WorldWideScience

Sample records for early visually evoked

  1. Early visual evoked potentials in callosal agenesis.

    Science.gov (United States)

    Barr, Melodie S; Hamm, Jeff P; Kirk, Ian J; Corballis, Michael C

    2005-11-01

    Three participants with callosal agenesis and 12 neurologically normal participants were tested on a simple reaction time task, with visual evoked potentials collected using a high-density 128-channel system. Independent-components analyses were performed on the averaged visual evoked potentials to isolate the components of interest. Contrary to previous research with acallosals, evidence of ipsilateral activation was present in all 3 participants. Although ipsilateral visual components were present in all 4 unilateral conditions in the 2 related acallosal participants, in the 3rd, these were present only in the crossed visual field-hand conditions and not in the uncrossed conditions. Suggestions are made as to why these results differ from earlier findings and as to the neural mechanisms facilitating this ipsilateral activation.

  2. Early clinical and subclinical visual evoked potential and Humphrey's visual field defects in cryptococcal meningitis.

    Directory of Open Access Journals (Sweden)

    Anand Moodley

    Full Text Available Cryptococcal induced visual loss is a devastating complication in survivors of cryptococcal meningitis (CM. Early detection is paramount in prevention and treatment. Subclinical optic nerve dysfunction in CM has not hitherto been investigated by electrophysiological means. We undertook a prospective study on 90 HIV sero-positive patients with culture confirmed CM. Seventy-four patients underwent visual evoked potential (VEP testing and 47 patients underwent Humphrey's visual field (HVF testing. Decreased best corrected visual acuity (BCVA was detected in 46.5% of patients. VEP was abnormal in 51/74 (68.9% right eyes and 50/74 (67.6% left eyes. VEP P100 latency was the main abnormality with mean latency values of 118.9 (±16.5 ms and 119.8 (±15.7 ms for the right and left eyes respectively, mildly prolonged when compared to our laboratory references of 104 (±10 ms (p<0.001. Subclinical VEP abnormality was detected in 56.5% of normal eyes and constituted mostly latency abnormality. VEP amplitude was also significantly reduced in this cohort but minimally so in the visually unimpaired. HVF was abnormal in 36/47 (76.6% right eyes and 32/45 (71.1% left eyes. The predominant field defect was peripheral constriction with an enlarged blind spot suggesting the greater impact by raised intracranial pressure over that of optic neuritis. Whether this was due to papilloedema or a compartment syndrome is open to further investigation. Subclinical HVF abnormalities were minimal and therefore a poor screening test for early optic nerve dysfunction. However, early optic nerve dysfunction can be detected by testing of VEP P100 latency, which may precede the onset of visual loss in CM.

  3. Visual, auditory, and somatosensorial evoked potentials in early and late treated adolescents with phenylketonuria.

    Science.gov (United States)

    Leuzzi, V; Cardona, F; Antonozzi, I; Loizzo, A

    1994-11-01

    Pattern reversal visual, auditory, and somatosensorial evoked potentials were recorded in two groups of phenylketonuric (PKU) adolescents after protracted exposition to high concentrations of phenylalanine following diet discontinuation. The first group consisted of 11 early treated (before age 3 months) PKU patients (ET-PKU); the second group consisted of 11 late detected (after age 8 months), symptomatic, PKU subjects (LT-PKU). Despite the relevant lag between the two groups in mental development and neurological status, no clear-cut difference in evoked potentials could be detected. Only the wave I latency of the brainstem auditory evoked potentials (BAEPs) was significantly shorter in ET- versus LT-PKU children. The P100 latency, I-V interpeak latency (IPL), and I-III IPL seem to discriminate the less severe form of PKU (ET-PKU type 3) from the most severe forms, ET-PKU type 1 plus 2 and LT-PKU. No correlations were found between clinical, biochemical, and neurophysiological parameters. The present data suggest that evoked potentials technique is of limited sensitivity in detecting central nervous system (CNS) alterations in PKU adolescents after diet discontinuation.

  4. Effects of Visual Speech on Early Auditory Evoked Fields - From the Viewpoint of Individual Variance.

    Science.gov (United States)

    Yahata, Izumi; Kawase, Tetsuaki; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2017-01-01

    The effects of visual speech (the moving image of the speaker's face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker's face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker's face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information.

  5. Early visual evoked potentials are modulated by eye position in humans induced by whole body rotations

    Directory of Open Access Journals (Sweden)

    Petit Laurent

    2004-09-01

    Full Text Available Abstract Background To reach and grasp an object in space on the basis of its image cast on the retina requires different coordinate transformations that take into account gaze and limb positioning. Eye position in the orbit influences the image's conversion from retinotopic (eye-centered coordinates to an egocentric frame necessary for guiding action. Neuroimaging studies have revealed eye position-dependent activity in extrastriate visual, parietal and frontal areas that is along the visuo-motor pathway. At the earliest vision stage, the role of the primary visual area (V1 in this process remains unclear. We used an experimental design based on pattern-onset visual evoked potentials (VEP recordings to study the effect of eye position on V1 activity in humans. Results We showed that the amplitude of the initial C1 component of VEP, acknowledged to originate in V1, was modulated by the eye position. We also established that putative spontaneous small saccades related to eccentric fixation, as well as retinal disparity cannot explain the effects of changing C1 amplitude of VEP in the present study. Conclusions The present modulation of the early component of VEP suggests an eye position-dependent activity of the human primary visual area. Our findings also evidence that cortical processes combine information about the position of the stimulus on the retinae with information about the location of the eyes in their orbit as early as the stage of primary visual area.

  6. Multifocal blue-on-yellow visual evoked potentials in early glaucoma.

    Science.gov (United States)

    Klistorner, Alexander; Graham, Stuart L; Martins, Alessandra; Grigg, John R; Arvind, Hemamalini; Kumar, Rajesh S; James, Andrew C; Billson, Francis A

    2007-09-01

    To determine the sensitivity and specificity of blue-on-yellow multifocal visual evoked potentials (mfVEPs) in early glaucoma. Cross-sectional study. Fifty patients with a confirmed diagnosis of early glaucoma and 60 normal participants. Black-and-white mfVEPs and blue-on-yellow mfVEPs were recorded using the Accumap version 2.0 (ObjectiVision Pty. Ltd., Sydney, Australia). All patients also underwent achromatic standard automated perimetry (SAP). Multifocal VEP amplitude and latency values in glaucoma patients were analyzed and compared with those of the normal controls. Based on the definition of visual field defect, in the group of glaucomatous eyes with SAP defects, amplitude of blue-on-yellow mfVEP was abnormal in all 64 cases (100% sensitivity), whereas black-and-white mfVEP missed 5 cases (92.2% sensitivity). Generally, larger scotomata were noted on blue-on-yellow mfVEP compared with black-and-white mfVEP for the same eyes. There was high topographic correspondence between SAP and amplitude of blue-on-yellow mfVEP and significant (P<0.0001) correlation between them (correlation coefficient, 0.73). Abnormal amplitude was detected in 3 of 60 eyes of control subjects (95% specificity). There was, however, no correlation between visual field defect and latency delay in glaucoma patients. Although there was a significant difference between averaged latency of control and glaucoma eyes, values considerably overlapped. The blue-on-yellow mfVEP is a sensitive and specific tool for detecting early glaucoma based on amplitude analysis.

  7. Differences in early sensory-perceptual processing in synesthesia: a visual evoked potential study.

    Science.gov (United States)

    Barnett, Kylie J; Foxe, John J; Molholm, Sophie; Kelly, Simon P; Shalgi, Shani; Mitchell, Kevin J; Newell, Fiona N

    2008-11-15

    Synesthesia is a condition where stimulation of a single sensory modality or processing stream elicits an idiosyncratic, yet reliable perception in one or more other modalities or streams. Various models have been proposed to explain synesthesia, which have in common aberrant cross-activation of one cortical area by another. This has been observed directly in cases of linguistic-color synesthesia as cross-activation of the 'color area', V4, by stimulation of the grapheme area. The underlying neural substrates that mediate cross-activations in synesthesia are not well understood, however. In addition, the overall integrity of the visual system has never been assessed and it is not known whether wider differences in sensory-perceptual processing are associated with the condition. To assess whether fundamental differences in perceptual processing exist in synesthesia, we utilised high-density 128-channel electroencephalography (EEG) to measure sensory-perceptual processing using stimuli that differentially bias activation of the magnocellular and parvocellular pathways of the visual system. High and low spatial frequency gratings and luminance-contrast squares were presented to 15 synesthetes and 15 controls. We report, for the first time, early sensory-perceptual differences in synesthetes relative to non-synesthete controls in response to simple stimuli that do not elicit synesthetic color experiences. The differences are manifested in the early sensory components of the visual evoked potential (VEP) to stimuli that bias both magnocellular and parvocellular responses, but are opposite in direction, suggesting a differential effect on these two pathways. We discuss our results with reference to widespread connectivity differences as a broader phenotype of synesthesia.

  8. A study on early detection of changes in visual pathway due to Diabetes mellitus by visual evoked potential

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar, Sundararajan D, Rajvin Samuel Ponraj, M Srinivasan

    2014-03-01

    Full Text Available Electrical potentials have been recorded by surface Evoked Potentials namely the Somatosensory Evoked Potential, Auditory Brainstem Response and Visual Evoked Potential [VEP]. Visual conduction disturbance can be evaluated by these instruments. A mass response of cortical and possibly subcortical may be represented, visual areas to visual stimuli. Diabetic patients without a past history of cerebrovascular accidents diagnosed with Non- Proliferative Diabetic retinopathy[DR] with a best corrected visual acuity at least 6/9.This study was done to assess whether a delay in VEP latency observed in diagnosed type II DM patients could be ascribed to dysfunction of the retinal or post retinal structures or by both. It is to find out whether the VEP latencies are altered in diabetes or not, if altered and to correlate duration of the diabetes mellitus with visual evoked potential changes. Visual evoked potentials are useful as a non invasive investigatory method in establishing central nervous system neuropathy developing in diabetes. This study clearly shows that changes in VEP may be detected in diabetics before the onset of retinopathy. Future studies should be focused on evaluation of the time that elapses between the appearance of the first detectable pathologic electrophysiologic changes and the first ophthalmoscopically detectable retinal changes in patients with Diabetes Mellitus [DM].

  9. Early magnocellular loss in glaucoma demonstrated using the pseudorandomly stimulated flash visual evoked potential.

    Science.gov (United States)

    Klistorner, A I; Graham, S L

    1999-04-01

    Components of the pseudorandomly stimulated flash visual evoked potential (VEP) have now been identified that appear to arise predominantly from each of the magnocellular (M-cell) and parvocellular (P-cell) systems. In this study, the relative damage to magnocellular and parvocellular systems at different stages of glaucoma using pseudorandomly stimulated flash VEP was investigated. Pseudorandomly stimulated flash VEP was recorded in 15 normal eyes and 28 eyes with different stages of glaucoma using the VERIS-3 recording system (Electro-Diagnostic Imaging, San Francisco, CA). Two levels of luminance contrast of the stimulus (32% and 99%) were tested. The first slice of the second-order kernel from only the central (8 degrees) stimulated area was extracted for analysis. Data recorded from normal eyes demonstrated early saturation of the response/contrast function of the first slice of the second-order kernel. The ratio of the VEP amplitude recorded at 32% and 99% of the luminance contrast was close to unity. In eyes with early glaucoma, although the amplitude of the responses to both low- and high-contrast stimulation decreased, the relative reduction of the low-contrast VEP (M-cell) was more prominent. However, the amplitude of the high-contrast response (P-cell) declined more rapidly later in the disease. These results are consistent with relatively earlier damage of the magnocellular pathway in glaucoma.

  10. Early detection of hepatic encephalopathy by recording visual evoked potential (VEP).

    Science.gov (United States)

    Zamir, Doron; Storch, Shimon; Kovach, Ivan; Storch, Rita; Zamir, Chen

    2002-01-01

    The visual evoked potential (VEP) record in response to a pattern stimulus is a non invasive and reliable method of detecting central and peripheral nerve system abnormalities. VEP recording have been used in animals with fulminant hepatic failure, and also in-patients with hepatic encephalopathy and acute severe hepatitis. Our aims were: a. to evaluate the potency of PVEP in assessing hepatic encephalopathy. b. to find the rate of pathologic PVEP in patients with advanced liver cirrhosis. VEP was recorded in 14 chronic liver cirrhotic patients (6 alcoholic, 6 HCV-related, 2 cryptogenic) and 14 controls. Patients with any neurologic abnormalities were excluded from the study. All patients were subjected to the Mental State Score (MSS) test, and venous blood ammonia was measured on the same day of VEP recording. In 10/14 (71%) patients some VEP recording abnormality was detected. In the cirrhotic patients, P100 latency was significantly longer (P VEP developed hepatic encephalpathy during a follow-up of one year, compared to one out of 4 patients with no pathology on VEP recording. VEP recording may be a valuable tool in assessing patients with early hepatic encephalopathy and in predicting encephalopathy.

  11. Early signs of visual perception and evoked potentials in radiologically asymptomatic boys with X-linked adrenoleukodystrophy.

    Science.gov (United States)

    Furushima, Wakana; Inagaki, Masumi; Gunji, Atsuko; Inoue, Yuki; Kaga, Makiko; Mizutani, Shuki

    2009-08-01

    The aim was to identify the electrophysiological and psychological signs at a very early stage in asymptomatic boys with childhood cerebral X-linked adrenoleukodystrophy. Flash visual evoked potentials, pattern reversal, and visual event-related potentials were recorded in 6 radiologically asymptomatic boys with adrenoleukodystrophy and 22 control boys. The latency and amplitude of P100 of visual evoked potentials and P1 of event-related potentials were evaluated. Though all patients had normal intelligence quotient, performance intelligence quotient was significantly lower than verbal intelligence quotient in 2 patients. Both P100 and P1 amplitudes were significantly greater in adrenoleukodystrophy than in controls. The difference between performance intelligence quotient and verbal intelligence quotient exhibited significant correlation with P100 amplitude. Enlargement of visual evoked potentials might be a sign of cerebral involvement preceding the appearance of abnormalities on magnetic resonance imaging. Follow-up of asymptomatic boys with both electrophysiological and neuropsychological tests may serve as an aid for deciding the timing of therapeutic intervention.

  12. Low-luminance contrast stimulation is optimal for early detection of glaucoma using multifocal visual evoked potentials.

    Science.gov (United States)

    Arvind, Hemamalini; Klistorner, Alexander; Grigg, John; Graham, Stuart L

    2011-06-01

    The blue-on-yellow multifocal visual evoked potential (BonY mfVEP) stimulus is more sensitive than the conventional black-and-white pattern-reversal stimulus in identifying early glaucoma. BonY employs pattern-onset stimulation and lower luminance contrast (40%) in addition to color. This study was conducted to elucidate the mechanism responsible for the enhanced performance of the BonY stimulus. Multifocal pattern-onset VEPs were recorded in response to BonY, high-luminance contrast achromatic (HLA) and low-luminance contrast achromatic (LLA) stimulations in 30 normal subjects (to construct normative databases) and 23 patients with early glaucoma (mean deviation [MD] < 6 dB). In addition, the specificity of BonY and LLA stimulation was examined in a subset of 25 normal subjects. In normal subjects, LLA mfVEPs had significantly lower amplitudes than did BonY and HLA mfVEPs (P < 0.001), which were not significantly different from each other. In glaucomatous eyes, all three stimuli demonstrated significantly reduced amplitudes in comparison with those of normal eyes. Although the sensitivities of both BonY and LLA in identifying subjective visual field defects were similarly high (93% and 89.7%, respectively), HLA showed only a 79.3% detection rate. BonY and LLA demonstrated significantly higher defect severity scores than did HLA (P < 0.05 for both). Specificities for BonY and LLA were similar (96%). BonY and LLA mfVEPs performed comparably, and both were significantly better than the HLA mfVEP in identifying early glaucoma. Enhanced performance of BonY stimulation is most likely due to its low-luminance contrast component rather than the pattern-onset mode of presentation or its chromatic properties.

  13. [Intraoperative Visual Evoked Potential Monitoring].

    Science.gov (United States)

    Hayashi, Hironobu; Kawaguchi, Masahiko

    2015-05-01

    Visual evoked potential (VEP) is recorded from the back of the head, which is elicited by retinal stimulation transmitted through optic nerve, optic chiasm, optic tract lateral geniculate body, optic radiation and finally cortical visual area. VEP monitoring did not prevail since 1990s because marked intra-individual difference and instability of VEP recording limited the clinical usefulness under inhalation anesthetic management and techniques of VEP monitoring at the time. However, recent advances in techniques including a new light-stimulating device consisting of high-luminosity LEDs and induction of electroretinography to ascertain the arrival of the stimulus at the retina provided better conditions for stable VEP recording under general anesthesia. In addition, the introduction of total intravenous anesthesia using propofol is important for the successful VEP recordings because inhaled anesthetics have suppressive effect on VEP waveform. Intraoperative VEP has been considered to monitor the functional integrity of visual function during neurosurgical procedures, in which the optic pathway is at a risk of injury. Intraoperative VEP monitoring may allow us to detect reversible damage to the visual pathway intraoperatively and enable us to prevent permanent impairment.

  14. Visual Evoked Potentials in Rett Syndrome

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2015-11-01

    Full Text Available Investigators from the Boston Children's Hospital recorded pattern-reversal visual evoked potentials (VEPs in Mecp2 heterozygous female mice and in 34 girls with Rett syndrome (RTT.

  15. A different view on the checkerboard? Alterations in early and late visually evoked EEG potentials in Asperger observers.

    Directory of Open Access Journals (Sweden)

    Juergen Kornmeier

    Full Text Available BACKGROUND: Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG between Asperger observers and matched controls while they observed simple checkerboard stimuli. METHODS: In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2° were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. RESULTS: We found an early (100-200 ms after stimulus onset occipital ERP effect of checkerboard size (dominant spatial frequency. This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. DISCUSSION: The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis.

  16. A different view on the checkerboard? Alterations in early and late visually evoked EEG potentials in Asperger observers.

    Science.gov (United States)

    Kornmeier, Juergen; Wörner, Rike; Riedel, Andreas; Bach, Michael; Tebartz van Elst, Ludger

    2014-01-01

    Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. We found an early (100-200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis.

  17. Pattern shift visual evoked response: application in neurology

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Guerreiro

    1982-03-01

    Full Text Available The technique that we use for pattern shift visual evoked response (PSVER is described. PSVER is a non-invasive, practical and reliable clinical test in detecting anterior visual pathways lesions even when asymptomatic. The ability to find unsuspected lesions in multiple sclerosis, making possible an early diagnosis, is underscored. We also discuss some pathophysiologic aspects and the findings of the PSVER in some neurologic disorders with visual system involvement.

  18. No evidence for early modulation of evoked responses in primary visual cortex to irrelevant probe stimuli presented during the attentional blink.

    Directory of Open Access Journals (Sweden)

    Oscar Jacoby

    Full Text Available BACKGROUND: During rapid serial visual presentation (RSVP, observers often miss the second of two targets if it appears within 500 ms of the first. This phenomenon, called the attentional blink (AB, is widely held to reflect a bottleneck in the processing of rapidly sequential stimuli that arises after initial sensory registration is complete (i.e., at a relatively late, post-perceptual stage of processing. Contrary to this view, recent fMRI studies have found that activity in the primary visual area (V1, which represents the earliest cortical stage of visual processing, is attenuated during the AB. Here we asked whether such changes in V1 activity during the AB arise in the initial feedforward sweep of stimulus input, or instead reflect the influence of feedback signals from higher cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: EEG signals were recorded while participants monitored a sequential stream of distractor letters for two target digits (T1 and T2. Neural responses associated with an irrelevant probe stimulus presented simultaneously with T2 were measured using an ERP marker--the C1 component--that reflects initial perceptual processing of visual information in V1. As expected, T2 accuracy was compromised when the inter-target interval was brief, reflecting an AB deficit. Critically, however, the magnitude of the early C1 component evoked by the probe was not reduced during the AB. CONCLUSIONS/SIGNIFICANCE: Our finding that early sensory processing of irrelevant probe stimuli is not suppressed during the AB is consistent with theoretical models that assume that the bottleneck underlying the AB arises at a post-perceptual stage of processing. This suggests that reduced neural activity in V1 during the AB is driven by re-entrant signals from extrastriate areas that regulate early cortical activity via feedback connections with V1.

  19. Visual field asymmetries in visual evoked responses.

    Science.gov (United States)

    Hagler, Donald J

    2014-12-19

    Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP.

  20. A comparative study of the usefulness of color vision, photostress recovery time, and visual evoked potential tests in early detection of ocular toxicity from hydroxychloroquine.

    Science.gov (United States)

    Heravian, Javad; Saghafi, Massoud; Shoeibi, Naser; Hassanzadeh, Samira; Shakeri, Mohammad Taghi; Sharepoor, Maria

    2011-08-01

    Ocular toxicity from hydroxychloroquine (HCQ) is rare, but its potential permanence and severity makes it imperative to employ measures and screening protocols to minimize its occurrence. This study was performed to assess the usefulness of color vision, photo stress recovery time (PSRT), and visual evoked potentials (VEP) in early detection of ocular toxicity of HCQ, in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). 86 patients were included in the study and divided into three groups: (1) with history of HCQ use: interventional 1 (Int.1) without fundoscopic changes and Int.2 with fundoscopic changes; and (2) without history of HCQ use, as control. Visual field, color vision, PSRT and VEP results were recorded for all patients and the effect of age, disease duration, treatment duration and cumulative dose of HCQ on each test was assessed in each group. There was a significant relationship among PSRT and age, treatment duration, cumulative dose of HCQ and disease duration (PColor vision was normal in all the cases. P100 amplitude was not different between the three groups (P=0.846), but P100 latency was significantly different (P=0.025) and for Int.2 it was greater than the others. The percentage of abnormal visual fields for Int.2 was more than Int.1 and control groups (P=0.002 and P=0.005 respectively), but Int.1 and control groups were not significantly different (P>0.50). In the early stages of maculopathy, P100 latencies of VEP and PSRT are useful predictors of HCQ ocular toxicity. In patients without ocular symptoms and fundoscopic changes, the P100 latency of VEP predicts more precisely than the others.

  1. Visual evoked potentials in patients after methanol poisoning

    Directory of Open Access Journals (Sweden)

    Pavel Urban

    2016-06-01

    Full Text Available Objectives: We report the results of the visual evoked potentials (VEP examination in patients after severe poisoning by methanol. Material and Methods: The group of 47 patients (38 males and 9 females was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012–2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test were used to analyze factors influencing the VEP abnormality. Results: The visual evoked potential was abnormal in 20 patients (43%, 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04. The abnormality was not related to chronic alcohol abuse. Conclusions: The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1–9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae.

  2. Bayesian analysis of MEG visual evoked responses

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D.M.; George, J.S.; Wood, C.C.

    1999-04-01

    The authors developed a method for analyzing neural electromagnetic data that allows probabilistic inferences to be drawn about regions of activation. The method involves the generation of a large number of possible solutions which both fir the data and prior expectations about the nature of probable solutions made explicit by a Bayesian formalism. In addition, they have introduced a model for the current distributions that produce MEG and (EEG) data that allows extended regions of activity, and can easily incorporate prior information such as anatomical constraints from MRI. To evaluate the feasibility and utility of the Bayesian approach with actual data, they analyzed MEG data from a visual evoked response experiment. They compared Bayesian analyses of MEG responses to visual stimuli in the left and right visual fields, in order to examine the sensitivity of the method to detect known features of human visual cortex organization. They also examined the changing pattern of cortical activation as a function of time.

  3. The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects

    Directory of Open Access Journals (Sweden)

    Mousa MF

    2013-05-01

    Full Text Available Mohammad F Mousa,1 Robert P Cubbidge,2 Fatima Al-Mansouri,1 Abdulbari Bener3,41Department of Ophthalmology, Hamad Medical Corporation, Doha, Qatar; 2School of Life and Health Sciences, Aston University, Birmingham, UK; 3Department of Medical Statistics and Epidemiology, Hamad Medical Corporation, Department of Public Health, Weill Cornell Medical College, Doha, Qatar; 4Department Evidence for Population Health Unit, School of Epidemiology and Health Sciences, University of Manchester, Manchester, UKObjective: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique.Methods and patients: Three groups were tested in this study; normal controls (38 eyes, glaucoma patients (36 eyes, and glaucoma suspect patients (38 eyes. All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis ­protocol: the hemifield sector analysis protocol.Results: Analysis of the mfVEP showed that the signal to noise ratio (SNR difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P < 0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group. The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P < 0.001, statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P < 0.01, and only 1/11 pair was statistically significant (t-test P < 0.9. The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86

  4. Assessment of visual disability using visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Jeon Jihoon

    2012-08-01

    Full Text Available Abstract Background The purpose of this study is to validate the use of visual evoked potential (VEP to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. Methods A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9–42 years, 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19–36 years, 19 optic neuritis patients (19 eyes: ages 9–71 years, and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Results Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR of 38 eyes from normal (right eyes and amblyopic (amblyopic eyes subjects were significant [y = −0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = −0.072x + 1.22 (−0.072. This resulted in a prediction

  5. [Intraoperative monitoring of visual evoked potentials].

    Science.gov (United States)

    Sasaki, Tatsuya; Ichikawa, Tsuyoshi; Sakuma, Jun; Suzuki, Kyouichi; Matsumoto, Masato; Itakura, Takeshi; Kodama, Namio; Murakawa, Masahiro

    2006-03-01

    Our success rate of intraoperative monitoring of visual evoked potential (VEP) had been approximately 30% in the past. In order to improve recording rate of intraoperative VEP, we developed a new stimulating device using high power light emitting diodes. Electroretinogram was simultaneously recorded to understand whether flash stimulation reached the retina. In addition, total venous anesthesia with propofol was used to avoid the adverse effect of inhalation anesthesia. We report the results after introduction of these improvements. Intraoperative monitoring of VEP was attempted in 35 cases. We evaluated success rate of VEP recording, correlation between VEP findings and postoperative visual function, and reasons why recording was not successful. Stable and reproducible waveforms were obtained in 59 sides (84%). Two cases, whose VEP deteriorated intraoperatively, developed postoperative visual disturbance: In 11 sides (16%), stable waveforms were not obtained. There were two main causes. In 8 sides out of 11, the cause was attributed to pre-existing severe visual disturbance. In these 8 sides, VEP in the awake state was not recordable or was recordable, but with very low amplitudes under 1 microV. In the other 3 sides, the cause was attributed to movement of a stimulating device by reflecting the fronto-temporal scalp flap. In conclusion, the successful recording rate was increased to 84% from approximately 30%, after introduction of various trials. We need further improvement in recording intraoperative VEP to establish a reliable intraoperative monitoring method for VEP.

  6. Visual evoked potentials in rubber factory workers.

    Science.gov (United States)

    Tandon, O P; Kumar, V

    1997-01-01

    Pattern reversal visual evoked potentials (pVEP) were studied in 39 male rubber factory workers in the age range of 18-55 years and 20 control subjects (aged 18-46 years) not exposed to the rubber factory environment. Results revealed that 20 (51%) rubber factory workers had abnormal latencies of wave P1 (dominant component of pVEP) as per accepted criteria of 99% tolerance limit set for the control group (i.e. any value above mean +3 SD of control was considered abnormal). The section-wise per cent distribution of abnormalities was vulcanization (83%), tubing (75%), calendering (60%), loading (38%) and mixing (14%). This study provides electrophysiological evidence that rubber factory environments affect the conduction processes in optical pathways from their origin in the retina to striate cortex. However, this study has its limitations in not identifying the specific chemical(s) causing these changes in VEP.

  7. Visual evoked potentials in a patient with prosopagnosia.

    Science.gov (United States)

    Small, M

    1988-01-01

    Visual evoked potentials (VEPs) were recorded from a 53-year-old man with prosopagnosia during presentation of slides of known and unknown faces and under two control conditions. ANOVA comparisons with a normal male group showed no differences in P100 amplitude, P300 amplitude or P300 latency. There were no significant evoked potential differences between the patient and controls specifically related to the face conditions. There was, however, a significant delay in the latency of P100 from both hemispheres during all types of stimuli. This prolonged latency was asymmetrical, showing a right sided emphasis with the control conditions: pattern reversal and slides of geometric designs. This finding, of a dissociation in the interhemispheric delay, provides physiological evidence of stimulus-specific organisation at an early, sensory level. The fact that the P100 component showed a marked delay, yet P300 fell within normal limits for amplitude and latency, suggests that this patient's problem lies at a perceptual level.

  8. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    Science.gov (United States)

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment.

  9. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential

    Science.gov (United States)

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  10. Multiple Color Stimulus Induced Steady State Visual Evoked Potentials

    Science.gov (United States)

    2007-11-02

    evoked potentials, multiple color, FFT, bispectrum I. INTRODUCTION Visual evoked potential ( VEP ) is the electrical response of...brain under visual stimulation, which can be recorded from the scalp over the visual cortex of the brain. A distinction is made between transient VEP ...and steady-state VEP (SSVEP) based on the stimulation frequencies. The former arises when the stimulation frequencies are less than 2 Hz. However

  11. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Yi-Tzu Chang

    2017-06-01

    Full Text Available Subjective visual vertical (SVV judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS. Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs, the present study examined the effect of postural control demands (PDs on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group and 13 age-matched adolescents (control group aged 12–18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion, SVV (accuracy and reaction time, and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1 during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2 the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for

  12. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis.

    Science.gov (United States)

    Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh

    2017-01-01

    Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12-18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central

  13. Influence of visual angle on pattern reversal visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2014-01-01

    Full Text Available Purpose: The aim of this study was to find whether the visual evoked potential (VEP latencies and amplitude are altered with different visual angles in healthy adult volunteers or not and to determine the visual angle which is the optimum and most appropriate among a wide range of check sizes for the reliable interpretation of pattern reversal VEPs (PRVEPs. Materials and Methods: The present study was conducted on 40 healthy volunteers. The subjects were divided into two groups. One group consisted of 20 individuals (nine males and 11 females in the age range of 25-57 years and they were exposed to checks subtending a visual angle of 90, 120, and 180 minutes of arc. Another group comprised of 20 individuals (10 males and 10 females in the age range of 36-60 years and they were subjected to checks subtending a visual angle of 15, 30, and 120 minutes of arc. The stimulus configuration comprised of the transient pattern reversal method in which a black and white checker board is generated (full field on a VEP Monitor by an Evoked Potential Recorder (RMS EMG. EPMARK II. The statistical analysis was done by One Way Analysis of Variance (ANOVA using EPI INFO 6. Results: In Group I, the maximum (max. P100 latency of 98.8 ± 4.7 and the max. P100 amplitude of 10.05 ± 3.1 μV was obtained with checks of 90 minutes. In Group II, the max. P100 latency of 105.19 ± 4.75 msec as well as the max. P100 amplitude of 8.23 ± 3.30 μV was obtained with 15 minutes. The min. P100 latency in both the groups was obtained with checks of 120 minutes while the min. P100 amplitude was obtained with 180 minutes. A statistically significant difference was derived between means of P100 latency for 15 and 30 minutes with reference to its value for 120 minutes and between the mean value of P100 amplitude for 120 minutes and that of 90 and 180 minutes. Conclusion: Altering the size of stimulus (visual angle has an effect on the PRVEP parameters. Our study found that the 120

  14. [Effect of sleep deprivation on visual evoked potentials and brain stem auditory evoked potentials in epileptics].

    Science.gov (United States)

    Urumova, L T; Kovalenko, G A; Tsunikov, A I; Sumskiĭ, L I

    1984-01-01

    The article reports on the first study of the evoked activity of the brain in epileptic patients (n = 20) following sleep deprivation. An analysis of the data obtained has revealed a tendency to the shortening of the peak latent intervals of visual evoked potentials in the range of 100-200 mu sec and the V component and the interpeak interval III-V of evoked auditory trunk potentials in patients with temporal epilepsy. The phenomenon may indicate the elimination of stabilizing control involving the specific conductive pathways and, possibly, an accelerated conduction of a specific sensor signal.

  15. Visual function with acupuncture tested by visual evoked potential.

    Science.gov (United States)

    Sagara, Yoshiko; Fuse, Nobuo; Seimiya, Motohiko; Yokokura, Syunji; Watanabe, Kei; Nakazawa, Toru; Kurusu, Masayuki; Seki, Takashi; Tamai, Makoto

    2006-07-01

    Visual evoked potential (VEP) testing is used frequently and is an important ophthalmologic physiological test to examine visual functions objectively. The VEP is a complicated waveform consisting of negative waveform named N75 and N135, and positive waveform named P100. Delayed P100 latency and greatly attenuated amplitude on VEP are known characteristics for diagnosing optic nerve disease. Acupuncture has been used to treat wide clinical symptoms with minimal side effects. The confirmation of the efficacy of acupuncture generally relies on subjective symptoms. There is not much scientific evidence supporting the acupuncture treatments for eye diseases up to today. However, the VEP test can evaluate objectively and numerically the efficacy of the treatment by the acupuncture. We analyzed 19 healthy subjects (38 eyes). The P100 latencies in the group of less than 101.7 msec (total average) before acupuncture stimulations were not different than those after treatment (98.2 +/- 3.0 msec, 98.2 +/- 4.0 msec, respectively, p = 0.88, n = 17), but the latencies in those subjects with longer or equal to 101.7 msec were statistically different after acupuncture (104.6 +/- 2.8 msec, 101.9 +/- 3.7 msec, respectively, p = 0.006, n = 21). These results show that the acupuncture stimulation contributes to the P100 latencies of pattern reversal (PR)-VEP to some subjects who have delayed latencies, and this electrophysiological method is a valuable technique in monitoring the effectiveness of acupuncture therapy in the improvements of visual functions. The purpose of this study is to evaluate the physiological effects by acupuncture stimulations using PR-VEP in normal subjects.

  16. A Comprehensive Review on Methodologies Employed for Visual Evoked Potentials.

    Science.gov (United States)

    Kothari, Ruchi; Bokariya, Pradeep; Singh, Smita; Singh, Ramji

    2016-01-01

    Visual information is fundamental to how we appreciate our environment and interact with others. The visual evoked potential (VEP) is among those evoked potentials that are the bioelectric signals generated in the striate and extrastriate cortex when the retina is stimulated with light which can be recorded from the scalp electrodes. In the current paper, we provide an overview of the various modalities, techniques, and methodologies which have been employed for visual evoked potentials over the years. In the first part of the paper, we cast a cursory glance on the historical aspect of evoked potentials. Then the growing clinical significance and advantages of VEPs in clinical disorders have been briefly described, followed by the discussion on the earlier and currently available methods for VEPs based on the studies in the past and recent times. Next, we mention the standards and protocols laid down by the authorized agencies. We then summarize the recently developed techniques for VEP. In the concluding section, we lay down prospective research directives related to fundamental and applied aspects of VEPs as well as offering perspectives for further research to stimulate inquiry into the role of visual evoked potentials in visual processing impairment related disorders.

  17. Are flash-evoked visual potentials useful for intraoperative monitoring of visual pathway function?

    Science.gov (United States)

    Cedzich, C; Schramm, J; Fahlbusch, R

    1987-11-01

    Flash-evoked visual potentials (VEPs) recorded from the scalp were used in a series of 35 patients with tumors along the visual pathway: 3 orbital tumors, 25 perisellar tumors, 4 intraventricular tumors, and 3 occipital lesions. Preoperatively, various combinations of impaired visual fields and visual acuity were observed in over 90% of the patients. A postoperative decrease in visual function was observed in 3 cases. Of the 25 perisellar lesions, 13 were operated through a standard frontotemporal craniotomy and 12 were operated through a transnasal-transsphenoidal approach. VEPs were highly susceptible to volatile anesthetics, and there was a significant incidence of spontaneous latency increases and amplitude decreases in a large number of patients. There was an unacceptably high number of cases with significant VEP alteration occurring without concomitant visual function change. During trepanation or the transnasal approach, a reversible potential loss was observed in 11 patients, a profoundly altered wave form was seen in 8 cases, and a loss of single peaks was observed in 15 patients. During dissection of the tumor, a reversible potential loss or a potential with unidentifiable peaks was found in 25 cases; however, the VEPs recovered during closure or in the recovery room. There was no correlation between intraoperative VEP changes and the postoperative changes in visual function. In only 1 patient with an insignificant postoperative decrease in visual acuity from 0.4 to 0.3 was there a concomitant intraoperative potential loss. The major conclusion of our findings is that light-emitting diode flash-evoked VEPs demonstrate intraoperative changes that appear too early and too prominently to be caused solely by manipulation of the optic pathways.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Paying attention to orthography: A visual evoked potential study

    Directory of Open Access Journals (Sweden)

    Anthony Thomas Herdman

    2013-05-01

    Full Text Available In adult readers, letters and words are rapidly identified within visual networks to allow for efficient reading abilities. Neuroimaging studies of orthography have mostly used words and letter strings that recruit many hierarchical levels in reading. Understanding how single letters are processed could provide further insight into orthographic processing. The present study investigated orthographic processing using single letters and pseudoletters when adults were encouraged to pay attention to or away from orthographic features. We measured evoked potentials (EPs to single letters and pseudoletters from adults while they performed an orthographic-discrimination task (letters vs. pseudoletters, a colour-discrimination task (red vs. blue, and a target-detection task (respond to #1 and #2. Larger and later peaking N1 responses (~170ms and larger P2 responses (~250 ms occurred to pseudoletters as compared to letters. This reflected greater visual processing for pseudoletters. Dipole analyses localized this effect to bilateral fusiform and inferior temporal cortices. Moreover, this letter-pseudoletter difference was not modulated by task and thus indicates that directing attention to or away from orthographic features didn’t affect early visual processing of single letters or pseudoletters within extrastriate regions. Paying attention to orthography or colour as compared to disregarding the stimuli (target-detection task elicited selection negativities at about 175 ms, which were followed by a classical N2-P3 complexes. This indicated that the tasks sufficiently drew participant’s attention to and away from the stimuli. Together these findings revealed that visual processing of single letters and pseudoletters, in adults, appeared to be sensory-contingent and independent of paying attention to stimulus features (e.g., orthography or colour.

  19. Signed words in the congenitally deaf evoke typical late lexicosemantic responses with no early visual responses in left superior temporal cortex.

    Science.gov (United States)

    Leonard, Matthew K; Ferjan Ramirez, Naja; Torres, Christina; Travis, Katherine E; Hatrak, Marla; Mayberry, Rachel I; Halgren, Eric

    2012-07-11

    Congenitally deaf individuals receive little or no auditory input, and when raised by deaf parents, they acquire sign as their native and primary language. We asked two questions regarding how the deaf brain in humans adapts to sensory deprivation: (1) is meaning extracted and integrated from signs using the same classical left hemisphere frontotemporal network used for speech in hearing individuals, and (2) in deafness, is superior temporal cortex encompassing primary and secondary auditory regions reorganized to receive and process visual sensory information at short latencies? Using MEG constrained by individual cortical anatomy obtained with MRI, we examined an early time window associated with sensory processing and a late time window associated with lexicosemantic integration. We found that sign in deaf individuals and speech in hearing individuals activate a highly similar left frontotemporal network (including superior temporal regions surrounding auditory cortex) during lexicosemantic processing, but only speech in hearing individuals activates auditory regions during sensory processing. Thus, neural systems dedicated to processing high-level linguistic information are used for processing language regardless of modality or hearing status, and we do not find evidence for rewiring of afferent connections from visual systems to auditory cortex.

  20. Research on pattern reversal visual evoked potential of children with spastic cerebral palsy

    Directory of Open Access Journals (Sweden)

    Lu Li

    2015-07-01

    Full Text Available AIM: To explore the judgment of pattern reversal visual evoked potential on visual function and injured part of children with spastic cerebral palsy.METHODS: There were two groups in this study. 30 children with spastic cerebral palsy(quadriplegia: 15, diplegia: 15were selected as observation group, while 30 normal children were selected as control group with randomized controlled trial. The changes of half-view and full-view incubation period and amplitude were observed by pattern reversal visual evoked potential.RESULTS: Full-view pattern reversal visual evoked potential: the P100 incubation period of the observation group was 113.55±8.14ms, and the P100 amplitude was 23.08±15.41μV. The P100 incubation period of the control group was 105.05±5.58ms, and the P100 amplitude was 31.65±7.37μV. From the comparison on P100 incubation and P100 amplitude between two groups, the difference was statistically significant(PP>0.05. Compared to the control group, each eye and each view latency of observation group were higher, the difference was statistically significant(PCONCLUSION: Pattern reversal visual evoked potential can help people to understand the visual impairment and injury of children with spastic cerebral palsy in order to identify the abnormal children and early intervention.

  1. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    Science.gov (United States)

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. © 2014 Wiley Periodicals, Inc.

  2. Early visually evoked electrophysiological responses over the human brain (P1, N170 show stable patterns of face-sensitivity from 4 years to adulthood

    Directory of Open Access Journals (Sweden)

    Dana Kuefner

    2010-01-01

    Full Text Available Whether the development of face recognition abilities truly reflects changes in how faces, specifically, are perceived, or rather can be attributed to more general perceptual or cognitive development is debated. Event-related potential (ERP recordings on the scalp offer promise for this issue because they allow brain responses to complex visual stimuli to be relatively well isolated from other sensory, cognitive and motor processes. ERP studies in 5-16 year-old children report large age-related changes in amplitude, latency (decreases and topographical distribution of the early visual components, the P1 and the occipito-temporal N170. To test the face specificity of these effects, we recorded high-density ERPs to pictures of faces, cars, and their phase-scrambled versions from 72 children between the ages of 4 and 17, and a group of adults. We found that none of the previously reported age-dependent changes in amplitude, latency or topography of the P1 or N170 were specific to faces. Most importantly, when we controlled for age-related variations of the P1, the N170 appeared remarkably similar in amplitude and topography across development, with much smaller age-related decreases in latencies than previously reported. At all ages the N170 showed equivalent face-sensitivity: it had the same topography and right hemisphere dominance, it was absent for meaningless (scrambled stimuli, and larger and earlier for faces than cars. The data also illustrate the large amount of inter-individual and inter-trial variance in young children’s data, which causes the N170 to merge with a later component, the N250 in grand-averaged data. Based on our observations, we suggest that the previously reported “bi-fid” N170 of young children is in fact the N250. Overall, our data indicate that the electrophysiological markers of face-sensitive perceptual processes are present from 4 years of age and do not appear to change throughout development.

  3. Visual evoked responses during standing and walking

    Directory of Open Access Journals (Sweden)

    Klaus Gramann

    2010-10-01

    Full Text Available Human cognition has been shaped both by our body structure and by its complex interactionswith its environment. Our cognition is thus inextricably linked to our own and others’ motorbehavior. To model brain activity associated with natural cognition, we propose recording theconcurrent brain dynamics and body movements of human subjects performing normal actions.Here we tested the feasibility of such a mobile brain/body (MoBI imaging approach byrecording high-density electroencephalographic (EEG activity and body movements of subjectsstanding or walking on a treadmill while performing a visual oddball response task. Independentcomponent analysis (ICA of the EEG data revealed visual event-related potentials (ERPs thatduring standing, slow walking, and fast walking did not differ across movement conditions,demonstrating the viability of recording brain activity accompanying cognitive processes duringwhole body movement. Non-invasive and relatively low-cost MoBI studies of normal, motivatedactions might improve understanding of interactions between brain and body dynamics leadingto more complete biological models of cognition.

  4. Computer Processing of Visual Evoked Potentials Utilizing Digital Filtering Techniques

    OpenAIRE

    Vigorito, A.; Stephens, G.; Louis, H; Cinotti, A.; Michelson, L.; E. Stephens

    1981-01-01

    Recording of the VER (Visual Evoked Response) and the ERG (ElectroRetinoGram) in our laboratory is done with stimulation, using a fixed checkerboard pattern or a reversible checkerboard pattern. Questionable data frames are eliminated from the signal averaging process by means of a semiautomatic electronic analyzer or by means of a computer program. This special computer software, with flexible format constraints, is utilized on an off-line basis to remove residual artifacts and noise from av...

  5. [Visual evoked potentials (VEP) in anesthesia and intensive care].

    Science.gov (United States)

    Russ, W; Krumholz, W; Hempelmann, G

    1984-03-01

    Methodological considerations and different stimulation techniques of visual evoked potentials (VEP) are described. VEP can provide information about neurological function during anaesthesia, surgery and in the unconscious patient after head injury. The feasibility of the method for intraoperative monitoring in neuro- and cardiac surgery and the influence of general anaesthetics and other contributing factors such as temperature, paCO2, pO2, part are discussed.

  6. Visual Evoked Potentials as a Readout of Cortical Function in Infants With Tuberous Sclerosis Complex.

    Science.gov (United States)

    Varcin, Kandice J; Nelson, Charles A; Ko, Jordan; Sahin, Mustafa; Wu, Joyce Y; Jeste, Shafali Spurling

    2016-02-01

    Tuberous sclerosis complex is an autosomal dominant genetic disorder that confers a high risk for neurodevelopmental disorders, such as autism spectrum disorder and intellectual disability. Studies have demonstrated specific delays in visual reception skills that may predict the development of autism spectrum disorder and intellectual disability. Based on evidence for alterations in the retinogeniculate pathway in animal models of tuberous sclerosis complex, we asked whether children with tuberous sclerosis complex demonstrate alterations in early visual processing that may undermine the development of higher-level visual behaviors. Pattern-reversal visual evoked potentials were recorded in infants with tuberous sclerosis complex (n = 16) and typically developing infants (n = 18) at 12 months of age. Infants with tuberous sclerosis complex demonstrated remarkably intact visual evoked potentials even within the context of intellectual disability and epilepsy. Infants with tuberous sclerosis complex show intact visual cortical processing, suggesting that delays in visually mediated behaviors in tuberous sclerosis complex may not be rooted in early visual processing deficits.

  7. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography.

    Science.gov (United States)

    Lega, Bradley; Dionisio, Sasha; Flanigan, Patrick; Bingaman, William; Najm, Imad; Nair, Dileep; Gonzalez-Martinez, Jorge

    2015-09-01

    Cortico-cortical evoked potentials offer the possibility of understanding connectivity within seizure networks to improve diagnosis and more accurately identify candidates for seizure surgery. We sought to determine if cortico-cortical evoked potentials and post-stimulation oscillatory changes differ for sites of EARLY versus LATE ictal spread. 37 patients undergoing stereoelectroencephalography were tested using a cortico-cortical evoked potential paradigm. All electrodes were classified according to the speed of ictal spread. EARLY spread sites were matched to a LATE spread site equidistant from the onset zone. Root-mean-square was used to quantify evoked responses and post-stimulation gamma band power and coherence were extracted and compared. Sites of EARLY spread exhibited significantly greater evoked responses after stimulation across all patients (t(36)=2.973, p=0.004). Stimulation elicited enhanced gamma band activity at EARLY spread sites (t(36)=2.61, p=0.03, FDR corrected); this gamma band oscillation was highly coherent with the onset zone. Cortico-cortical evoked potentials and post-stimulation changes in gamma band activity differ between sites of EARLY versus LATE ictal spread. The oscillatory changes can help visualize connectivity within the seizure network.

  8. [Effects of nicotine on visually evoked EEG potentials].

    Science.gov (United States)

    Woodson, P P; Bättig, K; Rosecrans, J A

    1982-10-01

    The effects of nicotine were measured on the averaged visual evoked response (AVER) through the use of two types of experimental cigarettes which differed only in nicotine content (i.e., 0.14 vs. 1.34 mg/cig.). The results indicate that the restorative and/or enhancing effects of cigarette smoking on peak amplitudes are due predominantly to nicotine's psychopharmacologic effects, and support past research indicating that nicotine may enhance visual attentional processes in the quiescent smoker. This contrasts with other reports indicating nicotine to have a depressant effect on auditory processes.

  9. Transient visual evoked neuromagnetic responses: Identification of multiple sources

    Energy Technology Data Exchange (ETDEWEB)

    Aine, C.; George, J.; Medvick, P.; Flynn, E.; Bodis-Wollner, I.; Supek, S.

    1989-01-01

    Neuromagnetic measurements and associated modeling procedures must be able to resolve multiple sources in order to localize and accurately characterize the generators of visual evoked neuromagnetic activity. Workers have identified at least 11 areas in the macaque, throughout occipital, parietal, and temporal cortex, which are primarily or entirely visual in function. The surface area of the human occipital lobe is estimated to be 150--250cm. Primary visual cortex covers approximately 26cm/sup 2/ while secondary visual areas comprise the remaining area. For evoked response amplitudes typical of human MEG data, one report estimates that a two-dipole field may be statistically distinguishable from that of a single dipole when the separation is greater than 1--2 cm. Given the estimated expanse of cortex devoted to visual processes, along with this estimate of resolution limits it is likely that MEG can resolve sources associated with activity in multiple visual areas. Researchers have noted evidence for the existence of multiple sources when presenting visual stimuli in a half field; however, they did not attempt to localize them. We have examined numerous human MEG field patterns resulting from different visual field placements of a small sinusoidal grating which suggest the existence of multiple sources. The analyses we have utilized for resolving multiple sources in these studies differ depending on whether there was evidence of (1) synchronous activation of two spatially discrete sources or (2) two discrete asynchronous sources. In some cases we have observed field patterns which appear to be adequately explained by a single source changing its orientation and location across time. 4 refs., 2 figs.

  10. Visual evoked potentials, reaction times and eye dominance in cricketers.

    Science.gov (United States)

    Thomas, N G; Harden, L M; Rogers, G G

    2005-09-01

    Few studies have examined the physiology of cricket, including the difference in ability between batsmen to make controlled contact with a ball bowled at high speed. We therefore measured visual evoked potentials and choice reaction times with dominant eyes, non-dominant eyes, and both eyes together, in 15 elite batsmen and 10 elite bowlers (aged 20.9 SD 1.9 years) and 9 control subjects (aged 20.2 SD 1.5 years). The latency and amplitude of waves N70, P100 and N145 were determined for each visual evoked potential (VEP). In addition interpeak latencies and peak to peak amplitudes were measured. The subjects also completed a choice reaction test to a visual stimulus. We found that cricketers were not more likely to have crossed dominance (dominant eye contralateral to dominant hand) than controls. Cricketers had a faster latency for VEP wave N70 than controls (p=0.03). However reaction time was not different between cricketers and the control group. Across all subjects, in comparison to monocular testing, binocular testing led to a faster choice reaction time (p=0.02) and larger amplitudes of VEP wave N70 (p=0.01). Visual processing during the first 100(-1)50 ms of the balls flight together with binocular vision facilitates retinal activation in talented cricketers.

  11. Visual evoked potentials monitoring in a case of transient post-operative visual loss

    Directory of Open Access Journals (Sweden)

    Marie Capon

    2016-01-01

    Full Text Available Post-operative visual loss (POVL is a rare, albeit potentially serious complication of general anaesthesia. This report describes the case of a 54-year-old woman who developed transient POVL after general anaesthesia following a left posterior parietal meningioma surgery in the prone position and discusses the usefulness of visual evoked potentials monitoring in such situations.

  12. A NOS1 variant implicated in cognitive performance influences evoked neural responses during a high density EEG study of early visual perception.

    LENUS (Irish Health Repository)

    O'Donoghue, Therese

    2012-05-01

    The nitric oxide synthasase-1 gene (NOS1) has been implicated in mental disorders including schizophrenia and variation in cognition. The NOS1 variant rs6490121 identified in a genome wide association study of schizophrenia has recently been associated with variation in general intelligence and working memory in both patients and healthy participants. Whether this variant is also associated with variation in early sensory processing remains unclear.

  13. Spatial coincidence modulates interaction between visual and somatosensory evoked potentials.

    Science.gov (United States)

    Schürmann, Martin; Kolev, Vasil; Menzel, Kristina; Yordanova, Juliana

    2002-05-07

    The time course of interaction between concurrently applied visual and somatosensory stimulation with respect to evoked potentials (EPs) was studied. Visual stimuli, either in the left or right hemifield, and electric stimuli to the left wrist were delivered either alone or simultaneously. Visual and somatosensory EPs were summed and compared to bimodal EPs (BiEP, response to actual combination of both modalities). Temporal coincidence of stimuli lead to sub-additive or over-additive amplitudes in BiEPs in several time windows between 75 and 275 ms. Additional effects of spatial coincidence (left wrist with left hemifield) were found between 75 and 300 ms and beyond 450 ms. These interaction effects hint at a temporo-spatial pattern of multiple brain areas participating in the process of multimodal integration.

  14. Contrast Sensitivity versus Visual Evoked Potentials in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Javad Heravian Shandiz

    2010-01-01

    Full Text Available Purpose: To compare the Cambridge contrast sensitivity (CS test and visual evoked potentials (VEP in detecting visual impairment in a population of visually symptomatic and asymptomatic patients affected by clinically definite multiple sclerosis (MS. Methods: Fifty patients (100 eyes presenting with MS and 25 healthy subjects (50 eyes with normal corrected visual acuity were included in this study. CS was determined using the Cambridge Low Contrast Grating test and VEP was obtained in all eyes. Findings were evaluated in two age strata of 10-29 and 30-49 years. Results: Of the 42 eyes in the 10-29 year age group, CS was abnormal in 22 (52%, VEP was also abnormal in 22 (52%, but only 12 eyes (28% had visual symptoms. Of the 58 eyes in the 30-49 year group, CS was abnormal in 7 (12%, VEP was abnormal in 34 (58%, while only 11 eyes were symptomatic. No single test could detect all of the abnormal eyes. Conclusion: The Cambridge Low Contrast Grating test is useful for detection of clinical and subclinical visual dysfunction especially in young patients with multiple sclerosis. Nevertheless, only a combination of CS and VEP tests can detect most cases of visual dysfunction associated with MS.

  15. Visual fatigue and visual evoked potentials in multiple sclerosis, glaucoma, ocular hypertension and Parkinson's disease.

    OpenAIRE

    1984-01-01

    Visual evoked potential (VEP) abnormality is widely used as an objective indication of visual pathophysiology in the diagnosis of multiple sclerosis. One major limitation of this test is that VEP abnormality is not specific to multiple sclerosis. In an attempt to explore ways of making the VEP test more specific, changes were measured in VEPs caused by superimposing upon the VEP stimulus either a flicker or a moving pattern. The rationale was to test for visual fatigueability, since it is kno...

  16. Visual evoked potentials in children prenatally exposed to methylmercury

    DEFF Research Database (Denmark)

    Yorifuji, Takashi; Murata, Katsuyuki; Bjerve, Kristian S

    2013-01-01

    the effect of prenatal methylmercury exposure on visual evoked potential (VEP) latencies in Faroese children with elevated prenatal methylmercury exposure. A cohort of 182 singleton term births was assembled in the Faroe Islands during 1994-1995. At age 7 years, VEP tracings were obtained from 139 cohort...... subjects after exclusion of subjects with abnormal vision conditions. We used multiple regression analysis to evaluate the association of mercury concentrations in cord blood and maternal hair at parturition with VEP latencies after adjustment for potential confounders that included the cord...

  17. Visual acuity evaluated by pattern-reversal visual-evoked potential is affected by check size/visual angle

    Institute of Scientific and Technical Information of China (English)

    Xiping Chen; Qianqian Li; Xiaoqin Liu; Li Yang; Wentao Xia; Luyang Tao

    2012-01-01

    Objective To systemically explore the range of visual angles that affect visual acuity,and to establish the relationship between the P 1 component (peak latency ~100 ms) of the pattern-reversal visual-evoked potential (PRVEP) and the visual acuity at particular visual angles.Methods Two hundred and ten volunteers were divided into seven groups,according to visual acuity as assessed by the standard logarithmic visual acuity chart (SLD-II).For each group,the PRVEP components were elicited in response to visual angle presentations at 8°,4°,2°,1 °/60′,30′,15′,and 7.5′,in the whiteblack chess-board reversal mode with a contrast level of 100% at a frequency of 2 Hz.Visual stimuli were presented monocularly,and 200 presentations were averaged for each block of trials.The early and stable component P1 was recorded at the mid-line of the occipital region (Oz) and analyzed with SPSS 13.00.Results (1) Oz had the maximum P1 amplitude;there was no significant difference between genders or for interocular comparison in normal controls and subjects with optic myopia.(2) The P1 latency decreased slowly below 30′,then increased rapidly.The P1 amplitude initially increased with check size,and was maximal at ~1° and ~30′.(3) The P1 latency in the group with visual acuity ≤0.2 was significantly different at 8°,15′ and 7.5′,while the amplitude differed at all visual angles,compared with the group with normal vision.Diferences in P1 for the groups with 0.5 and 0.6 acuity were only present at visual angles <1°.(4) Regression analysis showed that the P 1 latency and amplitude were associated with visual acuity over the full range of visual angles.There was a moderate correlation at visual angles <30′.Regression equations were calculated for the P1 components and visual acuity,based on visual angle.Conclusion (1) Visual angle should be taken into consideration when exploring the function of the visual pathway,especially visual acuity.A visual angle

  18. Visual Evoked Potentials in Patients with Classic Migraine

    Directory of Open Access Journals (Sweden)

    Akbar Hamzei-Moghaddam

    2013-04-01

    Full Text Available Background: Migraine is considered as a chronic disease. Ocular symptoms and sensitivity to light stimuli are common in the patients with such disease. There are some evident that visual system function in the patients with migraine is impaired even between the attacks as compared with health people. In this study, we examine Visual Evoked Potential in 30 patients suffered from migraine before, during and after aura. Materials and Methods: 30 patients suffered from classic migraine and with visual aura were evaluated in terms of visual stimulatory potentials before, during and after aura. P-100 latency and amplitude were evaluation criteria in our study. The results of this investigation were evaluated by χ2 test.Results: Abnormal amplitude frequency was occurred in 17 cases before aura, in 27 cases during aura and in 20 cases, it occurred after aura. Reduction of the amplitude wave p-100 during and after aura was significantly more in both eyes (p<0.05. Ten cases had abnormal P-100 latency during aura and the other two cases had it after aura. There is a significant difference in the P-100 latency during aura (p<0.05. There is no difference between the changes in visual stimulatory potentials with gender.Conclusion: Some changes were found in the parameters in the visual stimulatory potentials in the patients with classic migraine before, during and after aura.

  19. Visual evoked potentials and selective attention to points in space

    Science.gov (United States)

    Van Voorhis, S.; Hillyard, S. A.

    1977-01-01

    Visual evoked potentials (VEPs) were recorded to sequences of flashes delivered to the right and left visual fields while subjects responded promptly to designated stimuli in one field at a time (focused attention), in both fields at once (divided attention), or to neither field (passive). Three stimulus schedules were used: the first was a replication of a previous study (Eason, Harter, and White, 1969) where left- and right-field flashes were delivered quasi-independently, while in the other two the flashes were delivered to the two fields in random order (Bernoulli sequence). VEPs to attended-field stimuli were enhanced at both occipital (O2) and central (Cz) recording sites under all stimulus sequences, but different components were affected at the two scalp sites. It was suggested that the VEP at O2 may reflect modality-specific processing events, while the response at Cz, like its auditory homologue, may index more general aspects of selective attention.

  20. Multi-Channel Noise Reduced Visual Evoked Potential Analysis

    Science.gov (United States)

    Palaniappan, Ramaswamy; Raveendran, Paramesran; Nishida, Shogo

    In this paper, Principal Component Analysis (PCA) is used to reduce noise from multi-channel Visual Evoked Potential (VEP) signals. PCA is applied to reduce noise from multi-channel VEP signals because VEP signals are more correlated from one channel to another as compared to noise during visual perception. Emulated VEP signals contaminated with noise are used to show the noise reduction ability of PCA. These noise reduced VEP signals are analysed in the gamma spectral band to classify alcoholics and non-alcoholics with a Fuzzy ARTMAP (FA) neural network. A zero phase Butterworth digital filter is used to extract gamma band power in spectral range of 30 to 50 Hz from these noise reduced VEP signals. The results using 800 VEP signals give an average FA classification of 92.50 % with the application of PCA and 83.33 % without the application of PCA.

  1. Effects of spatial frequency on visual evoked magnetic fields.

    Science.gov (United States)

    Tsuruhara, Aki; Nagata, Yuko; Suzuki, Masaya; Inui, Koji; Kakigi, Ryusuke

    2013-05-01

    Psychophysical and visual evoked potential (VEP) studies have shown that spatial frequency of a visual stimulus affects contrast sensitivity and VEPs in humans. However, it is not clear whether and how the effect of spatial frequency varies among cortical areas. Considering that all visual inputs to the retina could be expressed as a sum of sinusoidal gratings of different spatial frequencies, the effect of spatial frequency must be clarified to separate the brain activity specific to each visual stimulus. In order to examine the effect of spatial frequency on different cortical areas, the present study compared cortical responses to sinusoidal gratings of seven different spatial frequencies using magnetoencephalography (MEG). MEG waveforms of twelve healthy adults in response to sinusoidal gratings of 0.3-18.1 cycles per degree were subjected to a multi-dipole analysis. As a result, the effect of spatial frequency was significant on the first peak latency and amplitude of the source activity around V1 and V2 but not on the source activity around V3 and V6, indicating that the effect of spatial frequency varies across different visual areas in the human brain. Our results also suggest that the responses in V1 and V2 that have a peak around 90 ms and that of V6 peaking around 120 ms should be separated to investigate the stimulus-specific cortical response, particularly when examining effects of spatial frequency on the response latency.

  2. Does athletic training in volleyball modulate the components of visual evoked potentials? A preliminary investigation.

    Science.gov (United States)

    Zwierko, Teresa; Lubiński, Wojciech; Lesiakowski, Piotr; Steciuk, Hanna; Piasecki, Leszek; Krzepota, Justyna

    2014-01-01

    This longitudinal study investigated visual evoked potentials (VEPs) in 11 young female volleyball players who participated in extensive training for 2 years. The control group consisted of 7 age-matched female students who were not involved in any regular sports activity. Recordings of VEPs were performed twice: baseline recording (i.e., before training began) and after 2 years of systematic, volleyball-specific athletic training. The effect of athletic training on visual signal conductivity was assessed by recording the latency of N75, P100 and N135 components of the VEPs waveform. Extensive experience with volleyball training reduced signal conductivity time through visual pathway. Specifically, the latency of P100 was reduced on average by 2.2 ms during binocular viewing. Moreover, athletes had reduced N75 latency (difference of 3.3 ms) for visual stimuli that generated greater response from peripheral retina. These results indicate that sport training can affect very early sensory processing in athletes.

  3. Visual evoked potentials in neuromyelitis optica and its spectrum disorders.

    Science.gov (United States)

    Ringelstein, Marius; Kleiter, Ingo; Ayzenberg, Ilya; Borisow, Nadja; Paul, Friedemann; Ruprecht, Klemens; Kraemer, Markus; Cohn, Eva; Wildemann, Brigitte; Jarius, Sven; Hartung, Hans-Peter; Aktas, Orhan; Albrecht, Philipp

    2014-04-01

    Optic neuritis (ON) is a key feature of neuromyelitis optica (NMO). Recently, NMO patients of predominantly Afro-Brazilian origin were evaluated by visual evoked potentials (VEPs) and showed marked amplitude reductions. Here, we analyzed VEPs in a predominantly Caucasian cohort, consisting of 43 patients with definite NMO, 18 with anti-aquaporin (AQP) 4 antibody-seropositive NMO spectrum disorders and 61 matched healthy controls. We found reduced amplitudes in only 12.3%, prolonged latencies in 41.9% and a lack of response in 14.0% of NMO eyes. Delayed P100 latencies in eyes without prior ON suggested this was a subclinical affection. The data indicate heterogenous patterns in NMO, warranting further investigation.

  4. Effect of pupil size on multifocal pattern visual evoked potentials.

    Science.gov (United States)

    Martins, Alessandra; Balachandran, Chandra; Klistorner, Alexander I; Graham, Stuart L; Billson, Francis A

    2003-08-01

    The purpose of this study was to investigate the influence of pupil diameter on the amplitude and latency of multifocal visual evoked potentials (mfVEP). The multifocal objective perimeter (Accumap; Objectivision) was used to stimulate the visual field at 56 sites extending to 32 degrees using a pseudo-random pattern stimulus. The mfVEP were recorded using bipolar occipital electrodes, 7 min/eye. Ten normal subjects were recruited from the community and one eye was randomly selected for testing. The mfVEP were recorded at four different pupil diameters (2 mm, 4 mm, 6 mm, 8 mm), obtained by applying tropicamide (0.5%) or pilocarpine (2%) in different dilutions. Appropriate refractive correction was provided to overcome cycloplegia and achieve a visual acuity of 6/7.5 or better. Analysis revealed that at most pupil diameters the normalized full field amplitude did not show significant variation, except at the most miotic pupil diameter (2 mm), where the amplitude became reduced, based on 2-way anova and Tukey's T method. There was, however, significant correlation between latency and pupil area (correlation coefficient: upper field -0.63, lower field -0.76). The results suggest that even in the presence of mydriatics or miotics, the mfVEP test can be used to assess diseases that affect amplitude, provided near correction is used. The interpretation of latency, however, must be made with caution, as a borderline conduction defect with a dilated pupil may appear normal.

  5. Pattern Visual Evoked Potentials Elicited by Organic Electroluminescence Screen

    Directory of Open Access Journals (Sweden)

    Celso Soiti Matsumoto

    2014-01-01

    Full Text Available Purpose. To determine whether organic electroluminescence (OLED screens can be used as visual stimulators to elicit pattern-reversal visual evoked potentials (p-VEPs. Method. Checkerboard patterns were generated on a conventional cathode-ray tube (S710, Compaq Computer Co., USA screen and on an OLED (17 inches, 320 × 230 mm, PVM-1741, Sony, Tokyo, Japan screen. The time course of the luminance changes of each monitor was measured with a photodiode. The p-VEPs elicited by these two screens were recorded from 15 eyes of 9 healthy volunteers (22.0 ± 0.8 years. Results. The OLED screen had a constant time delay from the onset of the trigger signal to the start of the luminescence change. The delay during the reversal phase from black to white for the pattern was 1.0 msec on the cathode-ray tube (CRT screen and 0.5 msec on the OLED screen. No significant differences in the amplitudes of P100 and the implicit times of N75 and P100 were observed in the p-VEPs elicited by the CRT and the OLED screens. Conclusion. The OLED screen can be used as a visual stimulator to elicit p-VEPs; however the time delay and the specific properties in the luminance change must be taken into account.

  6. Changes of Transient Visual Evoked Potentials in Dyslexic Children

    Directory of Open Access Journals (Sweden)

    Ka Yan Leung

    2011-05-01

    Full Text Available Objectives: To investigate the characteristics of Visual Evoked Potentials (VEP in dyslexics. Methods: Fourteen children, 7 dyslexics and 7 control, aged 7 to 8 years were recruited. All dyslexic subjects were diagnosed by clinical psychologist. All subjects are from mainstream primary schools in Hong Kong, using Chinese and Cantonese as their primary written and spoken language, having normal visual acuity and IQ. Children with reported emotional or behavioral problems or binocular vision problem were excluded. All the subjects participated in pattern-reversal VEP measurements binocularly with 1000msec recording time. Four conditions of stimulations (checkersize: 180 min of arc were applied. (15-Hz at 15% contrast (25-Hz at 1% contrast (315-Hz at 15% contrast (415-Hz at 1% contrast Results: At 15% contrast stimulus, dyslexic subjects showed smaller amplitudes in both frequencies compared with the control group, especially in higher frequency. At 1% contrast stimulus, dyslexic subjects also showed smaller amplitudes in both frequencies and obvious reduction was observed at the later part of the recording period. No observable difference was showed in the latency of both contrast conditions. Conclusion: The attenuated VEP responses in higher frequency at low contrast condition in dyslexic group showed the changes of the transient visual response and this implies an abnormality in magnocellular pathway in dyslexia.

  7. Case Report of Vestibularly evoked Visual Hallucinations in a Patient with Cortical Blindness.

    Science.gov (United States)

    Kolev, Ognyan I

    2016-08-01

    Previous work has shown that caloric vestibular stimulation may evoke elementary visual hallucinations in healthy humans, such as different colored lines or dots. Surprisingly, the present case report reveals that the same stimulation can evoke visual hallucinations in a patient with cortical blindness, but with fundamentally different characteristics. The visual hallucinations evoked were complex and came from daily life experiences. Moreover, they did not include other senses beyond vision. This case report suggests that in conditions of cerebral pathology, vestibular-visual interaction may stimulate hallucinogenic subcortical, or undamaged cortical structures, and arouse mechanisms that can generate visual images exclusively.

  8. The effects of halothane on somatosensory and flash visual evoked potentials during operations.

    Science.gov (United States)

    Wang, A D; Costa e Silva, I; Symon, L; Jewkes, D

    1985-06-01

    Intraoperative use of somatosensory evoked potentials (SEP's) to monitor intracranial aneurysm surgery and flash visual evoked potentials (F-VEP's) for parasellar surgery have been routinely employed in our clinic. We found that both EP modalities are sensitive to the changing concentration of our standard hypotensive agent, halothane. The prolongation of the N14-N20 interpeak latency to median nerve stimulation at the wrist, and prolongation of P100 latency with altered configuration of early VEP components to flash light stimulation, appear to be the results of direct pharmacological effects of the agent and not an effect of secondary hypotension. VEP is found easily abolished by halothane at a concentration of 2.0%, while the SEP is more resistant. Halothane is not ideal however when monitoring intraoperative VEP.

  9. Visual evoked potentials in subgroups of migraine with aura patients.

    Science.gov (United States)

    Coppola, Gianluca; Bracaglia, Martina; Di Lenola, Davide; Di Lorenzo, Cherubino; Serrao, Mariano; Parisi, Vincenzo; Di Renzo, Antonio; Martelli, Francesco; Fadda, Antonello; Schoenen, Jean; Pierelli, Francesco

    2015-01-01

    Patients suffering from migraine with aura can have either pure visual auras or complex auras with sensory disturbances and dysphasia, or both. Few studies have searched for possible pathophysiological differences between these two subgroups of patients. Methods - Forty-seven migraine with aura patients were subdivided in a subgroup with exclusively visual auras (MA, N = 27) and another with complex neurological auras (MA+, N = 20). We recorded pattern-reversal visual evoked potentials (VEP: 15 min of arc cheques, 3.1 reversal per second, 600 sweeps) and measured amplitude and habituation (slope of the linear regression line of amplitude changes from the 1st to 6th block of 100 sweeps) for the N1-P1 and P1-N2 components in patients and, for comparison, in 30 healthy volunteers (HV) of similar age and gender distribution. VEP N1-P1 habituation, i.e. amplitude decrement between 1st and 6th block, which was obvious in most HV (mean slope -0.50), was deficient in both MA (slope +0.01, p = 0.0001) and MA+ (-0.0049, p = 0.001) patients. However, VEP N1-P1 amplitudes across blocks were normal in MA patients, while they were significantly greater in MA+ patients than in HVs. Our findings suggest that in migraine with aura patients different aura phenotypes may be underpinned by different pathophysiological mechanisms. Pre-activation cortical excitability could be higher in patients with complex neurological auras than in those having pure visual auras or in healthy volunteers.

  10. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    Science.gov (United States)

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  11. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    Directory of Open Access Journals (Sweden)

    Jorge Arrubla

    Full Text Available Simultaneous recording of electroencephalography (EEG and functional magnetic resonance imaging (fMRI has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP. Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  12. Clinical utility and limitations of intraoperative monitoring of visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Yeda Luo

    Full Text Available During surgeries that put the visual pathway at risk of injury, continuous monitoring of the visual function is desirable. However, the intraoperative monitoring of the visual evoked potential (VEP is not yet widely used. We evaluate here the clinical utility of intraoperative VEP monitoring.We analyzed retrospectively 46 consecutive surgeries in 2011-2013. High luminance stimulating devices delivered flash stimuli on the closed eyelid during intravenous anesthesia. We monitored VEP features N75 and P100 and took patients' preoperative and postoperative visual function from patient charts. Postoperative ophthalmologic workup was performed in 25 (54% patients and preoperatively in 28 (61% patients.VEP recordings were feasible in 62 of 85 eyes (73% in 46 patients. All 23 eyes without VEP had impaired vision. During surgery, VEPs remained stable throughout surgery in 50 eyes. In 44 of these, visual function did not deteriorate and three patients (6 eyes developed hemianopia. VEP decreased transiently in 10 eyes and visual function of all was preserved. VEPs were lost permanently in 2 eyes in two patients without new postoperative visual impairment.Satisfactory intraoperative VEP monitoring was feasible in all patients except in those with severe visual impairment. Preservation of VEPs predicted preserved visual function. During resection of lesions in the visual cortex, VEP monitoring could not detect new major visual field defects due to injury in the posterior visual pathway. Intraoperative VEPs were sensitive enough to detect vascular damage during aneurysm clipping and mechanical manipulation of the anterior visual pathway in an early reversible stage. Intraoperative VEP monitoring influenced surgical decisions in selected patients and proved to be a useful supplement to the toolbox of intraoperative neurophysiological monitoring.

  13. Effects of nicotine on the visual evoked response.

    Science.gov (United States)

    Woodson, P P; Baettig, K; Etkin, M W; Kallman, W M; Harry, G J; Kallman, M J; Rosecrans, J A

    1982-11-01

    The effects of smoking cigarettes differing in nicotine content (0.14 vs 1.34 mg/cigarette) on the peak-to-peak amplitude and peak latency of the human averaged visual evoked response (AVER) were measured in 10 male smokers after a 2-hr smoking deprivation period. The AVER was obtained under five different flash intensities. Eight different peaks were involved in the amplitude and latency measurements. The nicotine dosage and flash intensity factors both had significant effects on peak-to-peak amplitudes while only the flash intensity factor affected peak latencies. The general enhancement of peak-to-peak amplitudes by the 1.34 mg cigarette, relative to the 0.14 mg cigarette, indicates that the effects of cigarette smoking on the AVER are predominantly due to nicotine's psychopharmacologic action, as opposed to other elements in tobacco smoke or as opposed to nonpharmacologic mechanisms involving learning processes. Past research, on an electrophysiological and behavioral level, indicating that nicotine, as administered via cigarette smoking, may have enhancing and/or restorative effects on visual attentional processes in the quiescent smoker was supported.

  14. Effect of stimulus check size on multifocal visual evoked potentials.

    Science.gov (United States)

    Balachandran, Chandra; Klistorner, Alexander I; Graham, Stuart L

    2003-03-01

    In this study we examined the effects of varying stimulus check size on multifocal visual evoked potential (VEP). We also evaluated the currently used cortical scaling of stimulus segments. The ObjectiVision multifocal objective perimeter stimulates the eye with random check patterns at 56 cortically scaled segments within the visual field extending to a radius of 26 degrees. All cortically scaled segments have equal number of checks, which gradually increase in size from the center to the periphery, proportional to the size of the segment. Stimuli with 9, 16, 25, 36 and 49 checks/segment were tested on 10 eyes belonging to 10 normal subjects. The check size varied inversely with number of checks per segment. VEP was recorded using bipolar occipital cross electrodes (7 min/eye), the amplitude and latency of responses obtained were compared with the check size at different eccentricities. Our findings suggest that the existing setting with 16 checks/segment subtending 26' to 140' from center to periphery, is the most effective amongst all the check sizes. Decreasing the check size prolongs the latency in the central field only. Cortical scaling of segments generates responses of the same order of magnitude throughout the field, but could be improved slightly to enhance the signal from the outer two rings.

  15. Flash visual evoked potentials in diurnal birds of prey

    Directory of Open Access Journals (Sweden)

    Maurizio Dondi

    2016-07-01

    Full Text Available The objective of this pilot study was to evaluate the feasibility of Flash Visual Evoked Potentials (FVEPs testing in birds of prey in a clinical setting and to describe the protocol and the baseline data for normal vision in this species. FVEP recordings were obtained from 6 normal adult birds of prey: n. 2 Harris’s Hawks (Parabuteo unicinctus, n. 1 Lanner Falcon (Falco biarmicus, n. 2 Gyrfalcons (Falco rusticolus and n. 1 Saker Falcon (Falco cherrug. Before carrying out VEP tests, all animals underwent neurologic and ophthalmic routine examination. Waveforms were analysed to identify reproducible peaks from random variation of baseline. At least three positive and negative peaks were highlighted in all tracks with elevated repeatability. Measurements consisted of the absolute and relative latencies of these peaks (P1, N1, P2, N2, P3, and N3 and their peak-to-peak amplitudes. Both the peak latency and wave morphology achieved from normal animals were similar to those obtained previously in other animal species. This test can be easily and safely performed in a clinical setting in birds of prey and could be useful for an objective assessment of visual function.

  16. Multifocal Visual Evoked Potential (mfVEP) and Pattern-Reversal Visual Evoked Potential Changes in Patients with Visual Pathway Disorders: A Case Series.

    Science.gov (United States)

    Alshowaeir, Daniah; Yiannikas, Con; Klistorner, Alexander

    2015-10-01

    The purpose of this study was to evaluate multifocal visual evoked potential (mfVEP) and pattern-reversal visual evoked potential (PVEP) changes in patients with pathology at various levels of the visual pathway determined by other methods. Six patients with different visual pathway disorders, including vascular ischaemic events and compressive optic neuropathy, were reviewed. All patients were tested with both mfVEP and full-field and half-field PVEPs. Results were assessed in relation to other diagnostic tests such as magnetic resonance imaging, Humphrey visual field test, and optical coherence topography. The cases in this study demonstrate a potential higher sensitivity of mfVEP compared with conventional PVEPs in detecting lesions affecting the peripheral field, horizontal hemifields, and lesions of the post-chiasmal pathway. The limitation of the PVEP in this setting is probably due to phase cancellation and overrepresentation of the macular region. mfVEP provides a more accurate assessment of visual defects when compared with conventional PVEP. The independent assessment of different areas of the visual field improves the detection and localization of lesions and provides an objective topographical map that can be used in clinical practice as an adjunct to other diagnostic tests and to assess disease progression.

  17. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.

    Science.gov (United States)

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2015-01-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  18. Effect of fixation tasks on multifocal visual evoked potentials.

    Science.gov (United States)

    Martins, Alessandra; Klistorner, Alexander; Graham, Stuart; Billson, Frank

    2005-10-01

    This study investigated the effects of cognitive influence on the multifocal visual evoked potential (mVEP) at different levels of eccentricity. Three different foveal fixation conditions were utilized involving varying levels of task complexity. A more complex visual fixation task has been known to suppress peripheral signals in subjective testing. Twenty normal subjects had monocular mVEPs recorded using the AccuMap objective perimeter. This allowed simultaneous stimulation of 58 segments of the visual field to an eccentricity of 24 degrees. The mVEP was recorded using three different fixation conditions in random order. During task 1 the subject passively viewed the central fixation area. For task 2 alternating numbers were displayed within the fixation area; the subject on viewing the number '3' in the central fixation area indicated recognition by pressing a button. Throughout task 3, numbers were displayed as in task 2. The subject had the cognitive task of summating all the numbers. Analysis revealed that the increased attention and concentration demanded by tasks 2 and 3 in comparison with task 1 resulted in significantly enhanced central amplitudes of 9.41% (Mann-Whitney P = 0.0002) and 13.45% (P = 0.0002), respectively. These amplitudes became reduced in the periphery and approached those of task 1, resulting in no significant difference between the three tasks. Latencies demonstrated no significant difference between each task nor at any eccentricity (P > 0.05). As the complexity of each task increased the amount of alpha rhythm was significantly reduced. Our findings indicate that task 1 required a minimal demand of cognition and was associated with the greatest amount of alpha rhythm. It was also the most difficult to perform because of loss of interest. The other two tasks required a greater demand of higher order cognitive skills resulting in significantly enhanced amplitudes centrally and the attenuation of alpha rhythm. Therefore, amplitudes are

  19. Visual evoked potential (VEP) and multifocal electroretinogram (mfERG) in ocular syphilitic posterior segment inflammation.

    Science.gov (United States)

    Alexander, Philip; Wen, Yaqin; Baxter, Julia M; Tint, Naing L; Browning, Andrew C; Amoaku, Winfried M

    2012-10-01

    The aim of this study is to correlate multifocal electroretinogram (mfERG) and visual evoked potential (VEP) changes with visual acuity and clinical features in patients with posterior segment inflammation secondary to syphilis. A retrospective interventional case series of 4 patients with visual loss secondary to syphilitic uveitis is reported. The mfERG (P1) showed diminished amplitudes and prolonged latency in 7 affected eyes. Visual acuity rapidly improved 2 weeks after initiation of therapy. OCT demonstrated anatomical recovery at 1 month. In three patients, visual acuity was restored to 6/6 at 6-9 months but mfERG responses remained significantly reduced and delayed for 12-15 months before recovery to normal levels. One patient developed a retinal detachment, but achieved 6/9 vision at 30 months. VEP changes, interpreted in combination with mfERG responses, showed evidence of optic nerve involvement in 6 eyes. Ocular findings, including posterior placoid chorioretinitis, are important diagnostic features of secondary and tertiary syphilis. Visual acuity and clinical recovery occur early with appropriate diagnosis and treatment, and precede full electrophysiological recovery of the outer retina-RPE complex. Ophthalmologists have the opportunity to play a key role in undetected or missed diagnoses of syphilis, and with appropriate treatment the visual prognosis is excellent.

  20. Pattern visual evoked potential in newly diagnosed hypertensive individuals

    Directory of Open Access Journals (Sweden)

    Anitha Achuthan

    2015-12-01

    Conclusions: Statistically significant delay in p100 suggests that the development of hypertensive retinopathy sub clinically, occurs in very early stages of Hypertension, which is not detectable on routine clinical examination. VEP can be suggested for screening in high-risk individuals to evaluate the functional integrity of visual pathway in hypertension and as a key to unravel the mystery of hidden Hypertensive Morbidity and Mortality. [Int J Res Med Sci 2015; 3(12.000: 3614-3619

  1. Investigating the mechanisms of visually-evoked tactile sensations.

    Science.gov (United States)

    McKenzie, Kirsten J; Lloyd, Donna M; Brown, Richard J; Plummer, Faye; Poliakoff, Ellen

    2012-01-01

    When attempting to detect a near-threshold signal, participants often incorrectly report the presence of a signal, particularly when a stimulus in a different modality is presented. Here we investigated the effect of prior experience of bimodal visuotactile stimuli on the rate of falsely reported touches in the presence of a light. In Experiment 1, participants made more false alarms in light-present than light-absent trials, despite having no experience of the experimental visuotactile pairing. This suggests that light-evoked false alarms are a consequence of an existing association, rather than one learned during the experiment. In Experiment 2, we sought to manipulate the strength of the association through prior training, using supra-threshold tactile stimuli that were given a high or low association with the light. Both groups still exhibited an increased number of false alarms during light-present trials, however, the low association group made significantly fewer false alarms across conditions, and there was no corresponding group difference in the number of tactile stimuli correctly identified. Thus, while training did not affect the boosting of the tactile signal by the visual stimulus, the low association training affected perceptual decision-making more generally, leading to a lower number of illusory touch reports, independent of the light.

  2. Pattern reversal visual evoked potentials in migraine subjects without aura

    Directory of Open Access Journals (Sweden)

    Pedro F. Moreira Filho

    1994-12-01

    Full Text Available Twenty seven patients with migraine without aura were investigated. The age was between 12 and 54 years; 5 were men and 22 women. The diagnosis of migraine was made according to the classification proposed by the International Headache Society. The method of visual evoked potential was performed with pattern reversal (VEP-PR, with monocular stimulation. The stimulation was performed with pattern reversal with 4x4 cm black and white and red and green squared screen placed 1 meter from the nasion at stimulus frequency 1/s; 128 individual trials were analysed. The VEP-PR with black/white and red/green study showed a significant increase of value of the P-100 latency in 10 migraine patients. In 8 cases the LP100 in VEP-PR black/white was normal but in VEP-PR red/green the LP100 showed increase. Specifically in 1 of our cases, LP100 were normal in VEP-PR black/white but in the red/green there were no reproductice waves. On basis of these observations we consider that the method of VEP-PR is an useful instrument for investigation of migraine patients without aura.

  3. Software for analysing multifocal visual evoked potential signal latency progression.

    Science.gov (United States)

    de Santiago, L; Klistorner, A; Ortiz, M; Fernández-Rodríguez, A J; Rodríguez Ascariz, J M; Barea, R; Miguel-Jiménez, J M; Boquete, L

    2015-04-01

    This paper describes a new non-commercial software application (mfVEP(2)) developed to process multifocal visual-evoked-potential (mfVEP) signals in latency (monocular and interocular) progression studies. The software performs analysis by cross-correlating signals from the same patients. The criteria applied by the software include best channels, signal window, cross-correlation limits and signal-to-noise ratio (SNR). Software features include signal display comparing different tests and groups of sectors (quadrants, rings and hemispheres). The software's performance and capabilities are demonstrated on the results obtained from a patient with acute optic neuritis who underwent 9 follow-up mfVEP tests. Numerical values and graphics are presented and discussed for this case. The authors present a software application used to study progression in mfVEP signals. It is also useful in research projects designed to improve mfVEP techniques. This software makes it easier for users to manage the signals and allows them to choose various ways of selecting signals and representing results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Early vision and visual attention

    Directory of Open Access Journals (Sweden)

    Gvozdenović Vasilije P.

    2003-01-01

    Full Text Available The question whether visual perception is spontaneous, sudden or is running through several phases, mediated by higher cognitive processes, was raised ever since the early work of Gestalt psychologists. In the early 1980s, Treisman proposed the feature integration theory of attention (FIT, based on the findings of neuroscience. Soon after publishing her theory a new scientific approach appeared investigating several visual perception phenomena. The most widely researched were the key constructs of FIT, like types of visual search and the role of the attention. The following review describes the main studies of early vision and visual attention.

  5. Cholinergic pairing with visual activation results in long-term enhancement of visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Jun Il Kang

    Full Text Available Acetylcholine (ACh contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1 that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs in V1 of rats during a 4-8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine, nicotinic (mecamylamine, alpha7 (methyllycaconitine, and NMDA (CPP receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56% during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while alpha7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.

  6. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  7. Modulation of Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory Information: A ‘Virtual Reality Check’

    Science.gov (United States)

    Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760

  8. Appropriate stimulation in visual evoked potential to evaluate visual perception state of athletes

    Institute of Scientific and Technical Information of China (English)

    Yunxiang Li; Yuzhen Zhu

    2008-01-01

    BACKGROUND: Several studies have demonstrated that visual evoked potentials can be influenced by sport events. To the best of our knowledge, there are no specific parameters for the most appropriate stimulation for evaluating the functional state of athletes. OBJECTIVE: To investigate the best stimulation in visual evoked potential to apply to functional evaluation of athletes. DESIGN, TIME AND SETTING: Ninety-five, healthy students from the Shandong Normal University took part in an observational, contrast study. PARTICIPANTS: All active participants were male. Sixty-five students majored in physical education, and had participated in exercise for the duration of (4.26±3.08) years. An additional 30 students majored in other subjects. METHODS: The neural electricity tester, NDI-200, was adapted to examine and record visual evoked potential with varying probes using bipolar electrodes attached to the head of all the participants in a dark room. The visual evoked potential values were analyzed transversally. A chessboard pattern reversal method was applied with the following parameters: 2 Hz stimulation frequency, brightness of 90 cdp, 80% contrast, 1-100 Hz bandpass filters, and 10 μ V sensitivity; 100 responses were averaged. MAIN OUTCOME MEASURES: latency, peak latencies, and inter-peak latencies were measured in N75, P100, N145 with varying probe stimulations. RESULTS: (1) Comparisons between the little check, middle check, and big check stimulation, demonstrated that the common tendencies in visual evoked potential indexes of the two groups of N75 latency were successively shorter and N145 were longer. P100-N145 peak latency was decreased and each inter-peak latency was longer. (2) Changes of N75, P10o, and NI45 with different check stimulations in the physical education student group: after compared with the middle check stimulation, N75 latency was significantly longer (P<0.01), and N75-P100 inter-peak latency (P<0.05) and N75-N145 inter-peak latency were

  9. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects.

    Science.gov (United States)

    Klistorner, A I; Graham, S L; Grigg, J R; Billson, F A

    1998-05-01

    To investigate the relationships between the pattern stimulation of different parts of the visual field (up to 25 degrees of eccentricity), the electrode position, and the cortical response to improve objective detection of local visual field defects. The human visual evoked potential (VEP) was assessed using multifocal pseudorandomly alternated pattern stimuli that were cortically scaled in size. Monopolar and bipolar electrode positions were used. The visual field was investigated up to 26 degrees of eccentricity. Twelve normal subjects and seven subjects with visual field defects of different nature were studied. Although the monopolar response is heavily biased toward the lower hemifield, bipolar leads overlying the active occipital cortex (straddling the inion) demonstrate good signals from all areas of the visual field tested. The amplitude is almost equal for the averaged upper and lower hemifields, but the polarity is opposite, causing partial cancellation of the full-field VEP. The degree of cancellation depends mainly on latency differences between the vertical hemifields. The bipolar VEP corresponded well with Humphrey visual field defects, and it showed a loss of signal in the scotoma area. The multifocal VEP demonstrates good correspondence with the topography of the visual field. Recording with occipital bipolar electrode placement is superior to standard monopolar recording. To avoid a full-field cancellation effect, a separate evaluation of upper and lower hemifields should be used for the best assessment of retinocortical pathways. This technique represents a significant step toward the possible application of the multifocal VEP to objective detection of local defects in the visual field.

  10. Effect of visual stimulus locations on pattern-reversal visual evoked potential An epidural electrocorticogram study

    Institute of Scientific and Technical Information of China (English)

    Wensheng Hou; Weiwei Shi; Xiaolin Zheng; Na Liu; Zongxia Mou; Yingtao Jiang; Zhengqin Yin

    2011-01-01

    To explore the effect of the location of a visual stimulus on neural responses in the primary visual cortex (V1), a micro-electromechanical system-based microelectrode array with nine channels was implanted on the cerebral dura mater of V1 in adult cats. 2 Hz pattern reversal checkerboard stimuli were used to stimulate the four visual quadrants (i.e., upper left, upper right, lower left, and lower right fields). The results showed that there was a N75 component of the visual evoked potential around 50-80 ms after the onset of a checkerboard stimulus, and the onset of these N75 peaks varied with different stimulus locations. The checkerboard stimuli induced shorter latencies in the contralateral V1 than in the ipsilateral V1, while the checkerboard stimulus in the upper half visual field induced shorter latencies for N75. These results suggested that the pattern-reversal stimuli induced neural activities in V1 that can be recorded with multichannel microelectrodes, and more detailed temporal and spatial properties can be measured.

  11. Comparison of visual evoked potentials and retinal nerve fibre layer thickness in Alzheimer‘s disease

    Directory of Open Access Journals (Sweden)

    Robert eKromer

    2013-12-01

    Full Text Available IntroductionAlzheimer‘s disease is a long term progressive neurodegenerative disease and might affect the retinal nerve fibre layer thickness of the eye. There is increasing evidence that visual evoked potentials, which are an objective way to indicate visual field loss, might be affected by the disease as well.Material and Methods22 patients (mean age: 75.9 ± 6.1 years; 14 women with mild-to-moderate Alzheimer‘s disease and 22 sex-matched healthy patients were examined. We compared the use of visual evoked potentials and retinal nerve fibre layer thickness using latest high-resolution spectral domain optical coherence tomography with eye-tracking capabilities for optimised peripapillary scan centring for the first time in Alzheimer‘s disease patients.ResultsThe mean MMSE score was 22.59 ± 5.47 in the Alzheimer‘s disease group, and did not significantly correlate with the visual evoked potentials latencies. We found no significant difference between the visual evoked potentials latencies of the Alzheimer‘s disease patients and those of the control patients. No peripapillary sector of the retina had a retinal nerve fibre layer thickness significantly correlated with the visual evoked potentials latencies.DiscussionWe demonstrated that pattern visual evoked potentials did not show any significant correlation despite subtle loss in retinal nerve fibre layer thickness. It remains open whether additional flash visual evoked potentials combined with retinal nerve fibre layer thickness analysis may be useful in diagnosing Alzheimer‘s disease, particularly for mild-to-moderate stages of the disease.

  12. Standard and limitation of intraoperative monitoring of the visual evoked potential

    OpenAIRE

    2010-01-01

    Visual evoked potential (VEP) has been installed as one of the intraoperative visual function monitoring. It remains unclear, however, whether intraoperative VEP monitoring facilitates as a real time visual function monitoring with satisfactory effectiveness and sensitivity. To evaluate this, relationships between VEP waveform changes and postoperative visual function were analysed retrospectively. Intraoperative VEP monitoring was carried out for 106 sides (eyes) in 53 surgeries, including t...

  13. Dynamic topography of pattern visual evoked potentials (PVEP) in psychogenic visual loss patients.

    Science.gov (United States)

    Nakamura, A; Tabuchi, A; Matsuda, E; Yamaguchi, W

    2000-09-01

    We investigated to measure the objective visual acuity using pattern visual evoked potentials (PVEP) to help the diagnosis with psychogenic visual loss (PVL) who ranged in age from 7 to 14 years old. Pattern stimuli consisted of black and white checkerboard patterns (39, 26, 15 and 9') with a visual angle of 8 degrees and a contrast level of 15%. The pattern reversal frequency was 0.7 Hz. This resulted in an average of 100 PVEP per session. Visual acuity of 0.1 was consistent with the 39' pattern, 0.2 with the 26' pattern, 0.5 with the 15' pattern, and 1.0 with the 9' pattern. As the results, five PVL patients could measure visual acuity with this method in the present study. The PVEP is useful in evaluating the visual acuity and helped to diagnose the PVL patients. In addition we used the dynamic topography to study the difference in the results of the PVEP. The dynamic topography obtained from the results of the PVEP was analyzed. The flow type of the P100 component diverged into three types (separated type, hollow type and localized type) in the PVL patients and the normal children. The localized type was observed in 59.1% of normal children and in 56.3% of PVL patients. While the separated type was shown in 6.8% of normal children and in 8.3% of PVL patients. There were not significant differences between the PVL patients and the normal children in each type.

  14. Effects of overt and covert attention on the steady-state visual evoked potential.

    Science.gov (United States)

    Walter, Sabrina; Quigley, Cliodhna; Andersen, Søren K; Mueller, Matthias M

    2012-06-21

    Flickering stimuli evoke an oscillatory brain response with the same frequency as the driving stimulus, the so-called steady-state visual evoked potential (SSVEP). SSVEPs are robust brain signals whose amplitudes are enhanced with attention and thus play a major role in the development and use of non-invasive Brain-Computer Interfaces (BCIs). We compared the modulation of SSVEP amplitudes when subjects directly gazed at a flickering array of static dots (overt attention) to when they covertly shifted attention to the dots keeping their eyes at central fixation. A discrimination task was performed at the attended location to ensure that subjects shifted attention as instructed. Horizontal eye movements (allowed in overt attention but to be avoided in covert attention) were monitored by the horizontal electrooculogram. Subjects' behavioural performance was significantly reduced in covert attention compared to overt attention. Correspondingly, attentional modulation of SSVEP amplitudes by overt attention was larger in magnitude than for covert attention. Overt attention also changed the topographical distribution of SSVEP amplitudes on the scalp. Stimuli elicited the largest amplitudes at central occipital electrodes when they were overtly attended and at contralateral parieto-occipital sites when they were covertly attended. Accordingly, source analysis revealed clear centrally located sources in early visual areas in overt attention, regardless of the attended visual hemifield. Taken together these results affirm that overt and covert attention have qualitatively and quantitatively different effects on SSVEP responses as well as on task performance. Moreover, our results suggest that navigating SSVEP-BCIs with overt attention is more reliable and highlight some of the challenges in developing BCIs for patients who have lost the ability to move their eyes.

  15. Difference between visually and electrically evoked gaze saccades disclosed by altering the head moment of inertia.

    Science.gov (United States)

    Coimbra, A J; Lefèvre, P; Missal, M; Olivier, E

    2000-02-01

    Differences between gaze shifts evoked by collicular electrical stimulation and those triggered by the presentation of a visual stimulus were studied in head-free cats by increasing the head moment of inertia. This maneuver modified the dynamics of these two types of gaze shifts by slowing down head movements. Such an increase in the head moment of inertia did not affect the metrics of visually evoked gaze saccades because their duration was precisely adjusted to compensate for these changes in movement dynamics. In contrast, the duration of electrically evoked gaze shifts remained constant irrespective of the head moment of inertia, and therefore their amplitude was significantly reduced. These results suggest that visually and electrically evoked gaze saccades are controlled by different mechanisms. Whereas the accuracy of visually evoked saccades is likely to be assured by on-line feedback information, the absence of duration adjustment in electrically evoked gaze shifts suggests that feedback information necessary to maintain their metrics is not accessible or is corrupted during collicular stimulation. This is of great importance when these two types of movements are compared to infer the role of the superior colliculus in the control of orienting gaze shifts.

  16. Exploring the methods of data analysis in multifocal visual evoked potentials

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; De Santiago, L; Fraser, C

    2016-01-01

    PURPOSE: The multifocal visual evoked potential (mfVEP) provides a topographical assessment of visual function, which has already shown potential for use in patients with glaucoma and multiple sclerosis. However, the variability in mfVEP measurements has limited its broader application. The purpose...

  17. [Intraoperative monitoring: visual evoked potentials in surgery of the sellar region].

    Science.gov (United States)

    Lorenz, M; Renella, R R

    1989-01-01

    During 18 sellar and perisellar operations the optic tract was monitored by visual evoked potentials (VEP). Deteriorations of the cortical responses were recorded in 73%. In this patients there was no close correlation between the intraoperative findings and the postoperative visual function. Only in those patients who showed no remarkable intraoperative changes VEP seemed to be of reliable prognostic value.

  18. Evaluation of neurodegeneration through visual evoked potentials in restless legs syndrome.

    Science.gov (United States)

    Kısabay, Ayşın; Sarı, Ummu Serpil; Korkmaz, Tuğba; Dinçhorasan, Gönül; Yılmaz, Hikmet; Selçuki, Deniz

    2016-12-01

    Restless legs syndrome (RLS) is a disease characterized by some type of dysesthesia, an indescribable abnormal sensation in the extremities. Our objective was to determine whether the visual evoked potentials (VEP) can be used as a quantitative monitoring method to evaluate demyelination-remyelination and neurodegeneration in the patients with RLS. The present study was carried out prospectively. It was planned to determine normal or pathological conditions in the form of increased latency or decreased amplitude of VEP and to evaluate possible pathologies in the visual and retinal pathways at early stages and at months 3 and 6 of follow-up in the patients with RLS (with or without iron deficiency anemia), in those without RLS (at the time of diagnosis prior to any medical therapy) without any visual symptoms. It was observed that latency of VEP improved but didn't return to normal limits following treatment with dopamin agonists, iron, or combination of both and that there was no significant difference between the post-treatment data and those of the control group. These results in combination with the fact that the latencies and amplitudes didn't return to normal levels despite the 6-month-treatment but showed a progressive course with partial regeneration suggests that there was incomplete remyelination. It should be kept in mind that this syndrome is likely to be a part of neurodegenerative process.

  19. A Comparative Evaluation of Humphrey Perimetry and the Multi-channel Pattern Visual Evoked Potentials

    Institute of Scientific and Technical Information of China (English)

    Caiping Hu; Lezheng Wu; De-Zheng Wu; Shixian Long

    2000-01-01

    Purposes: To compare the multi-channel pattern visual evoked potentials to Humphrey perimetry in the assessment of central visual function in primary open angle glaucoma.Methods: The multi-channel checkerboard reversal PVEPs waves to full-field and half-field stimulus of 25 normal persons and 74 patients with primary open angle glaucoma were recorded and analyzed, All patients were examined using Humphrey Field Analyzer. The area of visual field corresponding to the area of retina stimulated during multi-channel PVEPs testing were analysed, straight-line correlation and regression analyses of the various multi-channel PVEPs parameters and the total dB losses were performed.Results: The multi-channel PVEPs demonstrated a low detection rate compared with Humprey perimetry in the early glaucoma, absolute latency and field loss were correlated in the late stage of glaucoma, and absolute amplitude and field loss were not correlated.Conclusions: In relation to signalling “early” loss the multi-channel PVEPs was inferior to Humphrey perimetry, in late loss of primary open angle glaucoma, multi-channel PVEPs can provide a valuable, objective complement to Humphrey perimetry.

  20. Effects of light deprivation on visual evoked potentials in migraine without aura

    Directory of Open Access Journals (Sweden)

    Pierelli Francesco

    2011-07-01

    Full Text Available Abstract Background The mechanisms underlying the interictal habituation deficit of cortical visual evoked potentials (VEP in migraine are not well understood. Abnormal long-term functional plasticity of the visual cortex may play a role and it can be assessed experimentally by light deprivation (LD. Methods We have compared the effects of LD on VEP in migraine patients without aura between attacks (MO, n = 17 and in healthy volunteers (HV, n = 17. Six sequential blocks of 100 averaged VEP at 3.1 Hz were recorded before and after 1 hour of LD. We measured VEP P100 amplitude of the 1st block of 100 sweeps and its change over 5 sequential blocks of 100 responses. Results In HV, the consequence of LD was a reduction of 1st block VEP amplitude and of the normal habituation pattern. By contrast, in MO patients, the interictal habituation deficit was not significantly modified, although 1st block VEP amplitude, already lower than in HV before LD, further decreased after LD. Conclusions Light deprivation is thought to decrease both excitatory and subsequent inhibitory processes in visual cortex, which is in line with our findings in healthy volunteers. The VEP results in migraine patients suggest that early excitation was adequately suppressed, but not the inhibitory mechanisms occurring during long term stimulation and habituation. Accordingly, deficient intracortical inhibition is unlikely to be a primary factor in migraine pathophysiology and the habituation deficit.

  1. [Topographic aspects of visual evoked potentials recorded after flash-pattern stimulation in normal subjects].

    Science.gov (United States)

    Samson-Dollfus, D; Parain, D; Menard, J F; Layet, A; Nehili, F; Dreano, E

    1986-02-01

    Visual evoked responses have been recorded on 14 leads placed on the scalp. They were localised on the central, parietal, temporal and occipital regions. The common reference was linked-ears. The stimulus consisted of a flash pattern. The size of the pattern and of each square was respectively of 20 degrees and 30 min. The stimulation of the total visual field had evoked two families of curves. One of these types of curves was posterior (occipital, temporal and parietal) and consisted in a positive, negative, positive wave (100, 136, 200 msec on average) and the second type was localised on the central leads and much more rhythmic than the posterior response. The initial complex (negative, positive, negative, positive: 70, 92, 120, 178 msec) was followed by a slow after-discharge. The half-field stimulation evoked a P100 component on the contralateral posterior leads, but this P100 was less prominent on the ipsilateral posterior leads. The modifications were particularly evident at the level of the temporal posterior electrodes. This P100 component was the only wave to be modified by half-field visual stimulation. The posterior N136 and P200 wave and all the rhythmic central response were exactly the same with half or total visual field stimulation. The results have obviously shown that the different waves of the visual evoked responses are not coming from the same sources. The interpretation of multichannel evoked recordings was therefore very difficult.

  2. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    Science.gov (United States)

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  3. The diagnostic significance of the multifocal pattern visual evoked potential in glaucoma.

    Science.gov (United States)

    Graham, S L; Klistorner, A

    1999-04-01

    The concept of objective perimetry is an exciting one because it strives to assess glaucoma damage without relying on psychophysical testing. The recent introduction of multifocal stimulus recording has enhanced our ability to examine the human visual field using electrophysiology. A multifocal pattern visual evoked potential can now be recorded, testing up to 60 sites within the central 25 degrees. The test requires only that the subject fixate on a target, while a cortically scaled dartboard pattern stimulus undergoes pseudorandom alternation within each of the test segments. In its present configuration the test requires at least 8 minutes recording time per eye. Modified bipolar electrode positions are required to ensure that adequate signals are detected from all parts of the visual field. In glaucoma patients, pattern visual evoked potential amplitudes have been shown to reflect visual field loss with reduction of signal amplitude in the affected areas. This technique represents the first major step toward objective detection of visual field defects in glaucoma.

  4. Multifocal visual evoked potential latency analysis: predicting progression to multiple sclerosis.

    Science.gov (United States)

    Fraser, Clare; Klistorner, Alexander; Graham, Stuart; Garrick, Raymond; Billson, Francis; Grigg, John

    2006-06-01

    To monitor the difference in conversion rates to multiple sclerosis (MS) in 46 patients with optic neuritis between patients with multifocal visual evoked potential latency delay and those with normal latency. Prospective case series. Metropolitan neuro-ophthalmology clinic. Forty-six patients with optic neuritis who did not have a diagnosis of MS on enrollment in the study. Conversion to MS according to the McDonald criteria. Analysis revealed that only 22 subjects had multifocal visual evoked potential latency delay. Over 1 year, 36.4% of patients with optic neuritis with latency delays progressed clinically to MS compared with 0% of those with normal latencies (P = .03, chi2). This may indicate that multifocal visual evoked potential latency delay can assist in predicting progression to future MS.

  5. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    Science.gov (United States)

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  6. Objective perimetry using the multifocal visual evoked potential in central visual pathway lesions.

    Science.gov (United States)

    Klistorner, A I; Graham, S L; Grigg, J; Balachandran, C

    2005-06-01

    To examine the ability of the multifocal pattern visual evoked potential (mVEP) to detect field loss in neurological lesions affecting the visual pathway from the chiasm to the cortex. The mVEPs recorded in the clinic were retrospectively reviewed for any cases involving central neurological lesions. Recordings had been performed with the AccuMap V1.3 objective perimeter, which used an array of four bipolar occipital electrodes to provide four differently oriented channels for simultaneous recording. 19 patients with hemianopias were identified. Of these there were 10 homonymous hemianopias with hemifield type loss, two bitemporal hemianopias, and seven homonymous hemianopias with quadrantanopic distribution. A comparison with subjective field results and CT/MRI findings was done to determine the relation between the two methods of visual field mapping and any relation with the anatomical location of the lesion and the mVEP results. In all hemianopic type cases (12) the defect was demonstrated on the mVEP and showed good correspondence in location of the scotoma (nine homonymous and two bitemporal). The topographic distribution was similar but not identical to subjective testing. Of the seven quadrantanopic type hemianopias, only four were found to have corresponding mVEP losses in the same areas. In the three cases where the mVEP was normal, the type of quadrantanopia had features consistent with an extra-striate lesion being very congruous, complete, and respecting the horizontal meridian. The mVEP can detect field loss from cortical lesions, but not in some cases of homonymous quadrantanopia, where the lesion may have been in the extra-striate cortex. This supports the concept that the mVEP is generated in V1 striate cortex and that it may be able to distinguish striate from extra-striate lesions. It implies caution should be used when interpreting "functional" loss using the mVEP if the visual field pattern is quadrantic.

  7. Monitoring of flash visual evoked potentials during neurosurgical operations.

    Science.gov (United States)

    Cedzich, C; Schramm, J

    1990-01-01

    In summary, our results suggest that flash VEP monitoring is not specific for visual acuity and has not proved helpful as an intraoperative warning system. The future challenge will be to devise a method which activates only those fibers specific to visual acuity and which provides reproducible and reliable information quickly enough that adjustments in patient management can be made.

  8. Visual Evoked Potential Response Among Drug Abusers- A Cross Sectional Study

    Science.gov (United States)

    Sharma, Rajeev; Thapar, Satish; Mittal, Shilekh

    2016-01-01

    Introduction There is important preclinical evidence that substance abuse may produce neurophysiological disturbances particularly in relation to altered neural synchronization in Visual Evoked Potentials (VEP). Aim The purpose of current study was to compare the latencies and amplitudes of different waveforms of VEP among different drug abusers and controls and also to identify early neurological damage so that proper counseling and timely intervention can be undertaken. Materials and Methods VEP was assessed by Data Acquisition and Analysis system in a sample of 58 drug abusers, all males, within age group of 15-45 years as well as in age matched 30 healthy controls. The peak latencies and peak to peak amplitudes of different waveforms were measured by applying one-way Anova test and unpaired t-test using SPSS version 16. Results In between drug abusers and controls, the difference in the duration of N75 and P100 waveform of VEP was found to be statistically highly significant (pdrug abusers in both eyes. Conclusion Chronic intoxication by different drugs has been extensively associated with amplitude reduction of P100 and prolonged latency of N75 and P100 reflecting an adverse effects of drug dependence on neural transmission within primary visual areas of brain. PMID:27042456

  9. Steady-state visual-evoked response to upright and inverted geometrical faces: a magnetoencephalography study.

    Science.gov (United States)

    Tsuruhara, Aki; Inui, Koji; Kakigi, Ryusuke

    2014-03-01

    The face is one of the most important visual stimuli in human life, and inverted faces are known to elicit different brain responses than upright faces. This study analyzed steady-state visual-evoked magnetic fields (SSVEFs) in eleven healthy participants when they viewed upright and inverted geometrical faces presented at 6Hz. Steady-state visual-evoked responses are useful measurements and have the advantages of robustness and a high signal-to-noise ratio. Spectrum analysis revealed clear responses to both upright and inverted faces at the fundamental stimulation frequency (6 Hz) and harmonics, i.e. SSVEFs. No significant difference was observed in the SSVEF amplitude at 6 Hz between upright and inverted faces, which was different from the transient visual-evoked response, N170. On the other hand, SSVEFs were delayed with the inverted face in the right temporal area, which was similar to N170 and the results of previous steady-state visual-evoked potentials studies. These results suggest that different mechanisms underlie the larger amplitude and delayed latency observed with face inversion, though further studies are needed to fully elucidate these mechanisms. Our study revealed that SSVEFs, which have practical advantages for measurements, could provide novel findings in human face processing.

  10. Dynamic extraction of visual evoked potentials through spatial analysis and dipole localization.

    Science.gov (United States)

    Wang, Y; Yang, F

    1995-08-01

    The dynamic extraction of evoked potential is a problem of great interest in EEG signal processing. In this paper, a comprehensive method is presented which integrates spatial analysis and dipole localization to make full use of the spatial-temporal information contained in the multichannel stimulation records. A realistic double boundary head model is constructed through CT scans and a two-step method devised to overcome the ill-posed nature of the forward problem of EEG caused by the low conductivity of the skull. As a result, visual evoked potentials can be effectively extracted from only two consecutive records and the dynamic information of visual evoked potential thus procured. The efficiency of the presented method has been verified by means of computer simulation and a clinical experiment.

  11. Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance.

    Science.gov (United States)

    Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias

    2015-10-01

    The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP. Copyright © 2015 the American Physiological Society.

  12. Electrode position and the multi-focal visual-evoked potential: role in objective visual field assessment.

    Science.gov (United States)

    Klistorner, A I; Graham, S L; Grigg, J R; Billson, F A

    1998-05-01

    To improve the performance of visual-evoked potentials (VEP) in the assessment of the human visual field, the multi-focal cortically scaled pattern VEP was recorded up to 250 of eccentricity in normal subjects. Monopolar and varying bipolar electrode positions were used. The monopolar response was strongly biased towards the lower hemifield. Bipolar leads straddling the inion (2 cm above and below) achieved approximately equal signals from the upper and lower visual field. Division into sectors of similar wave-form augments the analysis compared with summed full-field responses. With this technique, the multi-focal VEP can be used to objectively assess the visual field.

  13. Attentional Modulation of Visual-Evoked Potentials by Threat: Investigating the Effect of Evolutionary Relevance

    Science.gov (United States)

    Brown, Christopher; El-Deredy, Wael; Blanchette, Isabelle

    2010-01-01

    In dot-probe tasks, threatening cues facilitate attention to targets and enhance the amplitude of the target P1 peak of the visual-evoked potential. While theories have suggested that evolutionarily relevant threats should obtain preferential neural processing, this has not been examined empirically. In this study we examined the effects of…

  14. A Steady State Visually Evoked Potential Investigation of Memory and Ageing

    Science.gov (United States)

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-01-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…

  15. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain...

  16. Electrically Elicited Visual Evoked Potentials in Argus II Retinal Implant Wearers

    OpenAIRE

    2013-01-01

    We characterized electrically elicited visual evoked potentials (eVEPs) in Argus II retinal implant wearers. eVEPs were correlated significantly with stimulus level and subjective percept. We conclude that eVEPs may become an important tool for intraoperative monitoring and rehabilitation purposes.

  17. Effects of Form Perception and Meaning on the Visual Evoked Potential with Author’s Update

    Science.gov (United States)

    2009-09-01

    interpretations of reversible figures, simple geometrical forms, and consonant- vowel -consonant (cvc) trigrams with differently ordered consonants were...employed. Why, then, look at visual evoked potentials resulting from ambiguous figures and consonant- vowel -consonant (cvc) trigrams? When I was...ability to investigate the brain mechanisms for processing information, attention, perception, emotion , and consciousness, the hardware did not tell what

  18. Negative Component of Visual Evoked Potential in Children with Cognitive Processing.

    Science.gov (United States)

    Yanagihara, Masafumi; Sako, Akihito

    This study investigates a negative component (N220) of visual evoked potential (VEP) which increases as certain cognitive processes are activated. Nine experimental conditions were designed by combining three stimulus and three task conditions. Letters were used as verbal stimuli, matrix patterns were used as nonverbal stimuli, and white light was…

  19. Comparison of the pattern reversal visual evoked potential mediated by separate cone systems

    DEFF Research Database (Denmark)

    Johnsen, B; Frederiksen, J.L.; Larsson, H.B.

    1995-01-01

    With the purpose of recording responses mediated by the 3 cone systems visual evoked potentials (VEPs) were elicited by the reversal of monochromatic checkerboards superimposed upon strong monochromatic backgrounds (yellow, purple and blue-green). The sensitivity to light of various wave lengths...

  20. Cortical configuration by stimulus onset visual evoked potentials (SO-VEPs) predicts performance on a motion direction discrimination task.

    Science.gov (United States)

    Zalar, Bojan; Martin, Tim; Kavcic, Voyko

    2015-06-01

    The slowing of information processing, a hallmark of cognitive aging, has several origins. Previously we reported that in a motion direction discrimination task, older as compared to younger participants showed prolonged non-decision time, an index of an early perceptual stage, while in motion onset visual evoked potentials (MO-VEPs) the P1 component was enhanced and N2 was diminished. We did not find any significant correlations between behavioral and MO-VEP measures. Here, we investigated the role of age in encoding and perceptual processing of stimulus onset visually evoked potentials (SO-VEPs). Twelve healthy adults (age55years) performed a motion direction discrimination task during EEG recording. Prior to motion, the stimulus consisted of a static cloud of white dots on a black background. As expected, SO-VEPs evoked well defined P1, N1, and P2 components. Elderly participants as compared to young participants showed increased P1 amplitude while their P2 amplitude was reduced. In addition elderly participants showed increased latencies for P1 and N1 components. Contrary to the findings with MO-VEPs, SO-VEP parameters were significant predictors of average response times and diffusion model parameters. Our electrophysiological results support the notion that slowing of information processing in older adults starts at the very beginning of encoding in visual cortical processing, most likely in striate and extrastriate visual cortices. More importantly, the earliest SO-VEP components, possibly reflecting configuration of visual cortices and encoding processes, predict subsequent prolonging and tardiness of perceptual and higher-level cognitive processes.

  1. Moonwalker Descending Neurons Mediate Visually Evoked Retreat in Drosophila.

    Science.gov (United States)

    Sen, Rajyashree; Wu, Ming; Branson, Kristin; Robie, Alice; Rubin, Gerald M; Dickson, Barry J

    2017-03-06

    Insects, like most animals, tend to steer away from imminent threats [1-7]. Drosophila melanogaster, for example, generally initiate an escape take-off in response to a looming visual stimulus, mimicking a potential predator [8]. The escape response to a visual threat is, however, flexible [9-12] and can alternatively consist of walking backward away from the perceived threat [11], which may be a more effective response to ambush predators such as nymphal praying mantids [7]. Flexibility in escape behavior may also add an element of unpredictability that makes it difficult for predators to anticipate or learn the prey's likely response [3-6]. Whereas the fly's escape jump has been well studied [8, 9, 13-18], the neuronal underpinnings of evasive walking remain largely unexplored. We previously reported the identification of a cluster of descending neurons-the moonwalker descending neurons (MDNs)-the activity of which is necessary and sufficient to trigger backward walking [19], as well as a population of visual projection neurons-the lobula columnar 16 (LC16) cells-that respond to looming visual stimuli and elicit backward walking and turning [11]. Given the similarity of their activation phenotypes, we hypothesized that LC16 neurons induce backward walking via MDNs and that turning while walking backward might reflect asymmetric activation of the left and right MDNs. Here, we present data from functional imaging, behavioral epistasis, and unilateral activation experiments that support these hypotheses. We conclude that LC16 and MDNs are critical components of the neural circuit that transduces threatening visual stimuli into directional locomotor output.

  2. The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia

    Science.gov (United States)

    Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P.; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2016-01-01

    Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia. PMID:26763954

  3. Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice.

    Science.gov (United States)

    Graham, Stuart L; Klistorner, Alexander I; Goldberg, Ivan

    2005-06-01

    To evaluate the role of objective perimetry using multifocal visual evoked potentials (mVEPs) in glaucoma practice, and to assess its utility in patients with inconclusive standard automated perimetry findings. Method A retrospective case series of 436 consecutive subjects referred for glaucoma investigation who underwent testing with the AccuMap V1.3 mVEP system (ObjectiVision Pty, Ltd, Sydney, New South Wales, Australia) within a defined 12-month period. Sensitivity was determined by comparing this testing with that of standard automated perimetry and that used in a subgroup in whom masked stereoscopic optic disc photographs were used as an alternative reference standard. Overall clinical diagnostic outcomes were assessed. The mVEP changes were correlated with the stage of disease and Humphrey mean deviation (r = 0.78). The overall sensitivity for detecting glaucoma with established subjective field loss was 97.5% (early glaucoma, 95.0%), whereas 92.2% of low-risk suspects had normal mVEPs. When masked disc assessment alone was used for diagnosis of abnormality, sensitivity of mVEP (80.6%) and Humphrey visual field results (81.9%) were similar, but mVEP specificity was better (89.2% vs 79.5%). The mVEP was particularly useful in assessing excessive subjective field loss (45 eyes) by showing a much closer correlation with the clinical picture. Multifocal VEP is an effective method for detecting visual field loss in glaucoma. It provides a valuable aid to the clinician in categorizing patients with unreliable, variable, unconfirmed, or excessive subjective field loss.

  4. Dichoptic stimulation improves detection of glaucoma with multifocal visual evoked potentials.

    Science.gov (United States)

    Arvind, Hemamalini; Klistorner, Alexander; Graham, Stuart; Grigg, John; Goldberg, Ivan; Klistorner, Asya; Billson, Frank A

    2007-10-01

    To determine whether simultaneous binocular (dichoptic) stimulation for multifocal visual evoked potentials (mfVEP) detects glaucomatous defects and decreases intereye variability. Twenty-eight patients with glaucoma and 30 healthy subjects underwent mfVEP on monocular and dichoptic stimulation. Dichoptic stimulation was presented with the use of virtual reality goggles (recording time, 7 minutes). Monocular mfVEPs were recorded sequentially for each eye (recording time, 10 minutes). Comparison of mean relative asymmetry coefficient (RAC; calculated as difference in amplitudes between eyes/sum of amplitudes of both eyes at each segment) on monocular and dichoptic mfVEP revealed significantly lower RAC on dichoptic (0.003 +/- 0.03) compared with monocular testing (-0.02 +/- 0.04; P = 0.002). In all 28 patients, dichoptic mfVEP identified defects with excellent topographic correspondence. Of 56 hemifields (28 eyes), 33 had Humphrey visual field (HFA) scotomas, all of which were detected by dichoptic mfVEP. Among 23 hemifields with normal HFA, two were abnormal on monocular and dichoptic mfVEP. Five hemifields (five patients) normal on HFA and monocular mfVEP were abnormal on dichoptic mfVEP. In all five patients, corresponding rim changes were observed on disc photographs. Mean RAC of glaucomatous eyes was significantly higher on dichoptic (0.283 +/- 0.18) compared with monocular (0.199 +/- 0.12) tests (P = 0.0006). Dichoptic mfVEP not only detects HFA losses, it may identify early defects in areas unaffected on HFA and monocular mfVEP while reducing testing time by 30%. Asymmetry was tighter among healthy subjects but wider in patients with glaucoma on simultaneous binocular stimulation, which is potentially a new tool in the early detection of glaucoma.

  5. Dysfunction in the fellow eyes of strabismic and anisometropic amblyopic children assessed by visually evoked potentials

    Directory of Open Access Journals (Sweden)

    Eric Pinheiro Andrade

    Full Text Available ABSTRACT Purpose: To evaluate visual acuity and transient pattern reversal (PR visual evoked potentials (VEPs in the fellow eyes of children with strabismic and/or anisometropic amblyopia. Methods: Children diagnosed with strabismic and/or anisometropic amblyopia were recruited for electrophysiological assessment by VEPs. Monocular grating and optotype acuity were measured using sweep-VEPs and an Early Treatment Diabetic Retinopathy Study chart, respectively. During the same visit, transient PR-VEPs of each eye were recorded using stimuli subtending with a visual angle of 60', 15', and 7.5'. Parameters of amplitude (in μV and latency (in ms were determined from VEP recordings. Results: A group of 40 strabismic and/or anisometropic amblyopic children (22 females: 55%, mean age= 8.7 ± 2.2 years, median= 8 years was examined. A control group of 19 healthy children (13 females: 68.4%, mean age= 8.2 ± 2.6 years, median= 8 years was also included. The fellow eyes of all amblyopes had significantly worse optotype acuity (p=0.021 than the control group, regardless of whether they were strabismic (p=0.040 or anisometropic (p=0.048. Overall, grating acuity was significantly worse in the fellow eyes of amblyopes (p=0.016 than in healthy controls. Statistically prolonged latency for visual angles of 15' and 7.5' (p=0.018 and 0.002, respectively was found in the strabismic group when compared with the control group. For the smaller visual stimulus (7.5', statistically prolonged latency was found among all fellow eyes of amblyopic children (p<0.001. Conclusions: The fellow eyes of amblyopic children showed worse optotype and grating acuity, with subtle abnormalities in the PR-VEP detected as prolonged latencies for smaller size stimuli when compared with eyes of healthy children. These findings show the deleterious effects of amblyopia in several distinct visual functions, mainly those related to spatial vision.

  6. Flash visual evoked potential monitoring of optic tract function during macroelectrode-based pallidotomy.

    Science.gov (United States)

    Bonaroti, E A; Rose, R D; Kondziolka, D; Baser, S; Lunsford, L D

    1997-03-15

    Posteroventral pallidotomy (PVP) has received renewed interest as an ablative procedure for the symptomatic treatment of Parkinson's disease. In previous reports, the proximity of the optic tract to the lesion target in the globus pallidus internus has resulted in the occurrence of visual field deficits in as much as 14% of patients. The authors have used intraoperative visual evoked potentials (VEPs) during PVP to reduce this risk. All procedures were performed in awake patients. Flash stimuli were delivered to each eye via fiberoptic sources. Baseline flash VEPs were recorded at O1/Cz (left visual cortex to vertex), Oz/Cz (midline visual cortex to vertex), and O2/Cz (right visual cortex to vertex) for OS, OU, and OD stimulation. Epochs were acquired before and after localization, after macroelectrode stimulation, after temporary thermal lesioning, and after permanent thermal lesioning. Forty-seven patients underwent a total of 59 procedures. Visual evoked potentials were recorded reproducibly in all patients. In 11 procedures, VEP changes were reported, including six amplitude changes (10-80%), six latency shifts (3-10 msec), and one report of "variability." In four procedures, VEP changes prompted a change in target coordinates. One false-positive and one false-negative VEP change were encountered. The only confirmed visual deficit was a superior quadrantanopsia, present on formal fields, but clinically asymptomatic. The authors conclude that VEPs may be useful for procedures performed in the awake patient because of the lack of anesthetic-induced variability. The 1.7% visual morbidity reported here (one in 59 patients) compares favorably with other series using microelectrodes. Visual evoked potentials may be a useful monitoring technique to reduce the incidence of clinically significant visual morbidity during pallidotomy, especially during formal lesioning of the ventral pallidum adjacent to the optic tract.

  7. Visual evoked potentials in dementia: a meta-analysis and empirical study of Alzheimer's disease patients.

    Science.gov (United States)

    Pollock, V E; Schneider, L S; Chui, H C; Henderson, V; Zemansky, M; Sloane, R B

    1989-04-15

    A meta-analytic review of flash and pattern reversal visual evoked potential research indicates that elderly demented patients have longer P100 latencies than age-matched control subjects. In the present empirical research, patients with research diagnoses of probable Alzheimer's disease were compared with sex- and age-matched control subjects using P100 latencies of visual evoked potentials (VEP) elicited by flash and pattern reversal. As compared to control subjects, Alzheimer's disease patients showed significantly longer P100 latencies of the VEP elicited by pattern reversal; the flash P100 only marginally distinguished them. These findings are discussed within the context of VEP recording practices, patient selection, sex and age matching of control subjects, and the visual system.

  8. Value of visual evoked potential monitoring during trans-sphenoidal pituitary surgery.

    Science.gov (United States)

    Chacko, A G; Babu, K S; Chandy, M J

    1996-06-01

    The visual outcome of 22 patients undergoing trans-sphenoidal excision of pituitary macroadenomas with intraoperative flash visual evoked potential (VEP) monitoring (Group A), was compared with a non-randomized group of 14 patients who had undergone similar operations without VEP monitoring (Group B). Tumour size, preoperative visual acuity, peripheral fields, and latencies and amplitudes of P1 and P2 were analysed to ascertain the best predictor of postoperative visual function. It was found that patients in Group A had a significantly greater improvement in field defects than those in Group B. There was no difference in postoperative improvement in visual acuity between the two groups. None of the variables analysed were good predictors of visual outcome.

  9. Visual cortex plasticity evokes excitatory alterations in the hippocampus

    Directory of Open Access Journals (Sweden)

    Marian Tsanov

    2009-11-01

    Full Text Available The integration of episodic sequences in the hippocampus is believed to occur during theta rhythm episodes, when cortico-hippocampal dialog results in reconfiguration of neuronal assemblies. As the visual cortex (VC is a major source of sensory information to the hippocampus, information processing in the cortex may affect hippocampal network oscillations, facilitating the induction of synaptic modifications. We investigated to what degree the field activity in the primary VC, elicited by sensory or electrical stimulation, correlates with hippocampal oscillatory and synaptic responsiveness, in freely behaving adult rats. We found that the spectral power of theta rhythm (4-10Hz in the dentate gyrus (DG, increases in parallel with high-frequency oscillations in layer 2/3 of the VC and that this correlation depends on the degree of exploratory activity. When we mimic robust thalamocortical activity by theta-burst application to dorsal lateral geniculate nucleus, a hippocampal theta increase occurs, followed by a persistent potentiation of the DG granule field population spike. Furthermore, the potentiation of DG neuronal excitability tightly correlates with the concurrently occurring VC plasticity. The concurrent enhancement of VC and DG activity is also combined with a highly negative synchronization between hippocampal and cortical low frequency oscillations. Exploration of familiar environment decreases the degree of this synchrony. Our data propose that novel visual information can induce high-power fluctuations in intrinsic excitability for both VC and hippocampus, potent enough to induce experience-dependent modulation of cortico-hippocampal connections. This interaction may comprise one of the endogenous triggers for long-term synaptic plasticity in the hippocampus.

  10. Visual change detection recruits auditory cortices in early deafness.

    Science.gov (United States)

    Bottari, Davide; Heimler, Benedetta; Caclin, Anne; Dalmolin, Anna; Giard, Marie-Hélène; Pavani, Francesco

    2014-07-01

    Although cross-modal recruitment of early sensory areas in deafness and blindness is well established, the constraints and limits of these plastic changes remain to be understood. In the case of human deafness, for instance, it is known that visual, tactile or visuo-tactile stimuli can elicit a response within the auditory cortices. Nonetheless, both the timing of these evoked responses and the functional contribution of cross-modally recruited areas remain to be ascertained. In the present study, we examined to what extent auditory cortices of deaf humans participate in high-order visual processes, such as visual change detection. By measuring visual ERPs, in particular the visual MisMatch Negativity (vMMN), and performing source localization, we show that individuals with early deafness (N=12) recruit the auditory cortices when a change in motion direction during shape deformation occurs in a continuous visual motion stream. Remarkably this "auditory" response for visual events emerged with the same timing as the visual MMN in hearing controls (N=12), between 150 and 300 ms after the visual change. Furthermore, the recruitment of auditory cortices for visual change detection in early deaf was paired with a reduction of response within the visual system, indicating a shift from visual to auditory cortices of part of the computational process. The present study suggests that the deafened auditory cortices participate at extracting and storing the visual information and at comparing on-line the upcoming visual events, thus indicating that cross-modally recruited auditory cortices can reach this level of computation.

  11. Genetic effects on source level evoked and induced oscillatory brain responses in a visual oddball task.

    Science.gov (United States)

    Antonakakis, Marios; Zervakis, Michalis; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; De Geus, Eco J C; Micheloyannis, Sifis; Smit, Dirk J A

    2016-02-01

    Stimuli in simple oddball target detection paradigms cause evoked responses in brain potential. These responses are heritable traits, and potential endophenotypes for clinical phenotypes. These stimuli also cause responses in oscillatory activity, both evoked responses phase-locked to stimulus presentation and phase-independent induced responses. Here, we investigate whether phase-locked and phase-independent oscillatory responses are heritable traits. Oscillatory responses were examined in EEG recordings from 213 twin pairs (91 monozygotic and 122 dizygotic twins) performing a visual oddball task. After group Independent Component Analysis (group-ICA) and time-frequency decomposition, individual differences in evoked and induced oscillatory responses were compared between MZ and DZ twin pairs. Induced (phase-independent) oscillatory responses consistently showed the highest heritability (24-55%) compared to evoked (phase-locked) oscillatory responses and spectral energy, which revealed lower heritability at 1-35.6% and 4.5-32.3%, respectively. Since the phase-independent induced response encodes functional aspects of the brain response to target stimuli different from evoked responses, we conclude that the modulation of ongoing oscillatory activity may serve as an additional endophenotype for behavioral phenotypes and psychiatric genetics.

  12. Analysis of brain-stem auditory evoked potential and visual evoked potential in patients with Parkinson disease

    Institute of Scientific and Technical Information of China (English)

    Qiaorong Deng; Jianzhong Deng; Yanmin Zhao; Xiaohai Yan; Pin Chen

    2006-01-01

    BACKGROUND: With the development of neuroelectrophysiology, it had been identified that all kinds of evoked potentials might reflect the functional status of corresponding pathway. Evoked potentials recruited in the re search of PD, it can be known whether other functional pathway of nervous system is impaired. OBJECTIVE: To observe whether brainstem auditory and visual passageway are impaired in patients with Parkinson disease (PD), and compare with non-PD patients concurrently. DESIGN: A non-randomized concurrent controlled observation. SETTINGS: Henan Provincial Tumor Hospital; Anyang District Hospital. PARTICIPANTS: Thirty-two cases of PD outpatients and inpatients, who registered in the Department of Neurology, Anyang District Hospital from October 1997 to February 2006, were enrolled as the PD group, including 20 males and 12 females, aged 50-72 years old. Inclusive criteria: In accordance with the diagnostic criteria of PD recommended by the dyskinesia and PD group of neurology branch of Chinese Medical Association. Patients with diseases that could cause Parkinson syndrome were excluded by CT scanning or MRI examination. Meanwhile, 30 cases with non-neurological disease were selected from the Department of Internal Medicine of our hospital as the control group, including 19 males and 11 females, aged 45-70 years old. Including criteria: Without history of neurological disease or psychiatric disease; showing normal image on CT. And PD, Parkinson syndrome and Parkinsonism-plus were excluded by professional neurologist. All the patients were informed and agreed with the examination and clinical observation. METHODS: The electrophysiological examination and clinical observation of the PD patients and controls were conducted. The Reporter type 4-channel evoked potential machine (Italy) was used to check brain-stem auditory evoked potential (BAEP) and visual evoked potential (VEP). Why to be examined was explained to test taker. BAEP recording electrode was plac

  13. Visual Evoked Responses and EEGS for Divers Breathing Hyperbaric Air: An Assessment of Individual Differences

    Science.gov (United States)

    1975-06-03

    PAGE THE PROBLEM To find and assess quantitatively electrophysiologieal corre- lates of nitrogen narcosis in divers. FINDINGS Marked decrements in...visual evoked responses were found in most divers under conditions conducive to nitrogen narcosis . Results of this study show the average sizes of...the decrements and their probability of occurrence in a large group of subjects. APPLICATION Since nitrogen narcosis is a major problem deterring air

  14. Bogus visual feedback alters movement-evoked pain onset in people with neck pain

    OpenAIRE

    2014-01-01

    Pain is a protective perceptual response shaped by contextual, psychological and sensory inputs, particularly those that suggest danger to the body. Sensory cues suggesting that a vulnerable body part is moving towards a painful position, may credibly signal danger and thereby modulate pain . In this double-blind repeated-measures experiment, we used virtual reality to investigate whether manipulating visual-proprioceptive cues can alter movement-evoked pain, in 24 people with neck pain. W...

  15. MRI of optic nerve and postchiasmal visual pathways and visual evoked potentials in secondary progressive multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.B.; Hawkins, C.P. [School of Postgraduate Medicine, Keele Univ. (United Kingdom)]|[Department of Neurology and Neurophysiology, Royal Infirmary, Stoke-on-Trent (United Kingdom); Williams, R. [MRI Unit Cornwall House, Stoke-on-Trent (United Kingdom); Haq, N. [Department of Neurology, North Staffordshire Hospital, Stoke-on-Trent (United Kingdom); Pelosi, L. [Department of Neurology and Neurophysiology, Royal Infirmary, Stoke-on-Trent (United Kingdom)

    1998-12-01

    We studied the relationship between abnormalities shown by MRI and functional disturbances in the visual pathway as assessed by the visual evoked potential (VEP) in 25 patients with established multiple sclerosis (MS); only 4 of whom had a history of acute optic neuritis. Optic nerve MRI was abnormal in 19 (76 %) and is thus useful in detecting subclinical disease. Optic nerve total lesion length and area on the STIR sequence was found to correlate significantly with prolongation of the VEP latency. This may reflect a predominantly demyelinating rather than inflammatory origin for the signal change in the optic nerve. (orig.) With 5 figs., 1 tab., 25 refs.

  16. Lack of habituation of evoked visual potentials in analytic information processing style: evidence in healthy subjects.

    Science.gov (United States)

    Buonfiglio, Marzia; Toscano, M; Puledda, F; Avanzini, G; Di Clemente, L; Di Sabato, F; Di Piero, V

    2015-03-01

    Habituation is considered one of the most basic mechanisms of learning. Habituation deficit to several sensory stimulations has been defined as a trait of migraine brain and also observed in other disorders. On the other hand, analytic information processing style is characterized by the habit of continually evaluating stimuli and it has been associated with migraine. We investigated a possible correlation between lack of habituation of evoked visual potentials and analytic cognitive style in healthy subjects. According to Sternberg-Wagner self-assessment inventory, 15 healthy volunteers (HV) with high analytic score and 15 HV with high global score were recruited. Both groups underwent visual evoked potentials recordings after psychological evaluation. We observed significant lack of habituation in analytical individuals compared to global group. In conclusion, a reduced habituation of visual evoked potentials has been observed in analytic subjects. Our results suggest that further research should be undertaken regarding the relationship between analytic cognitive style and lack of habituation in both physiological and pathophysiological conditions.

  17. Visual evoked potentials in optic nerve injury--does it merit to be mentioned?

    Directory of Open Access Journals (Sweden)

    Mahapatra A

    1991-01-01

    Full Text Available The value of Visual Evoked Potentials (VEP in the management of indirect optic nerve injury was prospectively studied in 78 patients. The initial VEPs were normal in 10, abnormal in 29 and absent in 39 patients. All 10 patients with normal VEP showed visual recovery. Amongst 29 patients with abnormal VEP, 26 (86.6% showed improvement. In 39 patients initial VEPs showed no wave, however, subsequent VEP recordings demonstrated wave formation. Thus in 31 patients repeated VEP recordings failed to demonstrate wave formation, and none of them improved. This study, thus brings out the high predictive value of both positive and negative VEPs.

  18. Influence of body temperature on the evoked activity in mouse visual cortex.

    Science.gov (United States)

    Tang, Bin; Kalatsky, Valery A

    2013-06-01

    Optical imaging of intrinsic signals and conventional electrophysiological methods were used to investigate the correlation between the evoked activity in mouse visual cortex and core body temperature. The results show that hypothermia (25-36 °C) decreases the intensity of optical imaging in the visual cortex and the imaging signal reversibly disappears at 25 °C. Hyperthermia (39-41 °C) increases the intensity but decreases the quality of cortical imaging when body temperature is above 40 °C. The change of optical imaging was in line with that of neuronal activities and local field potentials (LFPs) directly recorded from the visual cortex at 25-39 °C. Hypothermia decreases neuron firing rate and LFPs amplitude. Most of the recorded neurons ceased firing to visual stimulation at 25 °C. Hyperthermia increases neuronal firing rate and LFPs amplitude. Both are reduced when body temperature is above 40 °C, though neither change was statistically significant. These results suggest: (1) Body temperature has an important impact on the visual cortical evoked activities and optical imaging generally reflects these effects when body temperature is between 25 and 39 °C; (2) Optical imaging may not properly reflect the neuronal activity when body temperature is over 40 °C. It is important to maintain core body temperature within 3 °C of the normal body temperature to obtain verifiable results.

  19. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave.

    Science.gov (United States)

    Muller, Lyle; Reynaud, Alexandre; Chavane, Frédéric; Destexhe, Alain

    2014-04-28

    Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions.

  20. The role of Magnetic Resonance Imaging and Visual Evoked Potential in management of optic neuritis

    Science.gov (United States)

    Al-Eajailat, Suha Mikail; Al-Madani Senior, Mousa Victor

    2014-01-01

    Introduction To report our experience in management of patients with optic neuritis. The effects of brain magnetic resonance imaging and visual evoked potential on management were investigated Methods This is a four years clinical trial that included patients presenting with first attack of optic neuritis older than 16 years with visual acuity of less than 6/60 and presentation within first week of illness. Brain magnetic resonance imaging and visual evoked potentials were done for all patients. Patients were classified into three groups. First group received placebo, second received oral steroids and third received intravenous and oral steroids. Primary outcome measure was improvement in visual acuity. Results A total number of 150 patients were enrolled in the study. Ocular pain was seen 127 patients Relative afferent pupillary defect in 142 patients and color vision impairment in 131 patients. Abnormal MRI findings were seen in 84 patients. Pattern reversal VEP was abnormal in all patients. Using oral or intravenous steroid resulted in faster recovery but did not affect the final visual outcome. Recurrence rate was higher in patients with multiple MRI lesions and diminished VEP amplitude. Using intravenous steroids decreased recurrence rate in patients with three and more MRI lesions and non recordable VEP response. Conclusion MRI and pattern reversal VEP are recommended to be done in all patients presenting with optic neuritis. We advise to give intravenous methyl prednisolone in patients with multiple MRI white matter lesions and non recordable VEP at presentation. PMID:25018804

  1. [A significant increase in intraoperative flash visual evoked potential amplitude during craniopharyngioma surgery-case report].

    Science.gov (United States)

    Kawaguchi, Tomohiro; Ogawa, Yoshikazu; Fujiwara, Satoru; Tominaga, Teiji

    2015-04-01

    The flash visual evoked potential (VEP) is a useful diagnostic modality for visual preservation during surgery. Decreased VEP amplitude is recognized to indicate visual deterioration;however, whether intraoperative VEP can detect visual improvement remains unclear. We describe a craniopharyngioma case with a significant increase in VEP amplitude during surgery. A 67-year-old woman presented with progressive gait disturbance and impaired consciousness. Head magnetic resonance imaging demonstrated a sellar-suprasellar tumor compressing the optic chiasm upward with significant ventricular dilation. Her Glasgow Coma Scale was E3V3M5. Visual fields and acuity could not be examined because of impaired consciousness, and she could not see/recognize objects on a table. Preoperative VEP showed reproducible waveforms. Tumor removal by the extended transsphenoidal approach was performed with VEP monitoring. Increased VEP amplitude was observed after dural incision and persisted until the surgery ended. Postoperative VEP waveforms were also reproducible, but visual fields/acuity could not be examined because of cognitive dysfunction. Useful visual function was restored, and she became independent in daily life. The histological diagnosis was craniopharyngioma. The patient underwent ventriculo-peritoneal shunting for hydrocephalus 16 days after tumor removal. The postoperative course was uneventful and she was transferred to another hospital for rehabilitation. Intraoperative VEP may indicate visual improvement during surgery, which is a useful objective assessment for visual function in patients with impaired consciousness and cognitive dysfunction.

  2. Possible Long Term Effects of Chemical Warfare Using Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Abbas Riazi

    2014-09-01

    Full Text Available Some studies have already addressed the effects of occupational organic solvent exposure on the visually evoked potentials (VEPs. Visual system is an important target for Sulphur Mustard (SM toxicity. A number of Iranian victims of Sulphur Mustard (SM agent were apprehensive about the delay effect of SM on their vision and a possible delay effect of SM on their visual cortex. This investigation was performed on 34 individuals with a history of chemical exposure and a control group of 15 normal people. The Toennies electro-diagnosis device was used and its signals were saved as the latencies. The mean of N75, N140 and P100 of victims of chemical warfare (VCWs and control group indicated no significant results (P>0.05. The VCWs did not show any visual symptoms and there was no clear deficit in their VEPs.

  3. The Single Training Sample Extraction of Visual Evoked Potentials Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; ZHANG Zhen; CHEN Wen-chao; QIN Bing

    2007-01-01

    Abstract.Based on the good localization characteristic of the wavelet transform both in time and frequency domain, a de-noising method based on wavelet transform is presented, which can make the extraction of visual evoked potentials in single training sample from the EEG background noise in favor of studying the changes between the single sample response happen. The information is probably related with the different function, appearance and pathologies of the brain. At the same time this method can also be used to remove those signal' s artifacts that do not appear with EP within the same scope of time or frequency. The traditional Fourier filter can hardly attain the similar result. This method is different from other wavelet de-noising methods in which different criteria are employed in choosing wavelet coefficient. It has a biggest virtue of noting the differences among the single training sample and making use of the characteristics of high time frequency resolution to reduce the effect of interference factors to a maximum extent within the time scope that EP appear. The experiment result proves that this method is not restricted by the signal-tonoise ratio of evoked potential and electroencephalograph (EEG) and even can recognize instantaneous event under the condition of lower signal-to-noise ratio, as well as recognize the samples which evoked evident response more easily. Therefore, more evident average evoked response could be achieved by de-nosing the signals obtained through averaging out the samples that can evoke evident responses than de-nosing the average of original signals. In addition, averaging methodology can dramatically reduce the number of record samples needed, thus avoiding the effect of behavior change during the recording process.This methodology pays attention to the differences among single training sample and also accomplishes the extraction of visual evoked potentials from single trainings sample. As a result, system speed and

  4. Interruption of visually perceived forward motion in depth evokes a cortical activation shift from spatial to intentional motor regions

    NARCIS (Netherlands)

    van der Hoorn, A.; Beudel, M.; de Jong, B. M.

    2010-01-01

    Forward locomotion generates a radially expanding flow of visual motion which supports goal-directed walking. In stationary mode, wide-field visual presentation of optic flow stimuli evokes the illusion of forward self-motion. These effects illustrate an intimate relation between visual and motor pr

  5. [Visual evoked responses with flash pattern in normal subjects (author's transl)].

    Science.gov (United States)

    Samson-Dollfus, D; Parain, D; Mihout, B; Menard, J F; Weber, J; Neheli, F

    1981-11-01

    Visual evoked responses to flash pattern simulations have been observed in young healthy adults. Stimulations of whole visual fields (37 subjects) and half-fields (11 subjects) have been performed. These responses are reproductible from one subject to another and show very clear waves in the occipital and central regions. On central leads, whatever the stimulation (stimulation of total visual fields or half-fields), the responses are always the same: a negative peak at 70 msec. followed by a positive peak at 90 msec, then a negative peak at 116-120 msec. On occipital leads, stimulation of the whole visual field shows a diphasic response: a positive wave at 100 msec and a negative wave at 140-150 msec. However, half-field stimulation shows different responses on the ipsi- and contralateral hemispheres, with a disappearance of the positive 100 msec wave in the ipsilateral occipital region. Thus, flash pattern stimulations seem to be useful in clinical practice because they evoke different types of responses in occipital and central regions.

  6. Effect of higher frequency on the classification of steady-state visual evoked potentials

    Science.gov (United States)

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  7. Postoperative changes in visual evoked potentials and cognitive function tests following sevoflurane anaesthesia.

    LENUS (Irish Health Repository)

    Iohom, G

    2012-02-03

    We tested the hypothesis that minor disturbance of the visual pathway persists following general anaesthesia even when clinical discharge criteria are met. To test this, we measured visual evoked potentials (VEPs) in 13 ASA I or II patients who did not receive any pre-anaesthetic medication and underwent sevoflurane anaesthesia. VEPs were recorded on four occasions, before anaesthesia and at 30, 60, and 90 min after emergence from anaesthesia. Patients completed visual analogue scales (VAS) for sedation and anxiety, a Trieger Dot Test (TDT) and a Digit Symbol Substitution Test (DSST) immediately before each VEP recording. These results were compared using Student\\'s t-test. P<0.05 was considered significant. VEP latency was prolonged (P<0.001) and amplitude diminished (P<0.05) at 30, 60, and 90 min after emergence from anaesthesia, when VAS scores for sedation and anxiety, TDT, and DSST had returned to pre-anaesthetic levels.

  8. Visually Evoked Potentials in a Patient with a Fyodorov-Zuev Keratoprosthesis

    Directory of Open Access Journals (Sweden)

    Roy Schwartz

    2015-01-01

    Full Text Available Purpose: To describe a visually evoked potential (VEP examination performed on a patient with a keratoprosthesis. Methods: We report the case of a 60-year-old patient with a Fyodorov-Zuev keratoprosthesis in the right eye complained of gradual visual deterioration in that eye. His past medical history consisted of failed corneal graft procedures due to corneal dystrophy and an Ahmed valve implantation due to secondary glaucoma. A clinical examination and an ultrasound demonstrated vitreal opacities. In order to assess the visual status, a flash VEP test was conducted. Results: VEP recorded from the right eye consisted of a broadened and poorly formed positive P1 wave, with a subnormal amplitude, but a normal latency. Consequently, the patient underwent a pars plana vitrectomy. Conclusion: This case demonstrates the viability of VEP exams in patients with keratoprostheses.

  9. Evaluation of Visual Evoked Potential (VEP) in Patients With Chronic Obstructive Pulmonary Disease (COPD).

    Science.gov (United States)

    Karthikkeyan, Kanmani; Padma, K; Rao, B Vishwanatha

    2015-01-01

    Chronic Obstructive Pulmonary Disease (COPD), a progressive and partially reversible disease, has drawn world-wide attention for its moderate prevalence rate and causing central and peripheral neuropathy. Considering its severity in causing visual pathway impairment, the present investigation was carried out to find out the functional integrity of the visual pathway through visual evoked potentials (VEP) and to determine the factors influencing the condition in COPD patients. A total of 30 COPD patients of both sexes, classified according to the severity of the disease based on spirometric indices, were subjected to VEP testing and series of wave forms were measured and compared with equal number of control subjects. The latency of N75 and P100 were prolonged (P VEP changes. Non-invasive procedure can possibly be utilized as a routine screening test for COPD patients for better medical care.

  10. [Contribution of cognitive evoked potentials for detecting early cognitive disorders in multiple sclerosis].

    Science.gov (United States)

    Magnié, M N; Bensa, C; Laloux, L; Bertogliati, C; Faure, S; Lebrun, C

    2007-11-01

    In Multiple Sclerosis (MS), one of the most frequent neurological diseases in young adults, cognitive dysfunctions have been under considered whereas their evolution may produce a fronto-sous-cortical deterioration and more than half of the MS patients present such dysfunctions. Nevertheless sensory evoked-potentials are classically used in this disease, event-related potentials (ERP) are not included in the clinical exploration of MS. Two studies are presented aimed at further tracking the usefulness of ERP for detecting early cognitive dysfunctions in MS. All of the patients presented a relapsing remitting MS for less than 5 years with a moderate physical handicap and complained from their memory. They performed a neuropsychological set and ERP were elicited using the oddball paradigm in both modalities, visual and auditory. In the first study, 10 patients without cognitive dysfunction at the neuropsychological evaluation and 10 patients with an attention deficit participated with 10 age-matched controls. In the second study, 10 patients with memory impairment at the neuropsychological evaluation and 10 age-matched controls were included. Our data argue for an earlier modification of ERP parameters in the visual modality than in the auditory one, even before the modification of cognitive scores. In both studies, P300 parameters were correlated to neuropsychological performances (and especially to the attention examination in the first study and to memory tests in the second study) in both modalities. Taking into account the clinical usefulness of ERPs, it is nowadays important to include this electrophysiological method in evaluation and follow-up of MS, and not only using the auditory modality but also the visual presentation in order to detect earlier cognitive dysfunctions even before modification of neuropsychological performances.

  11. The mouse model of Down syndrome Ts65Dn presents visual deficits as assessed by pattern visual evoked potentials.

    Science.gov (United States)

    Scott-McKean, Jonah Jacob; Chang, Bo; Hurd, Ronald E; Nusinowitz, Steven; Schmidt, Cecilia; Davisson, Muriel T; Costa, Alberto C S

    2010-06-01

    The Ts65Dn mouse is the most complete widely available animal model of Down syndrome (DS). Quantitative information was generated about visual function in the Ts65Dn mouse by investigating their visual capabilities by means of electroretinography (ERG) and patterned visual evoked potentials (pVEPs). pVEPs were recorded directly from specific regions of the binocular visual cortex of anesthetized mice in response to horizontal sinusoidal gratings of different spatial frequency, contrast, and luminance generated by a specialized video card and presented on a 21-in. computer display suitably linearized by gamma correction. ERG assessments indicated no significant deficit in retinal physiology in Ts65Dn mice compared with euploid control mice. The Ts65Dn mice were found to exhibit deficits in luminance threshold, spatial resolution, and contrast threshold, compared with the euploid control mice. The behavioral counterparts of these parameters are luminance sensitivity, visual acuity, and the inverse of contrast sensitivity, respectively. DS includes various phenotypes associated with the visual system, including deficits in visual acuity, accommodation, and contrast sensitivity. The present study provides electrophysiological evidence of visual deficits in Ts65Dn mice that are similar to those reported in persons with DS. These findings strengthen the role of the Ts65Dn mouse as a model for DS. Also, given the historical assumption of integrity of the visual system in most behavioral assessments of Ts65Dn mice, such as the hidden-platform component of the Morris water maze, the visual deficits described herein may represent a significant confounding factor in the interpretation of results from such experiments.

  12. Membrane Potential Dynamics of Spontaneous and Visually Evoked Gamma Activity in V1 of Awake Mice.

    Directory of Open Access Journals (Sweden)

    Quentin Perrenoud

    2016-02-01

    Full Text Available Cortical gamma activity (30-80 Hz is believed to play important functions in neural computation and arises from the interplay of parvalbumin-expressing interneurons (PV and pyramidal cells (PYRs. However, the subthreshold dynamics underlying its emergence in the cortex of awake animals remain unclear. Here, we characterized the intracellular dynamics of PVs and PYRs during spontaneous and visually evoked gamma activity in layers 2/3 of V1 of awake mice using targeted patch-clamp recordings and synchronous local field potentials (LFPs. Strong gamma activity patterned in short bouts (one to three cycles, occurred when PVs and PYRs were depolarizing and entrained their membrane potential dynamics regardless of the presence of visual stimulation. PV firing phase locked unconditionally to gamma activity. However, PYRs only phase locked to visually evoked gamma bouts. Taken together, our results indicate that gamma activity corresponds to short pulses of correlated background synaptic activity synchronizing the output of cortical neurons depending on external sensory drive.

  13. [Visual evoked potentials and the E-UFA test. Laboratory contribution to the diagnosis of multiple sclerosis].

    Science.gov (United States)

    Ghezzi, A; Caputo, D; Vanzulli, F; Zibetti, A

    1979-09-29

    Visual evoked potentials (VEPs) and electrophoretic mobility test of erythrocytes (E-UFA test) were compared in 50 multiple sclerosis (M.S.) patients as diagnostic tests. Abnormal VEPs were recorded in 35 patients. E-UFA test was found positive in 31 cases. With respect to Mc Alpine diagnostic criteria, 26 out of 33 definite M.S., 6 out of 9 probable M.S. and 3 out of 8 possible M.S. cases had abnormal VEPs. A positive response in E-UFA test was observed rispectively in 16, 8, 7 patients. Complessively 48 cases (96%) had an abnormal response to the one and/or to the other of the two tests, which apper complementar in early diagnosis of M.S.

  14. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.;

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...

  15. Comparison of the pattern reversal visual evoked potential mediated by separate cone systems

    DEFF Research Database (Denmark)

    Johnsen, B; Frederiksen, J.L.; Larsson, H.B.

    1995-01-01

    With the purpose of recording responses mediated by the 3 cone systems visual evoked potentials (VEPs) were elicited by the reversal of monochromatic checkerboards superimposed upon strong monochromatic backgrounds (yellow, purple and blue-green). The sensitivity to light of various wave lengths...... were measured as the reciprocal of the intensity necessary to elicit a VEP amplitude of 3 microV. The spectral sensitivity curves based on this VEP amplitude criterion in the presence of blue-green, purple and yellow adaptation showed peak sensitivities in the red, the green and the blue part...

  16. Flash visual evoked potentials in patients with periventricular leucomalacia in children less than 1 year of age

    Directory of Open Access Journals (Sweden)

    Jitendra Jethani

    2013-01-01

    Full Text Available Background and Aim: Children with periventricular leucomalacia (PVL are known to have visual impairment of various forms starting from reduced vision, field defects, congnitive problems, and problems with hand eye coordination. There is very scant data/literature on the visual evoked potentials (VEPs at an early age in children with PVL. We did a study to evaluate the flash visual evoked potentials (fVEPs in children with PVL less than 1 year of age. Materials and Methods: A total of nine children diagnosed as having PVL on magnetic resonance imaging were included in the study. The mean age was 9.7μ 3.5 months. All children underwent handheld fVEPs under sedation at two different flash frequencies 1.4 and 8 Hz. Results: The mean latency of N1 and P1 on stimulation with 1.4 Hz was 47.9μ 15.2 and 77.7μ 26.0 ms, respectively. However, on stimulation with 8 Hz the mean latency of N1 and P1 was 189.8μ 25.6 and 238.4μ 33.6 ms, respectively. The mean amplitude with 1.4 Hz and 8 stimulation frequency was 5.6μ 4.5 and 5.59μ 3 mV, respectively. Conclusion: We have found for the first time that there is a change in the latency and the delay occurs at 8 Hz frequency but not at 1.4 Hz. We also conclude that amplitudes by fVEPs may be normal even in presence of periventricular changes. The amplitudes of fVEPs are not reliable in children with PVL.

  17. Altered Automatic Face Processing in Individuals with High-Functioning Autism Spectrum Disorders: Evidence from Visual Evoked Potentials

    Science.gov (United States)

    Fujita, Takako; Kamio, Yoko; Yamasaki, Takao; Yasumoto, Sawa; Hirose, Shinichi; Tobimatsu, Shozo

    2013-01-01

    Individuals with autism spectrum disorders (ASDs) have different automatic responses to faces than typically developing (TD) individuals. We recorded visual evoked potentials (VEPs) in 10 individuals with high-functioning ASD (HFASD) and 10 TD individuals. Visual stimuli consisted of upright and inverted faces (fearful and neutral) and objects…

  18. A Brain Computer Interface for Robust Wheelchair Control Application Based on Pseudorandom Code Modulated Visual Evoked Potential

    DEFF Research Database (Denmark)

    Mohebbi, Ali; Engelsholm, Signe K.D.; Puthusserypady, Sadasivan

    2015-01-01

    In this pilot study, a novel and minimalistic Brain Computer Interface (BCI) based wheelchair control application was developed. The system was based on pseudorandom code modulated Visual Evoked Potentials (c-VEPs). The visual stimuli in the scheme were generated based on the Gold code...

  19. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    Science.gov (United States)

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats" NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo." The pattern evok...

  20. Synaptic origin of rhythmic visually evoked activity in kitten area 17 neurones.

    Science.gov (United States)

    Bringuier, V; Fregnac, Y; Debanne, D; Shulz, D; Baranyi, A

    1992-12-01

    Rhythmic patterns in neuronal activity in response to moving stimuli were observed in 28% of cells recorded extracellularly or intracellularly in area 17 of 4-16 week old anaesthetized and paralysed kittens. In both recording modes, oscillation frequencies ranged between 7 and 71 Hz, and were confined for 88% of cells in the 7-20 Hz band of the spectrum. A comparative study of firing autocorrelograms) and subthreshold activity (autocorrelation functions) indicates that the regularity of discharge stemmed from visually evoked oscillations of membrane potential at the same frequency. These oscillations are shown to result from extrinsic excitatory activity, since their amplitude, but not their frequency, depends on the resting membrane potential. The dependency on stimulus configuration supports the hypothesis that oscillations in neuronal output are dictated by periodic activity in afferent circuits selectively recruited by different attributes of the visual input which are not exclusively processed at the cortical level.

  1. Effect of different stimulus configurations on the visual evoked potential (VEP).

    Science.gov (United States)

    Yadav, Naveen K; Ludlam, Diana P; Ciuffreda, Kenneth J

    2012-06-01

    The purpose of this study was to assess changes in the response profile of the pattern visual evoked potential (VEP) using three stimulus configurations simulating visual-field scotomas: central circular and central blank fields increasing incrementally in diameter from 1° to 15°, hemi-field, and quadrant patterns. Five visually normal adult subjects (ages 22-68 years) were tested binocularly at 1 m for each stimulus configuration on 5 separate days. A checkerboard test pattern (64 × 64 black-and-white checks, 85% contrast, 64 cd/m(2) luminance, 20 s of stimulus duration, 2-Hz temporal frequency) was used. The group mean VEP amplitude increased in a linear manner with increase in the central circular diameter (y = 0.805x + 2.00; r = 0.986) and decrease in central blank field diameter (y = -0.769x + 16.22; r = 0.987). There was no significant change in latency in nearly all cases. The group mean coefficient of variability results indicated that the VEP amplitude was repeatable for the different stimulus configurations. The finding of VEP response linearity for the circular stimulus fields, and repeatability for all stimulus configurations, suggests that the clinician may be able to use the VEP technique with the suggested test patterns as a rapid and simple tool for objective assessment for several types of visual-field defects for a range of abnormal visual conditions and special populations.

  2. The effects of bromazepam on the early stage of visual information processing (P100).

    Science.gov (United States)

    Puga, Fernanda; Sampaio, Isabel; Veiga, Heloisa; Ferreira, Camila; Cagy, Maurício; Piedade, Roberto; Ribeiro, Pedro

    2007-12-01

    The early stages of visual information processing, involving the detection and perception of simple visual stimuli, have been demonstrated to be sensitive to psychotropic agents. The present study investigated the effects of an acute dose of bromazepam (3 mg), compared with placebo, on the P100 component of the visual evoked potential and reaction time. The sample, consisting of 14 healthy subjects (6 male and 8 female), was submitted to a visual discrimination task, which employed the "oddball" paradigm. Results suggest that bromazepam (3 mg) impairs the initial stage of visual information processing, as observed by an increase in P100 latency.

  3. Normalization of visual evoked potentials using underlying electroencephalogram levels improves amplitude reproducibility in rats.

    Science.gov (United States)

    You, Yuyi; Thie, Johnson; Klistorner, Alexander; Gupta, Vivek K; Graham, Stuart L

    2012-03-15

    The visual evoked potential (VEP) is a frequently used noninvasive measurement of visual function. However, high-amplitude variability has limited its potential for evaluating axonal damage in both laboratory and clinical research. This study was conducted to improve the reliability of VEP amplitude measurement in rats by using electroencephalogram (EEG)-based signal correction. VEPs of Sprague-Dawley rats were recorded on three separate days within 2 weeks. The original VEP traces were normalized by EEG power spectrum, which was evaluated by Fourier transform. A comparison of intersession reproducibility and intersubject variability was made between the original and corrected signals. Corrected VEPs showed lower amplitude intersession within-subject SD (Sw), coefficient of variation (CoV), and repeatability (R(95)) than the original signals (P < 0.001). The intraclass correlation coefficient (ICC) of the corrected traces (0.90) was also better than the original potentials (0.82). For intersubject variability, the EEG-based normalization improved the CoV from 44.64% to 30.26%. A linear correlation was observed between the EEG level and the VEP amplitude (r = 0.71, P < 0.0001). Underlying EEG signals should be considered in measuring the VEP amplitude. In this study, a useful technique was developed for VEP data processing that could also be used for other cortical evoked potential recordings and for clinical VEP interpretation in humans.

  4. Fourier transformed steady-state flash evoked potentials for continuous monitoring of visual pathway function.

    Science.gov (United States)

    Bergholz, R; Lehmann, T N; Fritz, G; Rüther, K

    2008-05-01

    Monitoring of somatosensory, motor and auditory pathway function by evoked potentials is routine in surgery placing these pathways at risk. However, visual pathway function remains yet inaccessible to a reliable monitoring. For this study, a method of continuous recordings was developed and tested. Steady-state visual evoked potentials were elicited by flash stimulation at 16 Hz and analysed using discrete Fourier transform. Amplitude and phase of the fundamental response were dynamically averaged and continuously plotted in a trend graph. The method was applied on awake individuals with normal vision and on patients undergoing neurosurgery. In most individuals it was possible to continuously record significant responses. Surprisingly, characteristic time-courses of amplitude and phase were observed in several subjects. These findings were attributed mainly to flicker-adaptation. During anesthesia, amplitude and signal-to-noise ratio were markedly smaller. Signal recognition was facilitated when potentials were recorded with a subdural electrode placed directly at the occipital pole. The anesthetic agent propofol had a major impact on the recordings.

  5. Broad-Band Visually Evoked Potentials: Re(convolution in Brain-Computer Interfacing.

    Directory of Open Access Journals (Sweden)

    Jordy Thielen

    Full Text Available Brain-Computer Interfaces (BCIs allow users to control devices and communicate by using brain activity only. BCIs based on broad-band visual stimulation can outperform BCIs using other stimulation paradigms. Visual stimulation with pseudo-random bit-sequences evokes specific Broad-Band Visually Evoked Potentials (BBVEPs that can be reliably used in BCI for high-speed communication in speller applications. In this study, we report a novel paradigm for a BBVEP-based BCI that utilizes a generative framework to predict responses to broad-band stimulation sequences. In this study we designed a BBVEP-based BCI using modulated Gold codes to mark cells in a visual speller BCI. We defined a linear generative model that decomposes full responses into overlapping single-flash responses. These single-flash responses are used to predict responses to novel stimulation sequences, which in turn serve as templates for classification. The linear generative model explains on average 50% and up to 66% of the variance of responses to both seen and unseen sequences. In an online experiment, 12 participants tested a 6 × 6 matrix speller BCI. On average, an online accuracy of 86% was reached with trial lengths of 3.21 seconds. This corresponds to an Information Transfer Rate of 48 bits per minute (approximately 9 symbols per minute. This study indicates the potential to model and predict responses to broad-band stimulation. These predicted responses are proven to be well-suited as templates for a BBVEP-based BCI, thereby enabling communication and control by brain activity only.

  6. Spatiotemporal analysis of the cortical sources of the steady-state visual evoked potential.

    Science.gov (United States)

    Di Russo, Francesco; Pitzalis, Sabrina; Aprile, Teresa; Spitoni, Grazia; Patria, Fabiana; Stella, Alessandra; Spinelli, Donatella; Hillyard, Steven A

    2007-04-01

    This study aimed to characterize the neural generators of the steady-state visual evoked potential (SSVEP) to repetitive, 6 Hz pattern-reversal stimulation. Multichannel scalp recordings of SSVEPs and dipole modeling techniques were combined with functional magnetic resonance imaging (fMRI) and retinotopic mapping in order to estimate the locations of the cortical sources giving rise to the SSVEP elicited by pattern reversal. The time-varying SSVEP scalp topography indicated contributions from two major cortical sources, which were localized in the medial occipital and mid-temporal regions of the contralateral hemisphere. Colocalization of dipole locations with fMRI activation sites indicated that these two major sources of the SSVEP were located in primary visual cortex (V1) and in the motion sensitive (MT/V5) areas, respectively. Minor contributions from mid-occipital (V3A) and ventral occipital (V4/V8) areas were also considered. Comparison of SSVEP phase information with timing information collected in a previous transient VEP study (Di Russo et al. [2005] Neuroimage 24:874-886) suggested that the sequence of cortical activation is similar for steady-state and transient stimulation. These results provide a detailed spatiotemporal profile of the cortical origins of the SSVEP, which should enhance its use as an efficient clinical tool for evaluating visual-cortical dysfunction as well as an investigative probe of the cortical mechanisms of visual-perceptual processing.

  7. Low luminance/eyes closed and monochromatic stimulations reduce variability of flash visual evoked potential latency

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Subramanian

    2013-01-01

    Full Text Available Context: Visual evoked potentials are useful in investigating the physiology and pathophysiology of the human visual system. Flash visual evoked potential (FVEP, though technically easier, has less clinical utility because it shows great variations in both latency and amplitude for normal subjects. Aim: To study the effect of eye closure, low luminance, and monochromatic stimulation on the variability of FVEPs. Subjects and Methods: Subjects in self-reported good health in the age group of 18-30 years were divided into three groups. All participants underwent FVEP recording with eyes open and with white light at 0.6 J luminance (standard technique. Next recording was done in group 1 with closed eyes, group 2 with 1.2 and 20 J luminance, and group 3 with red and blue lights, while keeping all the other parameters constant. Two trials were given for each eye, for each technique. The same procedure was repeated at the same clock time on the following day. Statistical Analysis: Variation in FVEP latencies between the individuals (interindividual variability and the variations within the same individual for four trials (intraindividual variability were assessed using coefficient of variance (COV. The technique with lower COV was considered the better method. Results: Recording done with closed eyes, 0.6 J luminance, and monochromatic light (blue > red showed lower interindividual and intraindividual variability in P2 and N2 as compared to standard techniques. Conclusions: Low luminance flash stimulations and monochromatic light will reduce FVEP latency variability and may be clinically useful modifications of FVEP recording technique.

  8. Cerebral activation associated with visually evoked sexual arousal in the limbic system: functional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eun, Sung Jong; Kong, Gwang Woo; Kim, Hyung Joong; Seo, Jeong Jin; Kang, Heoung Keun; Cho, Ki Hyun; Yoon, Ka Hyun [School of Medicine, Chonnam National Univ., Kwangju (Korea, Republic of); Kim, Kyung Yo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-08-01

    To identify the brain centers associated with visually evoked sexual arousal in the human brain, and to investigate the neural mechanism for sexual arousal using functional MRI (fMRI). A total of 20 sexually potent volunteers consisting of 10 males (mean age: 24) and 10 females (mean age: 23) underwent fMRI on a 1.5T MR scanner (GE Signa Horizon). The fMRI data were obtained from 7 slices (10 mm slice thickness) parallel to the AC-PC (anterior commissure and posterior commissure) line, giving a total of 511 MR images. The sexual stimulation consisted of a 1-minute rest with black screen, followed by a 4-minute stimulation by an erotic video film, and concluded with a 2-minute rest. The brain activation maps and their quantification were analyzed by the statistical parametric mapping (SPM 99) program. The brain activation regions associated with visual sexual arousal in the limbic system are the posterior cingulate gyrus, parahippocampal gyrus, hypothalamus, medial cingulate gyrus, thalamus, amygdala, anterior cingulate gyrus, insula, hippocampus, caudate nucleus, globus pallidus and putamen. Especially, the parahippocampal gyrus, cingulate gyrus, thalamus and hypothalamus were highly activated in comparison with other areas. The overall activities of the limbic lobe, diencephalon, and basal ganglia were 11.8%, 10.5%, and 3.4%, respectively. In the correlation test between brain activity and sexual arousal, the hypothalamus and thalamus showed positive correlation, but the other brain areas showed no correlation. The fMRI is useful to quantitatively evaluate the cerebral activation associated with visually evoked, sexual arousal in the human brain. This result may be helpful by providing clinically valuable information on sexual disorder in humans as well as by increasing the understanding of the neuroanatomical correlates of sexual arousal.

  9. Visual Evoked Potential Recording in a Rat Model of Experimental Optic Nerve Demyelination.

    Science.gov (United States)

    You, Yuyi; Gupta, Vivek K; Chitranshi, Nitin; Reedman, Brittany; Klistorner, Alexander; Graham, Stuart L

    2015-07-29

    The visual evoked potential (VEP) recording is widely used in clinical practice to assess the severity of optic neuritis in its acute phase, and to monitor the disease course in the follow-up period. Changes in the VEP parameters closely correlate with pathological damage in the optic nerve. This protocol provides a detailed description about the rodent model of optic nerve microinjection, in which a partial demyelination lesion is produced in the optic nerve. VEP recording techniques are also discussed. Using skull implanted electrodes, we are able to acquire reproducible intra-session and between-session VEP traces. VEPs can be recorded on individual animals over a period of time to assess the functional changes in the optic nerve longitudinally. The optic nerve demyelination model, in conjunction with the VEP recording protocol, provides a tool to investigate the disease processes associated with demyelination and remyelination, and can potentially be employed to evaluate the effects of new remyelinating drugs or neuroprotective therapies.

  10. Effects of intraocular mescaline and LSD on visual-evoked responses in the rat.

    Science.gov (United States)

    Eells, J T; Wilkison, D M

    1989-01-01

    The effects of mescaline and LSD on the flash-evoked cortical potential (FEP) were determined in unrestrained rats with chronically-implanted electrodes. Systemic administration of mescaline or LSD significantly attenuated the primary component of the FEP at three stimulus intensities with the greatest effect observed 60-90 minutes following drug administration. The magnitude and specificity of the effects of these agents on the primary response suggest that they produce deficits in conduction through the retino-geniculato-cortical system. The serotonin receptor antagonists, cyproheptadine and methysergide, antagonized the mescaline-induced depression of the FEP in accordance with neurochemical and behavioral evidence that mescaline acts as a partial agonist on serotonin receptors. Topical or intraocular administration of atropine antagonized the actions of systemically-administered mescaline. In addition, intraocular administration of mescaline or LSD attenuated the FEP indicative of an action of these hallucinogens on visual processing in the retina which is modulated by muscarinic receptor activity.

  11. Visual evoked potentials show strong positive association with intracranial pressure in patients with cryptococcal meningitis

    Directory of Open Access Journals (Sweden)

    Marcelo Adriano da Cunha Silva Vieira

    2015-04-01

    Full Text Available Objective : To verify the relationship between intracranial pressure and flash visual evoked potentials (F-VEP in patients with cryptococcal meningitis. Method The sample included adults diagnosed with cryptococcal meningitis admitted at a reference hospital for infectious diseases. The patients were subjected to F-VEP tests shortly before lumbar puncture. The Pearson’s linear correlation coefficient was calculated and the linear regression analysis was performed. Results : Eighteen individuals were subjected to a total of 69 lumbar punctures preceded by F-VEP tests. At the first lumbar puncture performed in each patient, N2 latency exhibited a strong positive correlation with intracranial pressure (r = 0.83; CI = 0.60 - 0.94; p < 0.0001. The direction of this relationship was maintained in subsequent punctures. Conclusion : The intracranial pressure measured by spinal tap manometry showed strong positive association with the N2 latency F-VEP in patients with cryptococcal meningitis.

  12. Control of humanoid robot via motion-onset visual evoked potentials.

    Science.gov (United States)

    Li, Wei; Li, Mengfan; Zhao, Jing

    2014-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task.

  13. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials.

    Directory of Open Access Journals (Sweden)

    Qingguo Wei

    Full Text Available A brain-computer interface (BCI based on code modulated visual evoked potentials (c-VEP is among the fastest BCIs that have ever been reported, but it has not yet been given a thorough study. In this study, a pseudorandom binary M sequence and its time lag sequences are utilized for modulation of different stimuli and template matching is adopted as the method for target recognition. Five experiments were devised to investigate the effect of stimulus specificity on target recognition and we made an effort to find the optimal stimulus parameters for size, color and proximity of the stimuli, length of modulation sequence and its lag between two adjacent stimuli. By changing the values of these parameters and measuring classification accuracy of the c-VEP BCI, an optimal value of each parameter can be attained. Experimental results of ten subjects showed that stimulus size of visual angle 3.8°, white, spatial proximity of visual angle 4.8° center to center apart, modulation sequence of length 63 bits and the lag of 4 bits between adjacent stimuli yield individually superior performance. These findings provide a basis for determining stimulus presentation of a high-performance c-VEP based BCI system.

  14. A Case of Functional (Psychogenic Monocular Hemianopia Analyzed by Measurement of Hemifield Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Yoneda

    2013-12-01

    Full Text Available Purpose: Functional monocular hemianopia is an extremely rare condition, for which measurement of hemifield visual evoked potentials (VEPs has not been previously described. Methods: A 14-year-old boy with functional monocular hemianopia was followed up with Goldmann perimetry and measurement of hemifield and full-field VEPs. Results: The patient had a history of monocular temporal hemianopia of the right eye following headache, nausea and ague. There was no relative afferent pupillary defect, and a color perception test was normal. Goldmann perimetry revealed a vertical monocular temporal hemianopia of the right eye; the hemianopia on the right was also detected with a binocular visual field test. Computed tomography, magnetic resonance imaging (MRI and MR angiography of the brain including the optic chiasm as well as orbital MRI revealed no abnormalities. On the basis of these results, we diagnosed the patient's condition as functional monocular hemianopia. Pattern VEPs according to the International Society for Clinical Electrophysiology of Vision (ISCEV standard were within the normal range. The hemifield pattern VEPs for the right eye showed a symmetrical latency and amplitude for nasal and temporal hemifield stimulation. One month later, the visual field defect of the patient spontaneously disappeared. Conclusions: The latency and amplitude of hemifield VEPs for a patient with functional monocular hemianopia were normal. Measurement of hemifield VEPs may thus provide an objective tool for distinguishing functional hemianopia from hemifield loss caused by an organic lesion.

  15. Visual evoked potentials for intraoperative neurophysiologic monitoring using total intravenous anesthesia.

    Science.gov (United States)

    Wiedemayer, Helmut; Fauser, Barbara; Armbruster, W; Gasser, Thomas; Stolke, Dietmar

    2003-01-01

    Conflicting reports on the usefulness of intraoperative monitoring of visual function by means of visual evoked potentials (VEPs) initiated this study. In 32 patients without visual problems, VEPs were recorded to evaluate the reliability for intraoperative monitoring with total intravenous anesthesia. All patients underwent noncranial surgery. Using a standard technique, VEPs were recorded preoperatively in the awake patients and after induction of anesthesia during surgery. A total of 1436 intraoperative traces were recorded and analyzed. A minor prolongation of the P100 latency of 8% and a more pronounced attenuation of the P100-N145 amplitude of 60% were observed in the anesthetized patients. In most of the anesthetized patients, a stable recording of VEPs was not obtainable. In 4 patients (12.5%), clearly identifiable VEP peaks were detected in more than 90% of the traces recorded intraoperatively. In 88% of the patients, reproducible VEPs were obtained in less than 75% of the intraoperative traces only. We concluded that with standard recording techniques and total intravenous anesthesia, intraoperative VEP monitoring in surgically anesthetized patients is not reliable.

  16. Measurement of Electroretinograms and Visually Evoked Potentials in Awake Moving Mice.

    Directory of Open Access Journals (Sweden)

    Yusuke Tomiyama

    Full Text Available The development of new treatments for intractable retinal diseases requires reliable functional assessment tools for animal models. In vivo measurements of neural activity within visual pathways, including electroretinogram (ERG and visually evoked potential (VEP recordings, are commonly used for such purposes. In mice, the ERG and VEPs are usually recorded under general anesthesia, a state that may alter sensory transduction and neurotransmission, but seldom in awake freely moving mice. Therefore, it remains unknown whether the electrophysiological assessment of anesthetized mice accurately reflects the physiological function of the visual pathway. Herein, we describe a novel method to record the ERG and VEPs simultaneously in freely moving mice by immobilizing the head using a custom-built restraining device and placing a rotatable cylinder underneath to allow free running or walking during recording. Injection of the commonly used anesthetic mixture xylazine plus ketamine increased and delayed ERG oscillatory potentials by an average of 67.5% and 36.3%, respectively, compared to unanesthetized mice, while having minimal effects on the a-wave and b-wave. Similarly, components of the VEP were enhanced and delayed by up to 300.2% and 39.3%, respectively, in anesthetized mice. Our method for electrophysiological recording in conscious mice is a sensitive and robust means to assess visual function. It uses a conventional electrophysiological recording system and a simple platform that can be built in any laboratory at low cost. Measurements using this method provide objective indices of mouse visual function with high precision and stability, unaffected by anesthetics.

  17. Time-varying bispectral analysis of visually evoked multi-channel EEG

    Science.gov (United States)

    Chandran, Vinod

    2012-12-01

    Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.

  18. Anxiety affects the amplitudes of red and green color-elicited flash visual evoked potentials in humans.

    Science.gov (United States)

    Hosono, Yuki; Kitaoka, Kazuyoshi; Urushihara, Ryo; Séi, Hiroyoshi; Kinouchi, Yohsuke

    2014-01-01

    It has been reported that negative emotional changes and conditions affect the visual faculties of humans at the neural level. On the other hand, the effects of emotion on color perception in particular, which are based on evoked potentials, are unknown. In the present study, we investigated whether different anxiety levels affect the color information processing for each of 3 wavelengths by using flash visual evoked potentials (FVEPs) and State-Trait Anxiety Inventory. In results, significant positive correlations were observed between FVEP amplitudes and state or trait anxiety scores in the long (sensed as red) and middle (sensed as green) wavelengths. On the other hand, short-wavelength-evoked FVEPs were not correlated with anxiety level. Our results suggest that negative emotional conditions may affect color sense processing in humans.

  19. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE USING PATTERN ELICITED VISUAL EVOKED POTENTIALS.

    Science.gov (United States)

    In vitro studies have demonstrated that toluene disrupts the function of NMDA-glutamate receptors, as well as other channels. This has led to the hypothesis that effects on NMDA receptor function may contribute to toluene neurotoxicity, CNS depression, and altered visual evoked ...

  20. Early development of visual recognition.

    Science.gov (United States)

    Plebe, Alessio; Domenella, Rosaria Grazia

    2006-01-01

    The most important ability of the human vision is object recognition, yet it is exactly the less understood aspect of the vision system. Computational models have been helpful in progressing towards an explanation of this obscure cognitive ability, and today it is possible to conceive more refined models, thanks to the new availability of neuroscientific data about the human visual cortex. This work proposes a model of the development of the object recognition capability, under a different perspective with respect to the most common approaches, with a precise theoretical epistemology. It is assumed that the main processing functions involved in recognition are not genetically determined and hardwired in the neural circuits, but are the result of interactions between epigenetic influences and the basic neural plasticity mechanisms. The model is organized in modules related with the main visual biological areas, and is implemented mainly using the LISSOM architecture, a recent self-organizing algorithm closely reflecting the essential behavior of cortical circuits.

  1. Mathematical impairment associated with high-contrast abnormalities in change detection and magnocellular visual evoked response.

    Science.gov (United States)

    Jastrzebski, Nicola R; Crewther, Sheila G; Crewther, David P

    2015-10-01

    The cause of developmental dyscalculia, a specific deficit in acquisition of arithmetic skills, particularly of enumeration, has never been investigated with respect to the patency of the visual magnocellular system. Here, the question of dysfunction of the afferent magnocellular cortical input and its dorsal stream projections was tested directly using nonlinear analysis of the visual evoked potential (VEP) and through the psychophysical ability to rapidly detect visual change. A group of young adults with self-reported deficiencies of arithmetical ability, showed marked impairment in magnitude estimation and enumeration performance-though not in lexical decision reaction times when compared with an arithmetically capable group controlled for age and handedness. Multifocal nonlinear VEPs were recorded at low (24 %) and high (96 %) contrast. First- and second-order VEP kernels were comparable between groups at low contrast, but not at high contrast. The mathematically impaired group showed an abnormal lack of contrast saturation in the shortest latency first-order peak (N60) and a delayed P100 positivity in the first slice of the second-order kernel. Both features have previously been argued to be physiological markers of magnocellular function. Mathematically impaired participants also performed worse on a gap paradigm change detection for digit task showing increased reaction times for high-contrast stimuli but not for low-contrast stimuli compared with controls. The VEP results give direct evidence of abnormality in the occipital processing of magnocellular information in those with mathematical impairment. The anomalous high visual contrast physiological and psychophysical performance suggests an abnormality in the inhibitory processes that normally result in saturation of contrast gain in the magnocellular system.

  2. Usefulness of intraoperative monitoring of visual evoked potentials in transsphenoidal surgery.

    Science.gov (United States)

    Kamio, Yoshinobu; Sakai, Naoto; Sameshima, Tetsuro; Takahashi, Goro; Koizumi, Shinichiro; Sugiyama, Kenji; Namba, Hiroki

    2014-01-01

    Postoperative visual outcome is a major concern in transsphenoidal surgery (TSS). Intraoperative visual evoked potential (VEP) monitoring has been reported to have little usefulness in predicting postoperative visual outcome. To re-evaluate its usefulness, we adapted a high-power light-stimulating device with electroretinography (ERG) to ascertain retinal light stimulation. Intraoperative VEP monitoring was conducted in TSSs in 33 consecutive patients with sellar and parasellar tumors under total venous anesthesia. The detectability rates of N75, P100, and N135 were 94.0%, 85.0%, and 79.0%, respectively. The mean latencies and amplitudes of N75, P100, and N135 were 76.8 ± 6.4 msec and 4.6 ± 1.8 μV, 98.0 ± 8.6 msec and 5.0 ± 3.4 μV, and 122.1 ± 16.3 msec and 5.7 ± 2.8 μV, respectively. The amplitude was defined as the voltage difference from N75 to P100 or P100 to N135. The criterion for amplitude changes was defined as a > 50% increase or 50% decrease in amplitude compared to the control level. The surgeon was immediately alerted when the VEP changed beyond these thresholds, and the surgical manipulations were stopped until the VEP recovered. Among the 28 cases with evaluable VEP recordings, the VEP amplitudes were stable in 23 cases and transiently decreased in 4 cases. In these 4 cases, no postoperative vision deterioration was observed. One patient, whose VEP amplitude decreased without subsequent recovery, developed vision deterioration. Intraoperative VEP monitoring with ERG to ascertain retinal light stimulation by the new stimulus device was reliable and feasible in preserving visual function in patients undergoing TSS.

  3. Steady-state sweep visual evoked potential processing denoised by wavelet transform

    Science.gov (United States)

    Weiderpass, Heinar A.; Yamamoto, Jorge F.; Salomão, Solange R.; Berezovsky, Adriana; Pereira, Josenilson M.; Sacai, Paula Y.; de Oliveira, José P.; Costa, Marcio A.; Burattini, Marcelo N.

    2008-03-01

    Visually evoked potential (VEP) is a very small electrical signal originated in the visual cortex in response to periodic visual stimulation. Sweep-VEP is a modified VEP procedure used to measure grating visual acuity in non-verbal and preverbal patients. This biopotential is buried in a large amount of electroencephalographic (EEG) noise and movement related artifact. The signal-to-noise ratio (SNR) plays a dominant role in determining both systematic and statistic errors. The purpose of this study is to present a method based on wavelet transform technique for filtering and extracting steady-state sweep-VEP. Counter-phase sine-wave luminance gratings modulated at 6 Hz were used as stimuli to determine sweep-VEP grating acuity thresholds. The amplitude and phase of the second-harmonic (12 Hz) pattern reversal response were analyzed using the fast Fourier transform after the wavelet filtering. The wavelet transform method was used to decompose the VEP signal into wavelet coefficients by a discrete wavelet analysis to determine which coefficients yield significant activity at the corresponding frequency. In a subsequent step only significant coefficients were considered and the remaining was set to zero allowing a reconstruction of the VEP signal. This procedure resulted in filtering out other frequencies that were considered noise. Numerical simulations and analyses of human VEP data showed that this method has provided higher SNR when compared with the classical recursive least squares (RLS) method. An additional advantage was a more appropriate phase analysis showing more realistic second-harmonic amplitude value during phase brake.

  4. Visual Perception and Frontal Lobe in Intellectual Disabilities: A Study with Evoked Potentials and Neuropsychology

    Science.gov (United States)

    Munoz-Ruata, J.; Caro-Martinez, E.; Perez, L. Martinez; Borja, M.

    2010-01-01

    Background: Perception disorders are frequently observed in persons with intellectual disability (ID) and their influence on cognition has been discussed. The objective of this study is to clarify the mechanisms behind these alterations by analysing the visual event related potentials early component, the N1 wave, which is related to perception…

  5. The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects.

    Directory of Open Access Journals (Sweden)

    Martina Guthoff

    Full Text Available BACKGROUND: Insulin is an anorexigenic hormone that contributes to the termination of food intake in the postprandial state. An alteration in insulin action in the brain, named "cerebral insulin resistance", is responsible for overeating and the development of obesity. METHODOLOGY/PRINCIPAL FINDINGS: To analyze the direct effect of insulin on food-related neuronal activity we tested 10 lean and 10 obese subjects. We conducted a magnetencephalography study during a visual working memory task in both the basal state and after applying insulin or placebo spray intranasally to bypass the blood brain barrier. Food and non-food pictures were presented and subjects had to determine whether or not two consecutive pictures belonged to the same category. Intranasal insulin displayed no effect on blood glucose, insulin or C-peptide concentrations in the periphery; however, it led to an increase in the components of evoked fields related to identification and categorization of pictures (at around 170 ms post stimuli in the visual ventral stream in lean subjects when food pictures were presented. In contrast, insulin did not modulate food-related brain activity in obese subjects. CONCLUSIONS/SIGNIFICANCE: We demonstrated that intranasal insulin increases the cerebral processing of food pictures in lean whereas this was absent in obese subjects. This study further substantiates the presence of a "cerebral insulin resistance" in obese subjects and might be relevant in the pathogenesis of obesity.

  6. Neurophysiological assessment of perceived image quality using steady-state visual evoked potentials

    Science.gov (United States)

    Bosse, Sebastian; Acqualagna, Laura; Porbadnigk, Anne K.; Curio, Gabriel; Müller, Klaus-Robert; Blankertz, Benjamin; Wiegand, Thomas

    2015-09-01

    An approach to the neural measurement of perceived image quality using electroencephalography (EEG) is presented. 6 different images were tested on 6 different distortion levels. The distortions were introduced by a hybrid video encoder. The presented study consists of two parts: In a first part, subjects were asked to evaluate the quality of the test stimuli behaviorally during a conventional psychophysical test using a degradation category rating procedure. In a second part, subjects were presented undistorted and distorted texture images in a periodically alternating fashion at a fixed frequency. This alternating presentation elicits so called steady-state visual evoked potentials (SSVEP) as a brain response that can be measured on the scalp. The amplitude of modulations in the brain signals is significantly and strongly negatively correlated with the magnitude of visual impairment reported by the subjects. This neurophysiological approach to image quality assessment may potentially lead to a more objective evaluation, as behavioral approaches suffer from drawbacks such as biases, inter-subject variances and limitations to test duration.

  7. A lower limb exoskeleton control system based on steady state visual evoked potentials

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  8. Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics.

    Science.gov (United States)

    Barboni, M T S; Gomes, B D; Souza, G S; Rodrigues, A R; Ventura, D F; Silveira, L C L

    2013-02-01

    The purpose of the present study was to measure contrast sensitivity to equiluminant gratings using steady-state visual evoked cortical potential (ssVECP) and psychophysics. Six healthy volunteers were evaluated with ssVECPs and psychophysics. The visual stimuli were red-green or blue-yellow horizontal sinusoidal gratings, 5° × 5°, 34.3 cd/m2 mean luminance, presented at 6 Hz. Eight spatial frequencies from 0.2 to 8 cpd were used, each presented at 8 contrast levels. Contrast threshold was obtained by extrapolating second harmonic amplitude values to zero. Psychophysical contrast thresholds were measured using stimuli at 6 Hz and static presentation. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. ssVECP and both psychophysical contrast sensitivity functions (CSFs) were low-pass functions for red-green gratings. For electrophysiology, the highest contrast sensitivity values were found at 0.4 cpd (1.95 ± 0.15). ssVECP CSF was similar to dynamic psychophysical CSF, while static CSF had higher values ranging from 0.4 to 6 cpd (P psychophysical methods (P psychophysical thresholds, mainly if the same temporal properties are applied to the stimulus. For blue-yellow CSF, correlation between electrophysiology and psychophysics was poor at high spatial frequency, possibly due to a greater effect of chromatic aberration on this kind of stimulus.

  9. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    Science.gov (United States)

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming.

  10. Comparison of objective diagnostic tests in glaucoma: Heidelberg retinal tomography and multifocal visual evoked potentials.

    Science.gov (United States)

    Balachandran, C; Graham, S L; Klistorner, A; Goldberg, I

    2006-04-01

    To compare sensitivity and specificity of functional and structural changes in glaucoma using two objective tests: the multifocal visual evoked potential (m-VEP) and Heidelberg retinal tomography II (HRT). 41 glaucoma patients and 25 normal individuals participated in the study. One eye per individual was included in the study. Individuals were evaluated with Humphrey visual field (HVF) perimetry, m-VEP, and HRT. Moorfield regression analysis findings of HRT were compared with presence of scotoma on m-VEP. Linear regression analysis of quantitative variables, such as HVF mean deviation (MD), m-VEP discriminant score (Accumap Severity Index) and, global HRT parameters was also performed. m-VEP sensitivity and specificity were 93% and 96% respectively. HRT sensitivity and specificity were 79% and 92% respectively. The area under the receiver operating characteristic curve (ROC) for m-VEP was 0.96 and for HRT varied from 0.79 to 0.86 depending on the parameters used. Linear correlation between MD and Accumap Severity Index score was -77%, while that between HRT global parameters, Accumap Severity Index and MD were at best around 50%. Topographic comparison of the presence of scotoma on HVF and m-VEP in different areas of the visual field showed good agreement. Comparison of optic nerve head structural abnormality with corresponding areas of field defects on HVF and m-VEP showed poor to moderate agreement. The objective test of optic nerve function (m-VEP) and structure (HRT) can detect glaucomatous damage, with limited correlation. The 2 functional tests, HVF and m-VEP correlate better with each other than with HRT. It remains important to look for both functional and structural changes in order to detect all glaucoma cases.

  11. Interrelationship of optical coherence tomography and multifocal visual-evoked potentials after optic neuritis.

    Science.gov (United States)

    Klistorner, Alexander; Arvind, Hemamalini; Garrick, Raymond; Graham, Stuart L; Paine, Mark; Yiannikas, Con

    2010-05-01

    Acute optic neuritis (ON) is often followed by recovery of visual function. Although this recovery is mainly attributable to resolution of the acute inflammation, the redistribution of ion channels along the demyelinated membrane, and subsequent remyelination, part of it may be the result of neural plasticity. In the present study, the interrelationship was examined between structural (retinal nerve fiber layer [RNFL] thickness) and functional (amplitude of multifocal visual evoked potentials [mfVEPs]) measures of the integrity of the visual pathway in the postacute stage of ON, to determine whether there was any evidence of ongoing neural reorganization. Twenty-five subjects with acute unilateral ON underwent serial RNFL thickness measurement and mfVEP recording. The inter-eye asymmetry of both measures was analyzed. In the period between 6 and 12 months, the subjects were considered free of optic disc edema, and that period was used to analyze the structure-function relationship. Twenty control subjects were also examined. There were significant but opposite changes in RNFL thickness and mfVEP amplitude. The average asymmetry of RNFL thickness between affected and fellow eyes increased from 17.5 +/- 11.5 to 21.1 +/- 12.8 microm (P = 0.0003), indicating progressive axonal loss, whereas mfVEP amplitude asymmetry decreased from 46.6 +/- 32.4 to 38.3 +/- 31.1 nV (P = 0.0015), indicating continuous functional recovery. In comparison to the 6-month results, the mfVEP amplitude in the ON eye improved by 17.8%, whereas RNFL thickness decreased by 20.8%. The result remained unchanged regardless of the degree of optic nerve remyelination. The finding of structural-functional discrepancy at the postinflammatory stage may support the concept that neural plasticity contributes to functional recovery after acute ON.

  12. Fractal Dimension Analysis of Transient Visual Evoked Potentials: Optimisation and Applications

    Science.gov (United States)

    Boon, Mei Ying; Henry, Bruce Ian; Chu, Byoung Sun; Basahi, Nour; Suttle, Catherine May; Luu, Chi; Leung, Harry; Hing, Stephen

    2016-01-01

    Purpose The visual evoked potential (VEP) provides a time series signal response to an external visual stimulus at the location of the visual cortex. The major VEP signal components, peak latency and amplitude, may be affected by disease processes. Additionally, the VEP contains fine detailed and non-periodic structure, of presently unclear relevance to normal function, which may be quantified using the fractal dimension. The purpose of this study is to provide a systematic investigation of the key parameters in the measurement of the fractal dimension of VEPs, to develop an optimal analysis protocol for application. Methods VEP time series were mathematically transformed using delay time, τ, and embedding dimension, m, parameters. The fractal dimension of the transformed data was obtained from a scaling analysis based on straight line fits to the numbers of pairs of points with separation less than r versus log(r) in the transformed space. Optimal τ, m, and scaling analysis were obtained by comparing the consistency of results using different sampling frequencies. The optimised method was then piloted on samples of normal and abnormal VEPs. Results Consistent fractal dimension estimates were obtained using τ = 4 ms, designating the fractal dimension = D2 of the time series based on embedding dimension m = 7 (for 3606 Hz and 5000 Hz), m = 6 (for 1803 Hz) and m = 5 (for 1000Hz), and estimating D2 for each embedding dimension as the steepest slope of the linear scaling region in the plot of log(C(r)) vs log(r) provided the scaling region occurred within the middle third of the plot. Piloting revealed that fractal dimensions were higher from the sampled abnormal than normal achromatic VEPs in adults (p = 0.02). Variances of fractal dimension were higher from the abnormal than normal chromatic VEPs in children (p = 0.01). Conclusions A useful analysis protocol to assess the fractal dimension of transformed VEPs has been developed. PMID:27598422

  13. The Changes of Pattern Reversal Visual Evoked Potentials in Normal Infants

    Institute of Scientific and Technical Information of China (English)

    YanFenLiu; JianGe

    1995-01-01

    Purpose:To study pattern reversal visual evoked potential(PVEPs)and deter-mine the developmental character and mature time of visual function in normal in-fants t different months of age.Methods:PVEPs were recorded from115normal infants at3,6,9,12moths age.P1latency for different checks(1°40′,25′,6′)was analyzed and compared to those of normal adults,Changes of N1,N2latency of PVEPs were also exam-ioned.Results:P1 latency for all checks(1°40′,25′,6′)was significantly longer at 3months than at 6months of age(P0.05).P1latency for larger checks(1°40′)reached adult level after 3months of age,but not for the intermediate check(25′),while P1latency for small check(6′)presented the character of fluctuation.Conclusion:The visual system continued to develop after birth and appeared a certain regularity,Our results showed thatP1latency for larger check(1°40′)reached adult levels after 3months of age.ButP1latency for intermediate check still has not reached adult levels after 3months of age.To deterine the age at which adult levels are finally reached,infants of 12months and older must be tested.The reason why P1latency for smaller check(6′)presented the character of fluctuation should be the temporal tuning function developing much more slowly.Eye Science1995;11:161-164.

  14. Multifocal visual evoked potential in optic neuritis, ischemic optic neuropathy and compressive optic neuropathy

    Directory of Open Access Journals (Sweden)

    Manju Jayaraman

    2014-01-01

    Full Text Available Purpose: To investigate the effect of optic neuritis (ON, ischemic optic neuropathy (ION and compressive optic neuropathy (CON on multifocal visual evoked potential (mfVEP amplitudes and latencies, and to compare the parameters among three optic nerve disorders. Materials and Methods: mfVEP was recorded for 71 eyes of controls and 48 eyes of optic nerve disorders with subgroups of optic neuritis (ON, n = 21 eyes, ischemic optic neuropathy (ION, n = 14 eyes, and compressive optic neuropathy (CON, n = 13 eyes. The size of defect in mfVEP amplitude probability plots and relative latency plots were analyzed. The pattern of the defect in amplitude probability plot was classified according to the visual field profile of optic neuritis treatment trail (ONTT. Results: Median of mfVEP amplitude (log SNR averaged across 60 sectors were reduced in ON (0.17 (0.13-0.33, ION (0.14 (0.12-0.21 and CON (0.21 (0.14-0.30 when compared to controls. The median mfVEP relative latencies compared to controls were significantly prolonged in ON and CON group of 10.53 (2.62-15.50 ms and 5.73 (2.67-14.14 ms respectively compared to ION group (2.06 (-4.09-13.02. The common mfVEP amplitude defects observed in probability plots were diffuse pattern in ON, inferior altitudinal defect in ION and temporal hemianopia in CON eyes. Conclusions: Optic nerve disorders cause reduction in mfVEP amplitudes. The extent of delayed latency noted in ischemic optic neuropathy was significantly lesser compared to subjects with optic neuritis and compressive optic neuropathy. mfVEP amplitudes can be used to objectively assess the topography of the visual field defect.

  15. Dose-dependent effect of donepezil administration on long-term enhancement of visually evoked potentials and cholinergic receptor overexpression in rat visual cortex.

    Science.gov (United States)

    Chamoun, Mira; Groleau, Marianne; Bhat, Menakshi; Vaucher, Elvire

    2016-09-01

    Stimulation of the cholinergic system tightly coupled with periods of visual stimulation boosts the processing of specific visual stimuli via muscarinic and nicotinic receptors in terms of intensity, priority and long-term effect. However, it is not known whether more diffuse pharmacological stimulation with donepezil, a cholinesterase inhibitor, is an efficient tool for enhancing visual processing and perception. The goal of the present study was to potentiate cholinergic transmission with donepezil treatment (0.5 and 1mg/kg) during a 2-week visual training to examine the effect on visually evoked potentials and to profile the expression of cholinergic receptor subtypes. The visual training was performed daily, 10min a day, for 2weeks. One week after the last training session, visual evoked potentials were recorded, or the mRNA expression level of muscarinic (M1-5) and nicotinic (α/β) receptors subunits was determined by quantitative RT-PCR. The visual stimulation coupled with any of the two doses of donepezil produced significant amplitude enhancement of cortical evoked potentials compared to pre-training values. The enhancement induced by the 1mg/kg dose of donepezil was spread to neighboring spatial frequencies, suggesting a better sensitivity near the visual detection threshold. The M3, M4, M5 and α7 receptors mRNA were upregulated in the visual cortex for the higher dose of donepezil but not the lower one, and the receptors expression was stable in the somatosensory (non-visual control) cortex. Therefore, higher levels of acetylcholine within the cortex sustain the increased intensity of the cortical response and trigger the upregulation of cholinergic receptors.

  16. Multifocal visual evoked potential analysis of inflammatory or demyelinating optic neuritis.

    Science.gov (United States)

    Fraser, Clare L; Klistorner, Alexander; Graham, Stuart L; Garrick, Raymond; Billson, Francis A; Grigg, John R

    2006-02-01

    To determine the sensitivity of multifocal visual evoked potentials (mVEP) in optic neuritis of an inflammatory or demyelinating nature. Cross-sectional study. Sixty-four patients participated who had a confirmed diagnosis of optic neuritis (ON) (past and acute). Based on the McDonald multiple sclerosis (MS) criteria, 25 patients (27 eyes with ON) were deemed to have isolated optic neuritis and thus not have MS (i.e., the not-MS group), and 19 patients (24 eyes with ON) had a diagnosis of MS (i.e., the MS group). The remaining 20 patients (25 eyes with ON) were at a high risk of MS, but diagnostic evaluation was equivocal, and thus were classified as the possible MS group. A control group of 20 normal patients was enrolled. The mVEP test was performed using the Accumap. All ON patients had recent magnetic resonance imaging scans of the brain and spinal cord. Multifocal visual evoked potentials amplitude and latency values were analyzed within each group and were compared with the normal controls. No abnormality was recorded on mVEP in the control group. Of all the ON eyes, 74 (97.3%) were abnormal on mVEP testing. Amplitude values were abnormal in 92.6% of not-MS eyes, 92.0% of possible MS eyes, and 100% of those with MS, and latency was abnormal in 33.3%, 76.0%, and 100%, respectively. There was a significant difference in the mVEP latency z-scores among all ON groups (P<0.01; Kruskal-Wallis test). Although distribution graphs of latency z-scores in the not-MS and MS groups had single peaks and were clearly separate from each other, the latency z-score distribution within the possible MS group in postacute patients was bimodal, with each peak corresponding to the distribution of the not-MS and MS group, respectively. The mVEP latency z-scores had a sensitivity and specificity of 100% in detecting patients with ON due to MS when compared with normal patients. The mVEP test is a sensitive and specific tool for detecting optic neuritis. There was a significant

  17. 视觉诱发电位结合MRI在视神经脊髓炎早期诊断中的临床应用%Clinical application of visual evoked potential combined with magnetic resonance imaging in the early diagnosis of neuromyelitis optica

    Institute of Scientific and Technical Information of China (English)

    余旭明; 詹奕红; 庄雄杰; 吴小强

    2011-01-01

    目的:探讨视觉诱发电位(visual evoked potential,VEP)和磁共振成像(magnetic resonance imaging,MRI)在视神经脊髓炎(Neuromyelitis optica,NMO)中的诊断价值.方法:分别对40例NMO患者和40名正常志愿者进行VEP和MRI检测.结果:NMO组VEP异常36例,P100的潜伏期为(119.78±7.65)ms,对照组Pl00的潜伏期为(97.89±5.63)ms,两组相比差异有显著统计学意义(P0.05).结论:VEP结合MRI对NMO的早期诊断和判断病情进程具有一定的临床价值.

  18. Cavitron ultrasonic surgical aspirator and visual evoked potential monitoring for chiasmal gliomas in children. Report of two cases.

    Science.gov (United States)

    Albright, A L; Sclabassi, R J

    1985-07-01

    The Cavitron ultrasonic surgical aspirator (CUSA) and intraoperative visual evoked potentials (VEP's) were found to be helpful in treating two children with difficult chiasmal gliomas. Approximately 60% of one tumor and 85% of the other was resected without change in the intraoperative VEP's and with no change in postoperative visual fields or acuity. The CUSA-VEP technique is useful in the infant to "buy time" for brain maturation, delaying or obviating subsequent radiotherapy. This approach may be helpful in the older child to reduce the tumor burden for subsequent chemotherapy. Chiasmal gliomas can be subtotally resected with the CUSA while visual function is monitored by intraoperative VEP's.

  19. A clinical case study of a Wolfram syndrome-affected family: pattern-reversal visual evoked potentials and electroretinography analysis.

    Science.gov (United States)

    Langwińska-Wośko, Ewa; Broniek-Kowalik, Karina; Szulborski, Kamil

    2012-04-01

    Wolfram syndrome (WFS), or DIDMOAD, is a rare (1/100 000 to 1/770 000), progressive neurodegenerative disorder. In its early stages, it is characterized by insulin-dependent diabetes mellitus, optic atrophy and loss of sensorineural hearing-this is followed by diabetes insipidus, progressive neurological abnormalities and other endocrine abnormalities, which occur in later years. The aim of this study was to report on the clinical and electrophysiological findings from a family with the WFS1 mutation. The five family members were subjected to a complete ophthalmic examination, which included a flash full-field electroretinogram and pattern-reversal visual evoked potentials (PVEPs) performed according to ISCEV standards. Optic atrophy was confirmed in two homozygotic patients, where P100 latencies were significantly delayed-up to 146 ms in PVEP. P100 latencies were normal in the three heterozygotic patients we examined. Curve morphology abnormalities were observed in all five patients we examined. No literature describing the morphology of PVEP in Wolfram syndrome patients was found. In flash electroretinography, scotopic and photopic responses appeared in normal morphology and value. Diabetic retinopathy was not observed in the diabetes mellitus patients.

  20. Experience-dependent hemispheric specialization of letters and numbers is revealed in early visual processing.

    Science.gov (United States)

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M; Woldorff, Marty G

    2014-10-01

    Recent fMRI research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared with numbers, whereas the right visual cortex preferentially processes numbers compared with letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of ERPs to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140-170 msec) than did numbers over left occipital channels, whereas numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves (starting around 250 msec) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 msec). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics.

  1. Dose-dependent effect of nutritional sulfite intake on visual evoked potentials and lipid peroxidation.

    Science.gov (United States)

    Ozturk, Nihal; Yargicoglu, Piraye; Derin, Narin; Akpinar, Deniz; Agar, Aysel; Aslan, Mutay

    2011-01-01

    The aim of this study was to clarify the dose-dependent effect of sulfite (SO₃²⁻) ingestion on brain and retina by means of electrophysiological and biochemical parameters. Fifty two male Wistar rats, aged 3 months, were randomized into four experimental groups of 13 rats as follows; control (C), sulfite treated groups (S(1); 10 mg/kg/day, S₂; 100mg/kg/day, S₃; 260 mg/kg/day). Control rats were administered distilled water, while the other three groups were given sodium metabisulfite (Na₂S₂O₅) of amounts mentioned above, via gavage for a period of 35 days. All components of visual evoked potential (VEP) were prolonged in S₂ and S₃ groups compared with S₁ and C groups. Plasma-S-sulfonate levels, which are an indicator of sulfur dioxide (SO₂) exposure, were increased in Na₂S₂O₅ treated groups in a dose-dependent manner. Furthermore, the significant increments in thiobarbituric acid reactive substances (TBARS) and 4-hydroxy-2-nonenal (4-HNE) levels occurred with increasing intake of Na₂S₂O₅. Though not significant, glutathione (GSH) and oxidized glutathione (GSSG) levels were observed to decrease with increasing doses of Na₂S₂O₅. In conclusion, Na₂S₂O₅ treatment in rats caused a dose-dependent increase in lipid peroxidation and all VEP latencies. The data indicate that lipid peroxidation could play an important role in sulfite toxicity.

  2. EXPERIMENTAL AND CLINICAL STUDY ON BILIRUBIN NEUROTOXICITY DETECTED BY VISUAL EVOKED POTENTIALS TO FLASH

    Institute of Scientific and Technical Information of China (English)

    贲晓明; 秦玉明; 吴圣楣; 张惠民; 陈舜年; 夏振炜

    2001-01-01

    Objective Evaluate the sensitivity and reliability of visual evoked potential to flash ( FVEP ) in detecting bilirubin neurotoxicity and approach the risk parameters of bilirubin neurotoxicity in hyperbilirubinernia newborns. Methods Based on the successful establishment of animal models for acute bilirubin encephalopathy by intraperitoneal infusion of bilirubin with a dosage of 100~200μg /g body weight to 1-weekold guinea pigs, the F-VEP was recorded in animal models and human neonates with hyperbilirubinemia, and the sensitivity and reliability of F-VEP in detecting bilirubin neurotoxicity were evaluated. Results F-VEP features and its P1 latency significantly correlated to brain adenosine triphosphate (ATP) level, neurobehavioral and neuropathological changes in experimental bilirubin encephalopathy ; neonates with hyperbilirubinemia showed significant F-VEP changes characterized by absence of P1 or P1 latency prolonged in 1~7-dayold newborns, especially when the jaundice was caused by immunoincompatibility and infectious diseases. Conclusion F-VEP would be a good discriminator for bilirubin neurotoxicity, and can become a promising technique in monitoring bilirubin encephalopathy.

  3. Correlation between subjective visual horizontal test and ocular vestibular-evoked myogenic potential test.

    Science.gov (United States)

    Lin, Kuei-You; Young, Yi-Ho

    2011-02-01

    The static subjective visual horizontal (SVH) test correlates with the dynamic ocular vestibular-evoked myogenic potential (oVEMP) test in healthy and pathological ears, and further confirms that both tests may, at least in part, share the same utricular reflex pathway. This study correlated the SVH test results with those of the oVEMP and cervical VEMP (cVEMP) tests to investigate their relationships. Twenty healthy subjects underwent the SVH test at a view pattern angle of 30° or 70° horizontal tilt under various background distractions to establish the optimal stimulation mode for SVH test. Thereafter, 20 patients with unilateral Meniere's disease underwent the SVH test using the optimal mode. In addition, oVEMP and cVEMP tests were performed in all subjects. The preliminary study in 20 healthy subjects at a view pattern angle of 70° under counterclockwise square background distraction revealed that the mean deviation degree of the SVH test was -0.61 ± 1.17°. Based on the criteria, abnormal percentages of SVH in 20 Meniere's patients were 40%. All healthy subjects had normal oVEMPs and cVEMPs. In contrast, eight patients (40%) showed abnormal oVEMPs and nine (45%) revealed abnormal cVEMPs. The SVH test results correlated significantly with oVEMP results, but not with cVEMP results.

  4. The locus of color sensation: Cortical color loss and the chromatic visual evoked potential

    Science.gov (United States)

    Crognale, Michael A.; Duncan, Chad S.; Shoenhard, Hannah; Peterson, Dwight J.; Berryhill, Marian E.

    2013-01-01

    Color losses of central origin (cerebral achromatopsia and dyschromatopsia) can result from cortical damage and are most commonly associated with stroke. Such cases have the potential to provide useful information regarding the loci of the generation of the percept of color. One available tool to examine this issue is the chromatic visual evoked potential (cVEP). The cVEP has been used successfully to objectively quantify losses in color vision capacity in both congenital and acquired deficiencies of retinal origin but has not yet been applied to cases of color losses of cortical origin. In addition, it is not known with certainty which cortical sites are responsible for the generation of the cVEP waveform components. Here we report psychophysical and electrophysiological examination of a patient with color deficits resulting from a bilateral cerebral infarct in the ventral occipitotemporal region. Although this patient demonstrated pronounced color losses of a general nature, the waveform of the cVEP remains unaffected. Contrast response functions of the cVEP are also normal for this patient. The results suggest that the percept of color arises after the origin of the cVEP and that normal activity in those areas that give rise to the characteristic negative wave of the cVEP are not sufficient to provide for the normal sensation of color. PMID:23986535

  5. [Adaptive estimation of contrast thresholds using the visual evoked potential (VEP)].

    Science.gov (United States)

    Meigen, Thomas; Kley, Franziska

    2007-01-01

    The visual evoked potential (VEP) can be used to objectively estimate sensory thresholds. Recently, we developed an adaptive procedure for this threshold estimation based on a Fourier analysis of steady-state responses during the recording. In this study we quantified the reduction in recording time of this adaptive procedure. Steady-state VEPs to pattern reversal (f = 8.3 Hz) of checkerboards with 8 contrast values between 0.64% and 82% were recorded monocularly. Adaptive and non-adaptive recordings were performed for full correction (fc) and for blurred stimulus patterns (+1.5 D and +3.0D). VEP contrast thresholds were defined by the lowest contrast condition that showed a significant response. An ANOVA of the VEP thresholds showed significant effects (p VEP, non-adaptive VEP) and "correction" (fc, fc + 1.5D, fc + 3.0D). Compared to non-adaptive recordings, adaptive recordings showed thresholds that were significantly reduced and closer to psychophysical contrast thresholds. By applying the adaptive procedure the recording time can be reduced by a factor of about 2 when compared to the non-adaptive procedure. The new adaptive VEP procedure may help to improve the correlation of electrophysiological and psychophysical estimates of sensory thresholds and may accelerate functional testing in the clinical routine.

  6. Dominant Eye and Visual Evoked Potential of Patients with Myopic Anisometropia

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2016-01-01

    Full Text Available A prospective nonrandomized controlled study was conducted to explore the association between ocular dominance and degree of myopia in patients with anisometropia and to investigate the character of visual evoked potential (VEP in high anisometropias. 1771 young myopia cases including 790 anisometropias were recruited. We found no significant relation between ocular dominance and spherical equivalent (SE refraction in all subjects. On average for subjects with anisometropia 1.0–1.75 D, there was no significant difference in SE power between dominant and nondominant eyes, while, in SE anisometropia ≥1.75 D group, the degree of myopia was significantly higher in nondominant eyes than in dominant eyes. The trend was more significant in SE anisometropia ≥2.5 D group. There was no significant difference in higher-order aberrations between dominant eye and nondominant eye either in the whole study candidates or in any anisometropia groups. In anisometropias >2.0 D, the N75 latency of nondominant eye was longer than that of dominant eye. Our results suggested that, with the increase of anisometropia, nondominant eye had a tendency of higher refraction and N75 wave latency of nondominant eye was longer than that of dominant eye in high anisometropias.

  7. The reproducibility of binocular pattern reversal visual evoked potentials: a single subject design.

    Science.gov (United States)

    Mellow, Tessa B; Liasis, Alki; Lyons, Ruth; Thompson, Dorothy A

    2011-06-01

    This study aimed to investigate the within-participant variability over time of both amplitude and peak latency measures of pattern reversal visual evoked potentials (pVEPs). As a large number of factors are known to contribute to the variability of the pVEPs (such as fixation instability and drowsiness), testing was conducted in controlled conditions with two co-operative participants. PVEPs were recorded during 24 sessions, over an eight-week period using the same equipment and recording settings. The participants viewed a plasma monitor binocularly from a distance of 1 meter. High contrast (97%), black and white checks of side subtense 50', 25', and 12.5' pattern reversed 3/s in a 28 degree test field. The different sized checks were presented in a pseudo-random order. Three runs, each of 100 trials, were acquired to each stimulus from an active electrode placed at Oz referred to aFz. The amplitude of N80-P100 and the latency of P100 were measured. P100 amplitude and latency were stable across sessions and did not depend upon the order of check size presentation. As expected, variation in amplitude was greater than peak latency. The coefficients of variation for different check sizes and participants were 9-14% for pVEP amplitude, but only 1-2% for P100 latency.

  8. Relationship between vitamin D deficiency and visually evoked potentials in multiple sclerosis.

    Science.gov (United States)

    López-Méndez, P; Sosa-Henríquez, M; Ruiz-Pérez, Á

    2016-05-01

    To evaluate the possible relationship between serum 25-OH vitamin D levels and visually evoked potentials (VEP) in patients with multiple sclerosis (MS), residents in the south zone of Gran Canaria. The study included 49 patients with MS, on whom 25-OH-vitamin D was determined, along with VEP, and a neurological examination to determine incapacity. Clinical variables, such as a history of optic neuritis were recorded. The mean value of 25-OH-vitamin D of the patients was 28.1±9.5ng/ml. The VEP latency was 119.1±23.2ms and the amplitude, 8.5±4.4 μV. Patients with a higher 25-OH-vitamin D had a greater number of outbreaks in the year prior to the study (P=.049), and those with vitamin D deficiency and previous optic neuritis showed no reduction in the amplitude of the VEP (P=.006). Patients with vitamin D deficiency have lower clinical activity of the MS and show no axonal involvement in VEP after having suffered optic neuritis. These relationships, although statistically significant, do not seem clinically plausible, thus new studies are needed to try and confirm this possible relationship. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Richard Junior Manuel Godinez Tello

    Full Text Available IntroductionThe main idea of a traditional Steady State Visually Evoked Potentials (SSVEP-BCI is the activation of commands through gaze control. For this purpose, the retina of the eye is excited by a stimulus at a certain frequency. Several studies have shown effects related to different kind of stimuli, frequencies, window lengths, techniques of feature extraction and even classification. So far, none of the previous studies has performed a comparison of performance of stimuli colors through LED technology. This study addresses precisely this important aspect and would be a great contribution to the topic of SSVEP-BCIs. Additionally, the performance of different colors at different frequencies and the visual comfort were evaluated in each case.MethodsLEDs of four different colors (red, green, blue and yellow flickering at four distinct frequencies (8, 11, 13 and 15 Hz were used. Twenty subjects were distributed in two groups performing different protocols. Multivariate Synchronization Index (MSI was the technique adopted as feature extractor.ResultsThe accuracy was gradually enhanced with the increase of the time window. From our observations, the red color provides, in most frequencies, both highest rates of accuracy and Information Transfer Rate (ITR for detection of SSVEP.ConclusionAlthough the red color has presented higher ITR, this color was turned in the less comfortable one and can even elicit epileptic responses according to the literature. For this reason, the green color is suggested as the best choice according to the proposed rules. In addition, this color has shown to be safe and accurate for an SSVEP-BCI.

  10. Electroencephalogram-based scaling of multifocal visual evoked potentials: effect on intersubject amplitude variability.

    Science.gov (United States)

    Klistorner, A I; Graham, S L

    2001-08-01

    The interindividual variability of the visual evoked potential (VEP) has been recognized as a problem for interpretation of clinical results. This study examines whether VEP variability can be reduced by scaling responses according to underlying electroencephalogram (EEG) activity. A multifocal objective perimeter provided different random check patterns to each of 58 points extending out to 32 degrees nasally. A multichannel VEP was recorded (bipolar occipital cross electrodes, 7 min/eye). One hundred normal subjects (age 58.9 +/- 10.7 years) were tested. The amplitude and inter-eye asymmetry coefficient for each point of the field was calculated. VEP signals were then normalized according to underlying EEG activity recorded using Fourier transform to quantify EEG levels. High alpha-rhythm and electrocardiogram contamination were removed before scaling. High intersubject variability was present in the multifocal VEP, with amplitude in women on average 33% larger than in men. The variability for all left eyes was 42.2% +/- 3.9%, for right eyes 41.7% +/- 4.4% (coefficient of variability [CV]). There was a strong correlation between EEG activity and the amplitude of the VEP (left eye, r = 0.83; P < 0.001; right eye, r = 0.82; P < 0.001). When this was used to normalize VEP results, the CVs dropped to 24.6% +/- 3.1% (P < 0.0001) and 24.0% +/- 3.2% (P < 0.0001), respectively. The gender difference was effectively removed. Using underlying EEG amplitudes to normalize an individual's VEP substantially reduces intersubject variability, including differences between men and women. This renders the use of a normal database more reliable when applying the multifocal VEP in the clinical detection of visual field changes.

  11. Identifying preperimetric functional loss in glaucoma: a blue-on-yellow multifocal visual evoked potentials study.

    Science.gov (United States)

    Arvind, Hemamalini; Graham, Stuart; Leaney, John; Grigg, John; Goldberg, Ivan; Billson, Frank; Klistorner, Alexander

    2009-06-01

    To determine the ability of blue-on-yellow multifocal visual evoked potentials (BonY mfVEP) to identify functional loss in preperimetric glaucoma. Prospective case series. Thirty patients with glaucomatous optic discs and normal standard visual fields. All patients underwent BonY mfVEP, dilated optic disc stereophotography, and optical coherence tomography (Fast RNFL protocol). Optic disc photographs were assessed by 2 independent examiners in a masked fashion. The mfVEP amplitude asymmetry and latency values were analyzed and compared topographically with findings of disc assessment. Average retinal nerve fiber layer (RNFL) thickness, RNFL asymmetry, and sectors with RNFL thinning were compared between patients with and without mfVEP defects. Fourteen (46.7%) patients demonstrated significant abnormality on amplitude asymmetry deviation plots of BonY mfVEP. In all 14 cases, the defect was monocular and corresponded to the eye with the worse disc. In 13 of 14 patients, the defect also corresponded to the location of the worst affected rim. Average RNFL thickness of eyes with mfVEP defects was 81.2+/-9.9 microm, significantly lower than that of patients without defects (90+/-10.5 microm; P = 0.035). Mean asymmetry of RNFL (better minus worse eye) also was significantly higher for patients with mfVEP defects compared with those without such defects (9.0+/-6.4 microm vs. 3.0+/-7 microm; P = 0.03). Average latency of both eyes of glaucomatous patients was delayed compared with that of controls, with no difference in latency between worse and better eyes of glaucoma patients. There was no association of latency delay with either the location of disc changes or mfVEP amplitude defects. Amplitude asymmetry of the BonY mfVEP seems to be a promising tool to identify functional loss in preperimetric glaucoma. Proprietary or commercial disclosure may be found after the references.

  12. Rapid and Objective Assessment of Neural Function in Autism Spectrum Disorder Using Transient Visual Evoked Potentials

    Science.gov (United States)

    Siper, Paige M.; Zemon, Vance; Gordon, James; George-Jones, Julia; Lurie, Stacey; Zweifach, Jessica; Tavassoli, Teresa; Wang, A. Ting; Jamison, Jesslyn; Buxbaum, Joseph D.; Kolevzon, Alexander

    2016-01-01

    Objective There is a critical need to identify biomarkers and objective outcome measures that can be used to understand underlying neural mechanisms in autism spectrum disorder (ASD). Visual evoked potentials (VEPs) offer a noninvasive technique to evaluate the functional integrity of neural mechanisms, specifically visual pathways, while probing for disease pathophysiology. Methods Transient VEPs (tVEPs) were obtained from 96 unmedicated children, including 37 children with ASD, 36 typically developing (TD) children, and 23 unaffected siblings (SIBS). A conventional contrast-reversing checkerboard condition was compared to a novel short-duration condition, which was developed to enable objective data collection from severely affected populations who are often excluded from electroencephalographic (EEG) studies. Results Children with ASD showed significantly smaller amplitudes compared to TD children at two of the earliest critical VEP components, P60-N75 and N75-P100. SIBS showed intermediate responses relative to ASD and TD groups. There were no group differences in response latency. Frequency band analyses indicated significantly weaker responses for the ASD group in bands encompassing gamma-wave activity. Ninety-two percent of children with ASD were able to complete the short-duration condition compared to 68% for the standard condition. Conclusions The current study establishes the utility of a short-duration tVEP test for use in children at varying levels of functioning and describes neural abnormalities in children with idiopathic ASD. Implications for excitatory/inhibitory balance as well as the potential application of VEP for use in clinical trials are discussed. PMID:27716799

  13. [Early prognosis in severe cranio-cerebral trauma using the Glasgow Coma Score and evoked potentials].

    Science.gov (United States)

    Riffel, B; Stöhr, M; Graser, W; Trost, E; Baumgärtner, H

    1989-02-01

    During 72 h following severe head injury, 103 patients in acute posttraumatic coma were assessed by clinical examinations (documented by Glasgow Coma Score) and brain stem auditory evoked potentials (BAEP) as well as short-latency somatosensory evoked potentials (SEP) following median-nerve stimulation. Patient outcomes were classified at 6 months or more according to the following categories: good recovery, severely disabled or vegetative, and brain dead. Patients who had died of systemic complications (pneumonia, septicemia, renal failure, etc.) were excluded from the study. The Glasgow Coma Score was reliable in forecasting a favorable outcome; all patients with a Score over 9 points had a good recovery. The Glasgow Coma Score was not reliable in predicting an unfavorable outcome, however; some patients with the lowest possible Glasgow Coma Score (3 points) at the early clinical examination survived with good recovery. The BAEPs were reliable predictors of an unfavorable outcome; the outcome was unfavorable when a missing wave V or more missing waves pointed toward a secondary brainstem lesion. Normal BAEPs were not reliable, however, in predicting a favorable outcome. SEP data served as a prognostic indicator of unfavorable as well as favorable outcomes. In summary, evoked potentials add valuable information to the clinical examination in assessing a patient's outcome after severe head injury.

  14. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.

    Science.gov (United States)

    Xie, Jun; Xu, Guanghua; Luo, Ailing; Li, Min; Zhang, Sicong; Han, Chengcheng; Yan, Wenqiang

    2017-08-14

    As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a ubiquitous random perturbation with the power of randomness, may be exploited by the human visual system to enhance higher-level brain functions. In this study, a novel steady-state motion visual evoked potential (SSMVEP, i.e., one kind of SSVEP)-based BCI paradigm with spatiotemporal visual noise was used to investigate the influence of noise on the compensation of mental load and fatigue deterioration during prolonged attention tasks. Changes in α, θ, θ + α powers, θ/α ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio (SNR), and online accuracy, were used to evaluate mental load and fatigue. We showed that presenting a moderate visual noise to participants could reliably alleviate the mental load and fatigue during online operation of visual BCI that places demands on the attentional processes. This demonstrated that noise could provide a superior solution to the implementation of visual attention controlling-based BCI applications.

  15. A kiss is not a kiss: visually evoked neuromagnetic fields reveal differential sensitivities to brief presentations of kissing couples.

    Science.gov (United States)

    Cogan, Gregory B; Kirshenbaum, Sheril R; Walker, Jeffrey; Poeppel, David

    2015-09-30

    With a few exceptions, the literature on face recognition and its neural basis derives from the presentation of single faces. However, in many ecologically typical situations, we see more than one face, in different communicative contexts. One of the principal ways in which we interact using our faces is kissing. Although there is no obvious taxonomy of kissing, we kiss in various interpersonal situations (greeting, ceremony, sex), with different goals and partners. Here, we assess the visual cortical responses elicited by viewing different couples kissing with different intents. The study thus lies at the nexus of face recognition, action recognition, and social neuroscience. Magnetoencephalography data were recorded from nine participants in a passive viewing paradigm. We presented images of couples kissing, with the images differing along two dimensions, kiss type and couple type. We quantified event-related field amplitudes and latencies. In each participant, the canonical sequence of event-related fields was observed, including an M100, an M170, and a later M400 response. The earliest two responses were significantly modulated in latency (M100) or amplitude (M170) by the sex composition of the images (with male-male and female-female pairings yielding faster latency M100 and larger amplitude M170 responses). In contrast, kiss type showed no modulation of any brain response. The early cortical-evoked fields that we typically associate with the presentation and analysis of single faces are differentially sensitive to complex social and action information in face pairs that are kissing. The early responses, typically associated with perceptual analysis, exhibit a consistent grouping and suggest a high and rapid sensitivity to the composition of the kissing pairs.

  16. Effect of check size and stimulation rate on blue-yellow multifocal visual evoked potentials.

    Science.gov (United States)

    Martins, Alessandra; Klistorner, Alexander; Graham, Stuart; Billson, Frank

    2004-06-01

    To determine the effect of different stimulus frame rates and check sizes on blue-yellow multifocal visual evoked potentials (mVEP). Subjects were examined at the Save Sight Institute at the University Sydney. Experiment 1 involved five adult subjects who underwent binocular stimulation by the Accumap multifocal objective perimeter. The eyes were stimulated with a cortically scaled dartboard pattern consisting of isoluminant blue and yellow checks. These were arranged in three concentric rings extending to an eccentricity of 26 degrees in the visual field. The stimulus pattern was driven by binary sequences resulting in pseudorandom binary exchange of two opposite checkerboard patterns at each of the 32 sites in the visual field. The mVEP were recorded at two different rates of display of the pattern stimulus. In experiment 2, mVEP were tested on 10 normal subjects. Each of the 36 stimulation sites contained a checkerboard pattern of 20, 30, 42 or 56 checks/site, the stimulation pattern was displayed at the optimum rate found in experiment 1. The size of the checks was inversely proportional to the number of checks per site. In experiment 1, the slow frame rate significantly increased the average amplitude throughout the field tested by 50 +/- 10.1% (P = 0.001). Latency was significantly shortened by 6.3% (P < 0.01). In experiment 2, the average amplitude peaked at 30 checks per segment; however, this was only calculated to be significantly different from the smallest check size (F(crit range 4,27) = 0.09 P < 0.05, anova, Tukey's T method). A similar difference was found in ring 1 (F(crit range 4,27) = 0.09, P < 0.05, anova, Tukey's T method). In ring 2, however, there was also a significant difference between 56 checks and 20, 30 and 42 (F(crit range 4,27) = 0.09, anova, P < 0.05). Altering the check sizes did not significantly affect the amplitudes in ring 3. The latencies were not significantly modified by altering check size at any eccentricity. These findings

  17. Sustained visual-spatial attention produces costs and benefits in response time and evoked neural activity.

    Science.gov (United States)

    Mangun, G R; Buck, L A

    1998-03-01

    This study investigated the simple reaction time (RT) and event-related potential (ERP) correlates of biasing attention towards a location in the visual field. RTs and ERPs were recorded to stimuli flashed randomly and with equal probability to the left and right visual hemifields in the three blocked, covert attention conditions: (i) attention divided equally to left and right hemifield locations; (ii) attention biased towards the left location; or (iii) attention biased towards the right location. Attention was biased towards left or right by instructions to the subjects, and responses were required to all stimuli. Relative to the divided attention condition, RTs were significantly faster for targets occurring where more attention was allocated (benefits), and slower to targets where less attention was allocated (costs). The early P1 (100-140 msec) component over the lateral occipital scalp regions showed attentional benefits. There were no amplitude modulations of the occipital N1 (125-180 msec) component with attention. Between 200 and 500 msec latency, a late positive deflection (LPD) showed both attentional costs and benefits. The behavioral findings show that when sufficiently induced to bias attention, human observers demonstrate RT benefits as well as costs. The corresponding P1 benefits suggest that the RT benefits of spatial attention may arise as the result of modulations of visual information processing in the extrastriate visual cortex.

  18. Early evoked pain or dysesthesia is a predictor of central poststroke pain.

    Science.gov (United States)

    Klit, Henriette; Hansen, Anne P; Marcussen, Ninna S; Finnerup, Nanna B; Jensen, Troels S

    2014-12-01

    Central poststroke pain (CPSP) is a central neuropathic pain condition caused by a cerebrovascular lesion affecting the central somatosensory nervous system. Once developed, CPSP is difficult to treat, so there is an interest in identifying stroke patients at risk for the development of CPSP. This study examined if sensory abnormalities, including evoked dysesthesia, allodynia, or hyperalgesia to static and dynamic touch, cold, and pinprick, at stroke onset are a predictor for the development of CPSP. Consecutive stroke patients were recruited from a large prospective study of poststroke pain in Aarhus, Denmark, between 2007 and 2008. Patients underwent a structured pain interview and a standardized sensory examination within 4 days of admission, and a structured telephone interview was conducted after 3 and 6months. Patients who developed poststroke pain in the affected side without any other plausible cause were classified as having possible CPSP. A total of 275 stroke patients completed the study, and 29 patients (10.5%) were classified as having possible CPSP. The diagnosis was confirmed by a clinical examination in 15 of 17 patients, corresponding to a prevalence of 8.3%. The presence of allodynia, hyperalgesia, or dysesthesia in response to the sensory examination at stroke onset increased the odds for CPSP at 6months by 4.6 (odds ratio; 95% confidence interval 1.5-13.9). The combination of reduced or absent sensation to pinprick or cold and early evoked pain or dysesthesia at onset increased odds by 8.0 (odds ratio; 95% confidence interval 2.6-24.8). In conclusion, early evoked pain or dysesthesia is a predictor for CPSP.

  19. Delayed P100-Like Latencies in Multiple Sclerosis: A Preliminary Investigation Using Visual Evoked Spread Spectrum Analysis.

    Directory of Open Access Journals (Sweden)

    Hanni S M Kiiski

    Full Text Available Conduction along the optic nerve is often slowed in multiple sclerosis (MS. This is typically assessed by measuring the latency of the P100 component of the Visual Evoked Potential (VEP using electroencephalography. The Visual Evoked Spread Spectrum Analysis (VESPA method, which involves modulating the contrast of a continuous visual stimulus over time, can produce a visually evoked response analogous to the P100 but with a higher signal-to-noise ratio and potentially higher sensitivity to individual differences in comparison to the VEP. The main objective of the study was to conduct a preliminary investigation into the utility of the VESPA method for probing and monitoring visual dysfunction in multiple sclerosis. The latencies and amplitudes of the P100-like VESPA component were compared between healthy controls and multiple sclerosis patients, and multiple sclerosis subgroups. The P100-like VESPA component activations were examined at baseline and over a 3-year period. The study included 43 multiple sclerosis patients (23 relapsing-remitting MS, 20 secondary-progressive MS and 42 healthy controls who completed the VESPA at baseline. The follow-up sessions were conducted 12 months after baseline with 24 MS patients (15 relapsing-remitting MS, 9 secondary-progressive MS and 23 controls, and again at 24 months post-baseline with 19 MS patients (13 relapsing-remitting MS, 6 secondary-progressive MS and 14 controls. The results showed P100-like VESPA latencies to be delayed in multiple sclerosis compared to healthy controls over the 24-month period. Secondary-progressive MS patients had most pronounced delay in P100-like VESPA latency relative to relapsing-remitting MS and controls. There were no longitudinal P100-like VESPA response differences. These findings suggest that the VESPA method is a reproducible electrophysiological method that may have potential utility in the assessment of visual dysfunction in multiple sclerosis.

  20. Delayed P100-Like Latencies in Multiple Sclerosis: A Preliminary Investigation Using Visual Evoked Spread Spectrum Analysis

    Science.gov (United States)

    Kiiski, Hanni S. M.; Ní Riada, Sinéad; Lalor, Edmund C.; Gonçalves, Nuno R.; Nolan, Hugh; Whelan, Robert; Lonergan, Róisín; Kelly, Siobhán; O'Brien, Marie Claire; Kinsella, Katie; Bramham, Jessica; Burke, Teresa; Ó Donnchadha, Seán; Hutchinson, Michael; Tubridy, Niall; Reilly, Richard B.

    2016-01-01

    Conduction along the optic nerve is often slowed in multiple sclerosis (MS). This is typically assessed by measuring the latency of the P100 component of the Visual Evoked Potential (VEP) using electroencephalography. The Visual Evoked Spread Spectrum Analysis (VESPA) method, which involves modulating the contrast of a continuous visual stimulus over time, can produce a visually evoked response analogous to the P100 but with a higher signal-to-noise ratio and potentially higher sensitivity to individual differences in comparison to the VEP. The main objective of the study was to conduct a preliminary investigation into the utility of the VESPA method for probing and monitoring visual dysfunction in multiple sclerosis. The latencies and amplitudes of the P100-like VESPA component were compared between healthy controls and multiple sclerosis patients, and multiple sclerosis subgroups. The P100-like VESPA component activations were examined at baseline and over a 3-year period. The study included 43 multiple sclerosis patients (23 relapsing-remitting MS, 20 secondary-progressive MS) and 42 healthy controls who completed the VESPA at baseline. The follow-up sessions were conducted 12 months after baseline with 24 MS patients (15 relapsing-remitting MS, 9 secondary-progressive MS) and 23 controls, and again at 24 months post-baseline with 19 MS patients (13 relapsing-remitting MS, 6 secondary-progressive MS) and 14 controls. The results showed P100-like VESPA latencies to be delayed in multiple sclerosis compared to healthy controls over the 24-month period. Secondary-progressive MS patients had most pronounced delay in P100-like VESPA latency relative to relapsing-remitting MS and controls. There were no longitudinal P100-like VESPA response differences. These findings suggest that the VESPA method is a reproducible electrophysiological method that may have potential utility in the assessment of visual dysfunction in multiple sclerosis. PMID:26726800

  1. [Dissociation of visual evoked responses to hemi-field or full-field flash-checkerboard stimulation].

    Science.gov (United States)

    Samson-Dollfus, D; Layet, A; Hannequin, D; Menard, J F; Parain, D; Nehili, F

    1984-06-01

    Unexpected visual evoked responses (VERs) were recorded in 5 subjects with tumoral, ischemic or hemorrhagic lesions of the retrochiasmatic visual pathways. The flash pattern stimulation was always binocular and involved full-field and half-field stimuli. In these 5 cases, the total field VER was asymmetrical with anomalies on the affected occipital region. However half-field VERs P100 contralateral to the stimulus were noted both on the normal and on the affected occipital region. One can ask if this is not an electrophysiological equivalent of the clinical relative hemianopsia.

  2. [Visual evoked potentials produced by monocular flash stimuli in the cerebral cortex of the rabbit. I. Typography].

    Science.gov (United States)

    Pérez-Cobo, J C; Ruiz-Beramendi, M; Pérez-Arroyo, M

    1990-12-01

    The visually evoked potentials in the hemisphere contralateral to the stimulated eye in rabbit, can be described topographically as follows. While a positive wave (P1) begins forming in the anterior zones and in the V I binocular zone, the N0 wave, at times very large, is produced in a more occipital zone, which corresponds to the visual streak. Immediately afterwards, the positivity, P1, practically invades the whole of the hemisphere. After this, the N1 wave which is produced in the most posterior parts of the V I, begins forming. The whole phenomenon comes to an end when the P2 wave is generated in the most occipital zones.

  3. Visual evoked potential changes in patients with diabetes mellitus without retinopathy

    Directory of Open Access Journals (Sweden)

    Sangeeta Gupta

    2015-12-01

    Results: The study has demonstrated significant prolongation of mean P100 latency, reduction in N75-P100 amplitudes and increased interocular latency difference in the diabetics as compared to the control group. The duration of the illness was found to alter the mean P100 latency while the glycaemic status of the diabetics was not found to be correlated with the PRVEP abnormalities. Conclusions: VEP responses are deranged in diabetic patients before the development of retinopathy. VEP measurements can be used for the early diagnosis of visual dysfunctions in the diabetes for a better prognosis of the condition. [Int J Res Med Sci 2015; 3(12.000: 3591-3598

  4. Research on steady-state visual evoked potentials in 3D displays

    Science.gov (United States)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-value<0.05) between large and small disparity angle, and the signal-to-noise ratios (SNRs) of small disparity angles is higher than those of large disparity angles. The 3D stimuli with smaller disparity and lower crosstalk are more suitable for applications based on the results of 3D perception and SSVEP responses (SNR). Furthermore, we can infer the 3D perception of users by SSVEP responses, and modify the proper disparity of 3D images automatically in the future.

  5. EEG-based classification of video quality perception using steady state visual evoked potentials (SSVEPs)

    Science.gov (United States)

    Acqualagna, Laura; Bosse, Sebastian; Porbadnigk, Anne K.; Curio, Gabriel; Müller, Klaus-Robert; Wiegand, Thomas; Blankertz, Benjamin

    2015-04-01

    Objective. Recent studies exploit the neural signal recorded via electroencephalography (EEG) to get a more objective measurement of perceived video quality. Most of these studies capitalize on the event-related potential component P3. We follow an alternative approach to the measurement problem investigating steady state visual evoked potentials (SSVEPs) as EEG correlates of quality changes. Unlike the P3, SSVEPs are directly linked to the sensory processing of the stimuli and do not require long experimental sessions to get a sufficient signal-to-noise ratio. Furthermore, we investigate the correlation of the EEG-based measures with the outcome of the standard behavioral assessment. Approach. As stimulus material, we used six gray-level natural images in six levels of degradation that were created by coding the images with the HM10.0 test model of the high efficiency video coding (H.265/MPEG-HEVC) using six different compression rates. The degraded images were presented in rapid alternation with the original images. In this setting, the presence of SSVEPs is a neural marker that objectively indicates the neural processing of the quality changes that are induced by the video coding. We tested two different machine learning methods to classify such potentials based on the modulation of the brain rhythm and on time-locked components, respectively. Main results. Results show high accuracies in classification of the neural signal over the threshold of the perception of the quality changes. Accuracies significantly correlate with the mean opinion scores given by the participants in the standardized degradation category rating quality assessment of the same group of images. Significance. The results show that neural assessment of video quality based on SSVEPs is a viable complement of the behavioral one and a significantly fast alternative to methods based on the P3 component.

  6. Normal and dichromatic color discrimination measured with transient visual evoked potential.

    Science.gov (United States)

    Gomes, Bruno D; Souza, Givago S; Rodrigues, Anderson R; Saito, Cézar A; Silveira, Luiz Carlos L; da Silva Filho, Manoel

    2006-01-01

    It would be informative to have an electrophysiological method to study, in an objective way, the effects of mercury exposure and other neurotoxics on human color vision performance. The purpose of the present work was to study human color discrimination by measuring chromatic difference thresholds with visual evoked potential (VEP). Six young normal trichromats (24 +/- 1 years old) and one deutan (26 years old) were tested. The stimuli consisted of sinusoidal isoluminant chromatic gratings made from chromaticity pairs located along four different color directions centered on two reference points. Heterochromatic flicker photometry (HFP) protocol was used to obtain the isoluminance condition for every subject and for all chromaticity pairs. Spatial frequency was 2 cycles/deg. Presentation mode comprised onset (300 ms)/offset (700 ms) periods. As previously described, we found a negative deflection in the VEP which was related to the chromatic difference: as chromatic difference increased, amplitude increased and latency decreased. VEP response amplitude was plotted against distance in the CIE 1976 color space between the grating chromaticities and fitted with a regression line. We found color thresholds by extrapolating the fitting to null amplitude values. The thresholds were plotted in the CIE 1976 color space as MacAdam ellipses. In normal trichromats the ellipses had small size, low ellipticity, and were vertically oriented. In the deutan subject, the ellipses had large size, high ellipticity, and were oriented towards the deutan copunctal locus. The VEP thresholds were similar to those obtained using grating stimuli and psychophysical procedures, however smaller than those obtained using pseudoisochromatic stimuli (Mollon-Reffin method). We concluded that transient VEP amplitude as a function of contrast can be reliably used in objective studies of chromatic discrimination performance in normal and altered human subjects.

  7. Multifocal visual evoked potentials are influenced by variable contrast stimulation in MS

    Science.gov (United States)

    Frohman, Audrey R.; Schnurman, Zane; Conger, Amy; Conger, Darrel; Beh, Shin; Greenberg, Benjamin; Sutter, Erich; Calabresi, Peter A.; Balcer, Laura J.; Frohman, Teresa C.

    2012-01-01

    Objective: To test the hypothesis that patients with multiple sclerosis (MS) with intereye asymmetry on low contrast letter acuity, and thickness of the retinal nerve fiber layer (RNFL), would exhibit corresponding changes in cortical timing and amplitude responses on pattern reversal multifocal visual evoked potentials (mfVEP), contingent upon variable stimulus contrast. Methods: In a cross-sectional study, we investigated a cohort of 11 normal subjects and 40 patients with MS, 21 of whom had a history of acute optic neuritis (MS-AON) with an intereye asymmetry with respect to RNFL thickness, and on low contrast letter acuity performance. Pattern reversal mfVEP was performed at high (100%), low (33.3%), and very low (14.2%) Michelson-contrast levels. Results: Compared to baseline measures at 100% contrast, the mean amplitude of the mfVEP was reduced in MS-AON eyes, upon pattern-reversal stimulation at the 2 lower contrast levels (p < 0.0001). With respect to changes in timing responses, the intereye asymmetry was increased in the MS-AON patients upon lower contrast pattern-reversal stimulation (p < 0.0001 for 33.3% compared to 100%, and p < 0.001 for 14.2% compared to 100%). The fellow eye in 12 (57%; p < 0.001) of the patients with an abnormal eye, and a history of AON, revealed abnormal amplitude and timing responses upon low contrast stimulation (signifying unmasking of occult damage). Conclusions: Our findings support the hypothesis that mfVEP metric abnormalities are contingent upon contrast magnitude during pattern reversal stimulation. Further, this paradigm was capable of unmasking occult abnormalities in a significant number of apparently unaffected eyes. PMID:22815550

  8. Multifocal visual evoked responses to dichoptic stimulation using virtual reality goggles: Multifocal VER to dichoptic stimulation.

    Science.gov (United States)

    Arvind, Hemamalini; Klistorner, Alexander; Graham, Stuart L; Grigg, John R

    2006-05-01

    Multifocal visual evoked potentials (mfVEPs) have demonstrated good diagnostic capabilities in glaucoma and optic neuritis. This study aimed at evaluating the possibility of simultaneously recording mfVEP for both eyes with dichoptic stimulation using virtual reality goggles and also to determine the stimulus characteristics that yield maximum amplitude. ten healthy volunteers were recruited and temporally sparse pattern pulse stimuli were presented dichoptically using virtual reality goggles. Experiment 1 involved recording responses to dichoptically presented checkerboard stimuli and also confirming true topographic representation by switching off specific segments. Experiment 2 involved monocular stimulation and comparison of amplitude with Experiment 1. In Experiment 3, orthogonally oriented gratings were dichoptically presented. Experiment 4 involved dichoptic presentation of checkerboard stimuli at different levels of sparseness (5.0 times/s, 2.5 times/s, 1.66 times/s and 1.25 times/s), where stimulation of corresponding segments of two eyes were separated by 16.7, 66.7,116.7 & 166.7 ms respectively. Experiment 1 demonstrated good traces in all regions and confirmed topographic representation. However, there was suppression of amplitude of responses to dichoptic stimulation by 17.9+/-5.4% compared to monocular stimulation. Experiment 3 demonstrated similar suppression between orthogonal and checkerboard stimuli (p = 0.08). Experiment 4 demonstrated maximum amplitude and least suppression (4.8%) with stimulation at 1.25 times/s with 166.7 ms separation between eyes. It is possible to record mfVEP for both eyes during dichoptic stimulation using virtual reality goggles, which present binocular simultaneous patterns driven by independent sequences. Interocular suppression can be almost eliminated by using a temporally sparse stimulus of 1.25 times/s with a separation of 166.7 ms between stimulation of corresponding segments of the two eyes.

  9. Single-Trial Visual Evoked Potential Extraction Using Partial Least-Squares-Based Approach.

    Science.gov (United States)

    Kristina Yanti, Duma; Zuki Yusoff, Mohd; Sagayan Asirvadam, Vijanth

    2016-01-01

    A single-trial extraction of a visual evoked potential (VEP) signal based on the partial least-squares (PLS) regression method has been proposed in this paper. This paper has focused on the extraction and estimation of the latencies of P100, P200, P300, N75, and N135 in the artificial electroencephalograph (EEG) signal. The real EEG signal obtained from the hospital was only concentrated on the P100. The performance of the PLS has been evaluated mainly on the basis of latency error rate of the peaks for the artificial EEG signal, and the mean peak detection and standard deviation for the real EEG signal. The simulation results show that the proposed PLS algorithm is capable of reconstructing the EEG signal into its desired shape of the ideal VEP. For P100, the proposed PLS algorithm is able to provide comparable results to the generalized eigenvalue decomposition (GEVD) algorithm, which alters (prewhitens) the EEG input signal using the prestimulation EEG signal. It has also shown better performance for later peaks (P200 and P300). The PLS outperformed not only in positive peaks but also in N75. In P100, the PLS was comparable with the GEVD although N135 was better estimated by GEVD. The proposed PLS algorithm is comparable to GEVD given that PLS does not alter the EEG input signal. The PLS algorithm gives the best estimate to multitrial ensemble averaging. This research offers benefits such as avoiding patient's fatigue during VEP test measurement in the hospital, in BCI applications and in EEG-fMRI integration.

  10. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  11. Exploring the methods of data analysis in multifocal visual evoked potentials.

    Science.gov (United States)

    Malmqvist, L; De Santiago, L; Fraser, C; Klistorner, A; Hamann, S

    2016-08-01

    The multifocal visual evoked potential (mfVEP) provides a topographical assessment of visual function, which has already shown potential for use in patients with glaucoma and multiple sclerosis. However, the variability in mfVEP measurements has limited its broader application. The purpose of this study was to compare several methods of data analysis to decrease mfVEP variability. Twenty-three normal subjects underwent mfVEP testing. Monocular and interocular asymmetry data were analyzed. Coefficients of variability in amplitude were examined using peak-to-peak, root mean square (RMS), signal-to-noise ratio (SNR) and logSNR techniques. Coefficients of variability in latency were examined using second peak and cross-correlation methods. LogSNR and peak-to-peak methods had significantly lower intra-subject variability when compared with RMS and SNR methods. LogSNR had the lowest inter-subject amplitude variability when compared with peak-to-peak, RMS and SNR. Average latency asymmetry values for the cross-correlation analysis were 1.7 ms (CI 95 % 1.2-2.3 ms) and for the second peak analysis 2.5 ms (CI 95 % 1.7-3.3 ms). A significant difference was found between cross-correlation and second peak analysis for both intra-subject variability (p < 0.001) and inter-subject variability (p < 0.001). For a comparison of amplitude data between groups of patients, the logSNR or SNR methods are preferred because of the smaller inter-subject variability. LogSNR or peak-to-peak methods have lower intra-subject variability, so are recommended for comparing an individual mfVEP to previous published normative data. This study establishes that the choice of mfVEP data analysis method can be used to decrease variability of the mfVEP results.

  12. Refraction changes during elevation of intraocular pressure by suction cup, their reflection in the pattern visual evoked cortical potential and their compensation.

    Science.gov (United States)

    Bernd, A; Ulrich, W D; Teubel, H; Rohrwacher, F; Barth, T

    1993-01-01

    Visual evoked cortical potential studies using pattern stimuli with the intraocular pressure raised artificially by the suction cup method have been reported. Possible changes in the refraction of the eye due to the method employed and their influence on the pattern visual evoked cortical potential have not been considered. Changes in the refraction of the eye during artificial intraocular pressure elevation and the influence of such changes on pattern visual evoked cortical potentials were studied. The refraction changes were found to depend on the shape of the suction cup. They could be compensated for by employing properly shaped suction cups and contact lenses. The behavior of amplitude and latency of the pattern visual evoked cortical potential at artificially elevated intraocular pressure with compensation for refraction changes has been studied and found to depend in a characteristic manner on ocular perfusion pressure.

  13. Visual Evoked Potentials to Light Flashes in Captive Rhesus Monkeys: A Study Reflecting Cerebral Cortical Activity and Brain Maturation

    Directory of Open Access Journals (Sweden)

    S.A. Solís-Chávez

    2014-01-01

    Full Text Available Visual evoked potentials (VEPs are useful electrophysiological diagnostic tools for evaluating retinal response of the visual cortex and detecting its functional integrity in humans and animals. To analyze the VEPs and physiologic response of the visual pathway of a random population of captive-bred monkeys of the Macaca mulatta species throughout different physiologic stages after stimulation with stroboscopic light flashes. In this study we used 20 non-human primates (M. mulatta, 10 males and 10 females, divided into five age-dependant cohorts of 2 males and 2 females. Two replicable negative waveforms and one positive were recorded, as reliable indicators of electrical conductivity at specific anatomical nuclei of the visual pathways. Statistically significant differences were primarily observed in group 1 when compared against the remaining groups for the three evaluated waveforms. Waveform morphology characteristically presented steady deviations related to ontogenetic development of the studied population.

  14. Whole-brain diffusion tensor imaging in correlation to visual-evoked potentials in multiple sclerosis: a tract-based spatial statistics analysis.

    Science.gov (United States)

    Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T

    2014-01-01

    Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.

  15. Influence of the metabolic control on latency values of visual evoked potentials (VEP) in patients with diabetes mellitus type 1.

    Science.gov (United States)

    Matanovic, Dragana; Popovic, Srdjan; Parapid, Biljana; Petronic, Ivana; Cirovic, Dragana; Nikolic, Dejan

    2012-12-01

    The aim of our study was to investigate the relationship between the metabolic control parameters of diabetes mellitus (glycemia and HbA1c) and visual evoked potentials (VEP) latency values. The study included 61 patients with diabetes mellitus type 1 that were hospitalized at the Clinic for Endocrinology, Diabetes and Metabolic Diseases due to the poor metabolic control. All patients were divided into 3 groups. Group 1 consisted of patients on conventional insulin therapy (CT); Group 2 included patients on CT at the moment of hospitalization, with a change towards intensified insulin therapy (IIT); and Group 3 consisted of patients on IIT. Patients with diabetic retinopathy (DR) were excluded from the study. Metabolic control (glycemia and HbA1c) and VEP parameters were compared at the beginning of the study and six months later. After six months of strict glycoregulation, significant improvement in VEP parameters was followed by significant improvement of evaluated parameters of metabolic control. We found statistically significant reduction in frequency of pathological VEP findings, prolonged P100 latency and low amplitude potentials in Group 2, while in Groups 1 and 3 we found that these parameters did not significantly changed but the frequencies were lower. The VEP testing is a noninvasive diagnostic procedure which may help in early diagnosis of DR, prognosis during the metabolic control and treatment. If changes in the retina could be detected before DR is noticed using this noninvasive diagnostic procedure and include patients in a strict glycoregulation, we could be in the position to prevent serious complications that may cause blindness.

  16. Auditory- and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.

    Science.gov (United States)

    Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-08-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P evoked potentials were strongly correlated (range, 0.79-0.94; all P 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.

  17. Role of inter-hemispheric transfer in generating visual evoked potentials in V1-damaged brain hemispheres.

    Science.gov (United States)

    Kavcic, Voyko; Triplett, Regina L; Das, Anasuya; Martin, Tim; Huxlin, Krystel R

    2015-02-01

    Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision.

  18. Single trial predictors for gating motor-imagery brain-computer interfaces based on sensorimotor rhythm and visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Andrew eGeronimo

    2016-04-01

    Full Text Available For brain-computer interfaces (BCIs that utilize visual cues to direct the user, the neural signals extracted by the computer are representative of ongoing processes, visual evoked responses, and voluntary modulation. We proposed to use three brain signatures for predicting success on a single trial of a BCI task. The first two features, the amplitude and phase of the pre-trial mu amplitude, were chosen as a correlate for cortical excitability. The remaining feature, related to the visually evoked response to the cue, served as a possible measure of fixation and attention to the task. Of these three features, mu rhythm amplitude over the central electrodes at the time of cue presentation and to a lesser extent the single trial visual evoked response were correlated with the success on the subsequent imagery task. Despite the potential for gating trials using these features, an offline gating simulation was limited in its ability to produce an increase in device throughput. This discrepancy highlights a distinction between the identification of predictive features, and the use of this knowledge in an online BCI. Using such a system, we cannot assume that the user will respond similarly when faced with a scenario where feedback is altered by trials that are gated on a regular basis. The results of this study suggest the possibility of using individualized, pre-task neural signatures for personalized and asynchronous (self-paced BCI applications, although these effects need to be quantified in a real-time adaptive scenario in a future study.

  19. The Effect of Magnesium on Visual Evoked Potentials in L-NAME-Induced Hypertensive Rats.

    Science.gov (United States)

    Ozsoy, Ozlem; Aras, Sinem; Ulker Karadamar, Pinar; Nasircilar Ulker, Seher; Kocer, Gunnur; Senturk, Umit Kemal; Basrali, Filiz; Yargicoglu, Piraye; Ozyurt, Dilek; Agar, Aysel

    2016-08-01

    In the literature, although there are many studies regarding complications of hypertension, information concerning its influence on visual evoked potentials (VEPs) is limited. This study aims to clarify the possible therapeutic effects of the preferential magnesium (Mg) treatment on VEPs in an experimental hypertension model. Rats were divided into four groups as follows: control, Mg treated (Mg), N(omega)-nitro-L-arginine methyl ester (L-NAME) hypertension, and L-NAME hypertension + Mg treated (L-NAME + Mg). Hypertension was induced by L-NAME which was given to rats orally over 6 weeks (25 mg/kg/day in drinking water). A magnesium-enriched diet (0.8 g/kg) was given to treatment groups for 6 weeks. Systolic blood pressure (SBP) was determined by using the tail-cuff method. Flash VEPs were recorded. Our results revealed that the SBP was significantly increased in the L-NAME group compared to control. Magnesium treatment significantly attenuated SBP in the hypertensive rats compared to the L-NAME group. The mean latencies of P1, N1, P2, N2, and P3 components were significantly prolonged in hypertensive rats compared to control. Treatment with Mg provided a significant decrease in the latencies of P1, N1, P2, N2, and P3 potentials in the L-NAME + Mg group compared to the L-NAME group. Plasma Mg levels were increased in the L-NAME + Mg group compared to the L-NAME group. No change was detected in the Mg levels of the brains in all experimental groups. Magnesium treatment had no effect on the brain nitrate/nitrite and thiobarbituric acid-reactive substances (TBARS) levels in hypertensive rats compared to non-treated rats. There was a positive correlation between the brain TBARS levels and SBP of the rats. The present study suggests that Mg supplementation has the potential to prevent VEP changes in the L-NAME-induced hypertension model.

  20. Effects of continuous conditioning noise and light on the auditory- and visual-evoked potentials of the guinea pig.

    Science.gov (United States)

    Goksoy, Cuneyt; Demirtas, Serdar; Ates, Kahraman

    2005-11-01

    Neurophysiological studies aiming to explore how the brain integrates information from different brain regions are increasing in the literature. The aim of the present study is to explore intramodal (binaural, binocular) and intermodal (audio-visual) interactions in the guinea pig brain through the observation of changes in evoked potentials by generalized continuous background activity. Seven chronically prepared animals were used in the study and the recordings were made as they were awake. Epidural electrodes were implanted to the skulls by using stereotaxic methods. Continuous light for retinal or continuous white noise for cochlear receptors were used as continuous conditioning stimuli for generalized stimulation. To evoke auditory or visual potentials, click or flash were used as transient imperative stimuli. The study data suggest that (a) white noise applied to one ear modifies the response to click in the contralateral ear which is a binaural interaction; (b) continuous light applied to one eye modifies the response to flash applied to the contralateral eye which is interpreted as a binocular interaction; (c) regardless of the application side, white noise similarly modified the response to flash applied to the either eye connoting a nonspecific effect of white noise on vision, independent from spatial hearing mechanisms; (d) on the other hand, continuous light, in either eye, did not affect the response to click applied to any ear, reminding a 'one-way' interaction that continuous aural stimulation affects visual response.

  1. Towards an optimization of stimulus parameters for brain-computer interfaces based on steady state visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Anna Duszyk

    Full Text Available Efforts to construct an effective brain-computer interface (BCI system based on Steady State Visual Evoked Potentials (SSVEP commonly focus on sophisticated mathematical methods for data analysis. The role of different stimulus features in evoking strong SSVEP is less often considered and the knowledge on the optimal stimulus properties is still fragmentary. The goal of this study was to provide insight into the influence of stimulus characteristics on the magnitude of SSVEP response. Five stimuli parameters were tested: size, distance, colour, shape, and presence of a fixation point in the middle of each flickering field. The stimuli were presented on four squares on LCD screen, with each square highlighted by LEDs flickering with different frequencies. Brighter colours and larger dimensions of flickering fields resulted in a significantly stronger SSVEP response. The distance between stimulation fields and the presence or absence of the fixation point had no significant effect on the response. Contrary to a popular belief, these results suggest that absence of the fixation point does not reduce the magnitude of SSVEP response. However, some parameters of the stimuli such as colour and the size of the flickering field play an important role in evoking SSVEP response, which indicates that stimuli rendering is an important factor in building effective SSVEP based BCI systems.

  2. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential

    Science.gov (United States)

    Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-04-01

    Objective. Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. Approach. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. Main result. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. Significance. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.

  3. Vestibular-evoked myogenic potentials and subjective visual vertical testing in patients with vitamin D deficiency/insufficiency.

    Science.gov (United States)

    Sanyelbhaa, Hossam; Sanyelbhaa, Ahmed

    2015-11-01

    Otolith function in subjects with vitamin D deficiency/insufficiency is investigated through vestibular-evoked myogenic potentials (VEMP) and subjective visual vertical (SVV) testing. The study group included 62 patients with vitamin D deficiency/insufficiency (30 females, 32 males), with age range 24-56 years (40.6 ± 9.1). The control group included 44 healthy volunteers of similar age and gender distribution. The entire study group had: (1) serum level of 25-hydroxyvitamin D -1; (3) normal middle ear function; (4) Age is ≤60 years. All subjects enrolled in the current study underwent audiovestibular evaluation consisting of pure-tone audiometry, immittancemetry, cervical VEMP (cVEMP), ocular VEMP (oVEMP), and SSV. The entire control group had normal cVEMP, two subjects had abnormal oVEMP. Thirty-three subjects (53%) in the study group had abnormal oVEMP and 31 subjects (50%) had abnormal cVEMP. Forty-one (66%) had abnormal VEMP when abnormal VEMP was considered as either abnormal oVEMP or cVEMP. The entire control and study groups had normal SSV test results. Vitamin D deficiency may be associated with development of otolith dysfunction affecting both the utricle and saccule. This was suggested by the high prevalence of abnormal ocular vestibular-evoked myogenic potentials (oVEMP) and cervical vestibular-evoked myogenic potentials (cVEMP) in the study group.

  4. Cross-modal plasticity in Cuban visually-impaired child cochlear implant candidates: topography of somatosensory evoked potentials.

    Science.gov (United States)

    Charroó-Ruíz, Lidia E; Pérez-Abalo, María C; Hernández, María C; Alvarez, Beatriz; Bermejo, Beatriz; Bermejo, Sandra; Galán, Lídice; Díaz-Comas, Lourdes

    2012-04-01

    Studies of neuroplasticity have shown that the brain's neural networks change in the absence of sensory input such as hearing or vision. However, little is known about what happens when both sensory modalities are lost (deaf-blindness). Hence, this study of cortical reorganization in visually-impaired child cochlear implant (CI) candidates. Assess cross-modal plasticity, specifically cortical reorganization for tactile representation in visually-impaired child CI candidates, through study of topography of somatosensory evoked potentials (SEP). From April through September 2005, SEP from median and tibial nerve electrical stimulation were studied in 12 visually-impaired child CI candidates aged 3-15 years and 23 healthy controls. Following placement of 19 recording electrodes using the International 10-20 System , SEP were recorded and then processed. Topographic maps were obtained for SEP N20 (median nerve) and SEP P40 (tibial nerve), permitting assessment of cortical reorganization by comparing visually-impaired, deaf children's maps with those of healthy children by means of visual inspection and statistical comparison using a permutation test. SEP N20 topography was significantly more extensive in visually-impaired child CI candidates than in healthy children. An asymmetrical pattern occurred from the expansion of hand tactile activation into the temporal and occipital regions in the left hemisphere on right median nerve stimulation. This did not occur for SEP P40 on tibial nerve stimulation (right and left). Magnitude of expanded SEP N20 response was related to severity of visual impairment and longer duration of dual sensory loss. Changes in SEP N20 topography are evidence of cross-modal plasticity in visually-impaired child CI candidates, appearing to result from a complex interaction between severity of visual impairment and duration of multisensory deprivation.

  5. Neuropathological differences between areas B17 and B18: implications for visual evoked responses in Alzheimer's disease.

    Science.gov (United States)

    Armstrong, R A

    1994-01-01

    The density of senile plaques (SP) and neurofibrillary tangles (NFT) was estimated at post-mortem in areas B17 and B18 of the visual cortex in 18 Alzheimer's disease (AD) cases which varied in disease onset and duration. The density of SP in B17 and NFT in B17 and B18 declined significantly with age at death of the patient. The density of SP and NFT was greater in B18 than B17 but only in cases of earlier onset and shorter duration. The pathological differences between B17 and B18 could explain the visual evoked responses (VER) that have been reported in AD. However, the differences were small, and changes in the afferent pathways remain the most likely explanation for the VER in AD.

  6. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Guang-Hua [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  7. Spiders do not evoke greater early posterior negativity in the event-related potential as snakes.

    Science.gov (United States)

    He, Hongshen; Kubo, Kenta; Kawai, Nobuyuki

    2014-09-10

    It has been long believed that both snakes and spiders are archetypal fear stimuli for humans. Furthermore, snakes have been assumed as stronger threat cues for nonhuman primates. However, it is still unclear whether spiders hold a special status in human perception. The current study explored to what extent spider pictures draw early visual attention [as assessed with early posterior negativity (EPN)] when compared with insects similar to spiders. To measure the EPN, participants watched a random rapid serial presentation of pictures, which consisted of two conditions: spider condition (spider, wasp, bumblebee, beetle) and snake condition (snake, bird). EPN amplitudes revealed no significant difference between spider, wasp, bumblebee, and beetle pictures, whereas EPN amplitudes were significantly larger for snake pictures relative to bird pictures. In addition, EPN amplitudes were significantly larger for snake pictures relative to spider pictures. These results suggest that the early visual attentional capture of animate objects is stronger for snakes, whereas spiders do not appear to hold special early attentional value.

  8. A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes.

    Science.gov (United States)

    Naselaris, Thomas; Olman, Cheryl A; Stansbury, Dustin E; Ugurbil, Kamil; Gallant, Jack L

    2015-01-15

    Recent multi-voxel pattern classification (MVPC) studies have shown that in early visual cortex patterns of brain activity generated during mental imagery are similar to patterns of activity generated during perception. This finding implies that low-level visual features (e.g., space, spatial frequency, and orientation) are encoded during mental imagery. However, the specific hypothesis that low-level visual features are encoded during mental imagery is difficult to directly test using MVPC. The difficulty is especially acute when considering the representation of complex, multi-object scenes that can evoke multiple sources of variation that are distinct from low-level visual features. Therefore, we used a voxel-wise modeling and decoding approach to directly test the hypothesis that low-level visual features are encoded in activity generated during mental imagery of complex scenes. Using fMRI measurements of cortical activity evoked by viewing photographs, we constructed voxel-wise encoding models of tuning to low-level visual features. We also measured activity as subjects imagined previously memorized works of art. We then used the encoding models to determine if putative low-level visual features encoded in this activity could pick out the imagined artwork from among thousands of other randomly selected images. We show that mental images can be accurately identified in this way; moreover, mental image identification accuracy depends upon the degree of tuning to low-level visual features in the voxels selected for decoding. These results directly confirm the hypothesis that low-level visual features are encoded during mental imagery of complex scenes. Our work also points to novel forms of brain-machine interaction: we provide a proof-of-concept demonstration of an internet image search guided by mental imagery.

  9. Early Visual Cortex as a Multiscale Cognitive Blackboard.

    Science.gov (United States)

    Roelfsema, Pieter R; de Lange, Floris P

    2016-10-14

    Neurons in early visual cortical areas not only represent incoming visual information but are also engaged by higher level cognitive processes, including attention, working memory, imagery, and decision-making. Are these cognitive effects an epiphenomenon or are they functionally relevant for these mental operations? We review evidence supporting the hypothesis that the modulation of activity in early visual areas has a causal role in cognition. The modulatory influences allow the early visual cortex to act as a multiscale cognitive blackboard for read and write operations by higher visual areas, which can thereby efficiently exchange information. This blackboard architecture explains how the activity of neurons in the early visual cortex contributes to scene segmentation and working memory, and relates to the subject's inferences about the visual world. The architecture also has distinct advantages for the processing of visual routines that rely on a number of sequentially executed processing steps.

  10. Sustained multifocal attentional enhancement of stimulus processing in early visual areas predicts tracking performance.

    Science.gov (United States)

    Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K

    2013-03-20

    Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.

  11. Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials.

    Science.gov (United States)

    Trebaul, Lena; Rudrauf, David; Job, Anne-Sophie; Mălîia, Mihai Dragos; Popa, Irina; Barborica, Andrei; Minotti, Lorella; Mîndruţă, Ioana; Kahane, Philippe; David, Olivier

    2016-05-01

    Effective connectivity can be explored using direct electrical stimulations in patients suffering from drug-resistant focal epilepsies and investigated with intracranial electrodes. Responses to brief electrical pulses mimic the physiological propagation of signals and manifest as cortico-cortical evoked potentials (CCEP). The first CCEP component is believed to reflect direct connectivity with the stimulated region but the stimulation artifact, a sharp deflection occurring during a few milliseconds, frequently contaminates it. In order to recover the characteristics of early CCEP responses, we developed an artifact correction method based on electrical modeling of the electrode-tissue interface. The biophysically motivated artifact templates are then regressed out of the recorded data as in any classical template-matching removal artifact methods. Our approach is able to make the distinction between the physiological responses time-locked to the stimulation pulses and the non-physiological component. We tested the correction on simulated CCEP data in order to quantify its efficiency for different stimulation and recording parameters. We demonstrated the efficiency of the new correction method on simulations of single trial recordings for early responses contaminated with the stimulation artifact. The results highlight the importance of sampling frequency for an accurate analysis of CCEP. We then applied the approach to experimental data. The model-based template removal was compared to a correction based on the subtraction of the averaged artifact. This new correction method of stimulation artifact will enable investigators to better analyze early CCEP components and infer direct effective connectivity in future CCEP studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Steady-state motion visual evoked potentials produced by oscillating Newton's rings: implications for brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Jun Xie

    Full Text Available In this study, we utilize a special visual stimulation protocol, called motion reversal, to present a novel steady-state motion visual evoked potential (SSMVEP-based BCI paradigm that relied on human perception of motions oscillated in two opposite directions. Four Newton's rings with the oscillating expansion and contraction motions served as visual stimulators to elicit subjects' SSMVEPs. And four motion reversal frequencies of 8.1, 9.8, 12.25 and 14 Hz were tested. According to Canonical Correlation Analysis (CCA, the offline accuracy and ITR (mean ± standard deviation over six healthy subjects were 86.56 ± 9.63% and 15.93 ± 3.83 bits/min, respectively. All subjects except one exceeded the level of 80% mean accuracy. Circular Hotelling's T-Squared test (T2 circ also demonstrated that most subjects exhibited significantly strong stimulus-locked SSMVEP responses. The results of declining exponential fittings exhibited low-adaptation characteristics over the 100-s stimulation sequences in most experimental conditions. Taken together, these results suggest that the proposed paradigm can provide comparable performance with low-adaptation characteristic and less visual discomfort for BCI applications.

  13. Single Pulse Electrical Stimulation to identify epileptogenic cortex: Clinical information obtained from early evoked responses.

    Science.gov (United States)

    Mouthaan, B E; van 't Klooster, M A; Keizer, D; Hebbink, G J; Leijten, F S S; Ferrier, C H; van Putten, M J A M; Zijlmans, M; Huiskamp, G J M

    2016-02-01

    Single Pulse Electrical Stimulation (SPES) probes epileptogenic cortex during electrocorticography. Two SPES responses are described: pathological delayed responses (DR, >100 ms) associated with the seizure onset zone (SOZ) and physiological early responses (ER, 80 Hz, in the SOZ and seizure propagation areas. We used data from 12 refractory epilepsy patients. SPES consisted of 10 pulses of 1 ms, 4-8 mA and 5s interval on adjacent electrodes pairs. Data were available at 2048 samples/s for six and 512 samples/s (22 bits) for eight patients and analyzed in the time-frequency (TF) and time-domain (TD). Electrodes with ERs were stronger associated with SOZ than non-SOZ electrodes. ERs with frequency content >80 Hz exist and are specific for SOZ channels. ERs evoked by stimulation of seizure onset electrodes were associated with electrodes involved in seizure propagation. Analysis of ERs can reveal aspects of pathology, manifested by association with seizure propagation and areas with high ER numbers that coincide with the SOZ. Not only DRs, but also ERs could have clinical value for mapping epileptogenic cortex and help to unravel aspects of the epileptic network. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Early maturation of evoked otoacoustic emissions and medial olivocochlear reflex in preterm neonates.

    Science.gov (United States)

    Chabert, René; Guitton, Matthieu J; Amram, Daniel; Uziel, Alain; Pujol, Rémy; Lallemant, Jean-Gabriel; Puel, Jean-Luc

    2006-02-01

    The present study was designed to investigate the early maturation of the brainstem regulation of the cochlear function in preterm neonates. Evoked otoacoustic emissions (EOAE) and their regulation via the medial olivocochlear efferent (MOC) reflex were investigated in a large population of preterm neonates and compared with full-term neonates and young babies from birth to 4 y and school-aged children. In 28-wk preterm neonates, EOAE were seen in the mid-frequency range. These responses extended both to the low (down to 1025 Hz) and high (up to 6152 Hz) frequency ranges at 38 wk of gestational age and remained stable up to 4 mo. At this stage, the amplitude of EOAE overlapped adult values. EOAE amplitudes then decreased to reach adult values at 3 y of age. Maturation of MOC efferents innervating the outer hair cells was investigated by studying the suppressive effect of contralateral sound on the EOAE amplitudes (MOC reflex). The first MOC responses were recorded in preterm neonates of 32-33 wk of gestational age, reaching adult-like values at 37 wk of gestational age. The maximum effect of MOC efferent activation occurred between 2000 and 4000 Hz. These results suggest that, in humans, MOC efferents mature in utero. Thus, testing the MOC reflex may have a clinical relevance to detect an abnormal development of the auditory pathways, particularly of a brainstem circuitry not explored through conventional testing.

  15. Early impairment of somatosensory evoked potentials in very young children with achondroplasia with foramen magnum stenosis.

    Science.gov (United States)

    Fornarino, Stefania; Rossi, Daniela Paola; Severino, Mariasavina; Pistorio, Angela; Allegri, Anna Elsa Maria; Martelli, Simona; Doria Lamba, Laura; Lanteri, Paola

    2017-02-01

    To evaluate the contribution of somatosensory evoked potentials after median nerve (MN-SEPs) and posterior tibial nerve (PTN-SEPs) stimulation in functional assessment of cervical and lumbar spinal stenosis in children with achondroplasia. We reviewed MN-SEPs, PTN-SEPs, and spinal magnetic resonance imaging (MRI) examinations performed in 58 patients with achondroplasia (25 males, 33 females; age range 21d-16y 10mo; mean age 4y 3mo [SD 4y 1mo]). Patients were subdivided into four age categories: magnum or lumbar spinal stenosis were analysed in each age category. The ROC curve analysis showed that the most sensitive parameter in detecting the presence of foramen magnum stenosis was P37 latency in the first two age categories (magnum stenosis was IPLs N13-N20 (sensitivity 0.73, specificity 0.87), whereas in the last age category (≥8y), the most important parameter was N20 latency (sensitivity 0.75, specificity 0.77). In children with achondroplasia, the cortical component of PTN-SEPs is more sensitive than the cortical component and central conduction time of MN-SEPs in detection of cervical spinal cord compression at early ages. © 2016 Mac Keith Press.

  16. Stimulus dependency of object-evoked responses in human visual cortex: an inverse problem for category specificity.

    Directory of Open Access Journals (Sweden)

    Britta Graewe

    Full Text Available Many studies have linked the processing of different object categories to specific event-related potentials (ERPs such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200-250 ms (N250 over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components.

  17. The developmental effects of extremely low frequency electric fields on visual and somatosensory evoked potentials in adult rats.

    Science.gov (United States)

    Gok, Deniz Kantar; Akpinar, Deniz; Hidisoglu, Enis; Ozen, Sukru; Agar, Aysel; Yargicoglu, Piraye

    2016-01-01

    The purpose of our study was to investigate the developmental effects of extremely low frequency electric fields (ELF-EFs) on visual evoked potentials (VEPs) and somatosensory-evoked potentials (SEPs) and to examine the relationship between lipid peroxidation and changes of these potentials. In this context, thiobarbituric acid reactive substances (TBARS) levels were determined as an indicator of lipid peroxidation. Wistar albino female rats were divided into four groups; Control (C), gestational (prenatal) exposure (Pr), gestational+ postnatal exposure (PP) and postnatal exposure (Po) groups. Pregnant rats of Pr and PP groups were exposed to 50 Hz electric field (EF) (12 kV/m; 1 h/day), while those of C and Po groups were placed in an inactive system during pregnancy. Following parturition, rats of PP and Po groups were exposed to ELF-EFs whereas rats of C and Pr groups were kept under the same experimental conditions without being exposed to any EF during 68 days. On postnatal day 90, rats were prepared for VEP and SEP recordings. The latencies of VEP components in all experimental groups were significantly prolonged versus C group. For SEPs, all components of PP group, P2, N2 components of Pr group and P1, P2, N2 components of Po group were delayed versus C group. As brain TBARS levels were significantly increased in Pr and Po groups, retina TBARS levels were significantly elevated in all experimental groups versus C group. In conclusion, alterations seen in evoked potentials, at least partly, could be explained by lipid peroxidation in the retina and brain.

  18. STUDY OF VISUAL EVOKED POTENTIAL IN TERM, APPROPRIATE FOR GESTATIONAL AGE NEWBORNS IN A TERTIARY HEALTH CARE FACILITY OF KOLKATA

    Directory of Open Access Journals (Sweden)

    Koushik

    2016-02-01

    Full Text Available INTRODUCTION Evoked potentials are small magnitude electrical potentials that originate within neural tissues in response to a variety of stimuli which are depicted as a wave or a series of waves. Changes in the wave latencies and amplitudes have been shown to reflect disturbances in neuronal growth rates & myelination of the developing nervous system. Among the different evoked potentials, the Visual Evoked Potentials (VEP, have been shown to be a significantly accurate tool for assessing the degree of neurological handicap among survivors of perinatal asphyxia, especially in the full-term neonates. Thus, the development of a normative database of VEP parameters like wave latencies and amplitudes for term, appropriate-for-gestational age neonates in an Indian NICU set-up was the primary objective of our study as such data can be of great use for future clinical use. The study was a prospective observational study carried out jointly by the Departments of Neonatology and Physiology, of IPGME & R and SSKM Hospital, Kolkata from June’ 2012 to September’ 2013. Normative statistics like ‘mean±2SD’ values for N1, P1 & N2 wave latencies of both right & left eyes & also for inter-peak amplitudes (i.e. N1-P1 & P1-N2 of both the eyes was obtained by studying 40 healthy, term newborns. It was also observed that the ‘latencies’ of VEP waves do not vary significantly between normal male & female newborn babies and the latencies of both the eyes are comparable. The ‘inter-peak amplitudes’ on the other hand showed much more variability. Hence establishing a normative database of VEP parameters can be of much use and further studies with much larger sample size is highly recommended.

  19. Diagnostic value of multimodel brain evoked potentials to untreated Parkinson's disease in the early stage%多模式脑诱发电位对早期帕金森病的诊断价值

    Institute of Scientific and Technical Information of China (English)

    马建军; 李学; 杨红旗; 李六一; 祁亚伟; 冯艳; 徐军

    2012-01-01

    目的 探讨多模式脑诱发电位对早期未治疗帕金森病(Parkinson's disease,PD)的诊断价值.方法 未经治疗的早期PD患者33例(PD组)和同期体检健康者31例(对照组),2组分别进行视觉诱发电位、脑干听觉诱发电位、短潜伏期躯体感觉诱发电位和瞬目反射的综合测试,并进行2组间比较.结果 PD组视觉诱发电位的P100潜伏期、脑干听觉诱发电位的V波潜伏期及Ⅲ-Ⅴ波峰间潜伏期、Ⅰ-Ⅴ波峰间潜伏期和瞬目反射的R2波及R2’波潜伏期均较对照组明显延长,差异有统计学意义(P<0.01);2组短潜伏期躯体感觉诱发电位各波潜伏期差异均无统计学意义(P>0.05).结论 PD早期存在视觉传导通路和脑于传导通路损害,对PD患者进行多模式脑诱发电位检测有助于疾病早期诊断.%Objective To explore the diagnostic value of multimodel brain evoked potentials to untreated Parkinson's disease (PD) in the early stage. Methods Visual evoked potentials, brainstem auditory evoked potentials, short-latency somatosensory evoked potentials and blink reflex were tested in 33 untreated PD patients in the early stage and 31 healthy controls matched with age and sex. Results The latency of P100 in visual evoked potentials, the latency of V wave and the interpeak latency of I to V wave and I to V wave in brainstem auditory evoked potentials, and the latencies of R2 and R2' in blink reflex were all significantly prolonged in PD patients as compared with those in healthy controls (P0. 05). Conclusion The dysfunction of visual conduction pathway and brainstem conduction pathway exist in the early stage of PD. To detection of multimodel brain evoked potentials may help the early diagnosis of PD.

  20. [Impact of the method choice and the extent of correction on the development of visual evoked potentials in children and adolescents with refractive anomalies].

    Science.gov (United States)

    Lobanova, I V; Leshchenko, I A; Markova, E Iu; Khatsenko, I E

    2013-01-01

    The article discusses a possible impact of different refraction correction methods, providing full or partial correction, on visual acuity and the development of visual evoked potentials in children and adolescents with myopia and myopic astigmatism. The accuracy of identification of visual evoked potentials depends, as shown in the article, on the extent of the correction chosen and the method used. In childhood the visual system is very susceptible to visual afferent deficit. The permanent deficit of visual information impedes further maturation of the visual analyzer, i.e. the development of central vision, binocular vision, and stereopsis. In high myopia it is important to decide not only on the extent of the correction but also on the method to use. In patients wearing soft contact lenses the visual evoked potentials have more regular shape, amplitude, and latency. The introduction of silicone hydrogel and daily disposal contact lenses, spherical and toric (for astigmatism correction), provided an opportunity to solve hygienic problems associated with contact lens use in children and adolescents and to decrease the risk of hypoxia complications.

  1. Effect of Sahaja yoga meditation on auditory evoked potentials (AEP) and visual contrast sensitivity (VCS) in epileptics.

    Science.gov (United States)

    Panjwani, U; Selvamurthy, W; Singh, S H; Gupta, H L; Mukhopadhyay, S; Thakur, L

    2000-03-01

    The effect of Sahaja yoga meditation on 32 patients with primary idiopathic epilepsy on regular and maintained antiepileptic medication was studied. The patients were randomly divided into 3 groups: group I practiced Sahaja Yoga meditation twice daily for 6 months under proper guidance; group II practiced postural exercises mimicking the meditation for the same duration; and group III was the control group. Visual Contrast Sensitivity (VCS), Auditory Evoked Potentials (AEP), Brainstem Auditory Evoked Potentials (BAEP), and Mid Latency Responses (MLR) were recorded initially (0 month) and at 3 and 6 months for each group. There was a significant improvement in VCS following meditation practice in group I participants. Na, the first prominent negative peak of MLR and Pa, the positive peak following Na did not register changes in latency. The Na-Pa amplitude of MLR also showed a significant increase. There were no significant changes in the absolute and interpeak latencies of BAEP. The reduced level of stress following meditation practice may make patients more responsive to specific stimuli. Sahaja Yoga meditation appears to bring about changes in some of the electrophysiological responses studied in epileptic patients.

  2. Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials.

    Science.gov (United States)

    Dreyer, Alexander M; Herrmann, Christoph S; Rieger, Jochem W

    2017-01-01

    Steady-state visual evoked potentials (SSVEPs) have been widely employed for the control of brain-computer interfaces (BCIs) because they are very robust, lead to high performance, and allow for a high number of commands. However, such flickering stimuli often also cause user discomfort and fatigue, especially when several light sources are used simultaneously. Different variations of SSVEP driving signals have been proposed to increase user comfort. Here, we investigate the suitability of frequency modulation of a high frequency carrier for SSVEP-BCIs. We compared BCI performance and user experience between frequency modulated (FM) and traditional sinusoidal (SIN) SSVEPs in an offline classification paradigm with four independently flickering light-emitting diodes which were overtly attended (fixated). While classification performance was slightly reduced with the FM stimuli, the user comfort was significantly increased. Comparing the SSVEPs for covert attention to the stimuli (without fixation) was not possible, as no reliable SSVEPs were evoked. Our results reveal that several, simultaneously flickering, light emitting diodes can be used to generate FM-SSVEPs with different frequencies and the resulting occipital electroencephalography (EEG) signals can be classified with high accuracy. While the performance we report could be further improved with adjusted stimuli and algorithms, we argue that the increased comfort is an important result and suggest the use of FM stimuli for future SSVEP-BCI applications.

  3. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina.

    Science.gov (United States)

    Riva, Charles E; Logean, Eric; Falsini, Benedetto

    2005-03-01

    The retina and optic nerve are both optically accessible parts of the central nervous system. They represent, therefore, highly valuable tissues for studies of the intrinsic physiological mechanism postulated more than 100 years ago by Roy and Sherrington, by which neural activity is coupled to blood flow and metabolism. This article describes a series of animal and human studies that explored the changes in hemodynamics and oxygenation in the retina and optic nerve in response to increased neural activity, as well as the mechanisms underlying these changes. It starts with a brief review of techniques used to assess changes in neural activity, hemodynamics, metabolism and tissue concentration of various potential mediators and modulators of the coupling. We then review: (a) the characteristics of the flicker-induced hemodynamical response in different regions of the eye, starting with the optic nerve, the region predominantly studied; (b) the effect of varying the stimulus parameters, such as modulation depth, frequency, luminance, color ratio, area of stimulation, site of measurement and others, on this response; (c) data on activity-induced intrinsic reflectance and functional magnetic resonance imaging signals from the optic nerve and retina. The data undeniably demonstrate that visual stimulation is a powerful modulator of retinal and optic nerve blood flow. Exploring the relationship between vasoactivity and metabolic changes on one side and corresponding neural activity changes on the other confirms the existence of a neurovascular/neurometabolic coupling in the neural tissue of the eye fundus and reveals that the mechanism underlying this coupling is complex and multi-factorial. The importance of fully exploiting the potential of the activity-induced vascular changes in the assessment of the pathophysiology of ocular diseases motivated studies aimed at identifying potential mediators and modulators of the functional hyperemia, as well as conditions

  4. [New method for analysis and visualization of the fine temporal structure of the transient evoked otoacoustic emission signal].

    Science.gov (United States)

    Belov, O A; Alekseeva, N N; Tavartkiladze, G A

    2014-01-01

    We have developed the new method for the analysis and visualization of the fine temporal structure of the transient evoked otoacoustic emission signal. The method consists of the presentation of the signal in the form of a set of tone components with a rapidly changing amplitude and relatively stable frequency. It is based on the combination of three spectrograms differing in frequency and temporal resolution by means of fuzzy logic amplitude estimation with subsequent frequency refining with the use of the least square procedure, reduction of the number of the insignificant components, and final re-ordering of the results for the simplification of further data processing. The new method was named Pitch Envelope Analysis (PEA). For data representation, a new type of diagram named componentogram was designed. The proposed method can be used for the real time processing of the continuous data stream especially for speech processing.

  5. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  6. Acute Exposure to Perchlorethylene alters Rat Visual Evoked Potentials in Relation to Brain Concentration

    Science.gov (United States)

    These experiments sought to establish a dose-effect relationship between the concentration of perchloroethylene (PCE) in brain tissue and concurrent changes in visual function. A physiologically-based pharmacokinetic (PBPK) model was implemented to predict concentrations of PCE ...

  7. Acute Exposure to Perchlorethylene alters Rat Visual Evoked Potentials in Relation to Brain Concentration

    Science.gov (United States)

    These experiments sought to establish a dose-effect relationship between the concentration of perchloroethylene (PCE) in brain tissue and concurrent changes in visual function. A physiologically-based pharmacokinetic (PBPK) model was implemented to predict concentrations of PCE ...

  8. Steady-state visual evoked potentials in the low frequency range in migraine: a study of habituation and variability phenomena.

    Science.gov (United States)

    de Tommaso, Marina; Stramaglia, Sebastiano; Schoffelen, Jan Mathijs; Guido, Marco; Libro, Giuseppe; Losito, Luciana; Sciruicchio, Vittorio; Sardaro, Michele; Pellicoro, Mario; Puca, Franco Michele

    2003-08-01

    Previous studies have revealed that migraine patients display an increased photic driving to flash stimuli in the medium frequency range. The aim of this study was to perform a topographic analysis of steady-state visual evoked potentials (SVEPs) in the low frequency range (3-9 Hz), evaluating the temporal behaviour of the F1 amplitude by investigating habituation and variability phenomena. The main component of SVEPs, the F1, demonstrated an increased amplitude in several channels at 3 Hz. Behaviour of F1 amplitude was rather variable over time, and the wavelet-transform standard deviation was increased in migraine patients at a low stimulus rate. The discriminative value of the F1 mean amplitude and variability index, tested by both an artificial neural network classifier and a support vector machine, were high according to both methods. The increased photic driving in migraine should be subtended by a more generic abnormality of visual reactivity instead of a selective impairment of a visual subsystem. Temporal behaviour of SVEPs is not influenced by a clear tendency to habituation, but the F1 amplitude seemed to change in a complex way, which is better described by variability phenomena. An increased variability in response to flicker stimuli in migraine patients could be interpreted as an overactive regulation mechanism, prone to instability and consequently to headache attacks, whether spontaneous or triggered.

  9. Resting state in Alzheimer's disease: a concurrent analysis of Flash-Visual Evoked Potentials and quantitative EEG

    Directory of Open Access Journals (Sweden)

    Tartaglione Antonio

    2012-11-01

    Full Text Available Abstract Background To investigate to what extent Alzheimer's Disease (AD affects Resting State activity, the possible impairment of independent electrophysiological parameters was determined in Eye-open and Eye-closed Conditions. Specifically, Flash-Visual Evoked Potential (F-VEP and quantitative EEG (q-EEG were examined to establish whether abnormalities of the former were systematically associated with changes of the latter. Methods Concurrently recorded F-VEP and q-EEG were comparatively analysed under Eye-open and Eye-closed Conditions in 11 Controls and 19 AD patients presenting a normal Pattern-Visual Evoked Potential (P-VEP. Between Condition differences in latencies of P2 component were matched to variations in spectral components of q-EEG. Results P2 latency increased in 10 AD patients with Abnormal Latency (AD-AL under Eye-closed Condition. In these patients reduction of alpha activity joined an increased delta power so that their spectral profile equated that recorded under Eye-open Condition. On the opposite, in Controls as well as in AD patients with Normal P2 Latency (AD-NL spectral profiles recorded under Eye-open and Eye-closed Conditions significantly differed from each other. At the baseline, under Eye-open Condition, the spectra overlapped each other in the three Groups. Conclusion Under Eye-closed Condition AD patients may present a significant change in both F-VEP latency and EEG rhythm modulation. The presence of concurrent changes of independent parameters suggests that the neurodegenerative process can impair a control system active in Eye-closed Condition which the electrophysiological parameters depend upon. F-VEP can be viewed as a reliable marker of such impairment.

  10. Predictive coding for motion stimuli in human early visual cortex

    NARCIS (Netherlands)

    Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Ramsey, Nick F.; Raemaekers, Mathijs

    2016-01-01

    The current study investigates if early visual cortical areas, V1, V2 and V3, use predictive coding to process motion information. Previous studies have reported biased visual motion responses at locations where novel visual information was presented (i.e., the motion trailing edge), which is plausi

  11. Predictive coding for motion stimuli in human early visual cortex

    NARCIS (Netherlands)

    Schellekens, Wouter; Wezel, van Richard J.A.; Petridou, Natalia; Ramsey, Nick F.; Raemeakers, Mathijs; Zaborszky, L.; Zilles, K.

    2014-01-01

    The current study investigates if early visual cortical areas, V1, V2 and V3, use predictive coding to process motion information. Previous studies have reported biased visual motion responses at locations where novel visual information was presented (i.e., the motion trailing edge), which is plausi

  12. Early stress evokes temporally distinct consequences on the hippocampal transcriptome, anxiety and cognitive behaviour.

    Science.gov (United States)

    Suri, Deepika; Bhattacharya, Amrita; Vaidya, Vidita A

    2014-02-01

    The early stress of maternal separation (ES) exerts long-lasting effects on cognition and anxiety. Recent evidence indicates enhanced hippocampus-dependent spatial learning in young adult ES animals, which shifts towards a decline in long-term memory in middle-aged life. Further, we find that ES animals exhibit enhanced anxiety in young adulthood that does not persist into middle-aged life. Here, we demonstrate unique, predominantly non-overlapping, hippocampal transcriptomes in young adult and middle-aged ES animals that accompany the temporally-specific behavioural consequences. Strikingly, the extent of gene dysregulation in middle-aged ES animals was substantially higher than in young adulthood. Functional analysis revealed distinct biological processes enriched at the two ages, highlighting the temporal shift in ES-evoked gene regulation. Our results suggest that ES history interacts with aging to exacerbate age-associated transcriptional changes and cognitive decline. qPCR profiling of histone deacetylases (Hdacs) and histone methyltransferases (HMTs) revealed an age-dependent, opposing regulation with decreased expression noted in young adult ES animals (Hdac 2, 7, 8, 9 and Suv39h1) and enhanced levels in middle-aged life (Hdac 2, 6, 8 and Suv39h1). While altered expression of histone modifying enzymes did not translate into global histone acetylation or methylation changes, we noted differential enrichment of histone acetylation and methylation modifications at the promoters of multiple genes regulated in the hippocampi of young adult and middle-aged ES animals. Our results highlight the differential molecular and behavioural consequences of ES across a life-span, and suggest a possible role for epigenetic mechanisms in contributing to the temporally-specific transcriptional changes following ES.

  13. Action preparation shapes processing in early visual cortex.

    Science.gov (United States)

    Gutteling, Tjerk P; Petridou, Natalia; Dumoulin, Serge O; Harvey, Ben M; Aarnoutse, Erik J; Kenemans, J Leon; Neggers, Sebastian F W

    2015-04-22

    Preparation for an action, such as grasping an object, is accompanied by an enhanced perception of the object's action-relevant features, such as orientation and size. Cortical feedback from motor planning areas to early visual areas may drive this enhanced perception. To examine whether action preparation modulates activity in early human visual cortex, subjects grasped or pointed to oriented objects while high-resolution fMRI data were acquired. Using multivoxel pattern analysis techniques, we could decode with >70% accuracy whether a grasping or pointing action was prepared from signals in visual cortex as early as V1. These signals in early visual cortex were observed even when actions were only prepared but not executed. Anterior parietal cortex, on the other hand, showed clearest modulation for actual movements. This demonstrates that preparation of actions, even without execution, modulates relevant neuronal populations in early visual areas.

  14. Factors that limit the use of flash visual evoked potentials for surgical monitoring.

    Science.gov (United States)

    Cedzich, C; Schramm, J; Mengedoht, C F; Fahlbusch, R

    1988-01-01

    A study was conducted comparing the incidence with which the N2/P2/N3 was obtained after flash VEP in 3 groups: anterior visual pathway lesions, non-tumor craniotomies and non-cranial surgery. These groups allowed evaluation of the effects of anesthesia, visual pathway lesions and craniotomy on the stability of the flash VEP. It was found that the latency was not significantly affected in the 3 groups, whereas the incidence of obtainable peaks and the amplitudes were adversely affected by anesthesia, cranial surgical manipulation and especially by the presence of a visual pathway lesion. These adverse effects were so marked that the application of flash VEP for intraoperative monitoring seems of little use.

  15. Altered anterior visual system development following early monocular enucleation

    Directory of Open Access Journals (Sweden)

    Krista R. Kelly

    2014-01-01

    Conclusions: The novel finding of an asymmetry in morphology of the anterior visual system following long-term survival from early monocular enucleation indicates altered postnatal visual development. Possible mechanisms behind this altered development include recruitment of deafferented cells by crossing nasal fibres and/or geniculate cell retention via feedback from primary visual cortex. These data highlight the importance of balanced binocular input during postnatal maturation for typical anterior visual system morphology.

  16. Changes in visual evoked potential of children with amblyopia%弱视儿童视觉诱发电位改变

    Institute of Scientific and Technical Information of China (English)

    赵冬卉; 夏娟; 洪流

    2002-01-01

    @@ Amblyopia is common among children.Visual evoked potential(VEP) is a new approach for diagnosis and evaluation of amblyopia. VEP was examined using tessellation stimulation in our hospital since 1999.20 healthy children were selected as controls.Here is the report.

  17. Seeing scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area.

    Science.gov (United States)

    Mégevand, Pierre; Groppe, David M; Goldfinger, Matthew S; Hwang, Sean T; Kingsley, Peter B; Davidesco, Ido; Mehta, Ashesh D

    2014-04-16

    In recent years, functional neuroimaging has disclosed a network of cortical areas in the basal temporal lobe that selectively respond to visual scenes, including the parahippocampal place area (PPA). Beyond the observation that lesions involving the PPA cause topographic disorientation, there is little causal evidence linking neural activity in that area to the perception of places. Here, we combined functional magnetic resonance imaging (fMRI) and intracranial EEG (iEEG) recordings to delineate place-selective cortex in a patient implanted with stereo-EEG electrodes for presurgical evaluation of drug-resistant epilepsy. Bipolar direct electrical stimulation of a cortical area in the collateral sulcus and medial fusiform gyrus, which was place-selective according to both fMRI and iEEG, induced a topographic visual hallucination: the patient described seeing indoor and outdoor scenes that included views of the neighborhood he lives in. By contrast, stimulating the more lateral aspect of the basal temporal lobe caused distortion of the patient's perception of faces, as recently reported (Parvizi et al., 2012). Our results support the causal role of the PPA in the perception of visual scenes, demonstrate that electrical stimulation of higher order visual areas can induce complex hallucinations, and also reaffirm direct electrical brain stimulation as a tool to assess the function of the human cerebral cortex.

  18. Parvocellular Pathway Impairment in Autism Spectrum Disorder: Evidence from Visual Evoked Potentials

    Science.gov (United States)

    Fujita, Takako; Yamasaki, Takao; Kamio, Yoko; Hirose, Shinichi; Tobimatsu, Shozo

    2011-01-01

    In humans, visual information is processed via parallel channels: the parvocellular (P) pathway analyzes color and form information, whereas the magnocellular (M) stream plays an important role in motion analysis. Individuals with autism spectrum disorder (ASD) often show superior performance in processing fine detail, but impaired performance in…

  19. Abnormal Attention in Autism Shown by Steady-State Visual Evoked Potentials.

    Science.gov (United States)

    Belmonte, Matthew

    2000-01-01

    Eight males with autism were required to shift attention between rapidly flashed targets alternating between left and right visual hemifields. When targets were separated by less than 700 ms, steady-state brain electrical response in both hemispheres was augmented and background EEG decreased for rightward shifts as compared with leftward shifts.…

  20. Trying to move your unseen static arm modulates visually-evoked kinesthetic illusion.

    Directory of Open Access Journals (Sweden)

    Morgane Metral

    Full Text Available Although kinesthesia is known to largely depend on afferent inflow, recent data suggest that central signals originating from volitional control (efferent outflow could also be involved and interact with the former to build up a coherent percept. Evidence derives from both clinical and experimental observations where vision, which is of primary importance in kinesthesia, was systematically precluded. The purpose of the present experiment was to assess the role of volitional effort in kinesthesia when visual information is available. Participants (n=20 produced isometric contraction (10-20% of maximal voluntary force of their right arm while their left arm, which image was reflected in a mirror, either was passively moved into flexion/extension by a motorized manipulandum, or remained static. The contraction of the right arm was either congruent with or opposite to the passive displacements of the left arm. Results revealed that in most trials, kinesthetic illusions were visually driven, and their occurrence and intensity were modulated by whether volitional effort was congruent or not with visual signals. These results confirm the impact of volitional effort in kinesthesia and demonstrate for the first time that these signals interact with visual afferents to offer a coherent and unified percept.

  1. Trying to move your unseen static arm modulates visually-evoked kinesthetic illusion.

    Science.gov (United States)

    Metral, Morgane; Blettery, Baptiste; Bresciani, Jean-Pierre; Luyat, Marion; Guerraz, Michel

    2013-01-01

    Although kinesthesia is known to largely depend on afferent inflow, recent data suggest that central signals originating from volitional control (efferent outflow) could also be involved and interact with the former to build up a coherent percept. Evidence derives from both clinical and experimental observations where vision, which is of primary importance in kinesthesia, was systematically precluded. The purpose of the present experiment was to assess the role of volitional effort in kinesthesia when visual information is available. Participants (n=20) produced isometric contraction (10-20% of maximal voluntary force) of their right arm while their left arm, which image was reflected in a mirror, either was passively moved into flexion/extension by a motorized manipulandum, or remained static. The contraction of the right arm was either congruent with or opposite to the passive displacements of the left arm. Results revealed that in most trials, kinesthetic illusions were visually driven, and their occurrence and intensity were modulated by whether volitional effort was congruent or not with visual signals. These results confirm the impact of volitional effort in kinesthesia and demonstrate for the first time that these signals interact with visual afferents to offer a coherent and unified percept.

  2. Auditory and visual event-related potentials and flash visual evoked potentials in Alzheimer's disease: correlations with Mini-Mental State Examination and Raven's Coloured Progressive Matrices.

    Science.gov (United States)

    Tanaka, F; Kachi, T; Yamada, T; Sobue, G

    1998-01-01

    We investigated possible correlations among neurophysiological examinations [auditory and visual event-related potentials (A-ERPs, V-ERPs), and flash visual evoked potentials (F-VEPs)] and neuropsychological tests [Mini-Mental State Examination (MMSE) and Raven's Coloured Progressive Matrices (RCPM)] in 15 subjects with probable or possible Alzheimer's disease (AD) according to the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria. The P300 latency of A-ERPs was correlated with the scores of MMSE but not with those of RCPM. The P300 latency of V-ERPs was more significantly correlated with the scores of RCPM than with those of MMSE. The P2 latency of F-VEPs was more significantly correlated with the scores of RCPM than with those of MMSE. The P2 latency of F-VEPs was not correlated with the P300 latency of A-ERPs but was correlated with the P300 latency of V-ERPs. The close relationship among V-ERPs, F-VEPs and RCPM suggests that these examinations at least partly reflect the functions of visual association areas in AD. Furthermore, discrepancy between P300 latency by A-ERPs and V-ERPs suggests that the mechanism responsible for P300 generation is not identical between these two stimulus modalities.

  3. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    Science.gov (United States)

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

  4. Visual evoked response changes following intrathecal injection of water-soluble contrast media: a possible method of assessing neurotoxicity and a comparison of metrizamide and iopamidol.

    Science.gov (United States)

    Broadbridge, A T; Bayliss, S G; Firth, R; Farrell, G

    1984-09-01

    An investigation was carried out to ascertain if there was a change in visual evoked responses following the intrathecal injection of water-soluble contrast media for myeloradiculography and if this change provided an indication of neurotoxicity as assessed by the onset of headache during a period of 20 h following the radiological examination. The patients were unselected and examined, when facilities for measuring the visual evoked response were available, immediately before and at 1 and 20 h after the examination. Control readings were carried out before, 1 h and 20 h after lumbar puncture in patients who did not have an injection of contrast medium. The first 25 patients in the series received metrizamide; when iopamidol became available a change to the newer medium was made and iopamidol was used on all subsequent patients. All the injections were carried out by the same radiologist and the patients were kept in hospital overnight and interviewed the next morning, avoiding a specific reference to headache unless the patient denied all symptoms. It was found that the latency of the visual evoked response was affected in some cases by the presence of contrast medium in the cerebrospinal fluid and that there was a correlation between the severity of headaches and the delay in the visual evoked response at the 20 h post-myelogram measurement, but not at 1 h after the examination. It would appear, therefore, that the visual evoked response measurement is a valid method of assessing, in the short term, the neurotoxicity of intrathecal water-soluble contrast media and that, on this evidence, iopamidol is less neurotoxic than metrizamide. We are not aware of any long-term complications resulting from the use of either contrast medium.

  5. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo

    2014-12-01

    This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Multifocal and pattern-reversal visual evoked potentials vs. automated perimetry frequency-doubling technology matrix in optic neuritis

    Directory of Open Access Journals (Sweden)

    Marcella Nebbioso

    2013-01-01

    Full Text Available Background: To compare the usefulness of the traditional pattern-reversal Visual Evoked Potentials (VEP with multifocal VEP (mfVEP and Frequency-Doubling Technology (FDT perimetry in the evaluation of the ocular abnormalities induced by acute or subacute optic neuritis (ON. Materials and Methods: The test results of 24 ON patients were compared with those obtained in 40 normal control subjects. MfVEP recordings were obtained by using an Optoelectronic Stimulator that extracts topographic VEP using a pseudorandom m-sequence stimulus. Receiver operator characteristic (ROC curves were calculated to determine the sensitivity and specificity of abnormal values. Results: The frequency of the abnormal ocular findings differed in the ON patients according to the used technique. Reduced visual sensitivity was demonstrated in 12 eyes (54.5% using FDT perimetry; 17 eyes (77.2% showed decreased amplitude and/or an increase in the implicit time of the P1 wave in mfVEP and 20 eyes (90.9% showed an abnormal decrease in the amplitude and/or an increase in the latency of the P100 peak at VEP examination. The areas under the ROC curves ranged from 0.743 to 0.935, with VEP having the largest areas. The VEP and mfVEP amplitudes and latencies yielded the greatest sensitivity and specificity. Conclusions: The mfVEP and the FDT perimetry can be used for the evaluation and monitoring of visual impairment in patients with ON. The most sensitive and practical diagnostic tool in patients with ON is, however, the traditional VEP. The mfVEP can be utilized in those cases with doubtful or negative VEP results.

  7. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.

    Science.gov (United States)

    Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya

    2013-09-01

    Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can

  8. Decoding sound and imagery content in early visual cortex.

    Science.gov (United States)

    Vetter, Petra; Smith, Fraser W; Muckli, Lars

    2014-06-02

    Human early visual cortex was traditionally thought to process simple visual features such as orientation, contrast, and spatial frequency via feedforward input from the lateral geniculate nucleus (e.g., [1]). However, the role of nonretinal influence on early visual cortex is so far insufficiently investigated despite much evidence that feedback connections greatly outnumber feedforward connections [2-5]. Here, we explored in five fMRI experiments how information originating from audition and imagery affects the brain activity patterns in early visual cortex in the absence of any feedforward visual stimulation. We show that category-specific information from both complex natural sounds and imagery can be read out from early visual cortex activity in blindfolded participants. The coding of nonretinal information in the activity patterns of early visual cortex is common across actual auditory perception and imagery and may be mediated by higher-level multisensory areas. Furthermore, this coding is robust to mild manipulations of attention and working memory but affected by orthogonal, cognitively demanding visuospatial processing. Crucially, the information fed down to early visual cortex is category specific and generalizes to sound exemplars of the same category, providing evidence for abstract information feedback rather than precise pictorial feedback. Our results suggest that early visual cortex receives nonretinal input from other brain areas when it is generated by auditory perception and/or imagery, and this input carries common abstract information. Our findings are compatible with feedback of predictive information to the earliest visual input level (e.g., [6]), in line with predictive coding models [7-10].

  9. Evoking visual neglect-like deficits in healthy volunteers - an investigation by repetitive navigated transcranial magnetic stimulation.

    Science.gov (United States)

    Giglhuber, Katrin; Maurer, Stefanie; Zimmer, Claus; Meyer, Bernhard; Krieg, Sandro M

    2016-01-18

    In clinical practice, repetitive navigated transcranial magnetic stimulation (rTMS) is of particular interest for non-invasive mapping of cortical language areas. Yet, rTMS studies try to detect further cortical functions. Damage to the underlying network of visuospatial attention function can result in visual neglect-a severe neurological deficit and influencing factor for a significantly reduced functional outcome. This investigation aims to evaluate the use of rTMS for evoking visual neglect in healthy volunteers and the potential of specifically locating cortical areas that can be assigned for the function of visuospatial attention. Ten healthy, right-handed subjects underwent rTMS visual neglect mapping. Repetitive trains of 5 Hz and 10 pulses were applied to 52 pre-defined cortical spots on each hemisphere; each cortical spot was stimulated 10 times. Visuospatial attention was tested time-locked to rTMS pulses by a landmark task. Task pictures were displayed tachistoscopically for 50 ms. The subjects' performance was analyzed by video, and errors were referenced to cortical spots. We observed visual neglect-like deficits during the stimulation of both hemispheres. Errors were categorized into leftward, rightward, and no response errors. Rightward errors occurred significantly more often during stimulation of the right hemisphere than during stimulation of the left hemisphere (mean rightward error rate (ER) 1.6 ± 1.3 % vs. 1.0 ± 1.0 %, p = 0.0141). Within the left hemisphere, we observed predominantly leftward errors rather than rightward errors (mean leftward ER 2.0 ± 1.3 % vs. rightward ER 1.0 ± 1.0 %; p = 0.0005). Visual neglect can be elicited non-invasively by rTMS, and cortical areas eloquent for visuospatial attention can be detected. Yet, the correlation of this approach with clinical findings has to be shown in upcoming steps.

  10. Visual evoked potentials (VEP and visual acuity improvement after cytidine 52 -diphosphocholine (CDP-Choline therapy in amblyopic patient

    Directory of Open Access Journals (Sweden)

    Regina Halfeld Furtado de Mendonça

    2012-10-01

    Full Text Available Citicoline may be used in many neurological disorders. Combined treatment of citicoline with patching in amblyopia has previously been researched. The purpose of this paper is to illustrate the effect of citicoline in non-patching amblyopic patient. A 11-year-old amblyopic boy underwent complete ophthalmological examinations, including VEP with flash and pattern stimulus. Two averages of 100 sweep were performed for flash stimulus. Pattern reversal stimulus obtained with high contrast was performed with 60', 30' and 15' checks stimuli. The VEP was repeated 90 days later after a therapy with citicoline and vitamin and the results compared with the responses of the previous recording session. The visual acuity (VA was 0,7 in the RE and 1,0 in the LE. The VEP pattern amplitude was normal in both eyes. Delayed in latency was detected for all spatial frequency stimulus (SFS in the RE. Delay in latency was detected only for high SFS in the LE. After the treatment, the VA was 1,0 in both eyes. The latency was normalized with low SFS on the RE and with high SFS on the LE. The flash VEP was normal before and after the therapy. In conclusion, the citicoline demonstrated that it was effective in the treatment of amblyopic eye without patching. The VA and the VEP latency improvement demonstrated that the citicoline enhance the transmission of the electric impulse from retina to visual cortex. Further research is required to understand the immediate and long-term effect of coline treatment in amblyopic patients.

  11. [Evoked potentials and inhalation anesthetics].

    Science.gov (United States)

    Thiel, A; Russ, W; Hempelmann, G

    1988-01-01

    Intraoperative monitoring of evoked potentials can be affected by various factors including volatile anaesthetics. These effects have to be considered in order to give correct interpretations of the obtained data. Visual evoked potentials (VEP) and auditory evoked potentials (AEP) will show strong alterations under general anaesthesia whereas brainstem auditory evoked potentials (BAEP) are slightly affected. The effects of nitrous oxide, halothane, enflurane, and isoflurane on somatosensory evoked potentials (SEP) after median nerve stimulation were studied in 35 healthy adult patients. pCO2 and tympanic membrane temperature were held constant. Simultaneous cervical and cortical SEP recording was performed using surface electrodes. After induction of anaesthesia SEP were recorded during normoventilation with 100% oxygen and after inhalation of 66.6% nitrous oxide. 10 patients received halothane at inspired concentrations of 0.5, 1.0, 1.5, and 2.0%. After nitrous oxide had been replaced by oxygen, halothane was reduced in steps of 0.5%. SEP were recorded at the end of each period (15 min). Equipotent doses of enflurane or isoflurane were administered to 15 and 10 patients, respectively. Nitrous oxide depressed early cortical SEP amplitude. Halothane, enflurane, and isoflurane caused dose dependent increases of latencies. Reduction of amplitude was most pronounced with isoflurane. Using high doses of enflurane in oxygen cortical SEP showed unusual high amplitudes associated with marked increases of latencies. Even under high concentrations of volatile anaesthetics cervical SEP were minimally affected. The effects of anaesthetic gases have to be considered when SEP are recorded intraoperatively.

  12. [Multi-sensory interaction in tinnitus: visual evoked potentials and somatosensory stimulation].

    Science.gov (United States)

    Herráiz, C; Hernández-Calvín, F J; Plaza, G; Toledano, A; De los Santos, G

    2003-05-01

    Anomalous cross-modal interactions along the audiovestibular, visual and soma-tosensorial pathways could be the responsible for aberrant signals, clinically expressed as phantom perceptions. This results in tinnitus that can be modified by gaze movements or somatosensorial stimulation through skin, orofacial (jaw) and cervical movements. This phenomenon has also been described in some patients with acute unilateral deafferentation of the auditory peripheral system as a result of surgery to remove a tumour in the posterior fossal. Neuroimaging preliminary studies (PET, f-MRI) describe multisensorial interactions and cortical reorganisation processes in chronic tinnitus. Treatment approaches are still unknown although counselling regarding the benignity of the process and the high percentage of habituation to the symptom is the most effective framework. We present our experience in four cases.

  13. Analysis of the influence of bromazepam on cognitive performance through the visual evoked potential (P300).

    Science.gov (United States)

    Puga, Fernanda; Veiga, Heloisa; Cagy, Mauricio; McDowell, Kaleb; Piedade, Roberto; Ribeiro, Pedro

    2005-06-01

    Benzodiazepines have been used in the pharmacological treatment of anxiety for over four decades. However, very few studies have combined bromazepam and event-related potentials (ERP). The present study aimed at investigating the modulatory effects of this drug on brain dynamics. Specifically, the effects of bromazepam (3 mg) on the P300 component of the ERP were tested in a double-blind experiment. The sample, consisting of 15 healthy subjects (7 male and 8 female), was submitted to a visual discrimination task, which employed the "oddball" paradigm. Electrophysiological (P300) and behavioral measures (stroop, digit span, and reaction time) were analyzed across three experimental conditions: placebo 1, placebo 2, and bromazepam. Results suggest that the effects of bromazepam (3 mg) on cognitive processes are not apparent. In spite of what seems irrefutable in current literature, bromazepam did not produce evident effects on the behavioral and electrophysiological variables analyzed.

  14. NMDA Receptor Antagonist Ketamine Distorts Object Recognition by Reducing Feedback to Early Visual Cortex.

    Science.gov (United States)

    van Loon, Anouk M; Fahrenfort, Johannes J; van der Velde, Bauke; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Scholte, H Steven; Lamme, Victor A F

    2016-05-01

    It is a well-established fact that top-down processes influence neural representations in lower-level visual areas. Electrophysiological recordings in monkeys as well as theoretical models suggest that these top-down processes depend on NMDA receptor functioning. However, this underlying neural mechanism has not been tested in humans. We used fMRI multivoxel pattern analysis to compare the neural representations of ambiguous Mooney images before and after they were recognized with their unambiguous grayscale version. Additionally, we administered ketamine, an NMDA receptor antagonist, to interfere with this process. Our results demonstrate that after recognition, the pattern of brain activation elicited by a Mooney image is more similar to that of its easily recognizable grayscale version than to the pattern evoked by the identical Mooney image before recognition. Moreover, recognition of Mooney images decreased mean response; however, neural representations of separate images became more dissimilar. So from the neural perspective, unrecognizable Mooney images all "look the same", whereas recognized Mooneys look different. We observed these effects in posterior fusiform part of lateral occipital cortex and in early visual cortex. Ketamine distorted these effects of recognition, but in early visual cortex only. This suggests that top-down processes from higher- to lower-level visual areas might operate via an NMDA pathway.

  15. Spatial Working Memory Effects in Early Visual Cortex

    Science.gov (United States)

    Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan

    2010-01-01

    The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…

  16. Early visual cortex as a multiscale cognitive blackboard.

    NARCIS (Netherlands)

    Roelfsema, P.R.; De Lange, Floris

    2016-01-01

    Neurons in early visual cortical areas not only represent incoming visual information but are also engaged by higher level cognitive processes, including attention, working memory, imagery, and decision-making. Are these cognitive effects an epiphenomenon or are they functionally relevant for these

  17. Efficacy of nerve growth factor on the treatment of optic nerve contusion Evaluation with visual evoked potential

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Pattern- visual evoked potential (PVEP) can reflect the functional status of retinal ganglial cells (RGC) and visual cortex, and is an objective examination for visual pathway function. It is a unique method for objectively examining the optic nerve function of optic ganglion cells.OBJECTIVE: To observe the effects of nerve growth factor (NGF) on PVEF in the treatment of optic nerve contusion, evaluate the clinical efficacy of NGF, and make an efficacy comparison with vitamin B12.DESIGN: A randomly grouping, controlled observation.SETTING: Department of Ophthalmology, Tangshan Gongren Hospital Affiliated to Hebei Medical University.PARTICIPANTS: Forty patients with optic nerve contusion caused by eye trauma, who received the treatment in the Tangshan Worker Hospital Affiliated to Hebei Medical University between January 2006 and June 2007, were recruited in this study. The involved 40 patients, including 34 males and 6 females,were aged 14 - 59 years. They were confirmed to have optic nerve contusion by ophthalmologic consultation combined with history of disease and orbital CT examination. Informed consents of treatments and detected items were obtained from all the patients. The patients were randomly divided into 2 groups with 20 in each:NGF group and vitamin B12 group.METHODS: Conservative treatment was used in the two groups. In addition, patients in the NGF group were intramuscularly injected with NGF solution 18 μg/time, once a day. Those in the vitamin B12 group were injected by the same method with common vitamin B12 of 500 μg combined with vitamin B1 of 100 mg, once a day.MAIN OUTCOME MEASURES: PVEP examination was conducted in all the patients before, one and two weeks after treatment, and latency and amplitude at P100 were detected.RESULTS: Forty patients with optic nerve contusion participated in the final analysis. Before treatment,significant differences in the latency and amplitude at P100 were not found in patients between two groups

  18. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.

    Science.gov (United States)

    Cao, Lei; Ju, Zhengyu; Li, Jie; Jian, Rongjun; Jiang, Changjun

    2015-09-30

    Steady-state visual evoked potential (SSVEP) has been widely applied to develop brain computer interface (BCI) systems. The essence of SSVEP recognition is to recognize the frequency component of target stimulus focused by a subject significantly present in EEG spectrum. In this paper, a novel statistical approach based on sequence detection (SD) is proposed for improving the performance of SSVEP recognition. This method uses canonical correlation analysis (CCA) coefficients to observe SSVEP signal sequence. And then, a threshold strategy is utilized for SSVEP recognition. The result showed the classification performance with the longer duration of time window achieved the higher accuracy for most subjects. And the average time costing per trial was lower than the predefined recognition time. It was implicated that our approach could improve the speed of BCI system in contrast to other methods. Comparison with existing method(s): In comparison with other resultful algorithms, experimental accuracy of SD approach was better than those using a widely used CCA-based method and two newly proposed algorithms, least absolute shrinkage and selection operator (LASSO) recognition model as well as multivariate synchronization index (MSI) method. Furthermore, the information transfer rate (ITR) obtained by SD approach was higher than those using other three methods for most participants. These conclusions demonstrated that our proposed method was promising for a high-speed online BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. An Enhanced Artifical Broca’s Using High Frequency Steady State Visually Evoked Potential And P300 Based Bci

    Directory of Open Access Journals (Sweden)

    S.ABDUL KHADER

    2013-04-01

    Full Text Available According to All Indian Deaf and Dumb Society (AIDDS there is one in every thousands of people born dumb. There are many reasons for dumbness. Our study is to focus on the problem of dumbness due to paralysis, tongue cancer, Broca’s problem, accident and many more. This critical problem can be solved by using Brain Computer Interface (BCI. However there are lot of obstacles exist in designing a robust BCI. To date, there is no proper sensor interface is available for creating mobile interface and achieving accurate and safe BCI. This paper proposes an enhanced artificial Broca’s BCI using steady state visually evoked potential which gives good accuracy and high transfer rate of neuron signals capture from brain. The proposed technique solves the disability of the handicapped people in safe and accurate manner. Our proposed work combines the features of BCI, mobile and wireless acquisition to create artificial Broca’s that means creating artificial speech production. The proposed technique provide suitable platform under various conditions for different user population with the above said defects and provide consumer ready application.

  20. Reliability-based automatic repeat request for short code modulation visual evoked potentials in brain computer interfaces.

    Science.gov (United States)

    Sato, Jun-Ichi; Washizawa, Yoshikazu

    2015-08-01

    We propose two methods to improve code modulation visual evoked potential brain computer interfaces (cVEP BCIs). Most of BCIs average brain signals from several trials in order to improve the classification performance. The number of averaging defines the trade-off between input speed and accuracy, and the optimal averaging number depends on individual, signal acquisition system, and so forth. Firstly, we propose a novel dynamic method to estimate the averaging number for cVEP BCIs. The proposed method is based on the automatic repeat request (ARQ) that is used in communication systems. The existing cVEP BCIs employ rather longer code, such as 63-bit M-sequence. The code length also defines the trade-off between input speed and accuracy. Since the reliability of the proposed BCI can be controlled by the proposed ARQ method, we introduce shorter codes, 32-bit M-sequence and the Kasami-sequence. Thanks to combine the dynamic averaging number estimation method and the shorter codes, the proposed system exhibited higher information transfer rate compared to existing cVEP BCIs.

  1. Gaussian wavelet transform and classifier to reliably estimate latency of multifocal visual evoked potentials (mfVEP).

    Science.gov (United States)

    Thie, Johnson; Sriram, Prema; Klistorner, Alexander; Graham, Stuart L

    2012-01-01

    This paper describes a method to reliably estimate latency of multifocal visual evoked potential (mfVEP) and a classifier to automatically separate reliable mfVEP traces from noisy traces. We also investigated which mfVEP peaks have reproducible latency across recording sessions. The proposed method performs cross-correlation between mfVEP traces and second order Gaussian wavelet kernels and measures the timing of the resulting peaks. These peak times offset by the wavelet kernel's peak time represents the mfVEP latency. The classifier algorithm performs an exhaustive series of leave-one-out classifications to find the champion mfVEP features which are most frequently selected to infer reliable traces from noisy traces. Monopolar mfVEP recording was performed on 10 subjects using the Accumap1™ system. Pattern-reversal protocol was used with 24 sectors and eccentricity upto 33°. A bipolar channel was recorded at midline with electrodes placed above and below the inion. The largest mfVEP peak and the immediate peak prior had the smallest latency variability across recording sessions, about ±2ms. The optimal classifier selected three champion features, namely, signal-to-noise ratio, the signal's peak magnitude response from 5 to 15Hz and the peak-to-peak amplitude of the trace between 70 and 250 ms. The classifier algorithm can separate reliable and noisy traces with a high success rate, typically 93%. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. The multifocal visual evoked potential and cone-isolating stimuli: implications for L- to M-cone ratios and normalization.

    Science.gov (United States)

    Hood, Donald C; Yu, Alice L; Zhang, Xian; Albrecht, Johannes; Jägle, Herbert; Sharpe, Lindsay T

    2002-01-01

    Multifocal visual evoked potentials (mfVEP) were recorded with a pattern-reversing display that modulated only the long wavelength-sensitive (L) cones or only the middle wavelength-sensitive (M) cones. Outside the central 5.8 degrees (radius), the ratio of the amplitudes of the mfVEP responses to L- and M-cone modulation varied across the six subjects, ranging from 1.1 to 1.7. The responses from the central 1 degrees (radius) showed a substantially lower ratio, ranging from 0.8 to 1.1 (average of 0.9). The variation among individuals outside the central fovea is probably due to differences in the ratio of the L/M cone input to both magno- and parvocellular pathways. The substantially lower ratios for the central responses is consistent with an L/M cone ratio closer to 1.0 in the central 1 degrees and/or an adjustment in the gain of the L- versus M-cone contributions to the central parvocellular pathways. Taking into consideration evidence from other techniques, we believe it is unlikely that most individuals have a L/M cone ratio of 1.0 in the fovea. Instead, it appears that there is a change in gain before the mfVEP is generated in area 17.

  3. Loss of visual evoked potential following temporary occlusion of the superior hypophyseal artery during aneurysm clip placement surgery. Case report.

    Science.gov (United States)

    Goto, Tetsuya; Tanaka, Yuichiro; Kodama, Kunihiko; Kusano, Yoshikazu; Sakai, Keiichi; Hongo, Kazuhiro

    2007-10-01

    The authors report a case in which a 62-year-old woman with a history of subarachnoid hemorrhage due to a ruptured aneurysm was found to have a de novo paraclinoid aneurysm in the right internal carotid artery during a routine medical examination. Surgical clip placement was performed via a contralateral pterional approach under visual evoked potential (VEP) monitoring. The superior hypophyseal artery (SHA) was found to originate from the aneurysm body. The artery was temporarily occluded prior to application of the clip to the aneurysm neck. The VEP signal was lost 3 minutes after the SHA was occluded, and the potentials gradually recovered 10 minutes after the artery was released. The disappearance of VEP signal was reproducible with SHA occlusion. The clip was applied to the aneurysm body to preserve the origin of the SHA. The patient did not have any deterioration of vision after surgery. Intraoperative VEP monitoring can be used to help determine whether the SHA can be sacrificed safely.

  4. Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain-computer interface

    Science.gov (United States)

    Wilson, John J.; Palaniappan, Ramaswamy

    2011-04-01

    The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.

  5. A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials.

    Directory of Open Access Journals (Sweden)

    Masaki Nakanishi

    Full Text Available Canonical correlation analysis (CCA has been widely used in the detection of the steady-state visual evoked potentials (SSVEPs in brain-computer interfaces (BCIs. The standard CCA method, which uses sinusoidal signals as reference signals, was first proposed for SSVEP detection without calibration. However, the detection performance can be deteriorated by the interference from the spontaneous EEG activities. Recently, various extended methods have been developed to incorporate individual EEG calibration data in CCA to improve the detection performance. Although advantages of the extended CCA methods have been demonstrated in separate studies, a comprehensive comparison between these methods is still missing. This study performed a comparison of the existing CCA-based SSVEP detection methods using a 12-class SSVEP dataset recorded from 10 subjects in a simulated online BCI experiment. Classification accuracy and information transfer rate (ITR were used for performance evaluation. The results suggest that individual calibration data can significantly improve the detection performance. Furthermore, the results showed that the combination method based on the standard CCA and the individual template based CCA (IT-CCA achieved the highest performance.

  6. Assessing the Quality of Steady-state Visual-evoked Potentials for Moving Humans Using a Mobile Electroencephalogram Headset

    Directory of Open Access Journals (Sweden)

    Yuan-Pin eLin

    2014-03-01

    Full Text Available Recent advances in mobile electroencephalogram (EEG systems, featuring non-prep dry electrodes and wireless telemetry, have urged the needs of mobile brain-computer interfaces (BCIs for applications in our daily life. Since the brain may behave differently while people are actively situated in ecologically-valid environments versus highly-controlled laboratory environments, it remains unclear how well the current laboratory-oriented BCI demonstrations can be translated into operational BCIs for users with naturalistic movements. Understanding inherent links between natural human behaviors and brain activities is the key to ensuring the applicability and stability of mobile BCIs. This study aims to assess the quality of steady-state visual-evoked potentials (SSVEPs, which is one of promising channels for functioning BCI systems, recorded using a mobile EEG system under challenging recording conditions, e.g., walking. To systemati-cally explore the effects of walking locomotion on the SSVEPs, this study instructed subjects to stand or walk on a treadmill running at speeds of 1, 2, and 3 mile (s per hour (MPH while con-currently perceiving visual flickers (11 and 12 Hz. Empirical results of this study showed that the SSVEP amplitude tended to deteriorate when subjects switched from standing to walking. Such SSVEP suppression could be attributed to the walking locomotion, leading to distinctly deteriorated SSVEP detectability from standing (84.87±13.55% to walking (1 MPH: 83.03±13.24%, 2 MPH: 79.47±13.53%, and 3 MPH: 75.26±17.89%. These findings not only demonstrated the applicability and limitations of SSVEPs recorded from freely behaving humans in realistic environments, but also provide useful methods and techniques for boosting the translation of the BCI technology from laboratory demonstrations to practical applications.

  7. Applications of visual evoked potentials and Fourier-domain optical coherence tomography in Parkinson's disease: a controlled study

    Directory of Open Access Journals (Sweden)

    Lucas Barasnevicius Quagliato

    2014-08-01

    Full Text Available Purpose: The goal of this cross-sectional observational study was to quantify the pattern-shift visual evoked potentials (VEP and the thickness as well as the volume of retinal layers using optical coherence tomography (OCT across a cohort of Parkinson's disease (PD patients and age-matched controls. Methods: Forty-three PD patients and 38 controls were enrolled. All participants underwent a detailed neurological and ophthalmologic evaluation. Idiopathic PD cases were included. Cases with glaucoma or increased intra-ocular pressure were excluded. Patients were assessed by VEP and high-resolution Fourier-domain OCT, which quantified the inner and outer thicknesses of the retinal layers. VEP latencies and the thicknesses of the retinal layers were the main outcome measures. Results: The mean age, with standard deviation (SD, of the PD patients and controls were 63.1 (7.5 and 62.4 (7.2 years, respectively. The patients were predominantly in the initial Hoehn-Yahr (HY disease stages (34.8% in stage 1 or 1.5, and 55.8 % in stage 2. The VEP latencies and the thicknesses as well as the volumes of the retinal inner and outer layers of the groups were similar. A negative correlation between the retinal thickness and the age was noted in both groups. The thickness of the retinal nerve fibre layer (RNFL was 102.7 μm in PD patients vs. 104.2 μm in controls. Conclusions: The thicknesses of retinal layers, VEP, and RNFL of PD patients were similar to those of the controls. Despite the use of a representative cohort of PD patients and high-resolution OCT in this study, further studies are required to establish the validity of using OCT and VEP measurements as the anatomic and functional biomarkers for the evaluation of retinal and visual pathways in PD patients.

  8. Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis.

    Science.gov (United States)

    You, Yuyi; Klistorner, Alexander; Thie, Johnson; Graham, Stuart L

    2011-08-29

    To investigate the relationship between size of demyelinated lesion, extent of axonal loss, and degree of latency delay of visual evoked potentials (VEPs) in a rat model of experimental demyelination. Lysolecithin 1% (0.4 or 0.8 μL) was microinjected into an optic nerve of each of 14 rats 2 mm posterior to the globe. Standard flash VEPs were recorded with skull-implanted electrodes before and 2, 4, and 6 days after the microinjection. The optic nerves were stained with Luxol-fast blue and Bielschowsky's silver to assess demyelination and axonal pathology, respectively. Demyelinated areas were measured on serial sections, and lesion volumes were deduced by three-dimensional reconstruction. Focal lesions of demyelination and variable axonal loss were observed. The mean volume of the lesion was 3.2 ± 1.1 × 10⁻² mm³. The injected eye showed a significant latency delay and amplitude decrease. Regression analysis demonstrated a strong correlation between N1 latency delay and lesion volume (r = 0.863, P < 0.0001), which remained significant after adjustment for axonal loss (r = 0.829, P < 0.001). N1 latency delay also showed a correlation with axonal loss (r = 0.552, P = 0.041), but the correlation became nonsignificant when controlling for demyelination (r = 0.387, P = 0.191). A linear association between N1-P2 amplitude decrease and axonal loss (r = 0.681, P = 0.007) was also observed. The latency of the VEP accurately reflected the amount of demyelination in the visual pathway, whereas the amplitude correlated with axonal damage. This study supports the concept that the VEP provides a highly sensitive tool with which to measure demyelination in optic neuritis.

  9. Axonal loss in non-optic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential.

    Science.gov (United States)

    Klistorner, Alexandr; Garrick, Raymond; Barnett, Michael H; Graham, Stuart L; Arvind, Hemamalini; Sriram, Prema; Yiannikas, Con

    2013-01-15

    Recent studies demonstrate significant thinning of the retinal nerve fiber layer (RNFL) in multiple sclerosis (MS) non-optic neuritis (MS-NON) eyes. However, the pathologic basis of this reduction is not clear. The aim of the current study was to investigate the relationship of the RNFL thickness in MS-NON eyes with latency delay of the multifocal visual evoked potential (mfVEP), a surrogate marker of the visual pathway demyelination. Total and temporal RNFL thickness and latency of the mfVEP in 45 MS-NON eyes of 45 patients with relapsing-remitting MS and 25 eyes of age- and gender-matched controls were measured and analyzed. There was significant reduction of total and temporal RNFL thickness (p = 0.015 and p = 0.006, respectively) and significant latency delay (p < 0.0001) in MS-NON eyes. Both total and temporal RNFL thickness were associated with latency of the mfVEP (r2 = 0.43, p < 0.0001 and r2 = 0.36, p = 0.001, respectively). MS-NON eyes with normal latency (n = 26) showed no significant reduction of RNFL thickness compared with controls (p = 0.44 and p = 0.1 for total and temporal RNFL, respectively), whereas eyes with delayed latency (n = 19) demonstrated significantly thinner RNFL (p = 0.001 and p = 0.0005). MS-NON eyes with delayed latency also had significantly thinner RNFL compared with those with normal latencies (p = 0.013 and p = 0.02). In patients with no previous optic neuritis in either eye, delayed latency and reduced RNFL were bilateral whenever present. The study demonstrated significant association between RNFL loss and a latency delay of the mfVEP in MS-NON eyes.

  10. Pattern Visual Evoked Potential, Pattern Electroretinogram, and Retinal Nerve Fiber Layer Thickness in Patients with Migraine during and after Aura.

    Science.gov (United States)

    El-Shazly, Amany Abd El-Fattah; Farweez, Yousra Ahmed; Hamdi, Momen Mahmoud; El-Sherbiny, Noha Ezzat

    2017-09-01

    To study pattern visual evoked potential (PVEP), pattern electroretinogram (PERG), and retinal nerve fiber layer (RNFL) thickness in patients with migraine during and after aura. We included 60 eyes of 60 patients with migraine (Group 1) and 30 healthy volunteers (30 eyes) as controls (Group 2). Group 1 was studied twice, during a visual aura (1-a) and in between attacks (1-b). All participants underwent full ophthalmological examination, PVEP, PERG, and optical coherence tomographyOCT imaging of the RNFL thickness for each patient. RNFL thickness was found to be thinner in patients during the aura compared to controls. It increased significantly post-aura but remained lower than the controls. Prolonged P100 latency and decreased amplitude were found in patients during aura compared to controls with significant change in between attacks to values comparable to the controls. We found prolonged N95 latency and decreased amplitude in patients during aura compared to controls with significant change post-aura to values comparable to the controls. There was positive correlation between average RNFL thicknesses and VA and spherical equivalent; but it showed negative correlation with duration of migraine, attack duration, and aura duration. Multiple regression analysis showed that the most important determinants of average RNFL thickness in patients of migraine were attack and aura duration (beta = -0.21 and -0.26 and p = 0.03 and 0.04, respectively). Migraine attacks impose both functional and structural retinal changes. The functional changes are fully reversible after the aura but not the structural ones. So, vigorous prevention of migraine attacks would be protective for retina.

  11. Frequency-doubling technology perimetry and multifocal visual evoked potential in glaucoma, suspected glaucoma, and control patients

    Directory of Open Access Journals (Sweden)

    Kanadani FN

    2014-07-01

    Full Text Available Fabio N Kanadani,1 Paulo AA Mello,1 Syril K Dorairaj,2 Tereza CM Kanadani31Federal University of Sao Paulo, Sao Paulo, Brazil; 2Mayo Clinic, Department of Ophthalmology, Jacksonville, Florida, USA; 3Sao Jose University Hospital, Belo Horizonte, BrazilIntroduction: The gold standard in functional glaucoma evaluation is standard automated perimetry (SAP. However, SAP depends on the reliability of the patients’ responses and other external factors; therefore, other technologies have been developed for earlier detection of visual field changes in glaucoma patients. The frequency-doubling perimetry (FDT is believed to detect glaucoma earlier than SAP. The multifocal visual evoked potential (mfVEP is an objective test for functional evaluation.Objective: To evaluate the sensitivity and specificity of FDT and mfVEP tests in normal, suspect, and glaucomatous eyes and compare the monocular and interocuar mf VEP.Methods: Ninety-five eyes from 95 individuals (23 controls, 33 glaucoma suspects, 39 glaucomatous were enrolled. All participants underwent a full ophthalmic examination, followed by SAP, FDT, and mfVEP tests. Results: The area under the curve for mean deviation and pattern standard deviation were 0.756 and 0.761, respectively, for FDT, 0.564 and 0.512 for signal and alpha for interocular mfVEP, and 0.568 and 0.538 for signal and alpha for monocular mfVEP. This difference between monocular and interocular mfVEP was not significant. Conclusion: The FDT matrix was superior to mfVEP in glaucoma detection. The difference between monocular and interocular mfVEP in the diagnosis of glaucoma was not significant. Keywords: standard automated perimetry, electrophysiology, glaucomatous eyes

  12. Color vision versus pattern visual evoked potentials in the assessment of subclinical optic pathway involvement in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Fatih C Gundogan

    2013-01-01

    Full Text Available Background: Optic pathway involvement in multiple sclerosis is frequently the initial sign in the disease process. In most clinical applications, pattern visual evoked potential (PVEP is used in the assessment of optic pathway involvement. Objective: To question the value of PVEP against color vision assessment in the diagnosis of subclinical optic pathway involvement. Materials and Methods: This prospective, cross-sectional study included 20 multiple sclerosis patients without a history of optic neuritis, and 20 healthy control subjects. Farnsworth-Munsell (FM 100-Hue testing and PVEPs to 60-min arc and 15-min arc checks by using Roland-Consult RetiScan® system were performed. P 100 amplitude, P 100 latency in PVEP and total error scores (TES in FM 100-Hue test were assessed. Results: Expanded Disability Status Scale score and the time from diagnosis were 2.21 ± 2.53 (ranging from 0 to 7 and 4.1 ± 4.4 years. MS group showed significantly delayed P 100 latency for both checks (P 0.05 for all. 14 MS patients (70% had an increased TESs in FM-100 Hue, 11 (55% MS patients had delayed P 100 latency and 9 (45% had reduced P 100 amplitude. The areas under the ROC curves were 0.944 for FM-100 Hue test, 0.753 for P 100 latency, and 0.173 for P 100 amplitude. Conclusions: Color vision testing seems to be more sensitive than PVEP in detecting subclinical visual pathway involvement in MS.

  13. Motor-Evoked Potentials in the Lower Back Are Modulated by Visual Perception of Lifted Weight.

    Directory of Open Access Journals (Sweden)

    Frank Behrendt

    Full Text Available Facilitation of the primary motor cortex (M1 during the mere observation of an action is highly congruent with the observed action itself. This congruency comprises several features of the executed action such as somatotopy and temporal coding. Studies using reach-grasp-lift paradigms showed that the muscle-specific facilitation of the observer's motor system reflects the degree of grip force exerted in an observed hand action. The weight judgment of a lifted object during action observation is an easy task which is the case for hand actions as well as for lifting boxes from the ground. Here we investigated whether the cortical representation in M1 for lumbar back muscles is modulated due to the observation of a whole-body lifting movement as it was shown for hand action. We used transcranial magnetic stimulation (TMS to measure the corticospinal excitability of the m. erector spinae (ES while subjects visually observed the recorded sequences of a person lifting boxes of different weights from the floor. Consistent with the results regarding hand action the present study reveals a differential modulation of corticospinal excitability despite the relatively small M1 representation of the back also for lifting actions that mainly involve the lower back musculature.

  14. Direct visualization of replication dynamics in early zebrafish embryos.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Okochi, Nanami; Hattori, Kaede; Ogata, Shin; Takebayashi, Shin-Ichiro; Ogata, Masato; Tamaru, Yutaka; Okumura, Katsuzumi

    2016-05-01

    We analyzed DNA replication in early zebrafish embryos. The replicating DNA of whole embryos was labeled with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), and spatial regulation of replication sites was visualized in single embryo-derived cells. The results unveiled uncharacterized replication dynamics during zebrafish early embryogenesis.

  15. Co-registering kinematics and evoked related potentials during visually guided reach-to-grasp movements.

    Directory of Open Access Journals (Sweden)

    Teresa De Sanctis

    Full Text Available BACKGROUND: In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively. Although a human homologue of such a circuit has been identified, the time course of activation of these cortical areas and how such activity relates to specific kinematic events has yet to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We combined kinematic and event-related potential techniques to explicitly test how activity within human grasping-related brain areas is modulated in time. Subjects were requested to reach towards and grasp either a small stimulus using a precision grip (i.e., the opposition of index finger and thumb or a large stimulus using a whole hand grasp (i.e., the flexion of all digits around the stimulus. Results revealed a time course of activation starting at the level of parietal regions and continuing at the level of premotor regions. More specifically, we show that activity within these regions was tuned for specific grasps well before movement onset and this early tuning was carried over--as evidenced by kinematic analysis--during the preshaping period of the task. CONCLUSIONS/SIGNIFICANCE: Data are discussed in terms of recent findings showing a marked differentiation across different grasps during premovement phases which was carried over into subsequent movement phases. These findings offer a substantial contribution to the current debate about the nature of the sensorimotor transformations underlying grasping. And provide new insights into the detailed movement information contained in the human preparatory activity for specific hand movements.

  16. Unmasking of an early laser evoked potential by a point localization task

    DEFF Research Database (Denmark)

    Valeriani, M.; Restuccia, D.; Le Pera, D.

    2000-01-01

    Objectives: The investigation of the CO2 laser evoked potential (LEP) modifications following a point localization task. Methods: LEPs were recorded from 10 healthy subjects in two different conditions. (1) Task condition: laser stimuli were shifted among 3 different locations on the right hand...... dorsum, and the subjects were asked to identify the stimulated area. The mean error rate in point localization was 4.5%. (2) Non-task condition: laser pulses were delivered on the first intermetacarpal space, and the subject was asked to count the number of stimuli. The mean error rate in counting was 5...

  17. Visual assessment with visual evoked potential for children%视觉诱发电位在儿童视觉发育评估中的研究进展

    Institute of Scientific and Technical Information of China (English)

    樊云葳; 李晓清; 晏晓明

    2010-01-01

    Visual evoked potential (VEP) is an evoked response recorded from the visual cortex. It is sometimes known as visual evoked cortical potential (VECP), evoked by a changing visual stimulus like flash or pattern when retina was stimulated. VEP can objectively reflect the func- tion of visual system and brain system and is specially suitable for visual assessment of children since it is seldom influenced by acknowledge or coorperation. The ationale, parameter and clinical application of VEP in visual assesment was reviewed in this article.%视觉诱发电位是视网膜受闪光或图形刺激后经视路传递,在头颅皮肤表面记录到大脑皮层视中枢对视觉刺激发生反应的一簇电信号,又称皮层视觉诱发电位.由于不受被检者认知能力及配合能力限制,可以客观反应视觉系统以及脑系统功能,适用于幼小儿童、意识丧失的患者、伪盲者以及术中检查.本研究就视觉诱发电位的理论基础、检查过程中所需参数以其在临床应用于客观视力的评估等方面进行综述.

  18. 2100-MHz electromagnetic fields have different effects on visual evoked potentials and oxidant/antioxidant status depending on exposure duration.

    Science.gov (United States)

    Hidisoglu, Enis; Kantar Gok, Deniz; Er, Hakan; Akpinar, Deniz; Uysal, Fatma; Akkoyunlu, Gokhan; Ozen, Sukru; Agar, Aysel; Yargicoglu, Piraye

    2016-03-15

    The purpose of the present study was to investigate the duration effects of 2100-MHz electromagnetic field (EMF) on visual evoked potentials (VEPs) and to assess lipid peroxidation (LPO), nitric oxide (NO) production and antioxidant status of EMF exposed rats. Rats were randomized to following groups: Sham rats (S1 and S10) and rats exposed to 2100-MHz EMF (E1 and E10) for 2h/day for 1 or 10 weeks, respectively. At the end of experimental periods, VEPs were recorded under anesthesia. Brain thiobarbituric acid reactive substances (TBARS) and 4-hydroxy-2-nonenal (4-HNE) levels were significantly decreased in the E1 whereas increased in the E10 compared with their control groups. While brain catalase (CAT), glutathione peroxidase (GSH-Px) activities and NO and glutathione (GSH) levels were significantly increased in the E1, reduction of superoxide dismutase (SOD) activity was detected in the same group compared with the S1. Conversely, decreased CAT, GSH-Px activities and NO levels were observed in the E10 compared with the S10. Latencies of all VEP components were shortened in the E1 compared with the S1, whereas latencies of all VEP components, except P1, were prolonged in the E10 compared with the S10. There was a positive correlation between all VEP latencies and brain TBARS and 4-HNE values. Consequently, it could be concluded that different effects of EMFs on VEPs depend on exposure duration. In addition, our results indicated that short-term EMF could provide protective effects, while long-term EMF could have an adverse effect on VEPs and oxidant/antioxidant status.

  19. Latency of multifocal visual evoked potentials in nonoptic neuritis eyes of multiple sclerosis patients associated with optic radiation lesions.

    Science.gov (United States)

    Alshowaeir, Daniah; Yiannikas, Con; Garrick, Raymond; Parratt, John; Barnett, Michael H; Graham, Stuart L; Klistorner, Alexander

    2014-05-15

    The aim of the study was to test the hypothesis that latency delay of multifocal visual evoked potentials (mfVEP) in nonoptic neuritis (NON) eyes of multiple sclerosis (MS) patients is related to retrochiasmal demyelinating lesions. A total of 57 MS patients with no history of optic neuritis at least in one eye, and 25 age- and sex-matched healthy controls was enrolled. Probabilistic tractography was used to reconstruct optic radiation (OR) fibers. The MS lesion volume within and outside of OR was calculated. Diffusion tensor imaging (DTI) indices were measured along OR fibers. The relationship of the mfVEP latency with OR lesions and DTI indices was examined. Average mfVEP latency in the MS cohort was significantly delayed compared to controls (P < 0.0001). Of the patients, 77% demonstrated OR lesions. Axial, radial, and mean diffusivity were significantly abnormal in MS patients (P < 0.001). Partial correlation demonstrated significant association between mfVEP latency delay and OR lesion load. There was also significant correlation between MfVEP latency and OR DTI. Subgroup analysis revealed significantly higher correlations in patients without a history of ON in either eye compared to the fellow eye of patients with previous ON. The findings of this study support our hypothesis that latency delay of the mfVEP in eyes of MS patients without previous ON is related to retrogenicular demyelinating lesions. Additionally, this study demonstrated that a previous episode of ON in the fellow eye may be a significant confounding factor, masking the relationship between the latency and OR lesions. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  20. Delayed early primary visual pathway development in premature infants: high density electrophysiological evidence.

    Directory of Open Access Journals (Sweden)

    Emmanuel Tremblay

    Full Text Available In the past decades, multiple studies have been interested in developmental patterns of the visual system in healthy infants. During the first year of life, differential maturational changes have been observed between the Magnocellular (P and the Parvocellular (P visual pathways. However, few studies investigated P and M system development in infants born prematurely. The aim of the present study was to characterize P and M system maturational differences between healthy preterm and fullterm infants through a critical period of visual maturation: the first year of life. Using a cross-sectional design, high-density electroencephalogram (EEG was recorded in 31 healthy preterms and 41 fullterm infants of 3, 6, or 12 months (corrected age for premature babies. Three visual stimulations varying in contrast and spatial frequency were presented to stimulate preferentially the M pathway, the P pathway, or both systems simultaneously during EEG recordings. Results from early visual evoked potentials in response to the stimulation that activates simultaneously both systems revealed longer N1 latencies and smaller P1 amplitudes in preterm infants compared to fullterms. Moreover, preterms showed longer N1 and P1 latencies in response to stimuli assessing the M pathway at 3 months. No differences between preterms and fullterms were found when using the preferential P system stimulation. In order to identify the cerebral generator of each visual response, distributed source analyses were computed in 12-month-old infants using LORETA. Source analysis demonstrated an activation of the parietal dorsal region in fullterm infants, in response to the preferential M pathway, which was not seen in the preterms. Overall, these findings suggest that the Magnocellular pathway development is affected in premature infants. Although our VEP results suggest that premature children overcome, at least partially, the visual developmental delay with time, source analyses reveal

  1. ATTITUDE PARENTS TO EARLY INTERVENTION OF VISUALLY IMPAIRED CHILDREN

    Directory of Open Access Journals (Sweden)

    Mira CVETKOVA

    1997-06-01

    Full Text Available For centuries Visually Impaired children have been educated within the high walls of special schools (Loots ET al., 1992. It is only during the last decades that more and more Visually Impaired children were brought up in their own environment:· the integrated education is not a trend anymore, but an educational policy;· The Early Intervention has transferred into approach to young Visually Impaired children.Early Intervention is crucial because the Visually Impairment affects the early development of a child in several ways:· motor functioning;· concept development;· social skills;· range of experience;· ability to move independently;· play etc.All these obstacles in early development create the necessity of Early Intervention programs which should start immediately after child’s is diagnosed.As it was said above the best approach to involve parents in early Intervention programs is to develop strategies, which fit individual family needs. This means to take into account many factors important for each family. Some of them are:· future believes and expectations;· educational background and culture;· religion;· financial situation.

  2. Early visual responses predict conscious face perception within and between subjects during binocular rivalry

    DEFF Research Database (Denmark)

    Sandberg, Kristian; Bahrami, Bahador; Kanai, Ryota

    2013-01-01

    Previous studies indicate that conscious face perception may be related to neural activity in a large time window around 170–800 msec after stimulus presentation, yet in the majority of these studies changes in conscious experience are confounded with changes in physical stimulation. Using...... multivariate classification on MEG data recorded when participants reported changes in conscious perception evoked by binocular rivalry between a face and a grating, we showed that only MEG signals in the 120–320 msec time range, peaking at the M170 around 180 msec and the P2m at around 260 msec, reliably...... to predict perception better than chance. In addition, source space analyses showed that sources in the early and late visual system predicted conscious perception more accurately than frontal and parietal sites, although conscious perception could also be decoded there. Finally, the patterns of neural...

  3. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y. (Queen Mary Hospital, Hong Kong (Hong Kong))

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  4. Giant early components of somatosensory evoked potentials to tibial nerve stimulation in cortical myoclonus.

    Science.gov (United States)

    Anzellotti, Francesca; Onofrj, Marco; Bonanni, Laura; Saracino, Antonio; Franciotti, Raffaella

    2016-01-01

    Enlarged cortical components of somatosensory evoked potentials (giant SEPs) recorded by electroencephalography (EEG) and abnormal somatosensory evoked magnetic fields (SEFs) recorded by magnetoencephalography (MEG) are observed in the majority of patients with cortical myoclonus (CM). Studies on simultaneous recordings of SEPs and SEFs showed that generator mechanism of giant SEPs involves both primary sensory and motor cortices. However the generator sources of giant SEPs have not been fully understood as only one report describes clearly giant SEPs following lower limb stimulation. In our study we performed a combined EEG-MEG recording on responses elicited by electric median and tibial nerve stimulation in a patient who developed consequently to methyl bromide intoxication CM with giant SEPs to median and tibial nerve stimuli. SEPs wave shapes were identified on the basis of polarity-latency components (e.g. P15-N20-P25) as defined by earlier studies and guidelines. At EEG recording, the SEP giant component did not appear in the latency range of the first cortical component for median nerve SEP (N20), but appeared instead in the range of the P37 tibial nerve SEP, which is currently identified as the first cortical component elicited by tibial nerve stimuli. Our MEG and EEG SEPs recordings also showed that components in the latency range of P37 were preceded by other cortical components. These findings suggest that lower limb P37 does not correspond to upper limb N20. MEG results confirmed that giant SEFs are the second component from both tibial (N43m-P43m) and median (N27m-P27m) nerve stimulation. MEG dipolar sources of these giant components were located in the primary sensory and motor area.

  5. Pinwheel-dipole configuration in cat early visual cortex.

    Science.gov (United States)

    Ribot, Jérôme; Romagnoni, Alberto; Milleret, Chantal; Bennequin, Daniel; Touboul, Jonathan

    2016-03-01

    In the early visual cortex, information is processed within functional maps whose layouts are thought to underlie visual perception. However, the precise organization of these functional maps as well as their interrelationships remain unsettled. Here, we show that spatial frequency representation in cat early visual cortex exhibits singularities around which the map organizes like an electric dipole potential. These singularities are precisely co-located with singularities of the orientation map: the pinwheel centers. To show this, we used high resolution intrinsic optical imaging in cat areas 17 and 18. First, we show that a majority of pinwheel centers exhibit in their neighborhood both semi-global maximum and minimum in the spatial frequency map (i.e. extreme values of the spatial frequency in a hypercolumn). This contradicts pioneering studies suggesting that pinwheel centers are placed at the locus of a single spatial frequency extremum. Based on an analogy with electromagnetism, we proposed a mathematical model for a dipolar structure, accurately fitting optical imaging data. We conclude that a majority of orientation pinwheel centers form spatial frequency dipoles in cat early visual cortex. Given the functional specificities of neurons at singularities in the visual cortex, it is argued that the dipolar organization of spatial frequency around pinwheel centers could be fundamental for visual processing.

  6. Visual stimuli evoke rapid activation (120 ms) of sensorimotor cortex for overt but not for covert movements.

    Science.gov (United States)

    Hohlefeld, Friederike U; Nikulin, Vadim V; Curio, Gabriel

    2011-01-12

    Overt and covert movements (e.g., motor imagery) have been frequently demonstrated to engage common neuronal substrates in the motor system. However, it is an open question whether this similarity is also present during early stages of stimulus-processing. We utilized the high temporal resolution of multi-channel electroencephalography (EEG) in order to test whether the prior action intention (overt vs. covert movements) differentially modulates early stimulus-processing stages in the cortical sensorimotor system. The subjects performed overt or covert movements contingent upon an instructive visual stimulus (indicating left or right hand performance). We introduced a novel measure, LRPrect, calculated as Lateralized Readiness Potentials from rectified EEG signals. This measure overcomes a problem related to the EEG signal variability due to polarity differences in the spatial distribution of neuronal sources. The LRPrect showed an activation already at 120 ms after stimulus onset (latN120) focally over sensorimotor cortices contralateral to the upcoming hand movement, yet only for overt but not covert movements. Thus the prior action intention differentially routes early stimulus-processing into the sensorimotor system, which might contribute to significantly different behavioral outcomes, i.e., movement generation or inhibition. The present results have implications for studies of motor inhibition and action intention.

  7. Rapid and reversible recruitment of early visual cortex for touch.

    Directory of Open Access Journals (Sweden)

    Lotfi B Merabet

    Full Text Available BACKGROUND: The loss of vision has been associated with enhanced performance in non-visual tasks such as tactile discrimination and sound localization. Current evidence suggests that these functional gains are linked to the recruitment of the occipital visual cortex for non-visual processing, but the neurophysiological mechanisms underlying these crossmodal changes remain uncertain. One possible explanation is that visual deprivation is associated with an unmasking of non-visual input into visual cortex. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of sudden, complete and prolonged visual deprivation (five days in normally sighted adult individuals while they were immersed in an intensive tactile training program. Following the five-day period, blindfolded subjects performed better on a Braille character discrimination task. In the blindfold group, serial fMRI scans revealed an increase in BOLD signal within the occipital cortex in response to tactile stimulation after five days of complete visual deprivation. This increase in signal was no longer present 24 hours after blindfold removal. Finally, reversible disruption of occipital cortex function on the fifth day (by repetitive transcranial magnetic stimulation; rTMS impaired Braille character recognition ability in the blindfold group but not in non-blindfolded controls. This disruptive effect was no longer evident once the blindfold had been removed for 24 hours. CONCLUSIONS/SIGNIFICANCE: Overall, our findings suggest that sudden and complete visual deprivation in normally sighted individuals can lead to profound, but rapidly reversible, neuroplastic changes by which the occipital cortex becomes engaged in processing of non-visual information. The speed and dynamic nature of the observed changes suggests that normally inhibited or masked functions in the sighted are revealed by visual loss. The unmasking of pre-existing connections and shifts in connectivity represent rapid

  8. Combination of blood oxygen level–dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia

    Science.gov (United States)

    Wang, Xinmei; Cui, Dongmei; Zheng, Ling; Yang, Xiao; Yang, Hui

    2012-01-01

    Purpose To elucidate the different neuromechanisms of subjects with strabismic and anisometropic amblyopia compared with normal vision subjects using blood oxygen level–dependent functional magnetic resonance imaging (BOLD-fMRI) and pattern-reversal visual evoked potential (PR-VEP). Methods Fifty-three subjects, age range seven to 12 years, diagnosed with strabismic amblyopia (17 cases), anisometropic amblyopia (20 cases), and normal vision (16 cases), were examined using the BOLD-fMRI and PR-VEP of UTAS-E3000 techniques. Cortical activation by binocular viewing of reversal checkerboard patterns was examined in terms of the calcarine region of interest (ROI)-based and spatial frequency–dependent analysis. The correlation of cortical activation in fMRI and the P100 amplitude in VEP were analyzed using the SPSS 12.0 software package. Results In the BOLD-fMRI procedure, reduced areas and decreased activation levels were found in Brodmann area (BA) 17 and other extrastriate areas in subjects with amblyopia compared with the normal vision group. In general, the reduced areas mainly resided in the striate visual cortex in subjects with anisometropic amblyopia. In subjects with strabismic amblyopia, a more significant cortical impairment was found in bilateral BA 18 and BA 19 than that in subjects with anisometropic amblyopia. The activation by high-spatial-frequency stimuli was reduced in bilateral BA 18 and 19 as well as BA 17 in subjects with anisometropic amblyopia, whereas the activation was mainly reduced in BA 18 and BA 19 in subjects with strabismic amblyopia. These findings were further confirmed by the ROI-based analysis of BA 17. During spatial frequency–dependent VEP detection, subjects with anisometropic amblyopia had reduced sensitivity for high spatial frequency compared to subjects with strabismic amblyopia. The cortical activation in fMRI with the calcarine ROI-based analysis of BA 17 was significantly correlated with the P100 amplitude in VEP

  9. Frontostriatal Circuit Dynamics Correlate with Cocaine Cue-Evoked Behavioral Arousal during Early Abstinence.

    Science.gov (United States)

    Smith, Wesley C; Rosenberg, Matthew H; Claar, Leslie D; Chang, Victoria; Shah, Sagar N; Walwyn, Wendy M; Evans, Christopher J; Masmanidis, Sotiris C

    2016-01-01

    It is thought that frontostriatal circuits play an important role in mediating conditioned behavioral responses to environmental stimuli that were previously encountered during drug administration. However, the neural correlates of conditioned responses to drug-associated cues are not well understood at the level of large populations of simultaneously recorded neurons, or at the level of local field potential (LFP) synchrony in the frontostriatal network. Here we introduce a behavioral assay of conditioned arousal to cocaine cues involving pupillometry in awake head-restrained mice. After just 24 h of drug abstinence, brief exposures to olfactory stimuli previously paired with cocaine injections led to a transient dilation of the pupil, which was greater than the dilation effect to neutral cues. In contrast, there was no cue-selective change in locomotion, as measured by the rotation of a circular treadmill. The behavioral assay was combined with simultaneous recordings from dozens of electrophysiologically identified units in the medial prefrontal cortex (mPFC) and ventral striatum (VS). We found significant relationships between cocaine cue-evoked pupil dilation and the proportion of inhibited principal cells in the mPFC and VS. Additionally, LFP coherence analysis revealed a significant correlation between pupillary response and synchrony in the 25-45 Hz frequency band. Together, these results show that pupil dilation is sensitive to drug-associated cues during acute stages of abstinence, and that individual animal differences in this behavioral arousal response can be explained by two complementary measures of frontostriatal network activity.

  10. Single Pulse Electrical Stimulation to identify epileptogenic cortex: Clinical information obtained from early evoked responses

    NARCIS (Netherlands)

    Mouthaan, B.E.; van 't Klooster, M.A.; Keizer, D.; Hebbink, Gerrit Jan; Leijten, F.S.; Ferrier, C.H.; van Putten, Michel Johannes Antonius Maria; Zijlmans, M.; Huiskamp, G.J.

    2016-01-01

    Objective Single Pulse Electrical Stimulation (SPES) probes epileptogenic cortex during electrocorticography. Two SPES responses are described: pathological delayed responses (DR, >100 ms) associated with the seizure onset zone (SOZ) and physiological early responses (ER, <100 ms) that map cortical

  11. Single pulse electrical stimulation to identify epileptogenic cortex: Clinical information obtained from early evoked responses

    NARCIS (Netherlands)

    Mouthaan, B.E.; van 't Klooster, M.A.; Keizer, D.; Hebbink, Gerrit Jan; Leijten, F.S.S.; Ferrier, C.H.; van Putten, Michel Johannes Antonius Maria; Zijlmans, M.; Huiskamp, G.J.M.

    Objective: Single Pulse Electrical Stimulation (SPES) probes epileptogenic cortex during electrocorticography. Two SPES responses are described: pathological delayed responses (DR, >100 ms) associated with the seizure onset zone (SOZ) and physiological early responses (ER, <100 ms) that map cortical

  12. Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss.

    Science.gov (United States)

    Sabbah, Norman; Sanda, Nicolae; Authié, Colas N; Mohand-Saïd, Saddek; Sahel, José-Alain; Habas, Christophe; Amedi, Amir; Safran, Avinoam B

    2017-02-24

    Behavioral alterations emerging after central or peripheral vision loss suggest that cerebral reorganization occurs for both the afferented and deafferented early visual cortex (EVC). We explored the functional reorganization of the central and peripheral EVC following visual field defects specifically affecting central or peripheral vision. Compared to normally sighted, afferented central and peripheral EVC enhance their functional connectivity with areas involved in visual processing, whereas deafferented central and peripheral EVC increase their functional connectivity with more remote regions. The connectivity pattern of afferented EVC suggests adaptive changes that might enhance the visual processing capacity whereas the connectivity pattern of deafferented EVC may reflect the involvement of these regions in high-order mechanisms. Characterizing and understanding the plastic changes induced by these visual defects is essential for any attempt to develop efficient rehabilitation strategies.

  13. The effect of intrathecal iohexol on visual evoked response latency: a comparison including incidence of headache with iopamidol and metrizamide in myeloradiculography.

    Science.gov (United States)

    Broadbridge, A T; Bayliss, S G; Brayshaw, C I

    1987-01-01

    Fifty consecutive unselected patients referred for myeloradiculography and examined by the same radiologist, when facilities for measuring the visual evoked response were available, are considered. The effect on the visual evoked response of the examination and the incidence of headache following the use of iohexol as the contrast medium are compared with those after the use of iopamidol and metrizamide reported in a previous study. A total of 400 cases examined with iopamidol and 200 cases examined with iohexol are reviewed with regard to the incidence of headache. Whereas iopamidol and, to a greater extent metrizamide, were found to cause significant lengthening of the visual evoked response latency 20 hours after the radiological examination, iohexol did not. Furthermore there was no significant difference in the 20 hour reading following the use of iohexol compared with the original control group of patients who underwent lumbar puncture alone. There was a lower incidence and severity of headache following the use of iohexol than with iopamidol and a markedly reduced incidence compared with metrizamide. Iohexol is considered less neurotoxic than iopamidol which had previously superceded metrizamide as the contrast medium used for myeloradiculography in the Royal Surrey County Hospital. Volumes of up to 14 ml of iohexol 300 mg I/ml have been used for lumbar radiculography and for total myelography and up to 10 ml for direct lateral cervical puncture. In 350 cases examined to date with iohexol the only serious sequel was a case of chemical meningitis following the lumbar injection of 10 ml of the 300 mg I/ml solution for a cervical examination. The patient made an uneventful recovery.

  14. Disgust evoked by strong wormwood bitterness influences the processing of visual food cues in women: An ERP study.

    Science.gov (United States)

    Schwab, Daniela; Giraldo, Matteo; Spiegl, Benjamin; Schienle, Anne

    2017-01-01

    The perception of intense bitterness is associated with disgust and food rejection. The present cross-modal event-related potential (ERP) study investigated whether a bitter aftertaste is able to influence affective ratings and the neuronal processing of visual food cues. We presented 39 healthy normal-weight women (mean age: 22.5 years) with images depicting high-caloric meat dishes, high-caloric sweets, and low-caloric vegetables after they had either rinsed their mouth with wormwood tea (bitter group; n = 20) or water (control group; n = 19) for 30s. The bitter aftertaste of wormwood enhanced fronto-central early potentials (N100, N200) and reduced P300 amplitudes for all food types (meat, sweets, vegetables). Moreover, meat and sweets elicited higher fronto-central LPPs than vegetables in the water group. This differentiation was absent in the bitter group, which gave lower arousal ratings for the high-caloric food. We found that a minor intervention ('bitter rinse') was sufficient to induce changes in the neuronal processing of food images reflecting increased early attention (N100, N200) as well as reduced affective value (P300, LPP). Future studies should investigate whether this intervention is able to influence eating behavior.

  15. Early childhood development of visual texture segregation in full-term and preterm children.

    Science.gov (United States)

    Sayeur, Mélissa Sue; Vannasing, Phetsamone; Lefrançois, Mélanie; Tremblay, Emmanuel; Lepore, Franco; Lassonde, Maryse; McKerral, Michelle; Gallagher, Anne

    2015-07-01

    To date, very little is known about the normal development trajectory of visual texture segregation, or how it is affected by preterm birth. The goal of this study was to characterize the development of visual texture segregation using texture segregation visual evoked potentials (tsVEPs) in children born full-term and children born preterm without major neurological impairment. Forty-five full-term and 43 preterm children were tested at either 12, 24 or 36 months of age (corrected age for prematurity at 12 and 24 months old). VEPs were obtained using two lower-level stimuli defined by orientation (oriVEP) and two higher-level stimuli defined by texture (texVEP). TsVEP was obtained by dividing by two the subtraction of oriVEP from texVEP. Results show a clear maturation of the processes underlying visual texture segregation in the full-term group, with a significant N2 latency reduction between 12 and 36 months of age for all conditions. Significant N2 amplitude reduction was observed for oriVEP between 12 and 24 months, as well as for texVEP between 12 and 24 months, and 12 and 36 months. Comparison between full-term and preterm children indicated significantly lower N2 amplitude for the preterm group at 12 months for oriVEP and texVEP. These differences were no longer apparent at 24 months of age, suggesting that children born preterm catch up with their full-term counterparts somewhere between 12 and 24 months of age. Our results appear to reflect a maturational delay in preterm children in both lower-level and higher-level visual processing during, at least, early childhood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Early and late activity in somatosensory cortex reflects changes in bodily self-consciousness: an evoked potential study.

    Science.gov (United States)

    Aspell, J E; Palluel, E; Blanke, O

    2012-08-02

    How can we investigate the brain mechanisms underlying self-consciousness? Recent behavioural studies on multisensory bodily perception have shown that multisensory conflicts can alter bodily self-consciousness such as in the "full body illusion" (FBI) in which changes in self-identification with a virtual body and tactile perception are induced. Here we investigated whether experimental changes in self-identification during the FBI are accompanied by activity changes in somatosensory cortex by recording somatosensory-evoked potentials (SEPs). To modulate self-identification, participants were filmed by a video camera from behind while their backs were stroked, either synchronously (illusion condition) or asynchronously (control condition) with respect to the stroking seen on their virtual body. Tibial nerve SEPs were recorded during the FBI and analysed using evoked potential (EP) mapping. Tactile mislocalisation was measured using the crossmodal congruency task. SEP mapping revealed five sequential periods of brain activation during the FBI, of which two differed between the illusion condition and the control condition. Activation at 30-50 ms (corresponding to the P40 component) in primary somatosensory cortex was stronger in the illusion condition. A later activation at ∼110-200 ms, likely originating in higher-tier somatosensory regions in parietal cortex, was stronger and lasted longer in the control condition. These data show that changes in bodily self-consciousness modulate activity in primary and higher-tier somatosensory cortex at two distinct processing steps. We argue that early modulations of primary somatosensory cortex may be a consequence of (1) multisensory integration of synchronous vs. asynchronous visuo-tactile stimuli and/or (2) differences in spatial attention (to near or far space) between the conditions. The later activation in higher-tier parietal cortex (and potentially other regions in temporo-parietal and frontal cortex) likely

  17. Comparison of visual evoked potentials elicited by light-emitting diodes and TV monitor stimulation in patients with multiple sclerosis and potentially related conditions.

    Science.gov (United States)

    Andersson, T; Sidén, A

    1994-11-01

    Visual evoked potentials elicited by reversal of a checkerboard pattern constructed of square, red light-emitting diodes (LEDs) were compared with a conventional black and white pattern displayed on a TV monitor in control subjects and in 71 patients with established or suspected multiple sclerosis. Both stimuli elicited distinct responses in the control groups: the latencies were longer with LED stimulation while the amplitudes of the various components were differently altered. The frequency of abnormal responses among the patients was higher with LED stimulation than with TV stimulation, but the highest diagnostic yield was obtained when both methods were combined.

  18. Cortical Reorganization in Dyslexic Children after Phonological Training: Evidence from Early Evoked Potentials

    Science.gov (United States)

    Spironelli, Chiara; Penolazzi, Barbara; Vio, Claudio; Angrilli, Alessandro

    2010-01-01

    Brain plasticity was investigated in 14 Italian children affected by developmental dyslexia after 6 months of phonological training. The means used to measure language reorganization was the recognition potential, an early wave, also called N150, elicited by automatic word recognition. This component peaks over the left temporo-occipital cortex…

  19. Unmasking of an early laser evoked potential by a point localization task

    DEFF Research Database (Denmark)

    Valeriani, M.; Restuccia, D.; Le Pera, D.

    2000-01-01

    .8%. Results: In the task condition, the temporal traces contralateral to the stimulation showed an early positive component (eP, mean peak latency 83 ms) preceding the N1 negativity (mean peak latency 144 ms). At the eP peak latency, topographic maps showed a positivity highly focused on the contralateral...... dorsum, and the subjects were asked to identify the stimulated area. The mean error rate in point localization was 4.5%. (2) Non-task condition: laser pulses were delivered on the first intermetacarpal space, and the subject was asked to count the number of stimuli. The mean error rate in counting was 5......), but also in early pain processing. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved....

  20. Transcranial magnetic stimulation-induced 'visual echoes' are generated in early visual cortex

    NARCIS (Netherlands)

    Jolij, J.; Lamme, V.A.F.

    2010-01-01

    Transcranial magnetic stimulation (TMS) of the early visual areas can trigger perception of a flash of light, a so-called phosphene. Here we show that a very brief presentation of a stimulus can modulate features of a subsequent TMS-induced phosphene, to a level that participants mistake phosphenes

  1. Transcranial magnetic stimulation-induced 'visual echoes' are generated in early visual cortex

    NARCIS (Netherlands)

    Jolij, J.; Lamme, V.A.F.

    2010-01-01

    Transcranial magnetic stimulation (TMS) of the early visual areas can trigger perception of a flash of light, a so-called phosphene. Here we show that a very brief presentation of a stimulus can modulate features of a subsequent TMS-induced phosphene, to a level that participants mistake phosphenes

  2. Normal values of flash visual evoked potentials in rabbits:Differences between the sexes and the eyes

    Institute of Scientific and Technical Information of China (English)

    Bo Bu; Dingbiao Zhou; Bainan Xu; Xinguang Yu; Yuanzheng Zhang

    2006-01-01

    BACKGROUND: The wave form, latency and wave amplitude of visual evoked potentials (VEP) are obviously affected by the stimulative parameters, physiological status of the subjects and anesthetics, thus there are greater normal variations and individual differences. The features of flash VEP (F-VEP) are to be observed.OBJECTIVE: To observe and compare the differences of F-VEP latencies and wave amplitudes between eyes in rabbits, and investigate the correlation with sex and the side of eyes.DESIGN: A comparative animal experiment.SETTING: Department of Neurosurgery, General Hospital of Chinese PLA.MATERIALS: The experiment was carried out in the neurophysiological laboratory of the Institute of Neurosciences, General Hospital of Chinese PLA from September 2004 to February 2005. Thirty big-ear rabbits of clean degree, 15 males and 15 females, weighing 2.0-2.5 kg, were provided by the animal center of the General Hospital of Chinese PLA.METHODS: Viking-IV perioperative monitor and flash stimulator for special use were applied. The rabbits were anesthetized with intramuscular injection of compound ketamine. The recording electrode was placed at 3 mm anterior to exoccipital tuberosity (onion, Oz), and the reference electrode was placed at the ear edge of the same side. The stimulative frequency was 1.9 Hz, and the amplifier was 50 μV; The range of wave filter was 5 Hz for high pass and 100 Hz for Iow pass; The average overlapping was 200 times, and the analytical time was 250 ms.MAIN OUTCOME MEASURES: Comparison of F-VEP wave forms; F-VEP latencies and wave amplitudes.RESULTS: All the 30 rabbits were involved in the analysis of results. ① Comparison of F-VEP wave forms in rabbits: The F-VEP waves mainly manifested aspositive-negative-positive (PNP). The F-VEP manifestations to light stimulations were extremely similar between left and right eyes, and the wave amplitudes of both eyes were obviously increased. ② Determinations of F-VEP latencies and wave amplitudes

  3. Affective facilitation of early visual cortex during rapid picture presentation at 6 and 15 Hz.

    Science.gov (United States)

    Bekhtereva, Valeria; Müller, Matthias M

    2015-12-01

    The steady-state visual evoked potential (SSVEP), a neurophysiological marker of attentional resource allocation with its generators in early visual cortex, exhibits enhanced amplitude for emotional compared to neutral complex pictures. Emotional cue extraction for complex images is linked to the N1-EPN complex with a peak latency of ∼140-160 ms. We tested whether neural facilitation in early visual cortex with affective pictures requires emotional cue extraction of individual images, even when a stream of images of the same valence category is presented. Images were shown at either 6 Hz (167 ms, allowing for extraction) or 15 Hz (67 ms per image, causing disruption of processing by the following image). Results showed SSVEP amplitude enhancement for emotional compared to neutral images at a presentation rate of 6 Hz but no differences at 15 Hz. This was not due to featural differences between the two valence categories. Results strongly suggest that individual images need to be displayed for sufficient time allowing for emotional cue extraction to drive affective neural modulation in early visual cortex.

  4. A geometric view on early and middle level visual coding.

    Science.gov (United States)

    Barth, E

    2000-01-01

    As opposed to dealing with the geometry of objects in the 3D world, this paper considers the geometry of the visual input itself, i.e. the geometry of the spatio-temporal hypersurface defined by image intensity as a function of two spatial coordinates and time. The results show how the Riemann curvature tensor of this hypersurface represents speed and direction of motion, and thereby allows to predict global motion percepts and properties of MT neurons. It is argued that important aspects of early and middle level visual coding may be understood as resulting from basic geometric processing of the spatio-temporal visual input. Finally, applications show that the approach can improve the computation of motion.

  5. [Measurement of evoked acoustic otoemissions: an early screening test of neonatal deafness].

    Science.gov (United States)

    Morgon, Alain

    2002-01-01

    Every child born with deafness displays a pathological language development. An early and specific approach is mandatory, hence requiring an universal hearing screening. Available evidence indicate that performing acoustic otoemissions prior to six months of age is the most reliable method. The recording of the AOE is performed successfully from the 30th week of conceptual age. To obtain AOE in the newborn, one needs to wait until the 3rd day post delivery in 98% of cases. The reliability of the test, the socio-economical cost, the consequences of the screening and the role of the family have to be discussed.

  6. Images as a Substitute for Words? The Notion of Visual Arts in Early Christian Writings

    Directory of Open Access Journals (Sweden)

    Tine Germ

    2011-07-01

    Full Text Available This article deals with the relation between verbal and visual communication in the early Christian era and its influence on the perception of visual arts in the Middle Ages. Taking as its starting point the famous statement by Pope Gregory the Great that “what Scripture is to the educated, images are to the ignorant, who read in them what they cannot read in books,” it traces the issue back to the early church fathers and Christian apologists, who rejected the practice of making images of God and other sacred images. Many of them categorically condemned the visual arts and branded artists as sinners that supported idolatry with works of art. The theological arguments against sacred images concentrate on the idea that it is completely impossible for any human being to imagine what God looks like, let alone make an image of Him. The only possible way to visualize and depict God is through symbolic and allegorical images. This idea, clearly formulated by Origen, marks the position of later church fathers as well, although even by the early fourth century the attitude towards sacred images and the visual arts had become less austere. Eusebius of Caesarea followed Origen in his speculation on sacred images, yet he described the statue of Christ with the woman that had an issue of blood in his native Caesarea without questioning the artist’s intention to render the image of Christ realistically and thus recreate the figure of the historical Jesus. Eusebius and the church fathers of the fifth century realized that the visual arts were very important media and could be applied to the purpose of the Church: images could be useful in spreading Christian teachings, illustrating interpretations of the Scriptures, and rendering them more comprehensible. Biblical exegesis thus found its counterpart in the allegorical and narrative motifs of early Christian art. Although the didactic value of early Christian art prevailed at least in the polemics on art

  7. Expectation Suppression in Early Visual Cortex Depends on Task Set.

    Science.gov (United States)

    St John-Saaltink, Elexa; Utzerath, Christian; Kok, Peter; Lau, Hakwan C; de Lange, Floris P

    2015-01-01

    Stimulus expectation can modulate neural responses in early sensory cortical regions, with expected stimuli often leading to a reduced neural response. However, it is unclear whether this expectation suppression is an automatic phenomenon or is instead dependent on the type of task a subject is engaged in. To investigate this, human subjects were presented with visual grating stimuli in the periphery that were either predictable or non-predictable while they performed three tasks that differently engaged cognitive resources. In two of the tasks, the predictable stimulus was task-irrelevant and spatial attention was engaged at fixation, with a high load on either perceptual or working memory resources. In the third task, the predictable stimulus was task-relevant, and therefore spatially attended. We observed that expectation suppression is dependent on the cognitive resources engaged by a subjects' current task. When the grating was task-irrelevant, expectation suppression for predictable items was visible in retinotopically specific areas of early visual cortex (V1-V3) during the perceptual task, but it was abolished when working memory was loaded. When the grating was task-relevant and spatially attended, there was no significant effect of expectation in early visual cortex. These results suggest that expectation suppression is not an automatic phenomenon, but dependent on attentional state and type of available cognitive resources.

  8. Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.

    Science.gov (United States)

    Müller, Matthias M; Trautmann, Mireille; Keitel, Christian

    2016-04-01

    Shifting attention from one color to another color or from color to another feature dimension such as shape or orientation is imperative when searching for a certain object in a cluttered scene. Most attention models that emphasize feature-based selection implicitly assume that all shifts in feature-selective attention underlie identical temporal dynamics. Here, we recorded time courses of behavioral data and steady-state visual evoked potentials (SSVEPs), an objective electrophysiological measure of neural dynamics in early visual cortex to investigate temporal dynamics when participants shifted attention from color or orientation toward color or orientation, respectively. SSVEPs were elicited by four random dot kinematograms that flickered at different frequencies. Each random dot kinematogram was composed of dashes that uniquely combined two features from the dimensions color (red or blue) and orientation (slash or backslash). Participants were cued to attend to one feature (such as color or orientation) and respond to coherent motion targets of the to-be-attended feature. We found that shifts toward color occurred earlier after the shifting cue compared with shifts toward orientation, regardless of the original feature (i.e., color or orientation). This was paralleled in SSVEP amplitude modulations as well as in the time course of behavioral data. Overall, our results suggest different neural dynamics during shifts of attention from color and orientation and the respective shifting destinations, namely, either toward color or toward orientation.

  9. Slow biasing of processing resources in early visual cortex is preceded by emotional cue extraction in emotion-attention competition.

    Science.gov (United States)

    Schönwald, Liane I; Müller, Matthias M

    2014-04-01

    In our previous studies on competition for attentional processing resources in early visual cortex between a foreground task and distracting emotional background images we found that emotional background images withdraw attentional resources from the foreground task after about 400 ms. Costs in behavioral data and a significant reduction of the steady state visual evoked potential (SSVEP) amplitude that was elicited by the foreground task lasted for several hundred milliseconds. We speculated that the differential effect in SSVEP amplitudes is preceded by the extraction of the emotional cue. Event related potential (ERP) studies to emotional and neutral complex images identified an early posterior negativity (EPN) as a robust neural signature of emotional cue extraction. The late positive potential (LPP) was related to in-depth processing of the emotional image. We extracted ERPs that were evoked by the onset of background images concurrently with the SSVEP that was elicited by the foreground task. Emotional compared to neutral background pictures evoked a more negative EPN at about 190 ms and a more positive LPP at about 700 ms after image onset. SSVEP amplitudes became significantly smaller with emotional background images after about 400 ms lasting for several hundred ms. Interestingly, we found no significant correlations between the three components, indicating that they act independently. Source localizations resulted in nonoverlapping cortical generators. Results suggest a cascade of perceptual processes: Extraction of the emotional cue preceded biasing of attentional resources away from the foreground task towards the emotional image for an evaluation of the picture content. Copyright © 2013 Wiley Periodicals, Inc.

  10. Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields.

    Science.gov (United States)

    Todorovic, Ana; de Lange, Floris P

    2012-09-26

    Repetition of a stimulus, as well as valid expectation that a stimulus will occur, both attenuate the neural response to it. These effects, repetition suppression and expectation suppression, are typically confounded in paradigms in which the nonrepeated stimulus is also relatively rare (e.g., in oddball blocks of mismatch negativity paradigms, or in repetition suppression paradigms with multiple repetitions before an alternation). However, recent hierarchical models of sensory processing inspire the hypothesis that the two might be separable in time, with repetition suppression occurring earlier, as a consequence of local transition probabilities, and suppression by expectation occurring later, as a consequence of learnt statistical regularities. Here we test this hypothesis in an auditory experiment by orthogonally manipulating stimulus repetition and stimulus expectation and, using magnetoencephalography, measuring the neural response over time in human subjects. We found that stimulus repetition (but not stimulus expectation) attenuates the early auditory response (40-60 ms), while stimulus expectation (but not stimulus repetition) attenuates the subsequent, intermediate stage of auditory processing (100-200 ms). These findings are well in line with hierarchical predictive coding models, which posit sequential stages of prediction error resolution, contingent on the level at which the hypothesis is generated.

  11. Vestibular evoked myogenic potentials and MRI in early multiple sclerosis: Validation of the VEMP score.

    Science.gov (United States)

    Crnošija, Luka; Krbot Skorić, Magdalena; Gabelić, Tereza; Adamec, Ivan; Habek, Mario

    2017-01-15

    To validate the VEMP score as a measure of brainstem dysfunction in patients with the first symptom of multiple sclerosis (MS) (clinically isolated syndrome (CIS)) and to investigate the correlation between VEMP and brainstem MRI results. 121 consecutive CIS patients were enrolled and brainstem functional system score (BSFS) was determined. Ocular VEMP (oVEMP) and cervical VEMP (cVEMP) were analyzed for latencies, conduction block and amplitude asymmetry ratio and the VEMP score was calculated. MRI was analyzed for the presence of brainstem lesions as a whole and separately for the presence of pontine, midbrain and medulla oblongata lesions. Patients with signs of brainstem involvement during the neurological examination (with BSFS ≥1) had a higher oVEMP score compared to patients with no signs of brainstem involvement. A binary logistic regression model showed that patients with brainstem lesion on the MRI are 6.780 times more likely to have BSFS ≥1 (p=0.001); and also, a higher VEMP score is associated with BSFS ≥1 (p=0.042). Furthermore, significant correlations were found between clinical brainstem involvement and brainstem and pontine MRI lesions, and prolonged latencies and/or absent VEMP responses. The VEMP score is a valuable tool in evaluation of brainstem involvement in patients with early MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Evolution of attention mechanisms for early visual processing

    Science.gov (United States)

    Müller, Thomas; Knoll, Alois

    2011-03-01

    Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism

  13. Application of visual evoked potential in diagnosis and prognosis of optic nerve contusion%视觉诱发电位在视神经挫伤诊断及预后中的应用

    Institute of Scientific and Technical Information of China (English)

    贾艳红; 王保贞; 高水杰

    2011-01-01

    目的 探讨视觉诱发电位(VEP)的异常率对视神经挫伤诊断及预后估计.方法 对69例(69眼)单侧眼挫伤组进行视力检查及VEP检查,以自体健侧眼为对照组.分析两组间VEP P100波幅值及P100峰潜时值,记录单侧眼挫伤患者的伤眼、对侧眼及治疗后伤眼的VEP.结果 挫伤眼VEP P100波幅明显降低,P100峰潜时明显延长,挫伤眼各视力组VEP异常率明显高于对照组,挫伤眼矫正视力<0.1者VEP异常更明显且预后差.结论 VEP是一种客观、定量、定位评定视神经功能的方法,是目前视神经病变最敏感、早期诊断、判断预后的客观检查方法,对视觉功能评价有重要的临床价值.%Objective To investigate the visual evoked potential abnormalities rate on the diagnosis and prognosis of optic nerve contusion.Methods Unilateral contusion of 69 for visual acuity and VEP examination to the contralateral eye as control self.Analysis of VEP P100 amplitude between the two groups and the time value of P100 peak latencies.Records of patients with unilateral contusion injury eyes,fellow eyes and eye injuries after treatment of visual evoked potentials.Results Contusion eye VEP P100 amplitude was significantly lower,P100 peak latency was significantly longer,the VEP abnormalities in visual acuity eye contusion group was significantly higher,Contusion eye vision correction < 0.1 VEP abnormalities was more obvious and had poor prognosis.Conclusions VEP is an objective,quantitative assessment of optic nerve function positioning method,optic neuropathy is the most sensitive,early diagnosis,prognosis and objective examination methods,evaluation of visual function has important clinical value.

  14. Large-scale Contextual Effects in Early Human Visual Cortex

    Directory of Open Access Journals (Sweden)

    Sung Jun Joo

    2012-10-01

    Full Text Available A commonly held view about neurons in early visual cortex is that they serve as localized feature detectors. Here, however, we demonstrate that the responses of neurons in early visual cortex are sensitive to global visual patterns. Using multiple methodologies–psychophysics, fMRI, and EEG–we measured neural responses to an oriented Gabor (“target” embedded in various orientation patterns. Specifically, we varied whether a central target deviated from its context by changing distant orientations while leaving the immediately neighboring flankers unchanged. The results of psychophysical contrast adaptation and fMRI experiments show that a target that deviates from its context results in more neural activity compared to a target that is grouped into an alternating pattern. For example, the neural response to a vertically oriented target was greater when it deviated from the orientation of flankers (HHVHH compared to when it was grouped into an alternating pattern (VHVHV. We then found that this pattern-sensitive response manifests in the earliest sensory component of the event-related potential to the target. Finally, in a forced-choice classification task of “noise” stimuli, perceptions are biased to “see” an orientation that deviates from its context. Our results show that neurons in early visual cortex are sensitive to large-scale global patterns in images in a way that is more sophisticated than localized feature detection. Our results showing a reduced neural response to statistical redundancies in images is not only optimal from an information theory perspective but also takes into account known energy constraints in neural processing.

  15. Enhancement of visual motion detection thresholds in early deaf people.

    Science.gov (United States)

    Shiell, Martha M; Champoux, François; Zatorre, Robert J

    2014-01-01

    In deaf people, the auditory cortex can reorganize to support visual motion processing. Although this cross-modal reorganization has long been thought to subserve enhanced visual abilities, previous research has been unsuccessful at identifying behavioural enhancements specific to motion processing. Recently, research with congenitally deaf cats has uncovered an enhancement for visual motion detection. Our goal was to test for a similar difference between deaf and hearing people. We tested 16 early and profoundly deaf participants and 20 hearing controls. Participants completed a visual motion detection task, in which they were asked to determine which of two sinusoidal gratings was moving. The speed of the moving grating varied according to an adaptive staircase procedure, allowing us to determine the lowest speed necessary for participants to detect motion. Consistent with previous research in deaf cats, the deaf group had lower motion detection thresholds than the hearing. This finding supports the proposal that cross-modal reorganization after sensory deprivation will occur for supramodal sensory features and preserve the output functions.

  16. Enhancement of visual motion detection thresholds in early deaf people.

    Directory of Open Access Journals (Sweden)

    Martha M Shiell

    Full Text Available In deaf people, the auditory cortex can reorganize to support visual motion processing. Although this cross-modal reorganization has long been thought to subserve enhanced visual abilities, previous research has been unsuccessful at identifying behavioural enhancements specific to motion processing. Recently, research with congenitally deaf cats has uncovered an enhancement for visual motion detection. Our goal was to test for a similar difference between deaf and hearing people. We tested 16 early and profoundly deaf participants and 20 hearing controls. Participants completed a visual motion detection task, in which they were asked to determine which of two sinusoidal gratings was moving. The speed of the moving grating varied according to an adaptive staircase procedure, allowing us to determine the lowest speed necessary for participants to detect motion. Consistent with previous research in deaf cats, the deaf group had lower motion detection thresholds than the hearing. This finding supports the proposal that cross-modal reorganization after sensory deprivation will occur for supramodal sensory features and preserve the output functions.

  17. Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex.

    Science.gov (United States)

    Schindler, Sebastian; Kissler, Johanna

    2016-10-01

    Human brains spontaneously differentiate between various emotional and neutral stimuli, including written words whose emotional quality is symbolic. In the electroencephalogram (EEG), emotional-neutral processing differences are typically reflected in the early posterior negativity (EPN, 200-300 ms) and the late positive potential (LPP, 400-700 ms). These components are also enlarged by task-driven visual attention, supporting the assumption that emotional content naturally drives attention. Still, the spatio-temporal dynamics of interactions between emotional stimulus content and task-driven attention remain to be specified. Here, we examine this issue in visual word processing. Participants attended to negative, neutral, or positive nouns while high-density EEG was recorded. Emotional content and top-down attention both amplified the EPN component in parallel. On the LPP, by contrast, emotion and attention interacted: Explicit attention to emotional words led to a substantially larger amplitude increase than did explicit attention to neutral words. Source analysis revealed early parallel effects of emotion and attention in bilateral visual cortex and a later interaction of both in right visual cortex. Distinct effects of attention were found in inferior, middle and superior frontal, paracentral, and parietal areas, as well as in the anterior cingulate cortex (ACC). Results specify separate and shared mechanisms of emotion and attention at distinct processing stages. Hum Brain Mapp 37:3575-3587, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. The effects of bromazepam on the early stage of visual information processing (P100 Efeitos do bromazepam no estágio inicial do processamento de informação visual (P100

    Directory of Open Access Journals (Sweden)

    Fernanda Puga

    2007-12-01

    Full Text Available The early stages of visual information processing, involving the detection and perception of simple visual stimuli, have been demonstrated to be sensitive to psychotropic agents. The present study investigated the effects of an acute dose of bromazepam (3 mg, compared with placebo, on the P100 component of the visual evoked potential and reaction time. The sample, consisting of 14 healthy subjects (6 male and 8 female, was submitted to a visual discrimination task, which employed the "oddball" paradigm. Results suggest that bromazepam (3 mg impairs the initial stage of visual information processing, as observed by an increase in P100 latency.Os estágios iniciais do processamento da informação visual, envolvendo a percepção e detecção de um estímulo visual simples, tem demonstrado serem sensíveis a agentes psicotrópicos. O presente estudo investigou os efeitos de uma dose aguda de bromazepam (3 mg, comparado com placebo, no componente P100 do potencial evocado visual e no tempo de reação. A mostra consistiu de 14 sujeitos sadios (6 homens e 8 mulheres, submetidos a uma tarefa de discriminação visual, a qual empregou o paradigma "oddball". Os resultados sugerem que o bromazepam (3 mg prejudica o estágio inicial do processamento da informação visual, como observado pelo aumento da latência do P100.

  19. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  20. Two distinct neural mechanisms in early visual cortex determine subsequent visual processing.

    Science.gov (United States)

    Jacobs, Christianne; de Graaf, Tom A; Sack, Alexander T

    2014-10-01

    Neuroscience research has conventionally focused on how the brain processes sensory information, after the information has been received. Recently, increased interest focuses on how the state of the brain upon receiving inputs determines and biases their subsequent processing and interpretation. Here, we investigated such 'pre-stimulus' brain mechanisms and their relevance for objective and subjective visual processing. Using non-invasive focal brain stimulation [transcranial magnetic stimulation (TMS)] we disrupted spontaneous brain state activity within early visual cortex (EVC) before onset of visual stimulation, at two different pre-stimulus-onset-asynchronies (pSOAs). We found that TMS pulses applied to EVC at either 20 msec or 50 msec before onset of a simple orientation stimulus both prevented this stimulus from reaching visual awareness. Interestingly, only the TMS-induced visual suppression following TMS at a pSOA of ?20 msec was retinotopically specific, while TMS at a pSOA of ?50 msec was not. In a second experiment, we used more complex symbolic arrow stimuli, and found TMS-induced suppression only when disrupting EVC at a pSOA of ? ?60 msec, which, in line with Experiment 1, was not retinotopically specific. Despite this topographic unspecificity of the ?50 msec effect, the additional control measurements as well as tracking and removal of eye blinks, suggested that also this effect was not the result of an unspecific artifact, and thus neural in origin. We therefore obtained evidence of two distinct neural mechanisms taking place in EVC, both determining whether or not subsequent visual inputs are successfully processed by the human visual system.

  1. Evoked potentials in multiple sclerosis.

    Science.gov (United States)

    Kraft, George H

    2013-11-01

    Before the development of magnetic resonance imaging (MRI), evoked potentials (EPs)-visual evoked potentials, somatosensory evoked potentials, and brain stem auditory evoked responses-were commonly used to determine a second site of disease in patients being evaluated for possible multiple sclerosis (MS). The identification of an area of the central nervous system showing abnormal conduction was used to supplement the abnormal signs identified on the physical examination-thus identifying the "multiple" in MS. This article is a brief overview of additional ways in which central nervous system (CNS) physiology-as measured by EPs-can still contribute value in the management of MS in the era of MRIs.

  2. Enhancing the classification accuracy of steady-state visual evoked potential-based brain-computer interfaces using phase constrained canonical correlation analysis

    Science.gov (United States)

    Pan, Jie; Gao, Xiaorong; Duan, Fang; Yan, Zheng; Gao, Shangkai

    2011-06-01

    In this study, a novel method of phase constrained canonical correlation analysis (p-CCA) is presented for classifying steady-state visual evoked potentials (SSVEPs) using multichannel electroencephalography (EEG) signals. p-CCA is employed to improve the performance of the SSVEP-based brain-computer interface (BCI) system using standard CCA. SSVEP response phases are estimated based on the physiologically meaningful apparent latency and are added as a reliable constraint into standard CCA. The results of EEG experiments involving 10 subjects demonstrate that p-CCA consistently outperforms standard CCA in classification accuracy. The improvement is up to 6.8% using 1-4 s data segments. The results indicate that the reliable measurement of phase information is of importance in SSVEP-based BCIs.

  3. Measuring Early Cortical Visual Processing in the Clinic

    Directory of Open Access Journals (Sweden)

    Linda Bowns

    2017-05-01

    Full Text Available We describe a mobile app that measures early cortical visual processing suitable for use in clinics. The app is called Component Extraction and Motion Integration Test (CEMIT. Observers are asked to respond to the direction of translating plaids that move in one of two very different directions. The plaids have been selected so that the plaid components move in one of the directions and the plaid pattern moves in the other direction. In addition to correctly responding to the pattern motion, observers demonstrate their ability to correctly extract the movement (and therefore the orientation of the underlying components at specific spatial frequencies. We wanted to test CEMIT by seeing if we could replicate the broader tuning observed at low spatial frequencies for this type of plaid. Results from CEMIT were robust and successfully replicated this result for 50 typical observers. We envisage that it will be of use to researchers and clinicians by allowing them to investigate specific deficits at this fundamental level of cortical visual processing. CEMIT may also be used for screening purposes where visual information plays an important role, for example, air traffic controllers.

  4. Early visual responses predict conscious face perception within and between subjects during binocular rivalry.

    Science.gov (United States)

    Sandberg, Kristian; Bahrami, Bahador; Kanai, Ryota; Barnes, Gareth Robert; Overgaard, Morten; Rees, Geraint

    2013-06-01

    Previous studies indicate that conscious face perception may be related to neural activity in a large time window around 170-800 msec after stimulus presentation, yet in the majority of these studies changes in conscious experience are confounded with changes in physical stimulation. Using multivariate classification on MEG data recorded when participants reported changes in conscious perception evoked by binocular rivalry between a face and a grating, we showed that only MEG signals in the 120-320 msec time range, peaking at the M170 around 180 msec and the P2m at around 260 msec, reliably predicted conscious experience. Conscious perception could not only be decoded significantly better than chance from the sensors that showed the largest average difference, as previous studies suggest, but also from patterns of activity across groups of occipital sensors that individually were unable to predict perception better than chance. In addition, source space analyses showed that sources in the early and late visual system predicted conscious perception more accurately than frontal and parietal sites, although conscious perception could also be decoded there. Finally, the patterns of neural activity associated with conscious face perception generalized from one participant to another around the times of maximum prediction accuracy. Our work thus demonstrates that the neural correlates of particular conscious contents (here, faces) are highly consistent in time and space within individuals and that these correlates are shared to some extent between individuals.

  5. Competition for attentional resources between low spatial frequency content of emotional images and a foreground task in early visual cortex.

    Science.gov (United States)

    Müller, Matthias M; Gundlach, Christopher

    2017-03-01

    Low spatial frequency (LSF) image content has been proposed to play a superior functional role in emotional content extraction via the magnocellular pathway biasing attentional resources toward emotional content in visual cortex. We investigated whether emotionally unpleasant complex images that were presented either unfiltered or with LSF content only in the background while subjects performed a foreground task will withdraw more attentional resources from the task compared to unemotional, neutral images (distraction paradigm). We measured steady-state visual evoked potentials (SSVEPs) driven by flickering stimuli of a foreground task. Unfiltered unpleasant images resulted in a significant reduction of SSVEP amplitude compared to neutral images. No statistically significant differences were found with LSF background images. In a behavioral control experiment, we found no significant differences for complexity ratings between unfiltered and LSF pictures. Content identification was possible for unfiltered and LSF picture (correct responses > 74%). An additional EEG study examined typical emotion-related components for complex images presented either as unfiltered, LSF, or high spatial frequency (HSF, as an additional control) filtered, unpleasant, and neutral images. We found a significant main effect of emotional valence in the early posterior negativity. Late positive potential differences were only found for unfiltered and HSF images. Results suggest that, while LSF content is sufficient to allow for content and emotional cue extraction when images were presented alone, LSF content is not salient enough to serve as emotional distractor that withdraws attentional resources from a foreground task in early visual cortex. © 2016 Society for Psychophysiological Research.

  6. Competitive interactions of attentional resources in early visual cortex during sustained visuospatial attention within or between visual hemifields: evidence for the different-hemifield advantage.

    Science.gov (United States)

    Walter, Sabrina; Quigley, Cliodhna; Mueller, Matthias M

    2014-05-01

    Performing a task across the left and right visual hemifields results in better performance than in a within-hemifield version of the task, termed the different-hemifield advantage. Although recent studies used transient stimuli that were presented with long ISIs, here we used a continuous objective electrophysiological (EEG) measure of competitive interactions for attentional processing resources in early visual cortex, the steady-state visual evoked potential (SSVEP). We frequency-tagged locations in each visual quadrant and at central fixation by flickering light-emitting diodes (LEDs) at different frequencies to elicit distinguishable SSVEPs. Stimuli were presented for several seconds, and participants were cued to attend to two LEDs either in one (Within) or distributed across left and right visual hemifields (Across). In addition, we introduced two reference measures: one for suppressive interactions between the peripheral LEDs by using a task at fixation where attention was withdrawn from the periphery and another estimating the upper bound of SSVEP amplitude by cueing participants to attend to only one of the peripheral LEDs. We found significantly greater SSVEP amplitude modulations in Across compared with Within hemifield conditions. No differences were found between SSVEP amplitudes elicited by the peripheral LEDs when participants attended to the centrally located LEDs compared with when peripheral LEDs had to be ignored in Across and Within trials. Attending to only one LED elicited the same SSVEP amplitude as Across conditions. Although behavioral data displayed a more complex pattern, SSVEP amplitudes were well in line with the predictions of the different-hemifield advantage account during sustained visuospatial attention.

  7. Evaluating ANN efficiency in recognizing EEG and Eye-Tracking Evoked Potentials in Visual-Game-Events

    DEFF Research Database (Denmark)

    Wulff-Jensen, Andreas; Bruni, Luis Emilio

    2017-01-01

    EEG and Eye-tracking signals have customarily been analyzed and inspected visually in order to be correlated to the controlled stimuli. This pro-cess has proven to yield valid results as long as the stimuli of the experiment are under complete control (e.g.: the order of presentation). In this st...

  8. [Evaluation of preclinical onset in patients with the childhood form of cerebral adrenoleukodystrophy--usefulness of visual cognitive function and evoked potential tests].

    Science.gov (United States)

    Furushima, Wakana; Inagaki, Masumi; Gunji, Atsuko; Kaga, Makiko; Yamazaki, Hiroko; Horiguchi, Toshihiro

    2008-07-01

    We examined both visual evoked potential (VEP) and neuropsychological tests in 18 patients with X-linked adrenoleukodystrophy (ALD). Patients consisted of 10 boys with apparent lesions in the posterior white matter on MR imaging, 3 with lesions in the frontal white matter area and 5 that were neurologically asymptomatic with no apparent brain MRI abnormalities. Almost all patients with posterior WM lesion showed patterns of lower PIQ than VIQ on WISC-III and lower scores on scales for simultaneous processing than for sequential processing on Kaufman Assesment Battery for Children (K-ABC). Four of 5 asymptomatic patients showed PIQ/VIQ patterns similar to those in the posterior group. Patients with a difference more than 13 between PIQ and VIQ also showed poor results on Frostig developmental test of visual perception (DTVP). There was a prolongation of the peak latency of P100 on flash VEP in many patients with posterior whitematter lesions, however, asymptomatic patients did not show any abnormality of P100 latency but there was an increased amplitude of N75-P100 on flash and pattern reversal stimuli VEP. One patient with abnormally high VEP (31.4 microV; + 3.6 SD) gradually improved to the normal range (11.4 microV; 0SD) after hematopoietic stem cell transplantation. These cognitive and neurophysiological examinations could be useful in the detection of preclinical onset of childhood ALD before the appearance of MRI lesions on MRI.

  9. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.

    Science.gov (United States)

    Porciatti, V; Fontanesi, G; Raffaelli, A; Bagnoli, P

    1990-01-01

    Visually evoked potentials (VEPs) have been recorded from the Wulst surface of the little owl, Athene noctua, in response to counterphase-reversal of sinusoidal gratings with different contrast, spatial frequency and mean luminance, presented either monocularly or binocularly. Monocular full-field stimuli presented to either eye evoked VEPs of similar amplitude, waveform and latency. Under binocular viewing, VEPs approximately doubled in amplitude without waveform changes. VEPs with similar characteristics could be obtained in response to stimulation of the contralateral, but not ipsilateral, hemifield. These results suggest that a 50% recrossing occurs in thalamic efferents and that different ipsilateral and contralateral regions converge onto the same Wulst sites. The VEP amplitude progressively decreased with increase of the spatial frequency beyond 2 cycles/degree, and the high spatial frequency cut-off (VEP acuity) was under binocular viewing (8 cycles/degree) higher than under monocular (5 cycles/degree) viewing (200 cd/m2, 45% contrast). The VEP acuity increased with increase in the contrast and decreased with reduction of the mean luminance. The binocular gain in both VEP amplitude and VEP acuity was largest at the lowest luminance levels. Binocular VEP summation occurred in the medium-high contrast range. With decreased contrast, both monocular and binocular VEPs progressively decreased in amplitude and tended to the same contrast threshold. The VEP contrast threshold depended on the spatial frequency (0.6-1.8% in the range 0.12-2 cycles/degree). Binocular VEPs often showed facilitatory interaction (binocular/monocular amplitude ratio greater than 2), but the binocular VEP amplitude did not change either by changing the stimulus orientation (horizontal vs. vertical gratings) or by inducing different retinal disparities.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Functional Hemispheric Asymmetries of Global/Local Processing Mirrored by the Steady-State Visual Evoked Potential

    Science.gov (United States)

    Martens, Ulla; Hubner, Ronald

    2013-01-01

    While hemispheric differences in global/local processing have been reported by various studies, it is still under dispute at which processing stage they occur. Primarily, it was assumed that these asymmetries originate from an early perceptual stage. Instead, the content-level binding theory (Hubner & Volberg, 2005) suggests that the hemispheres…

  11. Visual evoked potential and magnetic resonance imaging are more effective markers of multiple sclerosis progression than laser polarimetry with variable corneal compensation

    Directory of Open Access Journals (Sweden)

    Ema eKantorová

    2014-01-01

    Full Text Available Backround: The aim of our study was to assess the role of laser polarimetry and visual evoked potentials as potential biomarkers of disease progression in multiple sclerosis (MS. Participants: A total of 41 patients with MS (82 eyes and 22 age-related healthy volunteers (44 eyes completed the study. MS patients were divided into two groups, one (ON with a history of optic neuritis (17 patients, 34 eyes and another group (NON without it (24 patients, 48 eyes. The MS patients and controls underwent laser polarimetry (GDx examination of the retinal nerve fibre layer (RNFL. In the MS group we also examined: Kurtzke Expanded disability status scale (EDSS, the duration of the disorder, visual evoked potentials (VEP – latency and amplitude – and conventional brain MRI. Results: In the MS group, brain atrophy and new T2 brain lesions in MRI correlated with both VEP latencies and amplitudes. Separate comparisons revealed VEP latency testing to be less sensitive in ON than in NON patients. In ON patients, VEP amplitudes correlated mildly with brain atrophy (r =-0.15 and strongly with brain new MRI lesions (r = -0.8. In NON patients, highly significant correlation of new MRI brain lesions with VEP latencies (r = 0.63, r = 0.6, and amplitudes ( r = -0.3, r = -4.2 was found. EDSS also correlated with brain atrophy in this group (r = 0.5. Our study did not find a correlation of GDx measures with MRI tests. The GDx method was not able to detect whole brain demyelinisation and the degeneration process, but was only able to reveal the involvement of optic nerves in ON and NON patients.Conclusions: In our study, we found that both methods (VEP and GDx can be used for detection of optic nerve damage, but VEP was found to be superior in evaluating whole brain demyelinisation and axonal degeneration. Both VEP and MRI, but not GDx, have an important role in monitoring disease progression in MS patients, independent of the ON history.

  12. Anormalidades do potencial evocado visual por padrão reverso em pacientes com esclerose múltipla definida Pattern reversal visual evoked potential abnormalities in patients with defined multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Vítor Tumas

    1995-12-01

    Full Text Available O potencial evocado visual por padrão reverso, obtido por padrões de 14' e 28', foi analisado retrospectivamente em 28 pacientes com diagnóstico de esclerose múltipla definida. Observamos respostas anormais em 27/28 (96,4% pacientes, em 31/36 (86% dos olhos considerados sintomáticos e em 16/20 (80% dos ollhos assintomáticos. Classificando os achados em cada olho segundo as respostas obtidas aos dois estímulos, observamos uma possível relação entre essa classificação e a gravidade de comprometimento visual pela doença. Detectamos em alguns olhos anormalidades isoladas do N75 e também de P100 apenas à estimulação de 28'. Dessa forma, a técnica empregada foi considerada sensível e pôde definir inclusive comprometimento visual subclínico. Entretanto, não teve sensibilidade absoluta para detectar anormalidades em alguns olhos sintomáticos. O tipo de resposta aos estímulos empregados pode sugerir o grau de extensão de envolvimento do sistema visual pela doença. Os achados mostram ainda o envolvimento irregular e predominante das fibras mais centrais da visão pela esclerose múltipla, e sugerem processadores neurais distintos e paralelos para as respostas aos dois padrões utilizados.The pattern reversal visual evoked potential with checks of 14' and 28' was restropectivelly studied in 28 patients with definite multiple sclerosis. We observed abnormal responses in 27/28 (96.4% patients, in 31/36 (86% of symptomatic eyes, and in 16/20 (80% of asymptomatic eyes. When we classified the abnormalities in each eye according to the findings obtained with each check, there was a correlation between the pattern of abnormalities and the severity of visual involvement. Occasionally there were isolated abnormalities of N75 or only in P100 obtained with 28' checks. In conclusion the methodology applied was very sensible in detecting abnormalities in visual pathway. We could classify the findings in each eye and correlate them with the

  13. The Impact of Early Visual Deprivation on Spatial Hearing: A Comparison between Totally and Partially Visually Deprived Children.

    Science.gov (United States)

    Cappagli, Giulia; Finocchietti, Sara; Cocchi, Elena; Gori, Monica

    2017-01-01

    The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3-5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1-1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion.

  14. The Impact of Early Visual Deprivation on Spatial Hearing: A Comparison between Totally and Partially Visually Deprived Children

    Science.gov (United States)

    Cappagli, Giulia; Finocchietti, Sara; Cocchi, Elena; Gori, Monica

    2017-01-01

    The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion. PMID:28443040

  15. Adaptive estimation of contrast thresholds using the visual evoked potential (VEP); Die adaptive Bestimmung von Kontrastschwellen mit dem visuell evozierten Potenzial (VEP)

    Energy Technology Data Exchange (ETDEWEB)

    Meigen, T.; Kley, F. [Elektrophysiologisches Lab., Universitaets-Augenklinik Wuerzburg (Germany)

    2007-07-01

    The visual evoked potential (VEP) can be used to objectively estimate sensory thresholds. Recently, we developed an adaptive procedure for this threshold estimation based on a Fourier analysis of steady-state responses during the recording. In this study we quantified the reduction in recording time of this adaptive procedure. Steady-state VEPs to pattern reversal (f=8.3 Hz) of checkerboards with 8 contrast values between 0.64% and 82% were recorded monocularly. Adaptive and non-adaptive recordings were performed for full correction (fc) and for blurred stimulus patterns (+1.5 D and +3.0 D). VEP contrast thresholds were defined by the lowest contrast condition that showed a significant response. An ANOVA of the VEP thresholds showed significant effects (p<0.0001) of the factors 'procedure' (psychophysics, adaptive VEP, non-adaptive VEP) and 'correction' (fc, fc+1.5D, fc+3.0D). Compared to non-adaptive recordings, adaptive recordings showed thresholds that were significantly reduced and closer to psychophysical contrast thresholds. By applying the adaptive procedure the recording time can be reduced by a factor of about 2 when compared to the non-adaptive procedure. The new adaptive VEP procedure may help to improve the correlation of electrophysiological and psychophysical estimates of sensory thresholds and may accelerate functional testing in the clinical routine. (orig.)

  16. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings

    Science.gov (United States)

    Kim, Donghyeon; Yeon, Chanmi; Kim, Kiseon

    2017-01-01

    In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG) research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP) experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD) and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms. PMID:28208777

  17. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.

    Science.gov (United States)

    Hwang, Han-Jeong; Han, Chang-Hee; Lim, Jeong-Hwan; Kim, Yong-Wook; Choi, Soo-In; An, Kwang-Ok; Lee, Jun-Hak; Cha, Ho-Seung; Hyun Kim, Seung; Im, Chang-Hwan

    2017-03-01

    Although the feasibility of brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) has been extensively investigated, only a few studies have evaluated its clinical feasibility in patients with locked-in syndrome (LIS), who are the main targets of BCI technology. The main objective of this case report was to share our experiences of SSVEP-based BCI experiments involving five patients with LIS, thereby providing researchers with useful information that can potentially help them to design BCI experiments for patients with LIS. In our experiments, a four-class online SSVEP-based BCI system was implemented and applied to four of five patients repeatedly on multiple days to investigate its test-retest reliability. In the last experiments with two of the four patients, the practical usability of our BCI system was tested using a questionnaire survey. All five patients showed clear and distinct SSVEP responses at all four fundamental stimulation frequencies (6, 6.66, 7.5, 10 Hz), and responses at harmonic frequencies were also observed in three patients. Mean classification accuracy was 76.99% (chance level = 25%). The test-retest reliability experiments demonstrated stable performance of our BCI system over different days even when the initial experimental settings (e.g., electrode configuration, fixation time, visual angle) used in the first experiment were used without significant modifications. Our results suggest that SSVEP-based BCI paradigms might be successfully used to implement clinically feasible BCI systems for severely paralyzed patients. © 2016 Society for Psychophysiological Research.

  18. Two critical periods in early visual cortex during figure-ground segregation

    NARCIS (Netherlands)

    Wokke, M.E.; Sligte, I.G.; Scholte, H.S.; Lamme, V.A.F.

    2012-01-01

    .The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure-ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual

  19. Visualization of the electric field evoked by transcranial electric stimulation during a craniotomy using the finite element method.

    Science.gov (United States)

    Tomio, Ryosuke; Akiyama, Takenori; Horikoshi, Tomo; Ohira, Takayuki; Yoshida, Kazunari

    2015-12-30

    Transcranial MEP (tMEP) monitoring is more readily performed than cortical MEP (cMEP), however, tMEP is considered as less accurate than cMEP. The craniotomy procedure and changes in CSF levels must affect current spread. These changes can impair the accuracy. The aim of this study was to investigate the influence of skull deformation and cerebrospinal fluid (CSF) decrease on tMEP monitoring during frontotemporal craniotomy. We used the finite element method to visualize the electric field in the brain, which was generated by transcranial electric stimulation, using realistic 3-dimensional head models developed from T1-weighted images. Surfaces of 5 layers of the head were separated as accurately as possible. We created 3 brain types and 5 craniotomy models. The electric field in the brain radiates out from the cortex just below the electrodes. When the CSF layer is thick, a decrease in CSF volume and depression of CSF surface level during the craniotomy has a major impact on the electric field. When the CSF layer is thin and the distance between the skull and brain is short, the craniotomy has a larger effect on the electric field than the CSF decrease. So far no report in the literature the electric field during intraoperative tMEP using a 3-dimensional realistic head model. Our main finding was that the intensity of the electric field in the brain is most affected by changes in the thickness and volume of the CSF layer. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The impact of visual acuity on age-related differences in neural markers of early visual processing.

    Science.gov (United States)

    Daffner, Kirk R; Haring, Anna E; Alperin, Brittany R; Zhuravleva, Tatyana Y; Mott, Katherine K; Holcomb, Phillip J

    2013-02-15

    The extent to which age-related differences in neural markers of visual processing are influenced by changes in visual acuity has not been systematically investigated. Studies often indicate that their subjects had normal or corrected-to-normal vision, but the assessment of visual acuity seems to most frequently be based only on self-report. Consistent with prior research, to be included in the current study, subjects had to report normal or corrected-to-normal vision. Additionally, visual acuity was formally tested using a Snellen eye chart. Event-related potentials (ERPs) were studied in young adults (18-32years old), young-old adults (65-79years old), and old-old adults (80+ years old) while they performed a visual processing task involving selective attention to color. Age-related differences in the latency and amplitude of ERP markers of early visual processing, the posterior P1 and N1 components, were examined. All results were then re-analyzed after controlling for visual acuity. We found that visual acuity declined as a function of age. Accounting for visual acuity had an impact on whether older and younger adults differed significantly in the size and latency of the posterior P1 and N1 components. After controlling for visual acuity, age-related increases in P1 and N1 latency did not remain significant, and older adults were found to have a larger P1 amplitude than young adults. Our results suggest that until the relationship between age-associated differences in visual acuity and early ERPs is clearly established, investigators should be cautious when interpreting the meaning of their findings. Self-reports about visual acuity may be inaccurate, necessitating formal measures. Additional investigation is needed to help establish guidelines for future research, especially of very old adults.

  1. Relationship between macular pigment and visual function in subjects with early age-related macular degeneration

    OpenAIRE

    Akuffo, Kwadwo Owusu; Nolan, John M.; Peto, Tunde; Stack, Jim; Leung, Irene; Corcoran, Laura; Beatty, Stephen

    2016-01-01

    Purpose To investigate the relationship between macular pigment (MP) and visual function in subjects with early age-related macular degeneration (AMD). Methods 121 subjects with early AMD enrolled as part of the Central Retinal Enrichment Supplementation Trial (CREST; ISRCTN13894787) were assessed using a range of psychophysical measures of visual function, including best corrected visual acuity (BCVA), letter contrast sensitivity (CS), mesopic and photopic CS, mesopic and photopic glare disa...

  2. Alterações encontradas no potencial visual evocado por padrão reverso em pacientes com esclerose múltipla definida Pattern-reversal visual evoked potential abnormalities in patients with defined multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Eric Pinheiro de Andrade

    2007-12-01

    Full Text Available INTRODUÇÃO: Esclerose múltipla é uma doença desmielinizante idiopática, podendo acometer o nervo óptico com perda visual unilateral aguda que pode ser observada através do potencial visual evocado (PVE, definindo tal exame como de grande validade para o estudo pré-quiasmático das vias visuais na esclerose múltipla. OBJETIVO: Analisar os achados dos potenciais visuais evocados por reversão de padrões em pacientes com diagnóstico prévio de esclerose múltipla e sua comparação com a acuidade visual. MÉTODOS: Vinte e quatro pacientes com diagnóstico definido de esclerose múltipla foram submetidos ao PVE por reversão de padrões no período de outubro de 2001 a março de 2007. RESULTADOS: Na resposta do componente P100, nos estímulos de 15' e 1º, se observou que 19 olhos apresentaram resposta de latência até 115 ms em ambas as estimulações, coincidindo também em 6 olhos que apresentaram resposta de latência entre 116 a 135 ms, em 11 olhos que apresentaram resposta de latências superiores a 135 ms, e em 4 olhos que não apresentaram respostas às estimulações. Correlacionando a acuidade visual com a latência de P100 para 15', obtemos na correlação de Pearson r= 0,85 com p= 0,000000123, e para 1º, r= 0,87 com p= 0,0000000338. CONCLUSÃO: Aproximadamente 60,4% dos pacientes apresentaram anormalidades no PVE por padrões reversos. Contudo, a correlação entre a latência de P100 (15' e 1º e a acuidade visual foi estatisticamente significativa, assim sendo, quanto melhor a acuidade visual, melhor será sua resposta aos estímulos do PVE por reversão de padrões.INTRODUCTION: Multiple sclerosis is an idiopathic demyelinating disease that may affect the optic nerve leading to acute unilateral visual loss, which could be observed by means of evoked visual potential (VEP. This exam is much valued for studying prechiasmatic visual paths in multiple sclerosis. PURPOSE: To analyze the findings of pattern reversal VEP in

  3. Crossmodal interactions of haptic and visual texture information in early sensory cortex.

    Science.gov (United States)

    Eck, Judith; Kaas, Amanda L; Goebel, Rainer

    2013-07-15

    Both visual and haptic information add to the perception of surface texture. While prior studies have reported crossmodal interactions of both sensory modalities at the behavioral level, neuroimaging studies primarily investigated texture perception in separate visual and haptic paradigms. These experimental designs, however, only allowed to identify overlap in both sensory processing streams but no interaction of visual and haptic texture processing. By varying texture characteristics in a bimodal task, the current study investigated how these crossmodal interactions are reflected at the cortical level. We used fMRI to compare cortical activation in response to matching versus non-matching visual-haptic texture information. We expected that passive simultaneous presentation of matching visual-haptic input would be sufficient to induce BOLD responses graded with varying texture characteristics. Since no cognitive evaluation of the stimuli was required, we expected to find changes primarily at a rather early processing stage. Our results confirmed our assumptions by showing crossmodal interactions of visual-haptic texture information in early somatosensory and visual cortex. However, the nature of the crossmodal effects was slightly different in both sensory cortices. In early visual cortex, matching visual-haptic information increased the average activation level and induced parametric BOLD signal variations with varying texture characteristics. In early somatosensory cortex only the latter was true. These results challenge the notion that visual and haptic texture information is processed independently and indicate a crossmodal interaction of sensory information already at an early cortical processing stage. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. FPGA-based programmable visual, auditory evoked potential stimulator%基于FPGA的可编程视觉、听觉诱发电位刺激器

    Institute of Scientific and Technical Information of China (English)

    范松; 潘旭; 张鹏飞

    2013-01-01

      Evoked potential is a specific electrical response after the nervous system accept a variety of external stimulates.Due to the time locked relationship with the stimulation,it can be detected in the corresponding parts of the central nervous system and peripheral nervous system,with the characteristics of quantitative and positioning,often has a more stable result than conventional electroencephalogram (EEG),therefore it plays an important role in the diagnosis and the study of various parts of nerve electrophysiology change of nervous system.This project aim at evoking human brain engenders potential change through produce the auditory and visual stimulation signal of a specific frequency.So that health care workers can get more information from the evoked potentials,and help to better diagnosis of the disease.The stimulator can produce audio stimulation and video stimulation, audio stimulation including issue a short sound,pure tone and self recorded sound,and video stimulation including checkerboard flip.One of the advantages of the stimulator is that time length and frequency can be reset.The project mainly based on FPGA chip.Use ALTERA DE2 development platform.%  诱发电位是神经系统接受各种外界刺激后所产生的特异性电反应。它在中枢神经系统及周围神经系统的相应部位被检出,与刺激有锁时关系的电位变化,具有能定量及定位的特点,往往较常规脑电图检查有更稳定的效果,从而在诊断及研究神经系统各部位神经电生理变化方面,有重要作用。本项目通过产生特定频率的听觉和视觉刺激信号,使人脑产生诱发电位。医护人员可从诱发脑电中获取更多信息,并帮助其更好地对病情进行确诊。本刺激器可产生音频刺激和视频刺激,其中音频刺激包括发出短声、纯音、自己录制的声音等;视频刺激包括棋盘格翻转。刺激的时长、频率都可设定。本项目主要通

  5. Cascaded effects of spatial adaptation in the early visual system.

    Science.gov (United States)

    Dhruv, Neel T; Carandini, Matteo

    2014-02-05

    Virtually all stages of the visual system exhibit adaptation: neurons adjust their responses based on the recent stimulus history. While some of these adjustments occur at specific stages, others may be inherited from earlier stages. How do adaptation effects cascade along the visual system? We measured spatially selective adaptation at two successive stages in the mouse visual system: visual thalamus (LGN) and primary visual cortex (V1). This form of adaptation affected both stages but in drastically different ways: in LGN it only changed response gain, while in V1 it also shifted spatial tuning away from the adaptor. These effects, however, are reconciled by a simple model whereby V1 neurons summate LGN inputs with a fixed, unadaptable weighting profile. These results indicate that adaptation effects cascade through the visual system, that this cascading can shape selectivity, and that the rules of integration from one stage to the next are not themselves adaptable.

  6. Reduction in the retinotopic early visual cortex with normal aging and magnitude of perceptual learning.

    Science.gov (United States)

    Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity.

  7. Exploring the predictive value of the evoked potentials score in MS within an appropriate patient population: a hint for an early identification of benign MS?

    Directory of Open Access Journals (Sweden)

    Margaritella Nicolò

    2012-08-01

    Full Text Available Abstract Background The prognostic value of evoked potentials (EPs in multiple sclerosis (MS has not been fully established. The correlations between the Expanded Disability Status Scale (EDSS at First Neurological Evaluation (FNE and the duration of the disease, as well as between EDSS and EPs, have influenced the outcome of most previous studies. To overcome this confounding relations, we propose to test the prognostic value of EPs within an appropriate patient population which should be based on patients with low EDSS at FNE and short disease duration. Methods We retrospectively selected a sample of 143 early relapsing remitting MS (RRMS patients with an EDSS Results The Evoked Potentials score (EP score and the Time to EDSS 2.0 (TT2 were the best predictors of worsening in our sample (Odds Ratio 1.10 and 0.82 respectively, p=0.001. Low EP score (below 15–20 points, short TT2 (lower than 3–5 years and their interaction resulted to be the most useful for the identification of worsening patterns. Moreover, in patients with an EP score at FNE below 6 points and a TT2 greater than 3 years the probability of worsening was 10% after 4–5 years and rapidly decreased thereafter. Conclusions In an appropriate population of early RRMS patients, the EP score at FNE is a good predictor of disability at low values as well as in combination with a rapid buildup of disability. Interestingly, an EP score at FNE under the median together with a clinical stability lasting more than 3 years turned out to be a protective pattern. This finding may contribute to an early identification of benign patients, well before the term required to diagnose Benign MS (BMS.

  8. Acquired auditory-visual synesthesia: A window to early cross-modal sensory interactions

    Science.gov (United States)

    Afra, Pegah; Funke, Michael; Matsuo, Fumisuke

    2009-01-01

    Synesthesia is experienced when sensory stimulation of one sensory modality elicits an involuntary sensation in another sensory modality. Auditory-visual synesthesia occurs when auditory stimuli elicit visual sensations. It has developmental, induced and acquired varieties. The acquired variety has been reported in association with deafferentation of the visual system as well as temporal lobe pathology with intact visual pathways. The induced variety has been reported in experimental and post-surgical blindfolding, as well as intake of hallucinogenic or psychedelics. Although in humans there is no known anatomical pathway connecting auditory areas to primary and/or early visual association areas, there is imaging and neurophysiologic evidence to the presence of early cross modal interactions between the auditory and visual sensory pathways. Synesthesia may be a window of opportunity to study these cross modal interactions. Here we review the existing literature in the acquired and induced auditory-visual synesthesias and discuss the possible neural mechanisms. PMID:22110319

  9. The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats.

    Science.gov (United States)

    Ozsoy, Ozlem; Aras, Sinem; Ozkan, Ayse; Parlak, Hande; Aslan, Mutay; Yargicoglu, Piraye; Agar, Aysel

    2016-07-01

    Sulfite, commonly used as a preservative in foods, beverages, and pharmaceuticals, is a very reactive and potentially toxic molecule which is detoxified by sulfite oxidase (SOX). Changes induced by aging may be exacerbated by exogenous chemicals like sulfite. The aim of this study was to investigate the effects of ingested sulfite on visual evoked potentials (VEPs) and brain antioxidant statuses by measuring superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Brain lipid oxidation status was also determined via thiobarbituric acid reactive substances (TBARS) in normal- and SOX-deficient aged rats. Rats do not mimic the sulfite responses seen in humans because of their relatively high SOX activity level. Therefore this study used SOX-deficient rats since they are more appropriate models for studying sulfite toxicity. Forty male Wistar rats aged 24 months were randomly assigned to four groups: control (C), sulfite (S), SOX-deficient (D) and SOX-deficient + sulfite (DS). SOX deficiency was established by feeding rats with low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg kg(-1) day(-1)) was given by gavage. Treatment continued for 6 weeks. At the end of the experimental period, flash VEPs were recorded. Hepatic SOX activity was measured to confirm SOX deficiency. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with the normal rats. The activity of SOX in deficient rats was thus in the range of humans. There was no significant difference between control and treated groups in either latence or amplitude of VEP components. Brain SOD, CAT, and GPx activities and brain TBARS levels were similar in all experimental groups compared with the control group. Our results indicate that exogenous administration of sulfite does not affect VEP components and the antioxidant/oxidant status of aged rat brains. © The Author

  10. A Visual Search Tool for Early Elementary Science Students.

    Science.gov (United States)

    Revelle, Glenda; Druin, Allison; Platner, Michele; Bederson, Ben; Hourcade, Juan Pablo; Sherman, Lisa

    2002-01-01

    Reports on the development of a visual search interface called "SearchKids" to support children ages 5-10 years in their efforts to find animals in a hierarchical information structure. Investigates whether children can construct search queries to conduct complex searches if sufficiently supported both visually and conceptually. (Contains 27…

  11. Hour-long adaptation in the awake early visual system.

    Science.gov (United States)

    Stoelzel, Carl R; Huff, Joseph M; Bereshpolova, Yulia; Zhuang, Jun; Hei, Xiaojuan; Alonso, Jose-Manuel; Swadlow, Harvey A

    2015-08-01

    Sensory adaptation serves to adjust awake brains to changing environments on different time scales. However, adaptation has been studied traditionally under anesthesia and for short time periods. Here, we demonstrate in awake rabbits a novel type of sensory adaptation that persists for >1 h and acts on visual thalamocortical neurons and their synapses in the input layers of the visual cortex. Following prolonged visual stimulation (10-30 min), cells in the dorsal lateral geniculate nucleus (LGN) show a severe and prolonged reduction in spontaneous firing rate. This effect is bidirectional, and prolonged visually induced response suppression is followed by a prolonged increase in spontaneous activity. The reduction in thalamic spontaneous activity following prolonged visual activation is accompanied by increases in 1) response reliability, 2) signal detectability, and 3) the ratio of visual signal/spontaneous activity. In addition, following such prolonged activation of an LGN neuron, the monosynaptic currents generated by thalamic impulses in layer 4 of the primary visual cortex are enhanced. These results demonstrate that in awake brains, prolonged sensory stimulation can have a profound, long-lasting effect on the information conveyed by thalamocortical inputs to the visual cortex.

  12. Exploring the Early Literacy Practices of Teachers of Infants, Toddlers, and Preschoolers with Visual Impairments

    Science.gov (United States)

    Murphy, Jeanne Lovo; Hatton, Deborah; Erickson, Karen A.

    2008-01-01

    Practices endorsed by 192 teachers of young children with visual impairments who completed an online early literacy survey included facilitating early attachment (70%), providing early literacy support to families (74%), and providing adaptations to increase accessibility (55%). Few teachers reported using assistive technology, providing…

  13. Adequacy of the Regular Early Education Classroom Environment for Students with Visual Impairment

    Science.gov (United States)

    Brown, Cherylee M.; Packer, Tanya L.; Passmore, Anne

    2013-01-01

    This study describes the classroom environment that students with visual impairment typically experience in regular Australian early education. Adequacy of the classroom environment (teacher training and experience, teacher support, parent involvement, adult involvement, inclusive attitude, individualization of the curriculum, physical…

  14. Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD).

    Science.gov (United States)

    Baruth, Joshua M; Casanova, Manuel F; Sears, Lonnie; Sokhadze, Estate

    2010-06-01

    It has been reported that individuals with autism spectrum disorder (ASD) have abnormal responses to the sensory environment. For these individuals sensory overload can impair functioning, raise physiological stress, and adversely affect social interaction. Early-stage (i.e. within 200ms of stimulus onset) auditory processing abnormalities have been widely examined in ASD using event-related potentials (ERP), while ERP studies investigating early-stage visual processing in ASD are less frequent. We wanted to test the hypothesis of early-stage visual processing abnormalities in ASD by investigating ERPs elicited in a visual oddball task using illusory figures. Our results indicate that individuals with ASD have abnormally large cortical responses to task irrelevant stimuli over both parieto-occipital and frontal regions-of-interest (ROI) during early stages of visual processing compared to the control group. Furthermore, ASD patients showed signs of an overall disruption in stimulus discrimination, and had a significantly higher rate of motor response errors.

  15. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate.

    Science.gov (United States)

    Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.

  16. Improving Empathy and Communication Skills of Visually Impaired Early Adolescents through a Psycho-Education Program

    Science.gov (United States)

    Yildiz, Mehmet Ali; Duy, Baki

    2013-01-01

    The purpose of this study was to investigate the effectiveness of an interpersonal communication skills psycho-education program to improve empathy and communication skills of visually impaired adolescents. Participants of the study were sixteen early adolescents schooling in an elementary school for visually impaired youth in Diyarbakir. The…

  17. Visual orientation in hospitalized boys with early onset conduct disorder and borderline intellectual functioning

    NARCIS (Netherlands)

    van der Meere, Jacob; Börger, Norbert; Pirila, Silja

    2012-01-01

    The aim of the present study is to investigate visual orientation in hospitalized boys with severe early onset conduct disorder and borderline intellectual functioning. It is tested whether boys with the dual diagnosis have a stronger action-oriented response style to visual-cued go signals than the

  18. Visual orientation in hospitalized boys with early onset conduct disorder and borderline intellectual functioning

    NARCIS (Netherlands)

    van der Meere, Jacob; Börger, Norbert; Pirila, Silja

    2012-01-01

    The aim of the present study is to investigate visual orientation in hospitalized boys with severe early onset conduct disorder and borderline intellectual functioning. It is tested whether boys with the dual diagnosis have a stronger action-oriented response style to visual-cued go signals than the

  19. Categorically distinct types of receptive fields in early visual cortex.

    Science.gov (United States)

    Talebi, Vargha; Baker, Curtis L

    2016-05-01

    In the visual cortex, distinct types of neurons have been identified based on cellular morphology, response to injected current, or expression of specific markers, but neurophysiological studies have revealed visual receptive field (RF) properties that appear to be on a continuum, with only two generally recognized classes: simple and complex. Most previous studies have characterized visual responses of neurons using stereotyped stimuli such as bars, gratings, or white noise and simple system identification approaches (e.g., reverse correlation). Here we estimate visual RF models of cortical neurons using visually rich natural image stimuli and regularized regression system identification methods and characterize their spatial tuning, temporal dynamics, spatiotemporal behavior, and spiking properties. We quantitatively demonstrate the existence of three functionally distinct categories of simple cells, distinguished by their degree of orientation selectivity (isotropic or oriented) and the nature of their output nonlinearity (expansive or compressive). In addition, these three types have differing average values of several other properties. Cells with nonoriented RFs tend to have smaller RFs, shorter response durations, no direction selectivity, and high reliability. Orientation-selective neurons with an expansive output nonlinearity have Gabor-like RFs, lower spontaneous activity and responsivity, and spiking responses with higher sparseness. Oriented RFs with a compressive nonlinearity are spatially nondescript and tend to show longer response latency. Our findings indicate multiple physiologically defined types of RFs beyond the simple/complex dichotomy, suggesting that cortical neurons may have more specialized functional roles rather than lying on a multidimensional continuum.

  20. Predictive value of neurological examination for early cortical responses to somatosensory evoked potentials in patients with postanoxic coma.

    Science.gov (United States)

    Bouwes, Aline; Binnekade, Jan M; Verbaan, Bart W; Zandbergen, Eveline G J; Koelman, Johannes H T M; Weinstein, Henry C; Hijdra, Albert; Horn, Janneke

    2012-03-01

    Bilateral absence of cortical N20 responses of median nerve somatosensory evoked potentials (SEP) predicts poor neurological outcome in postanoxic coma after cardiopulmonary resuscitation (CPR). Although SEP is easy to perform and available in most hospitals, it is worthwhile to know how neurological signs are associated with SEP results. The aim of this study was to investigate whether specific clinical neurological signs are associated with either an absent or a present median nerve SEP in patients after CPR. Data from the previously published multicenter prospective cohort study PROPAC (prognosis in postanoxic coma, 2000-2003) were used. Neurological examination, consisting of Glasgow Coma Score (GCS) and brain stem reflexes, and SEP were performed 24, 48, and 72 h after CPR. Positive predictive values for predicting absent and present SEP, as well as diagnostic accuracy were calculated. Data of 407 patients were included. Of the 781 SEPs performed, N20 s were present in 401, bilaterally absent in 299, and 81 SEPs were technically undeterminable. The highest positive predictive values (0.63-0.91) for an absent SEP were found for absent pupillary light responses. The highest positive predictive values (0.71-0.83) for a present SEP were found for motor scores of withdrawal to painful stimuli or better. Multivariate analyses showed a fair diagnostic accuracy (0.78) for neurological examination in predicting an absent or present SEP at 48 or 72 h after CPR. This study shows that neurological examination cannot reliably predict absent or present cortical N20 responses in median nerve SEPs in patients after CPR.

  1. Intermodal auditory, visual, and tactile attention modulates early stages of neural processing.

    Science.gov (United States)

    Karns, Christina M; Knight, Robert T

    2009-04-01

    We used event-related potentials (ERPs) and gamma band oscillatory responses (GBRs) to examine whether intermodal attention operates early in the auditory, visual, and tactile modalities. To control for the effects of spatial attention, we spatially coregistered all stimuli and varied the attended modality across counterbalanced blocks in an intermodal selection task. In each block, participants selectively responded to either auditory, visual, or vibrotactile stimuli from the stream of intermodal events. Auditory and visual ERPs were modulated at the latencies of early cortical processing, but attention manifested later for tactile ERPs. For ERPs, auditory processing was modulated at the latency of the Na (29 msec), which indexes early cortical or thalamocortical processing and the subsequent P1 (90 msec) ERP components. Visual processing was modulated at the latency of the early phase of the C1 (62-72 msec) thought to be generated in the primary visual cortex and the subsequent P1 and N1 (176 msec). Tactile processing was modulated at the latency of the N160 (165 msec) likely generated in the secondary association cortex. Intermodal attention enhanced early sensory GBRs for all three modalities: auditory (onset 57 msec), visual (onset 47 msec), and tactile (onset 27 msec). Together, these results suggest that intermodal attention enhances neural processing relatively early in the sensory stream independent from differential effects of spatial and intramodal selective attention.

  2. Brain-Computer Interfaces for 1-D and 2-D Cursor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials

    Science.gov (United States)

    Trejo, Leonard J.; Matthews, Bryan; Rosipal, Roman

    2005-01-01

    We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KF LS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject s average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle

  3. Changes in the latencies of visual-evoked potentials in people undergoing tennis training Dynamic comparison before and after 8 weeks training

    Institute of Scientific and Technical Information of China (English)

    Jingguo Zhao; Shujuan Pang

    2008-01-01

    BACKGROUND: Some previous studies have shown that exercise is an important factor that affects the latencies of visual-evoked potentials (VEPs).OBJECTIVE: To investigate the effects of spending a period of time undergoing tennis training on the latencies of VEPs by comparing the latencies of VEPs before tennis training with those after 8 weeks of tennis training.DESIGN, TIME AND SETTING: The non-randomly concurrent controlled experiment was performed in the Department of Human Movement Sciences, Physical Education College, Shandong Normal University from April to June 2007.PARTICIPANTS: In total, 45 healthy volunteers from Shandong Normal University were selected as subjects, including 31 students majoring in physical education (11 males and 5 females participated in the tennis training plan for 8 weeks), and 14 students from other subjects. Informed consent was obtained. According to whether they were majoring in physical education or not, and whether or not they took part in tennis training, the students were divided into 3 groups: a tennis group of physical education students (n =16), a non-tennis group of physical education students (n =15) and a non-tennis group of non-physical education students (n =14). METHODS: The subjects in the tennis group took part in a regular tennis training plan of 2 hours a day and 3 days per week, for 8 weeks, while the subjects in two non-tennis groups were not in the tennis training plan. The NDI-200 neural electricity tester (Shanghai Haishen Medical Electronic Instrument Co., Ltd.) was used to measure VEPs before and after the experiment in all three groups, and to compare the latencies of VEPs recorded before training with those recorded after training.MAIN OUTCOME MEASURES: Comparison of the changes in latencies of VEPs before and after 8 weeks of tennis training.RESULTS: All 45 subjects finished the test and datas from all were included in the statistical analysis. There were no significant differences among all the three

  4. Visual Evoked Potential and Magnetic Resonance Imaging are More Effective Markers of Multiple Sclerosis Progression than Laser Polarimetry with Variable Corneal Compensation.

    Science.gov (United States)

    Kantorová, Ema; Ziak, Peter; Kurča, Egon; Koyšová, Mária; Hladká, Mária; Zeleňák, Kamil; Michalik, Jozef

    2014-01-01

    The aim of our study was to assess the role of laser polarimetry and visual evoked potentials (VEP) as potential biomarkers of disease progression in multiple sclerosis (MS). A total of 41 patients with MS (82 eyes) and 22 age-related healthy volunteers (44 eyes) completed the study. MS patients were divided into two groups, one (ON) with a history of optic neuritis (17 patients, 34 eyes) and another group (NON) without it (24 patients, 48 eyes). The MS patients and controls underwent laser polarimetry (GDx) examination of the retinal nerve fiber layer (RNFL). In the MS group, we also examined: Kurtzke "expanded disability status scale" (EDSS), the duration of the disorder, VEP - latency and amplitude, and conventional brain magnetic resonance imaging (MRI). Our results were statistically analyzed using ANOVA, Mann-Whitney, and Spearman correlation analyses. In the MS group, brain atrophy and new T2 brain lesions in MRI correlated with both VEP latencies and amplitudes. Separate comparisons revealed VEP latency testing to be less sensitive in ON than in NON-patients. In ON patients, VEP amplitudes correlated mildly with brain atrophy (r = -0.15) and strongly with brain new MRI lesions (r = -0.8). In NON-patients, highly significant correlation of new MRI brain lesions with VEP latencies (r = 0.63, r = 0.6) and amplitudes (r = -0.3, r = -4.2) was found. EDSS also correlated with brain atrophy in this group (r = 0.5). Our study did not find a correlation of GDx measures with MRI tests. The GDx method was not able to detect whole brain demyelinization and the degeneration process, but was only able to reveal the involvement of optic nerves in ON and NON-patients. In our study, we found that both methods (VEP and GDx) can be used for the detection of optic nerve damage, but VEP was found to be superior in evaluating whole brain demyelinization and axonal degeneration. Both VEP and MRI, but not GDx, have an important role in monitoring

  5. Attentional bias to affective faces and complex IAPS images in early visual cortex follows emotional cue extraction.

    Science.gov (United States)

    Bekhtereva, Valeria; Craddock, Matt; Müller, Matthias M

    2015-05-15

    Emotionally arousing stimuli are known to rapidly draw the brain's processing resources, even when they are task-irrelevant. The steady-state visual evoked potential (SSVEP) response, a neural response to a flickering stimulus which effectively allows measurement of the processing resources devoted to that stimulus, has been used to examine this process of attentional shifting. Previous studies have used a task in which participants detected periods of coherent motion in flickering random dot kinematograms (RDKs) which generate an SSVEP, and found that task-irrelevant emotional stimuli withdraw more attentional resources from the task-relevant RDKs than task-irrelevant neutral stimuli. However, it is not clear whether the emotion-related differences in the SSVEP response are conditional on higher-level extraction of emotional cues as indexed by well-known event-related potential (ERPs) components (N170, early posterior negativity, EPN), or if affective bias in competition for visual attention resources is a consequence of a time-invariant shifting process. In the present study, we used two different types of emotional distractors - IAPS pictures and facial expressions - for which emotional cue extraction occurs at different speeds, being typically earlier for faces (at ~170ms, as indexed by the N170) than for IAPS images (~220-280ms, EPN). We found that emotional modulation of attentional resources as measured by the SSVEP occurred earlier for faces (around 180ms) than for IAPS pictures (around 550ms), after the extraction of emotional cues as indexed by visual ERP components. This is consistent with emotion related re-allocation of attentional resources occurring after emotional cue extraction rather than being linked to a time-fixed shifting process. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Early Visual Deprivation Alters Multisensory Processing in Peripersonal Space

    Science.gov (United States)

    Collignon, Olivier; Charbonneau, Genevieve; Lassonde, Maryse; Lepore, Franco

    2009-01-01

    Multisensory peripersonal space develops in a maturational process that is thought to be influenced by early sensory experience. We investigated the role of vision in the effective development of audiotactile interactions in peripersonal space. Early blind (EB), late blind (LB) and sighted control (SC) participants were asked to lateralize…

  7. Top-down modulation of human early visual cortex after stimulus offset supports successful postcued report.

    Science.gov (United States)

    Sergent, Claire; Ruff, Christian C; Barbot, Antoine; Driver, Jon; Rees, Geraint

    2011-08-01

    Modulations of sensory processing in early visual areas are thought to play an important role in conscious perception. To date, most empirical studies focused on effects occurring before or during visual presentation. By contrast, several emerging theories postulate that sensory processing and conscious visual perception may also crucially depend on late top-down influences, potentially arising after a visual display. To provide a direct test of this, we performed an fMRI study using a postcued report procedure. The ability to report a target at a specific spatial location in a visual display can be enhanced behaviorally by symbolic auditory postcues presented shortly after that display. Here we showed that such auditory postcues can enhance target-specific signals in early human visual cortex (V1 and V2). For postcues presented 200 msec after stimulus termination, this target-specific enhancement in visual cortex was specifically associated with correct conscious report. The strength of this modulation predicted individual levels of performance in behavior. By contrast, although later postcues presented 1000 msec after stimulus termination had some impact on activity in early visual cortex, this modulation no longer related to conscious report. These results demonstrate that within a critical time window of a few hundred milliseconds after a visual stimulus has disappeared, successful conscious report of that stimulus still relates to the strength of top-down modulation in early visual cortex. We suggest that, within this critical time window, sensory representation of a visual stimulus is still under construction and so can still be flexibly influenced by top-down modulatory processes.

  8. Family-Centered Early Intervention Visual Impairment Services through Matrix Session Planning

    Science.gov (United States)

    Ely, Mindy S.; Gullifor, Kateri; Hollinshead, Tara

    2017-01-01

    Early intervention visual impairment services are built on a model that values family. Matrix session planning pulls together parent priorities, family routines, and identified strategies in a way that helps families and early intervention professionals outline a plan that can both highlight long-term goals and focus on what can be done today.…

  9. Occipital cortex activation studied with simultaneous recordings of functional transcranial Doppler ultrasound (fTCD) and visual evoked potential (VEP) in cognitively normal human subjects: effect of healthy aging.

    Science.gov (United States)

    Topcuoglu, M Akif; Aydin, Hulya; Saka, Esen

    2009-03-06

    We evaluated effect of aging, gender and eye (sighting) dominance on relationship between visual evoked flow response (VEFR) and visual evoked potential (VEP), which refers to neurovascular coupling. The VEFR was defined as a percentage increase of the ratio of mean blood flow velocity in the contralateral (according to the side of dominant eye processing) posterior cerebral artery P2 segment to those in ipsilateral middle cerebral artery from the baseline during half-field stimulation. Vasoneural coupling index (CI) was defined as "100 x VEFR/VEP P100 amplitude". Compared to the healthy elderly subjects (n: 19; female/male: 6/13, mean age: 69.7 +/- 7), younger participants (n: 28; female/male: 16/12; mean age: 31.1 +/- 4.7) had significantly higher VEFR for both sides: 18.9 +/- 6.7% versus 11.2 +/- 6.7%, p VEP and VEFR amplitudes were well correlated. However, this was significant only for younger subjects and more evident in D side. The CI was higher in young subjects compared to those in old ones (6.49 +/- 2.79 versus 4.75 +/- 2.35, respectively, p = 0.007). But, this age-related trend remained as borderline when sides were analyzed individually: In the young subjects CI was 5.99 +/- 2.21 and 6.96 +/- 3.22 for D and ND sides, while those were 4.27 +/- 2.60 and 5.19 +/- 2.07 in old ones. This study confirmed diminished visual evoked flow in relation with advancing age, and suggested that "weakened" neurovascular coupling (as evidenced by a decreased VEP and VEFR correlation along with decreased CI) as one of the underlying mechanisms.

  10. The temporal dynamics of early visual cortex involvement in behavioral priming.

    Directory of Open Access Journals (Sweden)

    Christianne Jacobs

    Full Text Available Transcranial magnetic stimulation (TMS allows for non-invasive interference with ongoing neural processing. Applied in a chronometric design over early visual cortex (EVC, TMS has proved valuable in indicating at which particular time point EVC must remain unperturbed for (conscious vision to be established. In the current study, we set out to examine the effect of EVC TMS across a broad range of time points, both before (pre-stimulus and after (post-stimulus the onset of symbolic visual stimuli. Behavioral priming studies have shown that the behavioral impact of a visual stimulus can be independent from its conscious perception, suggesting two independent neural signatures. To assess whether TMS-induced suppression of visual awareness can be dissociated from behavioral priming in the temporal domain, we thus implemented three different measures of visual processing, namely performance on a standard visual discrimination task, a subjective rating of stimulus visibility, and a visual priming task. To control for non-neural TMS effects, we performed electrooculographical recordings, placebo TMS (sham, and control site TMS (vertex. Our results suggest that, when considering the appropriate control data, the temporal pattern of EVC TMS disruption on visual discrimination, subjective awareness and behavioral priming are not dissociable. Instead, TMS to EVC disrupts visual perception holistically, both when applied before and after the onset of a visual stimulus. The current findings are discussed in light of their implications on models of visual awareness and (subliminal priming.

  11. The temporal dynamics of early visual cortex involvement in behavioral priming.

    Science.gov (United States)

    Jacobs, Christianne; de Graaf, Tom A; Goebel, Rainer; Sack, Alexander T

    2012-01-01

    Transcranial magnetic stimulation (TMS) allows for non-invasive interference with ongoing neural processing. Applied in a chronometric design over early visual cortex (EVC), TMS has proved valuable in indicating at which particular time point EVC must remain unperturbed for (conscious) vision to be established. In the current study, we set out to examine the effect of EVC TMS across a broad range of time points, both before (pre-stimulus) and after (post-stimulus) the onset of symbolic visual stimuli. Behavioral priming studies have shown that the behavioral impact of a visual stimulus can be independent from its conscious perception, suggesting two independent neural signatures. To assess whether TMS-induced suppression of visual awareness can be dissociated from behavioral priming in the temporal domain, we thus implemented three different measures of visual processing, namely performance on a standard visual discrimination task, a subjective rating of stimulus visibility, and a visual priming task. To control for non-neural TMS effects, we performed electrooculographical recordings, placebo TMS (sham), and control site TMS (vertex). Our results suggest that, when considering the appropriate control data, the temporal pattern of EVC TMS disruption on visual discrimination, subjective awareness and behavioral priming are not dissociable. Instead, TMS to EVC disrupts visual perception holistically, both when applied before and after the onset of a visual stimulus. The current findings are discussed in light of their implications on models of visual awareness and (subliminal) priming.

  12. Audio-visual synchrony and feature-selective attention co-amplify early visual processing.

    Science.gov (United States)

    Keitel, Christian; Müller, Matthias M

    2016-05-01

    Our brain relies on neural mechanisms of selective attention and converging sensory processing to efficiently cope with rich and unceasing multisensory inputs. One prominent assumption holds that audio-visual synchrony can act as a strong attractor for spatial attention. Here, we tested for a similar effect of audio-visual synchrony on feature-selective attention. We presented two superimposed Gabor patches that differed in colour and orientation. On each trial, participants were cued to selectively attend to one of the two patches. Over time, spatial frequencies of both patches varied sinusoidally at distinct rates (3.14 and 3.63 Hz), giving rise to pulse-like percepts. A simultaneously presented pure tone carried a frequency modulation at the pulse rate of one of the two visual stimuli to introduce audio-visual synchrony. Pulsed stimulation elicited distinct time-locked oscillatory electrophysiological brain responses. These steady-state responses were quantified in the spectral domain to examine individual stimulus processing under conditions of synchronous versus asynchronous tone presentation and when respective stimuli were attended versus unattended. We found that both, attending to the colour of a stimulus and its synchrony with the tone, enhanced its processing. Moreover, both gain effects combined linearly for attended in-sync stimuli. Our results suggest that audio-visual synchrony can attract attention to specific stimulus features when stimuli overlap in space.

  13. Early, but not late visual distractors affect movement synchronization to a temporal-spatial visual cue.

    Science.gov (United States)

    Booth, Ashley J; Elliott, Mark T

    2015-01-01

    The ease of synchronizing movements to a rhythmic cue is dependent on the modality of the cue presentation: timing accuracy is much higher when synchronizing with discrete auditory rhythms than an equivalent visual stimulus presented through flashes. However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g., a dot following an oscillatory trajectory). Similarly, when synchronizing with an auditory target metronome in the presence of a second visual distracting metronome, the distraction is stronger when the visual cue contains spatial-temporal information rather than temporal only. The present study investigates individuals' ability to synchronize movements to a temporal-spatial visual cue in the presence of same-modality temporal-spatial distractors. Moreover, we investigated how increasing the number of distractor stimuli impacted on maintaining synchrony with the target cue. Participants made oscillatory vertical arm movements in time with a vertically oscillating white target dot centered on a large projection screen. The target dot was surrounded by 2, 8, or 14 distractor dots, which had an identical trajectory to the target but at a phase lead or lag of 0, 100, or 200 ms. We found participants' timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14). This asymmetry suggests participants still rely on salient events in the stimulus trajectory to synchronize movements. Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.

  14. Exploring the predictive value of the evoked potentials score in MS within an appropriate patient population: a hint for an early identification of benign MS?

    Science.gov (United States)

    2012-01-01

    Background The prognostic value of evoked potentials (EPs) in multiple sclerosis (MS) has not been fully established. The correlations between the Expanded Disability Status Scale (EDSS) at First Neurological Evaluation (FNE) and the duration of the disease, as well as between EDSS and EPs, have influenced the outcome of most previous studies. To overcome this confounding relations, we propose to test the prognostic value of EPs within an appropriate patient population which should be based on patients with low EDSS at FNE and short disease duration. Methods We retrospectively selected a sample of 143 early relapsing remitting MS (RRMS) patients with an EDSS EDSS 2.0 (TT2) were the best predictors of worsening in our sample (Odds Ratio 1.10 and 0.82 respectively, p=0.001). Low EP score (below 15–20 points), short TT2 (lower than 3–5 years) and their interaction resulted to be the most useful for the identification of worsening patterns. Moreover, in patients with an EP score at FNE below 6 points and a TT2 greater than 3 years the probability of worsening was 10% after 4–5 years and rapidly decreased thereafter. Conclusions In an appropriate population of early RRMS patients, the EP score at FNE is a good predictor of disability at low values as well as in combination with a rapid buildup of disability. Interestingly, an EP score at FNE under the median together with a clinical stability lasting more than 3 years turned out to be a protective pattern. This finding may contribute to an early identification of benign patients, well before the term required to diagnose Benign MS (BMS). PMID:22913733

  15. Expectation Suppression in Early Visual Cortex Depends on Task Set

    NARCIS (Netherlands)

    St. John-Saaltink, E.C.; Utzerath, C.; Kok, P.; Lau, H.C.; Lange, F.P. de

    2015-01-01

    Stimulus expectation can modulate neural responses in early sensory cortical regions, with expected stimuli often leading to a reduced neural response. However, it is unclear whether this expectation suppression is an automatic phenomenon or is instead dependent on the type of task a subject is enga

  16. Acquired auditory-visual synesthesia: A window to early cross-modal sensory interactions

    Directory of Open Access Journals (Sweden)

    Pegah Afra

    2009-01-01

    Full Text Available Pegah Afra, Michael Funke, Fumisuke MatsuoDepartment of Neurology, University of Utah, Salt Lake City, UT, USAAbstract: Synesthesia is experienced when sensory stimulation of one sensory modality elicits an involuntary sensation in another sensory modality. Auditory-visual synesthesia occurs when auditory stimuli elicit visual sensations. It has developmental, induced and acquired varieties. The acquired variety has been reported in association with deafferentation of the visual system as well as temporal lobe pathology with intact visual pathways. The induced variety has been reported in experimental and post-surgical blindfolding, as well as intake of hallucinogenic or psychedelics. Although in humans there is no known anatomical pathway connecting auditory areas to primary and/or early visual association areas, there is imaging and neurophysiologic evidence to the presence of early cross modal interactions between the auditory and visual sensory pathways. Synesthesia may be a window of opportunity to study these cross modal interactions. Here we review the existing literature in the acquired and induced auditory-visual synesthesias and discuss the possible neural mechanisms.Keywords: synesthesia, auditory-visual, cross modal

  17. 47例弱智儿童视觉诱发电位测试分析%Visual evoked potentials in MR and normal IQ children

    Institute of Scientific and Technical Information of China (English)

    潘芳; 岳文浩; 王迪涛; 张红静; 江虹

    2001-01-01

    目的检测MR儿童视觉诱发电位状况;方法以 DISA2000C型肌电仪对8.5~10岁MR儿童47例和匹配对照组儿童50例进行VEP检测。结果 MR儿童VEP不具备正常儿童波的形态;MR儿童VEP各波出现率较正常儿童低,其中P3、N3波的出现率有显著性差异(P<0.05)。两组儿童N1波(右)、P2波(左右)、P3波(左)、N3波(左右)、N4波(左右)潜伏期差异有显著性(P<0.05,P<0.01);P2波(左右)、N2波(左右)、N3波(右)波幅差异有显著性(P<0.05,P<0.01)。两组儿童不同时间进行的测试结果无显著性差异。提示MR儿童神经纤维髓鞘化程度和粗纤维的比例较正常儿童低,接受刺激产生兴奋的特定皮层神经元同步化兴奋的程度和数量低于正常儿童。结论 VEP可敏感检测出MR儿童与正常儿童大脑功能的差异,稳定性良好。可提供大脑发育和结构是否完善的动态指标。%Objective To study visual evoked potential in MR and normal children.Method 47 MR (male:female=23:24) and 50 normal children ( male:female=1:1)aged 8.5~10 years old were examined by DIAS 2000 myoelectronics.Results The form of MR children's VEP was flat and not similar to the form of normal children. There were significant difference in the rate of appearance of main components (N1-P2-N3) and the rate of appearance of P3 between MR and normal children. There were significant differnce in N1(right),P2(right and left),P3 (left),N3 (right and left),N4 (right and left) latency and P2 (right and left),N2 (right and left),N3 (right) amplitude in two groups children.The results was same with different examine times in two groups children. Conclusion  The results above indicated that VEP test is method to examin children' brain function sensitively and steady.It can be used as a index in judgement of children' brain development and structure.

  18. Early differential sensitivity of evoked-potentials to local and global shape during the perception of three-dimensional objects.

    Science.gov (United States)

    Leek, E Charles; Roberts, Mark; Oliver, Zoe J; Cristino, Filipe; Pegna, Alan J

    2016-08-01

    Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multi-part novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276-330ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of 'fine-grained' local shape structure, and fast derivation of 'coarse-grained' global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations.

  19. Early, but not late visual distractors affect movement synchronization to a temporal-spatial visual cue

    Directory of Open Access Journals (Sweden)

    Ashley J Booth

    2015-06-01

    Full Text Available The ease of synchronising movements to a rhythmic cue is dependent on the modality of the cue presentation: timing accuracy is much higher when synchronising with discrete auditory rhythms than an equivalent visual stimulus presented through flashes. However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g. a dot following an oscillatory trajectory. Similarly, when synchronising with an auditory target metronome in the presence of a second visual distracting metronome, the distraction is stronger when the visual cue contains spatial-temporal information rather than temporal only. The present study investigates individuals’ ability to synchronise movements to a temporal-spatial visual cue in the presence of same-modality temporal-spatial distractors. Moreover, we investigated how increasing the number of distractor stimuli impacted on maintaining synchrony with the target cue. Participants made oscillatory vertical arm movements in time with a vertically oscillating white target dot centred on a large projection screen. The target dot was surrounded by 2, 8 or 14 distractor dots, which had an identical trajectory to the target but at a phase lead or lag of 0, 100 or 200ms. We found participants’ timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14. This asymmetry suggests participants still rely on salient events in the stimulus trajectory to synchronise movements. Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.

  20. Effects of caffeine on visual evoked potencial (P300 and neuromotor performance Efeitos da ingestão de cafeína no potencial evocado visual (p300 e no desempenho neuromotor

    Directory of Open Access Journals (Sweden)

    Andréa Camaz Deslandes

    2004-06-01

    Full Text Available The stimulant effects of caffeine on cognitive performance have been widely investigated. The visual evoked potential, specially the P300 component, has been used in studies that explain the stimulant mechanisms of caffeine through neurophysiological methods. In this context, the present study aimed to investigate electrophysiological changes (P300 latency and modification of cognitive and motor performance produced by caffeine. Fifteen healthy volunteers, 9 women and 6 men (26 ± 5 years, 67 ± 12.5kg were submitted three times to the following procedure: electroencefalographic recording, Word Color Stroop Test, and visual discrimination task. Subjects took a gelatin caffeine capsule (400 mg or a placebo (P1 and P2, in a randomized, crossover, double-blind design. A one-factor ANOVA and Tukey’ post hoc test were used to compare dependent variables on the C, P1 and P2 moments. The statistical analyses indicated a non-significant decrease in reaction time, Stroop execution time and latency at Cz on the caffeine moment when compared to the others. Moreover, a non-significant increase in Stroop raw score and latency at Pz could be observed. The only significant result was found at Fz. These findings suggest that the positive tendency of caffeine to improve cognitive performance is probably associated with changes in the frontal cortex, a widely recognized attention area.Os efeitos estimulantes da cafeína no desempenho cognitivo vêm sendo amplamente investigados. O potencial evocado visual (P300 tem sido empregado em estudos recentes que buscam elucidar os mecanismos excitatórios da cafeína através de métodos neurofisiológicos. Neste contexto, o presente estudo objetivou examinar as variações geradas pela cafeína em respostas eletrofisiológicas (latência do P300 e determinar modificações no desempenho cognitivo e motor. Para tanto, 15 indivíduos hígidos, sendo 9 mulheres e 6 homens (26 ± 5 anos, 67 ± 12,5 kg foram submetidos por

  1. Receptive fields of visual neurons: the early years.

    Science.gov (United States)

    Spillmann, Lothar

    2014-01-01

    This paper traces the history of the visual receptive field (RF) from Hartline to Hubel and Wiesel. Hartline (1938, 1940) found that an isolated optic nerve fiber in the frog could be excited by light falling on a small circular area of the retina. He called this area the RF, using a term first introduced by Sherrington (1906) in the tactile domain. In 1953 Kuffler discovered the antagonistic center-surround organization of cat RFs, and Barlow, Fitzhugh, and Kuffler (1957) extended this work to stimulus size and state of adaptation. Shortly thereafter, Lettvin and colleagues (1959) in an iconic paper asked "what the frog's eye tells the frog's brain". Meanwhile, Jung and colleagues (1952-1973) searched for the perceptual correlates of neuronal responses, and Jung and Spillmann (1970) proposed the term perceptive field (PF) as a psychophysical correlate of the RF. The Westheimer function (1967) enabled psychophysical measurements of the PF center and surround in human and monkey, which correlated closely with the underlying RF organization. The sixties and seventies were marked by rapid progress in RF research. Hubel and Wiesel (1959-1974), recording from neurons in the visual cortex of the cat and monkey, found elongated RFs selective for the shape, orientation, and position of the stimulus, as well as for movement direction and ocularity. These findings prompted the emergence in visual psychophysics of the concept of feature detectors selective for lines, bars, and edges, and contributed to a model of the RF in terms of difference of Gaussians (DOG) and Fourier channels. The distinction between simple, complex, and hypercomplex neurons followed. Although RF size increases towards the peripheral retina, its cortical representation remains constant due to the reciprocal relationship with the cortical magnification factor (M). This constitutes a uniform yardstick for M-scaled stimuli across the retina. Developmental studies have shown that RF properties are not fixed

  2. Early visual processing is affected by clinical subtype in patients with unilateral spatial neglect: A magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Katsuhiro eMizuno

    2013-07-01

    Full Text Available OBJECTIVE: To determine whether visual evoked fields (VEFs elicited by right and left hemifield stimulation differ in patients with unilateral spatial neglect that results from cerebrovascular accident.METHODS: Pattern-reversal stimulation of the right and left hemifield was performed in three patients with left unilateral spatial neglect. Magnetoencephalography was recorded using a 160-channel system, and VEFs were quantified in the 400 ms after each stimulus. The presence or absence of VEF components at around 100 ms (P100m component and 145 ms (N145m component after stimulus onset was determined. The source of the VEF was determined using a single equivalent current dipole model for spherical volume conduction. All patients were evaluated using the behavioral inattention test (BIT.RESULTS: In response to right hemifield stimulation, the P100m and N145m components of the VEF were evident in all three patients. In response to left hemifield stimulation, both components were evident in Patient 3, whereas only the P100m component was evident in Patient 1 and only the N145m component was evident in Patient 2. Patient 1 exhibited impairments on the line bisection and cancellation tasks of the BIT, Patient 2 exhibited impairments on the copying, drawing and cancellation tasks of the BIT, and Patient 3 exhibited impairments on the cancellation task of the BIT.CONCLUSIONS: These results demonstrate that early VEFs are disrupted in patients with unilateral spatial neglect and support the concept that deficits in visual processing differ according to the clinical subtype of unilateral spatial neglect and the lesion location. This study also demonstrates the feasibility of using magnetoencephalography to explore subtypes of neglect.

  3. Evoked emotions predict food choice.

    Science.gov (United States)

    Dalenberg, Jelle R; Gutjar, Swetlana; Ter Horst, Gert J; de Graaf, Kees; Renken, Remco J; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well scores from emotion-profiling methods predict actual food choice and/or consumption. To test this, we proposed to decompose emotion scores into valence and arousal scores using Principal Component Analysis (PCA) and apply Multinomial Logit Models (MLM) to estimate food choice using liking, valence, and arousal as possible predictors. For this analysis, we used an existing data set comprised of liking and food-evoked emotions scores from 123 participants, who rated 7 unlabeled breakfast drinks. Liking scores were measured using a 100-mm visual analogue scale, while food-evoked emotions were measured using 2 existing emotion-profiling methods: a verbal and a non-verbal method (EsSense Profile and PrEmo, respectively). After 7 days, participants were asked to choose 1 breakfast drink from the experiment to consume during breakfast in a simulated restaurant environment. Cross validation showed that we were able to correctly predict individualized food choice (1 out of 7 products) for over 50% of the participants. This number increased to nearly 80% when looking at the top 2 candidates. Model comparisons showed that evoked emotions better predict food choice than perceived liking alone. However, the strongest predictive strength was achieved by the combination of evoked emotions and liking. Furthermore we showed that non-verbal food-evoked emotion scores more accurately predict food choice than verbal food-evoked emotions scores.

  4. Evoked emotions predict food choice.

    Directory of Open Access Journals (Sweden)

    Jelle R Dalenberg

    Full Text Available In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well scores from emotion-profiling methods predict actual food choice and/or consumption. To test this, we proposed to decompose emotion scores into valence and arousal scores using Principal Component Analysis (PCA and apply Multinomial Logit Models (MLM to estimate food choice using liking, valence, and arousal as possible predictors. For this analysis, we used an existing data set comprised of liking and food-evoked emotions scores from 123 participants, who rated 7 unlabeled breakfast drinks. Liking scores were measured using a 100-mm visual analogue scale, while food-evoked emotions were measured using 2 existing emotion-profiling methods: a verbal and a non-verbal method (EsSense Profile and PrEmo, respectively. After 7 days, participants were asked to choose 1 breakfast drink from the experiment to consume during breakfast in a simulated restaurant environment. Cross validation showed that we were able to correctly predict individualized food choice (1 out of 7 products for over 50% of the participants. This number increased to nearly 80% when looking at the top 2 candidates. Model comparisons showed that evoked emotions better predict food choice than perceived liking alone. However, the strongest predictive strength was achieved by the combination of evoked emotions and liking. Furthermore we showed that non-verbal food-evoked emotion scores more accurately predict food choice than verbal food-evoked emotions scores.

  5. An Influence of Birth Weight, Gestational Age, and Apgar Score on Pattern Visual Evoked Potentials in Children with History of Prematurity

    Directory of Open Access Journals (Sweden)

    Marta Michalczuk

    2015-01-01

    Full Text Available Purpose. The objective of our study was to examine a possible influence of gestational age, birth weight, and Apgar score on amplitudes and latencies of P100 wave in preterm born school-age children. Materials and Methods. We examined the following group of school-age children: 28 with history of prematurity (mean age 10.56 ± 1.66 years and 25 born at term (mean age 11.2 ± 1.94 years. The monocular PVEP was performed in all children. Results. The P100 wave amplitudes and latencies significantly differ between preterm born school-age children and those born at term. There was an essential positive linear correlation of the P100 wave amplitudes with birth weight, gestational age, and Apgar score. There were the negative linear correlations of P100 latencies in 15-minute stimulation from O1 and Oz electrode with Apgar score and O1 and O2 electrode with gestational age. Conclusions. PVEP responses vary in preterm born children in comparison to term. Low birth weight, early gestational age, and poor baseline output seem to be the predicting factors for the developmental rate of a brain function in children with history of prematurity. Further investigations are necessary to determine perinatal factors that can affect the modified visual system function in preterm born children.

  6. Altered white matter in early visual pathways of humans with amblyopia.

    Science.gov (United States)

    Allen, Brian; Spiegel, Daniel P; Thompson, Benjamin; Pestilli, Franco; Rokers, Bas

    2015-09-01

    Amblyopia is a visual disorder caused by poorly coordinated binocular input during development. Little is known about the impact of amblyopia on the white matter within the visual system. We studied the properties of six major visual white-matter pathways in a group of adults with amblyopia (n=10) and matched controls (n=10) using diffusion weighted imaging (DWI) and fiber tractography. While we did not find significant differences in diffusion properties in cortico-cortical pathways, patients with amblyopia exhibited increased mean diffusivity in thalamo-cortical visual pathways. These findings suggest that amblyopia may systematically alter the white matter properties of early visual pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Attentional enhancement via selection and pooling of early sensory responses in human visual cortex.

    Science.gov (United States)

    Pestilli, Franco; Carrasco, Marisa; Heeger, David J; Gardner, Justin L

    2011-12-08

    The computational processes by which attention improves behavioral performance were characterized by measuring visual cortical activity with functional magnetic resonance imaging as humans performed a contrast-discrimination task with focal and distributed attention. Focal attention yielded robust improvements in behavioral performance accompanied by increases in cortical responses. Quantitative analysis revealed that if performance were limited only by the sensitivity of the measured sensory signals, the improvements in behavioral performance would have corresponded to an unrealistically large reduction in response variability. Instead, behavioral performance was well characterized by a pooling and selection process for which the largest sensory responses, those most strongly modulated by attention, dominated the perceptual decision. This characterization predicts that high-contrast distracters that evoke large responses should negatively impact behavioral performance. We tested and confirmed this prediction. We conclude that attention enhanced behavioral performance predominantly by enabling efficient selection of the behaviorally relevant sensory signals.

  8. Orbitofrontal Cortex and the Early Processing of Visual Novelty in Healthy Aging.

    Science.gov (United States)

    Kaufman, David A S; Keith, Cierra M; Perlstein, William M

    2016-01-01

    Event-related potential (ERP) studies have previously found that scalp topographies of attention-related ERP components show frontal shifts with age, suggesting an increased need for compensatory frontal activity to assist with top-down facilitation of attention. However, the precise neural time course of top-down attentional control in aging is not clear. In this study, 20 young (mean: 22 years) and 14 older (mean: 64 years) adults completed a three-stimulus visual oddball task while high-density ERPs were acquired. Colorful, novel distracters were presented to engage early visual processing. Relative to young controls, older participants exhibited elevations in occipital early posterior positivity (EPP), approximately 100 ms after viewing colorful distracters. Neural source models for older adults implicated unique patterns of orbitofrontal cortex (OFC; BA 11) activity during early visual novelty processing (100 ms), which was positively correlated with subsequent activations in primary visual cortex (BA 17). Older adult EPP amplitudes and OFC activity were associated with performance on tests of complex attention and executive function. These findings are suggestive of age-related, compensatory neural changes that may driven by a combination of weaker cortical efficiency and increased need for top-down control over attention. Accordingly, enhanced early OFC activity during visual attention may serve as an important indicator of frontal lobe integrity in healthy aging.

  9. The effects of AMPA blockade on the spectral profile of human early visual cortex recordings studied with non-invasive MEG.

    Science.gov (United States)

    Muthukumaraswamy, Suresh D; Routley, Bethany; Droog, Wouter; Singh, Krish D; Hamandi, Khalid

    2016-08-01

    The generation of gamma-band (>30 Hz) cortical activity is thought to depend on the reciprocal connections of excitatory glutamatergic principal cells with inhibitory GABAergic interneurons. Both in vitro and in vivo animal studies have shown that blockade of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reduces the amplitude of gamma-band activity. In this registered report, we hypothesised that similar effects would be observed in humans following administration of perampanel, a first in class AMPA antagonist, used in the treatment of epilepsy. In a single-blind placebo-controlled crossover study, 20 healthy male participants completed two study days. On one day participants were given a 6 mg dose of perampanel and on the other an inactive placebo. magnetoencephalography (MEG) recordings of brain activity were taken before and two hours after drug administration, with activity in the visual cortex probed using a stimulation protocol known to induce gamma-band activity in the primary visual cortex. As hypothesised, our results indicated a decrease in gamma-band amplitudes following perampanel administration. The decreases in gamma-band amplitudes observed were temporally restricted to the early time-period of stimulus presentation (up to 400 msec) with no significant effects observed on early evoked responses or alpha rhythms. This suggests that the early time-window of induced visual gamma-band activity, thought to reflect input to the visual cortex from the lateral geniculate nucleus, is most sensitive to AMPA blocking drugs.

  10. Early ERP effects on the scaling of spatial attention in visual search

    Institute of Scientific and Technical Information of China (English)

    Ya-Nan Niu; Jing-Han Wei; Yue-Jia Luo

    2008-01-01

    This article describes the examination of the spatial 'scaling' effect of visual attention with the technique of event-related potential (ERP). Eighteen participants were involved in a visual search task in which the cue-target paradigm was used. The search array was three concentric circles consisting of randomly selected English letters that were equally distributed in each circle. The behavioral and ERP data were recorded, respectively. The behavioral results showed that the response time increased and the response accuracy decreased with the increase of precue size. The ERPs amplitude of PI and Nl components evoked by search array increased with the reduction of precue size. However, the latencies of these ERP components did not show significant differences between conditions. The hierarchical data of both behavioral assessment and ERPs provided evidence for the spatial 'scaling' effect of visual attention. The amplitudes of PI and Nl components may be used as indices to examine the effect of spatial 'scaling'. In different tasks, the display-set size of stimuli and the task complexity may be important factors that affect the attention allocation.

  11. Visualization

    OpenAIRE

    Balon, Andreja

    1990-01-01

    The present thesis entails the field of visualization which is divided into visualization along traditional lines and visualization in computer science. As the psychological aspect of image is of vital importance for visualization, it is shortly described in the beginning. Visualization in computer science is divided into three main fields: scientific visualization, program visualization and visual programming. An explanation and examples of approach to applications are given for each field....

  12. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    Science.gov (United States)

    Schindler, Andreas; Bartels, Andreas

    2016-05-24

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding.

  13. Early involvement of dorsal and ventral pathways in visual word recognition: an ERP study.

    Science.gov (United States)

    Rosazza, Cristina; Cai, Qing; Minati, Ludovico; Paulignan, Yves; Nazir, Tatjana A

    2009-05-26

    Visual expertise underlying reading is attributed to processes involving the left ventral visual pathway. However, converging evidence suggests that the dorsal visual pathway is also involved in early levels of visual word processing, especially when words are presented in unfamiliar visual formats. In the present study, event-related potentials (ERPs) were used to investigate the time course of the early engagement of the ventral and dorsal pathways during processing of orthographic stimuli (high and low frequency words, pseudowords and consonant strings) by manipulating visual format (familiar horizontal vs. unfamiliar vertical format). While early ERP components (P1 and N1) already distinguished between formats, the effect of stimulus type emerged at the latency of the N2 component (225-275 ms). The N2 scalp topography and sLORETA source localisation for this differentiation showed an occipito-temporal negativity for the horizontal format and a negativity that extended towards the dorsal regions for the vertical format. In a later time window (350-425 ms) ERPs elicited by vertically displayed stimuli distinguished words from pseudowords in the ventral area, as confirmed by source localisation. The sustained contribution of occipito-temporal processes for vertical stimuli suggests that the ventral pathway is essential for lexical access. Parietal regions appear to be involved when a serial mechanism of visual attention is required to shift attention from one letter to another. The two pathways cooperate during visual word recognition and processing in these pathways should not be considered as alternative but as complementary elements of reading.

  14. Early Local Activity in Temporal Areas Reflects Graded Content of Visual Perception

    Directory of Open Access Journals (Sweden)

    Chiara Francesca Tagliabue

    2016-04-01

    Full Text Available In visual cognitive neuroscience the debate on consciousness is focused on two major topics: the search for the neural correlates of the different properties of visual awareness and the controversy on the graded versus dichotomous nature of visual conscious experience. The aim of this study is to search for the possible neural correlates of different grades of visual awareness investigating the Event Related Potentials (ERPs to reduced contrast visual stimuli whose perceptual clarity was rated on the four-point Perceptual Awareness Scale (PAS. Results revealed a left centro-parietal negative deflection (Visual Awareness Negativity; VAN peaking at 280-320 ms from stimulus onset, related to the perceptual content of the stimulus, followed by a bilateral positive deflection (Late Positivity; LP peaking at 510-550 ms over almost all electrodes, reflecting post-perceptual processes performed on such content. Interestingly, the amplitude of both deflections gradually increased as a function of visual awareness. Moreover, the intracranial generators of the phenomenal content (VAN were found to be located in the left temporal lobe. The present data thus seem to suggest 1 that visual conscious experience is characterized by a gradual increase of perceived clarity at both behavioral and neural level and 2 that the actual content of perceptual experiences emerges from early local activation in temporal areas, without the need of later widespread frontal engagement.

  15. 视觉诱发电位在眼科学中的临床应用价值——Christchurch医院的经验%The Clinical Value of Visual Evoked Potentials in Ophthalmology——Christchurch Experience

    Institute of Scientific and Technical Information of China (English)

    Hidajat RR

    2007-01-01

    Purpose To explore the clinical value of visual evoked potentials in ophthalmology.Methods This paper reviews the clinical value of visual evoked potentials(VEP)in Christchurch Hospital over the last three decades.Results Optic neuritis(ON)is an inflammatory lesion of the optic nerve and usually presents as a sudden unilateral loss of vision which is often accompanied by pain particularly when the eye is moved.After ON the latency of the VEP is characteristically delayed and persisted indefinitely regardless of the recovery of good visual acuity three weeks after the onset of optic neuritis.An accurate differential diagnosis of optic neuritis is essential as there are important implications for the development of multiple sclerosis.Therefore one of the most important clinical application of the visual evoked potentials remains the detection of healed optic neuritis.Our experience confirms that the delayed P100 latency in the visual evoked potentials after the acute attack of optic neuritis remained constant over the period of investigation.In our experience,the second most important clinical usefulness of VEP is in the diagnosis of compressive optic nerve disease.Therefore the VEP can be regarded as an integral part of the diagnostic procedures in suspected compressive lesions of the optic chiasm.In addition we found the VEP is useful for detecting functional visual loss or malingering especially in children.Clearly,from this review,the clinical value of ophthalmic electrophysiology as a useful tool in the practice of ophthalmology is confirmed.Conclusion This gives us the confidence to declare that VEP is going to stay in our hospital as the knowledge of electrophysiology of the optic pathway can be applied when examining ophthalmic disorders.(Chin J Ophthalmol and Otorhinolaryngol,2007,7:75-78)%目的 探讨视觉诱发电位在眼科临床中的应用价值.方法 总结Christchurch医院30年来视觉诱发电位在临床应用的经验.结果 视神经炎是

  16. Characterizing the effects of feature salience and top-down attention in the early visual system.

    Science.gov (United States)

    Poltoratski, Sonia; Ling, Sam; McCormack, Devin; Tong, Frank

    2017-04-05

    The visual system employs a sophisticated balance of attentional mechanisms: salient stimuli are prioritized for visual processing, yet observers can also ignore such stimuli when their goals require directing attention elsewhere. A powerful determinant of visual salience is local feature contrast: if a local region differs from its immediate surround along one or more feature dimensions, it will appear more salient. Here, we used high-resolution fMRI at 7T to characterize the modulatory effects of bottom-up salience and top-down voluntary attention within multiple sites along the early visual pathway, including visual areas V1-V4 and the lateral geniculate nucleus (LGN). Observers viewed arrays of spatially distributed gratings, where one of the gratings immediately to the left or right of fixation differed from all other items in orientation or motion direction, making it salient. To investigate the effects of directed attention, observers were cued to attend to the grating to the left or right of fixation, which was either salient or non-salient. Results revealed reliable additive effects of top-down attention and stimulus-driven salience throughout visual areas V1-hV4. In comparison, the LGN exhibited significant attentional enhancement but was not reliably modulated by orientation- or motion-defined salience. Our findings indicate that top-down effects of spatial attention can influence visual processing at the earliest possible site along the visual pathway, including the LGN, while the processing of orientation- and motion-driven salience primarily involves feature-selective interactions that take place in early cortical visual areas.

  17. Partial dissociation in the neural bases of VSTM and imagery in the early visual cortex.

    Science.gov (United States)

    Saad, Elyana; Wojciechowska, Maria; Silvanto, Juha

    2015-08-01

    Visual short-term memory (VSTM) and visual imagery are believed to involve overlapping neuronal representations in the early visual cortex. While a number of studies have provided evidence for this overlap, at the behavioral level VSTM and imagery are dissociable processes; this begs the question of how their neuronal mechanisms differ. Here we used transcranial magnetic stimulation (TMS) to examine whether the neural bases of imagery and VSTM maintenance are dissociable in the early visual cortex (EVC). We intentionally used a similar task for VSTM and imagery in order to equate their assessment. We hypothesized that any differential effect of TMS on VSTM and imagery would indicate that their neuronal bases differ at the level of EVC. In the "alone" condition, participants were asked to engage either in VSTM or imagery, whereas in the "concurrent" condition, each trial required both VSTM maintenance and imagery simultaneously. A dissociation between VSTM and imagery was observed for reaction times: TMS slowed down responses for VSTM but not for imagery. The impact of TMS on sensitivity did not differ between VSTM and imagery, but did depend on whether the tasks were carried concurrently or alone. This study shows that neural processes associated with VSTM and imagery in the early visual cortex can be partially dissociated.

  18. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation.

    Science.gov (United States)

    van Lamsweerde, Amanda E; Johnson, Jeffrey S

    2017-07-01

    Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.

  19. Reinstatement of associative memories in early visual cortex is signaled by the hippocampus.

    Science.gov (United States)

    Bosch, Sander E; Jehee, Janneke F M; Fernández, Guillén; Doeller, Christian F

    2014-05-28

    The cortical reinstatement hypothesis of memory retrieval posits that content-specific cortical activity at encoding is reinstated at retrieval. Evidence for cortical reinstatement was found in higher-order sensory regions, reflecting reactivation of complex object-based information. However, it remains unclear whether the same detailed sensory, feature-based information perceived during encoding is subsequently reinstated in early sensory cortex and what the role of the hippocampus is in this process. In this study, we used a combination of visual psychophysics, functional neuroimaging, multivoxel pattern analysis, and a well controlled cued recall paradigm to address this issue. We found that the visual information human participants were retrieving could be predicted by the activation patterns in early visual cortex. Importantly, this reinstatement resembled the neural pattern elicited when participants viewed the visual stimuli passively, indicating shared representations between stimulus-driven activity and memory. Furthermore, hippocampal activity covaried with the strength of stimulus-specific cortical reinstatement on a trial-by-trial level during cued recall. These findings provide evidence for reinstatement of unique associative memories in early visual cortex and suggest that the hippocampus modulates the mnemonic strength of this reinstatement.

  20. Findings of Visual Arts Research in Early Childhood and Primary Education

    Directory of Open Access Journals (Sweden)

    Marijana Županić Benić

    2016-12-01

    Full Text Available Arts research was introduced in the field of education during the 1990s by Barone and Eisner, but their methodology is rarely used because it is not considered to be consistent with traditional paradigms of the scientific method. This review identified only seven visual arts research studies in early childhood education and primary education. Four studies were conducted in early childhood education settings, and two of those studies used quantitative methods to investigate the effects of art on early childhood development. The three studies that were conducted in primary education used a case study approach to examine art projects in the community or the classroom. Participation in visual arts was associated with enhanced learning outcomes in other areas and the development of individual and social competences, but it was not found to facilitate the development of age-dependent abilities, such as visual or grapho-motor abilities. Visual arts also proved to be an effective method of communication for children in preschool and primary education institutions because it is easier for them to express their opinions and beliefs to adults with visual media than with words.

  1. Partial dissociation in the neural bases of VSTM and imagery in the early visual cortex

    Science.gov (United States)

    Saad, Elyana; Wojciechowska, Maria; Silvanto, Juha

    2015-01-01

    Visual short-term memory (VSTM) and visual imagery are believed to involve overlapping neuronal representations in the early visual cortex. While a number of studies have provided evidence for this overlap, at the behavioral level VSTM and imagery are dissociable processes; this begs the question of how their neuronal mechanisms differ. Here we used transcranial magnetic stimulation (TMS) to examine whether the neural bases of imagery and VSTM maintenance are dissociable in the early visual cortex (EVC). We intentionally used a similar task for VSTM and imagery in order to equate their assessment. We hypothesized that any differential effect of TMS on VSTM and imagery would indicate that their neuronal bases differ at the level of EVC. In the “alone” condition, participants were asked to engage either in VSTM or imagery, whereas in the “concurrent” condition, each trial required both VSTM maintenance and imagery simultaneously. A dissociation between VSTM and imagery was observed for reaction times: TMS slowed down responses for VSTM but not for imagery. The impact of TMS on sensitivity did not differ between VSTM and imagery, but did depend on whether the tasks were carried concurrently or alone. This study shows that neural processes associated with VSTM and imagery in the early visual cortex can be partially dissociated. PMID:26026256

  2. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    Science.gov (United States)

    Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604

  3. Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice.

    Science.gov (United States)

    Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena; Pizzorusso, Tommaso

    2017-06-15

    CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60-80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. © The Author 2017. Published by Oxford University Press.

  4. Basic Abnormalities in Visual Processing Affect Face Processing at an Early Age in Autism Spectrum Disorder

    NARCIS (Netherlands)

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-01-01

    Background: A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD an

  5. Teaching Early Braille Literacy Skills within a Stimulus Equivalence Paradigm to Children with Degenerative Visual Impairments

    Science.gov (United States)

    Toussaint, Karen A.; Tiger, Jeffrey H.

    2010-01-01

    Despite the need for braille literacy, there has been little attempt to systematically evaluate braille-instruction programs. The current study evaluated an instructive procedure for teaching early braille-reading skills with 4 school-aged children with degenerative visual impairments. Following a series of pretests, braille instruction involved…

  6. Infants' Early Visual Attention and Social Engagement as Developmental Precursors to Joint Attention

    Science.gov (United States)

    Salley, Brenda; Sheinkopf, Stephen J.; Neal-Beevers, A. Rebecca; Tenenbaum, Elena J.; Miller-Loncar, Cynthia L.; Tronick, Ed; Lagasse, Linda L.; Shankaran, Seetha; Bada, Henrietta; Bauer, Charles; Whitaker, Toni; Hammond, Jane; Lester, Barry M.

    2016-01-01

    This study examined infants' early visual attention (at 1 month of age) and social engagement (4 months) as predictors of their later joint attention (12 and 18 months). The sample (n = 325), drawn from the Maternal Lifestyle Study, a longitudinal multicenter project conducted at 4 centers of the National Institute of Child Health and Human…

  7. The Effect of Early Visual Deprivation on the Development of Face Detection

    Science.gov (United States)

    Mondloch, Catherine J.; Segalowitz, Sidney J.; Lewis, Terri L.; Dywan, Jane; Le Grand, Richard; Maurer, Daphne

    2013-01-01

    The expertise of adults in face perception is facilitated by their ability to rapidly detect that a stimulus is a face. In two experiments, we examined the role of early visual input in the development of face detection by testing patients who had been treated as infants for bilateral congenital cataract. Experiment 1 indicated that, at age 9 to…

  8. Psychic blindness or visual agnosia: early descriptions of a nervous disorder.

    Science.gov (United States)

    Baumann, Christian

    2011-01-01

    This article briefly reports on three early contributions to the understanding of visual agnosia as a syndrome sui generis. The authors of the respective papers worked in different fields such as physiology, ophthalmology, and neurology, and, although they were not in direct contact with each other, their results converged upon a consistent view of a nervous disorder that they called psychic blindness.

  9. Orientation enhancement in early visual processing can explain time course of brightness contrast and White's illusion.

    Science.gov (United States)

    Karmakar, Subhajit; Sarkar, Sandip

    2013-06-01

    Dynamics of orientation tuning in V1 indicates that computational model of V1 should not only comprise of bank of static spatially oriented filters but also include the contribution for dynamical response facilitation or suppression along orientation. Time evolution of orientation response in V1 can emerge due to time- dependent excitation and lateral inhibition in the orientation domain. Lateral inhibition in the orientation domain suggests that Ernst Mach's proposition can be applied for the enhancement of initial orientation distribution that is generated due to interaction of visual stimulus with spatially oriented filters and subcortical temporal filter. Oriented spatial filtering that appears much early (explain experimentally observed temporal dynamics of brightness contrast illusion. But, enhancement of orientation response at early phase of visual processing is the key mechanism that can guide visual system to predict the brightness by "Max-rule" or "Winner Takes All" (WTA) estimation and thus producing White's illusions at any exposure.

  10. Virtually simulated social pressure influences early visual processing more in low compared to high autonomous participants.

    Science.gov (United States)

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2014-02-01

    In a previous study, we showed that virtually simulated social group pressure could influence early stages of perception after only 100  ms. In the present EEG study, we investigated the influence of social pressure on visual perception in participants with high (HA) and low (LA) levels of autonomy. Ten HA and ten LA individuals were asked to accomplish a visual discrimination task in an adapted paradigm of Solomon Asch. Results indicate that LA participants adapted to the incorrect group opinion more often than HA participants (42% vs. 30% of the trials, respectively). LA participants showed a larger posterior P1 component contralateral to targets presented in the right visual field when conforming to the correct compared to conforming to the incorrect group decision. In conclusion, our ERP data suggest that the group context can have early effects on our perception rather than on conscious decision processes in LA, but not HA participants.

  11. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    Science.gov (United States)

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  12. Study on intraoperative visual evoked potential to monitoring optical function%应用视觉诱发电位术中监测视觉功能的研究

    Institute of Scientific and Technical Information of China (English)

    王新法; 张岩松; 赵鹏来; 刘宏毅; 马骏; 邹元杰; 朱美华; 李军

    2012-01-01

    Objective To evaluate the feasibility and reliability of monitoring visual function with visual evoked potential (VEP) during removal of lesions involving the visual pathway. Methods The clinical data of 31 patients with lesions involving the visual pathway were recorded VEP through the scalp (29 cases) or cortex (2 cases) with 2. 1 Hz stimulation with flash diode during surgery after total intravenous anesthesia, to evaluate the relationship between VEP changes and changes in visual function after surgery,were analyzed retrospectively. Results 25 cases describe a clear and repeatable VEP waveform, VEP were abnormal or disappeared in 7 patients, visual acuity were decreased in 2, visual field defect in 6,8 of intraoperative VEP waveform became abnormal, changed surgical strategies in time to avoid further damage to the visual pathway , after 2 minutes waveform was becoming normal, after surgery only 1 patient had visual field defect. Conclusion VEP is a reliably way to provide real-time monitoring of visual function and help surgeons to make surgical decisions.%目的 评价视觉诱发电位(VEP)在切除累及视路病灶的手术中监护视觉功能方面的可行性和可靠性.方法 回顾分析31例累及视路病变的患者的临床资料,全静脉麻醉后手术,用2.1 Hz的闪光二极管刺激患者,通过头皮(29例)或皮层(2例)记录视觉诱发电位,分析术中诱发电位的变化与术后视觉功能变化的关系.结果 25例患者描记出清晰、可重复的波形;VEP异常或消失的患者有7例,术后视力下降2例,视野缺损加重6例;8例术中出现VEP波形的异常,予及时改变手术策略,避免对视路的进一步骚扰后,2 min内波形渐趋正常,术后仅有1例出现视野缺损.结论 视觉诱发电位是一种能够提供实时视觉功能监测的可靠方法,能及时发现视路损伤.

  13. Overlapping activity periods in early visual cortex and posterior intraparietal area in conscious visual shape perception: a TMS study.

    Science.gov (United States)

    Koivisto, Mika; Lähteenmäki, Mikko; Kaasinen, Valtteri; Parkkola, Riitta; Railo, Henry

    2014-01-01

    Parietal cortex is often activated in brain imaging studies on conscious visual processing, but its causal role and timing in conscious and nonconscious perception are poorly understood. We studied the role of posterior intraparietal sulcus (IPS) and early visual areas (V1/V2) in conscious and nonconscious vision by interfering with their functioning with MRI-guided transcranial magnetic stimulation (TMS). The observers made binary forced-choice decisions concerning the shape or color of the metacontrast masked targets and rated the quality of their conscious perception. TMS was applied 30, 60, 90, or 120ms after stimulus-onset. In the shape discrimination task, TMS of V1/V2 impaired conscious perception at 60, 90, and 120ms and nonconscious perception at 90ms. TMS of IPS impaired only conscious shape perception, also around 90ms. Conscious color perception was facilitated or suppressed depending on the strength of the TMS-induced electric field in V1/V2 at 90ms. The results suggest that simultaneous activity in V1/V2 and IPS around 90ms is necessary for visual awareness of shape but not for nonconscious perception. The overlapping activity periods of IPS and V1/V2 may reflect recurrent interaction between parietal cortex and V1 in conscious shape perception.

  14. Vestibular activation differentially modulates human early visual cortex and V5/MT excitability and response entropy.

    Science.gov (United States)

    Seemungal, Barry M; Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC.

  15. Does Silent Reading Speed in Normal Adult Readers Depend on Early Visual Processes? Evidence from Event-Related Brain Potentials

    Science.gov (United States)

    Korinth, Sebastian Peter; Sommer, Werner; Breznitz, Zvia

    2012-01-01

    Little is known about the relationship of reading speed and early visual processes in normal readers. Here we examined the association of the early P1, N170 and late N1 component in visual event-related potentials (ERPs) with silent reading speed and a number of additional cognitive skills in a sample of 52 adult German readers utilizing a Lexical…

  16. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

    Directory of Open Access Journals (Sweden)

    Hui He

    2013-01-01

    Full Text Available It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system’s emergency response capabilities, alleviate the cyber attacks’ damage, and strengthen the system’s counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system’s plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks’ topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  17. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    Science.gov (United States)

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  18. Early Visual Word Processing Is Flexible: Evidence from Spatiotemporal Brain Dynamics.

    Science.gov (United States)

    Chen, Yuanyuan; Davis, Matthew H; Pulvermüller, Friedemann; Hauk, Olaf

    2015-09-01

    Visual word recognition is often described as automatic, but the functional locus of top-down effects is still a matter of debate. Do task demands modulate how information is retrieved, or only how it is used? We used EEG/MEG recordings to assess whether, when, and how task contexts modify early retrieval of specific psycholinguistic information in occipitotemporal cortex, an area likely to contribute to early stages of visual word processing. Using a parametric approach, we analyzed the spatiotemporal response patterns of occipitotemporal cortex for orthographic, lexical, and semantic variables in three psycholinguistic tasks: silent reading, lexical decision, and semantic decision. Task modulation of word frequency and imageability effects occurred simultaneously in ventral occipitotemporal regions-in the vicinity of the putative visual word form area-around 160 msec, following task effects on orthographic typicality around 100 msec. Frequency and typicality also produced task-independent effects in anterior temporal lobe regions after 200 msec. The early task modulation for several specific psycholinguistic variables indicates that occipitotemporal areas integrate perceptual input with prior knowledge in a task-dependent manner. Still, later task-independent effects in anterior temporal lobes suggest that word recognition eventually leads to retrieval of semantic information irrespective of task demands. We conclude that even a highly overlearned visual task like word recognition should be described as flexible rather than automatic.

  19. Analysis of visual evoked potential of 60 patients with optic nerve contusion%视神经挫伤60例的视觉诱发电位分析

    Institute of Scientific and Technical Information of China (English)

    杜彩凤; 张志威; 曾丽芳

    2008-01-01

    目的:探讨视觉诱发电位(visual evoked potential,VEP)对视神经挫伤临床诊断的作用.方法:对我科近两年临床诊断为视神经挫伤的患者60例(72眼)进行VEP检查.结果:P-VEP正常30眼;P100波潜伏时延迟22眼;P-VEP无波,F-VEP振幅降低12眼;P-VEP、F-VEP均无波8眼.结论:VEP检查是视神经挫伤的客观检查手段之一.

  20. Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Fuglø, Dan; Pedersen, Henrik; Rostrup, Egill

    2012-01-01

    To compare different electroencephalography (EEG)-based regressors and their ability to predict the simultaneously recorded blood oxygenation level dependent response during blocked visual stimulation, simultaneous EEG-functional magnetic resonance imaging in 10 healthy volunteers was performed...

  1. Normal aging delays and compromises early multifocal visual attention during object tracking.

    Science.gov (United States)

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2013-02-01

    Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (~100-300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100-125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125-150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175-210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.

  2. 基于稳态视觉诱发电位的脑-机接口研究%An Research on Brain-computer Interfaces Based on the Steady State Visual Evoked Potentials

    Institute of Scientific and Technical Information of China (English)

    郑军

    2011-01-01

    A Steady-State Visual Evoked Potentials ( SSVEP) based Brain-Computer Interfaces system whose stimuli frequency produced by a Liquid Crystal Displays (LED) is achieved. In order to extract the Steady-State Visual Evoked Potentials(SSVEP) , the Fast Fourier Transform ( FFT) and the method based on Mallat wavelet and AR model to offline analysis of the electroencephalogram are used. Analysis results show that these two methods both can extract the SSVEP signal with a high accuracy , and the FFT is more suitable for the brain-computer interface system, so it achieves a online test of the SSVEPBCIs based on FFT.%实现了一个以液晶显示器(LED)产生刺激频率的稳态视觉诱发电位(SSVEP)脑-机接口系统(BCIs).为了从脑电中提取出稳态视觉诱发电位(SSVEP)信号,运用基于快速傅里叶变换(FFT)的方法和基于Mallat小波及AR模型分析法这两种处理方法对脑电信号进行离线分析.实验结果表明,用这两种方法提取SSVEP信号都可以达到很高的准确率;而基于FFT的方法更适用于脑-机接口系统.因此用基于FFT的方法完成了这个SSVEPBCIs的在线实验.

  3. Changes in visual object recognition precede the shape bias in early noun learning

    Directory of Open Access Journals (Sweden)

    Meagan N Yee

    2012-12-01

    Full Text Available Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- 24 month olds tested a hypothesized developmental link between changes in the visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows that in artificial noun learning tasks, during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically preceded the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning.

  4. LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion.

    Science.gov (United States)

    Roseman, Leor; Sereno, Martin I; Leech, Robert; Kaelen, Mendel; Orban, Csaba; McGonigle, John; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2016-08-01

    The question of how spatially organized activity in the visual cortex behaves during eyes-closed, lysergic acid diethylamide (LSD)-induced "psychedelic imagery" (e.g., visions of geometric patterns and more complex phenomena) has never been empirically addressed, although it has been proposed that under psychedelics, with eyes-closed, the brain may function "as if" there is visual input when there is none. In this work, resting-state functional connectivity (RSFC) data was analyzed from 10 healthy subjects under the influence of LSD and, separately, placebo. It was suspected that eyes-closed psychedelic imagery might involve transient local retinotopic activation, of the sort typically associated with visual stimulation. To test this, it was hypothesized that, under LSD, patches of the visual cortex with congruent retinotopic representations would show greater RSFC than incongruent patches. Using a retinotopic localizer performed during a nondrug baseline condition, nonadjacent patches of V1 and V3 that represent the vertical or the horizontal meridians of the visual field were identified. Subsequently, RSFC between V1 and V3 was measured with respect to these a priori identified patches. Consistent with our prior hypothesis, the difference between RSFC of patches with congruent retinotopic specificity (horizontal-horizontal and vertical-vertical) and those with incongruent specificity (horizontal-vertical and vertical-horizontal) increased significantly under LSD relative to placebo, suggesting that activity within the visual cortex becomes more dependent on its intrinsic retinotopic organization in the drug condition. This result may indicate that under LSD, with eyes-closed, the early visual system behaves as if it were seeing spatially localized visual inputs. Hum Brain Mapp 37:3031-3040, 2016. © 2016 Wiley Periodicals, Inc.

  5. Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Fuglø, Dan; Pedersen, Henrik; Rostrup, Egill;

    2012-01-01

    To compare different electroencephalography (EEG)-based regressors and their ability to predict the simultaneously recorded blood oxygenation level dependent response during blocked visual stimulation, simultaneous EEG-functional magnetic resonance imaging in 10 healthy volunteers was performed...... in different occipital and extraoccipital cortical areas not explained by the boxcar regressor. The results suggest that the P1-N2 regressor is the best EEG-based regressor to model the visual paradigm, but when looking for additional effects like habituation or attention modulation that cannot be modeled...