenfell et al. (2012), who considered cosmic ray induced NOx production, by adding further cosmic ray induced production mechanisms (e.g. for HOx) and introducing primary protons of a wider energy range (16 MeV - 0.5 TeV). Previous studies suggested that planets in the habitable zone that are subject to strong flaring conditions have high atmospheric methane concentrations, while their ozone biosignature is completely destroyed. Our current study shows, however, that adding cosmic ray induced HOx production can cause a decrease in atmospheric methane abundanc...

  4. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds

    Science.gov (United States)

    Miller, S. L.; Schlesinger, G.

    1983-01-01

    The prebiotic synthesis of organic compounds is investigated using a spark discharge on various simulated prebiotic atmospheres at 25 C. It is found that glycine is almost the only amino acid produced from the model atmospheres containing CO and CO2. These results show that the maximum yield is about the same for the three carbon sources (CO, CO2, and CH4) at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. CH4 is found to yield a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these findings indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde are shown to parallel the amino acid results, with yields of HCN and H2CO as high as 13 percent based on carbon. Ammonia is also found to be produced from N2 in experiments with no added NH3 in yields as high as 4.9 percent. These results indicate that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges.

  5. Atmospheric carbon dioxide and the long-term control of the Earth's climate

    Directory of Open Access Journals (Sweden)

    J. H. Carver

    Full Text Available A CO2-weathering model has been used to explore the possible evolution of the Earth's climate as the Sun steadily brightened throughout geologic time. The results of the model calculations can be described in terms of three, qualitatively different, "Megaclimates". Mega-climate 1 resulted from a period of rapid outgassing in the early Archean, with high, but declining, temperatures caused by the small weathering rates on a largely water-covered planet. Mega-climate 2 began about 3 Gyear ago as major continental land masses developed, increasing the weathering rate in the early Proterozoic and thereby depleting the atmospheric CO2 concentration. This process produced the first Precambrian glaciations about 2.3 Gyear ago. During Mega-climate 2, evolutionary biological processes increased the surface weatherability in incremental steps and plate tectonics modulated the CO2 outgassing rate with an estimated period of 150 Myear (approximately one-half the period for the formation and breakup of super continents. Throughout Mega-climate 2 the surface temperature was controlled by variations in the atmospheric CO2 level allowing transitions between glacial and non-glacial conditions. The results of the model for Mega-climate 2 are in agreement with the occurrence (and absence of glaciations in the geologic record. Extending the model to the future suggests that CO2 control of the Earth's temperature will no longer be able to compensate for a solar flux that continues to increase. The present level of atmospheric CO2 is so small that further reduction in CO2 cannot prevent the Earth from experiencing Mega-climate 3 with steadily increasing surface temperatures caused by the continued brightening of the Sun. During Mega-climate 3, the main danger to the biosphere would come not from an increasing temperature but from a decreasing (rather than an increasing CO2

  6. Carbon Observations from Geostationary Earth Orbit as Part of an Integrated Observing System for Atmospheric Composition

    Science.gov (United States)

    Edwards, D. P.

    2015-12-01

    This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth

  7. Atmospheric Torques on the Solid Earth and Oceans Based on the GEOS-1 General Circulation Model

    Science.gov (United States)

    Sanchez, Braulio

    1999-01-01

    The GEOS-1 general circulation model has been used to compute atmospheric torques on the oceans and solid Earth for the period 1980-1995. The time series for the various torque components have been analyzed by means of Fourier transform techniques. It was determined that the wind stress torque over land is more powerful than the wind stress torque over water by 55\\%, 42\\%, and 80\\t for the x, y, and z components respectively. This is mainly the result of power in the high frequency range. The pressure torques due to polar flattening, equatorial ellipticity, marine geoid, and continental orography were computed. The orographic or "mountain torque" components are more powerful than their wind stress counterparts (land plus ocean) by 231\\% (x), 191\\% (y), and 77\\% (z). The marine pressure torques due to geoidal undulations are much smaller than the orographic ones, as expected. They are only 3\\% (x), 4\\% (y), and 5\\% (z) of the corresponding mountain torques. The geoidal pressure torques are approximately equal in magnitude to those produced by the equatorial ellipticity of the Earth. The pressure torque due to polar flattening makes the largest contributions to the atmospheric'torque budget. It has no zonal component, only equatorial ones. Most of the power of the latter, between 68\\% and 69 %, is found in modes with periods under 15 days. The single most powerful mode has a period of 361 days. The gravitational torque ranks second in power only to the polar flattening pressure torque. Unlike the former, it does produce a zonal component, albeit much smaller (1\\ ) than the equatorial ones. The gravitational and pressure torques have opposite signs, therefore, the gravitational torque nullifies 42\\% of the total pressure torque. Zonally, however, the gravitational torque amounts to only 6\\% of the total pressure torque. The power budget for the total atmospheric torque yields 7595 and 7120 Hadleys for the equatorial components and 966 Hadleys for the

  8. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    Science.gov (United States)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  9. On the atmospheric drag in orbit determination for low Earth orbit

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    2012-07-01

    The atmosphere model is always a major limitation for low Earth orbit (LEO) in orbit prediction and determination. The accelerometer can work around the non-gravitational perturbations in orbit determination, but it helps little to improve the atmosphere model or to predict the orbit. For certain satellites, there may be some specific software to handle the orbit problem. This solution can improve the orbit accuracy for both prediction and determination, yet it always contains empirical terms and is exclusive for certain satellites. This report introduces a simple way to handle the atmosphere drag for LEO, which does not depend on instantaneous atmosphere conditions and improves accuracy of predicted orbit. This approach, which is based on mean atmospheric density, is supported by two reasons. One is that although instantaneous atmospheric density is very complicated with time and height, the major pattern is determined by the exponential variation caused by hydrostatic equilibrium and periodic variation caused by solar radiation. The mean density can include the major variations while neglect other minor details. The other reason is that the predicted orbit is mathematically the result from integral and the really determinant factor is the mean density instead of instantaneous density for every time and spot. Using the mean atmospheric density, which is mainly determined by F10.7 solar flux and geomagnetic index, can be combined into an overall parameter B^{*} = C_{D}(S/m)ρ_{p_{0}}. The combined parameter contains several less accurate parameters and can be corrected during orbit determination. This approach has been confirmed in various LEO computations and an example is given below using Tiangong-1 spacecraft. Precise orbit determination (POD) is done using one-day GPS positioning data without any accurate a-priori knowledge on spacecraft or atmosphere conditions. Using the corrected initial state vector of the spacecraft and the parameter B^* from POD, the

  10. Nitric oxide delta band emission in the earth's atmosphere - Comparison of a measurement and a theory

    Science.gov (United States)

    Rusch, D. W.; Sharp, W. E.

    1981-01-01

    Attention is given to the altitude dependent emission rate in the delta-bands of nitric oxide as measured in the earth's atmosphere at night by a scanning ultraviolet spectrometer. It is noted that the reaction responsible is the two-body association of nitrogen and oxygen atoms. The measurements show a vertical intensity beneath the layer for the delta-band system of 19 R. The horizontal emission rate is found to increase from 70 R at 117 km to 140 R at 150 km. The data are analyzed with a one-dimensional, time-dependent, vertical-transport model of odd nitrogen photochemistry. The calculated and measured intensities agree so long as the quenching of N(2D) by atomic oxygen is near 5 x 10 to the -13 cu cm/sec.

  11. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  12. Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the earth

    Science.gov (United States)

    Kuhn, W. R.; Atreya, S. K.

    1979-01-01

    Photochemical calculations indicate that in the prebiotic atmosphere of earth ammonia would have been irreversibly converted to N2 in less than 40 years if the ammonia surface mixing ratio were no more than 0.0001. However, if a continuous outgassing of ammonia were maintained, radiative-equilibrium calculations indicate that a surface mixing ratio of ammonia of 0.0001 or greater would provide a sufficient greenhouse effect to keep the surface temperature above freezing. With a 0.0001 mixing ratio of ammonia, 60% to 70% of the present-day solar luminosity would be adequate to maintain surface temperatures above freezing. A lower limit to the time constant for accumulation of an amount of nitrogen equivalent to the present day value is 10 my if the outgassing were such as to provide a continuous surface mixing ratio of ammonia of at least 0.00001.

  13. A New Code SORD for Simulation of Polarized Light Scattering in the Earth Atmosphere

    Science.gov (United States)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-01-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel atmosphere of the Earth. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/.

  14. A smooth and robust Harris-Priester atmospheric density model for low Earth orbit applications

    Science.gov (United States)

    Hatten, Noble; Russell, Ryan P.

    2017-01-01

    The modified Harris-Priester model is a computationally inexpensive method for approximating atmospheric density in the thermosphere and lower exosphere - a vital step in low Earth orbit trajectory propagation. This work introduces a revision, dubbed cubic Harris-Priester, which ensures continuous first derivatives, eliminates singularities, and adds a mechanism for introducing smooth functional dependencies on environmental conditions. These changes increase the accuracy, robustness, and utility of the model, particularly for preliminary orbit propagation, estimation, and optimization applications in which fast, reasonably accurate force models and sensitivities are desirable. Density results and computational efficiency are compared to other density models. The Fortran code used to implement the model is provided as an electronic supplement.

  15. Propagation of cosmic rays in the Earth's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Putze, Antje [LPSC-CNRS-IN2P3, 53, avenue des Martyrs, 38021 Grenoble cedex (France)

    2006-06-15

    Cosmic rays are composed of charged particles, which arrive after a long travel through the Galaxy on Earth. Supernova explosions are considered to be galactic sources, which accelerate these particles up to energies around 10{sup 18} eV. Beyond this energy, one supposes that the extragalactic sources, like active galaxy nuclei (AGN), gamma ray bursts or pulsars, are the origin of the ultra high energy cosmic rays. The spectral index of the elemental energy distributions of cosmic rays reflects the dynamic of its propagation, particularly the conjugation of the effects connected to the cosmic ray source spectrum and those connected to its propagation (acceleration, absorption and escape). The evolution of the spectral index with the cosmic-ray particle energy constitutes a sensitive test of the components, which determine this evolution. The precise index measurement of individual elemental spectra of the cosmic rays by AMS up to TeV and by the experiment CREAM beyond it, from TeV to PeV, will permit to proceed in this problematic. One of the difficulties on this measurement is to take well into account the systematic errors. During the data analysis we have to take into account in particular the interaction (diffusion and fragmentation) of the ions while their travel through the Earth's atmosphere. The study of the interaction and the fragmentation of these ions in the atmosphere is hence indispensable and described in this work. The study is based on a matrix calculation, which had been successfully implemented and tested and which has permitted to analyse the effects, caused by the experimental uncertainties on the cross sections, on the spectral index measurement. (author)

  16. Spitzer Transits of the Super-Earth GJ1214b and Implications for Its Atmosphere

    CERN Document Server

    Fraine, Jonathan D; Gillon, Michaël; Jehin, Emmanuël; Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara; Lewis, Nikole K; Knutson, Heather; Desert, Jean-Michel

    2013-01-01

    We observed the transiting super-Earth exoplanet GJ1214b using Warm Spitzer at 4.5 microns wavelength during a 20-day quasi-continuous sequence in May 2011. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a re-analysis of previous transit observations by Desert et al. (2011). In total, we analyse 14 transits of GJ1214b at 4.5 microns, 3 transits at 3.6 microns, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe & Burrows (2012). Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke & Seager (2012) and Howe &a...

  17. Earth matter effect on atmospheric neutrino oscillation in (3+3) model

    CERN Document Server

    Rahman, Mushfiqur

    2015-01-01

    In a recent combined analysis of short baseline neutrino oscillation data by Conrad et al it is shown that (3+3) neutrino model, defined by three active and three sterile neutrinos, results in an overall goodness of $67\\%$ and a compatibility of $90\\%$ among all data sets - to be compared to the compatibility of $0.043\\% $ and $13\\% $ for a (3+1) and a (3+2) model, respectively. Aside from the fact that (3+3) model still finds inconsistencies with MiniBooNE appearance data sets, its high quality overall compatibility and goodness of fit led us to study the atmospheric neutrinos in this model which travel distances of thousands of kilometers through earth. We show that in this mixing scheme matter resonance effect inside earth enhances the small vacuum oscillations into near-maximal transitions and at high energies these maximal transitions occur in the TeV range, whereas at low energies those can occur in the few GeV region. We also calculate the zenith angle distributions of $\

  18. Implications of the atmosphere-soil interaction for the design of earth retaining structures

    Directory of Open Access Journals (Sweden)

    Ruge Juan Carlos

    2016-01-01

    Full Text Available The performance of most geotechnical structures is highly governed by environmental factors, particularly in tropical regions where there are very pronounced dry and wet seasons. Design of earth retaining structures generally tend to be too conservative due to the uncertainty generated by the incorporation of environmental variables. Those variables control the soil unsaturated response and in addition to the known insufficiency of the basic models used in traditional designs they are responsible for conservative designs. Rainfall is the main aspect that affects the soil properties of a particular site. It modifies the soil suction potential, according to the degree of saturation caused by the soil-atmosphere interaction. Currently, state-of-the-art numerical tools allow to simulate the influence of those variables in the behaviour of earth retaining structures. This paper analyses the possible implications of the use of numerical simulations for the design, which include, in the mathematical formulation, the suction as a main parameter. The hypoplastic model for unsaturated response was used. Numerical simulations performed with the use of traditional and modern constitutive models obtained encouraging results that reveal the importance of include suction in design processes.

  19. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis.

    Science.gov (United States)

    Dismukes, G C; Klimov, V V; Baranov, S V; Kozlov, Y N; DasGupta, J; Tyryshkin, A

    2001-02-27

    The evolution of O(2)-producing cyanobacteria that use water as terminal reductant transformed Earth's atmosphere to one suitable for the evolution of aerobic metabolism and complex life. The innovation of water oxidation freed photosynthesis to invade new environments and visibly changed the face of the Earth. We offer a new hypothesis for how this process evolved, which identifies two critical roles for carbon dioxide in the Archean period. First, we present a thermodynamic analysis showing that bicarbonate (formed by dissolution of CO(2)) is a more efficient alternative substrate than water for O(2) production by oxygenic phototrophs. This analysis clarifies the origin of the long debated "bicarbonate effect" on photosynthetic O(2) production. We propose that bicarbonate was the thermodynamically preferred reductant before water in the evolution of oxygenic photosynthesis. Second, we have examined the speciation of manganese(II) and bicarbonate in water, and find that they form Mn-bicarbonate clusters as the major species under conditions that model the chemistry of the Archean sea. These clusters have been found to be highly efficient precursors for the assembly of the tetramanganese-oxide core of the water-oxidizing enzyme during biogenesis. We show that these clusters can be oxidized at electrochemical potentials that are accessible to anoxygenic phototrophs and thus the most likely building blocks for assembly of the first O(2) evolving photoreaction center, most likely originating from green nonsulfur bacteria before the evolution of cyanobacteria.

  20. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    Science.gov (United States)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  1. The effect of earth's atmosphere on contrast reduction for a nonuniform surface albedo and 'two-halves' field

    Science.gov (United States)

    Mekler, Y.; Kaufman, Y. J.

    1980-01-01

    The paper presents a model for contrast reduction by atmospheric haze developed for the 'two-halves' field of the earth's surface and other geometries of the earth's surface albedo. The model is based on a simplified solution of the equation of radiative transfer in two dimensions, resulting in a method for calculation of the upward zenith intensity in the atmosphere as a function of the distance from the border between the two half planes, for an unabsorbing atmosphere. The adjacency effect between two infinitesimal areas of different albedos is calculated; the resultant simplified solution is used to develop expressions for the line-spread function of the atmosphere and the modulation transfer function. The line-spread function is used to calculate the point spread function, which can be used to compute the intensity above any surface with given spatial dependence of the reflectivity.

  2. The rotation of planets hosting atmospheric tides: from Venus to habitable super-earths

    CERN Document Server

    Auclair-Desrotour, Pierre; Mathis, Stéphane; Correia, Alexandre

    2016-01-01

    The competition between the torques induced by solid and thermal tides drives the rotational dynamics of Venus-like planets and super-Earths orbiting in the habitable zone of low-mass stars. The tidal responses of the atmosphere and telluric core are related to their respective physical properties and strongly depend on the tidal frequency. The resulting torque determines the possible equilibrium states of the planet's spin. We compute here an analytic expression for the total tidal torque exerted on a Venus-like planet. This expression is used to characterize the equilibrium rotation of the body. Close to the star, the solid tide dominates. Far from it, the thermal tide drives the rotational dynamics of the planet. The transition regime corresponds to the habitable zone, where prograde and retrograde equilibrium states appear. We demonstrate the strong impact of the atmospheric properties and of the rheology of the solid part on the rotational dynamics of Venus-like planets, highlighting the key role played ...

  3. Hydrostatic Simulation of Earth's Atmospheric Gas Using Multi-particle Collision Dynamics

    Science.gov (United States)

    Pattisahusiwa, Asis; Purqon, Acep; Viridi, Sparisoma

    2016-01-01

    Multi-particle collision dynamics (MPCD) is a mesoscopic simulation method to simulate fluid particle-like flows. MPCD has been widely used to simulate various problems in condensed matter. In this study, hydrostatic behavior of gas in the Earth's atmospheric layer is simulated by using MPCD method. The simulation is carried out by assuming the system under ideal state and is affected only by gravitational force. Gas particles are homogeneous and placed in 2D box. Interaction of the particles with the box is applied through implementation of boundary conditions (BC). Periodic BC is applied on the left and the right side, specular reflection on the top side, while bounce-back on the bottom side. Simulation program is executed in Arch Linux and running in notebook with processor Intel i5 @2700 MHz with 10 GB DDR3 RAM. The results show behaviors of the particles obey kinetic theory for ideal gas when gravitational acceleration value is proportional to the particle mass. Density distribution as a function of altitude also meets atmosphere's hydrostatic theory.

  4. Oxygenation of Earth's atmosphere and its impact on the evolution of nitrogen-based metabolisms

    Science.gov (United States)

    Papineau, D.; Mojzsis, S. J.

    2002-12-01

    The evolution of metabolic pathways is closely linked to the evolution of the redox state of the terrestrial atmosphere. Nitrogen has been an essential biological element since the emergence of life when reduced nitrogen compounds (e.g. ammonia) were utilized in the prebiotic synthesis of proteins and nucleic acids. The nitrogen isotopic composition of sediments has been used to trace the origin of sedimentary organic matter in the rock record. Nitrogen is therefore suitable as a biosignature to trace the emergence of life on Earth or other planetary bodies as well as to follow the subsequent evolution of the biosphere in response to global redox changes. Evidence is strong that biological nitrogen fixation evolved very early in the history of life. The Last Common Ancestor (LCA) on Earth was most likely capable of nitrogen fixation as seen from the phylogenetic distribution of nitrogen-fixing organisms in both the domains of Bacteria and Archaea. Phylogenetic trees plotted with nitrogen-fixing gene (Nif) sequences from lineages of Bacteria and Archaea suggest that the Nif genes originated in a common ancestor of the two domains. Other phylogenetic analyses have also demonstrated that the paralogous duplication of the nifDK and nifEN operons, central to nitrogen fixation, predated the divergence of Archaea from Bacteria and therefore occurred prior to the emergence of the LCA. Although the same may be true for denitrification, this metabolic pathway probably did not become dominant until atmospheric pO2 increased between ~2.4 to 1.9 Ga during the Great Oxygenation Event (GOE). Recent work has shown a general depletion in 15N content of Archean (pre-2.5 Ga) relative to Phanerozoic (<540 Ma) kerogens. Studies have shown that the distribution of the δ15N values in kerogens shift from negative values in the Early Archean (from -6 to +6‰ with an average near 0‰ ) to approximately contemporary positive values (from +2 to +10‰ with an average at +6‰ ) by the

  5. 27.3-day and Average 13.6-day Periodic Oscillations in the Earth's Rotation Rate and Atmospheric Pressure Fields Due to Celestial Gravitation Forcing

    Institute of Scientific and Technical Information of China (English)

    LI Guoqing; ZONG Haifeng; ZHANG Qingyun

    2011-01-01

    Variation in length of day of the Earth (LOD equivalent to the Earth's rotation rate) versus change in atmospheric geopotential height fields and astronomical parameters were analyzed for the years 1962-2006.This revealed that there is a 27.3-day and an average 13.6-day periodic oscillation in LOD and atmospheric pressure fields following lunar revolution around the Earth. Accompanying the alternating change in celestial gravitation forcing on the Earth and its atmosphere, the Earth's LOD changes from minimum to maximum,then to minimum. and the atmospheric geopotential height fields in the tropics oscillate from low to high,then to low. The 27.3-day and average 13.6-day periodic atmospheric oscillation in the tropics is proposed to be a type of strong atmospheric tide, excited by celestial gravitation forcing. A formula for a Tidal Index was derived to estimate the strength of the celestial gravitation forcing, and a high degree of correlation was found between the Tidal Index determined by astronomical parameters, LOD, and atmospheric geopotential height. The reason for the atmospheric tide is periodic departure of the lunar orbit from the celestial equator during lunar revolution around the Earth. The alternating asymmetric change in celestial gravitation forcing on the Earth and its atmosphere produces a "modulation" to the change in the Earth's LOD and atmospheric pressure fields.

  6. Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs

    Science.gov (United States)

    Tabataba-Vakili, F.; Grenfell, J. L.; Grießmeier, J.-M.; Rauer, H.

    2016-01-01

    M-dwarf stars are generally considered favourable for rocky planet detection. However, such planets may be subject to extreme conditions due to possible high stellar activity. The goal of this work is to determine the potential effect of stellar cosmic rays on key atmospheric species of Earth-like planets orbiting in the habitable zone of M-dwarf stars and show corresponding changes in the planetary spectra. We build upon the cosmic rays model scheme of previous works, who considered cosmic ray induced NOx production, by adding further cosmic ray induced production mechanisms (e.g. for HOx) and introducing primary protons of a wider energy range (16 MeV-0.5 TeV). Previous studies suggested that planets in the habitable zone that are subject to strong flaring conditions have high atmospheric methane concentrations, while their ozone biosignature is completely destroyed. Our current study shows, however, that adding cosmic ray induced HOx production can cause a decrease in atmospheric methane abundance of up to 80%. Furthermore, the cosmic ray induced HOx molecules react with NOx to produce HNO3, which produces strong HNO3 signals in the theoretical spectra and reduces NOx-induced catalytic destruction of ozone so that more than 25% of the ozone column remains. Hence, an ozone signal remains visible in the theoretical spectrum (albeit with a weaker intensity) when incorporating the new cosmic ray induced NOx and HOx schemes, even for a constantly flaring M-star case. We also find that HNO3 levels may be high enough to be potentially detectable. Since ozone concentrations, which act as the key shield against harmful UV radiation, are affected by cosmic rays via NOx-induced catalytic destruction of ozone, the impact of stellar cosmic rays on surface UV fluxes is also studied.

  7. Land and Atmosphere Near-Real-Time Capability for Earth Observing System

    Science.gov (United States)

    Murphy, Kevin J.

    2011-01-01

    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  8. The Significance of Land-Atmosphere Processes in the Earth System

    Science.gov (United States)

    Suni, T.; Kulmala, M. T.; Guenther, A. B.

    2012-12-01

    The land-atmosphere interface is where humans primarily operate. Humans modify the land surface in many ways that influence the fluxes of energy and trace gases between land and atmosphere. Their emissions change the chemical composition of the atmosphere and anthropogenic aerosols change the radiative balance of the globe directly by scattering sunlight back to space and indirectly by changing the properties of clouds. Feedback loops among all these processes, land, the atmosphere, and biogeochemical cycles of nutrients and trace gases extend the human influence even further. Over the last decade, the importance of land-atmosphere processes and feedbacks in the Earth System has been shown on many levels and with multiple approaches, and a number of publications have shown the crucial role of the terrestrial ecosystems as regulators of climate [1-6]. Modellers have clearly shown the effect of missing land cover changes and other feedback processes and regional characteristics in current climate models and recommended actions to improve them [7-11]. Unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation have also been provided [12-14]. Land-cover change has been emphasized with model intercomparison projects that showed that realistic land-use representation was essential in land surface modelling [11, 15]. Crucially important tools in this research have been the networks of long-term flux stations and large-scale land-atmosphere observation platforms that are also beginning to combine remote sensing techniques with ground observations [16-20]. Human influence has always been an important part of land-atmosphere science but in order to respond to the new challenges of global sustainability, closer ties with social science and economics groups will be necessary to produce realistic estimates of land use and anthropogenic emissions by analysing future population increase, migration patterns, food production allocation, land

  9. Exploring Earth's Atmospheric Biology using a Platform-Extensible Sampling Payload

    Science.gov (United States)

    Gentry, D.; Rothschild, L.

    2012-12-01

    The interactions between Earth's atmosphere and its biosphere, or aerobiology, remain a significant unknown. What few studies have been done conclusively show that Earth's atmosphere has a rich and dynamic microbial presence[Bowers et al., 2010]; that microbes suspended in air survive over long times (1-2 weeks)[Smith et al., 2010] and travel great distances (>5000 km)[Kellogg and Griffin, 2006]; that some airborne bacteria actively nucleate ice crystals, affecting meteorology[Delort et al., 2010]; and that the presence of microbes in the atmosphere has other planetary-scale effects[Delort et al., 2010]. Basic questions, however, such as the number of microbes present, their activity level and state, the different species present and their variance over time and space, remain largely unquantified. Compounding the significant physical and environmental challenges of reliable aerobiological sampling, collection and analysis of biological samples at altitudes above ~10-20 km has traditionally used ad hoc instrumentation and techniques, yielding primarily qualitative analytical results that lack a common basis for comparison[Bowers et al., 2010]. There is a strong need for broad-basis, repeatable, reliably comparable data about aerobiological basics. We describe here a high-altitude environmental and biological sampling project designed specifically to address these issues. The goal is a robust, reliable, re-usable sampling system, with open reproducibility and adaptability for multiple low-cost flight platforms (including ground-tethered systems, high-altitude balloons, and suborbital sounding rockets); by establishing a common modular payload structure for high-altitude sampling with appeal to a broad user base, we hope to encourage widespread collection of comparable aerobiological data. We are on our third prototype iteration, with demonstrated function of two sample capture modules, a support backbone (tracking, data logging, event response, etc.), a simple ground

  10. Application of locality principle to radio occultation studies of the Earth's atmosphere and ionosphere

    Directory of Open Access Journals (Sweden)

    A. G. Pavelyev

    2015-01-01

    Full Text Available A new formulation of previously introduced principle of locality is presented. The principle can be applied for modernization of the radio occultation (RO remote sensing of the atmospheres and ionospheres of the Earth and planets. The principle states that significant contributions to variations of the amplitude and phase of the radio waves passing through a layered medium are connected with influence of the vicinities of tangential points where the refractivity gradient is perpendicular to the radio ray trajectory. The RO method assumes spherical symmetry of the investigated medium. In this case if location of a tangent point relative to the spherical symmetry center is known, the derivatives on time of the RO signal phase and Doppler frequency variations can be recalculated into the refractive attenuation. Several important findings are consequences of the locality principle: (i if position of the center of symmetry is known, the total absorption along the ray path can be determined at a single frequency, (ii in the case of low absorption the height, displacement from the radio ray perigee, and tilt of the inclined ionospheric (atmospheric layers can be evaluated, (iii the contributions of the layered and irregular structures in the RO signal can be separated and parameters of layers and turbulence can be measured at a single frequency using joint analysis of the amplitude and phase variations. Specially for the Earth's troposphere, the altitude distributions of the weak total absorption (about of 1–4 db of the radio waves at GPS frequencies corresponding to possible influence of the oxygen and water vapor can be measured with accuracy of about 0.1 db at a single frequency. According with the locality principle, a new index of ionospheric activity is introduced. This index is measured from the phase variations of radio waves passing through the ionosphere. Its high correlation with S4 scintillation index is established. This correlation

  11. Application of locality principle to radio occultation studies of the Earth's atmosphere and ionosphere

    Science.gov (United States)

    Pavelyev, A. G.; Liou, Y. A.; Matyugov, S. S.; Pavelyev, A. A.; Gubenko, V. N.; Zhang, K.; Kuleshov, Y.

    2015-01-01

    A new formulation of previously introduced principle of locality is presented. The principle can be applied for modernization of the radio occultation (RO) remote sensing of the atmospheres and ionospheres of the Earth and planets. The principle states that significant contributions to variations of the amplitude and phase of the radio waves passing through a layered medium are connected with influence of the vicinities of tangential points where the refractivity gradient is perpendicular to the radio ray trajectory. The RO method assumes spherical symmetry of the investigated medium. In this case if location of a tangent point relative to the spherical symmetry center is known, the derivatives on time of the RO signal phase and Doppler frequency variations can be recalculated into the refractive attenuation. Several important findings are consequences of the locality principle: (i) if position of the center of symmetry is known, the total absorption along the ray path can be determined at a single frequency, (ii) in the case of low absorption the height, displacement from the radio ray perigee, and tilt of the inclined ionospheric (atmospheric) layers can be evaluated, (iii) the contributions of the layered and irregular structures in the RO signal can be separated and parameters of layers and turbulence can be measured at a single frequency using joint analysis of the amplitude and phase variations. Specially for the Earth's troposphere, the altitude distributions of the weak total absorption (about of 1-4 db) of the radio waves at GPS frequencies corresponding to possible influence of the oxygen and water vapor can be measured with accuracy of about 0.1 db at a single frequency. According with the locality principle, a new index of ionospheric activity is introduced. This index is measured from the phase variations of radio waves passing through the ionosphere. Its high correlation with S4 scintillation index is established. This correlation indicates the

  12. Application of the locality principle to radio occultation studies of the Earth's atmosphere and ionosphere

    Science.gov (United States)

    Pavelyev, A. G.; Liou, Y. A.; Matyugov, S. S.; Pavelyev, A. A.; Gubenko, V. N.; Zhang, K.; Kuleshov, Y.

    2015-07-01

    A new formulation of the previously introduced principle of locality is presented. The principle can be applied for modernization of the radio occultation (RO) remote sensing of the atmospheres and ionospheres of the Earth and other planets. The principle states that significant contributions to variations of the intensity and phase of the radio waves passing through a layered medium are connected with influence of the vicinities of tangential points where the refractivity gradient is perpendicular to the radio ray trajectory. The RO method assumes spherical symmetry of the investigated medium. In this case, if location of a tangent point relative to the spherical symmetry centre is known, the time derivatives of the RO signal phase and Doppler frequency variations can be recalculated into the refractive attenuation. Several important findings are consequences of the locality principle: (i) if position of the centre of symmetry is known, the total absorption along the ray path can be determined at a single frequency; (ii) in the case of low absorption the height, displacement from the radio ray perigee, and tilt of the inclined ionospheric (atmospheric) layers can be evaluated; (iii) the contributions of the layered and irregular structures in the RO signal can be separated and parameters of layers and turbulence can be measured at a single frequency using joint analysis of the intensity and phase variations. Specially for the Earth's troposphere, the altitude distributions of the weak total absorption (about of 1-4 db) of the radio waves at GPS frequencies corresponding to possible influence of the oxygen, water vapour, and hydrometeors can be measured with accuracy of about 0.1 db at a single frequency. In accordance with the locality principle, a new index of ionospheric activity is introduced. This index is measured from the phase variations of radio waves passing through the ionosphere. Its high correlation with the S4 scintillation index is established. This

  13. The Tropical Cyclones as the Possible Sources of Gamma Emission in the Earth's Atmosphere

    Science.gov (United States)

    Klimov, S. I.; Sharkov, E. A.; Zelenyi, L. M.

    2009-12-01

    [*S. I. Klimov*] (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-1100; Fax: +7 (495) 333-1248; e-mail: sklimov@iki.rssi.ru)): E. A. Sharkov (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-1366; Fax: +7 (495) 333-1248; e-mail: e.sharkov@mail.ru): L. M. Zelenyi (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-2588; Fax: +7 (495) 333-3311; e-mail: lzelenyi@iki.rssi.ru ): The tropical cyclones (TC) are the strongest sources of thunderstorm activity (and, correspondingly, electromagnetic activity in the wide frequency range) in the Earth's atmosphere. The area dimensions of active region comprise to 1000 km and they achieve vertical development to 16-20 km with speeds of the displacement of the charged drops of water of up to 30 m/s. In the work are evaluated the physical mechanisms of the possibility of generation by TC of gamma emission (TCGE), which can be fixed from the low-orbital spacecraft of the type of the potential Russian micro-satellite Chibis-M (MS) [Zelenyi, et al, Walter de Gruter, Berlin, New York, p. 443-451, 2005]. The study of the new physical mechanisms of the electrical discharges in the atmosphere is basic scientific task Chibis- M [Angarov et al. Wissenschaft und Technik Verlag, Berlin, 2009, p. 69-72]. Complex of scientific instruments of the Chibis-M (overall mass of 12,5 kg) including the instruments: - X-ray - gamma detector (range of X-ray and gamma emission - 50-500 keV), - UV detector (range UV - emission - 300-450 nm), - radiofrequency analyzer (20 - 50 MHz). - digital camber of optical range (spatial resolution 300 m). - plasma-wave complex (0.1-40 kHz), it can be used also for the TCGE study. Delivery Chibis-M into orbit, close to the ISS orbit is intended to carry out in second-half 2010. Micro-satellite "Chibis-M" now designed in IKI. Total mass "Chibis

  14. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-10-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We

  15. Observational evidence for a metal rich atmosphere on the super-Earth GJ1214b

    CERN Document Server

    Désert, Jean-Michel; Kempton, Eliza Miller-Ricci; Berta, Zachory K; Charbonneau, David; Irwin, Jonathan; Fortney, Jonathan J; Burke, Christopher J; Nutzman, Philip

    2011-01-01

    We report observations of two consecutive transits of the warm super-Earth exoplanet GJ1214b at 3.6 and 4.5 microns with the Infrared Array Camera instrument on-board the Spitzer Space Telescope. The two transit light curves allow for the determination of the transit parameters for this system. We find these paremeters to be consistent with the previously determined values and no evidence for transit timing variations. The main investigation consists of measuring the transit depths in each bandpass to constrain the planet's transmission spectrum. Fixing the system scale and impact parameters, we measure R_p/R_star=0.1176 (+0.0008/-0.0009) and 0.1163 (+0.0010/-0.0008) at 3.6 and 4.5 microns, respectively. Combining these data with the previously reported MEarth Observatory measurements in the red optical yields constraints on the GJ1214b's transmission spectrum and allows us to rule-out a cloud-free, solar composition (i.e., hydrogen-dominated) atmosphere at 4.5 sigma confidence. This independently confirms a ...

  16. Hydrostatic Simulation of Earth's Atmospheric Gas Using Multi-particle Collision Dynamics

    CERN Document Server

    Pattisahusiwa, Asis; Virid, Sparisoma

    2015-01-01

    Multi-particle collision dynamics (MPCD) is a mesoscopic simulation method to simulate fluid particle-like flows. MPCD has been widely used to simulate various problems in condensed matter. In this study, hydrostatic behavior of gas in the Earth's atmospheric layer is simulated by using MPCD method. The simulation is carried out by assuming the system under ideal state and is affected only by gravitational force. Gas particles are homogeneous and placed in 2D box. Interaction of the particles with the box is applied through implementation of boundary conditions (BC). Periodic BC is applied on the left and the right side, specular reflection on the top side, while bounce-back on the bottom side. Simulation program is executed in Arch Linux and running in notebook with processor Intel i5 @2700 MHz with 10 GB DDR3 RAM. The results show behaviors of the particles obey kinetic theory for ideal gas when gravitational acceleration value is proportional to the particle mass. Density distribution as a function of alti...

  17. The habitable zone of Earth-like planets with different levels of atmospheric pressure

    CERN Document Server

    Vladilo, Giovanni; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio

    2013-01-01

    As a contribution to the study of the habitability of extrasolar planets, we implemented a 1-D Energy Balance Model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p=1/3 bar to p=3 bar. At low pressure, the habitability is...

  18. Environmental networks for large-scale monitoring of Earth and atmosphere

    Science.gov (United States)

    Maurodimou, Olga; Kolios, Stavros; Konstantaras, Antonios; Georgoulas, George; Stylios, Chrysostomos

    2013-04-01

    Installation and operation of instrument/sensor networks are proven fundamental in the monitoring of the physical environment from local to global scale. The advances in electronics, wireless communications and informatics has led to the development of a huge number of networks at different spatial scales that measure, collect and store a wide range of environmental parameters. These networks have been gradually evolved into integrated information systems that provide real time monitoring, forecasts and different products from the initial collected datasets. Instrument/sensor networks have nowadays become important solutions for environmental monitoring, comprising a basic component of fully automated systems developing worldwide that contribute in the efforts for a sustainable Earth's environment (e.g. Hart et al., 2006, Othman et al., 2012). They are also used as a source of data for models parameterization and as verification tools for accuracy assessment techniques of the satellite imagery. Environmental networks can be incorporated into decision support systems (e.g Rizzi et al., 2012) providing informational background along with data from satellites for decision making, manage problems, suggest solutions and best practices for a sustainable management of the environment. This is a comparative study aiming to examine and highlight the significant role of existing instrument/sensor networks for large-scale monitoring of environmental issues, especially atmospheric and marine environment as well as weather and climate. We provide characteristic examples of integrated systems based on large scale instrument/sensor networks along with other sources of data (like satellite datasets) as informational background to measure, identify, monitor, analyze and forecast a vast series of atmospheric parameters (like CO2, O3, particle matter and solar irradiance), weather, climate and their impacts (e.g., cloud systems, lightnings, rainfall, air and surface temperature

  19. Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model

    Science.gov (United States)

    Putnam, Williama

    2011-01-01

    The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.

  20. Spatial characteristics of airglow and solar-scatter radiance from the earth's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Huguenin, R.; Wohlers, R.; Weinberg, M.; Huffman, R.; Eastes, R.

    1989-08-09

    Data measured by the Polar BEAR/AIRS UV Experiment were processed to extract spatial-radiance characteristics. Photometer-mode 1304A dayside data measured on Julian Day 219, 1987, near mid-day were analyzed. The spatial structure of thermospheric dayside radiance at 1304A appeared to be controlled principally by turbulence over spatial scales of 10 million - 100 meters, with modifications imposed by Rayleigh-scattering effects and magnetospherically forced phenomena. Spatial structure can be adequately modeled fractally, using dimensions based on Kolmogorov formalism modified by the Rayleigh scattering phase function. Mean radiance can be modeled using existing models of radiant intensity, resonance scattering, and absorption combined with thermospheric composition and general circulation models, such as MSIS-83, scaled to the mean and RHS intensities measured by Polar BEAR. The results can be incorporated in a background radiance simulation model that will provide a means for testing and refining phenomenological models of the structured earth background. This will be important not only for improving physical and chemical models of atmospheric features and processes, but it will allow parametric predictions of spatial structure and clutter to be developed for sensor applications.

  1. Short- and Medium-Term Induced Ionization in the Earth Atmosphere by Galactic and Solar Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Alexander Mishev

    2013-01-01

    Full Text Available The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.

  2. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-05-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method, recently introduced by Kirchengast and Schweitzer (2011, that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. For enabling trace species retrieval based on differential transmission, the LIO signals are spectrally located as pairs, one in the centre of a suitable absorption line of a target species (absorption signal and one close by but outside of any absorption lines (reference signal. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss the atmospheric influences on the transmission and differential transmission of LIO signals. Refraction effects, trace species absorption (by target species, and cross-sensitivity to foreign species, aerosol extinction and Rayleigh scattering are studied in detail. The influences of clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation are discussed as well. We show that the influence of defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle and by a design with close frequency spacing of absorption and reference signals within 0.5 %. The influences of Rayleigh scattering and thermal radiation on the received signal intensities are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions but this

  3. Impact features tracing hypervelocity airbursts on earth from the atmosphere to the ground

    Science.gov (United States)

    Courty, M. M.

    2012-12-01

    In the absence of deep craters, impact features have been debated to possibly tracing proximal ejecta from yet undetected structure or airburst debris from a meteorite collision with the terrestrial atmosphere or lithosphere. We examine the possibility for impact features to have originated from the shock layer formed ahead of a hypervelocity collider in the earth atmosphere. This hypothesis is approached by comparing impact features from controlled materials to puzzling geological ones: (1) debris collected at the ground from a high altitude meteor airburst recorded on 2011 August 2nd in Southern France; (2) laboratory experiments performed for defense purposes at the CEA Gramat Center (France) with the Persephone hypervelocity light gas gun; (3) the Zhamanshin impact breccia, the Lybian glass, the Egyptian Dakhleh glass, the Tasmanian Darwin glass, the Australasian tektite strewnfield and the Australian Henbury crater field. The Persephone experiments include collisions from 4.1 to 7.9 km/s by a steel projectile embedded into a polycarbonate holder with a polystyrene separator on to a 40 mm thick aluminum target. The impact features been characterized by coupling Environmental SEM with EDS, Raman micro-spectrometry, XRD, TEM, Tof-SIMS, ICP-MS and isotope analyses. Similar carbonaceous polymorphs that are closely imbricated at meso to nano-scales to the crystallized components (including the metal blebs) and to the glass phases (spherules or matrix) are present in all the impact features studied. They dominantly consist of aliphatic polymers, rare aromatic compounds, with graphite-lonsdaleite inclusions. The Persephone experiments help relating the graphite-lonsdaleite couple to transformed organic residues by the transient high pressure shock (a few tens MPa) and the transient heating (ca 100°C) and the aliphatic polymers to new hydrocarbons that formed from the pulverized polycarbonate and polystyrene. The Persephone experiments provide the controlled situation

  4. Study of the Dynamics of Meteoroids Through the Earth's Atmosphere and Retrieval of Meteorites: The Mexican Meteor Network

    Science.gov (United States)

    Cordero Tercero, M. G.; Farah Simon, A.; Velazquez-Villegas, F.

    2016-12-01

    When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f) recover and study meteorites. During this meeting, the progress of the project will be presented.

  5. Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2004-01-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also

  6. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura [INAF-Trieste Astronomical Observatory, Trieste (Italy); Provenzale, Antonello [Institute of Atmospheric Sciences and Climate-CNR, Torino (Italy); Ferri, Gaia; Ragazzini, Gregorio, E-mail: vladilo@oats.inaf.it [Department of Physics, University of Trieste, Trieste (Italy)

    2013-04-10

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  7. Pathways to Earth-Like Atmospheres. Extreme Ultraviolet (EUV)-Powered Escape of Hydrogen-Rich Protoatmospheres

    Science.gov (United States)

    Lammer, Helmut; Kislyakova, K. G.; Odert, P.; Leitzinger, M.; Schwarz, R.; Pilat-Lohinger, E.; Kulikov, Yu. N.; Khodachenko, M. L.; Güdel, M.; Hanslmeier, A.

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  8. Cloud Effects on Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data

    Science.gov (United States)

    Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.

    2008-01-01

    The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.

  9. The middle atmospheric circulation of a tidally locked Earth-like planet and the role of the sea surface temperature

    Science.gov (United States)

    Proedrou, Elisavet; Hocke, Klemens; Wurz, Peter

    2016-12-01

    We investigate the influence of the sea surface temperature (SST) changes on the middle atmosphere of a tidally locked Earth-like planet orbiting a G star using the coupled 3D chemistry-climate model CESM1(WACCM). We perform three 90 day simulations. The first simulation is a present-day Earth (PDE) simulation, the second is a simulation of a tidally locked Earth-like planet with a tidally locked aquaplanet sea surface temperature (cold TLE (CLTE)) and the third is a hybrid simulation of a tidally locked Earth-like planet with a present-day Earth sea surface temperature (warm TLE (WTLE)). Our results show that changes in the SST have an influence on the lower stratospheric temperature and the secondary ozone layer. Both atmospheres exhibit a dayside upwelling and a nightside downwelling extending from the surface to the mesosphere. They are also characterised by comparable lower and middle stratospheric horizontal winds and relatively different mesospheric horizontal winds. The temperature of the WTLE atmosphere is altered as a result of the SST changes, compared to the CTLE. Specifically, the WTLE lower tropospheric temperature is increased by 3.7 K on average, due to the absorption of the increased upwelling longwave radiation and the increased sensible and latent heat. The WTLE upper troposphere temperature is decreased by 4 K on average, is adiabatic in nature, and is generated by the increased WTLE upwelling. The WLTE lower stratospheric temperature is increased by 3.8 K on average due to the absorption of the increased upwelling longwave radiation. The lower mesospheric temperature is decreased by 1.13 K on average due to increased mesospheric wave breaking. The upper mesospheric temperature is increased by 4.3 K, and its generation mechanism is currently unknown. Furthermore, the secondary ozone volume mixing ratio is increased by 40.5 %. The occurrence of large-scale vortices and variable jet streams depends, to some extent, on the SST distribution.

  10. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history

    OpenAIRE

    Grant M. Young

    2013-01-01

    In more than 4 Ga of geological evolution, the Earth has twice gone through extreme climatic perturbations, when extensive glaciations occurred, together with alternating warm periods which were accompanied by atmospheric oxygenation. The younger of these two episodes of climatic oscillation preceded the Cambrian “explosion” of metazoan life forms, but similar extreme climatic conditions existed between about 2.4 and 2.2 Ga. Over long time periods, changing solar luminosity and mantle tempera...

  11. A study of the motion and aerodynamic heating of ballistic missiles entering the earth's atmosphere at high supersonic speeds

    Science.gov (United States)

    Allen, H Julian; Eggers, A J , Jr

    1958-01-01

    A simplified analysis of the velocity and deceleration history of ballistic missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.

  12. A Study of Oceans and Atmospheric Interactions Associated with Tropical Cyclone Activity using Earth Observing Technology

    Science.gov (United States)

    Abdullah, Warith; Reddy, Remata

    From October 22nd to 30th, 2012 Hurricane Sandy was a huge storm of many abnormalities causing an estimated 50 billion dollars in damage. Tropical storm development states systems’ energy as product of warm sea surface temperatures (SST’s) and tropical cyclone heat potential (TCHP). Advances in Earth Observing (EO) technology, remote sensing and proxy remote sensing have allowed for accurate measurements of SST and TCHP information. In this study, we investigated rapid intensification of Sandy through EO applications for precipitable water vapor (PWAT), SST’s and TCHP during the period of October 27th. These data were obtained from NASA and NOAA satellites and NOAA National Buoy data center (NDBC). The Sensible Heat (Qs) fluxes were computed to determine available energy resulting from ocean-atmosphere interface. Buoy 41010, 120 NM east of Cape Canaveral at 0850 UTC measured 22.3 °C atmospheric temperatures and 27 °C SST, an interface of 4.7 °C. Sensible heat equation computed fluxes of 43.7 W/m2 at 982.0 mb central pressure. Sandy formed as late-season storm and near-surface air temperatures averaged > 21 °C according to NOAA/ESRL NCEP/NCAR reanalysis at 1000 mb and GOES 13 (EAST) geostationary water vapor imagery shows approaching cold front during October 27th. Sandy encountered massive dry air intrusion to S, SE and E quadrants of storm while travelling up U.S east coast but experienced no weakening. Cool, dry air intrusion was considered for PWAT investigation from closest sounding station during Oct. 27th 0900 - 2100 UTC at Charleston, SC station 72208. Measured PWAT totaled 42.97 mm, indicating large energy potential supply to the storm. The Gulf Stream was observed using NASA Short-term Prediction Research and Transition Center (SPoRT) MODIS SST analysis. The results show 5 °C warmer above average than surrounding cooler water, with > 25 °C water extent approximately 400 NM east of Chesapeake Bay and eddies > 26 °C. Results from sensible heat

  13. Clues on the importance of comets in the origin and evolution of the atmospheres of Titan and Earth

    CERN Document Server

    Trigo-Rodriguez, Josep M

    2011-01-01

    Earth and Titan are two planetary bodies formed far from each other. Nevertheless the chemical composition of their atmospheres exhibits common indications of being produced by the accretion, plus ulterior in-situ processing of cometary materials. This is remarkable because while the Earth formed in the inner part of the disk, presumably from the accretion of rocky planetesimals depleted in oxygen and exhibiting a chemical similitude with enstatite chondrites, Titan formed within Saturn's sub-nebula from oxygen- and volatile-rich bodies, called cometesimals. From a cosmochemical and astrobiological perspective the study of the H, C, N, and O isotopes on Earth and Titan could be the key to decipher the processes occurred in the early stages of formation of both planetary bodies. The main goal of this paper is to quantify the presumable ways of chemical evolution of both planetary bodies, in particular the abundance of CO and N2 in their early atmospheres. In order to do that the primeval atmospheres and evolut...

  14. Results of Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations

    Science.gov (United States)

    Orton, Glenn; Momary, Thomas; Bolton, Scott; Levin, Steven; Hansen, Candice; Janssen, Michael; Adriani, Alberto; Gladstone, G. Randall; Bagenal, Fran; Ingersoll, Andrew

    2017-04-01

    The Juno mission has promoted and coordinated a network of Earth-based observations, including both Earth-proximal and ground-based facilities, to extend and enhance observations made by the Juno mission. The spectral region and timeline of all of these observations are summarized in the web site: https://www.missionjuno.swri.edu/planned-observations. Among the earliest of these were observation of Jovian auroral phenomena at X-ray, ultraviolet and infrared wavelengths and measurements of Jovian synchrotron radiation from the Earth simultaneously with the measurement of properties of the upstream solar wind. Other observations of significance to the magnetosphere measured the mass loading from Io by tracking its observed volcanic activity and the opacity of its torus. Observations of Jupiter's neutral atmosphere included observations of reflected sunlight from the near-ultraviolet through the near-infrared and thermal emission from 5 μm through the radio region. The point of these measurements is to relate properties of the deep atmosphere that are the focus of Juno's mission to the state of the "weather layer" at much higher atmospheric levels. These observations cover spectral regions not included in Juno's instrumentation, provide spatial context for Juno's often spatially limited coverage of Jupiter, and they describe the evolution of atmospheric features in time that are measured only once by Juno. We will summarize the results of measurements during the approach phase of the mission that characterized the state of the atmosphere, as well as observations made by Juno and the supporting campaign during Juno's perijoves 1 (2016 August 27), 3 (2016 December 11), 4 (2017 February 2) and possibly "early" results from 5 (2017 March 27). Besides a global network of professional astronomers, the Juno mission also benefited from the enlistment of a network of dedicated amateur astronomers who provided a quasi-continuous picture of the evolution of features observed by

  15. Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2011-03-01

    Full Text Available We study the initiation of a Marinoan Snowball Earth (~635 million years before present with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global-mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI, whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI is prevented by doubling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global-mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. While uncertainties in important processes and parameters such as clouds and sea-ice albedo suggest that the Snowball Earth bifurcation point differs between climate models, our results contradict previous findings that Snowball Earth initiation would require much stronger forcings.

  16. Chemistry of Atmospheres: An Introduction to the Chemistry of the Atmospheres of Earth, the Planets and Their Satellites

    Science.gov (United States)

    Beebe, Reta; Barnet, Chris

    The author of this book states that he has attempted to produce a text that will be “intelligible to readers approaching atmospheric chemistry from any scientific discipline.” He proposes to provide the links between atmospheric chemistry and the traditional approaches to physics, chemistry, and biology. Within this context, he has presented a very readable general discussion at a level slightly higher than the popular level.Wayne has chosen not to interrupt the text with direct references but rather to group them at the back of each chapter. Although this sometimes raises a question concerning the basis of a specific statement, the references are in general adequate and extend through 1984. The manner in which the material is presented is not intimidating, and the book would be a good vehicle for introducing students to the subject and providing a starting point for individual research papers.

  17. Design of a Slab Waveguide Multiaperture Fourier Spectrometer for Water Vapor Measurements in Earth's Atmosphere

    Science.gov (United States)

    Sinclair, Kenneth; Florjańczyk, Mirosław; Solheim, Brian; Scott, Alan; Quine, Ben; Cheben, Pavel

    Concept, theory and design of a new type of waveguide device, a multiaperture Fourier-transform planar waveguide spectrometer[1], implemented as a prototype instrument is pre-sented. The spectrometer's objective is to demonstrate the ability of the new slab waveguide technology for application in remote sensing instruments[2]. The spectrometer will use a limb viewing configuration to detect the 1.36um waveband allowing concentrations of water vapor in earth's atmosphere to be measured[3]. The most challenging aspects of the design, assembly and calibration are presented. Focus will be given to the effects of packaging the spectrometer and interfacing to the detector array. Stress-induced birefringence will affect the performance of the waveguides, therefore the design of a stress-free mounting over a range of temperatures is important. Spectral retrieval algo-rithms will have to correct for expected fabrication errors in the waveguides. Data processing algorithms will also be developed to correct for non-uniformities of input brightness through the array, making use of MMI output couplers to capture both the in-phase and anti-phase interferometer outputs. A performance assessment of an existing breadboard spectrometer will demonstrate the capability of the instrument. REFERENCES 1. M. Florjáczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, "Multiaper-n ture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers," Opt. Expr. 15(26), 18176-18189 (2007). 2. M. Florjáczyk, P. Cheben, S. Janz, B. Lamontagne, J. n Lapointe, A. Scott, B. Solheim, and D.-X. Xu, "Slab waveguiode spatial heterodyne spectrom-eters for remote sensing from space," Optical sensors 2009. Proceedings of the SPIE, Volume 7356 (2009)., pp. 73560V-73560V-7 (2009). 3. A. Scott, M. Florjáczyk, P. Cheben, S. Janz, n B. Solheim, and D.-X. Xu, "Micro-interferometer with high throughput for remote sensing." MOEMS and Miniaturized Systems VIII. Proceedings of the SPIE

  18. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    Science.gov (United States)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also

  19. Distribution of N2O in the atmosphere under global warming - a simulation study with the MPI Earth System Model

    Science.gov (United States)

    Kracher, Daniela; Manzini, Elisa; Reick, Christian H.; Schultz, Martin; Stein, Olaf

    2014-05-01

    Climate change is driven by an increasing release of anthropogenic greenhouse gases (GHGs) such as carbon dioxide and nitrous oxide (N2O). Besides fossil fuel burning, also land use change and land management are anthropogenic sources of GHGs. Especially inputs of reactive nitrogen via fertilizer and deposition lead to enhanced emissions of N2O. One effect of a drastic future increase in surface temperature is a modification of atmospheric circulation, e.g. an accelerated Brewer Dobson circulation affecting the exchange between troposphere and stratosphere. N2O is inert in the troposphere and decayed only in the stratosphere. Thus, changes in atmospheric circulation, especially changes in the exchange between troposphere and stratosphere, will affect the atmospheric transport, decay, and distribution of N2O. In our study we assess the impact of global warming on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O. As terrestrial N2O emissions are highly determined by inputs of reactive nitrogen - the location of which being determined by human choice - we examine in particular the importance of latitudinal source regions of N2O for its global distribution. For this purpose we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation.

  20. Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2010-09-01

    Full Text Available We study the initiation of a Marinoan Snowball Earth (635 million years before present with the most sophisticated atmosphere-ocean general circulation model ever used for this purpose, ECHAM5/MPI-OM. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI, whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI is prevented by quadrupling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. In summary, our results contradict previous claims that Snowball Earth initiation would require "extreme" forcings.

  1. Plasma density enhancements created by the ionization of the Earth's upper atmosphere by artificial electron beams

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P.M.

    line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results from the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere...... electrons and thereby limits the ionization of the neutral atmosphere. As an example we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1-10 keV electron beams from sounding rockets...

  2. Development of a phoswich detector for neutron dose rate measurements in the Earth's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Doensdorf, Esther Miriam

    2014-04-30

    The Earth is constantly exposed to a stream of energetic particles from outer space. Through the interaction of this radiation with the Earth's magnetosphere and atmosphere a complex radiation field is formed which varies with the location inside the Earth's atmosphere. This radiation field consists of charged and uncharged particles leading to the constant exposure of human beings to radiation. As this ionizing radiation can be harmful for humans, it is necessary to perform dose rate measurements in different altitudes in the Earth's atmosphere. Due to their higher biological effectiveness the exposure to neutrons is more harmful than the exposure to γ-rays and charged particles, which is why the determination of neutron dose rates is the focus of this work. In this work the prototype of a Phoswich detector called PING (Phoswich Instrument for Neutrons and Gammas) is developed to determine dose rates caused by neutrons in the Earth's atmosphere and to distinguish these from γ-rays. The instrument is composed of two different scintillators optically coupled to each other and read out by one common photomultiplier tube. The scintillator package consists of an inner plastic scintillator made of the material BC-412 and a surrounding anti-coincidence made of sodium doped caesium iodide (CsI(Na)). In this work the instrument is calibrated, tested and flown and a procedure for a pulse shape analysis for this instrument is developed. With this analysis it is possible to distinguish pulses from the plastic scintillator and pulses from the CsI(Na). The pulses from the plastic scintillator are mainly due to the interaction of neutrons but there is an energy-dependent contribution of γ-rays to these events. Measurements performed on board an airplane show that the dose rates measured with the developed detector are in the same order of magnitude as results of other instruments. During measurements on board stratospheric balloons the altitude dependence

  3. Measurements by Mail: Satellite-Controlled Balloons for Making Real-Time Atmospheric Observations Anywhere on Earth

    Science.gov (United States)

    Voss, P. B.

    2008-12-01

    While most of the atmosphere is only a few tens of kilometers overhead, gaining access to this critical region of the earth system is notoriously difficult. Aircraft have been highly successful as atmospheric research platforms but their use can be limited by high costs, complex logistics, and need for ground-support infrastructure. While small Unmanned Aerial Systems (UAS) carry far fewer instruments, they promise to overcome some of these limitations, especially if regulatory and air safety issues can be resolved. Here we describe five years of development on a new type of unmanned platform that can be flown with far fewer restrictions than current UAS. This altitude-controlled balloon can be mailed to collaborators almost anywhere in the world, launched within hours, and flown remotely from our laboratory via satellite link. It can be commanded to perform soundings, track atmospheric layers, or navigate divergent wind fields over periods ranging from days to potentially weeks; meteorological and chemical observations from the balloon are processed on the ground and distributed via the internet in near real time. These controlled balloons have been used in several recent atmospheric research campaigns and are now providing new possibilities for long-distance collaboration, low-cost deployments, and research in previously inaccessible parts of the lower atmosphere.

  4. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    Science.gov (United States)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  5. The biota as ancient and modern modulator of the earth's atmosphere

    Science.gov (United States)

    Margulis, L.; Lovelock, J. E.

    1978-01-01

    The composition of the terrestrial atmosphere is thought to have been markedly modified by surface microbiota and modulated around quantities of gases optimized for growth of these microbiota. Three diagrams illustrating these suppositions are presented. The first shows a probable order of appearance of major metabolic pathways in microbes that interact with sediment and atmosphere. It is based on evolutionary considerations and is devised independently of the fossil record. The second diagram shows the qualitative emissions and removals of atmospheric gases by anaerobic organisms; it approximates those processes thought to have dominated the terrestrial atmosphere in Archean times. The third diagrams gaseous emissions and removals by the major groups of organisms, including oxygen-releasing and -utilizing forms. Biological gas exchange processes thought to have dominated the atmosphere since the Proterozoic are thus represented.

  6. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  7. Techniques for computing regional radiant emittances of the earth-atmosphere system from observations by wide-angle satellite radiometers, phase 3

    Science.gov (United States)

    Pina, J. F.; House, F. B.

    1975-01-01

    Radiometers on earth orbiting satellites measure the exchange of radiant energy between the earth-atmosphere (E-A) system and space at observation points in space external to the E-A system. Observations by wideangle, spherical and flat radiometers are analyzed and interpreted with regard to the general problem of the earth energy budget (EEB) and to the problem of determining the energy budget of regions smaller than the field of view (FOV) of these radiometers.

  8. Natural hazards for the Earth's civilization from space, 1. Cosmic ray influence on atmospheric processes

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2008-04-01

    Full Text Available In this paper we give a short description of global natural disasters for the Earth's civilization from space: 1 Galactic and solar cosmic ray (CR influence on the atmospheric processes; 2 Impacts of great space magnetic storms during big Forbush-effects in CR, 3 Impacts of great radiation hazards from solar CR during flare energetic particle events, 4 Great impacts on planetary climate during periods of the Solar system capturing by molecular-dust clouds, 5 Catastrophic disasters from nearby Supernova explosions, and 6 Catastrophic disasters from asteroid impacts on the Earth. Some of these problems have been already studied (see e.g. Dorman, 1957, 1963a, b; Dorman and Miroshnichenko, 1968; Dorman, 1972, 1974, 1975a, b, 1978; Velinov et al., 1974; Miroshnichenko, 2001, 2003; Dorman, 2004, 2006, 2008. We present here a detailed treatment of the first disaster only, leaving to future papers the analysis of the other aspects.

  9. Remote sensing of the earth's atmosphere by infrared absorption spectroscopy - An update of the ATMOS program

    Science.gov (United States)

    Zander, R.; Gunson, M. R.; Farmer, C. B.

    1989-01-01

    The NASA's Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment was designed to address the requirements of the remote sensing of atmospheric composition on a four-dimensional basis (latitude, longitude, altitude, and time), necessary for understanding and predicting the effect of changes on the chemical balance of the atmosphere. This paper describes the ATMOS program, overviews the ATMOS instrument and its performance, and presents the results obtained during its first flight as part of the Spacelab 3 Space Shuttle mission (April 29 through May 6, 1985). Also discussed are prospects for further missions.

  10. Miniature Tunable Laser Spectrometers for Quantifying Atmospheric Trace Gases, Water Resources, Earth Back-Contamination, and In Situ Resource Utilization

    Science.gov (United States)

    Webster, Chris; Blacksberg, Jordana; Flesch, Greg; Keymeulen, Didier; Christensen, Lance; Forouhar, Siamak

    2012-01-01

    The Tunable Laser Spectrometers (TLS) technique has seen wide applicability in gas measurement and analysis for atmospheric analysis, industrial, commercial and health monitoring and space applications. In Earth science using balloons and aircraft over 2 decades, several groups (JPL, NASA Langley & Ames, NOAA, Harvard U., etc) have demonstrated the technique for ozone hole studies, lab kinetics measurements, cloud physics and transport, climate change in the ice record. The recent availability of high-power (mW) room temperature lasers (TDL, IC, QC) has enabled miniaturized, high-sensitivity spectrometers for industry and space (1) Mars, Titan, Venus, Saturn, Moon (2) Commercial isotope ratio spectrometers are replacing bulkier, complex isotope ratio mass spectrometers.

  11. Application Study on Correction Method for Lag of Water Level Response to Earth Tide and Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    Geng Jie; You Benyue; Zhang Zhaodong

    2006-01-01

    The water level in a deep well instantly responds to the earth's tide and atmospheric pressure,and varies accordingly, not only in terms of amplitude but also in the phase lag. Therefore,phase lag correction is used in analyzing digital groundwater observation data in eastern China.Calculation results presented by the authors in this paper show that the correction method is effective in the identification of anomalous changes for short-term seismic precursors. The correction method can also be applied to the processing of observed deformation and tilt data.

  12. Noise generation in the solid Earth, oceans, and atmosphere, from non-linear interacting surface gravity waves in finite depth

    CERN Document Server

    Ardhuin, Fabrice

    2012-01-01

    Oceanic observations, even in very deep water, and atmospheric pressure or seismic records, from anywhere on Earth, contain noise with dominant periods between 3 and 10 seconds, that can be related to surface gravity waves in the oceans. This noise is consistent with a dominant source explained by a nonlinear wave-wave interaction mechanism, and takes the form of surface gravity waves, acoustic or seismic waves. Previous theoretical works on seismic noise focused on surface (Rayleigh) waves, and did not consider finite depth effects on the generating wave kinematics. These finite depth effects are introduced here, which requires the consideration of the direct wave-induced pressure at the ocean bottom, a contribution previously overlooked in the context of seismic noise. That contribution can lead to a considerable reduction of the seismic noise source, which is particularly relevant for noise periods larger than 10 s. The theory is applied to acoustic waves in the atmosphere, extending previous theories that...

  13. Modification of spacecraft charging and the near-plasma environment caused by the interaction of an artificial electron beam with the earth's upper atmosphere

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P. M.; Gilchrist, B.E.

    1991-01-01

    The Beam-Atmosphere Interaction (BAI) involves the ionization created in the earth's upper atmosphere by electron beams emitted from a low altitude spacecraft. This process is described by two coupled non-linear differential electron transport equations for the up-going (along magnetic field line...

  14. Discovery and measurement of an isotopically distinct source of sulfate in Earth's atmosphere.

    Science.gov (United States)

    Dominguez, Gerardo; Jackson, Terri; Brothers, Lauren; Barnett, Burton; Nguyen, Bryan; Thiemens, Mark H

    2008-09-01

    Sulfate (SO(4)) and its precursors are significant components of the atmosphere, with both natural and anthropogenic sources. Recently, our triple-isotope ((16)O, (17)O, (18)O) measurements of atmospheric sulfate have provided specific insights into the oxidation pathways leading to sulfate, with important implications for models of the sulfur cycle and global climate change. Using similar isotopic measurements of aerosol sulfate in a polluted marine boundary layer (MBL) and primary sulfate (p-SO(4)) sampled directly from a ship stack, we quantify the amount of p-SO(4) found in the atmosphere from ships. We find that ships contribute between 10% and 44% of the non-sea-salt sulfate found in fine [diameter (D) international maritime law, and atmospheric chemistry.

  15. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    Science.gov (United States)

    2015-10-08

    Observation and modeling of tsunami-generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...for public release; distribution is unlimited. Observation and modeling of tsunami-generated gravity waves in the earth’s upper atmosphere Sharon...viscosity), and reconstruct the GW field. We would then apply our models to several observed tsunamis, and calculate the GW field in the

  16. A Mechanism of Solar Variability Effect on Radiative Balance of the Earth Atmosphere

    Institute of Scientific and Technical Information of China (English)

    G. A. Zherebtsov; V.A. Kovalenko; S.I. Molodykh

    2005-01-01

    Possible mechanisms of solar-climatic connections, which may be of importance as over short and long time intervals, are discussed. The variations of energetic balance of Earth's climatic system for the last fifty years are estimated. It is ascertained that the disbalance between the flux of solar energy that comes to the Earth and radiates to space is of 0.1% for the last ten years. The suggested mechanism makes it possible to explain not only the observed variation of the enthalpy of the Earth's climatic system for the period 1910-1980, but also the climate anomalies during last thousand years: the climate optimum in 12 century, and"small glacial period" in 16-17 centuries.

  17. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    Science.gov (United States)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  18. First Measurements of the Earth's Electric Field at the Arctowski Antarctic Station, King George Island, by the New Polish Atmospheric Electricity Observation Network

    Science.gov (United States)

    Kubicki, Marek; Odzimek, Anna; Neska, Mariusz; Berliński, Jerzy; Michnowski, Stanisław

    2016-12-01

    Atmospheric electricity measurements are performed all over the globe for getting a better understanding of the processes and phenomena operating in the Earth's electric atmosphere, ionosphere and magnetosphere. Over recent years, we have established coordinated observations of atmospheric electricity, mainly of the vertical component of the Earth's atmospheric electric field, from Polish observation stations: Stanisław Kalinowski Geophysical Observatory in Świder, Poland, Stanisław Siedlecki Polar Station in Hornsund, Svalbard, Norway, and, for the first time, the Henryk Arctowski Antarctic Station in King George Island. The organisation of this network is presented here as well as a preliminary summary of geophysical conditions at Arctowski, important from the point of view of atmospheric electricity observations. In particular, we refer to the geomagnetic observations made at Arctowski station in 1978-1995. We also present the average fair-weather diurnal variation of the atmospheric electric field based on observations made so far between 2013 and 2015.

  19. Influence of the Earth s Corotation Field on the Atmospheric Electricity: Latitudinal Variation and Response to the Solar Activity

    Science.gov (United States)

    Dumin, Y.

    Influence of the magnetospheric convection field on the atmospheric electricity is widely studied, both theoretically and experimentally, from the early 1970s. On the other hand, a considerably less attention was paid to the effects of plasmaspheric corotation field, since it was usually believed that the electric field of corotation of the solid Earth is fitted smoothly to the corotation field of plasmasphere, so that no potential difference is formed between them in the lower atmosphere. A conjecture on the important role of corotation field in the global atmospheric-electric circuit was done a few years ago in [P.A. Bespalov, Yu.V. Chugunov, J. Atmos. Terr. Phys., 1996, v.58, p.601] and several subsequent works. Unfortunately, because of using an oversimplified model of plasmasphere (in the form of a spherically-symmetric envelope with isotropic conductivity and rigid-body rotation), no reliable numerical estimates were derived, and no comparison with experimental distributions of the atmospheric electric field could be conducted. The main aim of the present report is to study the corotation effects in the framework of a considerably more realistic analytical model, where conductivity of the plasmasphere is strongly anisotropic, and the magnetic field lines are substantially distorted (stretched to "infinity") in the polar regions. Escape of polarization electric charges along the distorted field lines results in appreciable decrease (by 10-15 V/m) in the average atmospheric electric field at high latitudes. Such phenomenon was experimentally discovered as early as the International Geophysical Year (1957-1958) but was not quantitatively explained by now. Yet another interesting effect following from our model is changing the high-latitude electric field due to variations in the degree of distortion of the magnetic field lines at different levels of the solar activity. These transient changes in the atmospheric electricity should be symmetric about the noon

  20. Evaluating the strength of the land-atmosphere moisture feedback in Earth system models using satellite observations

    Science.gov (United States)

    Levine, Paul A.; Randerson, James T.; Swenson, Sean C.; Lawrence, David M.

    2016-12-01

    The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation, solar radiation, and vapor pressure deficit during 2002-2014. Our approach defines metrics to quantify the relationship between TWS anomalies and climate globally on a seasonal to interannual timescale. Metrics derived from the satellite data were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that contributed simulations to phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere. We describe several possible mechanisms that may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity of ET to TWS.

  1. Rare earths and trace elements contents in leaves: A new indicator of the composition of atmospheric dust.

    Science.gov (United States)

    Censi, P; Cibella, F; Falcone, E E; Cuttitta, G; Saiano, F; Inguaggiato, C; Latteo, V

    2017-02-01

    The relationship between the trace element distribution in atmospheric particles and leaves of some exposed plants in the environment was recently demonstrated. This indication would suggest that the trace element analysis of leaves in these plants could provide information about the composition, nature and origin of the atmospheric dust dispersed in the environment. In order to corroborate this hypothesis, the distribution of trace elements and Rare Earths were studied in leaves of some endemic plants, in the atmospheric fallout and in soils of rural, urban and industrial ecosystems in Sicily. These elements have been chosen to discriminate the source and nature of different source on atmospheric dust and the larger capability of the composition of the latter materials to influence the metal ion distribution in leaves of studied plants rather than the soil composition. These evidences are related to the recognition both of positive La anomaly and trace element enrichments in studied leaves and to their particular V/Th and Co/Ni signature. On the other hand, some particular normalised REE features recognised in leaves suggest that a limited contribution to the REE budget in studied leaves is provided by the REE migration from roots.

  2. Greenhouse effect dependence on atmospheric concentrations of greenhouse substances and the nature of climate stability on Earth

    Directory of Open Access Journals (Sweden)

    V. G. Gorshkov

    2002-03-01

    Full Text Available Due to the exponential positive feedback between sea surface temperature and saturated water vapour concentration, dependence of the planetary greenhouse effect on atmospheric water content is critical for stability of a climate with extensive liquid hydrosphere.

    In this paper on the basis of the law of energy conservation we develop a simple physically transparent approach to description of radiative transfer in an atmosphere containing greenhouse substances. It is shown that the analytical solution of the equation thus derived coincides with the exact solution of the well-known radiative transfer equation to the accuracy of 20% for all values of atmospheric optical depth. The derived equation makes it possible to easily take into account the non-radiative thermal fluxes (convection and latent heat and obtain an analytical dependence of the greenhouse effect on atmospheric concentrations of a set of greenhouse substances with arbitrary absorption intervals.

    The established dependence is used to analyse stability of the modern climate of Earth. It is shown that the modern value of global mean surface temperature, which corresponds to the liquid state of the terrestrial hydrosphere, is physically unstable. The observed stability of modern climate over geological timescales is therefore likely to be due to dynamic singularities in the physical temperature-dependent behaviour of the greenhouse effect. We hypothesise that such singularities may appear due to controlling functioning of the natural global biota and discuss major arguments in support of this conclusion.

  3. Correlations and linkages between the sun and the earth's atmosphere: Needed measurements and observations

    Science.gov (United States)

    Kellogg, W. W.

    1975-01-01

    A study was conducted to identify the sequence of processes that lead from some change in solar input to the earth to a change in tropospheric circulation and weather. Topics discussed include: inputs from the sun, the solar wind, and the magnetosphere; bremsstrahlung, ionizing radiation, cirrus clouds, thunderstorms, wave propagation, and gravity waves.

  4. Minor Sulfur Isotope Constraints on the composition of Earth's Archean atmosphere

    Science.gov (United States)

    Claire, M.

    2016-12-01

    Minor sulfur isotope anomalies in the sedimentary record are direct recorders of ancient chemical reactions that occurred in the atmosphere, and therefore form the most direct proxy for Archean atmospheric composition. The mere presence of mass-independently fractionated sulfur isotopes (MIF-S) in the rock record has resolved nearly a century's worth of debate by constraining atmospheric oxygen to trace levels prior to 2.4 billion years ago, and indirectly indicates the presence of a dominant reducing gas, likely H2 or CH4. The MIF-S database has grown substantially in the past decade, and reveals complex time- and facies-dependent changes in MIF-S magnitudes. The structure within the sedimentary MIF-S record suggests that constraints beyond this simple "on-off" switch for atmospheric O2 are possible once we understand the mechanisms that generate and preserve the signal in the rock record. Recently, I proposed an initial quantitative framework for predictions of atmospheric MIF-S [1], but concluded that new measurements of MIF-S generation mechanisms were needed to provide robust constraints. Since then, identification of MIF-S arising from SO2 photoexcitation [2], and updated absorption cross-sections for SO2 and SO [3-4] provide critical new ground-truth on all 4 isotopes of sulfur. Furthermore, breakthroughs in coupled photochemical-climate modeling have enabled better predictions of UV transparency within hazy atmospheres [5] such as those that might have dominated in the Archean [6-8]. I will present 1-D photochemical modeling results based on these new fundamental constraints, in comparison with MIF-S data from the Archean, to interpret the steady-state composition of the Archean atmosphere and time-dependent perturbations to it. In particular, Δ36S/Δ33S resulting from perturbations to atmospheric species will be discussed as a key tool for constraining the composition of the reducing atmosphere. [1] Claire et al. (2014) GCA; [2] Whitehill et al., PNAS

  5. Influence of the atmosphere on the evaluation of the geopotential from global models on the surface of the Earth: implications for the realization of a World Height System

    Science.gov (United States)

    Mäkinen, Jaakko

    2016-04-01

    Outside the atmosphere, the potential of a standard atmosphere can with high accuracy be approximated with the potential of a surface layer with the same mass, independently of the scale height of the atmosphere. Not so when the potential is evaluated on the surface of the Earth. In a spherically symmetric approximation and assuming a scale height of 7.6 km, the potential at zero height is in a back-of-the-envelope calculation 0.12 percent less than the potential of the surface laýer. This corresponds to a difference of -1.2 ppb in the total geopotential evaluated on the surface of the Earth, the equivalent of a difference of +8 mm in height. Using a realistic atmospheric and Earth model, the difference is not constant. This has obvious implications for the geopotential values associated with a World Height System. The question has in fact already been extensively analyzed in the context of geoid determination.

  6. Simulation of Atmospheric Clouds and Aerosols in the Context of CloudSat and EarthCARE

    Science.gov (United States)

    Blanchet, J.-P.; Szyrmer, W.; Beaulne, A.; Donovan, D.; Schutgen, N.; Barker, H.; Testud, J.; Quante, M.

    2003-04-01

    Aerosols and clouds play crucial roles in the atmospheric-surface heat balance. Currently, they are the main source of uncertainties in predicting climate change. The reason is that they are strong modulators of the Earth radiation balance. The problem stems from the fact that every leading physical process in the atmosphere alters the radiative properties of clouds. To address the question, a strategy had been proposed by the scientific community in Granada-I with the aim to link measurements and modeling of the physical processes involved. The new missions are said to be “process oriented”. In preparation for CloudSat and EarthCARE missions, we are actively involved into simulations of both, processes and instruments. Using cloud resolving and regional climate models, together with explicit microphysics, detailed optics and 3D Monte Carlo radiative transfer codes, we are attempting to produce realistic simulations of the active and passive instruments in an “end-to-end experiment”. Starting from detailed scenes, we attempt to simulate the forward and backward radiative transfer of instruments to retrieve and to evaluate the products. In return, the exercise provides us guidance on the application of the future measurements to improve climate models and to reduce the current uncertainties in climate change.

  7. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    Science.gov (United States)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-09-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  8. Connecting the dots: A versatile terrestrial planet benchmark for the atmospheres of tidally locked Super-Earths

    CERN Document Server

    Carone, Ludmila; Decin, Leen

    2014-01-01

    We develop a benchmark for quantifying sustained global dynamics in the atmospheres of tidally locked terrestrial planets using the MITgcm core as the basis of a dry 3D-GCM with simplified thermal forcing. Our forcing employs a Newtonian relaxation scheme based on a simple greenhouse model. Our model is of the same conceptional simplicity than the model of Held& Suarez1994 and is thus versatile and computationally fast. As a case study relevant for Super-Earths, we investigate a Gl581g-like planet with Earth-like atmosphere and irradiation, and present all details on the obtained thermodynamics for representative rotation periods of $P_{rot}=10$ days and $P_{rot}=36.5$ days. This provides proof of concept and identifies interesting dynamical features for the rotating regime $3

  9. Could We Detect Molecular Oxygen in the Atmosphere of a Transiting Extra-Solar Earth-Like Planet?

    CERN Document Server

    Webb, J K; Webb, John K.; Wormleaton, Imma

    2001-01-01

    Although the extra-solar planets discovered so far are of the giant, gaseous, type, the increased sensitivity of future surveys will result in the discovery of lower mass planets. The detection of O2 in the atmosphere of a rocky extra-solar planet would be a potential indicator of a life. In this paper we address the specific issue of whether we would be able to detect the O2 A-band absorption feature in the atmosphere of a planet similar to the Earth, if it were in orbit around a nearby star. Our method is empirical, in that we use observations of the Earth's O2 A-band, with a simple geometric modification for a transiting extra-solar planet, allowing for limb-darkening of the host star. We simulate the spectrum of the host star with the superposed O2 A-band absorption of the transiting planet, assuming a spectral resolution of 7 km/s (typical of current echelle spectrographs), for a range of spectral signal-to-noise ratios. The main result is that we could reliably detect the O2 A-band of the transiting pla...

  10. High-energy cosmic ray fluxes in the Earth atmosphere: calculations vs experiments

    CERN Document Server

    Kochanov, A A; Sinegovsky, S I

    2008-01-01

    A new calculation of the atmospheric fluxes of cosmic-ray hadrons and muons in the energy range 10-10^5 GeV has been performed for the set of hadron production models, EPOS 1.6, QGSJET II-03, SIBYLL 2.1, and others that are of interest to cosmic ray physicists. The fluxes of secondary cosmic rays at several levels in the atmosphere are computed using directly data of the ATIC-2, GAMMA experiments, and the model proposed recently by Zatsepin and Sokolskaya as well as the parameterization of the primary cosmic ray spectrum by Gaisser and Honda. The calculated energy spectra of the hadrons and muon flux as a function of zenith angle are compared with measurements as well as other calculations. The effect of uncertainties both in the primary cosmic ray flux and hadronic model predictions on the spectra of atmospheric hadrons and muons is considered.

  11. Investigation of GNSS Based ERP-series to Validate Atmospheric and Oceanic Contributions to High Frequency Earth Rotation

    Science.gov (United States)

    Weber, R.; Nastula, J.; Boehm, S.

    2009-12-01

    Over the past 25 years several authors have shown that polar motions and variations of Universal Time (UT1) or length of day (LOD), respectively, from seasonal time scales down to one week are forced to a great extent by atmospheric and oceanic angular momentum (AAM and OAM) changes (Barnes, 1983; Rosen and Salstein, 1983; Brzezinski, 1992, 1994; Nastula and Salstein, 1999; Kolaczek et al., 2000; Nastula et al., 2002; Ponte and Ali,2002) and by the solid Earth tides and ocean tides. Oceanic tides also cause variations in UT1/LOD and in polar motion in particular at shorter time scales with diurnal and semi-diurnal periods. Theoretical and semi-empirical models were published by e.g. Gross (1993), Ray et al. (1994). All studies were based on ocean tide models or were using ocean tidal measurements by satellite altimetry. The Ray et al. (1994) model based on TOPEX/Poseidon satellite altimetry data is still the model which is recommended in the IERS Conventions 2003. The high-frequency variations of the Earth rotation parameters due to ocean tides can also be empirically determined from time series derived by space geodetic techniques like Very Long Baseline Interferometry (VLBI) or the Global Positioning System (GPS). Within this investigation high-quality ERP (Earth Rotation Parameter) series, i.e. polar motion (PM), and UT1 or length of day (LOD) with a time resolution of one hour have been established by processing observation data from both active GNSS-systems (GPS+GLONASS). Their correlation with oceanic- (OAM) and atmospheric-induced angular momentum (AAM) acting on the Earth’s surface are investigated. The investigations concentrate on short period variations of Earth rotation with periods of a few days down to a few hours. The amplitudes and phases of these short period tidally and non-tidally induced variations are compared to recent semi-empirical models of the oceanic and atmospheric excitation. Contrary to the standard processing scheme an improved

  12. Remote sensing of the earth's biosphere - A tool for studies of the global atmospheric environment

    Science.gov (United States)

    Bartlett, David S.; Harriss, Robert C.; Bartlett, Karen B.

    1987-01-01

    Recent advances in remote sensing technology and its use for global studies of the biospheric processes are described. Special consideration is given to research related to two issues: (1) quantifying the impacts of natural vegetation and its changing patterns of occurrence on the atmospheric CO2 budget and (2) assessing wetlands (such as the swamps and marshes of Florida's Everglades) as sources of atmospheric CH4. The results include the data from NOAA-AVHRR sensors and from experiments in remote detection of plant growth rate.

  13. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    Directory of Open Access Journals (Sweden)

    Slemzin Vladimir

    2016-01-01

    Full Text Available Aims: Knowledge of properties of the Earth’s upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the

  14. Rapid change of atmosphere on the Hadean Earth: Beyond Habitable Trinity on a tightrope

    Science.gov (United States)

    Arai, T.; Maruyama, S.

    2014-12-01

    Surface environment of Hadean Earth is a key to bear life on the Earth. All of previous works assumed that high pCO2 has been decreased to a few bars in the first a few hundreds millions of years (e.g., Zhanle et al., 2011). However, this process is not easy because of material and process barriers as shown below. Four barriers are present. First, the ultra-acidic pH (plate tectonics or pseudo-plate tectonics system. To overcome this barrier, primordial (anorthosite + KREEP) continents must have been above sea-level to increase pH rapidly through hydrological process. Second, major cap rocks on the Hadean oceanic crust must have been komatiite with minor basaltic rocks to precipitate carbonates through water-rock interaction and transport them into mantle through subduction at higher than the intermediate P/T geotherm on the Benioff plane. If not, carbonate minerals are all decarbonated at shallower depths than the Moho plane. Komatiite production depends on mantle potential temperature which must have been rapidly decreased to yield only Fe-enriched MORB by 3.8Ga. Third, the primordial continents composed of anorthosite with subordinate amounts of KREEP basalts must have been annihilated by 4.0Ga to alter pH to be possible to precipitate carbonates by hydrothermal process. The value of pCO2 must have been decreased down to a few bars from c.a. 50 bars at TSI (total surface irradiance) = 75% under the restricted time limit. If failed, the Earth must have been Venus state which is impossible to bear life on the planet. Fourth is the role of tectonic erosion to destroy and transport the primordial continent of anorthosite into deep mantle by subduction. Anorthosite + KREEP was the mother's milk grow life on the Earth, but disappeared by 4.0Ga or even earlier, but alternatively granites were formed and accumulated on the Earth to supply nutrients for life. This is time-dependent process to increase new continents. Fifth is the water content of 3-5km thick, if the

  15. Perfluorocarbons (PFCs), Some of the Immortal Molecules in the Earth's Atmosphere

    Science.gov (United States)

    Shallcross, Dudley E.; Martin, Damien

    2011-01-01

    Perfluorocarbons (PFCs) are fully fluorinated hydrocarbons that are used as blood plasma substitutes, in medical imaging and in the cosmetics industry. Most are inert and can also be used as tracers for applications such as air flow. However, because of their C-F bonds and their longevity in the atmosphere, PFCs have large global warming…

  16. Using the EC-Earth atmospheric model to quantify the impact of recent thinning of Arctic sea ice

    Science.gov (United States)

    Lang, Andreas Michael; Yang, Shuting; Kaas, Eigil

    2016-04-01

    The atmospheric general circulation model EC-EARTH has been employed to investigate the influence of a realistic change in recent Arctic sea ice thickness on local and remote climate. To investigate the atmospheric response of a realistically thinning sea ice compared to a uniform ice thickness of 1.5 m, two 32-year-long sets of simulations have been performed covering the period 1982-2013 and driven by observed SST and SIC which are only differing by the description of the sea ice thickness. Thickness data is taken from the GIOMAS dataset, which assimilates observed sea ice conditions. The results suggest that the atmospheric impact of recent declining thickness compared to a uniform thickness shows a higher warming trend over the central Arctic, consistent with the observed sea ice thinning, and a less strong warming trend over continental Europe. The influence of a variable thickness is most pronounced in winter and in the lowermost troposphere. Overall, the Arctic SAT response to a realistic sea ice loss including its thinning is in better agreement with the one seen in the reanalysis product ERA-Interim. Precipitation and cloud cover responses do not show a significant reponse to a realistic thickness change. Further analysis of potential remote responses to Arctic sea ice thinning is currently being performed.

  17. Doppler lidar atmospheric wind sensors - A comparative performance evaluation for global measurement applications from earth orbit

    Science.gov (United States)

    Menzies, R. T.

    1986-01-01

    A comparison is made of four prominent Doppler lidar systems, ranging in wavelength from the near UV to the middle IR, which are presently being studied for their potential in an earth-orbiting global tropospheric wind field measurement application. The comparison is restricted to relative photon efficiencies, i.e., the required number of transmitted photons per pulse is calculated for each system for midtropospheric velocity estimate uncertainties ranging from + or - 1 to + or - 4 m/s. The results are converted to laser transmitter pulse energy and power requirements. The analysis indicates that a coherent CO2 Doppler lidar operating at 9.11-micron wavelength is the most efficient.

  18. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history

    Directory of Open Access Journals (Sweden)

    Grant M. Young

    2013-05-01

    Full Text Available In more than 4 Ga of geological evolution, the Earth has twice gone through extreme climatic perturbations, when extensive glaciations occurred, together with alternating warm periods which were accompanied by atmospheric oxygenation. The younger of these two episodes of climatic oscillation preceded the Cambrian “explosion” of metazoan life forms, but similar extreme climatic conditions existed between about 2.4 and 2.2 Ga. Over long time periods, changing solar luminosity and mantle temperatures have played important roles in regulating Earth's climate but both periods of climatic upheaval are associated with supercontinents. Enhanced weathering on the orogenically and thermally buoyed supercontinents would have stripped CO2 from the atmosphere, initiating a cooling trend that resulted in continental glaciation. Ice cover prevented weathering so that CO2 built up once more, causing collapse of the ice sheets and ushering in a warm climatic episode. This negative feedback loop provides a plausible explanation for multiple glaciations of the Early and Late Proterozoic, and their intimate association with sedimentary rocks formed in warm climates. Between each glacial cycle nutrients were flushed into world oceans, stimulating photosynthetic activity and causing oxygenation of the atmosphere. Accommodation for many ancient glacial deposits was provided by rifting but escape from the climatic cycle was predicated on break-up of the supercontinent, when flooded continental margins had a moderating influence on weathering. The geochemistry of Neoproterozoic cap carbonates carries a strong hydrothermal signal, suggesting that they precipitated from deep sea waters, overturned and spilled onto continental shelves at the termination of glaciations. Paleoproterozoic (Huronian carbonates of the Espanola Formation were probably formed as a result of ponding and evaporation in a hydrothermally influenced, restricted rift setting. Why did metazoan

  19. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC Earth system model (version 2.52

    Directory of Open Access Journals (Sweden)

    M. Alvanos

    2017-10-01

    Full Text Available This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate–chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC, used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 ×  and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 ×  speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  20. 40Ar/ 39Ar systematics and argon diffusion in amber: implications for ancient earth atmospheres

    Science.gov (United States)

    Landis, G. P.; Snee, L. W.

    1991-12-01

    Argon isotope data indicate retained argon in bulk amber (matrix gas) is radiogenic [ 40Ar/ 39Ar ≃32o] than the much more abundant surface absorbed argon [ 40Ar/ 39Ar ≃295.5]. Neutron-induced 39Ar is retained in amber during heating experiments to 150° -250°C, with no evidence of recoiled 39Ar found after irradiation. A maximum permissible volume diffusion coefficient of argon in amber (at ambient temperature) D≤1.5 x 10 -17 cm 2S -1 is calculated from 39Ar retention. 40Ar/ 39Ar age calculations indicate Dominican Republic amber is ≃ 45 Ma and North Dakota amber is ≃ 89 Ma, both at least reasonable ages for the amber based upon stratigraphic and paleontological constraints and upon the small amount of radiogenic 40Ar. To date, over 300 gas analyses of ambers and resins of Cretaceous to Recent age that are geographically distributed among fifteen noted world locations identify mixtures of gases in different sites within amber (Berner and Landis, 1988). The presence of multiple mixing trends between compositionally distinct end-members gases within the same sample and evidence for retained radiogenic argon within the amber argue persuasivley against rapid exchange by diffusion of amber-contained gases with moder air. Only gas in primary bubbles entrapped between successive flows of tree resin has been interpreted as original "ancient air", which is an O 2-rich end-member gas with air-like N 2/Ar ratios. Gas analyses of these primary bubbles indicate atmospheric O 2 levels in the Late Cretaceous of ≃ 35%, and that atmospheric O 2 dropped by early Tertiary time to near a present atmospheric level of 21% O 2. A very low argon diffusion coefficient in amber persuasively argues for a gas in primary bubbles trapped in amber being ancient air (possibly modified only by O 2 reaction with amber).

  1. Collaborative Project. A Flexible Atmospheric Modeling Framework for the Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Gettelman, Andrew [University Corporation For Atmospheric Research (UCAR), Boulder, CO (United States)

    2015-10-01

    In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.

  2. Photoelectron spectrum in the upper atmosphere of the earth during solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, S.V.; Kudryashev, G.S.

    1985-05-01

    This paper presents calculations of the photoelectron spectrum during solar flares. A comparison with the data of satellite measurements is presented. Verification of the calculated model of the experimental data has been carried out, showing satisfactory agreement between the results of the calculations and the variations of the photoelectron intensities and emission of the upper atmosphere. The model is suitable for the evaluation of the degree of disturbance of ionospheric parameters during flares, particularly above 100 km, where the role of photoelectrons increases greatly.

  3. Test of developing long-term forecasts of world energy impact on the earth's atmosphere

    Science.gov (United States)

    Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.

    2015-03-01

    It has been established that the historical approach to world energy forecasting can yield useful results at time horizons with a depth of several decades. The genetic forecast supposes reaching a plateau of global energy consumption at the level of 30 billion tons of coal equivalent and an increase in the carbon dioxide concentration almost to 500 parts per million by the end of the century against the background of a continuing decrease in sulfur dioxide emission. From the historical point of view, the implementation of the most aggressive scenarios of human impact on the atmosphere and climate seems very unlikely.

  4. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    Science.gov (United States)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  5. Comparison of Regression Methods to Compute Atmospheric Pressure and Earth Tidal Coefficients in Water Level Associated with Wenchuan Earthquake of 12 May 2008

    Science.gov (United States)

    He, Anhua; Singh, Ramesh P.; Sun, Zhaohua; Ye, Qing; Zhao, Gang

    2016-07-01

    The earth tide, atmospheric pressure, precipitation and earthquake fluctuations, especially earthquake greatly impacts water well levels, thus anomalous co-seismic changes in ground water levels have been observed. In this paper, we have used four different models, simple linear regression (SLR), multiple linear regression (MLR), principal component analysis (PCA) and partial least squares (PLS) to compute the atmospheric pressure and earth tidal effects on water level. Furthermore, we have used the Akaike information criterion (AIC) to study the performance of various models. Based on the lowest AIC and sum of squares for error values, the best estimate of the effects of atmospheric pressure and earth tide on water level is found using the MLR model. However, MLR model does not provide multicollinearity between inputs, as a result the atmospheric pressure and earth tidal response coefficients fail to reflect the mechanisms associated with the groundwater level fluctuations. On the premise of solving serious multicollinearity of inputs, PLS model shows the minimum AIC value. The atmospheric pressure and earth tidal response coefficients show close response with the observation using PLS model. The atmospheric pressure and the earth tidal response coefficients are found to be sensitive to the stress-strain state using the observed data for the period 1 April-8 June 2008 of Chuan 03# well. The transient enhancement of porosity of rock mass around Chuan 03# well associated with the Wenchuan earthquake (Mw = 7.9 of 12 May 2008) that has taken its original pre-seismic level after 13 days indicates that the co-seismic sharp rise of water well could be induced by static stress change, rather than development of new fractures.

  6. Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis.

    Science.gov (United States)

    Liang, Mao-Chang; Hartman, Hyman; Kopp, Robert E; Kirschvink, Joseph L; Yung, Yuk L

    2006-12-12

    During Proterozoic time, Earth experienced two intervals with one or more episodes of low-latitude glaciation, which are probable "Snowball Earth" events. Although the severity of the historical glaciations is debated, theoretical "hard Snowball" conditions are associated with the nearly complete shutdown of the hydrological cycle. We show here that, during such long and severe glacial intervals, a weak hydrological cycle coupled with photochemical reactions involving water vapor would give rise to the sustained production of hydrogen peroxide. The photochemical production of hydrogen peroxide has been proposed previously as the primary mechanism for oxidizing the surface of Mars. During a Snowball, hydrogen peroxide could be stored in the ice; it would then be released directly into the ocean and the atmosphere upon melting and could mediate global oxidation events in the aftermath of the Snowball, such as that recorded in the Fe and Mn oxides of the Kalahari Manganese Field, deposited after the Paleoproterozoic low-latitude Makganyene glaciation. Low levels of peroxides and molecular oxygen generated during Archean and earliest Proterozoic non-Snowball glacial intervals could have driven the evolution of oxygen-mediating and -using enzymes and thereby paved the way for the eventual appearance of oxygenic photosynthesis.

  7. Evaluating the ocean biogeochemical components of earth system models using atmospheric potential oxygen (APO and ocean color data

    Directory of Open Access Journals (Sweden)

    C. D. Nevison

    2014-06-01

    Full Text Available The observed seasonal cycles in atmospheric potential oxygen (APO at a range of mid to high latitude surface monitoring sites are compared to those inferred from the output of 6 Earth System Models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5. The simulated air–sea O2 fluxes are translated into APO seasonal cycles using a matrix method that takes into account atmospheric transport model (ATM uncertainty among 13 different ATMs. Half of the ocean biogeochemistry models tested are able to reproduce the observed APO cycles at most sites, to within the current large ATM uncertainty, while the other half generally are not. Net Primary Production (NPP and net community production (NCP, as estimated from satellite ocean color data, provide additional constraints, albeit more with respect to the seasonal phasing of ocean model productivity than the overall magnitude. The present analysis suggests that, of the tested ocean biogeochemistry models, CESM and GFDL ESM2M are best able to capture the observed APO seasonal cycle at both Northern and Southern Hemisphere sites. In the northern oceans, the comparison to observed APO suggests that most models tend to underestimate NPP or deep ventilation or both.

  8. Anomalous diurnal variation of atmospheric potential gradient and air-Earth current density observed at Maitri, Antarctica

    Science.gov (United States)

    Jeeva, K.; Gurubaran, S.; Williams, E. R.; Kamra, A. K.; Sinha, A. K.; Guha, A.; Selvaraj, C.; Nair, K. U.; Dhar, Ajay

    2016-11-01

    The scope of this paper is to explore the mechanisms operating over Maitri (70.76°S, 11.74°E, 117 m above mean sea level), a coastal Antarctic station, that produce an anomalous fair-weather diurnal pattern of the atmospheric electric potential gradient (PG) and air-Earth current density (AEC). The anomaly in the diurnal variations of AEC and the PG is displaying an ostensible minimum at 10 UT and a diminished response to the thunderstorm over the African continent in the 14-16 UT time frame. The data sets (2005-2014, except 2012) of the PG, and to some extent, AEC, from Maitri, are used to explore this anomaly. It follows that the fair-weather electrical phenomena over Maitri can be ascribed to global electrified convection on the one hand and to regional phenomena like convection due to the replacement of warm air by katabatic winds on the other hand. The katabatic winds originate on the polar plateau and blow from 130° at Maitri which are likely to transport various elements from the mountain slopes, and space charge from the polar plateau is expected to produce various disturbances in the PG and AEC monitored over the coastal Antarctica. This mechanism may be responsible for peaks in the early UT hours and also for the anomalous behavior of atmospheric electrical parameters observed at Maitri. Maitri data are compared with that of Carnegie cruise and Vostok to explain the source of anomaly.

  9. Spatial and Temporal Variations of Atmospheric Angular Momentum and Its Relation to the Earth Length of Day

    Institute of Scientific and Technical Information of China (English)

    YANG Ping; SHI Wenjing; XIAO Ziniu; DONG Shi; REN Juzhang

    2014-01-01

    The characteristics of atmospheric-angular-momentum (AAM) and length-of-day (LOD) on diff erent timescales are investigated in this paper, on the basis of the NECP/NCAR reanalysis data and an LOD dataset for 1962-2010. The variation and overall trend of the AAM anomaly (AAMA) at diff erent latitudes are presented, and the relationship between AAMA and LOD is discussed. The AAMAs in diff erent latitude regions exhibit diff erent patterns of variation, and the AAMA in the tropics makes a dominant contribution to the global AAMA. In the tropics, the AAMA propagates poleward to the extratropical regions. It is confi rmed that a downward propagation of the AAMA occurs in the lower stratosphere. Correlation analysis shows that the relationship between AAMA and LOD varies signifi cantly on diff erent timescales. Specifi cally, the tropical AAMA is positively correlated with LOD on short timescales, but they are not obviously correlated on long timescales. This indicates that the interaction between AAM and the earth’s angular momentum follows the conservative restriction on short timescales, but the infl uence of the earth angular momentum on that of the atmosphere depends on the interaction process on long timescales.

  10. Broadband Transmission Spectroscopy of the super-Earth GJ 1214b suggests a Low Mean Molecular Weight Atmosphere

    CERN Document Server

    Croll, Bryce; Jayawardhana, Ray; Kempton, Eliza Miller-Ricci; Fortney, Jonathan J; Murray, Norman; Neilson, Hilding

    2011-01-01

    We used WIRCam on CFHT to observe four transits of the super-Earth GJ 1214b in the near-infrared. For each transit we observed in two bands nearly-simultaneously by rapidly switching the WIRCam filter wheel back and forth for the duration of the observations. By combining all our J-band (~1.25 microns) observations we find a transit depth in this band of 1.338\\pm0.013% - a value consistent with the optical transit depth reported by Charbonneau and collaborators. However, our best-fit combined Ks-band (~2.15 microns) transit depth is deeper: 1.438\\pm0.019%. Formally our Ks-band transits are deeper than the J-band transits observed simultaneously by a factor of 1.072\\pm0.018 - a 4-sigma discrepancy. The most straightforward explanation for our deeper Ks-band depth is a spectral absorption feature from the limb of the atmosphere of the planet; for the spectral absorption feature to be this prominent the atmosphere of GJ 1214b must have a large scale height and a low mean molecular weight. That is, it would have ...

  11. Three-dimensional parameterizations of the synoptic scale kinetic energy and momentum flux in the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    D. Coumou

    2011-11-01

    Full Text Available We present a new set of statistical-dynamical equations (SDEs which can accurately reproduce the three-dimensional atmospheric fields of synoptic scale kinetic energy and momentum flux. The set of equations is closed by finding proper parameterizations for the vertical macro-turbulent diffusion coefficient and ageostrophic terms. The equations have been implemented in a new SD atmosphere model, named Aeolus. We show that the synoptic scale kinetic energy and momentum fluxes generated by the model are in good agreement with empirical data, which were derived from bandpass-filtered ERA-40 data. In addition to present-day climate, the model is tested for substantially colder (last glacial maximum and warmer (2×CO2 climates, and shown to be in agreement with general circulation model (GCM results. With the derived equations, one can efficiently study the position and strength of storm tracks under different climate scenarios with calculation time a fraction of those of GCMs. This work prepares ground for the development of a new generation of fast Earth System Models of Intermediate Complexity which are able to perform multi-millennia simulations in a reasonable time frame while appropriately accounting for the climatic effect of storm tracks.

  12. Periodic components of the atmospheric drag of Earth artificial satellites and their dependence on the state of space weather

    Science.gov (United States)

    Komendant, Volodymyr; Koshkin, Nikolay; Ryabov, Mikhail

    2016-07-01

    Based on the accumulated in the University Observatory extensive database of evolving orbital elements of low-orbit satellites, the behavior of the parameterwas studied, which characterizes their drag in the atmosphere of the Earth. The time spectra structure of drag of 25 artificial satellites is being studied by applying various methods of spectral analysis. Fifteen artificial satellites with circular orbits and ten artificial satellites with elliptical orbits are studied. The processed information includes ten years of observations that covers: declining and minimum phases of 23 ^{rd}(2005-2008) solar cycle; phases of rise and maximum of 24th(2009-2014) solar cycle. Time-frequency analysis of solar and geomagnetic activity indexes has been conducted. These indexes are: W - Wolf numbers; Sp - the total area of sunspot groups of the northern and southern hemispheres of the Sun, F10.7 - the solar radio flux at 10,7 cm; E - electron flux with energies more than 0,6 MeV i 2 MeV; planetary, high latitude and middle latitude geomagnetic index Ap. Periodograms of satellite's drag data, solar and geomagnetic activity indexes were constructed. In the atmospheric drag dynamics of satellites,the following periodswere detected: 6-year, 2.1-year, annual, semi-annual, 27-days, 13- and 11-days. Similar periods are identified in indexes of solar and geomagnetic activity. The ratios of the amplitudes of the spectral power of these periods vary in different phases of the solar cycle. The tables of the main periods in the drag of the artificial satellites and the main periods in the solar and geomagnetic activity indexes were obtained with the help of spectrograms. Their presence in certain phases of the solar cycle was researched. The calculation of multiple correlation' models of the orbital parameter characterizing the drag of satellites on various orbits, depending on the basic parameters of space weather has been done. These results have practical application for models

  13. High-energy neutrino fluxes and flavor ratio in the Earth atmosphere

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2014-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic-ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy range where a contribution of the prompt neutrinos and/or astrophysical ones should be uncovered. The calculation of muon and electron neutrino fluxes in the energy range 100 GeV - 10 PeV is performed for three hadronic models, QGSJET II, SIBYll 2.1 and Kimel & Mokhov, taking into consideration the "knee" of the cosmic-ray spectrum. All calculations are compared with the atmospheric neutrino measurements by Frejus, AMANDA, IceCube and ANTARES. The prompt neutrino flux predictions obtained with the quark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the measurements and upper limits on the astrophysical muon neutrino flux obtained ...

  14. Titration of the Earth: Ocean-Atmosphere Evolution Recorded in Marine Carbonates

    Science.gov (United States)

    Kah, L. C.

    2012-12-01

    feedback for understanding the temporal evolution of the ocean-atmosphere system.

  15. Response of Atmospheric Biomarkers to NOx-induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M-Dwarf Stars

    CERN Document Server

    Grenfell, John Lee; von Paris, Philip; Patzer, Beate; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2015-01-01

    Understanding whether M-dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M-dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides in the planetary atmosphere, hence affecting biomarkers such as ozone. We apply a stationary model, that is, without a time-dependence, hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by t...

  16. On the Fractal Mechanism of Interrelation Between the Genesis, Size and Composition of Atmospheric Particulate Matters in Different Regions of the Earth

    CERN Document Server

    Rusov, Vitaliy D; Jacimovic, Radojko R; Pavlovich, Vladimir N; Bondarchuk, Yuriy A; Vaschenko, Vladimir N; Zelentsova, Tatiana N; Beglaryan, Margarita E; Linnik, Elena P; Smolyar, Vladimir P; Kosenko, Sergey I; Gudyma, Alla A

    2011-01-01

    Experimental data from the National Air Surveillance Network of Japan from 1974 to 1996 and from independent measurements performed simultaneously in the regions of Ljubljana (Slovenia), Odessa (Ukraine) and the Ukrainian "Academician Vernadsky" Antarctic station (64{\\deg}15'W; 65{\\deg}15'S), where the air elemental composition was determined by the standard method of atmospheric particulate matter (PM) collection on nucleopore filters and subsequent neutron activation analysis, were analyzed. Comparative analysis of different pairs of atmospheric PM element concentration data sets, measured in different regions of the Earth, revealed a stable linear (on a logarithmic scale) correlation, showing a power law increase of every atmospheric PM element mass and simultaneously the cause of this increase - fractal nature of atmospheric PM genesis. Within the framework of multifractal geometry we show that the mass (volume) distribution of atmospheric PM elemental components is a log normal distribution, which on a l...

  17. Control of the Earth's electric field intensity through solar wind modulation of galactic cosmic radiation: Support for a proposed atmospheric electrical sun-weather mechanism

    Science.gov (United States)

    Markson, R.

    1980-01-01

    The ionospheric potential and galactic cosmic radiation, found to be inversely correlated with the solar wind velocity are examined as being germane to weather modification. Since the ionospheric potential is proportional to the fair weather electric field intensity and cosmic radiation is the dominant source of atmospheric ionization, it is concluded that the Earth's overall electric field varies in phase with atmospheric ionization and that the latter is modulated by the solar wind. A proposed mechanism, in which solar control of ionizing radiation influences atmospheric electrification and thus possibly cloud physical processes is discussed. An experimental approach to critically test the proposed mechanism through comparison of the temporal variation of the Earth's electric field with conditions in the interplanetary medium is outlined.

  18. Singular measures versus nondifferentiability: from the solid earth to the atmosphere and their interface (Invited)

    Science.gov (United States)

    Lovejoy, S.; Schertzer, D. J.

    2010-12-01

    with respect to Lebesgue measures (the scaling exponent K(q) - which is a cumulant generating function - diverges in the small scale limit i.e. as λ -> infinity). We give examples of such singular geomeasures ranging from ore concentrations, geopotential fields, topography, to surface and atmospheric radiances and to the state variables showing the ubiquity of singular measures throughout the geosciences. Classical geostatistics is based on point process random functions; it can easily handle nondifferentiability. However, it implicitly assumes that the relevant geomeasures are on the contrary regular with respect to Lebesgue measures. It would thus seem that real world geodata are outside the domain of application of classical geostatistics. We discuss the consequences.

  19. Impact of Insertion Reaction of O(^1D) Into the Carbonic Acid Molecule in the Atmosphere of Earth and Mars

    Science.gov (United States)

    Ghoshal, Sourav; Hazra, Montu K.

    2017-06-01

    In this talk, we present the energetics and kinetics of the insertion reaction of the O(^1D) into the H_2CO_3 molecule that finally produces the percarbonic acid [H_2C(O)O_3] molecule (H_2CO_3 + O(^1D)→ H_2C(O)O_3). The rate constants have been calculated by the Variable-Reaction-Coordinate Variational Transition State Theory (VRC-VTST). From our results, we show that the rate constants of the insertion reaction are significantly higher than the rate constants associated with the H_2O-assisted H_2CO_3 decomposition (H_2CO_3 + H_2O → CO_2 + 2H_2O), acetic acid (AA)-assisted H_2CO_3 decomposition (H_2CO_3 + AA → CO_2 + H_2O + AA) and OH radical-initiated H_2CO_3 degradation reaction (H_2CO_3 + OH^{.} → HCO_3^{.} + H_2O) -which are currently assumed to be the potentially important reaction channels to interpret the atmospheric loss of the H_2CO_3 molecule in the Earth. Finally, we also discuss the potential impact of the H_2O-assisted H_2CO_3 decomposition reaction, OH radical-initiated H_2CO_3 degradation reaction and the above-mentioned insertion reaction on equal footing toward the loss of H_2CO_3 molecule, especially, in the surface of Mars.

  20. On the Method to Infer an Atmosphere on a Tidally-Locked Super Earth Exoplanet and Upper limits to GJ 876d

    CERN Document Server

    Seager, S

    2009-01-01

    We develop a method to infer or rule out the presence of an atmosphere on a tidally-locked hot super Earth. The question of atmosphere retention is a fundamental one, especially for planets orbiting M stars due to the star's long-duration active phase and corresponding potential for stellar-induced planetary atmospheric escape and erosion. Tidally-locked planets with no atmosphere are expected to show a Lambertian-like thermal phase curve, causing the combined light of the planet-star system to vary with planet orbital phase. We report Spitzer 8 micron IRAC observations of GJ 876 taken over 32 continuous hours and reaching a relative photometric precision of 3.9e-04 per point for 25.6 s time sampling. This translates to a 3 sigma limit of 5.13e-05 on a planet thermal phase curve amplitude. Despite the almost photon-noise limited data, we are unable to conclusively infer the presence of an atmosphere or rule one out on the non-transiting short-period super Earth GJ 876d. The limiting factor in our observations...

  1. Evolution of the solar activity over time and effects on planetary atmospheres. II. kappa^1 Ceti, an analog of the Sun when life arose on Earth

    CERN Document Server

    Ribas, I; Ferreira, L D; Hebrard, E; Selsis, F; Catalan, S; Garces, A; Nascimento, J D do; de Medeiros, J R

    2010-01-01

    The early evolution of Earth's atmosphere and the origin of life took place at a time when physical conditions at the Earth where radically different from its present state. The radiative input from the Sun was much enhanced in the high-energy spectral domain, and in order to model early planetary atmospheres in detail, a knowledge of the solar radiative input is needed. We present an investigation of the atmospheric parameters, state of evolution and high-energy fluxes of the nearby star kap^1 Cet, previously thought to have properties resembling those of the early Sun. Atmospheric parameters were derived from the excitation/ionization equilibrium of Fe I and Fe II, profile fitting of Halpha and the spectral energy distribution. The UV irradiance was derived from FUSE and HST data, and the absolute chromospheric flux from the Halpha line core. From careful spectral analysis and the comparison of different methods we propose for kap^1 Cet the following atmospheric parameters: Teff = 5665+/-30 K (Halpha profil...

  2. Spore-Forming Thermophilic Bacterium within Artificial Meteorite Survives Entry into the Earth's Atmosphere on FOTON-M4 Satellite Landing Module.

    Science.gov (United States)

    Slobodkin, Alexander; Gavrilov, Sergey; Ionov, Victor; Iliyin, Vyacheslav

    2015-01-01

    One of the key conditions of the lithopanspermia hypothesis is that microorganisms situated within meteorites could survive hypervelocity entry from space through the Earth's atmosphere. So far, all experimental proof of this possibility has been based on tests with sounding rockets which do not reach the transit velocities of natural meteorites. We explored the survival of the spore-forming thermophilic anaerobic bacterium, Thermoanaerobacter siderophilus, placed within 1.4-cm thick basalt discs fixed on the exterior of a space capsule (the METEORITE experiment on the FOTON-M4 satellite). After 45 days of orbital flight, the landing module of the space vehicle returned to Earth. The temperature during the atmospheric transit was high enough to melt the surface of basalt. T. siderophilus survived the entry; viable cells were recovered from 4 of 24 wells loaded with this microorganism. The identity of the strain was confirmed by 16S rRNA gene sequence and physiological tests. This is the first report on the survival of a lifeform within an artificial meteorite after entry from space orbit through Earth's atmosphere at a velocity that closely approached the velocities of natural meteorites. The characteristics of the artificial meteorite and the living object applied in this study can serve as positive controls in further experiments on testing of different organisms and conditions of interplanetary transport.

  3. Spore-Forming Thermophilic Bacterium within Artificial Meteorite Survives Entry into the Earth's Atmosphere on FOTON-M4 Satellite Landing Module.

    Directory of Open Access Journals (Sweden)

    Alexander Slobodkin

    Full Text Available One of the key conditions of the lithopanspermia hypothesis is that microorganisms situated within meteorites could survive hypervelocity entry from space through the Earth's atmosphere. So far, all experimental proof of this possibility has been based on tests with sounding rockets which do not reach the transit velocities of natural meteorites. We explored the survival of the spore-forming thermophilic anaerobic bacterium, Thermoanaerobacter siderophilus, placed within 1.4-cm thick basalt discs fixed on the exterior of a space capsule (the METEORITE experiment on the FOTON-M4 satellite. After 45 days of orbital flight, the landing module of the space vehicle returned to Earth. The temperature during the atmospheric transit was high enough to melt the surface of basalt. T. siderophilus survived the entry; viable cells were recovered from 4 of 24 wells loaded with this microorganism. The identity of the strain was confirmed by 16S rRNA gene sequence and physiological tests. This is the first report on the survival of a lifeform within an artificial meteorite after entry from space orbit through Earth's atmosphere at a velocity that closely approached the velocities of natural meteorites. The characteristics of the artificial meteorite and the living object applied in this study can serve as positive controls in further experiments on testing of different organisms and conditions of interplanetary transport.

  4. Inversion of the Chelyabinsk seismic surface waves and comparative constraints on the generation of seismic waves by atmospheric Impacts on Earth and Mars

    Science.gov (United States)

    Karakostas, F. G.; Rakoto, V.; Lognonne, P. H.

    2015-12-01

    Meteor impacts are a very important seismic source for planetary seismology, since their locations and, in some cases, their occurence times can be accurately known from orbiters, tracking or optical observations. Their importance becomes greater in the case of a seismic experiment with one seismometer, as the SEIS (Seismic Experiment of Interior Structure) of the future Martian mission "InSight", as the known location allows a direct inversion of differential travel times and wave forms in terms of structure. Meteor impacts generate body and surface seismic waves when they reach the surface of a planet. But when they explode into the atmosphere, due to ablation, they generate shock waves, which are converted into linear, seismic waves in the solid part and acoustic waves in the atmosphere. This effect can be modeled when the amplitude of Rayleigh and other Spheroidal normal modes is made with the atmospheric/ground coupling effects. In this study, meteor impacts are modeled as seismic sources in a comparative analysis for the cases of Earth and Mars. Using the computed seismograms, calculated by the summation of the normal modes of the full planet (e.g. with atmosphere) the properties of the seismic source can be obtained. Its duration is typically associated to the radiation duration of shock waves until they reach the linear regime of propagation. These transition times are comparatively analyzed, for providing constraints on the seismic source duration on Earth and Mars. In the case of Earth, we test our approach with the Chelyabinsk superbolide. The computed seismograms are used in order to perform the inversion of the source, by comparison with the data of the Global Seismographic Network. The results are interpreted and compared with other observations. In the case of Mars, equivalent sources are similarly modeled in different atmospheric, impact size and lithospheric conditions.

  5. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    Science.gov (United States)

    Grenfell, John Lee; Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M→O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)→NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong

  6. Jerks as Guiding Influences on the Global Environment: Effects on the Solid Earth, Its Angular Momentum and Lithospheric Plate Motions, the Atmosphere, Weather, and Climate

    Science.gov (United States)

    Quinn, J. M.; Leybourne, B. A.

    2010-12-01

    Jerks are thought to be the result of torques applied at the core-mantle boundary (CMB) caused by either of two possible processes, working together or separately: 1) Electromagnetic Induction and 2) Mechanical Slippage. In the first case, it is thought that electromagnetic energy slowly builds-up at the CMB, reaches some critical level, and is then suddenly released, causing a geomagneticly induced torque at the CMB due to the differential electrical conductivity between the lower mantle and the surface of the outer core. The second case is driven by stress and strain increases that buildup mechanical potential energy, which is released when a critical level is reached, thereby generating a torque at the CMB. Generally, a trigger is required to start the Jerk process in motion. In the electromagnetic case, it is suggested that energy from the Sun may supply the requisite energy buildup that is subsequently released by a magnetic storm trigger, for instance. In the case of mechanical slippage, bari-center motion among the Earth, Moon, and Sun, as well as tidal forces and mass redistributions through Earth's wobbles combine to provide the accumulated stress/strain buildup and subsequent trigger. The resulting fluid flow changes at the CMB result in geomagnetic field changes and Joule heating throughout the solid Earth, its oceans, and atmosphere. It is shown that the Global Temperature Anomaly (GTA), which is measured at Earth's surface, correlates with changes in the geomagnetic non-dipole moment, and thus with core fluid motions. This links Global Warming and weather with core processes, important examples being the 1930's Dust Bowl Era and the 1947 Impulse. The CMB torque also affects Earth's angular momentum. But it appears that magnetic storms can as well. As a consequence, the Jet Stream, atmospheric circulation patterns, and the Global Oscillation System (i.e., El-Nino/Southern-Oscillation, North Atlantic Oscillation, the Pacific Decade Oscillation, etc.) are

  7. Ground-based simulation of the Earth's upper atmosphere oxygen impact on polymer composites with nanosized fillers

    Science.gov (United States)

    Novikov, Lev; Chernik, Vladimir; Voronina, Ekaterina; Chechenin, Nikolay; Samokhina, Maria S.; Bondarenko, Gennady G.; Gaidar, Anna I.; Vorobyeva, Ekaterina A.; Petrov, Dmitrii V.; Chirskaya, Natalia P.

    The improvement of durability of polymer composites to the space environment impact is a very important task because these materials are considered currently as very promising type of materials for aerospace engineering. By embedding various nanosized fillers into a polymer matrix it is possible to obtain composites with required mechanical, thermal, electrical and optic properties. However, while developing such materials for operation in low Earth orbits (LEO), it is necessary to study thoroughly their durability to the impact of atomic oxygen (AO) of the Earth’s upper atmosphere, because AO is the main factor that causes erosion and damage of spacecraft surface materials in LEO. Ground-based simulation of AO impact on polymer composites was performed on a magnetoplasmadynamic accelerator developed at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Polymer composite samples which were prepared as films of 30-50 mum thickness with different amount (3-20 wt%) of various inorganic and organic nanofillers including nanoparticles of metal oxides and carbides as well as polyethoxysiloxanes and carbon nanotubes (CNTs), were exposed to hyperthermal AO flow, and mass losses of samples were estimated. Changes in the structure of composite surface and in material optical properties were studied. The experiments demonstrated that embedding nanosized fillers into a polymer matrix can significantly reduced mass losses, and the good dispersion of fillers improves AO durability in comparison with initial polymers [1]. The computer simulation within the developed 2D Monte-Carlo model demonstrated a good agreement with the experimental data [2]. Special attention was given to the study of AO impact on aligned multiwalled CNTs and CNT-based composites [3]. Some results of computer simulation of hyperthermal oxygen atom interaction with CNT and graphene as well as with polymers are presented to discuss elementary processes which occur in nanostructures

  8. Resources to Transform Undergraduate Geoscience Education: Activities in Support of Earth, Oceans and Atmospheric Sciences Faculty, and Future Plans

    Science.gov (United States)

    Ryan, J. G.; Singer, J.

    2013-12-01

    The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted

  9. Study of gamma radiation between 0.1 and 1.0 MeV in the earth's atmosphere; Etude du rayonnement gamma entre 0,1 et 1 Mev dans l'atmosphere terrestre

    Energy Technology Data Exchange (ETDEWEB)

    Boclet, D. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-01-01

    The present work is devoted to some of the particular problems arising in the detection and localisation of sources of gamma radiation situated outside the earth's atmosphere. These weak sources can only be detected and localized if care is taken to eliminate gamma and particle radiations coming from other sources in the earth's atmosphere and in space. In order to separate the various sources of background noise, generally much stronger than the radiation under study, use is made of a directional detector whose characteristics are determined as described in the first part of the following report. The closest diffuse source considered is that constituted by the earth's atmosphere. Its detailed study will make it possible both to eliminate its effect when sources outside the earth are to be measured, and to predict the amount of secondary gamma radiation emitted by the same process in other celestial bodies, the moon in particular. This work considered in the 2. and 3. parts of the report. (author) [French] La presente etude est consacree a certains des problemes particuliers poses par la detection et la localisation des sources de rayonnement gamma situees hors de l'atmosphere terrestre. Ces sources faibles ne peuvent etre detectees et localisees que si l'on se protege des rayonnements gamma et particulaires provenant d'autres sources situees dans l'atmosphere terrestre et dans l'espace. Pour separer ces divers composants parasites, en general beaucoup plus intenses que le rayonnement a etudier, nous emploierons un detecteur directif dont nous determinons les caracteristiques dans la premiere partie de l'expose qui suit. La source diffuse la plus proche que nous considerons comme parasite est constituee par l'atmosphere terrestre. Son etude detaillee nous permettra d'une part de nous en proteger lorsque nous voudrons etudier les sources {gamma} extra-terrestres, d'autre part de prevoir le rayonnement gamma

  10. Mirador - Atmospheric Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects,...

  11. Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework

    Science.gov (United States)

    Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac

    2016-10-01

    Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of

  12. The Potential Importance of Non-Local, Deep Transport on the Energetics, Momentum, Chemistry, and Aerosol Distributions in the Atmospheres of Earth, Mars and Titan

    CERN Document Server

    Rafkin, Scot

    2010-01-01

    A review of non-local, deep transport mechanisms in the atmosphere of Earth provides a good foundation for examining whether similar mechanisms are operating in the atmospheres of Mars and Titan. On Earth, deep convective clouds in the tropics constitute the upward branch of the Hadley Cell and provide a conduit through which energy, moisture, momentum, aerosols and chemical species are moved from the boundary layer to the upper troposphere and lower stratosphere. This transport produces mid-tropospheric minima in quantities such as water vapor and moist static energy and maxima where the clouds detrain. Analogs to this terrestrial transport are found in the strong and deep thermal circulations associated with topography on Mars and with Mars dust storms. Observations of elevated dust layers on Mars further support the notion that non-local deep transport is an important mechanism in the atmosphere of Mars. On Titan, the presence of deep convective clouds almost assures that non-local, deep transport is occur...

  13. The significance of land-atmosphere interactions in the Earth system-iLEAPS achievements and perspectives

    NARCIS (Netherlands)

    Suni, T.; Guenther, A.; Hansson, H.C.; Kulmala, M.; Andreae, M.O.; Arneth, A.; Artaxo, P.; Blyth, E.; Brus, M.; Ganzeveld, L.; Kabat, P.; de. Noblet-Ducoudré, N.; Reichstein, M.; Reissell, A.; Rosenfeld, D.; Seneviratne, S.

    2015-01-01

    The integrated land ecosystem-atmosphere processes study (iLEAPS) is an international research project focussing on the fundamental processes that link land-atmosphere exchange, climate, the water cycle, and tropospheric chemistry. The project, iLEAPS, was established 2004 within the Internationa

  14. Lessons from our Own Solar System: Generation Mechanisms of Radio Emissions from Earth, Saturn and Jupiter and Atmospheric Loss from Magnetized versus non-magnetized planets

    Science.gov (United States)

    Brandt, Pontus

    2017-05-01

    The understanding of the engines and mechanisms behind kilometric and decametric radio emissions from the planets in our own solar system have taken great leaps with missions such as the NASA/Cassini, IMAGE and Galileo missions. The periodic Saturn Kilometric Radiation (SKR), the Auroral Kilometric Radiation (AKR) at Earth and the periodic decametric radio emissions from Jupiter all point to the same generation mechanisms: very large-scale explosive plasma heating events in the magnetotail of each of the planets. The character and periodicity of the associated radio emissions not only tells us about the presence of a magnetic field but also about the plasma content and size of the planetary magnetosphere, and the nature of the interaction with the solar wind.The presence of a planetary magnetic field, as could be established for exoplanets by the positive detection of low-frequency exoplanetary radio emissions, has been thought to shield a planet from atmospheric loss to space. However, recent data from Mars Express, MAVEN, and Venus Express, together with the wealth of terrestrial measurements of atmospheric escape to space has brought a surprising question in to light: Does a planetary magnetic field suppress or enhance atmospheric loss? While at the non-magnetized planets such as Mars and Venus, the solar wind has a more direct access to the ionized upper atmosphere, these planets do set up self shielding currents that do limit escape. Furthermore, it is not clear if Mars have lost the majority of its atmosphere by condensation in to surface and sub-surface frost, or through atmospheric escape. At Earth, the geomagnetic field sets up a relatively large cross section to the solar wind, that allows the induced solar-wind electric field to transfer substantial energy to the upper ionosphere and atmosphere resulting in substantial loss. It is therefore not clear how a planetary magnetic field correlates to the atmospheric loss, or if it does at all.In this

  15. The Sun, Its Extended Corona, the Interplanetary Space, the Earth's Magnetosphere, Ionosphere, Middle and Low Atmosphere, are All Parts of a Complex System - the Heliosphere

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Various manifestations of solar activity cause disturbances known as space weather effects in the interplanetary space, near-Earth environment, and all the Earth's "spheres. Longterm variations in the frequency, intensity and relative importance of the manifestations of solar activity are due to the slow changes in the output of the solar dynamo, and they define space climate. Space climate governs long-term variations in geomagnetic activity and is the primary natural driver of terrestrial climate. To understand how the variable solar activity affects the Earth's environment, geomagnetic activity and climate on both short and long time scales, we need to understand the origins of solar activity itself and its different manifestations, as well as the sequence of coupling processes linking various parts of the system. This session provides a forum to discuss the chain of processes and relations from the Sun to the Earth's surface: the origin and long-term and short-term evolution of solar activity, initiation and temporal variations in solar flares, CMEs, coronal holes, the solar wind and its interaction with the terrestrial magnetosphere, the ionosphere and its connection to the neutral dominated regions below and the plasma dominated regions above, the stratosphere, its variations due to the changing solar activity and its interactions with the underlying troposphere, and the mechanisms of solar influences on the lower atmosphere on different time-scales. Particularly welcome are papers highlighting the coupling processes between the different domains in this complex system.

  16. Piloting a Geoscience Literacy Exam for Assessing Students' Understanding of Earth, Climate, Atmospheric and Ocean Science Concepts

    Science.gov (United States)

    Steer, D. N.; Iverson, E. A.; Manduca, C. A.

    2013-12-01

    This research seeks to develop valid and reliable questions that faculty can use to assess geoscience literacy across the curriculum. We are particularly interested on effects of curricula developed to teach Earth, Climate, Atmospheric, and Ocean Science concepts in the context of societal issues across the disciplines. This effort is part of the InTeGrate project designed to create a population of college graduates who are poised to use geoscience knowledge in developing solutions to current and future environmental and resource challenges. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The Geoscience Literacy Exam (GLE) under development presently includes 90 questions. Each big idea from each literacy document can be probed using one or more of three independent questions: 1) a single answer, multiple choice question aimed at basic understanding or application of key concepts, 2) a multiple correct answer, multiple choice question targeting the analyzing to analysis levels and 3) a short essay question that tests analysis or evaluation cognitive levels. We anticipate multiple-choice scores and the detail and sophistication of essay responses will increase as students engage with the curriculum. As part of the field testing of InTeGrate curricula, faculty collected student responses from classes that involved over 700 students. These responses included eight pre- and post-test multiple-choice questions that covered various concepts across the four literacies. Discrimination indices calculated from the data suggest that the eight tested questions provide a valid measure of literacy within the scope of the concepts covered. Student normalized gains across an academic term with limited InTeGrate exposure (typically two or fewer weeks of InTeGrate curriculum out of 14 weeks) were found to average 16% gain. A small set of control data (250 students in classes from one institution where no InTeGrate curricula were used) was

  17. Biomarker response to galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M dwarf star.

    Science.gov (United States)

    Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Von Paris, Philip

    2007-02-01

    Planets orbiting in the habitable zone of M dwarf stars are subject to high levels of galactic cosmic rays (GCRs), which produce nitrogen oxides (NOx) in Earth-like atmospheres. We investigate to what extent these NO(Mx) species may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources). Our model results suggest that such signals are robust, changing in the M star world atmospheric column due to GCR NOx effects by up to 20% compared to an M star run without GCR effects, and can therefore survive at least the effects of GCRs. We have not, however, investigated stellar cosmic rays here. CH4 levels are about 10 times higher on M star worlds than on Earth because of a lowering in hydroxyl (OH) in response to changes in the ultraviolet. The higher levels of CH4 are less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% lower CH4 fluxes compared to those studies. Unlike on Earth, relatively modest changes in these fluxes can lead to larger changes in the concentrations of biomarker and related species on the M star world. We calculate a CH4 greenhouse heating effect of up to 4K. O3 photochemistry in terms of the smog mechanism and the catalytic loss cycles on the M star world differs considerably compared with that of Earth.

  18. Detecting spectrally localized components of lunar tide-frequency in time-series of the electric field vertical component of the earth atmosphere boundary layer

    CERN Document Server

    Isakevich, V V; Isakevich, D V

    2016-01-01

    Using the signal eigenvectors and components analyser (Grunskaya L.V., Isakevich V.V., Isakevich D.V. the RF Utility Model Patent 116242 of 30.09.2011) made it possible to detect non-coherent complex-period components localized at lunar tide frequencies in the time-series of the electric field vertical component of the Earth atmosphere boundary layer. The detected components are unobservable by means of spectral analysis quadrature scheme. The probability of the detected effects being pseudo-estimates is not more than 0.00025

  19. Critical Evaluation of Chemical Reaction Rates and Collision Cross Sections of Importance in the Earth's Upper Atmosphere and the Atmospheres of Other Planets, Moons, and Comets

    Science.gov (United States)

    Huestis, David L.

    2006-01-01

    We propose to establish a long-term program of critical evaluation by domain experts of the rates and cross sections for atomic and molecular processes that are needed for understanding and modeling the atmospheres in the solar system. We envision data products resembling those of the JPL/NASA Panel for Data Evaluation and the similar efforts of the international combustion modeling community funded by US DoE and its European counterpart.

  20. Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an atmospheric chemistry module for Earth system models

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J. E.; Keller, C. A.; da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-03-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOS-Chem scientific code, permitting the exact same GEOS-Chem code to be used as an ESM module or as a stand-alone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS-5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  1. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  2. Metals and Rare Earth Elements in polar aerosol as specific markers of natural and anthropogenic aerosol sources areas and atmospheric transport processes

    Science.gov (United States)

    Giardi, Fabio; Becagli, Silvia; Caiazzo, Laura; Cappelletti, David; Grotti, Marco; Malandrino, Mery; Salzano, Roberto; Severi, Mirko; Traversi, Rita; Udisti, Roberto

    2016-04-01

    Metals and Rare Earth Elements (REEs) in the aerosol have conservative properties from the formation to the deposition and can be useful to identify and quantify their natural and anthropic sources and to study the atmospheric transport processes. In spite of their importance relatively little is known about metals and especially REEs in the Artic atmosphere due to their low concentration in such environment. The present work reports the first attempt to determine and interpret the behaviour of metals and REEs in polar aerosol at high temporal resolution. Daily PM10 samples of arctic atmospheric particulate were collected on Teflon filters, during six spring-summer campaigns, since 2010, in the laboratory of Gruvebadet in Ny Ålesund (78°56' N, 11°56' E, Svalbard Islands, Norway). Chemical analyses were carried out through Inductively Coupled Plasma Mass Spectrometer provided with a desolvation nebulizer inlet system, allowing to reduce isobaric interferences and thus to quantify trace and ultra-trace metals in very low concentration in the Arctic aerosol samples. The results are useful in order to study sources areas, transport processes and depositional effects of natural and anthropic atmospheric particulate reaching the Arctic from southern industrialized areas; moreover, the observed seasonal trends give information about the different impact of natural and anthropic emissions driven by phenomena such as the Arctic Haze and the melting of the snow. In particular Rare Earth Elements (often in the ppt range) can be considered as soil's fingerprints of the particulate source areas and their determination, together with air-mass backtrajectory analysis, allow to identify dust source areas for the arctic mineral aerosol.

  3. Development of a grid-independent GEOS-chem chemical transport model as an atmospheric chemistry module for Earth System Models

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J. E.; Keller, C. A.; da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2014-11-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth System Models (ESMs). This was done using an Earth System Modelling Framework (ESMF) interface that operates independently of the GEOS-Chem scientific code, permitting the exact same GEOS-Chem code to be used as an ESM module or as a stand-alone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state-of-science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid-independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data "sockets" were also created for communication between modules and with external ESM code via the ESMF. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS-5 ESM. The coupled GEOS-5/GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and MPI parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of processors tested. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of MPI processes.

  4. Graphics Processing Units (GPU) and the Goddard Earth Observing System atmospheric model (GEOS-5): Implementation and Potential Applications

    Science.gov (United States)

    Putnam, William M.

    2011-01-01

    Earth system models like the Goddard Earth Observing System model (GEOS-5) have been pushing the limits of large clusters of multi-core microprocessors, producing breath-taking fidelity in resolving cloud systems at a global scale. GPU computing presents an opportunity for improving the efficiency of these leading edge models. A GPU implementation of GEOS-5 will facilitate the use of cloud-system resolving resolutions in data assimilation and weather prediction, at resolutions near 3.5 km, improving our ability to extract detailed information from high-resolution satellite observations and ultimately produce better weather and climate predictions

  5. Concentrations and isotope ratios of helium and other noble gases in the Earth's atmosphere during 1978-2011

    CERN Document Server

    Brennwald, Matthias S; Figura, Simon; Vollmer, Martin K; Langenfelds, Ray; Steele, L Paul; Kipfer, Rolf

    2012-01-01

    The evolution of the atmospheric noble gas composition during the past few decades has hardly been studied because, in contrast to many other atmospheric gases, systematic time-series measurements have not been available. Based on theoretical considerations, the atmospheric noble gas isotope composition is assumed to be stable on time scales of up to about 10^6 years, with the potential exception of anthropogenic changes predicted for the He concentration and the 3He/4He ratio. However, experimental assessments of the predicted changes in the atmospheric He isotope composition are controversial. To empirically test these assumptions and predictions, we analysed the noble gas isotope composition in samples of the Cape Grim Air Archive, a well-defined archive of marine boundary layer air in the southern hemisphere. The resulting time series of the 20Ne, 40Ar, 86Kr and 136Xe concentrations and 20Ne/22Ne and 40Ar/36Ar ratios during 1978-2011 demonstrate the stability of the atmospheric Ne, Ar, Kr and Xe compositi...

  6. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuefei [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); He Man [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China)]. E-mail: binhu@whu.edu.cn

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3}(Eu) to 6.7 pg m{sup -3}(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c = 1 {mu}g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. - A new method for direct determination of trace rare earth elements in coal fly ash and atmospheric particulates by fluorination ETV-ICP-MS with slurry sampling.

  7. Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model

    KAUST Repository

    Schmidt, H.

    2013-03-06

    The ECHAM6 atmospheric general circulation model is the atmosphere component of the Max Planck Institute Earth System Model (MPI-ESM) that is used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations. As ECHAM6 has its uppermost layer centered at 0.01 hPa in the upper mesosphere, these simulations offer the opportunity to study the middle atmosphere climate change and its relation to the troposphere on the basis of a very comprehensive set of state-of-the-art model simulations. The goals of this paper are (a) to introduce those new features of ECHAM6 particularly relevant for the middle atmosphere, including external forcing data, and (b) to evaluate the simulated middle atmosphere and describe the simulated response to natural and anthropogenic forcings. New features in ECHAM6 with respect to ECHAM5 include a new short-wave radiation scheme, the option to vary spectral irradiance independent of total solar irradiance, and a latitude-dependent gravity-wave source strength. The description of external forcing data focuses on solar irradiance and ozone. Stratospheric temperature trends simulated with the MPI-ESM for the last decades of the 20th century agree well with observations. The future projections depend strongly on the scenario. Under the high emission scenario RCP8.5, simulated temperatures are locally lower by more than 20 K than preindustrial values. Many of the simulated patterns of the responses to natural forcings as provided by solar variability, volcanic aerosols, and El Nino-Southern Oscillation, largely agree with the observations. 2013. American Geophysical Union. All Rights Reserved.

  8. The whole atmosphere response to changes in the Earth's magnetic field from 1900 to 2000: An example of "top-down" vertical coupling

    Science.gov (United States)

    Cnossen, Ingrid; Liu, Hanli; Lu, Hua

    2016-07-01

    We study the effects of changes in the Earth's magnetic field between 1900 and 2000 on the whole atmosphere (0-500 km altitude), based on simulations with the Whole Atmosphere Community Climate Model eXtension. Magnetic field changes directly affect the temperature and wind in the upper atmosphere (> ~110 km) via Joule heating and the ion drag force. However, we also find significant responses in zonal mean temperature and zonal wind in the Southern Hemisphere (SH) middle- to high-latitude troposphere, stratosphere, and mesosphere of up to ±2 K and ±2 m/s, as well as regionally significant changes in Northern Hemisphere (NH) polar surface temperatures of up to ±1.3 K, in December-January-February. In the SH, changes in gravity wave filtering in the thermosphere induce a change in the residual circulation that extends down into the upper mesosphere, where further changes in the mean wind climatology are generated, together with changes in local planetary wave generation and/or amplification and gravity wave filtering. This induces further changes to a residual circulation cell extending down into the troposphere. However, inaccuracies in the simulated SH upper mesospheric wind climatology probably mean that the simulated temperature and wind responses in the SH lower and middle atmosphere are also inaccurate. The NH middle atmosphere response is zonally asymmetric, consisting of a significant change in the positioning and shape of the upper stratospheric polar vortex, which is dynamically consistent with the surface temperature response. However, the downward coupling mechanism in the NH is generally less clear.

  9. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    CERN Document Server

    Godolt, M; Kitzmann, D; Kunze, M; Langematz, U; Patzer, A B C; Rauer, H; Stracke, B

    2016-01-01

    The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most...

  10. Secondary X-Ray Environment in the Lower Atmosphere of the Earth during Monsoon Season over Udaipur City (India) in July-September 2006

    Institute of Scientific and Technical Information of China (English)

    S.N.A.Jaaffrey; Shubhra Tiwari

    2009-01-01

    We present a study on the secondary x-rays of energy band 2-100 keY emitted by the intruded principal pollutant components (gases and minerals) brought up in the lower atmosphere by dust storms,monsoon drift and the gravitational pull on meteoritic showers.On the ground we employed a 1.5 × 1 inch2 NaI crystal in a scintillation detector,suitable for the energy range 2-100 keV of secondary x-rays,providing better energy resolution than a larger sized crystal.In order to eliminate the radioactive background of the Earth,the detector was well shielded on all sides with the help of the lead (Pb) container,except with a.smail open window at the top to permit only vertically incident secondary radiation.The results from the data analysis obtained during the monsoon over Udalpur city (India) during the period from July to September (2006) have revealed a linear correlation between dust storm cure monsoon clouds and observed luminosities of secondary x-ray radiation from intruded pollutants.We found intense flux of secondary x-rays from the intruded pollutants when heavy dust and monsoon clouds were brought up by dust storms and monsoon drift in the lower atmosphere over Udalpur city as compared to normal days.Thus,secondary x-rays in the environment provide a tool for investigation of local intrusive pollutant components in the lower atmosphere.

  11. Validation of the Earth atmosphere models using the EUV solar occultation data from the CORONAS and PROBA 2 instruments

    Science.gov (United States)

    Slemzin, Vladimir; Kuzin, Sergey; Berghmans, David; Pertsov, Andrey; Dominique, Marie; Ulyanov, Artyom; Gaikovich, Konstantin

    Absorption in the atmosphere below 500 km results in attenuation of the solar EUV flux, variation of its spectra and distortion of solar images acquired by solar EUV instruments operating on LEO satellites even on solar synchronous orbits. Occultation measurements are important for planning of solar observations from these satellites, and can be used for monitoring the upper atmosphere as well as for studying its response to the solar activity. We present the results of the occultation measurements of the solar EUV radiation obtained by the CORONAS-F/SPIRIT telescope at high solar activity (2002), by the CORONAS-Photon/TESIS telescope at low activity (2009), and by the SWAP telescope and LYRA radiometer onboard the PROBA 2 satellite at moderate activity (2010). The measured attenuation profiles and the retrieved linear extinction coefficients at the heights 200-500 km are compared with simulations by the NRLMSIS-00 and DTM2013 atmospheric models. It was shown that the results of simulations by the DTM2013 model are well agreed with the data of measurements at all stages of solar activity and in presence of the geomagnetic storm, whereas the results of the NRLMSISE-00 model significantly diverge from the measurements, in particular, at high and low activity. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project № 284461, www.eheroes.eu).

  12. Nonzonal structure of the response of the global field of the Earth's atmospheric temperature to solar activity

    Science.gov (United States)

    Krivolutsky, A. A.; Dement'eva, A. V.

    2017-01-01

    The work describes the results of calculations obtained with the Atmospheric Research Model (ARM) general circulation model. The temperature response of the troposphere and middle atmosphere to variations in UV solar radiation were found to have a large-scale wave structure when planetary waves at the lower model boundary were taken into account. In the present paper, the results from the processing of global temperature fields with three databases (ERA-20C, NOAA-CIRES 20th Century Reanalysis, v2, and NCEP/NCAR Reanalysis I) are provided. Analysis of the differences of the mean monthly temperature global fields (January and July) between the maxima and minima of three solar activity cycles (21, 22, and 23 cycles) also demonstrated their nonzonal structure. It was shown that the amplitude of this difference in January in the stratosphere (10 hPa) can be 7-29 K in the Northern Hemisphere. In July, this effect is prominent in Southern Hemisphere. In the troposphere (500 hPa), a nonzonal temperature effect is present in both the Northern and Southern Hemispheres; the amplitude of the effects amounts to approximately 5-12 K. In conclusion, we discuss that the mechanism of solar energy impact on atmospheric temperature discovered by numerical modeling is supported after reanalysis data processing.

  13. On the relationship of the earth radiation budget to the variability of atmospheric available potential and kinetic energies

    Science.gov (United States)

    Randel, David L.; Vonder Haar, Thomas H.

    1990-01-01

    The zonal and eddy kinetics energies and available potential energies are examined for both the Northern and the Southern Hemispheres, using a data set produced by 8 years of continuous simultaneous observations of the circulation parameters and measurements of the earth radiation budget (ERB) from the Nimbus-7 ERB experiment. The relationships between the seasonal cycles in ERB and those of the energetics are obtained, showing that the solar annual cycle accounts for most of the seasonal variability. It was found that the ERB midlatitude gradients of the net balance and the outgoing radiation lead the annual cycle of the energetics by 2-3 weeks.

  14. On the relationship of the earth radiation budget to the variability of atmospheric available potential and kinetic energies

    Science.gov (United States)

    Randel, David L.; Vonder Haar, Thomas H.

    1990-01-01

    The zonal and eddy kinetics energies and available potential energies are examined for both the Northern and the Southern Hemispheres, using a data set produced by 8 years of continuous simultaneous observations of the circulation parameters and measurements of the earth radiation budget (ERB) from the Nimbus-7 ERB experiment. The relationships between the seasonal cycles in ERB and those of the energetics are obtained, showing that the solar annual cycle accounts for most of the seasonal variability. It was found that the ERB midlatitude gradients of the net balance and the outgoing radiation lead the annual cycle of the energetics by 2-3 weeks.

  15. E-Collaboration for Earth Observation (E-CEO) with the example of Contest #3 that focuses on the Atmospheric Correction of Ocean Colour data

    Science.gov (United States)

    Lavender, Samantha; Brito, Fabrice; Aas, Christina; Casu, Francesco; Ribeiro, Rita; Farres, Jordi

    2014-05-01

    Data challenges are becoming the new method to promote innovation within data-intensive applications; building or evolving user communities and potentially developing sustainable commercial services. These can utilise the vast amount of information (both in scope and volume) that's available online, and profits from reduced processing costs. Data Challenges are also closely related to the recent paradigm shift towards e-Science, also referred to as "data-intensive science'. The E-CEO project aims to deliver a collaborative platform that, through Data Challenge Contests, will improve the adoption and outreach of new applications and methods to processes Earth Observation (EO) data. Underneath, the backbone must be a common environment where the applications can be developed, deployed and executed. Then, the results need to be easily published in a common visualization platform for their effective validation, evaluation and transparent peer comparisons. Contest #3 is based around the atmospheric correction (AC) of ocean colour data with a particular focus on the use of auxiliary data files for processing Level 1 (Top of Atmosphere, TOA, calibrated radiances/reflectances) to Level 2 products (Bottom of Atmosphere, BOA, calibrated radiances/reflectance and derived products). Scientific researchers commonly accept the auxiliary inputs that they've been provided with and/or use the climatological data that accompanies the processing software; often because it can be difficult to obtain multiple data sources and convert them into a format the software accepts. Therefore, it's proposed to compare various ocean colour AC approaches and in the process study the uncertainties associated with using different meteorological auxiliary products for the processing of Medium Resolution Imaging Spectrometer (MERIS) i.e. the sensitivity of different atmospheric correction input assumptions.

  16. Functional activity of plasmid DNA after entry into the atmosphere of earth investigated by a new biomarker stability assay for ballistic spaceflight experiments.

    Directory of Open Access Journals (Sweden)

    Cora S Thiel

    Full Text Available Sounding rockets represent an excellent platform for testing the influence of space conditions during the passage of Earth's atmosphere and re-entry on biological, physical and chemical experiments for astrobiological purposes. We designed a robust functionality biomarker assay to analyze the biological effects of suborbital spaceflights prevailing during ballistic rocket flights. During the TEXUS-49 rocket mission in March 2011, artificial plasmid DNA carrying a fluorescent marker (enhanced green fluorescent protein: EGFP and an antibiotic resistance cassette (kanamycin/neomycin was attached on different positions of rocket exterior; (i circular every 90 degree on the outer surface concentrical of the payload, (ii in the grooves of screw heads located in between the surface application sites, and (iii on the surface of the bottom side of the payload. Temperature measurements showed two major peaks at 118 and 130 °C during the 780 seconds lasting flight on the inside of the recovery module, while outer gas temperatures of more than 1000 °C were estimated on the sample application locations. Directly after retrieval and return transport of the payload, the plasmid DNA samples were recovered. Subsequent analyses showed that DNA could be recovered from all application sites with a maximum of 53% in the grooves of the screw heads. We could further show that up to 35% of DNA retained its full biological function, i.e., mediating antibiotic resistance in bacteria and fluorescent marker expression in eukaryotic cells. These experiments show that our plasmid DNA biomarker assay is suitable to characterize the environmental conditions affecting DNA during an atmospheric transit and the re-entry and constitute the first report of the stability of DNA during hypervelocity atmospheric transit indicating that sounding rocket flights can be used to model the high-speed atmospheric entry of organics-laden artificial meteorites.

  17. Detecting components spectrally localized at astrophysical process frequencies in time series of the electric field vertical component of the earth atmosphere boundary layer

    CERN Document Server

    Grunskaya, L V; Isakevich, D V; Sushkova, L T

    2016-01-01

    Signal eigenvectors and components analyser (RF Utility model patent 116242) was used to explore the time-series of the electric field vertical component Ez in the Earth atmosphere boundary layer. There have been detected non-coherent complex-periodic components localized at the frequencies of gravity-wave impact of binary stars and at the frequency of axion-photon interaction. These components cannot be detected by means of quadrature scheme of spectral analysis and have RMS values from 0.05 V/m to 0.5 V/m at binary stars gravity-wave impact frequencies and from 0.7 V/m to 2.7 V/m at axion-photon interaction frequency. It was also demonstrated that the axion-photon interaction frequency modulates the amplitude

  18. The Laboratory Complex for the Calibration of Photometers Using the Optical Method for Determination of the Water Vapor Content in the Earth Atmosphere

    CERN Document Server

    Galkin, V D; Nikanorova, I N; Leiterer, U; Niebert, T; Alekseeva, G A; Novikov, V V; Ilyin, G N; Pakhomov, V P

    2010-01-01

    We describe the laboratory complex for the calibration of photometers that are used in weather service to measure the water vapor content in the Earth atmosphere. The complex was built up in Pulkovo Observatory and developed within the framework of collaboration between Pulkovo Observatory and Lindenberg Meteorological Observatory (Meteorologisches Observatorium Lindenberg - Richard-A{\\ss}mann-Observatorium, Lindenberg, Germany). It is used to obtain calibration dependences for individual devices, and also to develop and compare various methods of construction of calibration dependences. These techniques are based on direct calibration of the photometers, on the use of spectral laboratory transmission functions for water vapor, on calculation methods using spectroscopical databases for individual lines. We hope that when the parameters of the equipment are taken into account in detail and new results for the absorptive power of water vapor are used, the accuracy of determination of the water vapor content in ...

  19. Angular momentum exchange among the solid Earth, atmosphere, and oceans: A case study of the 1982-1983 El Nino event

    Science.gov (United States)

    Dickey, J. O.; Marcus, S. L.; Hide, R.; Eubanks, T. M.; Boggs, D. H.

    1994-01-01

    The 1982-1983 El Nino/Southern Oscillation (ENSO) event was accompanied by the largest interannual variation in the Earth's rotation rate on record. In this study we demonstrate that atmospheric forcing was the dominant cause for this rotational anomaly, with atmospheric angular momentum (AAM) integrated from 1000 to 1 mbar (troposphere plus stratosphere) accounting for up to 92% of the interannual variance in the length of day (LOD). Winds between 100 and 1 mbar contributed nearly 20% of the variance explained, indicating that the stratosphere can play a significant role in the Earth's angular momentum budget on interannual time scales. Examination of LOD, AAM, and Southern Oscillation Index (SOI) data for a 15-year span surrounding the 1982-1983 event suggests that the strong rotational response resulted from constructive interference between the low-frequency (approximately 4-6 year) and quasi-biennial (approximately 2-3 year) components of the ENSO phenomenon, as well as the stratospheric Quasi-Biennial Oscillation (QBO). Sources of the remaining LOD discrepancy (approximately 55 and 64 microseconds rms residual for the European Centre for Medium-Range Forecasting (EC) and U.S. National Meteorological Center (NMC) analyses) are explored; noise and systematic errors in the AAM data are estimated to contribute 18 and 33 microseconds, respectively, leaving a residual (rms) of 40 (52) microseconds unaccounted for by the EC (NMC) analysis. Oceanic angular momentum contributions (both moment of inertia changes associated with baroclinic waves and motion terms) are shown to be candidates in closing the interannual axial angular momentum budget.

  20. Validation of High Speed Earth Atmospheric Entry Radiative Heating from 9.5 to 15.5 km/s

    Science.gov (United States)

    Brandis, A. M.; Johnston, C. O.; Cruden, B. A.; Prabhu, D. K.

    2016-01-01

    This paper presents an overview of the analysis and measurements of equilibrium radiation obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility as a part of recent testing aimed at reaching shock velocities up to 15.5 km/s. The goal of these experiments was to measure the level of radiation encountered during high speed Earth entry conditions, such as would be relevant for an asteroid, inter-planetary or lunar return mission. These experiments provide the first spectrally and spatially resolved data for high speed Earth entry and cover conditions ranging from 9.5 to 15.5 km/s at 13.3 and 26.6 Pa (0.1 and 0.2 Torr). The present analysis endeavors to provide a validation of shock tube radiation measurements and simulations at high speed conditions. A comprehensive comparison between the spectrally resolved absolute equilibrium radiance measured in EAST and the predictive tools, NEQAIR and HARA, is presented. In order to provide a more accurate representation of the agreement between the experimental and simulation results, the integrated value of radiance has been compared across four spectral regions (VUV, UV/Vis, Vis/NIR and IR) as a function of velocity. Results have generally shown excellent agreement between the two codes and EAST data for the Vis through IR spectral regions, however, discrepancies have been identified in the VUV and parts of the UV spectral regions. As a result of the analysis presented in this paper, an updated parametric uncertainty for high speed radiation in air has been evaluated to be [9.0%, -6.3%]. Furthermore, due to the nature of the radiating environment at these high shock speeds, initial calculations aimed at modeling phenomena that become more significant with increasing shock speed have been performed. These phenomena include analyzing the radiating species emitting ahead of the shock and the increased significance of radiative cooling mechanisms.

  1. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    Science.gov (United States)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  2. The Guará Campaign: A series of rocket-radar investigations of the Earth's upper atmosphere at the magnetic equator

    Science.gov (United States)

    Pfaff, R. F.; Sobral, J. H. A.; Abdu, M. A.; Swartz, W. E.; LaBelle, J. W.; Larsen, M. F.; Goldberg, R. A.; Schmidlin, F. J.

    The Guará Campaign consisted of a series of sounding rockets that were launched from August-October, 1994 at a new launch facility at Alcântara, Brazil, which is within one degree of the Earth's magnetic equator. The campaign consisted of focused scientific experiments designed to investigate the electrodynamics and irregularities in the equatorial ionosphere and mesosphere and to study their relationship with neutral upper atmosphere motions. In all, 13 large sounding rockets and 20 small meteorological rockets were launched as part of four different experiment groups designed to investigate: (1) the daytime equatorial electrojet, (2) very high altitude Spread-F processes, (3) sunset electrodynamics, and (4) middle atmosphere-thermosphere coupling at the equator. All of the experiments utilized ground-based scientific instruments including a VHF backscatter radar interferometer, magnetometers, ionosondes, and scintillation receivers. The project was a joint undertaking of the National Aeronautics and Space Administration (NASA) of the United States and the Instituto Nacional de Pesquisas Espacias (INPE) of Brazil. The project was named the Guará Campaign after a beautiful species of bird that is native to the equatorial region of Brazil.

  3. Possible influence of climate factors on the reconstruction of the cosmogenic isotope 14C production rate in the earth's atmosphere and solar activity in past epochs

    Science.gov (United States)

    Kuleshova, A. I.; Dergachev, V. A.; Kudryavtsev, I. V.; Nagovitsyn, Yu. A.; Ogurtsov, M. G.

    2015-12-01

    The paper considers the probable influence of variations of the global temperature and carbon dioxide concentration in the Earth's atmosphere on the results of reconstruction of the production rate of the cosmogenic isotope 14C in the terrestrial atmosphere for the period from the early 15th to the mid 19th century. This time interval covers the Spörer, Maunder, and Dalton minima of solar activity, as well as the Little Ice Age. It was shown that the climate changes that occurred during the Little Ice Age should be taken into account. In the Maunder and Spörer minima of solar activity, the 14C generation rate may be comparable to the values for the Dalton minimum, while exclusion of the climate effect yields extremely large values of the 14C production rate for these grand minima. In the solar activity reconstruction for past epochs, this circumstance should be taken into consideration via measurements of the 14C concentration on a long time scale.

  4. Variations in electric and meteorological parameters in the near-Earth's atmosphere at Kamchatka during the solar events in October 2003

    Science.gov (United States)

    Smirnov, S. E.; Mikhailova, G. A.; Kapustina, O. V.

    2014-03-01

    The diurnal variations in the electric conductivity, electric-field strength, and meteorological parameters in the near-Earth's atmosphere during the solar events in October 21-31, 2003, have been studied. It has been indicated that the conductivity and electric-field strength strongly depend on the air temperature and humidity. It has been found that the conductivity increased for 2 days before the geomagnetic storm on October 29-30 as a result of the effect of solar cosmic rays and decreased during a Forbush decrease in galactic cosmic rays, which was accompanied by a corresponding increase in the electric-field strength. It has been found that the air temperature and humidity anomalously increased in the process of solar activity, which resulted in the formation of different clouds, including thunderclouds accompanied by thunderstorm processes and showers. Simultaneous disturbances of the regular meteorological processes, solar flare series, and emission intensification in the near ultraviolet band, and visible and infrared spectral regions make it possible to consider these processes as a source of additional energy inflow into the lower atmosphere.

  5. Study pre-earthquake features in the Earth atmosphere-ionosphere environment associated with 2016 Amatrice-Norcia (Central Italy) seismic sequence

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Giuliani, Gioacchino; Hernández-Pajares, Manuel; García-Rigo, Alberto

    2017-04-01

    The 2016 Amatrice-Norcia (Central Italy) seismic sequence (M6.3, M6.1 and M6.5), became one of the unusual and important modern earthquake events. Recent studies indicate (including April 6th 2009 Abruzzo earthquake) an enhanced coupling between the atmospheric boundary layer and the ionosphere, which have been proposed to be related with large (>M6) earthquakes. This relationship has been studied for the 2016 Central Italy sequence using an integrated set of observations of five physical and environmental parameters. We present observational data from January to November 2016 of five physical parameters- radon, seismicity, temperature of the atmosphere boundary layer, outgoing earth infrared radiation and GPS/TEC and their temporal and spatial variations several days before the onset of the Amatrice-Norcia earthquake sequence. The Aug 24 M6.2 foreshock was situated about 70 kilometers from the 2 stations of radon near L'Aquila. These data show an increase prior to the main earthquake beginning in July-August this enhancement of radon coincides (with some delay) with an increase in the atmospheric chemical potential (Aug 11) measured near the epicentral area from satellite. And subsequently from Aug12 there was an association with the acceleration of outgoing infrared radiation observed on the top of the atmosphere from EOS satellite (Aug 16). The GPS/Total Electron Content data indicate an increase of electron concentration in ionosphere on August 22 and October 26, 1-2 days before the M6.2 foreshock and the M6.5 main shock on Oct 30, 2016. Both ground and satellite data have in common that they were evident in about the last ten days before the M6.2 foreshock of Aug 24 and continuously up to the main shock of Oct 30, although the radon variations started 2 months earlier. We examined the possible correlation between different pre-earthquake signals in the frame of a multidisciplinary investigation of Lithosphere -Atmosphere -Ionosphere coupling concept.

  6. Production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl in the Earth's atmosphere by solar and galactic cosmic rays

    Science.gov (United States)

    Webber, W. R.; Higbie, P. R.; McCracken, K. G.

    2007-10-01

    In a follow-up study to the earlier work of Webber and Higbie (2003) on 10Be production in the Earth's atmosphere by cosmic rays, we have calculated the atmospheric production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl using the FLUKA Monte Carlo code. This new calculation of atmospheric yields of these isotopes is based on 107 vertically incident protons at each of 24 logarithmically spaced energies from 10 MeV to 10 GeV, 102 times the number used in the earlier calculation, along with the latest cross sections. This permits a study of the production due to solar cosmic rays as well as galactic cosmic rays at lower energies where isotope production is a very sensitive function of energy. Solar cosmic ray spectra are reevaluated for all of the major events occurring since 1956. In terms of yearly production of 10Be, only the February 1956 solar event makes a major contribution. For 36Cl these yearly SCR production contributions are 2-5 times larger depending on the solar cosmic ray energy spectra. We have determined the yearly production of 10Be, 36Cl, and other cosmogenic isotopes above 65° geomagnetic latitude for the time period 1940-2006 covering six solar 11-year (a) cycles. The average peak-to-peak 11-a amplitude of this yearly production is 1.77. The effects of latitudinal mixing alter these direct polar production values considerably, giving an average peak-to-peak 11-a amplitude of 1.48 for the global average production.

  7. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    Science.gov (United States)

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation.

  8. The Rhynie hot-spring system: implications for the Devonian timescale, development of Devonian biota, gold mineralization, evolution of the atmosphere and Earth outgassing

    Science.gov (United States)

    Mark, D.; Rice, C.; Stuart, F.; Trewin, N.

    2011-12-01

    than the modern air value (Lee et al., 2006). Thus the Earth's atmosphere has accumulated at least 5 ± 0.2 x 1016 moles of 40Ar in the last c. 407 Ma, at an average rate of 1.24 ± 0.06 x 108 mol 40Ar/year. This overlaps the 40Ar accumulation rate determined from ice cores for the last 800,000 years (Bender et al. 2008) and implies that there has been no resolvable temporal change in outgassing rate since the mid-Palaeozoic. The new chronological and Ar isotope data provide a unique tie point and dictate outgassing of the Earth's interior early in Earth history. [1] Bender, M. et al. (2008) Proceedings of the National Academy of Sciences, 105, 8232-8237. [2] Wellman, C.H., 2004. Proceedings of the Royal Society of London. Biological Sciences, 271, 985-992. [3] Lee, J.Y. et al. (2006) Geochimica et Cosmochimica Acta, 70, 4507-4512. [4] Mark, D.F. et al. (2011) Geochimica et Cosmochimica Acta, 75, 555-569. [5] Parry, S.F. et al. (2011) Journal of the Geological Society, London, 168, 863-872. [6] Rice, C.M. et al. (1995) Journal of the Geological Society, London, 152, 229-2250.

  9. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  10. The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf.

    Science.gov (United States)

    Segura, Antígona; Walkowicz, Lucianne M; Meadows, Victoria; Kasting, James; Hawley, Suzanne

    2010-09-01

    Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 10⁸ protons cm⁻² sr⁻¹ s⁻¹ for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity.

  11. The effect of the changing solar system environment on galactic cosmic ray propagation through the heliosphere: Consequences for cosmogenic isotope production in the Earth's atmosphere.

    Science.gov (United States)

    Axford, W. I.; Florinski, V.; Zank, G. P.

    2004-12-01

    The solar system is traveling through highly inhomogeneous interstellar medium. Our galactic environment (the Local Bubble) is a vast region formed by supernova explosions filled with extremely tenuous fully ionized gas at a temperature of over a million K. Embedded in the Local Bubble are interstellar clouds ranging from cold (Twarm (T ˜ 104 K) and relatively tenuous (n ˜ 0.3 cm-1) partially ionized clouds, such as the Local Cloud where the Sun is currently located. The properties of the cloud control the size and shape of the heliosphere and, consequently, affect the propagation of galactic cosmic rays (GCRs) between the boundary of the modulation region (the heliopause) and Earth. GCRs with energies above several hundred MeV initiate nuclear reactions in the Earth's upper atmosphere producing radioactive isotopes of Beryllium and Carbon that are precipitated on the surface and eventually incorporated into sediments. It is then quite plausible that the history of the variability of the solar environment may be preserved in cosmogenic isotope records available from ice and sea sediment cores dating back more than 100,000 years. Previously, we showed that increasing the density of the cloud surrounding the solar system by a factor of 30 leads to an increase in 1 AU GCR fluxes by a factor of 1.5--3, and that cloud encounters may have been responsible for the observed peaks in 10Be records 35 and 60 thousand years ago. Extending our early model, we now calculate GCR distribution from the solution of the 2D Parker equation using the global model-calculated plasma and magnetic field parameters as a background to determine the diffusion coefficients. Initial results from a more comprehensive investigation of the global structure of the heliosphere embedded in clouds of varying density, from the present conditions in the Local Cloud to the extreme case of dense molecular clouds, are discussed.

  12. Asphalt Volcanism as a Model to Understand the Geochemical Nature of Pitch Lake, a Planetary Analog for Titan and the Implications towards Methane Flux into Earth's Atmosphere.

    Science.gov (United States)

    Khan, A.

    2016-12-01

    Pitch Lake is located in the southwest peninsula of the island near La Brea in Trinidad and Tobago, covering an area of approximately 46 hectares. It was discovered in the year 1595 and is the largest of three natural asphalt lakes that exist on Earth. Pitch Lake is a large oval shaped reservoir composed of dominantly hydrocarbon compounds, but also includes minor amounts of clay and muddy water. It is a natural liquid asphalt desert, which is nourished by a form of petroleum consisting of mostly asphaltines from the surrounding oil-rich region. The hydrocarbons mix with mud and gases under high pressure during upward seepage, and the lighter portion evaporates or is volatilized, which produces a high-viscosity liquid asphalt residue. The residue on and near the surface is a hydrocarbon matrix, which poses extremely challenging environmental conditions to microorganisms characterized by an average low water activity in the range of 0.49 to 0.75, recalcitrant carbon substrates, and toxic chemical compounds. Nevertheless, an active microbial community of archaea and bacteria, many of them novel strains, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical analyses of minerals, done by our team, which revealed sulfates, sulfides, silicates, and metals, normally associated with deep-water hydrothermal vents leads to our new hypothetical model to describe the origins of Pitch Lake and its importance to atmospheric and earth sciences. Pitch Lake is likely the terrestrial equivalent of an offshore submarine asphalt volcano just as La Brea Tar Pits are in some ways an on-land version of the asphalt volcanoes discovered off shore of Santa Barbara by Valentine et al. in 2010. Asphalt volcanism possibly also creates the habitat for chemosynthetic life that is widespread in this lake, as reported by Schulze-Makuch et al. in 2011 and Meckenstock et al. in 2014.

  13. Winter NH low-frequency variability in a hierarchy of low-order stochastic dynamical models of earth-atmosphere system

    Science.gov (United States)

    Zhao, Nan

    2017-01-01

    The origin of winter Northern Hemispheric low-frequency variability (hereafter, LFV) is regarded to be related to the coupled earth-atmosphere system characterized by the interaction of the jet stream with mid-latitude mountain ranges. On the other hand, observed LFV usually appears as transitions among multiple planetary-scale flow regimes of Northern Hemisphere like NAO + , AO +, AO - and NAO - . Moreover, the interaction between synoptic-scale eddies and the planetary-scale disturbance is also inevitable in the origin of LFV. These raise a question regarding how to incorporate all these aspects into just one framework to demonstrate (1) a planetary-scale dynamics of interaction of the jet stream with mid-latitude mountain ranges can really produce LFV, (2) such a dynamics can be responsible for the existence of above multiple flow regimes, and (3) the role of interaction with eddy is also clarified. For this purpose, a hierarchy of low-order stochastic dynamical models of the coupled earth-atmosphere system derived empirically from different timescale ranges of indices of Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific/North American (PNA), and length of day (LOD) and related probability density function (PDF) analysis are employed in this study. The results seem to suggest that the origin of LFV cannot be understood completely within the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain ranges, because (1) the existence of multiple flow regimes such as NAO+, AO+, AO- and NAO- resulted from processes with timescales much longer than LFV itself, which may have underlying dynamics other than topography-jet stream interaction, and (2) we find LFV seems not necessarily to come directly from the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain, although it can produce similar oscillatory behavior. The feedback/forcing of synoptic-scale eddies on the planetary

  14. Exoplanet Atmospheres

    CERN Document Server

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  15. The Effect of a Strong Stellar Flare on the Atmospheric Chemistry of an Earth-like Planet Orbiting an M dwarf

    CERN Document Server

    Segura, Antígona; Meadows, Victoria; Kasting, James; Hawley, Suzanne

    2010-01-01

    Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf, AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect we estimated a proton flux associated with the flare of $5.9\\times 10^{8}$ protons cm$^{-2}$ sr$^{-1}$ s$^{-1}$ for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the "Carrington event". The simulations were performed using a 1-D photochemical model coupled to a 1-D radiative/co...

  16. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Jiang, Z.C.; He, M.; Hu, B. [Wuhan University, Wuhan (China). Dept. of Chemistry

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3} (Eu) to 6.7 Pg m{sup -3} (Nd) with the precisions of 4.1% (Yb) to 10% (La) = 1 {mu} g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  17. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling.

    Science.gov (United States)

    Zhang, Yuefei; Jiang, Zucheng; He, Man; Hu, Bin

    2007-07-01

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m(-3)(Eu) to 6.7 pg m(-3)(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c=1 microg L(-1), n=9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  18. Evaluation of Simulated Marine Aerosol Production Using the WaveWatchIII Prognostic Wave Model Coupled to the Community Atmosphere Model within the Community Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Long, M. S. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences; Keene, William C. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Environmental Sciences; Zhang, J. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Reichl, B. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Shi, Y. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Hara, T. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Reid, J. S. [Naval Research Lab. (NRL), Monterey, CA (United States); Fox-Kemper, B. [Brown Univ., Providence, RI (United States). Earth, Environmental and Planetary Sciences; Craig, A. P. [National Center for Atmospheric Research, Boulder, CO (United States); Erickson, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Ginis, I. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Webb, A. [Univ. of Tokyo (Japan). Dept. of Ocean Technology, Policy, and Environment

    2016-11-08

    Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3rd generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD or Na+, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.

  19. Continued increase in atmospheric CO2 seasonal amplitude in the 21st century projected by the CMIP5 Earth System Models

    Directory of Open Access Journals (Sweden)

    F. Zhao

    2014-06-01

    Full Text Available Superimposed on the continued increase in the atmospheric CO2 concentration is a prominent seasonal cycle. Ground-based and aircraft-based observation records show that the amplitude of this seasonal cycle has increased. Will this trend continue into future? In this paper, we analyzed simulations for historical (1850–2005 and future (RCP8.5, 2006–2100 periods produced by 10 Earth System Models participating the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5. Our results show a model consensus that the increase of CO2 seasonal amplitude continues throughout the 21st century. The seasonal amplitude of the multi-model global mean detrended CO2 increases from 1.6 ppm during 1961–1970 to 2.7 ppm during 2081–2090, and the mean relative amplitude increases by 62 ± 19%. This increase is dominated by a 68 ± 25% increase from Net Biosphere Production (NBP. We then show the increase of NBP amplitude mainly comes from enhanced ecosystem uptake during Northern Hemisphere growing season under future CO2 and temperature conditions. Separate analyses on net primary production and respiration reveal that enhanced ecosystem carbon uptake contributes to about 75% of the amplitude increase. Stimulated by higher CO2 concentration and high-latitude warming, enhanced net primary production likely outcompetes increased respiration at higher temperature. Zonal distribution and the spatial pattern of NBP change suggest that regions north of 45° N dominate the amplitude increase. We also found that changes of NBP and its seasonal amplitude are significantly (R = 0.73, p < 0.05 correlated – models that simulate a stronger carbon uptake tend to show a larger change of NBP seasonal amplitude.

  20. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum

    Science.gov (United States)

    Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.

    2014-09-01

    The Ball-Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball-Berry model in flux tower simulations, but was significantly better than the CLM Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a priori, as in the CLM Ball-Berry model. Similar functional dependence of gs on Ds emerged from the ΔAn/ΔEl optimization, but not the ΔAn /gs optimization. Two parameters (stomatal efficiency and root hydraulic

  1. Modeling stomatal conductance in the Earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum

    Directory of Open Access Journals (Sweden)

    G. B. Bonan

    2014-05-01

    Full Text Available The empirical Ball–Berry stomatal conductance model is commonly used in Earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs on vapor pressure deficit (Ds and soil moisture must both be empirically parameterized. We evaluated the Ball–Berry model used in the Community Land Model version 4.5 (CLM4.5 and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil–plant–atmosphere continuum (SPA to numerically optimize photosynthetic carbon gain per unit water loss while preventing leaf water potential dropping below a critical minimum level. We evaluated two alternative optimization algorithms: intrinsic water-use efficiency (Δ An/Δ gs, the marginal carbon gain of stomatal opening and water-use efficiency (Δ An/Δ El, the marginal carbon gain of water loss. We implemented the stomatal models in a multi-layer plant canopy model, to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using: (1 leaf analyses; (2 canopy net radiation, sensible heat flux, latent heat flux, and gross primary production at six AmeriFlux sites spanning 51 site–years; and (3 parameter sensitivity analyses. Without soil moisture stress, the performance of the SPA stomatal conductance model was generally comparable to or somewhat better than the Ball–Berry model in flux tower simulations, but was significantly better than the Ball–Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from the physiological theory linking leaf water-use efficiency and water flow to and from the leaf along the soil-to-leaf pathway rather than being imposed a priori, as in the Ball–Berry model. Similar functional dependence of gs on Ds emerged from the water-use efficiency optimization. Sensitivity analyses showed that two

  2. On the Propagation of Blast Wave in Earth′s Atmosphere: Adiabatic and Isothermal Flow

    Directory of Open Access Journals (Sweden)

    Atul Sharma

    2006-08-01

    Full Text Available Adiabatic and isothermal propagations of spherical blast wave produced due to a nuclear explosion have been studied using the Energy hypothesis of Thomas, in the nonuniform atmosphere of the earth. The explosion is considered at different heights. Entropy production is also calculated along with the strength and velocity of the shock. In both the cases; for adiabatic and isothermal flows, it has been found that shock strength and shock velocity are larger at larger heights of explosion, in comparison to smaller heights of explosion. Isothermal propagation leads to a smaller value of shock strength and shock velocity in comparison to the adiabatic propagation. For the adiabatic case, the production of entropy is higher at higher heights of explosion, which goes on decreasing as the shock moves away from the point of explosion. However for the isothermal shock, the calculation of entropy production shows negative values. With negative values for the isothermal case, the production of entropy is smaller at higher heights of explosion, which goes on increasing as the shock moves away from the point of explosion. Directional study of the shock motion and entropy production show that in both the cases of adiabatic and isothermal flow, shock strength and shock velocity are larger in upward motion of the shock, in comparison to the downward motion of the shock. For adiabatic flow, entropy production is larger in upward motion of the shock; whereas, with negative values, entropy production is smaller in upward motion of the isothermal shock. For the adiabatic case, the profiles of shock strength, shock velocity and entropy production are smooth and have the largest value in vertically upward direction and have the lowest value in vertically downward direction, forming the oval shape. For the isothermal case, the profiles of shock strength and shock velocity show similar trend as that for adiabatic case but the profile of entropy production shows opposite

  3. Atmospheric composition

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.

  4. Atmospheric composition change: Ecosystems-Atmosphere interactions

    NARCIS (Netherlands)

    Fowler, D.; Pilegaard, K.; Sutton, M.A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J.K.; Granier, C.; Neftel, A.; Isaksen, I.S.A.; Laj, P.; Maione, M.; Monks, P.S.; Burkhardt, J.; Daemmgen, U.; Neirynck, J.; Personne, E.; Wichink Kruit, R.J.; Butterbach-Bahl, K.; Flechard, C.; Tuovinen, J.P.; Coyle, M.; Gerosa, G.; Loubet, B.; Altimir, N.; Gruenhage, L.; Ammann, C.; Cieslik, S.; Paoletti, E.; Mikkelsen, T.N.; Ro-Poulsen, H.; Cellier, P.; Cape, J.N.; Horvath, L.; Loreto, F.; Niinemets, U.; Palmer, P.I.; Rinne, J.; Misztal, P.; Nemitz, E.; Nilsson, D.; Pryor, S.; Gallagher, M.W.; Vesala, T.; Skiba, U.; Brueggemann, N.; Zechmeister-Boltenstern, S.; Williams, J.; O'Dowd, C.; Facchini, M.C.; Leeuw, de G.; Flossman, A.; Chaumerliac, N.; Erisman, J.W.

    2009-01-01

    Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O-3, CH4, N2O and particles i

  5. Complexity of the Earth's space-atmosphere interaction region (SAIR) response to the solar flux at 10.7 cm as seen through the evaluation of five solar cycle two-line element (TLE) records

    Science.gov (United States)

    Molaverdikhani, Karan; Ajabshirizadeh, Ali; Davoudifar, Pantea; Lashkanpour, Majid

    2016-09-01

    Orbital debris are long-standing threats to space systems. They also contribute to the flux of macroscopic particles into the Earth's atmosphere and eventually affects environmental processes across several other related regions. As impactful space debris may be, debris along with other Low Earth Orbit (LEO) orbiting objects, also serve as valuable long-monitoring probes to deduce the properties of geospace environment in-situ. We define the Daily Decay Rate (DDR) as a suitable indicator of how the Earth's space-atmosphere interaction region (SAIR) responds to solar activity and how solar activity directly affects the orbital evolution of a LEO orbiter. We present a computationally simplified technique that simultaneously solves the motion equations for DDR and cross-sectional area to mass ratio (A/m) from consecutive TLE records. By evaluating more than 50 million TLE records we estimate A/m of 15,307 NORAD-indexed objects and determine how DDR varies. We observe the thermospheric "natural thermostat" in our results, consistent with previous studies. We compare the observed DDRs with two models based on NRLMSISE-00 and DTM-2013, and present evidence the models display a systemic altitudinal bias. We propose several possibilities to explain this altitudinal bias including the overestimated CD at low altitudes in our models (presumably due to the despinning effect of perturbing forces on the orbiting objects), and incomplete and limited coverage of in-situ observations at high solar activity. We conclude that the density models do not reliably reproduce the densities and atmospheric-thermospheric behaviors at high solar active conditions, especially for F10.7 cm above 300 sfu.

  6. Archive of Geosample Data and Information from the Oregon State University (OSU) College of Earth, Ocean and Atmospheric Sciences (CEOAS) Marine Geology Repository (MGR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon State University Marine Geology Repository (OSU-MGR) is a partner in the Index to Marine and Lacustrine Geological Samples (IMLGS) database, contributing...

  7. Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a comprehensive Earth system model

    Directory of Open Access Journals (Sweden)

    N. Fischer

    2010-03-01

    Full Text Available Orbital forcing does not only exert direct insolation effects, but also alters climate indirectly through feedback mechanisms that modify atmosphere and ocean dynamics and meridional heat and moisture transfers. We investigate the regional effects of these changes by detailed analysis of atmosphere and ocean circulation and heat transports in a coupled atmosphere-ocean-sea ice-biosphere general circulation model (ECHAM5/JSBACH/MPI-OM. We perform long term quasi equilibrium simulations under pre-industrial, mid-Holocene (6000 years before present – yBP, and Eemian (125 000 yBP orbital boundary conditions. Compared to pre-industrial climate, Eemian and Holocene temperatures show generally warmer conditions at higher and cooler conditions at lower latitudes. Changes in sea-ice cover, ocean heat transports, and atmospheric circulation patterns lead to pronounced regional heterogeneity. Over Europe, the warming is most pronounced over the north-eastern part in accordance with recent reconstructions for the Holocene. We attribute this warming to enhanced ocean circulation in the Nordic Seas and enhanced ocean-atmosphere heat flux over the Barents Shelf in conduction with retreat of sea ice and intensified winter storm tracks over northern Europe.

  8. A comparison of new calculations of 10be production in the earths polar atmosphere by cosmic rays with 10be concentration measurements in polar ice cores between 1939-2005 - a troubling lack of concordance paper #1

    CERN Document Server

    Webber, W R

    2010-01-01

    Using new calculations of 10Be production in the Earths atmosphere which are based on direct measurements of the 11-year solar modulation effects on galactic cosmic rays and spacecraft measurements of the cosmic ray energy spectrum, we have calculated the yearly average production of 10Be in the Earths atmosphere by galactic and solar cosmic rays since 1939. During the last six 11-year cycles the average amplitude of these production changes is 36%. These predictions are compared with measurements of 10Be concentration in polar ice cores in both the Northern and Southern hemisphere over the same time period. We find a large scatter between the predicted and measured yearly average data sets and a low cross correlation ~0.30. Also the normalized regression line slope between 10Be production changes and 10Be concentration changes is found to be only 0.4-0.6; much less than the value of 1.0 expected for a simple proportionality between these quantities, as is typically used for historical projections of the rela...

  9. Rocky Worlds Limited to ˜1.8 Earth Radii by Atmospheric Escape during a Star’s Extreme UV Saturation

    Science.gov (United States)

    Lehmer, Owen R.; Catling, David C.

    2017-08-01

    Recent observations and analysis of low-mass (planets only have radii up to 1.5-2 R ⊕. Two general hypotheses exist for the cause of the dichotomy between rocky and gas-enveloped planets (or possible water worlds): either low-mass planets do not necessarily form thick atmospheres of a few wt.%, or the thick atmospheres on these planets easily escape, driven by X-ray and extreme ultraviolet (XUV) emissions from young parent stars. Here, we show that a cutoff between rocky and gas-enveloped planets due to hydrodynamic escape is most likely to occur at a mean radius of 1.76 ± 0.38 (2σ) R ⊕ around Sun-like stars. We examine the limit in rocky planet radii predicted by hydrodynamic escape across a wide range of possible model inputs, using 10,000 parameter combinations drawn randomly from plausible parameter ranges. We find a cutoff between rocky and gas-enveloped planets that agrees with the observed cutoff. The large cross-section available for XUV absorption in the extremely distended primitive atmospheres of low-mass planets results in complete loss of atmospheres during the ˜100 Myr phase of stellar XUV saturation. In contrast, more-massive planets have less-distended atmospheres and less escape, and so retain thick atmospheres through XUV saturation—and then indefinitely as the XUV and escape fluxes drop over time. The agreement between our model and exoplanet data leads us to conclude that hydrodynamic escape plausibly explains the observed upper limit on rocky planet size and few planets (a “valley”, or “radius gap”) in the 1.5-2 R ⊕ range.

  10. Fine-Structure Measurements of Oxygen A Band Absorbance for Estimating the Thermodynamic Average Temperature of the Earth's Atmosphere: An Experiment in Physical and Environmental Chemistry

    Science.gov (United States)

    Myrick, M. L.; Greer, A. E.; Nieuwland, A.; Priore, R. J.; Scaffidi, J.; Andreatta, Daniele; Colavita, Paula

    2006-01-01

    The experiment describe the measures of the A band transitions of atmospheric oxygen, a rich series of rotation-electronic absorption lines falling in the deep red portion of the optical spectrum and clearly visible owing to attenuation of solar radiation. It combines pure physical chemistry with analytical and environmental science and provides a…

  11. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 8: Atmosphere

    Science.gov (United States)

    Miles, R.; Fawkes, G.

    1974-01-01

    The economic value of an ERS system in the resource area of atmosphere is determined. Benefits which arise from air pollution and cloud observations correlated to ground stations are discussed along with cost savings associated with air pollution monitoring by satellite. Social benefits due to more precise knowledge of the effects of pollution are presented.

  12. Fine-Structure Measurements of Oxygen A Band Absorbance for Estimating the Thermodynamic Average Temperature of the Earth's Atmosphere: An Experiment in Physical and Environmental Chemistry

    Science.gov (United States)

    Myrick, M. L.; Greer, A. E.; Nieuwland, A.; Priore, R. J.; Scaffidi, J.; Andreatta, Daniele; Colavita, Paula

    2006-01-01

    The experiment describe the measures of the A band transitions of atmospheric oxygen, a rich series of rotation-electronic absorption lines falling in the deep red portion of the optical spectrum and clearly visible owing to attenuation of solar radiation. It combines pure physical chemistry with analytical and environmental science and provides a…

  13. La Misteriosa Atmosfera de la Tierra. Atlas: Guia de Instruccion con Actividades. (The Mysterious Atmosphere of the Earth. Atlas: Teaching Guide with Activities).

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC. Education Dept.

    This guide provides students with experiences similar to those found in a space laboratory such as the space shuttle. The activities are geared towards recycling, developing the perspective of a conservationist, taking action on a personal level that contributes to a healthy atmosphere, and preparing informed citizens that are capable of making…

  14. On the role of atmosphere-ocean interactions in the expected long-term changes of the Earth's ozone layer caused by greenhouse gases

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone

  15. Description and implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)

    Science.gov (United States)

    Janssen, R. H. H.; Pozzer, A.

    2015-03-01

    We present a new submodel for the Modular Earth Submodel System (MESSy): the MiXed Layer (MXL) model for the diurnal dynamics of the convective boundary layer, including explicit representations of entrainment and surface fluxes. This submodel is embedded in a new MESSy base model (VERTICO), which represents a single atmospheric column. With the implementation of MXL in MESSy, MXL can be used in combination with other MESSy submodels that represent processes related to atmospheric chemistry. For instance, the coupling of MXL with more advanced modules for gas-phase chemistry (such as the Mainz Isoprene Mechanism 2 (MIM2)), emissions, dry deposition and organic aerosol formation than in previous versions of the MXL code is possible. Since MXL is now integrated in the MESSy framework, it can take advantage of future developments of this framework, such as the inclusion of new process submodels. The coupling of MXL with submodels that represent other processes relevant to chemistry in the atmospheric boundary layer (ABL) yields a computationally inexpensive tool that is ideally suited for the analysis of field data, for evaluating new parametrizations for 3-D models, and for performing systematic sensitivity analyses. A case study for the DOMINO campaign in southern Spain is shown to demonstrate the use and performance of MXL/MESSy in reproducing and analysing field observations.

  16. Solid Earth: Introduction

    Science.gov (United States)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  17. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui, E-mail: quweizhe@ouc.edu.cn [College of Environment Oceanography, Ocean University of China, Qingdao 266100 (China)

    2012-07-15

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  18. Uderstanding Snowball Earth Deglaciation

    Science.gov (United States)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  19. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  20. Uplink Power Control For Earth/Satellite/Earth Communication

    Science.gov (United States)

    Chakraborty, Dayamoy

    1994-01-01

    Proposed control subsystem adjusts power radiated by uplink transmitter in Earth station/satellite relay station/ Earth station communication system. Adjustments made to compensate for anticipated changes in attenuation by rain. Raw input is a received downlink beacon singal, amplitude of which affected not only by rain fade but also by scintillation, attenuation in atmospheric gases, and diurnal effects.

  1. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  2. Cosmic rays on earth

    Energy Technology Data Exchange (ETDEWEB)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted.

  3. The implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)

    Science.gov (United States)

    Janssen, R. H. H.; Pozzer, A.

    2014-10-01

    We present a new submodel for the Modular Earth Submodel System (MESSy): the MiXed Layer (MXL) model for the diurnal dynamics of the convective boundary layer, including explicit representations of entrainment and surface fluxes. Through the MESSy interface, MXL is coupled with modules that represent other processes relevant to chemistry in the atmospheric boundary layer (ABL). In combination, these provide a computationally inexpensive tool that is ideally suited for the analysis of field data, for evaluating new parametrizations for 3-D models, and for performing systematic sensitivity analyses. A case study for the DOMINO campaign in Southern Spain is shown to demonstrate the use and performance of MXL/MESSy in reproducing and analysing field observations.

  4. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  5. A Method for Longitudinal and Lateral Range Control for a High-Drag Low-Lift Vehicle Entering the Atmosphere of a Rotating Earth

    Science.gov (United States)

    Young, John W.

    1961-01-01

    A study has been made of a method for controlling the trajectory of a high-drag low-lift entry vehicle to a desired longitude and latitude on the surface of a rotating earth. By use of this control technique the vehicle can be guided to the desired point when the present position and heading of the vehicle are known and the desired longitude and latitude are specified. The present study makes use of a single reference trajectory and an estimate of the lift and side-force capabilities of the vehicle. This information is stored in a control-logic system and used with linear control equations to guide the vehicle to the desired destination. Results are presented of a number of trajectory studies which describe the operation of the control system and illustrate its ability to control the vehicle trajectory to the desired landing area.

  6. THE OPTICAL AND NEAR-INFRARED TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ 1214b: FURTHER EVIDENCE FOR A METAL-RICH ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Jacob L.; Desert, Jean-Michel; Stalder, Brian; Berta, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kabath, Petr [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago (Chile); Seager, Sara [Department of Earth, Atmospheric, and Planetary Sciences and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Miller-Ricci Kempton, Eliza [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Homeier, Derek [Centre de Recherche Astrophysique de Lyon, UMR 5574, CNRS, Universite de Lyon, Ecole Normale Superieure de Lyon, 46 Allee d' Italie, F-69364 Lyon Cedex 07 (France); Walsh, Shane [Australian Astronomical Observatory and Curtin Institute of Radio Astronomy, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Seifahrt, Andreas, E-mail: jbean@cfa.harvard.edu [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States)

    2011-12-10

    We present an investigation of the transmission spectrum of the 6.5 M{sub Circled-Plus} planet GJ 1214b based on new ground-based observations of transits of the planet in the optical and near-infrared, and on previously published data. Observations with the VLT + FORS and Magellan + MMIRS using the technique of multi-object spectroscopy with wide slits yielded new measurements of the planet's transmission spectrum from 0.61 to 0.85 {mu}m, and in the J, H, and K atmospheric windows. We also present a new measurement based on narrow-band photometry centered at 2.09 {mu}m with the VLT + HAWKI. We combined these data with results from a reanalysis of previously published FORS data from 0.78 to 1.00 {mu}m using an improved data reduction algorithm, and previously reported values based on Spitzer data at 3.6 and 4.5 {mu}m. All of the data are consistent with a featureless transmission spectrum for the planet. Our K-band data are inconsistent with the detection of spectral features at these wavelengths reported by Croll and collaborators at the level of 4.1{sigma}. The planet's atmosphere must either have at least 70% H{sub 2}O by mass or optically thick high-altitude clouds or haze to be consistent with the data.

  7. Ab initio quantum-chemical computations of the electronic states in HgBr2 and IBr: Molecules of interest on the Earth's atmosphere

    Science.gov (United States)

    Sitkiewicz, Sebastian P.; Oliva, Josep M.; Dávalos, Juan Z.; Notario, Rafael; Saiz-Lopez, Alfonso; Alcoba, Diego R.; Oña, Ofelia B.; Roca-Sanjuán, Daniel

    2016-12-01

    The electronic states of atmospheric relevant molecules IBr and HgBr2 are reported, within the UV-Vis spectrum range (170 nm ≤λp h o t o n≤600 nm) by means of the complete-active-space self-consistent field/multi-state complete-active-space second-order perturbation theory/spin-orbit restricted-active-space state-interaction (CASSCF/MS-CASPT2/SO-RASSI) quantum-chemical approach and atomic-natural-orbital relativistic-correlation-consistent (ANO-RCC) basis sets. Several analyses of the methodology were carried out in order to reach converged results and therefore to establish a highly accurate level of theory. Good agreement is found with the experimental data with errors not higher than around 0.1 eV. The presented analyses shall allow upcoming studies aimed to accurately determine the absorption cross sections of interhalogen molecules and compounds with Hg that are relevant to better comprehend the photochemical processes taking place in the atmosphere.

  8. Planetary-scale hydraulic jumps and transonic jet-streaks in the MACDA reanalysis of the Martian atmosphere: a comparison with Earth's lower mesosphere

    Science.gov (United States)

    Dowling, Timothy E.; Bradley, Mary Elizabeth; Lewis, Stephen R.; Read, Peter L.

    2016-10-01

    We have analyzed the Mars MACDA V1.0 global reanalysis on potential-temperature surfaces, θ, over the range θ = 400 to 900 K (~30 to ~60 km). The strongest seasonal wind, the northern-winter polar jet, exhibits two intriguing features: i) transonic jet streaks and ii) the juxtaposition of regions of shooting and tranquil flow, in the sense of Froude-number hydraulics, which suggests a planetary-scale hydraulic jump. Mesoscale bores have been studied on Mars, but to our knowledge the above two features have not been reported elsewhere. To characterize the basic state, we examine scatter plots of Ertel potential vorticity, Q, versus Bernoulli streamfunction, B, and fit the linear model Q/Q0 = 1 - μ0 (B-B0). In autumn, winter and spring, the nondimensionalized correlation parameter, μ'0 = (NH)2 μ0, in mid-latitudes is positive and nearly constant in time. Its value is close to unity at the bottom of the study region and gradually decreases with increasing θ (increasing altitude). In northern summer it swings negative. These attributes match Earth's lower mesosphere (θ = 2000 to 3000 K; ~48 to ~62 km). In southern summer, Ls ~ 270○, a hypsometric flaring of the θ layers, which is not seen in northern summer, is associated with the previously reported reduction of Q to approximately zero across the entire southern hemisphere and northern tropics. Between each winter polar jet and pole, especially in the north, there is a large spread of Q over a small domain of B, which is unlike Earth and may be related to the aforementioned hydraulic jump. We are currently examining 3D Lagrangian fluid trajectories to better characterize the rotating hydraulics of the system as a function of season.

  9. THE TIME AND COORDINATE SYSTEM OF EARTH-BASED MARS ATMOSPHERE OCCULTATION%地基火星大气掩星观测的时间系统与坐标系统

    Institute of Scientific and Technical Information of China (English)

    韩婷婷; 毛晓飞; 张素君; 李磊; 平劲松; 洪振杰

    2009-01-01

    在地基掩星观测反演火星大气的资料处理过程中,掩星平面的建立是数据整理模块考虑的第一项任务.该文详细介绍了利用初始的观测资料(飞行器、火星与地球的历表),确定信号时延、建立掩星平面、计算掩星点高度以及在火固坐标系下掩星点和太阳的位置等流程中的时间系统与坐标系统问题.%In the inversion of the Earth-based Mars atmosphere occultation of the data processing, the first task is to establish the occultation plane in the observation data arrangement module. This paper describes how to use the initial data ( aircraft, Mars and Earth ephemeris) to determine the signal delay , establish the occultation plane, calculate the height of occultation, as well as define the occultation points and the sun's location in the Mars Non-inertial Coordinate. The time and the coordinates system in the observation data arrangement module are discussed in detail.

  10. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  11. Propagation of high-energy laser beams through the earth's atmosphere II; Proceedings of the Meeting, Los Angeles, CA, Jan. 21-23, 1991

    Science.gov (United States)

    Ulrich, Peter B. (Editor); Wilson, Leroy E. (Editor)

    1991-01-01

    Consideration is given to turbulence at the inner scale, modeling turbulent transport in laser beam propagation, variable wind direction effects on thermal blooming correction, realistic wind effects on turbulence and thermal blooming compensation, wide bandwidth spectral measurements of atmospheric tilt turbulence, remote alignment of adaptive optical systems with far-field optimization, focusing infrared laser beams on targets in space without using adaptive optics, and a simplex optimization method for adaptive optics system alignment. Consideration is also given to ground-to-space multiline propagation at 1.3 micron, a path integral approach to thermal blooming, functional reconstruction predictions of uplink whole beam Strehl ratios in the presence of thermal blooming, and stability analysis of semidiscrete schemes for thermal blooming computation.

  12. Alfven波在微电离大气中的衰减特性研究%Attenuation of Alfven Waves in Weakly Ionized Near Earth Atmosphere

    Institute of Scientific and Technical Information of China (English)

    刘元涛; 赵华; 李磊; 王劲东; 周斌; 冯永勇

    2011-01-01

    利用简单的偶极子地磁场模型以及大气电子密度和电导率模式,分析地面产生的磁扰动以Alfven波的模式传播到近地空间区域.这种地面的磁扰动可能干扰近地空间卫星对空间磁扰动的观测.通过对地面磁扰动Alfven 波模式1000km高度内的衰减情况进行模拟,认为在近地空间采用地磁偶极子模型是合理的.由于衰减随扰动频率的增大而急剧增强,分析还得到了近地卫星能够探测到地面磁扰动的最大频率.计算结果表明,Alfven波的衰减主要集中在高度50km以下,这个区域内的大气电导率极其微弱,使Alfven波的传播受到极大衰减.0.4Hz 以下的Alfven波沿磁力线传播到1000 km高度后衰减结为原来扰动幅度的千分之一,因此频率在0.4 Hz以下的Alfven波可能会干扰低轨卫星探测磁场脉动.%Alfven waves, produced on the ground by artificial or by soundstorm, propagating to the near-earth space along the geomagnetic field lines, would decay greatly with distance.A dipole geomagnetic field model in near earth space, plasma density and conductivity models derived from observational data are used in this study to investigate the attenuation of Alfven waves below 1000 km altitude by numerical simulation methods.The frequency that would be detected by magnetometer carried by satellite was also found.The result showed that: Alfven waves will decay sharply in the height of less than 50 km for the much weak electrical conductivity in this region; it is 0.4 Hz Alfven waves, when transmitted to 1000 km, that becomes about one-thousandth of the original, so Alfven waves below 0.4 Hz can be detected by LEO satellites.

  13. Expanding earth

    Energy Technology Data Exchange (ETDEWEB)

    Carey, S.W.

    1976-01-01

    Arguments in favor of an expanding earth are presented. The author believes that the theory of plate tectonics is a classic error in the history of geology. The case for the expanding earth is organized in the following way: introductory review - face of the earth, development of expanding earth concept, necessity for expansion, the subduction myth, and definitions; some principles - scale of tectonic phenomena, non-uniformitarianism, tectonic profile, paleomagnetism, asymmetry of the earth, rotation of the earth, and modes of crustal extension; regional studies - western North America, Central America, South-East Asia, and the rift oceans; tests and cause of expansion. 824 references, 197 figures, 11 tables. (RWR)

  14. Climate. The earth and its atmosphere in the changing times. 3. upd. ed.; Klima. Die Erde und ihre Atmosphaere im Wandel der Zeit

    Energy Technology Data Exchange (ETDEWEB)

    Buchal, Christoph [Forschungszentrum Juelich GmbH (Germany). Peter-Gruenberg-Institut PGI-9; Schoenwiese, Christian-Dietrich [Frankfurt Univ. (Germany). Inst. fuer Atmosphaere und Umwelt

    2016-08-01

    The Climate Change Challenge. Throughout the world, great efforts are being made to better understanding the development of the global climate and to model future trends. What characterizes the weather what the climate? How did the climate history of the Earth? What factors are affecting the climate? In the third, updated edition 2016 of the widespread attractive and scientifically-based four-volume nonfiction series ENERGY, AIR, POWER and MOBILITY which clearly explained basic knowledge of the climate system is expanded to include the latest information about the IPCC and keep up-to-date insight into modern research, especially the REKLIM project of the Helmholtz Association of German research Centres. [German] Herausforderung Klimawandel. Ueberall auf der Welt werden grosse Anstrengungen unternommen, um die Entwicklung des Weltklimas genauer zu verstehen und zukuenftige Trends zu modellieren. Was kennzeichnet das Wetter, was das Klima? Wie verlief die Klimageschichte der Erde? Welche Faktoren beeinflussen das Klima? In der dritten, aktualisierten Auflage 2016 der weit verbreiteten attraktiven und wissenschaftlich fundierten vierbaendigen Sachbuchreihe ENERGIE, KLIMA, STROM und MOBILITAeT wird das verstaendlich erlaeuterte Basiswissen zum Klimageschehen erweitert um die neusten Daten des IPCC sowie um up-to-date Einblicke in die moderne Forschung, insbesondere auch das REKLIM-Projekt der Helmholtz-Gemeinschaft deutscher Forschungszentren.

  15. Another Source of Atmospheric Methane

    Institute of Scientific and Technical Information of China (English)

    于心科

    1997-01-01

    The atmospheric concentration of methane is steadily increasin.Lacking of precise estimates of source and sink strengths for the atmospheric methane severely limits the current understanding of the global methane cycle.Agood budget of atmospheric methane can enhance our understanding of the global carbon cycle and global climate change,The known estimates of the main source and sink strengths are gresented in this paper,In terms of carbon isotopic studies,it is evidenced that the earth's primodial methane,which was trapped in the earth during its formation,may be another source of methane,with extensive,earth's degassing which is calleld the "breathing" process of the earth and played an important role in the formation of the promitive atmosphere,large amounts of methane were carried from the deep interior to the surface and then found its way into the atmosphere.

  16. Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth's atmosphere: extended incubation periods needed for culture-based assays

    Science.gov (United States)

    Griffin, Dale W.

    2008-01-01

    On 13 August 2004, an atmospheric sample was collected at an altitude of 20,000 m along a west to east transect over the continental United States by NASA’s Stratospheric and Cosmic Dust Program. This sample was then shipped to the US Geological Survey’s Global Desert Dust program for microbiological analyses. This sample, which was plated on a low nutrient agar to determine if cultivable microorganisms were present, produced 590 small yellow to off-white colonies after approximately 7 weeks of incubation at room-temperature. Of 50 colonies selected for identification using 16S rRNA sequencing, 41 belonged to the family Micrococcaceae, seven to the family Microbacteriaceae, one to the genus Staphylococcus, and one to the genus Brevibacterium. All of the isolates identified were non-spore-forming pigmented bacteria, and their presence in this sample illustrate that it is not unusual to recover viable microbes at extreme altitudes. Additionally, the extended period required to initiate growth demonstrates the need for lengthy incubation periods when analyzing high-altitude samples for cultivable microorganisms.

  17. From the Cover: Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars

    Science.gov (United States)

    Nicholson, Wayne L.; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C.

    2013-01-01

    The ability of terrestrial microorganisms to grow in the near-surface environment of Mars is of importance to the search for life and protection of that planet from forward contamination by human and robotic exploration. Because most water on present-day Mars is frozen in the regolith, permafrosts are considered to be terrestrial analogs of the martian subsurface environment. Six bacterial isolates were obtained from a permafrost borehole in northeastern Siberia capable of growth under conditions of low temperature (0 °C), low pressure (7 mbar), and a CO2-enriched anoxic atmosphere. By 16S ribosomal DNA analysis, all six permafrost isolates were identified as species of the genus Carnobacterium, most closely related to C. inhibens (five isolates) and C. viridans (one isolate). Quantitative growth assays demonstrated that the six permafrost isolates, as well as nine type species of Carnobacterium (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. pleistocenium, and C. viridans) were all capable of growth under cold, low-pressure, anoxic conditions, thus extending the low-pressure extreme at which life can function.

  18. On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet

    Science.gov (United States)

    Poveda, Germán; Mesa, Oscar J.

    2000-06-01

    The department of Chocó, on the Colombian Pacific coast experiences 8,000 to 13,000 mm of average annual precipitation. Lloró (5°30‧N, 76°32‧W, 120m) has received above 12,700 mm (1952-1960). Using the NCEP/NCAR Reanalysis data, we show that the ocean-land-atmosphere interaction over the easternmost fringe of the tropical Pacific, enhanced by the dynamics of a low-level westerly jet (“CHOCO”), contributes to explain the existence of such record-breaking hydrological region. Deep convection develops from low-level moisture convergence by the CHOCO jet, combined with high-level easterly trade winds, orographic lifting on the western Andes, low surface pressures and warm air. Precipitation is organized in mesoscale convective complexes, in turn dynamically linked to the jet. The strength of the CHOCO jet (centered at 5°N) is associated with the gradient of surface air temperatures between western Colombia and the Niño 1+2 region, thereby exhibiting strong annual and interannual variability, which contributes to explaining Colombia's hydro-climatology and its anomalies during ENSO.

  19. Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: analyses in the Community Earth System Model 1 (CESM1

    Directory of Open Access Journals (Sweden)

    William J. Riley

    2012-02-01

    Full Text Available We used a lake thermal physics model recently coupled into the Community Earth System Model 1 (CESM1 to study the effects of lake distribution in present and future climate. Under present climate, correcting the large underestimation of lake area in CESM1 (denoted CCSM4 in the configuration used here caused 1 °C spring decreases and fall increases in surface air temperature throughout large areas of Canada and the US. Simulated summer surface diurnal air temperature range decreased by up to 4 °C, reducing CCSM4 biases. These changes were much larger than those resulting from prescribed lake disappearance in some present-day permafrost regions under doubled-CO2 conditions. Correcting the underestimation of lake area in present climate caused widespread high-latitude summer cooling at 850 hPa. Significant remote changes included decreases in the strength of fall Southern Ocean westerlies. We found significantly different winter responses when separately analysing 45-yr subperiods, indicating that relatively long simulations are required to discern the impacts of surface changes on remote conditions. We also investigated the surface forcing of lakes using idealised aqua-planet experiments which showed that surface changes of 2 °C in the Northern Hemisphere extra-tropics could cause substantial changes in precipitation and winds in the tropics and Southern Hemisphere. Shifts in the Inter-Tropical Convergence Zone were opposite in sign to those predicted by some previous studies. Zonal mean circulation changes were consistent in character but much larger than those occurring in the lake distribution experiments, due to the larger magnitude and more uniform surface forcing in the idealised aqua-planet experiments.

  20. Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: Analyses in the Community Earth System Model 1 (CESM1)

    Energy Technology Data Exchange (ETDEWEB)

    Subin, Zachary M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Murphy, Lisa N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Li, Fiyu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Bonfils, Celine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Riley, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.

    2012-01-15

    We used a lake thermal physics model recently coupled into the Community Earth System Model 1 (CESM1) to study the effects of lake distribution in present and future climate. Under present climate, correcting the large underestimation of lake area in CESM1 (denoted CCSM4 in the configuration used here) caused 1 °C spring decreases and fall increases in surface air temperature throughout large areas of Canada and the US. Simulated summer surface diurnal air temperature range decreased by up to 4 °C, reducing CCSM4 biases. These changes were much larger than those resulting from prescribed lake disappearance in some present-day permafrost regions under doubled-CO2 conditions. Correcting the underestimation of lake area in present climate caused widespread high-latitude summer cooling at 850 hPa. Significant remote changes included decreases in the strength of fall Southern Ocean westerlies. We found significantly different winter responses when separately analysing 45-yr subperiods, indicating that relatively long simulations are required to discern the impacts of surface changes on remote conditions. We also investigated the surface forcing of lakes using idealised aqua-planet experiments which showed that surface changes of 2 °C in the Northern Hemisphere extra-tropics could cause substantial changes in precipitation and winds in the tropics and Southern Hemisphere. Shifts in the Inter-Tropical Convergence Zone were opposite in sign to those predicted by some previous studies. Zonal mean circulation changes were consistent in character but much larger than those occurring in the lake distribution experiments, due to the larger magnitude and more uniform surface forcing in the idealised aqua-planet experiments.

  1. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  2. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early earth's atmosphere.

    Science.gov (United States)

    Whitehill, Andrew R; Xie, Changjian; Hu, Xixi; Xie, Daiqian; Guo, Hua; Ono, Shuhei

    2013-10-29

    Signatures of mass-independent isotope fractionation (MIF) are found in the oxygen ((16)O,(17)O,(18)O) and sulfur ((32)S, (33)S, (34)S, (36)S) isotope systems and serve as important tracers of past and present atmospheric processes. These unique isotope signatures signify the breakdown of the traditional theory of isotope fractionation, but the physical chemistry of these isotope effects remains poorly understood. We report the production of large sulfur isotope MIF, with Δ(33)S up to 78‰ and Δ(36)S up to 110‰, from the broadband excitation of SO2 in the 250-350-nm absorption region. Acetylene is used to selectively trap the triplet-state SO2 ( (3)B1), which results from intersystem crossing from the excited singlet ( (1)A2/ (1)B1) states. The observed MIF signature differs considerably from that predicted by isotopologue-specific absorption cross-sections of SO2 and is insensitive to the wavelength region of excitation (above or below 300 nm), suggesting that the MIF originates not from the initial excitation of SO2 to the singlet states but from an isotope selective spin-orbit interaction between the singlet ( (1)A2/ (1)B1) and triplet ( (3)B1) manifolds. Calculations based on high-level potential energy surfaces of the multiple excited states show a considerable lifetime anomaly for (33)SO2 and (36)SO2 for the low vibrational levels of the (1)A2 state. These results demonstrate that the isotope selectivity of accidental near-resonance interactions between states is of critical importance in understanding the origin of MIF in photochemical systems.

  3. Classical method of coherence estimation based on mutual wavelet-spectra of time variations of studied processes observed in the Earth atmosphere

    Science.gov (United States)

    Fahrutdinova, Antonina; Rizhov, Dmitriy; Magdeev, Konstantin

    In the present article the authors offer to conduct a research into influence exerted by solar effects (Wolf number) on time variations of average monthly values of the zonal wind, obtained in Kazan Federal University with the help of a meteoric radar complex KGU-M5 within the mesosphere - lower thermosphere during the period from 1978 to 2007. There exists a wide variety of signal processing methods that can be used to identify connection between two processes. A classical method of coherence calculation based on a mutual wavelet-spectrum has become widely used. Due to limited duration of the studied time series of dynamic parameters we have found coherent structures of time variations in solar activity (Wolf number) and zonal wind within the mesosphere-lower thermosphere for the scales of about 0.5, 1, 1.5, 2, 3, and 4-5 years. SCM values have been calculated for the most pronounced periodicities observed for scales of about 3 years during the period from 1986 to 1997. The average SCM value was equal to 0.75. Confidence interval of obtained SCM values was in the range of [0.54, 0.88] for the significance level As the atmosphere is a non-linear medium, this can lead to shifting and broadening of spectral components. In addition to the above mentioned periodicities (0.5 - 5 years), a wavelet spectrum calculated in the zonal wind field indicates possible presence of time periodicities in the range of 11-20 years.

  4. In the Red Shadow of the Earth

    Science.gov (United States)

    Hughes, Stephen W.; Hosokawa, Kazuyuki; Carroll, Joshua; Sawell, David; Wilson, Colin

    2015-01-01

    A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth's umbra during a total lunar eclipse making the Moon red. This "Rim of Fire" is due to refracted unscattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed…

  5. In the Red Shadow of the Earth

    Science.gov (United States)

    Hughes, Stephen W.; Hosokawa, Kazuyuki; Carroll, Joshua; Sawell, David; Wilson, Colin

    2015-01-01

    A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth's umbra during a total lunar eclipse making the Moon red. This "Rim of Fire" is due to refracted unscattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed…

  6. Greenhouse effect in the atmosphere

    Science.gov (United States)

    Smirnov, B. M.

    2016-04-01

    Average optical atmospheric parameters for the infrared spectrum range are evaluated on the basis of the Earth energetic balance and parameters of the standard atmosphere. The average optical thickness of the atmosphere is u ≈ 2.5 and this atmospheric emission is originated at altitudes below 10 km. Variations of atmospheric radiative fluxes towards the Earth and outward are calculated as a function of the concentration of \\text{CO}2 molecules for the regular model of molecular spectrum. As a result of doubling of the \\text{CO}2 concentration the change of the global Earth temperature is (0.4 +/- 0.2) \\text{K} if other atmospheric parameters are conserved compared to the value (3.0 +/- 1.5) \\text{K} under real atmospheric conditions with the variation of the amount of atmospheric water. An observed variation of the global Earth temperature during the last century (0.8 ^\\circ \\text{C}) follows from an increase of the mass of atmospheric water by 7% or by conversion of 1% of atmospheric water in aerosols.

  7. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Science.gov (United States)

    Yates, Jack S.; Palmer, Paul I.; Biller, Beth; Cockell, Charles S.

    2017-02-01

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83-0714442.5, whose 4.5-5.2 μm spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 109 cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  8. Geospatial Strategy for Adverse Impact of Urban Heat Island in upper atmospheres of the earth Mountain Areas using LANDSAT ETM+ Sensors

    Science.gov (United States)

    Kumar, Amit; Vandana, Vandana

    2016-07-01

    We are living in the age of the rapidly growing population and changing environmental conditions with advanced technical capacity. This has been resulting in widespread land cover change. Among several human-induced environmental and urban thermal problems are reported to be negatively affecting urban residents in many ways. Urban Heat Islands exist in many large cities especially metropolitan cities and can significantly affect the permafrost layer in mountain areas. The adverse effect of urban heat island has become the subject of numerous studies in recent decades and is reflected in many major mountain cities around the world. The built-up structures in urbanized areas considerably alter land cover thereby affecting thermal energy flow which leads to the development of elevated surface and air temperature. The phenomenon Urban Heat Island implies 'island' of high temperature in cities, surrounded by relatively lower temperature in rural areas. The Urban Heat Island for the temporal period is estimated using geospatial techniques which are then utilized for the impact assessment of the climate of the surrounding regions and how it reduce the sustainability of the natural resources like air, vegetation. The knowledge of surface temperature is important for the study of urban climate and human health. The rapid growth of industries in peri-urban areas results in excessive warming and variations in weather conditions. It leads to soil degradation in frozen areas due to high temperature which leads to melting of snow in mountain areas Remotely sensed data of thermal infrared band in the region of 10.4-12.5 µm of EMR spectrum, available from LANDSAT- ETM+ is proved to be very helpful to identify urban heat islands. Thermal infrared data acquired during the daytime and night time can be used to monitor the heat island associated with urban areas as well as atmospheric pollution. The present paper describes the methodology and resolution dynamic urban heat island

  9. ESA's Earth Observation in Support of Geoscience

    Science.gov (United States)

    Liebig, Volker

    2016-04-01

    The intervention will present ESA's Earth Observation Programme and its contribution to Geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. A special focus will be put on the Earth Explorers, who form the science and research element of ESA's Living Planet Programme and focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. In addition the operational Sentinel satellites have a huge potential for Geoscience. Earth Explorers' emphasis is also on learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The process of Earth Explorer mission selection has given the Earth science community an efficient tool for advancing the understanding of Earth as a system.

  10. A Comparison Of New Calculations Of The Yearly 10Be Production In The Earths Polar Atmosphere By Cosmic Rays With Yearly 10Be Measurements In Multiple Greenland Ice Cores Between 1939 And 1994 - A Troubling Lack Of Concordance Paper #2

    CERN Document Server

    Webber, W R; Webber, C W

    2010-01-01

    We have compared the yearly production rates of 10Be by cosmic rays in the Earths polar atmosphere over the last 50-70 years with 10Be measurements from two separate ice cores in Greenland. These ice cores provide measurements of the annual 10Be concentration and 10Be flux levels during this time. The scatter in the ice core yearly data vs. the production data is larger than the average solar 11 year production variations that are being measured. The cross correlation coefficients between the yearly 10Be production and the ice core 10Be measurements for this time period are <0.4 in all comparisons between ice core data and 10Be production, including 10Be concentrations, 10Be fluxes and in comparing the two separate ice core measurements. In fact, the cross correlation between the two ice core measurements, which should be measuring the same source, is the lowest of all, only ~0.2. These values for the correlation coefficient are all indicative of a "poor" correlation. The regression line slopes for the bes...

  11. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  12. Studies of radiative transfer in the earth's atmosphere with emphasis on the influence of the radiation budget in the joint institute for advancement of flight sciences at the NASA-Langley Research Center

    Science.gov (United States)

    1979-01-01

    Earth and solar radiation budget measurements were examined. Sensor calibration and measurement accuracy were emphasized. Past works on the earth's radiation field that must be used in reducing observations of the radiation field were reviewed. Using a finite difference radiative transfer algorithm, models of the angular and spectral dependence of the earth's radiation field were developed.

  13. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Rare earth market remained depressed after the New Year affected by the weak demand. Purchaser preferred to consume inventories rather than increase the stockpile. There was a strong wait-and-see atmosphere in the market. Driven by the intense desire to sell out the commodities, traders further decreased their quoted price for rare earth products. Most persons in the market preferred to hold commodities and waited for a rise in the market after the Spring Festival.

  14. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....

  15. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II; Validation

    Science.gov (United States)

    Loeb, N. G.; Loukachine, K.; Wielicki, B. A.; Young, D. F.

    2003-01-01

    Top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth s Radiant Energy System (CERES) are estimated from empirical angular distribution models (ADMs) that convert instantaneous radiance measurements to TOA fluxes. This paper evaluates the accuracy of CERES TOA fluxes obtained from a new set of ADMs developed for the CERES instrument onboard the Tropical Rainfall Measuring Mission (TRMM). The uncertainty in regional monthly mean reflected shortwave (SW) and emitted longwave (LW) TOA fluxes is less than 0.5 W/sq m, based on comparisons with TOA fluxes evaluated by direct integration of the measured radiances. When stratified by viewing geometry, TOA fluxes from different angles are consistent to within 2% in the SW and 0.7% (or 2 W/sq m) in the LW. In contrast, TOA fluxes based on ADMs from the Earth Radiation Budget Experiment (ERBE) applied to the same CERES radiance measurements show a 10% relative increase with viewing zenith angle in the SW and a 3.5% (9 W/sq m) decrease with viewing zenith angle in the LW. Based on multiangle CERES radiance measurements, 18 regional instantaneous TOA flux errors from the new CERES ADMs are estimated to be 10 W/sq m in the SW and, 3.5 W/sq m in the LW. The errors show little or no dependence on cloud phase, cloud optical depth, and cloud infrared emissivity. An analysis of cloud radiative forcing (CRF) sensitivity to differences between ERBE and CERES TRMM ADMs, scene identification, and directional models of albedo as a function of solar zenith angle shows that ADM and clear-sky scene identification differences can lead to an 8 W/sq m root-mean-square (rms) difference in 18 daily mean SW CRF and a 4 W/sq m rms difference in LW CRF. In contrast, monthly mean SW and LW CRF differences reach 3 W/sq m. CRF is found to be relatively insensitive to differences between the ERBE and CERES TRMM directional models.

  16. Looking at the earth from space

    Science.gov (United States)

    Geller, Marvin A.

    1988-01-01

    Some of the scientific accomplishments attained in observing the earth from space are discussed. A brief overview of findings concerning the atmosphere, the oceans and sea ice, the solid earth, and the terrestrial hydrosphere and biosphere is presented, and six examples are examined in which space data have provided unique information enabling new knowledge concerning the workings of the earth to be derived. These examples concern stratospheric water vapor, hemispheric differences in surface and atmosphere parameters, Seasat altimeter mesoscale variability, variability of Antarctic sea ice, variations in the length of day, and spaceborne radar imaging of ancient rivers. Future space observations of the earth are briefly addressed.

  17. Exploring the atmosphere using smartphones

    Science.gov (United States)

    Monteiro, Martín; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2016-05-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the flight information system of an aircraft. The experimental results are compared with the International Standard Atmosphere and other simple approximations: isothermal and constant density atmospheres.

  18. Exploring the atmosphere using smartphones

    CERN Document Server

    Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C

    2015-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for the earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the flight information system of an aircraft. The experimental results are compared with the International Standard Atmosphere and other simple approximations: isothermal and constant density atmospheres.

  19. The atmospheric electric global circuit. [thunderstorm activity

    Science.gov (United States)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  20. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  1. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    CERN Document Server

    Yates, Jack S; Biller, Beth; Cockell, Charles S

    2016-01-01

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. We illustrate this idea using the object WISE J085510.83-0714442.5, which is a cool, free-floating brown dwarf. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Ba...

  2. Atmospheric Research 2016 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2017-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  3. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    Science.gov (United States)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  4. Ozone, Climate, and Global Atmospheric Change.

    Science.gov (United States)

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  5. Snowball Earth

    OpenAIRE

    2016-01-01

    In the ongoing quest to better understand where life may exist elsewhere in the Universe, important lessons may be gained from our own planet. In particular, much can be learned from planetary glaciation events that Earth suffered ∼600 million years ago, so-called `Snowball Earth' episodes. I begin with an overview of how the climate works. This helps to explain how the ice-albedo feedback effect can destabilise a planet's climate. The process relies on lower temperatures causing more ice to ...

  6. Solid Earth: The priorities

    Science.gov (United States)

    Paquet, P.

    1991-10-01

    The European Space Agency's strategy concerning the solid Earth program is reviewed. Improvement of current knowledge of the global geopotential fields, both gravity and magnetic, was stressed as the highest priority. It was agreed that the objectives and goals of the planned Aristoteles mission correspond to this priority, and the need to realize this part of the program was stated. The interdisciplinary links of the program were identified, and it was decided that this program could make substantial contributions to research of oceans, climate and global change, atmosphere, ice and land surfaces.

  7. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  8. Applications to particle transport in the Earth`s aurora

    Energy Technology Data Exchange (ETDEWEB)

    Jasperse, J.R.

    1994-12-31

    The visual display of light called the aurora borealis occurs when energetic (1 to 100-keV) electrons, protons, and hydrogen atoms from the Earth`s magnetosphere enter the Earth`s upper atmosphere and collide with the ambient neutral particles. Two kinds of auroras occur in nature: those excited by incident electrons and those excited by incident protons and hydrogen atoms. In this paper, we consider only the latter. The proton-hydrogen aurora may be divided into two altitude regions: high altitudes ({approximately}250 to {approximately}600 km) where charge-changing collisions dominate and energy-loss collisions may be neglected and low altitudes ({approximately}100 to {approximately}250 km) where energy-loss collisions also become important and cause rapid energy degradation. The focus of this review is on the high-altitude region where the one-group approximation is valid.

  9. A Theory of Atmospheric Oxygen

    OpenAIRE

    2015-01-01

    There is no direct geologic record of the level of free oxygen in the atmosphere over Earth history. Indirect proxy records have led to a canonical view of atmospheric pO2, according to which the atmosphere has passed through three stages. During the first of these periods, corresponding roughly to the Archean eon, pO2 was less than 0.001% present atmospheric levels (PAL). Oxygen levels rose abruptly around 2.4 billion years ago, a transition referred to as the “Great Oxidation Event” (GOE...

  10. Dynamics of Massive Atmospheres

    Science.gov (United States)

    Chemke, Rei; Kaspi, Yohai

    2017-08-01

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  11. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  12. Exo-atmospheric telescopes for Deep Space Optical Communications

    Science.gov (United States)

    Hurd, William J.; Moe, Rud V.; Dennis, Michael L.; MacNeal, Bruce E.; Walker, Jon Z.; Ortiz, Gerardo G.; Eegholm, Bente; Fairbrother, debora A.; Cheng, Edward S.; Kasunic, Keith J.

    2006-01-01

    For deep space optical communications, optical telescopes located above the Earth's atmosphere would have significant performance advantages over telescopes mounted on the Earth's surface. Link outages due to cloud cover would be eliminated, atmospheric attenuation would be eliminated, and signal degradation due to stray light would be reduced. A study has been conducted to compare various exo-atmospheric platforms for the Earth end of the optical link.

  13. Understanding our Changing Planet: NASA's Earth Science Enterprise

    Science.gov (United States)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  14. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  15. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  16. Optimal Measures for Characterizing Water-rich Super-Earths

    CERN Document Server

    Madhusudhan, Nikku

    2014-01-01

    The detection and atmospheric characterization of super-Earths is one of the major frontiers of exoplanetary science. Currently, extensive efforts are underway to detect molecules, particularly H2O, in super-Earth atmospheres. In the present work, we develop a systematic set of strategies to identify and observe potentially H2O-rich super-Earths that provide the best prospects for characterizing their atmospheres using existing instruments. Firstly, we provide analytic prescriptions and discuss factors that need to be taken into account while planning and interpreting observations of super-Earth radii and spectra. We discuss how observations in different spectral bandpasses constrain different atmospheric properties of a super-Earth, including radius and temperature of the planetary surface as well as the mean molecular mass, the chemical composition and thermal profile of the atmosphere. In particular, we caution that radii measured in certain bandpasses can induce biases in the interpretation of the interio...

  17. Future of Atmospheric Neutrino Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, Sandhya [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India)

    2013-02-15

    Discovery of large θ{sub 13} has opened up the possibility of determining the neutrino mass hierarchy and θ{sub 23} octant through earth matter effects. The atmospheric neutrinos pick up large earth matter effects both in the ν{sub e} and ν{sub μ} channels, which if observed could lead to the determination of the mass hierarchy and θ{sub 23} octant using this class of experiments in the near future. In this talk I review the status and prospects of future atmospheric neutrino measurements in determining the mass hierarchy and octant of θ{sub 23}.

  18. Future of Atmospheric Neutrino Measurements

    Science.gov (United States)

    Choubey, Sandhya

    2013-02-01

    Discovery of large θ13 has opened up the possibility of determining the neutrino mass hierarchy and θ23 octant through earth matter effects. The atmospheric neutrinos pick up large earth matter effects both in the νe and νμ channels, which if observed could lead to the determination of the mass hierarchy and θ23 octant using this class of experiments in the near future. In this talk I review the status and prospects of future atmospheric neutrino measurements in determining the mass hierarchy and octant of θ23.

  19. Topical Conference on the Origin of the Earth

    Science.gov (United States)

    1988-01-01

    The abstracts are presented on the topic of the origin of the Earth. The subject of planetary evolution from inner solar system plantesimals through the formation and composition of the Earth's atmosphere and the physical structure of the Earth and the Moon is explored in great variety.

  20. Biogeochemical aspects of atmospheric methane

    OpenAIRE

    Cicerone, RJ; Oremland, RS

    1988-01-01

    Methane is the most abundant organic chemical in Earth's atmosphere, and its concentration is increasing with time, as a variety of independent measurements have shown. Photochemical reactions oxidize methane in the atmosphere; through these reactions, methane exerts strong influence over the chemistry of the troposphere and the stratosphere and many species including ozone, hydroxyl radicals, and carbon monoxide. Also, through its infrared absorption spectrum, methane is an important greenho...

  1. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...

  2. Atmospheric Research 2014 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2015-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  3. Transits of Earth-Like Planets

    CERN Document Server

    Kaltenegger, L

    2009-01-01

    Transmission spectroscopy of Earth-like exoplanets is a potential tool for habitability screening. Transiting planets are present-day "Rosetta Stones" for understanding extrasolar planets because they offer the possibility to characterize giant planet atmospheres and should provide an access to biomarkers in the atmospheres of Earth-like exoplanets, once they are detected. Using the Earth itself as a proxy we show the potential and limits of the transiting technique to detect biomarkers on an Earth-analog exoplanet in transit. We quantify the Earths cross section as a function of wavelength, and show the effect of each atmospheric species, aerosol, and Rayleigh scattering. Clouds do not significantly affect this picture because the opacity of the lower atmosphere from aerosol and Rayleigh losses dominates over cloud losses. We calculate the optimum signal-to-noise ratio for spectral features in the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star and also M stars, for a 6.5-m telesco...

  4. Atmospheric radiative transfer simulation for atmospheric correction of remote sensing data

    Institute of Scientific and Technical Information of China (English)

    Yunfei Bao; Shengbo Chen

    2006-01-01

    The radiance leaving the earth-atmosphere system which can be sensed by a satellite borne radiometer is the sum of radiation emission from the earth surface and each atmospheric level that are transmitted to the top of the atmosphere. The radiation emission from the earth surface and the radiance of each atmospheric level can be separated from the radiance at the top the atmospheric level measured by a satellite borne radiometer. However, it is very difficult to measure the atmospheric radiance, especially the synchronous measurement with the satellite. Thus some atmospheric radiative transfer models have been developed to provide many options for modeling atmospheric radiation transport, such as LOWTRAN, MODTRAN, 6S, FASCODE, LBLRTM, SHARC, and SAMM. Meanwhile, these models can support the detailed detector system design, the optimization and evaluation of satellite mission parameters, and the data processing procedures. As an example, the newly atmospheric radiative transfer models, MODTRAN will be compared with other models after the atmospheric radiative transfer is described. And the atmospheric radiative transfer simulation procedures and their applications to atmospheric transmittance, retrieval of atmospheric elements, and surface parameters, will also be presented.

  5. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    Science.gov (United States)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  6. Observing and understanding the Earth system variations from space geodesy

    OpenAIRE

    Jin, Shuanggen; van Dam, Tonie; Wdowinski, Shimon

    2013-01-01

    The interaction and coupling of the Earth system components that include the atmosphere, hydrosphere, cryosphere, lithosphere, and other fluids in Earth's interior, influence the Earth's shape, gravity field and its rotation (the three pillars of geodesy). The effects of global climate change, such as sea level rise, glacier melting, and geoharzards, also affect these observables. However, observations and models of Earth's system change have large uncertainties due to the lack of direct high...

  7. Implementation of the chemistry module MECCA (v2.5 in the modal aerosol version of the Community Atmosphere Model component (v3.6.33 of the Community Earth System Model

    Directory of Open Access Journals (Sweden)

    M. S. Long

    2012-06-01

    Full Text Available A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM and the Max Planck Institute for Chemistry's Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3 were tested in conjunction with the basic load balancing options available to modal CAM (1 to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed and repeatability of Ros-2 and RODAS-3 results versus Ros-3, and (2 to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.

  8. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  9. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    1994-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  10. Exploring the Atmosphere Using Smartphones

    Science.gov (United States)

    Monteiro, Martin; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2016-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the…

  11. Exploring the Atmosphere Using Smartphones

    Science.gov (United States)

    Monteiro, Martin; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2016-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the…

  12. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  13. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  14. Evolution of the atmosphere.

    Science.gov (United States)

    Nunn, J F

    1998-01-01

    Planetary atmospheres depend fundamentally upon their geochemical inventory, temperature and the ability of their gravitational field to retain gases. In the case of Earth and other inner planets, early outgassing released mainly carbon dioxide and water vapour. The secondary veneer of comets and meteorites added further volatiles. Photodissociation caused secondary changes, including the production of traces of oxygen from water. Earth's gravity cannot retain light gases, including hydrogen. but retains oxygen. Water vapour generally does not pass the cold trap at the stratopause. In the archaean, early evolution of life, probably in hydrothermal vents, and the subsequent development of photosynthesis in surface waters, produced oxygen, at 3500 Ma or even earlier, becoming a significant component of the atmosphere from about 2000 Ma. Thereafter banded iron formations became rare, and iron was deposited in oxidized red beds. Atmospheric levels of carbon dioxide and oxygen have varied during the Phanerozoic: major changes may have caused extinctions. particularly the Permian/Triassic. The declining greenhouse effect due to the long-term decrease in carbon dioxide has largely offset increasing solar luminosity, and changes in carbon dioxide levels relate strongly to cycles of glaciation.

  15. Titan's surface and atmosphere

    Science.gov (United States)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  16. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  17. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    OpenAIRE

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C

    2008-01-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chem...

  18. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  19. The Earth is a Planet Too!

    Science.gov (United States)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  20. Exo-atmospheric telescopes for deep space optical communications

    Science.gov (United States)

    Hurd, William J.; MacNeal, Bruce E.; Ortiz, Gerardo G.; Cheng, Edward S.; Moe, Rud V.; Walker, Jon Z.; Fairbrother, Debora A.; Dennis, Michael L.; Eegholm, Bente; Kasunic, Keith J.

    2006-01-01

    For deep space optical communications, optical telescopes located above the Earth's atmosphere would have significant performance advantages over telescopes mounted on the Earth's surface. Link outages due to could cover would be eliminated, atmospheric attenuation would be eliminated, and signal degradation due to stray light would be reduced.

  1. Atmospheric Detectives. Atlas 2 Teacher's Guide with Activities.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC. Educational Affairs Div.

    As part of the National Aeronautics and Space Administration Mission to Planet Earth, ATLAS 2 will help develop a thorough picture of the Sun's output, its interaction with the atmosphere, and the well-being of Earth's middle atmosphere. This middle school level guide probes the connection between the activities of scientists and the observable…

  2. Copernicus Earth observation programme

    Science.gov (United States)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  3. Implementation of the chemistry module MECCA (v2.5 in the modal aerosol version of the Community Atmosphere Model component (v3.6.33 of the Community Earth System Model

    Directory of Open Access Journals (Sweden)

    M. S. Long

    2013-02-01

    Full Text Available A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33 and the Max Planck Institute for Chemistry's Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5 to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3 were tested in conjunction with the basic load-balancing options available to modal-CAM (1 to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed and repeatability of Ros-2 and RODAS-3 results versus Ros-3, and (2 to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution of chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.

  4. Thermospheric emissions of the early Earth

    Science.gov (United States)

    Bernard, D.; Barthélémy, M.; Gronoff, G.; Ménager, H.; Lilensten, J.

    2012-09-01

    The aim of this work is to examine the thermospheric emission of the Earth over its history. In this first step, we adapt a kinetic transport code developed for different planets of the Solar System to the first atmosphere of the Earth. We take into account the possible changes in the solar emission spectrum to compute the diurnal ionizations, excitations and dissociations. We deduce a thermospheric spectrum averaged over the planet. The effect of solar wind electron precipitation is also considered.

  5. A hypothesis of earth quake

    CERN Document Server

    Tsai, Yeong-Shyeong

    2008-01-01

    Without a model, it is impossible for a geophysicist to study the possibility of forecasting earth quakes. In order to make a simple model, we make a hypothesis of earth quakes. The hypothesis is: (i) There are two kinds of earth quakes, one is the triggered breaking (earth quake), the other is spontaneous breaking (earth quake). (ii) Most major quakes in continental plates Eurasian Plate, North America Plate, South America Plate, Africa Plate and Australia Plate are triggered breaking. (iii) These triggered quakes are triggered by the movements of high pressure centers and low pressure centers of the atmosphere on continental plates. (iv) How can the movements of the high pressure centers trigger a quake? It depends on the extent of the high pressure center and the speed of the movement. Here, we stress high pressure center instead of low pressure center because it is dominated by high pressure center mostly. Of course, the boundary of the plates must have stored enough energy to have quakes, that is, near t...

  6. Planetary meteorology - A new perspective on the earth's weather

    Science.gov (United States)

    Joels, K.

    1976-01-01

    Meteorological observations of other planets which may contribute to an understanding of the meteorological processes on the earth are discussed. The high solar input and extremely low rotation rate of Venus simplify the analysis of the interaction of solar energy with the atmosphere. The dust present in the atmosphere of Mars may provide a useful model for studying the effects of anthropogenic aerosols in the atmosphere of earth. Observations of Mars may also be expected to yield information on the evolution of severe storms and on atmospheric tides. The belts and zones in the Jovian atmosphere bear some similarities to cyclones on earth, although they are produced differently; careful modeling of Jupiter's atmosphere may cast light on terrestrial cyclonic activity.

  7. Our Sustainable Earth

    Science.gov (United States)

    Orbach, Raymond L.

    2013-03-01

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as the upper levels of the ocean are slow to respond to atmospheric temperature changes. Atmospheric CO2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880. They can be associated with the use of coal ecause of the spread of the industrial revolution from Great Britain to the European continent and beyond. The climactic consequence of this human-dominated increase in atmospheric CO2 has been suggested to define a geologic epoch, termed the ``Anthropocene.'' This could be a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. In order to stabilize global temperatures, sharp reductions in CO2 emissions are required: an 80% reduction beginning in 2050. U.S. emissions have declined sharply recently because of market conditions leading to the substitution of natural gas for coal for electricity generation. Whether this is the best use for this resource may be questioned, but it nevertheless reduces CO2 production by 67% from a coal-fired power plant, well on the way to the 80% reduction required for global temperature stabilization. Current methods for CO2 capture and storage are not cost effective, and have been slow (if not absent) to introduce at scale. This paper describes research into some potentially economically feasible approaches: cost-effective capture and storage of CO2 from injection of flue gas into subterranean methane-saturated aquifers at the surface; fuels from sunlight without CO2 production; and large-scale electrical energy storage for intermittent (and even constant) electricity generating sources.

  8. Atmospheric escape, redox evolution, and planetary habitability

    Science.gov (United States)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    net escape of hydrogen relative to heavier oxygen is the generally accepted explanation for the present oxidation state: Venus and Mars amongst the planets, and Ganymede, Europa, and Rhea amongst bodies with extremely tenuous atmospheres. We also argue that hydrogen escape was the key factor for oxidizing the Earth and facilitating the increase of photosynthetically-produced oxygen in the Proterozoic atmosphere. Our view about the primacy of hydrogen escape with regard to the Earth's atmospheric oxygenation is perhaps less widely accepted. However, it was inevitable that hydrogen escaped from Earth's early anoxic atmosphere at a significant rate. The result was a very big integrated oxidation consistent with what is observed in the Earth's crust in addition to some export to the mantle. In conclusion, a better understanding of atmospheric escape processes appears critical for understanding the suitability of planets for harboring life from simple to advanced forms.

  9. Sunrise, Earth Limb, SW Pacific Ocean

    Science.gov (United States)

    1992-01-01

    The colors of this sunrise/sunset scene provide insights into the relative density of the Earth's atmosphere (15.5S, 158.5E). This scene captures the silhouette of several thunderstorms with their cirrus anvil tops spreading out against the tropopause - the top of the lowest layer of atmosphere, the troposphere which is also the most dense and refracts light at the red end of the spectrum while the blues refract in the stratosphere, the highest layer.

  10. Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Oversupply of rare earths led to the significant price drop of rare earth mineral products and separated products in Chinese domestic market. To stabilize the price, prevent waste of resources, further improve regulation capability on domestic rare earth market and rare earth price and maintain sustaining and healthy development of rare earth industry, partial rare earth producers in Baotou and Jiangxi province projected to cease the production for one month.

  11. Detection of the martian atmosphere and ionosphere using spacecraft-earth radio occultation%星-地无线电掩星技术探测火星大气和电离层

    Institute of Scientific and Technical Information of China (English)

    张素君; 平劲松; 洪振杰; 韩婷婷; 毛晓飞

    2009-01-01

    历史上几乎所有的行星探测任务都开展了无线电掩星实验,以探测行星的大气、电离层、行星环以及磁场,并取得了很多重要的科学成果.掩星发生时刻前后,测量航天器发出的信号穿过行星电离层和大气层时被遮掩而引起的信号频率、相位、幅度或极化等物理特性的变化,通过某种反演技术,可以得到大气的折射率廓线,推出中性大气的密度、温度、压强廓线以及电离层的电子浓度廓线.文章嗣绕中国"萤火1号"火星探测器(YH-1)火星探测计划中将要开展的星-地无线电掩星实验,介绍了该技术用于探测火星大气和电离层的相关情况.%Investigations of planetary atmospheres, ionospheres, rings, and magnetic fields using radio science techniques have been conducted by almost every planetary mission, and have acquired many significant scientific results. Changes in the frequency, phase, amplitude and polarization of spacecraft radio signals, caused by passage through a planet's atmosphere and ionosphere, have been observed in rising and descending planet occultation events. Utilizing an inversion method, we can obtain the refractivity profiles of the atmosphere, as well as the density, temperature and pressure profiles of the neutral atmosphere, and the electron density profile of the ionosphere. In the first Chinese YH-1 Mars mission, characteristics of the Martian atmosphere and ionosphere will be detected by a radio occultation experiment. The details are presented in this paper.

  12. Atmospheric Dispositifs

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2015-01-01

    , the conceptual foundations and protocols for the production of atmosphere in architecture might be found beneath the surface of contemporary debates. In this context, the notion of atmospheric dispositif – illustrated through an oeuvre of the German architect Werner Ruhnau and its theoretical and historical...... as a spatial phenomenon, exploring a multiplicity of conditions that constitute their resonant origins – i.e. the production sites from and within they have emerged. The intention is also to argue that despite the fact that atmosphere as an aesthetic category has crystallised over the last few decades...... contextualisation – provides a platform for revealing productive entanglements between heterogeneous elements, disciplines and processes. It also allows rendering atmosphere as a site of co-production open to contingencies and affective interplay on multiples levels: at the moment of its conceptualisation...

  13. Spectrometry of the Earth using Neutrino Oscillations

    CERN Document Server

    Rott, Carsten; Bose, Debanjan

    2015-01-01

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth's inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth's electron density. The Earth's chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth's matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject outer core models with large hydrogen content and thereby demonstrate the potential of this novel method. In the future, dedicated instruments could be capable of distin...

  14. Earth’s Earliest Atmospheres

    Science.gov (United States)

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-01-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth’s atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth’s subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases. PMID:20573713

  15. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  16. On detecting biospheres from thermodynamic disequilibrium in planetary atmospheres

    CERN Document Server

    Krissansen-Totton, Joshua; Catling, David C

    2015-01-01

    Atmospheric chemical disequilibrium has been proposed as a method for detecting extraterrestrial biospheres from exoplanet observations. Chemical disequilibrium is potentially a generalized biosignature since it makes no assumptions about particular biogenic gases or metabolisms. Here, we present the first rigorous calculations of the thermodynamic chemical disequilibrium in the atmospheres of Solar System planets, in which we quantify the difference in Gibbs free energy of an observed atmosphere compared to that of all the atmospheric gases reacted to equilibrium. The purely gas phase disequilibrium in Earth's atmosphere, as measured by this available Gibbs free energy, is not unusual by Solar System standards and smaller than that of Mars. However, Earth's atmosphere is in contact with a surface ocean, which means that gases can react with water, and so a multiphase calculation that includes aqueous species is required. We find that the disequilibrium in Earth's atmosphere-ocean system (in joules per mole o...

  17. Atmospheric Circulation of Terrestrial Exoplanets

    CERN Document Server

    Showman, Adam P; Merlis, Timothy M; Kaspi, Yohai

    2013-01-01

    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical and dynamical conditions, only a small fraction of which have yet been explored in detail. Our approach is to lay out the fundamental dynamical principles governing the atmospheric circulation on terrestrial planets--broadly defined--and show how they can provide a foundation for understanding the atmospheric behavior of these worlds. We first survey basic atmospheric dynamics, including the role of geostrophy, baroclinic instabilities, and jets in the strongly rotating regime (the "extratropics") and the role of the Hadle...

  18. Earth-type planets (Mercury, Venus, and Mars)

    Science.gov (United States)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  19. 2006 URS Corporation Bare Earth Topographic Lidar: Shawsheen River, Massachusetts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — URS Corporation contracted EarthData International to acquire topographic elevation data for 82 square miles in Essex and Middlesex Counties, Massachusetts during...

  20. 2006 URS Corporation Bare Earth Topographic Lidar: Shawsheen River, Massachusetts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — URS Corporation contracted EarthData International to aquire topographic elevation data for 82 square miles in Essex and Middlesex Counties, Massachusetts during...

  1. Earth-type planets (Mercury, Venus, and Mars)

    Science.gov (United States)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  2. Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is the home (archive) of Precipitation, Atmospheric Chemistry and Dynamics, and...

  3. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  4. Sun, Earth and Sky

    Science.gov (United States)

    Lang, Kenneth R.

    1995-01-01

    The Sun is enveloped by a hot, tenuous million-degree corona that expands to create a continuous solar wind that sweeps past all the planets and fills the heliosphere. The solar wind is modulated by strong gusts that are initiated by powerful explosions on the Sun, including solar flares and coronal mass ejections. This dynamic, invisible outer atmosphere of the Sun is currently under observation with the soft X-ray telescope aboard the Yohkoh spacecraft, whose results are presented. We also show observations from the Ulysses spacecraft that is now passing over the solar pole, sampling the solar wind in this region for the first time. Two other spacecraft, Voyager 1 and 2, have recently detected the outer edge of the invisible heliosphere, roughly halfway to the nearest star. Magnetic solar activity, the total radiative output from the Sun, and the Earth's mean global surface temperature all vary with the 11-year sunspot cycle in which the total number of sunspots varies from a maximum to a minimum and back to a maximum again in about 11 years. The terrestrial magnetic field hollows out a protective magnetic cavity, called the magnetosphere, within the solar wind. This protection is incomplete, however, so the Sun feeds an unseen world of high-speed particles and magnetic fields that encircle the Earth in space. These particles endanger spacecraft and astronauts, and also produce terrestrial aurorae. An international flotilla of spacecraft is now sampling the weak points in this magnetic defense. Similar spacecraft have also discovered a new radiation belt, in addition to the familiar Van Allen belts, except fed by interstellar ions instead of electrons and protons from the Sun.

  5. Earth from Above

    Science.gov (United States)

    Stahley, Tom

    2006-01-01

    Google Earth is a free online software that provides a virtual view of Earth. Using Google Earth, students can view Earth by hovering over features and locations they preselect or by serendipitously exploring locations that catch their fascination. Going beyond hovering, they can swoop forward and even tilt images to make more detailed…

  6. The Nitrogen Budget of Earth

    CERN Document Server

    Johnson, Ben

    2015-01-01

    We comprehensively compile and review N content in geologic materials to calculate a new N budget for Earth. Using analyses of rocks and minerals in conjunction with N-Ar geochemistry demonstrates that the Bulk Silicate Earth (BSE) contains \\sim7\\pm4 times present atmospheric N (4\\times10^18 kg N, PAN), with 27\\pm16\\times10^18 kg N. Comparison to chondritic composition, after subtracting N sequestered into the core, yields a consistent result, with BSE N between 17\\pm13\\times10^18 kg to 31\\pm24\\times10^18 kg N. In the chondritic comparison we calculate a N mass in Earth's core (180\\pm110 to 300\\pm180\\times10^18 kg) and discuss the Moon as a proxy for the early mantle. Significantly, we find the majority of the planetary budget of N is in the solid Earth. The N estimate herein precludes the need for a "missing N" reservoir. Nitrogen-Ar systematics in mantle rocks and basalts identify two mantle reservoirs: MORB-source like (MSL) and high-N. High-N mantle is composed of young, N-rich material subducted from the...

  7. Positioning and applications for planet earth

    NARCIS (Netherlands)

    Verhagen, S.; Retscher, G.; Santos, M.C.; Ding, X.L.; Gao, Y.; Jin, S.G.

    2009-01-01

    GNSS, InSAR and LIDAR are identified as important techniques when it comes to monitoring and remote sensing of our planet Earth and its atmosphere. In fact, these techniques can be considered as key elements of the Global Geodetic Observing System. Examples of applications are: environmental

  8. Positioning and applications for planet earth

    NARCIS (Netherlands)

    Verhagen, S.; Retscher, G.; Santos, M.C.; Ding, X.L.; Gao, Y.; Jin, S.G.

    2009-01-01

    GNSS, InSAR and LIDAR are identified as important techniques when it comes to monitoring and remote sensing of our planet Earth and its atmosphere. In fact, these techniques can be considered as key elements of the Global Geodetic Observing System. Examples of applications are: environmental monitor

  9. Atmospheric Mass Loss During Planet Formation

    CERN Document Server

    Schlichting, Hilke; Yalinewich, Almog

    2014-01-01

    We quantify the atmospheric mass loss during planet formation by examining the contributions to atmospheric loss from both giant impacts and planetesimal accretion. Giant impacts cause global motion of the ground. Using analytic self-similar solutions and full numerical integrations we find (for isothermal atmospheres with adiabatic index ($\\gamma=5/3$) that the local atmospheric mass loss fraction for ground velocities $v_g \\sqrt{2} \\rho_0 (\\pi h R)^{3/2}$ (25~km for the current Earth), are able to eject all the atmosphere above the tangent plane of the impact site, which is $h/2R$ of the whole atmosphere, where $h$, $R$ and $\\rho_0$ are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 2) Smaller impactors, but above $m>4 \\pi \\rho_0 h^3$ (1~km for the current Earth) are only able to eject a fraction of the atmospheric mass above the tangent plane. We find that the most efficient impactors (per unit impactor mass) for atmospheric loss are planetesimals just above...

  10. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  11. A theory of atmospheric oxygen.

    Science.gov (United States)

    Laakso, T A; Schrag, D P

    2017-05-01

    Geological records of atmospheric oxygen suggest that pO2 was less than 0.001% of present atmospheric levels (PAL) during the Archean, increasing abruptly to a Proterozoic value between 0.1% and 10% PAL, and rising quickly to modern levels in the Phanerozoic. Using a simple model of the biogeochemical cycles of carbon, oxygen, sulfur, hydrogen, iron, and phosphorous, we demonstrate that there are three stable states for atmospheric oxygen, roughly corresponding to levels observed in the geological record. These stable states arise from a series of specific positive and negative feedbacks, requiring a large geochemical perturbation to the redox state to transition from one to another. In particular, we show that a very low oxygen level in the Archean (i.e., 10(-7) PAL) is consistent with the presence of oxygenic photosynthesis and a robust organic carbon cycle. We show that the Snowball Earth glaciations, which immediately precede both transitions, provide an appropriate transient increase in atmospheric oxygen to drive the atmosphere either from its Archean state to its Proterozoic state, or from its Proterozoic state to its Phanerozoic state. This hypothesis provides a mechanistic explanation for the apparent synchronicity of the Proterozoic Snowball Earth events with both the Great Oxidation Event, and the Neoproterozoic oxidation. © 2017 John Wiley & Sons Ltd.

  12. Rare Earth Resolution

    Institute of Scientific and Technical Information of China (English)

    Mei Xinyu

    2012-01-01

    BEFORE the early 1970s, China had no rare earth exports, and the world rare earth market was dominated by the United States, Europe and Japan. In the 1970s, China began to enter the world rare earth market and its share has picked up sharply in the following decades. Today, having the monopoly over global rare earth production, China must improve the benefits from rare earth production, not only from producing individual rare earth products, but also from mastering the intensive processing of rare earth products.

  13. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....

  14. Stamping the Earth from space

    CERN Document Server

    Dicati, Renato

    2017-01-01

    This unique book presents a historical and philatelic survey of Earth exploration from space. It covers all areas of research in which artificial satellites have contributed in designing a new image of our planet and its environment: the atmosphere and ionosphere, the magnetic field, radiation belts and the magnetosphere, weather, remote sensing, mapping of the surface, observation of the oceans and marine environments, geodesy, and the study of life and ecological systems. Stamping the Earth from Space presents the results obtained with the thousands of satellites launched by the two former superpowers, the Soviet Union and the United States, and also those of the many missions carried out by the ESA, individual European countries, Japan, China, India, and the many emerging space nations. Beautifully illustrated, it contains almost 1100 color reproductions of philatelic items. In addition to topical stamps and thematic postal documents, the book provides an extensive review of astrophilatelic items. The most...

  15. Atmospheric Prebiotic Chemistry and Organic Hazes

    Science.gov (United States)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  16. Not So Rare Earth? New Developments in Understanding the Origin of the Earth and Moon

    Science.gov (United States)

    Righter, Kevin

    2007-01-01

    A widely accepted model for the origin of the Earth and Moon has been a somewhat specific giant impact scenario involving an impactor to proto-Earth mass ratio of 3:7, occurring 50-60 Ma after T(sub 0), when the Earth was only half accreted, with the majority of Earth's water then accreted after the main stage of growth, perhaps from comets. There have been many changes to this specific scenario, due to advances in isotopic and trace element geochemistry, more detailed, improved, and realistic giant impact and terrestrial planet accretion modeling, and consideration of terrestrial water sources other than high D/H comets. The current scenario is that the Earth accreted faster and differentiated quickly, the Moon-forming impact could have been mid to late in the accretion process, and water may have been present during accretion. These new developments have broadened the range of conditions required to make an Earth-Moon system, and suggests there may be many new fruitful avenues of research. There are also some classic and unresolved problems such as the significance of the identical O isotopic composition of the Earth and Moon, the depletion of volatiles on the lunar mantle relative to Earth's, the relative contribution of the impactor and proto-Earth to the Moon's mass, and the timing of Earth's possible atmospheric loss relative to the giant impact.

  17. The Atmospheres of Extrasolar Planets

    Science.gov (United States)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  18. Chemistry of Planetary Atmospheres: Insights and Prospects

    Science.gov (United States)

    Yung, Yuk

    2015-11-01

    Using observations from the Mariners, Pioneers, Vikings, Voyagers, Pioneer Venus, Galileo, Venus Express, Curiosity, Cassini, New Horizons, and numerous observatories both in orbit of Earth and on the ground, I will give a survey of the major chemical processes that control the composition of planetary atmospheres. For the first time since the beginning of the space age, we understand the chemistry of planetary atmospheres ranging from the primitive atmospheres of the giant planets to the highly evolved atmospheres of terrestrial planets and small bodies. Our understanding can be distilled into three important ideas: (1) The stability of planetary atmospheres against escape of their constituents to space, (2) the role of equilibrium chemistry in determining the partitioning of chemical species, and (3) the role of disequilibrium chemistry, which produces drastic departures from equilibrium chemistry. To these three ideas we must also add a fourth: the role of biochemistry at Earth's surface, which makes its atmospheric chemistry unique in the cosmochemical environment. Only in the Earth's atmosphere do strong reducing and oxidizing species coexist to such a degree. For example, nitrogen species in the Earth's atmosphere span eight oxidation states from ammonia to nitric acid. Much of the Earth's atmospheric chemistry consists of reactions initiated by the degradation of biologically produced molecules. Life uses solar energy to drive chemical reactions that would otherwise not occur; it represents a kind of photochemistry that is special to Earth, at least within the Solar System. It remains to be seen how many worlds like Earth there are beyond the Solar System, especially as we are now exploring the exoplanets using Kepler, TESS, HST, Spitzer, soon to be launched missions such as JWST and WFIRST, and ground-based telescopes. The atmospheres of the Solar System provide a benchmark for studying exoplanets, which in turn serve to test and extend our current