WorldWideScience

Sample records for early seedling development

  1. Sowing on the emergence and early development of seedlings o baru

    Directory of Open Access Journals (Sweden)

    Alan Mario Zuffo

    2014-09-01

    Full Text Available The objective of this work to evaluate the influence of the position of baru seeds, the emergence and early seedling development. The test was conducted in a greenhouse experiment in randomized blocks, with five treatments (seeding position, with four replications, positions were: A - Hilo up, B - hilo down C - hilum and raphe aside, D - horizontal raphe up, E - horizontal raphe down. It was observed that the seeds deposited at the position B (heel down provided better emergence and seedling development. We evaluated the emergence, speed of emergence index, plant height, stem diameter, root length, dry mass of air, root dry weight, relative AP/DC, FSPA/FSR and Dickson quality index. The emergence and early seedling development baru were influenced by sowing position. The seeds deposited with the hilum down provided better results.

  2. Effect of chromium toxicity on germination and early seedling growth ...

    African Journals Online (AJOL)

    USER

    2010-07-19

    Jul 19, 2010 ... germination and early seedling growth of melon (Cucumis melo L.). Chromium ... chromium on seed germination and seedling growth- biomass in early ..... such critical regulatory mechanisms are likely to operate in seeds at ...

  3. Production and development of eucalyptus seedlings in function of doses of phosphorus

    Directory of Open Access Journals (Sweden)

    José Henrique Tertulino Rocha

    2013-12-01

    Full Text Available This study evaluated the effect of phosphorus (P on the survival in the nursery and early development in the field of clonal Eucalyptus urophylla x Eucalyptus grandis seedlings. The experimental design was completely randomized with four treatments and five replicates of 30 plants per replicate. At the end of the cycle (90 days, 15 seedlings were used for determining the dry matter accumulation and nutrient concentration in the shoot. The rest was planted in the field to determine the percentage of survival and early development. The treatments consisted of four doses of P fertilization (0.0, 1.3, 2.6 and 5.2 mg plant-1. To obtain high quality seedlings in conditions similar to this experiment it is required doses of P in the range from 3.6 to 3.8 mg plant-1. Doses greater than 4 mg plant-1 affect the development and quality of eucalyptus seedlings. An adequate phosphorus fertilization of eucalyptus seedlings increase, by about 30%, the percentage of surviving seedlings in the field.

  4. Sugar signalling during germination and early seedling establishment in Arabidopsis

    NARCIS (Netherlands)

    Dekkers, S.J.W.

    2006-01-01

    Sugars have pronounced effects on many plant processes like gene expression, germination and early seedling development. Several screens for sugar insensitive mutants were performed to identify genes involved in sugar response pathways using the model plant Arabidopsis. These include sun, gin and

  5. Early development of Chondrus ocellatus holm (Gigartinaceae, Rhodophyta)

    Science.gov (United States)

    Wang, Aihua; Wang, Jicheng; Duan, Delin

    2006-06-01

    Chondrus is an economically important red algae widely used for food and biochemical purpose. It early development is crucial for the culture and seedling propagation. We chose tetraspores and carpospores of Chondrus ocellatus as examples for experiment of the culture, induction and release in laboratory condition, aiming to understand early development of C. ocellatus and to apply in seedling production. Mature C. ocellatus were collected in Qingdao, China, from Nov. to Dec. 2004. After the gametophyte and tetrasporophyte were brushed and washed with sterilized seawater, the algal materials were treated in 1.5% KI for 20 min, then were dried for 1h to stimulate the releasing of spores. After the spores released overnight, it were cultured in PES medium, incubated at 18 °C, 10±2 μmol/(m2·s1) in 12∶12h (light: dark). The observation and recording under microscope were carried out. Continuous observation of the early development showed that both tetraspore and carpospore are similar to each other. In general, three stages of the early development were shown being division, discoid crust and seedling stages. To the division stage, the most obvious feature was the increasing of cell number; during the discoid crust stage, the discoid crust had a three-dimensional axis, and it began to differentiate into two types of cells: the basal cells and the apical cells; and to the seedling stage, several protuberances-like appeared on the discoid crusts and formed juvenile seedlings. Carpospores and tetraspores exhibited a similar development process that included division stage, discoid crust stage and seedling stage.

  6. Characterization of Pinus pinaster seedling growth in different photo- and thermoperiods in a phytotron as a basis for early selection

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, A.; Kremer, A. [INRA, Laboratory of Forest Trees Genetics and Breeding, Cestas (France); Dormling, I. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics

    1995-07-01

    Seedlings of Pinus pinaster families exhibiting monocyclic or polycyclic adult growth patterns, were cultivated in climate chambers during two successive growth periods separated by a period of low temperature to satisfy the chilling requirement. Six treatments combining photoperiod and temperature factors were tested. The morphology of the apex was assessed and height and biomass measured. First season seedlings grown in continuous light varied in apex morphology from the typical juvenile rosette to the adult bud usually found outdoors on 2-yr-old plants. It seems possible to distinguish monocyclic and polycyclic populations at an early stage by characters related to development and growth height. The results indicate that special environmental conditions during seedling development may be used as a tool in the search for criteria for early selection. 35 refs, 6 figs, 6 tabs

  7. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    Science.gov (United States)

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  8. Early development of grateloupia turuturu (Halymeniaceae, Rhodophyta)

    Science.gov (United States)

    Wang, Gaoge; Jiang, Chunmei; Wang, Shasha; Wei, Xiaojiao; Zhao, Fengjuan

    2012-03-01

    Grateloupia turuturu is a commercial red alga with potential value in nutraceuticals and pharmaceuticals. To supplement information on its life history and verify whether carpospores can be used for seedling culture, early development of G. turuturu was investigated under culture conditions (27°C, 10-13 μol/(m2·s) in irradiance, photoperiod 10:14 h L:D). Three physiological stages were recognized by continuous microscopic observation: division stage, discoid crust stage, and juvenile seedling stage. At the beginning of the division stage, the carpospores developed germ tubes into which the carpospore protoplasm was evacuated, and then the carpospore protoplasm in the germ tubes began to divide continuously until discoid crusts formed. Finally, upright thalli appeared on the discoid crusts and developed into juvenile seedlings. It took about 60 days for carpospores to develop into juvenile seedlings. The growth parameters, including germination rate for carpospores and discoid crust diameter, were recorded. These results contribute more information on the life cycle, and at the same time are of great significance in the scaling-up of artificial seedling cultures of G. turuturu.

  9. Ammonia Volatilization from Urea-Application Influenced Germination and Early Seedling Growth of Dry Direct-Seeded Rice

    Directory of Open Access Journals (Sweden)

    Xiaoli Qi

    2012-01-01

    Full Text Available Poor seed germination and early seedling growth associated with urea-induced soil ammonia volatilization are major constraints in the adoption of dry direct-seeded rice. To directly examine soil ammonia volatilization and its damage to seed germination and early seedling growth of dry direct-seeded rice when urea is applied at seeding, two Petri-dish incubation experiments and a field experiment were conducted. Ammonia volatilization due to urea application significantly reduced seed germination and early seedling growth of dry direct-seedling rice. NBPT significantly reduced ammonia volatilization following urea application. The application of ammonium sulfate, instead of urea at seeding, may mitigate poor crop establishment of dry direct-seeded rice. Root growth of dry direct-seeded rice was more seriously inhibited by soil ammonia volatilization than that of shoot. Results suggest that roots are more sensitive to soil ammonia toxicity than shoots in dry direct-seeded rice system when N is applied as urea at seeding.

  10. Germination and early seedling growth of Pinus densata Mast. provenances

    Science.gov (United States)

    Yulan Xu; Nianhui Cai; Bin He; Ruili Zhang; Wei Zhao; Jianfeng Mao; Anan Duan; Yue Li; Keith Woeste

    2016-01-01

    We studied seed germination and early seedling growth of Pinus densata to explore the range of variability within the species and to inform afforestation practices. Phenotypes were evaluated at a forest tree nursery under conditions that support Pinus yunnanensis, one of the presumed parental species of P. densata...

  11. Effect of seedling stock on the early stand development and physiology of improved loblolly pine (Pinus taeda L.) seedlings

    Science.gov (United States)

    Shakuntala Sharma; Joshua P. Adams; Jamie L. Schuler; Robert L. Ficklin; Don C. Bragg

    2016-01-01

    This study assessed the effects of spacing and genotype on the growth and physiology of improved loblolly pine (Pinus taeda L.) seedlings from three distinct genotypes planted in Drew County, Arkansas (USA). Genotype had a significant effect on survival and height. Clone CF Var 1 showed greater height and survival compared to other seedlings....

  12. Facilitative and Inhibitory Effect of Litter on Seedling Emergence and Early Growth of Six Herbaceous Species in an Early Successional Old Field Ecosystem

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2014-01-01

    Full Text Available In the current study, a field experiment was conducted to examine effects of litter on seedling emergence and early growth of four dominant weed species from the early successional stages of old field ecosystem and two perennial grassland species in late successional stages. Our results showed that increased litter cover decreased soil temperature and temperature variability over time and improved soil moisture status. Surface soil electrical conductivity increased as litter increased. The increased litter delayed seedling emergence time and rate. The emergence percentage of seedlings and establishment success rate firstly increased then decreased as litter cover increased. When litter biomass was below 600 g m−2, litter increased seedlings emergence and establishment success in all species. With litter increasing, the basal diameter of seedling decreased, but seedling height increased. Increasing amounts of litter tended to increase seedling dry weight and stem leaf ratio. Different species responded differently to the increase of litter. Puccinellia tenuiflora and Chloris virgata will acquire more emergence benefits under high litter amount. It is predicted that Chloris virgata will dominate further in this natural succession old field ecosystem with litter accumulation. Artificial P. tenuiflora seeds addition may be required to accelerate old field succession toward matured grassland.

  13. Facilitative and inhibitory effect of litter on seedling emergence and early growth of six herbaceous species in an early successional old field ecosystem.

    Science.gov (United States)

    Li, Qiang; Yu, Pujia; Chen, Xiaoying; Li, Guangdi; Zhou, Daowei; Zheng, Wei

    2014-01-01

    In the current study, a field experiment was conducted to examine effects of litter on seedling emergence and early growth of four dominant weed species from the early successional stages of old field ecosystem and two perennial grassland species in late successional stages. Our results showed that increased litter cover decreased soil temperature and temperature variability over time and improved soil moisture status. Surface soil electrical conductivity increased as litter increased. The increased litter delayed seedling emergence time and rate. The emergence percentage of seedlings and establishment success rate firstly increased then decreased as litter cover increased. When litter biomass was below 600 g m(-2), litter increased seedlings emergence and establishment success in all species. With litter increasing, the basal diameter of seedling decreased, but seedling height increased. Increasing amounts of litter tended to increase seedling dry weight and stem leaf ratio. Different species responded differently to the increase of litter. Puccinellia tenuiflora and Chloris virgata will acquire more emergence benefits under high litter amount. It is predicted that Chloris virgata will dominate further in this natural succession old field ecosystem with litter accumulation. Artificial P. tenuiflora seeds addition may be required to accelerate old field succession toward matured grassland.

  14. Photoinduced toxicity of fluoranthene on germination and early development of plant seedling.

    Science.gov (United States)

    Kummerová, Marie; Kmentová, Eva

    2004-07-01

    The influence of light on phytotoxicity of increased concentration (2, 5, 10 mg/l) of intact fluoranthene (FLT) and photomodified fluoranthene (phFLT) diluted in experimental solutions was investigated. The germination rate of lettuce (Lactuca sativa L.), onion (Allium cepa L.) and tomato (Lycopersicum esculentum L.) seeds and some parameters of seedlings primary growth of these plant species were used as laboratory indicators of phytotoxicity. Among them a length of root and shoot, their dry weight and a content of photosynthetic pigments in shoot were measured. The results demonstrated that the higher concentration (5 and 10 mg/l) of FLT and especially of phFLT significantly inhibited the germination rate of seeds and the length of root and shoot seedlings of all plant species. Decreased production of biomass expressed by dry weight of root and shoot was found in lettuce seedlings under the inhibitory effect of FLT and phFLT. An increased concentration of FLT and phFLT did not exhibit an unambiguous effect on the content of photosynthetic pigments in shoot of experimental plants. Only the highest concentration (10 mg/l) of FLT significantly increased content of chlorophylls a and b in lettuce, onion and tomato plants and content of carotenoids in lettuce and onion. Light intensified a significant inhibitory effect of phFLT in the most testified parameters of germination and seedling growth.

  15. Longleaf pine bud development: influence of seedling nutrition

    Science.gov (United States)

    J. P. Barnett; D. P. Jackson; R. K. Dumroese

    2010-01-01

    A subset of seedlings from a larger study (Jackson and others 2006, 2007) were selected and evaluated for two growing seasons to relate bud development, and root-collar diameter (RCD), and height growth with three nursery fertilization rates. We chose seedlings in the 0.5 (lowest), 2.0 (mid-range), and 4.0 (highest) mg of nitrogen per seedling treatments. Buds moved...

  16. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings.

    Science.gov (United States)

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C; Barroso, Juan B; del Río, Luis A; Palma, José M; Corpas, Francisco J

    2015-09-01

    The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate-glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide ((·)NO), superoxide radical (O2 (·-)) and peroxynitrite (ONOO(-)) was investigated using confocal laser scanning microscopy. The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes

  17. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: The plant hormone abscisic acid (ABA regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22 degrees C, continuous white light with 150 micromol m(-2 s(-1 but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23 degrees C, 14/10 hr photoperiod with 120 micromol m(-2 s(-1. It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2. PRINCIPAL FINDINGS: In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes. CONCLUSION: These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.

  18. GERMINATION AND DEVELOPMENT OF BRACHIARIA SEEDLING IN TEXTURES OF SOIL AND SOWING DEPTH

    Directory of Open Access Journals (Sweden)

    J. H. Castaldo

    2016-09-01

    Full Text Available The agriculture expansion at Brazil is turning to lower clay index soils and consequently, less organic matter content and cation exchange capacity. To overcome those deficiencies, an intense organic matter addition in these soils may be a solution, and this solution is positive when using a crop-livestock integration with corn-pasture dual crop planted on winter. However, to establish this dual-crop system, there is a need to study the behavior of seeds and seedlings of Brachiaria ruziziensis sown in greater depths than normally recommended. Thus, this work aimed to determine the best depth of sowing B. ruziziensis in sandy and loamy soils of Umuarama region, studying the germination and early development of seedlings. The work was held in pots of 12 cm diameter x 12 cm deep, filled with 2 types of soil, a sandy and clay ones with 30 B. ruziziensis seeds sown each pot in five sowing depths: 0, 2, 4, 6 and 8 cm. After 16 days, the number of emerged seedlings was evaluated to set up the germination rate of each treatment, after that, the plants where leveled to 4 each pot, those were cultivated for another 45 days to evaluate the fresh and dried masses of plants and roots, the height of the plants and average length of roots. The sowing depth with higher percentage of germination estimated was 2.65 cm to sandy and 3.02 cm to clay soil. At seedlings development, there was a standard, with better development seedling at lower sowing depths on clay soil and better developments at higher sowing depths in sandy soil.

  19. Formation and early development of tetraspores of Polysiphonia urceolata (Rhodomelaceae, Rhodophyta)

    Science.gov (United States)

    Yao, Jianting; Li, Dapeng; Yu, Shenhui; Liu, Jidong; Duan, Delin

    2009-05-01

    Polysiphonia urceolata is one type of potential commercial red seaweeds used for breeding and cultivation, because of its significant biochemical and biomedical application. However, the information of breeding and seedling incubation for cultivation is limited, especially the early development. In this study, tetrasporohyte and gametophyte of P. urceolata were taken as the study materials in Huiquan Bay, Qingdao, China. The cleaned and sterilized tetrasporophytes and gametophytes were pre-cultured in sterilized seawater, then nurtured at 18°C, 25 μmol photons m-2 s-1 in 12:12 h (light:dark) photoperiod. Continuous observation under microscope showed that the early development consists of bipolar division stage and seedling stage. In the division stage, tetraspores germinate into bipolar sporelings that further differentiate into a colorless rhizoidal portion and a lightly pigmented upright shoot. The lightly pigmented rhizoidal cell develops to a rhizoid and the larger pigmented cell transforms to an erect axis. In the seedling stage, several quasi-protuberances appear on the erect axis and form juvenile seedlings. The results demonstrate the culture of P. urceolata from tetraspores under laboratory conditions.

  20. Effects of NaCl stress on seed germination, early seedling growth ...

    African Journals Online (AJOL)

    Effects of salt stress on seed germination, early seedling growth and some physiological characteristics were evaluated for four cauliflower species in seven treatments of salinity including 0 (control), 34, 68, 102, 136, 170 and 204 mM NaCl in a three replicated randomized completely block design (RCBD). This result shows ...

  1. Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2 Is Involved in ABA-Mediated Early Seedling Development

    Directory of Open Access Journals (Sweden)

    Xufeng Li

    2009-05-01

    Full Text Available The voltage-dependent anion channel (VDAC is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.

  2. Production and early field performance of RPM® seedlings in Missouri floodplains

    Science.gov (United States)

    Daniel C. Dey; Wayne Lovelace; John M. Kabrick; Michael A. Gold

    2004-01-01

    A new nursery culture process has been developed to produce large container RPM? seedlings in an effort to improve the success in artificially regenerating hardwoods. Major features of the process include air root pruning of seedlings grown in a well aerated soil medium to encourage a dense, fibrous root system. Production has focused on native bottomland tree, shrub,...

  3. Photomodulation of strigolactone biosynthesis and accumulation during sunflower seedling growth

    Science.gov (United States)

    Bharti, Niharika; Tripathi, Smita; Bhatla, Satish Chander

    2015-01-01

    Present investigations report the presence of strigolactones (SLs) and photomodulation of their biosynthesis in sunflower seedlings (roots, cotyledons and first pair of leaves) during early phase of seedling development. Qualitative analyses and characterization by HPLC, ESI-MS and FT-IR revealed the presence of more than one type of SLs. Orobanchyl acetate was detected both in roots and leaves. Five-deoxystrigol, sorgolactone and orobanchol were exclusively detected in seedling roots. Sorgomol was detectable only in leaves. HPLC eluted fraction from seedling roots and leaves co-chromatographing with GR24 (a synthetic SL) could also bring about germination in Orobanche cernua (a weed) seeds, which are established to exhibit SL – mediated germination, thereby indicating the SL identity of the eluates using this bioassay. SLs accumulation was always more in the roots of light-grown seedlings, it being maximum at 4 d stage. Although significant activity of carotenoid cleavage dioxygenase (CCD, the enzyme critical for SL biosynthesis) was detected in 2 d old seedling roots, SLs remained undetectable in cotyledons at all stages of development and also in the roots of 2 d old light and dark-grown seedlings. Roots of light-grown seedlings showed maximum CCD activity during early (2 d) stage of development, thereby confirming photomodulation of enzyme activity. These observations indicate the migration of a probable light-sensitized signaling molecule (yet to be identified) or a SL precursor from light exposed aerial parts to the seedling roots maintained in dark. Thus, a photomodulation and migration of SL precursor/s is evident from the present work. PMID:26252191

  4. Ectopic expression of soybean gmsbh1 confers aba sensitivity during seed germination and early seedling establishment in transgenic arabidopsis

    International Nuclear Information System (INIS)

    Shu, Y.; Zhou, Y.; Huang, S.; Chen, M.; Huang, L.; Ma, H.

    2017-01-01

    The class I KNOX homeobox transcription factors are known to play an important role in maintenance of plant phenotype, especially leaves and flowers. In this study, a soybean KNOX I homeobox transcription factor, GmSBH1, was analyzed and confirmed to play important roles in the process of seed germination and developing. Real time quantitative PCR assay showed that the transcript level of GmSBH1 in soybean seedlings was modulated by plant hormones, such as IAA, GA, MeJA and ABA.Yeast one-hybrid assay showed that GmSBH1 could bind to the ABRE cis-element. Overexpression of GmSBH1 in Arabidopsis resulted in the abnormal phenotype of flowers and siliques. In GmSBH1 transgenic lines, both seed germination and seedlings growth showed hypersensitive to ABA. Moreover, the expression of ABA-responsive genes, such as ABI3 and ABI5, were increased in the transgenic line seedlings. Taken together, ectopic expression of GmSBH1 could alter the morphology and confer ABA sensitivity during seed germination and early seedling growth in transgenic Arabidopsis. (author)

  5. Germination and initial development of aroeira (Myracrodruon urundeuva seedlings

    Directory of Open Access Journals (Sweden)

    Silvana de Paula Quintão Scalon

    2012-12-01

    Full Text Available Aroeira has great economic importance due to its wood useful, tannins extraction and use in the pharmacology. The aim of this work was to evaluate the germination aspects and initial seedlings development of aroeira, under gibberellins, substrata and shading effects, and for that two experiments were led out. In the first one, seeds were previously soaked for 24 hours in water and in 100 mg.L-1 gibberellin solution and were sowed directly in cells trays in the following substrata: land and sand (1:1 and 1:2 and Plantmax . In the second experiment, 15 cm length seedlings were transplanted to polyethylene sacks filled out land+sand+poultry manure (1:1:1 partly decomposed and they were maintained at greenhouse for 15 days. Soon after, seedlings were transferred for the following conditions: shading (50% and full sun and they were 50 mg.L-1 and 150 mg.L-1 gibberellins solutions pulverized, as control seedlings water pulverized. Aroeira seeds should not be previously water or gibberellins imbibed before being sowed. The best substrata for aroeira seeds germination was Plantmax without germinative treatments to reach higher than 80% of seedlings survival. The seedlings developed better at full sun light and the gibberellin. It was observed increment in height, diameter, foliar area and fresh and dry mass from aerial and root part when compared to shading situation. The gibberellins applications did not influence the aroeira seedlings initial growth characteristics.

  6. Factors affecting acorn production and germination and early growth of seedlings and seedling sprouts

    Science.gov (United States)

    David F. Olson; Stephen G. Boyce

    1971-01-01

    Acorn production is extremely variable and unpredictable. Flowering is copious, but many climatic factors influence acorn development from initiation of flowers to acorn maturity. Acorns are consumed by birds, animals, insects, and microorganisms. The establishment of seedlings is more closely related to favorable site factors than to size of crops. A majority of oaks...

  7. Growth and root development of four mangrove seedlings under varying salinity

    Science.gov (United States)

    Basyuni, M.; Keliat, D. A.; Lubis, M. U.; Manalu, N. B.; Syuhada, A.; Wati, R.; Yunasfi

    2018-03-01

    This present study describes four mangrove seedlings namely Bruguiera cylindrica, B. sexangula, Ceriops tagal, and Rhizophora apiculata in response to salinity with particular emphasis to root development. The seedlings of four mangroves were grown for 5 months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. Salinity significantly decreased the growth (diameter and plant height) of all mangrove seedlings. Root developments were observed from the tap and lateral root. The number, length and diameter of both roots-typed of B. cylindrica, B. sexangula and C. tagal seedlings significantly decreased with increasing salt concentration with optimum development at 0.5% salinity. By contrast, the number, length, and diameter of tap root of R. apiculata seedlings were significantly enhanced by salt with maximal stimulation at 0.5%, and this increase was attenuated by increasing salinity. On the other hand, lateral root development of R. apiculata significantly thrived up to 1.5% salinity then decreasing with the increasing salinity. The different response of root development suggested valuable information for mangrove rehabilitation in North Sumatra and their adaption to withstand salt stress.

  8. Afforestation of Boreal Open Woodlands: Early Performance and Ecophysiology of Planted Black Spruce Seedlings

    Directory of Open Access Journals (Sweden)

    Daniel Lord

    2013-06-01

    Full Text Available Open lichen woodlands (LWs are degraded stands that lack the ability to regenerate naturally due to a succession of natural and/or anthropogenic disturbances. As they represent both interesting forest restoration and carbon sequestration opportunities, we tested disc scarification and planting of two sizes of containerized black spruce (Picea mariana Mill. (BSP seedlings for their afforestation. We compared treatment of unproductive LWs to reforestation of harvested, closed-crown black spruce-feathermoss (BSFM stands. After one year, seedling survival and nutritional status were equivalent among stand types but despite higher root elongation index (REI, planted seedlings in LWs had lower relative growth rate, smaller total biomass and stem diameter than those in BSFM stands. Soil fertility variables, soil temperature, nor seedling water potential, helped at explaining this early growth response. Disc scarification significantly improved seedling first-year survival, biomass and foliar nutrient concentrations of P, Ca, and Mg. Smaller planting stock showed higher REI, higher shoot water potential, and higher foliar nutrient concentration of all but one of the measured nutrients (N, P, K and Mg. Hence, preliminary results suggest that planting of smaller containerized black spruce stock, combined with disc scarification, shows potential for afforestation of unproductive LWs. The impact of the lichen mat and other potential growth limiting factors on afforestation of these sites requires further investigation.

  9. Research and Development of Statistical Analysis Software System of Maize Seedling Experiment

    OpenAIRE

    Hui Cao

    2014-01-01

    In this study, software engineer measures were used to develop a set of software system for maize seedling experiments statistics and analysis works. During development works, B/S structure software design method was used and a set of statistics indicators for maize seedling evaluation were established. The experiments results indicated that this set of software system could finish quality statistics and analysis for maize seedling very well. The development of this software system explored a...

  10. Asymbiotic seed germination and in vitro seedling development of ...

    African Journals Online (AJOL)

    Within two weeks of culture, spherules emerged out due to cracking of the seed coat. The spherules developed into protocorms with a leaf primordium at apical portion after 3 to 4 weeks and gradually produced complete seedlings. Strong and stout root system was induced in in vitro seedlings on transferring in half strength ...

  11. Rooting and early growth of red mangrove seedlings from thermally stressed trees

    International Nuclear Information System (INIS)

    Banus, M.D.; Kolehmainen, S.E.

    At Guayanilla on the south coast of Puerto Rico a fossil fueled electric generating station of 1100 MW(e) discharges its cooling water into a nearly enclosed lagoon of about 25 hectares area. The plume and lagoon typically have water temperatures 10 0 C and 8 0 C above ambient so that the winter and summer lagoon temperatures are 34 and 39 0 C, respectively. The north, east, and south shores of this lagoon have extensive stands of red and black mangrove trees which are visibly stressed by the elevated temperatures. Ripe red mangrove seedlings from the bearing trees are significantly smaller than those from trees in Guayanilla Bay not thermally stressed and in unpolluted bays from western Puerto Rico. Seedlings from thermally stressed trees developed negative buoyancy and initial roots faster but first pair of leaves slower than seedlings from control areas. This behavior will be discussed in relation to the propagation of seedlings from non-stressed areas. (U.S.)

  12. Effects of water-soluble humic extract and biofertilizer on development of Callophyllum brasiliense seedlings

    Directory of Open Access Journals (Sweden)

    Jader Galba Busato

    2016-06-01

    Full Text Available The objective of this work was to evaluate the effects of water-soluble humic extract (EHSA, Hortbio® biofertilizer (HORT and both compounds combination (EHSA+HORT on vegetative growth, nutrient absorption and chlorophyll levels in guanandi (Callophyllum brasiliense seedlings. Isolated and combined additions of EHSA and HORT did not affect seedlings height, number of leaves, leaf and root dry matter and leaf area during early stages of seedling growth. However, HORT and EHSA+HORT treatments increased chlorophyll levels and total N content. Addition of HORT resulted in S, Zn, Mg, Mn and Cu increases in the seedlings leaves, while ESHA application increased K, Mg, S and B. P and Ca levels were not altered by the treatments, however, addition of EHSA and EHSA+HORT reduced significantly the absorption of Cu, Fe, Mn and Zn.

  13. Seed treatments enhance photosynthesis in maize seedlings by reducing infection with Fusarium spp. and consequent disease development in maize

    Science.gov (United States)

    The effects of a seed treatment on early season growth, seedling disease development, incidence Fusarium spp. infection, and photosynthetic performance of maize were evaluated at two locations in Iowa in 2007. Maize seed was either treated with Cruiser 2Extreme 250 ® (fludioxonil + azoxystrobin + me...

  14. Effects of genetics, management intensity, and seedling density on early stocking in loblolly pine

    Science.gov (United States)

    Scott D. Roberts; Randall J. Rousseau; B. Landis Herrin

    2015-01-01

    Rapid establishment and early tree growth can be key factors in successful plantation management. This generally entails planting good quality planting stock at a seedling density appropriate for the management objectives and then managing at an appropriate intensity with a goal of fully occupying the site as quickly as possible within the context of those objectives....

  15. Synthesis of ectomycorrhizae on northern red oak seedlings in a Michigan nursery

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R.K.; Johnson, P.S.

    1993-01-01

    Vegetative inoculum of the ectomycorrhizal fungus Suillus luteus was thoroughly mixed into fumigated nursery soil, and northern red oak seedlings of four families were evaluated one and two years after sowing for ectomycorrhizal development, growth, and nutrition. At the end of year one, treated seedlings were successfully inoculated with S. luteus, but the percentage varied significantly with family. Suillus luteus persisted on lateral roots two years following sowing. Two of four seedling families inoculated with S. luteus were significantly larger in size than control plants. These results suggest that the fungal symbiont S. luteus can be successfully introduced into nurseries and that early ectomycorrhizal development improves the growth of northern red oak seedlings.

  16. Cotyledon persistence and seedling growth in fluted Pumpkin ...

    African Journals Online (AJOL)

    Photosynthetic activity of exposed cotyledons of Telfairia occidentalis during seed germination and the growth of seedlings with removed or attached cotyledons were investigated. The experiment investigated how early cotyledon removal affects seedling growth. Seedlings from seeds germinated in light and those ...

  17. Agroforestry wastes used for germination and development of sweet angelim seedlings

    Directory of Open Access Journals (Sweden)

    João Ricardo Avelino Leão

    2013-03-01

    Full Text Available This paper aimed to define the ideal type of agroforestry substrate and the adequate depth of sweet angelim sowing, providing information on the development of seedlings, as well as on low-cost substrates which are easy to be obtained. An experiment in a greenhouse was carried out, in a completely randomized design with treatments distributed in a factorial scheme (5x3, with the factors agroforestry substrates and depths being replicated seven times with a seed in each container. The following parameters were analyzed: germination percentage, germination speed index, total dry weight, number of leaves, seedlings height and coll diameter, and Dickson’s seedling quality index. The results showed that the most suitable substrate for germination and development of this native species was that containing Brazil nut shell, peanut hull, or açai seed, and the ideal depth for sowing and managing seedlings was on the surface.

  18. Effects of temperature and irradiance on early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta)

    Science.gov (United States)

    Li, Xiao; Zhao, Peng; Wang, Gaoge; Li, Dapeng; Wang, Jicheng; Duan, Delin

    2010-05-01

    Chondrus is a type of commercially produced red seaweed that widely used for food and carrageen extraction. Although the natural life history of the alga had been well understood, the factors influencing development of the tetraspore and carpospore remain poorly understood. In the perspective of seedling resources, the regulation of early development is crucial for the seedling nursing; therefore, it is necessary to understand the physiological influences during its early development. In this study, we studied the effects of temperature and irradiance on the early development of Chondrus ocellatus Holm under laboratory conditions. The released tetraspores and carpospores were cultivated at different temperatures (10-28°C) and irradiances (10, 60 μmol photons m-2s-1) with a photoperiod of 12L:12D. The results indicate that both tetraspores and carpospores are tolerant to temperatures of 10-25°C, and have the highest relative growth rate at 20°C. Irradiance variances influenced the growth of the discoid crusts, and the influence was more significant with increasing temperature; 60 μmol photons m-2s-1 was more suitable than 10 μmol photons m-2s-1. The optimum temperature and irradiance for the development of seedlings was 20°C and 60 μmol photons m-2s-1, respectively.

  19. [Comparison of development condition of different Liriope spicata seedlings].

    Science.gov (United States)

    Wang, Yue; Su, He; Zhan, Yan-Ting; Yang, Yang; Dong, Xue-Hui

    2017-04-01

    The study identified the main morphological index of the seedlings classification including seedling age,the root width and number of newborn buds and coarse roots, according to the local agricultural production techniques and assessment of Liriope spicata's growth and development condition. After carrying on K cluster analysis of the morphological, we separated the seedlings into two levels. The first level (Ⅰ): the new talent with the root width exceeding two point five millimeters, the new born buds exceeding three, and with the coarse root exceeding one. The second level (Ⅱ): the old talent with the root width below one millimeters, the newborn buds below two and without coarse root. The study surveyed the plants' growth index dynamics, as well as the yield and quality of the tuberous root. The experimental results suggested that the growth condition of seedling Ⅰwas better, the yield of earthnut higher, the quality of earthnut more excellent. The study lied the foundation of L. spicata's grading standards and standardized production. Copyright© by the Chinese Pharmaceutical Association.

  20. Long branch-chains of amylopectin with B-type crystallinity in rice seed with inhibition of starch branching enzyme I and IIb resist in situ degradation and inhibit plant growth during seedling development : Degradation of rice starch with inhibition of SBEI/IIb during seedling development.

    Science.gov (United States)

    Pan, Ting; Lin, Lingshang; Wang, Juan; Liu, Qiaoquan; Wei, Cunxu

    2018-01-08

    Endosperm starch provides prime energy for cereal seedling growth. Cereal endosperm with repression of starch branching enzyme (SBE) has been widely studied for its high resistant starch content and health benefit. However, in barley and maize, the repression of SBE changes starch component and amylopectin structure which affects grain germination and seedling establishment. A high resistant starch rice line (TRS) has been developed through inhibiting SBEI/IIb, and its starch has very high resistance to in vitro hydrolysis and digestion. However, it is unclear whether the starch resists in situ degradation in seed and influences seedling growth after grain germination. In this study, TRS and its wild-type rice cultivar Te-qing (TQ) were used to investigate the seedling growth, starch property changes, and in situ starch degradation during seedling growth. The slow degradation of starch in TRS seed restrained the seedling growth. The starch components including amylose and amylopectin were simultaneously degraded in TQ seeds during seedling growth, but in TRS seeds, the amylose was degraded faster than amylopectin and the amylopectin long branch-chains with B-type crystallinity had high resistance to in situ degradation. TQ starch was gradually degraded from the proximal to distal region of embryo and from the outer to inner in endosperm. However, TRS endosperm contained polygonal, aggregate, elongated and hollow starch from inner to outer. The polygonal starch similar to TQ starch was completely degraded, and the other starches with long branch-chains of amylopectin and B-type crystallinity were degraded faster at the early stage of seedling growth but had high resistance to in situ degradation during TRS seedling growth. The B-type crystallinity and long branch-chains of amylopectin in TRS seed had high resistance to in situ degradation, which inhibited TRS seedling growth.

  1. Specificity of fungal associations of Pyroleae and Monotropa hypopitys during germination and seedling development.

    Science.gov (United States)

    Johansson, V A; Bahram, M; Tedersoo, L; Kõljalg, U; Eriksson, O

    2017-05-01

    Mycoheterotrophic plants obtain organic carbon from associated mycorrhizal fungi, fully or partially. Angiosperms with this form of nutrition possess exceptionally small 'dust seeds' which after germination develop 'seedlings' that remain subterranean for several years, fully dependent on fungi for supply of carbon. Mycoheterotrophs which as adults have photosynthesis thus develop from full to partial mycoheterotrophy, or autotrophy, during ontogeny. Mycoheterotrophic plants may represent a gradient of variation in a parasitism-mutualism continuum, both among and within species. Previous studies on plant-fungal associations in mycoheterotrophs have focused on either germination or the adult life stages of the plant. Much less is known about the fungal associations during development of the subterranean seedlings. We investigated germination and seedling development and the diversity of fungi associated with germinating seeds and subterranean seedlings (juveniles) in five Monotropoideae (Ericaceae) species, the full mycoheterotroph Monotropa hypopitys and the putatively partial mycoheterotrophs Pyrola chlorantha, P. rotundifolia, Moneses uniflora and Chimaphila umbellata. Seedlings retrieved from seed sowing experiments in the field were used to examine diversity of fungal associates, using pyrosequencing analysis of ITS2 region for fungal identification. The investigated species varied with regard to germination, seedling development and diversity of associated fungi during juvenile ontogeny. Results suggest that fungal host specificity increases during juvenile ontogeny, most pronounced in the fully mycoheterotrophic species, but a narrowing of fungal associates was found also in two partially mycoheterotrophic species. We suggest that variation in specificity of associated fungi during seedling ontogeny in mycoheterotrophs represents ongoing evolution along a parasitism-mutualism continuum. © 2017 John Wiley & Sons Ltd.

  2. Effects of Fusarium circinatum on Disease Development and Gas Exchange in the Seedlings of Pinus spp.

    Directory of Open Access Journals (Sweden)

    Kwan-Soo Woo

    2011-08-01

    Full Text Available Four-year-old seedlings of Pinus thunbergii, Pinus densiflora and Pinus rigida were inoculated with Fusarium circinatum isolate (FT-7, the pitch canker fungus, from P. thunbergii, to evaluate the effects of the pathogen on disease development and gas exchange rate. Needle dehydration was evident on 2 of 10 seedlings of P. thunbergii and P. rigida at 18 and 21 days after inoculation, respectively, while no symptoms were observed in P. densiflora seedlings throughout the experiment. Gas exchange stopped completely in 4 of 5 measured seedlings of P. thunbergii and 2 of 5 measured seedlings of P. rigida at 25 days after inoculation, and in the remaining 3 seedlings of P. rigida at 39 days after inoculation. Disease development in P. thunbergii seedlings was faster than that in P. rigida seedlings. By the time, the experiment was ended at 78 days after inoculation, 9 of 10 seedlings of P. rigida and 8 of 10 seedlings of P. thunbergii seedlings treated with FT-7 was almost dead, but all seedlings of P. densiflora were still healthy. We suggest that P. densiflora is resistant to F. circinatum in the current study, and gas exchange rate of the species after inoculation does not differ significantly compared to that of untreated control.

  3. Identification of Sweet Sorghum accessions with seedling cold tolerance using both lab cold germination test and field early Spring planting evaluation

    Science.gov (United States)

    Cultivars with quick seedling emergence and stand establishment at early spring cold conditions may be planted early in the same region with an extended period of plant growth and can potentially increase either grain yield, stem sugar yield, or biomass production of sorghum. Planting cultivars with...

  4. Development of seedlings of watermelon cv. Crimson Sweet irrigated with biosaline water

    Directory of Open Access Journals (Sweden)

    José E. S. B. da Silva

    2015-09-01

    Full Text Available ABSTRACTThe limited access and the scarcity of good quality water for agriculture are some of the major problems faced in agricultural areas, particularly in arid and semiarid regions. The aim of this study was to evaluate the quality of watermelon seedlings (cv. Crimson Sweet, irrigated with different concentrations of biosaline water of fish culture. The experimental design was completely randomized with five treatments, corresponding to biosaline water at different concentrations (0, 33, 50, 67 and 100%, and four replicates of 108 seedlings. Watermelon seeds were sown in plastic trays filled with commercial substrate and irrigated with different solutions of biosaline water. Seedlings were harvested for biometric analysis at 14, 21 and 28 days after sowing. The use of biosaline water did not affect emergence and establishment of seedlings until 14 days after sowing, the period recommended for transplantation. However, the use of biosaline water affected the development of seedlings with longer exposure time.

  5. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.).

    Science.gov (United States)

    Verma, S K; White, J F

    2018-03-01

    This study was conducted to investigate indigenous seed endophyte effects on browntop millet seedling development. We report that seed-inhabiting bacterial endophytes are responsible for promoting seedling development, including stimulation of root hair formation, increasing root and shoot length growth and increasing photosynthetic pigment content of seedlings. Bacterial endophytes also improved resistance of seedlings to disease. A total of four endophytic bacteria were isolated from surface-sterilized seeds and identified by 16S rDNA sequencing as Curtobacterium sp. (M1), Microbacterium sp. (M2), Methylobacterium sp. (M3) and Bacillus amyloliquefaciens (M4). Removal of bacteria with streptomycin treatment from the seeds compromised seedling growth and development. When endophytes were reinoculated onto seeds, seedlings recovered normal development. Strains M3 and M4 were found to be most potent in promoting growth of seedlings. Bacteria were found to produce auxin, solubilize phosphate and inhibit fungal pathogens. Significant protection of seedlings from Fusarium infection was found using strain M4 in microcosm assays. The antifungal lipopeptide genes for surfactin and iturin were detected in M4; culture extracts of M4 showed a positive drop collapse result for surfactins. This study demonstrates that browntop millet seeds vector indigenous endophytes that are responsible for modulation of seedling development and protection of seedlings from fungal disease. This study is significant and original in that it is the first report of seed-inhabiting endophytes of browntop millet that influence seedling development and function in defence against soilborne pathogens. This study suggests that conservation and management of seed-vectored endophytes may be important in development of more sustainable agricultural practices. © 2017 The Society for Applied Microbiology.

  6. Cucumber seedling dependence on cotyledonary leaves for early growth Dependência das folhas cotiledonares para o crescimento inicial de pepino

    Directory of Open Access Journals (Sweden)

    Dilson Antônio Bisognin

    2005-06-01

    Full Text Available The objective of this work was to evaluate the dependence of cucumber (Cucumis sativus L. seedlings on cotyledonary leaves for early growth and establishment. Sets of two uniform emerging seedlings were used to quantify the initial growth and dry matter accumulation, as well as the intensity and stage of cotyledon damage in seedling establishment and to determine cotyledon protein, amino acid and carbohydrate contributions to the growing seedling. Cucumber seedling establishment was found to be highly dependent on cotyledonary leaves. Root system establishment was highly dependent on the health of the aerial part. One cotyledon was enough to maintain aerial growth of seedlings after unfolding the first true leaf. Cucumber seedlings depended on both cotyledons to keep root system growth at least until leaf area was equivalent to cotyledon area. Covering one or both cotyledons of seedlings with one unfolded leaf increased carbohydrate content of uncovered cotyledon and leaves compared with control seedlings. Cucumber seedlings are highly dependent on cotyledonary leaves and aerial parts are less dependent than root system. Cotyledon damage at early stages of plant establishment would adversely impact crop yield by reducing plant density, an important yield component, or slowing down seedling growth and establishment.O objetivo deste trabalho foi estudar o desempenho das folhas cotiledonares no crescimento inicial e estabelecimento de plântulas de pepino (Cucumis sativus L.. Grupos de duas plântulas uniformemente emergidas foram utilizados para quantificar o crescimento inicial e acúmulo de matéria seca, o efeito da intensidade e época de remoção dos cotilédones sobre o estabelecimento da plântula, e a contribuição de proteínas, aminoácidos e carboidratos dos cotilédones para o crescimento inicial. O estabelecimento das plântulas de pepino foi altamente dependente das folhas cotiledonares. As folhas cotiledonares foram fundamentais

  7. The effects of Vexar® seedling protectors on the growth and development of lodgepole pine roots

    Science.gov (United States)

    Engeman, Richard M.; Anthony, R. Michael; Krupa, Heather W.; Evans, James

    1997-01-01

    The effects on the growth and development of lodgepole pine roots from the Vexar® tubes used to protect seedlings from pocket gopher damage were studied in the Targhee National Forest, Idaho and the Deschutes National Forest, Oregon. At each site, Vexar-protected and unprotected seedlings, with and without above-ground gopher damage were examined after six growing seasons for root deformities and growth. Undamaged seedlings exhibited greater growth, reflecting the importance of non-lethal gopher damage as a deterrent to tree growth. Protected seedlings with similar damage history as unprotected seedlings had greater root depth than unprotected seedlings, although unprotected seedlings with no above-ground damage generally had the greatest root weight. In general, the percent of seedlings with root deformities was greater for the unprotected seedlings than for the Vexar-protectd seedlings, although this could be largely due to the greater care required to plant protected seedlings. Acute deformities were more common for unprotected seedlings, whereas root deformities with less severe bending were more common for protected seedlings. The incidence of crossed roots was similar for protected and unprotected seedlings on the Deschutes site, where enough occurrences of this deformity permitted analyses. Protected seedlings were similar in root abundance, root distribution, root size and vigor to the unprotected seedlings, with some indication from the Deshutes study site that root distribution was improved with Vexar protection.

  8. RESEARCH ON THE DEVELOPMENT OF ALTERNATIVE TECHNOLOGIES FOR THE PRODUCTION OF TOMATO SEEDLINGS IN DRĂGANU ARGEŞ

    Directory of Open Access Journals (Sweden)

    Florina Uleanu

    2017-12-01

    Full Text Available This paper aims to find the most efficient techniques for the production of seedlings because it represents one of the greatest concerns of the vegetable growers, being a subject of great interest. A special attention shows determining influence of different pots, plastic or biodegradable, on the growth and development of tomato seedlings. The replanting of the seedlings was carried out in various pots (of polyethylene film, from peat, Jiffy pots, small and big alveolar pallets filled with nutritional mixture. The best growth in height was achieved in seedlings transplanted in polyethylene pots (B1, except for Parris hybrid, the favorable effects on seedlings growth being explained by their better nutritional capacity as a result of the development of a stronger root system. As a type of pot, it is noted that seedlings transplanted into large alveolar pallets formed floral buds before planting in all hybrids studied. The type of pots used to transplant seedlings, and especially their size, positively influences the number of leaves. This work brings to the forefront the influence of different pots of plastic or biodegradable material on the growth and development of tomato seedlings that have been transplanted and maintained in these pots until planting.

  9. Growth of transplanted seedlings of timber species in the southern Colombian Amazon: a preliminary study

    International Nuclear Information System (INIS)

    Gruezmacher Monica; Duivenvoorden Joost F

    2008-01-01

    Two commonly used timber species in the area of Amacayacu National Park (Quararibea sp. and Minquartia guianensis) were selected to develop an experiment that compared the early performance of seedlings in mature and old secondary forest. We transplanted seedlings of these species into mature and secondary forest plots and observed height and diameter increments as well as mortality for a period of approximately 70 days. In situ seedling performance under parent trees in mature forests was measured as a control. The structure of both experimental forests was not apparently different.We found similar seedling performance for both species in the two forests. However, the seedlings hardly showed any relative height or relative diameter increment in the short period of measurements. The results show that enriching secondary forests by means of transplanting seedlings from timber species might be a promising way of ecological restoration.

  10. Effect of phosphate solubilizing bacteria on the development of coffee seedlings.

    Directory of Open Access Journals (Sweden)

    Carlos Adolfo Cisneros-Rojas

    2016-12-01

    Full Text Available The aim of this study was to evaluate the effect of solubilizing phosphate bacterias (BSF, Kocuria sp. and Bacillus subtilis, on the development of coffee seedlings Castillo variety. The experiment was conducted in a greenhouse condition, in Palmira, Colombia during 2013-2014 years. The experimental design was completely random, with nine treatments and ten repetitions. The treatments were established under three types of substrates for the seedlings: natural soil (Typic Melanudand + decomposed coffee pulp (1:1 lacking or presenting BSF (treatments 1-4, natural soil + decomposed coffee pulp (1:1 + phosphate rock (RF with or without microorganisms (treatments 5-8, and natural soil without BSF subjected to fertilization with diammonium phosphate (DAP (treatment 9. The application of decomposed coffee pulp with and without RF and BSF favored the availability of phosphorus that helped to the development of coffee seedlings, the above was re ected in the chemical analysis of the substrate and the response of variables, root and total dry aerial weight. Length and volume root, foliar P and recovery phosphorus ef ciency (ERF, did not present signi cant differences.

  11. Comparative study of drought and salt stress effects on germination and seedling growth of pea

    Directory of Open Access Journals (Sweden)

    Petrović Gordana

    2016-01-01

    Full Text Available Seed germination is first critical and the most sensitive stage in the life cycle of plants compromise the seedlings establishment. Salt and drought tolerance testing in initial stages of plant development is of vital importance, because the seed with more rapid germination under salt or water deficit conditions may be expected to achieve a rapid seedling establishment, resulting in higher yields. The aim of this study was to determine whether the pea seed germination and seedling growth were inhibited by the salt toxicity and osmotic effect during the seedling development, and also identification of the sensitive seedling growth parameters in response to those stresses. Based on the obtained results, pea has been presented to be more tolerant to salt than water stress during germination and early embryo growth. Investigated cultivars showed greater susceptibility to both abiotic stresses when it comes growth parameters compared to seed germination. [Projekat Ministarstva nauke Republike Srbije, br. TR-31024 i br. TR-31022

  12. Development of a doorframe-typed swinging seedling pick-up device for automatic field transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Han, H.; Mao, H.; Hu, J.; Tian, K.

    2015-07-01

    A doorframe-typed swing seedling pick-up device for automatic field transplanters was developed and evaluated in a laboratory. The device, consisting of a path manipulator and two grippers, can move the pins slowly to extract seedlings from the tray cells and return quickly to the pick-up point for the next extraction. The path manipulator was constructed with the creative design of type-Ⅱ mechanism combination in series. It consists of an oscillating guide linkage mechanism and a grooved globoidal cam mechanism. The gripper is a pincette-type mechanism using the pick-up pins to penetrate into the root mass for seedling extraction. The dynamic analysis of the designed seedling pick-up device was simulated with ADAMS software. Being the first prototype, various performance tests under local production conditions were conducted to find out the optimal machine operation parameters and transplant production conditions. As the gripper with multiple fine pins was moved by the swing pick-up device, it can effectively complete the transplanting work cycle of extracting, transferring, and discharging a seedling. The laboratory evaluation showed that the pick-up device equipped with two grippers can extract 80 seedlings/min with a 90% success and a 3% failure in discharging seedlings, using 42-day-old tomato plantlets. The quality of extracting seedlings was satisfactory. (Author)

  13. Early field performance of drought-stressed scots pine (pinus sylvestris l.) seedlings

    International Nuclear Information System (INIS)

    Kulac, S.; Clcek, E.; Tasdemir, U.

    2015-01-01

    Scots pine (Pinus sylvestris) has a large natural distribution throughout the world, including semi-arid areas of Turkey, where it is being used for afforestation. Determining the drought resistance of Scots pine provenances can increase the success of afforestation efforts in semi-arid regions. In the first stage of this study, water-stress treatments were applied to ten provenances of one-year-old Scots pine seedlings in their second vegetation period (between April and November). The diameter and height of the seedlings were evaluated in the nursery in order to determine their morphology. The four drought-stress treatments consisted of once-weekly irrigation (IR1), twice-weekly irrigation (IR2-Control), biweekly irrigation (IR3) and open field conditions (IR4). Later, the water-stressed seedlings were planted in a semi-arid district in Bayburt, Turkey, and their survival and growth performances were evaluated over a five-year period. The nursery study showed that drought stress and provenance as well as the interaction of the two significantly affected the morphological characteristics of the seedlings. Under water-stress conditions, the best growth performance was found in the Dokurcun, Degirmendere and Dirgine provenance seedlings. Water-stress and provenance factors and their interaction also affected the open field performance of the seedlings, where the Degirmendere, Dirgine and Dokurcun provenances again exhibited the best performance. Consequently, these Scots pine provenances can be recommended for afforestation sites having conditions similar to those of the study site. (author)

  14. Physiological aspects of seedling development of coffee grown under colored screens

    International Nuclear Information System (INIS)

    Henrique, Paola de Castro; Alves, Jose Donizeti; Livramento, Darlan Einstein do; Goulart, Patricia de Fatima Pereira

    2011-01-01

    The objective of this work was to evaluate the physiological aspects of the development of coffee seedlings grown under colored screens with different spectral characteristics. Seedlings of Catucai Amarelo 2SL, in the stage known as 'orelha de onca', were arranged in a randomized block design, with five replicates, under structures individually covered with blue, white, gray, black or red screens with 50% shade. Four months after, evaluations were done for seedling growth, pigment content of the leaves, total soluble sugars and starch contents of the leaves and roots. The red screen was the most effective in promoting growth in four out of the seven studied traits: plant height, leaf area and leaf dry weight and total dry matter. For the other characteristics, there was no difference among the screens. The pigment analysis showed that, except for the gray screen, the other ones did not differ for this trait. In leaves, the red screen promoted higher levels of carbohydrates and starch. At the root, carbohydrate contents were higher under the red and black screens. Among the five screen colors, the red one was the most efficient in the production of coffee seedlings with higher vigor and quality, with outstanding carbohydrate contents and biomass. (author)

  15. Degradation of seed mucilage by soil microflora promotes early seedling growth of a desert sand dune plant.

    Science.gov (United States)

    Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Zhang, Wenhao; Huang, Zhenying

    2012-05-01

    In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High-performance anion-exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO(2) and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)-labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well-adapted. © 2011 Blackwell Publishing Ltd.

  16. Mucilage extraction and substrates in the seedling development of yellow passion fruit plants

    Directory of Open Access Journals (Sweden)

    Ricardo Sfeir Aguiar

    2014-02-01

    Full Text Available The object of this work was to evaluate different methods of mucilage extraction and substrates on passion fruit seedling emergence and development , in a mist chamber. Five methods of mucilage extraction were used: water, water + sand, water + virgin whitewash; blender with protected blades and fermentation in water, and three different types of substrates: rice hull, vermiculite and coconut fiber. The experiment had a completely randomized design with five replications in a factorial 5 x 3 scheme (5 extraction methods of seed mucilage and 3 substrates being each parcel composed of 25 seeds. The parameters evaluated were: seedling emergence, speed of emergence index, leaf number, stem length, longest root length, weight of dry matter of roots and shoots. Water and fermentation in water are the best method for mucilage extraction and rice hull and coconut fiber are the best substrate for passionfruit seedling emergence and development.

  17. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  18. Longleaf Pine Root System Development and Seedling Quality in Response to Copper Root Pruning and Cavity Size

    Science.gov (United States)

    Mary Anne Sword Sayer; Shi-Jean Susana Sung; James D. Haywood

    2011-01-01

    Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling...

  19. Hemagglutinating and acid phosphatase (AcPASE activities in developing seedlings of four species of Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-01-01

    Full Text Available The acid phosphatase and hemagglutinating activities of four species of Cucurbitaceae were determined during seeds germination and seedlings development. In all cases traces of enzyme and hemagglutinating activities were found in dry and imbibided seeds. In developing seedlings of Cucumis sativus the activities increased to maximum on the 3rd day while in other species on the 6th day of germination and than fell down. Dot blot and Western blot techniques have shown that in seeds and seedlings of all investigated species present were proteins which cross-reacted with antibodies raised against lectins: CLBa and Con A. It has been shown that proteins from seeds and seedlings of Cucurbita maxima var. bambino, Cucurbita pepo var. giromontia and Cucumis sativus had more pronounced antigenical similarity to lectin CLBa (from Cucurbitaceae than Con A, while proteins from cotyledons of Cucurbita pepo var. patissonina reacted better with antibodies raised against Con A (the lectin from Papilionaceae than with CLBa.

  20. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    Directory of Open Access Journals (Sweden)

    Yeong Chae Kim

    2013-09-01

    Full Text Available Non-protein amino acid, β-amino-n-butyric acid (BABA, has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM. BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

  1. Gene expression in plant lipid metabolism in Arabidopsis seedlings.

    Directory of Open Access Journals (Sweden)

    An-Shan Hsiao

    Full Text Available Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3, DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1 and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6 in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1 and LATE ELONGATED HYPOCOTYL (LHY from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis.

  2. Strong microsite control of seedling recruitment in tundra

    DEFF Research Database (Denmark)

    Graae, Bente J; Ejrnæs, Rasmus; Lang, Simone I

    2011-01-01

    The inclusion of environmental variation in studies of recruitment is a prerequisite for realistic predictions of the responses of vegetation to a changing environment. We investigated how seedling recruitment is affected by seed availability and microsite quality along a steep environmental......, the experimental seed addition showed that the microsite environment was even more important. For all species, seedling emergence peaked at the productive end of the gradient, irrespective of the adult niches realized. Disturbance promoted recruitment at all positions along the environmental gradient, not just...... at high productivity. Early seedling emergence constituted the main temporal bottleneck in recruitment for all species. Surprisingly, winter mortality was highest at what appeared to be the most benign end of the gradient. The results highlight that seedling recruitment patterns are largely determined...

  3. Influence of 24-epibrassinolide on seedling growth and distribution of mineral elements in two maize hybrids

    Directory of Open Access Journals (Sweden)

    Waisi Hadi K.

    2017-01-01

    Full Text Available In this study, influence of wide range of 24-epibrassinolide (24-EBL on early growth potential of two maize hybrids (ZP 434 and ZP 704 was examined. Paper concerns germination, seedling biomass, important chlorophylls content, and redistribution of elements (heavy metals and microelements, in a seedlings of the maize hybrids, as influenced by different 24-EBL concentrations. It was found that hybrids react differently to exogenously applied hormone. The biggest differences between two examined maize hybrids considering the germination level were reached with the lowest values at 86% for ZP 704 and 72% for ZP 434, gained at the highest applied concentration of 24-EBL. Seedlings of hybrid ZP 434 reacted positively moderately in the case of shoot length and biomass under the influence of 24-EBL, but seedlings of hybrid ZP 704 had lower values of these parameters under the influence of the phytohormone. Chlorophyll a/b ratios showed that photosynthetic apparatus of seedlings of the hybrids is not active in this stage of development. It was established that 24-EBL affects seedling growth and re-allocation of naturally present mineral elements in early growth stages and that could be one of the reason for poorer growth of ZP 704 treated with various concentrations of 24-EBL, comparing to control. When applied in lower concentrations, 24-EBL is blocking toxic elements such as chromium and nickel to relocate to vital parts of plant, what was case in hybrid ZP704. In case of ZP 434, lower concentrations of 24-EBL are affecting re-allocation of Cu and Cr and these findings suggest that maize hybrid seedlings treated with lower concentrations of 24-EBL could survive and be successful in polluted areas. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR31080

  4. Effects of site preparation treatments on early growth and survival of planted longleaf pine (Pinus palustris Mill.) seedlings in North Carolina

    Science.gov (United States)

    Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Susan Cohen

    2006-01-01

    We tested the effects of eight site preparation treatments on early growth and survival of container-grown longleaf pine (Pinus palustris Mill.) seedlings. Treatments included an untreated check, six combinations of two initial vegetation control treatments (chopping or herbicide) with three planting site conditions (flat [no additional treatment],...

  5. Effect of Salt Stress (NaCl on Germination and Early Seedling Parameters of Three Pepper Cultivars (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Aloui Hassen

    2014-03-01

    Full Text Available Salinity is one of the major environmental problem that lead to a deterioration of agricultural land and, as a result, to a reduction in crop productivity worldwide. This research tested the effect of different salinity levels on germination and early seedling growth of three pepper (Capsicum annuum L. cultivars which were "Beldi", "Baklouti" and "Anaheim Chili". Experimental treatment included 7 concentrations of NaCl (0, 2, 4, 6, 8, 10 and 12 g/l. Results indicated that all investigate traits were affected by salt stress. Salt stress affected on germination parameters and radicle and plumule length. Fresh weight and dry weight of evaluated seedlings was also affected. "Anaheim Chili" cultivar was shown to be the most restraint cultivar to salt stress in comparison to "Beldi" and "Baklouti" cultivars.

  6. Study on tissue culture for Gelidium seedling

    Science.gov (United States)

    Pei, Lu-Qing; Luo, Qi-Jun; Fei, Zhi-Qing; Ma, Bin

    1996-06-01

    As seedling culture is a crucial factor for successful cultivation of Gelidium, the authors researched tissue culture technology for producing seedlings. The morphogeny and experimental ecology were observed and studied fully in 2 5 mm isolated tissue fragments. Regeneration, appearance of branching creepers and attaching structure and new erect seedlings production and development were studied. Fragments were sown on bamboo slice and vinylon rope. The seedlings were cultured 20 30 days indoor, then cultured in the sea, where the density of erect seedlings was 3 19 seedlings/cm2, growth rate was 3.84% day. The frond arising from seedlings directly was up to 10 cm per year. The ecological conditions for regenerated seedlings are similar to the natural ones. The regenerated seedlings are suitable for raft culture in various sea areas.

  7. Seedling development and evaluation of genetic stability of cryopreserved Dendrobium hybrid mature seeds.

    Science.gov (United States)

    Galdiano, Renato Fernandes; de Macedo Lemos, Eliana Gertrudes; de Faria, Ricardo Tadeu; Vendrame, Wagner Aparecido

    2014-03-01

    Vitrification, a simple, fast, and recommended cryopreservation method for orchid germplasm conservation, was evaluated for Dendrobium hybrid "Dong Yai" mature seeds. The genetic stability of regenerated seedlings was also evaluated using flow cytometry. Mature seeds from this hybrid were submitted to plant vitrification solution (PVS2) for 0, 0.5, 1, 2, 3, 4, 5, or 6 h at 0 °C. Subsequently, they were plunged into liquid nitrogen (LN) at -196 °C for 1 h and recovered in half-strength Murashige and Skoog culture medium (1/2 MS), and seed germination was evaluated after 30 days. Seeds directly submitted to LN did not germinate after cryopreservation. Seeds treated with PVS2 between 1 and 3 h presented the best germination (between 51 and 58%), although longer exposure to PVS2 returned moderated germination (39%). Germinated seeds were further subcultured in P-723 culture medium and developed whole seedlings in vitro after 180 days, with no abnormal characteristics, diseases, or nutritional deficiencies. Seedlings were successfully acclimatized under greenhouse conditions with over 80% survival. Flow cytometry analysis revealed no chromosomal changes on vitrified seedlings, as well as seedlings germinated from the control treatment (direct exposure to LN). These findings indicate that vitrification is a feasible and safe germplasm cryopreservation method for commercial Dendrobium orchid hybrid conservation.

  8. Effect of apical meristem clipping on carbon allocation and morphological development of white oak seedlings

    Science.gov (United States)

    Paul P. Kormanik; Shi-Jean S. Sung; T.L. Kormanik; Stanley J. Zarnoch

    1994-01-01

    Seedlings from three open-pollinated half-sib white oak seedlots were clipped in mid-July and their development was compared to nonclipped controls after one growing season.In general when data were analyzed by family, clipped seedlings were significantly less desirable in three to six of the eight variables tested.Numerically, in all families seedlots, the clipped...

  9. Impact of climate change, seedling type and provenance on the risk of damage to Norway spruce (Picea abies (L.) Karst.) seedlings in Sweden due to early summer frosts

    Energy Technology Data Exchange (ETDEWEB)

    Langvall, Ola (Swedish Univ. of Agricultural Sciences, Unit for Field-based Forest Research, Asa Forest Research Station, Lammhult (Sweden))

    2011-04-15

    A model including site-specific microclimate-affecting properties of a forest regeneration area together with seedling characteristics was used to evaluate the accumulated risk of frost damage to Norway spruce (Picea abies (L.) Karst.) seedlings. Climate change in Sweden was simulated on the basis of the regional climate model RCA3. The daily average temperature, the driving factor for bud burst in the model, was adjusted using the difference between the mean of the climate model data for the years 1961-1990 and 2036-2065. The model was run for a highly frost prone, clear-cut site in which bare-rooted Norway spruce seedlings of mid-Swedish provenance were planted. Alternate runs were conducted with data for containerized seedlings and seedlings of Belarusian origin. The study showed that bud burst will occur at earlier dates throughout Sweden in the period 2036-2065 if the climate changes according to either of the climate scenarios examined, compared to the reference period 1961-1990. Furthermore, the risk of damage to Norway spruce seedlings as a result of frost events during summer will increase in southern Sweden and be unaffected or decrease in northern Sweden. The risk of frost damage was exacerbated in containerized seedlings, while the risk was lower for the seedlings of Belarusian provenance when compared with bare-rooted seedlings or seedlings of mid-Swedish origin

  10. Effect of acorn mass and size, and early shoot growth on one-year old container-grown RPM™ oak seedlings

    Science.gov (United States)

    Benjamin C. Grossman; Michael A. Gold; Daniel C. Dey

    2003-01-01

    The purpose of this study was to evaluate the influence of seed source, acorn mass and size, and early shoot growth on morphological traits of 1-year-old oak seedlings. Forested bottomlands in the Midwest have been greatly reduced in the past 150 years as a result of conversion to agriculture and recent catastrophic floods. Due to a lack of available hard mast, intense...

  11. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  12. Germination and Seedling Development of Seeds from Different Parkia biglobosa (Jacq G. Don Trees

    Directory of Open Access Journals (Sweden)

    Christiana O. ADEYEMI

    2013-02-01

    Full Text Available The effect of daylight, continuous illumination and acid scarification on the seed germination and seedling vegetative growth (epicotyl and hypocotyl lengths, and number of secondary roots of different Parkia biglobosawere investigated in the Plant Physiology Laboratory University of Ilorin, Ilorin Kwara State Nigeria. Seeds from two out of the twenty six Parkia tree samples (trees B and T germinated within 24 hours of planting in the daylight germination study while seeds from another tree (Q did not germinate until the third week after planting (3WAP. Some seeds have higher germination percentage both in the daylight (preliminary germination study and in the continuous light (illuminated study. The treatment with concentrated Sulphric acid (conc. H2SO4was effective in breaking the seed dormancy as seeds from eight (8 trees produced one hundred percent (100% germination. At p= 0.05 the length of epicotyl and hypocoty1 lengths were significantly different as seedling vegetative growth were long in the seedlings from the daylight experiment than the continuous light experiment. The vegetative growths of the seedlings from the scarified seed were longer at 15min of scarification in all except in trees F and Z. It was observed that the time of scarification affect the both seed germination and seedling development.

  13. RESEARCH ON THE DEVELOPMENT OF ALTERNATIVE TECHNOLOGIES FOR THE PRODUCTION OF TOMATO SEEDLINGS IN DRĂGANU ARGEŞ

    OpenAIRE

    Florina Uleanu; Adriana Bădulescu

    2017-01-01

    This paper aims to find the most efficient techniques for the production of seedlings because it represents one of the greatest concerns of the vegetable growers, being a subject of great interest. A special attention shows determining influence of different pots, plastic or biodegradable, on the growth and development of tomato seedlings. The replanting of the seedlings was carried out in various pots (of polyethylene film, from peat, Jiffy pots, small and big alveolar pallets ) filled wi...

  14. Early developmental responses to seedling environment modulate later plasticity to light spectral quality.

    Directory of Open Access Journals (Sweden)

    Eric J B von Wettberg

    Full Text Available Correlations between developmentally plastic traits may constrain the joint evolution of traits. In plants, both seedling de-etiolation and shade avoidance elongation responses to crowding and foliage shade are mediated by partially overlapping developmental pathways, suggesting the possibility of pleiotropic constraints. To test for such constraints, we exposed inbred lines of Impatiens capensis to factorial combinations of leaf litter (which affects de-etiolation and simulated foliage shade (which affects phytochrome-mediated shade avoidance. Increased elongation of hypocotyls caused by leaf litter phenotypically enhanced subsequent elongation of the first internode in response to low red:far red (R:FR. Trait expression was correlated across litter and shade conditions, suggesting that phenotypic effects of early plasticity on later plasticity may affect variation in elongation traits available to selection in different light environments.

  15. Zinc distribution and localization in primed maize seeds and its translocation during early seedling development

    DEFF Research Database (Denmark)

    Imran, Muhammad; Garbe-Schönberg, Dieter; Neumann, Günter

    2017-01-01

    Zinc (Zn) priming is a technique used to increase seed Zn reserves for improving seed quality, crop growth, and enhancing stress tolerance in crop plants. The present study demonstrated the effect of water and Zn priming on the distribution and accumulation of endogenous and primed Zn in maize...... seeds (Zea mays L.). Zn concentration in unprimed, water and Zn primed seeds and germinated seedlings were analyzed by ICP-MS (Inductivity Coupled Plasma Mass Spectroscopy). DTZ (Diphenyle Thio-Carbazone) staining method and LA-ICP-MS (Laser Ablation Inductivity Coupled Plasma Mass Spectroscopy...

  16. Substrate in the emergence and initial growth of seedlings of Caesalpinia pulcherrima

    Directory of Open Access Journals (Sweden)

    Magnólia Martins Alves

    Full Text Available ABSTRACT: Caesalpinia pulcherrima is an exotic species belongs to the Fabaceae family commonly known as flamboyant-mirim, and widely used for urban forestry. This study aimed to evaluate the effect of different substrates on the emergence and early seedlings growth of C. pulcherrima . The experiment was conducted in a greenhouse belonging to the Centro de Ciências Agrárias, Universidade Federal da Paraíba. The experimental design was completely randomized and treatments had 14 substrates: sand, vegetable soil, vermiculite, wood dust, carbonized rice straw, vegetable soil + sand 1:1, sand + wood dust 1:1, sand + carbonized rice straw 1:1, earth + wood dust 1:1, vegetable soil + carbonized rice straw 1:1, vermiculite + sand 1:1, vermiculite + wood dust 1:1, vermiculite + earth 1:1 and vermiculite + carbonized rice straw 1:1. Evaluation of the effect of the treatments was through the following determinations: percentage of emergency, first count, index of germination speed, length and dry weight of roots and shoots. The vermiculite, vegetable soil + sand 1:1, vermiculite + sand 1:1, vermiculite + saw dust 1:1, are suitable for emergence and early growth of seedlings of Caesalpinia pulcherrima . Substrates saw dust and carbonized rice straw were responsible for the worst performers on emergence and seedling development.

  17. Responses of Tree Seedlings near the Alpine Treeline to Delayed Snowmelt and Reduced Sky Exposure

    Directory of Open Access Journals (Sweden)

    Maaike Y. Bader

    2017-12-01

    Full Text Available Earlier snowmelt changes spring stress exposure and growing-season length, possibly causing shifts in plant species dominance. If such shifts involve trees, this may lead to changes in treeline position. We hypothesized that earlier snowmelt would negatively affect the performance of tree seedlings near the treeline due to higher spring stress levels, but less so if seedlings were protected from the main stress factors of night frosts and excess solar radiation. We exposed seedlings of five European treeline tree species: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata, and Sorbus aucuparia to two snow-cover treatments (early and late melting, with about two weeks difference combined with reduced sky exposure during the day (shading or night (night warming, repeated in two years, at a site about 200 m below the regional treeline elevation. Physiological stress levels (as indicated by lower Fv/Fm in the first weeks after emergence from snow were higher in early-emerging seedlings. As expected, shade reduced stress, but contrary to expectation, night warming did not. However, early- and late-emerging seedlings did not differ overall in their growth or survival, and the interaction with shading was inconsistent between years. Overall, shading had the strongest effect, decreasing stress levels and mortality (in the early-emerging seedlings only, but also growth. A two-week difference in snow-cover duration did not strongly affect the seedlings, although even smaller differences have been shown to affect productivity in alpine and arctic tundra vegetation. Still, snowmelt timing cannot be discarded as important for regeneration in subalpine conditions, because (1 it is likely more critical in very snow-rich or snow-poor mountains or landscape positions; and (2 it can change (subalpine vegetation phenology and productivity, thereby affecting plant interactions, an aspect that should be considered in future studies.

  18. Leaf area and net photosynthesis during development of Prunus serotina seedlings

    Science.gov (United States)

    Stephen B. Horsley; Kurt W. Gottschalk

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...

  19. Identifying critical recruitment bottlenecks limiting seedling establishment in a degraded seagrass ecosystem.

    Science.gov (United States)

    Statton, John; Montoya, Leonardo R; Orth, Robert J; Dixon, Kingsley W; Kendrick, Gary A

    2017-11-01

    Identifying early life-stage transitions limiting seagrass recruitment could improve our ability to target demographic processes most responsive to management. Here we determine the magnitude of life-stage transitions along gradients in physical disturbance limiting seedling establishment for the marine angiosperm, Posidonia australis. Transition matrix models and sensitivity analyses were used to identify which transitions were critical for successful seedling establishment during the first year of seed recruitment and projection models were used to predict the most appropriate environments and seeding densities. Total survival probability of seedlings was low (0.001), however, transition probabilities between life-stages differed across the environmental gradients; seedling recruitment was affected by grazing and bioturbation prevailing during the first life-stage transition (1 month), and 4-6 months later during the third life-stage transition when establishing seedlings are physically removed by winter storms. Models projecting population growth from different starting seed densities showed that seeds could replace other more labour intensive and costly methods, such as transplanting adult shoots, if disturbances are moderated sufficiently and if large numbers of seed can be collected in sufficient quantity and delivered to restoration sites efficiently. These outcomes suggest that by improving management of early demographic processes, we could increase recruitment in restoration programs.

  20. Mapping of quantitative trait locus (QTLs that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italica×Setaria viridis.

    Directory of Open Access Journals (Sweden)

    Lufeng Qie

    Full Text Available Drought tolerance is an important breeding target for enhancing the yields of grain crop species in arid and semi-arid regions of the world. Two species of Setaria, domesticated foxtail millet (S. italica and its wild ancestor green foxtail (S. viridis are becoming widely adopted as models for functional genomics studies in the Panicoid grasses. In this study, the genomic regions controlling germination and early seedling drought tolerance in Setaria were identified using 190 F7 lines derived from a cross between Yugu1, a S. italica cultivar developed in China, and a wild S. viridis genotype collected from Uzbekistan. Quantitative trait loci were identified which contribute to a number of traits including promptness index, radical root length, coleoptile length and lateral root number at germinating stage and seedling survival rate was characterized by the ability of desiccated seedlings to revive after rehydration. A genetic map with 128 SSR markers which spans 1293.9 cM with an average of 14 markers per linkage group of the 9 linkage groups was constructed. A total of eighteen QTLs were detected which included nine that explained over 10% of the phenotypic variance for a given trait. Both the wild green foxtail genotype and the foxtail millet cultivar contributed the favorite alleles for traits detected in this trial, indicating that wild Setaria viridis populations may serve as a reservoir for novel stress tolerance alleles which could be employed in foxtail millet breeding.

  1. Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italica×Setaria viridis.

    Science.gov (United States)

    Qie, Lufeng; Jia, Guanqing; Zhang, Wenying; Schnable, James; Shang, Zhonglin; Li, Wei; Liu, Binhui; Li, Mingzhe; Chai, Yang; Zhi, Hui; Diao, Xianmin

    2014-01-01

    Drought tolerance is an important breeding target for enhancing the yields of grain crop species in arid and semi-arid regions of the world. Two species of Setaria, domesticated foxtail millet (S. italica) and its wild ancestor green foxtail (S. viridis) are becoming widely adopted as models for functional genomics studies in the Panicoid grasses. In this study, the genomic regions controlling germination and early seedling drought tolerance in Setaria were identified using 190 F7 lines derived from a cross between Yugu1, a S. italica cultivar developed in China, and a wild S. viridis genotype collected from Uzbekistan. Quantitative trait loci were identified which contribute to a number of traits including promptness index, radical root length, coleoptile length and lateral root number at germinating stage and seedling survival rate was characterized by the ability of desiccated seedlings to revive after rehydration. A genetic map with 128 SSR markers which spans 1293.9 cM with an average of 14 markers per linkage group of the 9 linkage groups was constructed. A total of eighteen QTLs were detected which included nine that explained over 10% of the phenotypic variance for a given trait. Both the wild green foxtail genotype and the foxtail millet cultivar contributed the favorite alleles for traits detected in this trial, indicating that wild Setaria viridis populations may serve as a reservoir for novel stress tolerance alleles which could be employed in foxtail millet breeding.

  2. Germination and early plant development of 10 plant species exposed to Nano TiO2 and CeO2

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano-TiO2 or CeO2 (0, 250, 500 and 1000 ug/l) and followed to examine effects on germination and early seedling development. For TiO2, cabbage showed increased and corn decreased percent germination, while ...

  3. Modulation in radiation-induced changes in peroxidase activity with gibberellic acid in seedling's growth in chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Khan, M.R.; Qureshi, A.S.

    2002-01-01

    Changes in the effects of gamma irradiation (10 to 110 Kr) with gibberellic acid (GA/sub 3/) for peroxidase activity, in relation to early days of seedling's growth in Kabulic chickpea cultivar, Noor-91, were evaluated. Stimulation in peroxidase activity over control was recorded at all the irradiation treatments from 3rd to 8th day of seedling's development. Increase in peroxidase activity at 10 and 20 Kr was due to the increase in metabolic activity, while higher doses of gamma radiation account for the damaging action and production of peroxy radicals. However, stimulation in fresh weight was observed only at 10 Kr of gamma irradiation. Postmutagenic application of Ga/sub 3/ protect the seedlings from radiation injury, by increasing the peroxides activity, and increased the fresh weight of chickpea seedlings. (author)

  4. Effect of agroforestry residues partially biodegraded by pleurotus ostreatus (pleurotaceae) on tomato seedlings development

    International Nuclear Information System (INIS)

    Luna Fontalvo, Jorge Alberto; Cordoba Lopez, Laura Sofia; Gil Pertuz, Karina Isabel; Romero Borja, Isaac Manuel

    2013-01-01

    It was evaluated the development of tomato seedlings (plant bioindicator of toxicity) in soils with sawdust and rice husk partially biodegraded by Pleurotus ostreatus in greenhouse conditions. Both organic compounds (carbon, cellulose, lignin, extractives, and organic matter), and inorganic compounds (nitrogen, phosphorus and pH) were determined, before and after fungus inoculation on sawdust and rice husk. Mixtures were held of each substrate with a nutrient poor soil in equal proportions (1:1) and the moisture content was determined. The experiment consisted of a completely randomized, with two groups of six treatments for each substrate, and 30 days later, parameters of growth and development were identified. biodegraded substrates presented low C, N and P. bsa + sf treatment (biodegraded sawdust + fertilized soil) presented the best results in the number of leaves (12.9), plant height (25.94 cm), root length (5.92 cm), dry weight (0.138 g), and fresh weight (1.012 g). bsa + sf substrate can work as favorable substrate for growing tomato seedlings, bsa + sf substrate can work as favorable substrate for growing of tomato seedlings, since it provides the nutrients necessary for a good growth. Plants in rice bran did not grow adequately for transplanting.

  5. Asymbiotic seed germination and in vitro seedling development of Paphiopedilum spicerianum: An orchid with an extremely small population in China

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2015-01-01

    Full Text Available Paphiopedilum spicerianum  is listed as one of the country’s Wild Plants with Extremely Small Populations (PSESP. Procedures were developed for asymbiotic seed germination and seedling development aimed at producing seedlings for reintroduction. The highest germination was achieved in RECW with a 24 h dark cycle after pretreatment with 1% NaOCl for 40 min after 30 days from germination. However, these protocorms remained white and did not develop further. Although germination was lower under the same conditions in MSCW, it resulted in healthier and greener protocorms. Of four suitable media tested to promote seedling formation, Hyponex No 1 medium with 1.0mgl−1α-naphthalene acetic acid, 0.5gl−1 activated charcoal and 10% banana homogenate was the most effective. Advanced seedling development was seen in all six tested media during a 4 month growing period, with the highest leaf growth rate seen in the same media used for seedling formation, supplemented with 1.0mgl−16-benzyladenine added to promote leaf growth. Fluorescein diacetate (FDA tests on seeds showed that higher salt concentrations in the medium and longer duration of exposure to NaOCl reduce germination because of damaging effects on the testa and the embryo cells.

  6. Asymbiotic germination, seedling development and plantlet propagation of Encyclia aff. oncidioides - an endangered orchid

    Directory of Open Access Journals (Sweden)

    Ewa Łojkowska

    2011-01-01

    Full Text Available In order to estimate the best germination conditions of Encyclia aff. oncidioides seeds, five different media (Fast, Knudson C modified by Vajrabhaya, Murashige and Skoog, PB2 and modified Vacin and Went with different concentrations of plant growth regulators such as benzyladenine (BA, naphthaleneacetic acid (NAA and gibberellic acid (GA3 were tested. No beneficial effect was observed when BA and NAA were applied to the germination medium and GA3 inhibited germination. The effect of light, activated charcoal, coconut water and casein hydrolysate on seed germination was also studied. The growth rate of seedlings on three different media supplemented with activated charcoal and plant growth regulators was checked. The applied plant growth regulators had no beneficial effect on the further growth of seedlings. Fast and PB2 media with 0.2% activated charcoal proved to be the best for E. aff. oncidioides seed germination, seedling development and plantlet propagation.

  7. A Predictive Coexpression Network Identifies Novel Genes Controlling the Seed-to-Seedling Phase Transition in Arabidopsis thaliana.

    Science.gov (United States)

    Silva, Anderson Tadeu; Ribone, Pamela A; Chan, Raquel L; Ligterink, Wilco; Hilhorst, Henk W M

    2016-04-01

    The transition from a quiescent dry seed to an actively growing photoautotrophic seedling is a complex and crucial trait for plant propagation. This study provides a detailed description of global gene expression in seven successive developmental stages of seedling establishment in Arabidopsis (Arabidopsis thaliana). Using the transcriptome signature from these developmental stages, we obtained a coexpression gene network that highlights interactions between known regulators of the seed-to-seedling transition and predicts the functions of uncharacterized genes in seedling establishment. The coexpressed gene data sets together with the transcriptional module indicate biological functions related to seedling establishment. Characterization of the homeodomain leucine zipper I transcription factor AtHB13, which is expressed during the seed-to-seedling transition, demonstrated that this gene regulates some of the network nodes and affects late seedling establishment. Knockout mutants for athb13 showed increased primary root length as compared with wild-type (Columbia-0) seedlings, suggesting that this transcription factor is a negative regulator of early root growth, possibly repressing cell division and/or cell elongation or the length of time that cells elongate. The signal transduction pathways present during the early phases of the seed-to-seedling transition anticipate the control of important events for a vigorous seedling, such as root growth. This study demonstrates that a gene coexpression network together with transcriptional modules can provide insights that are not derived from comparative transcript profiling alone. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Germination and early plant development of ten plant species ...

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to two common metal oxide ENMs. Eight of 10 species responded to nTiO2, and 5 species responded to nCeO2. Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain developmental effects of these two ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, which may alter the timing of specific developmental events during their life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Engineered nanoparticles (ENMs) have been recognized as valuable components of new technologies and are current

  9. Effects of Salinity on Seed Germination and Early Growth of Moringa oleifera

    International Nuclear Information System (INIS)

    Kidombo, S.D; KOech, E.K

    2007-01-01

    Moringa oleifera Iam is a very important species because of it's multiple uses. The tree grows in many parts of the world including Asia, Africa, Central America and South America. In Kenya, it grows in drier regions of Baringo, Kibwezi, Mandera and the coastal strip. These regions are known to have substantially high level of soluble salts. The study aims at finding the effect of salinity on germination and early seedling growth of M. oleifera seedlings. This was tested in Moi University department of forestry laboratory by varying the concentration of Nacl moles (0.01, 0.03, 0.05, 0.07 and 0.09) in germination medium. The petri dishes with germination media were placed in the incubator at 30 degrees Celsius each containing 25 seeds of each treatment replicated four times. The effect of seedling growth and development was tested in the greenhouse. This was done by varying the concentration of Nacl moles (0.05, 0.15, 0.25, 0.35 and 0.45) in the forest soil used in the experiment. After germination one seedling per treatment was randomly selected and then carefully dug. The root length, shoot height, total dry matter, stem dry matter and leaves dry matter were measured. This was repeated at intervals of one week for seven weeks. The data obtained from the experiments were analysed using ANOVA based on generalized linear modelling procedures. The tests indicated that M. oleifera seed germination and early seedling growth was significantly (p<0.05) affected by salinity. The seedlings also demonstrated development of swellings in the root region and the development of multiple stems for salt concentrations of 0.05 moles and above. These observations show that M. oleifera is affected by salinity in both seed germination and early seedling growth

  10. Germinação de sementes e desenvolvimento inicial de plântulas de achachairu Seeds germination and seedlings early development of achachairu

    Directory of Open Access Journals (Sweden)

    Wilson Barbosa

    2008-03-01

    Full Text Available O achachairu (Garcinia sp, fruta largamente produzida na Bolívia, vem sendo comercializado no Brasil há vários anos. O fruto é globoso-oblongo, de polpa branca, suculenta e textura mucilaginosa e de sabor doce-acidulado equilibrado (ºBrix 15 e pH 4,1. Devido ao crescente interesse em seu cultivo no Brasil, pesquisaram-se a germinação das sementes e o desenvolvimento das plântulas durante os primeiros 12 meses após sua emergência. As sementes, extraídas de frutos bem maduros, foram postas a germinar em duas situações: 1 ambiente controlado em estufa tipo B.O.D., sob as temperaturas de 25 e 30 ºC, fotoperíodo de 16 horas e irradiância de 32 µmol.m-1.s-1, e 2 ambiente de temperatura não-controlada: 3 B.O.D, cuja temperatura oscilava entre 20 e 30 ºC, e 4 sob temperatura ambiente de laboratório (25± 2 ºC. O melhor resultado foi obtido na temperatura constante de 30 ºC, com germinação de 92% e índice de velocidade de germinação (IVG de 0,255. Quando germinada em ambiente de laboratório, a germinação das sementes mostrou-se baixa (30%, com IVG de 0,015. O desenvolvimento das plântulas em casa de vegetação ocorreu de forma bastante lenta, principalmente nas primeiras semanas após a emergência. O primeiro par de folhas surgiu após três semanas da emergência das plântulas, quando essas mediam 8 cm em média. A partir do oitavo mês de desenvolvimento, as plântulas emitiram várias ramificações laterais a partir da porção mediana para a região apical.The achachairu (Garcinia sp, a fruit widely grown in Bolivia, has been commercialized in Brazil for many years. The fruit is globular-oblong shaped, with a white succulent pulp, mucilaginous texture and a well balanced sweet-acid flavor (ºBrix 15; pH 4.1. Due to the increasing interest in its cultivation in Brazil, this work was carried out aiming to study the seeds germination and seedling development throughout the first 12 months after seed emergence. The

  11. Development-specific responses to drought stress in Aleppo pine (Pinus halepensis Mill.) seedlings.

    Science.gov (United States)

    Alexou, Maria

    2013-10-01

    Aleppo pine (Pinus halepensis Mill.) is a pioneer species, highly competitive due to exceptional resistance to drought. To investigate the stress resistance in the first and second year of development, a steady-state drought experiment was implemented. Photosynthesis (A(net)), stomatal conductance and transpiration (E) were measured on three different sampling dates together with phloem soluble sugars, amino acids and non-structural proteins. Needle ascorbic acid (AsA) and reactive oxygen species were measured to evaluate the seedlings' drought stress condition in the final sampling. Drought impaired A(net) and E by 35 and 31%, respectively, and increased AsA levels up to 10-fold, without significant impact on the phloem metabolites. Phloem sugars related to temperature fluctuations rather than soil moisture and did not relate closely to A(net) levels. Sugars and proteins decreased between the second and third sampling date by 56 and 61%, respectively, and the ratio of sugars to amino acids decreased between the first and third sampling by 81%, while A(net) and water-use efficiency (A(net)/E) decreased only in the older seedlings. Although gas exchange was higher in the older seedlings, ascorbic acid and phloem metabolites were higher in the younger seedlings. It was concluded that the drought stress responses depended significantly on developmental stage, and research on the physiology of Aleppo pine regeneration should focus more on temperature conditions and the duration of drought than its severity.

  12. Reduced triacylglycerol mobilization during seed germination and early seedling growth in Arabidopsis containing nutritionally important polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Pushkar Shrestha

    2016-09-01

    Full Text Available There are now several examples of plant species engineered to synthesise and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG. The utilization of such TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain an elevated level of the engineered polyunsaturated fatty acids (PUFA. LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilised engineered fatty acids were used in de novo membrane lipid synthesis during seedling development.

  13. Biodegradable bags for the production of plant seedlings

    OpenAIRE

    Bilck,Ana Paula; Olivato,Juliana Bonametti; Yamashita,Fabio; Souza,José Roberto Pinto de

    2014-01-01

    The production of plant seedlings has traditionally used polyethylene bags, which are thrown out in the soil or burned after transplant because the large amount of organic material attached to the bags makes recycling difficult. Additionally, when a seedling is taken from the bag for transplant, there is the risk of root damage, which compromises the plant’s development. In this study, we developed biodegradable bags to be used in seedling production, and we verify their influence on the deve...

  14. Effect of nTiO2 and nCeO2 nanoparticles on gene expression, germination, and early development in plants

    Science.gov (United States)

    Ten agronomic plant species and Arabidopsis thaliana were exposed to different concentrations of the metal oxide nanoparticles (NPs) TiO2 or CeO2 (0 - 1000 mg L-1) and monitored to examine effects on germination rate and early seedling development. Endpoints measured included ge...

  15. Drought resistance of Pinus sylvestris seedlings conferred by plastic root architecture rather than ectomycorrhizal colonisation

    OpenAIRE

    Moser , Barbara; Kipfer , Tabea; Richter , Sarah; Egli , Simon; Wohlgemuth , Thomas

    2015-01-01

    International audience; Abstract ContextIncreased summer drought is considered as a threat to the regeneration of Pinus sylvestris in the Central Alps. To a certain degree, seedlings are able to mitigate negative effects of drought by altering root/shoot ratios. But, seedlings may also enhance access to water and nutrients by cooperation with ectomycorrhizal fungi. AimsWe tested the importance of both mechanisms for drought resistance of P. sylvestris seedlings during early establishment and ...

  16. Desenvolvimento inicial de mudas de copaíba sob diferentes níveis de sombreamento e substratos Early development of seedlings of copaiba under different shade levels and substrates

    Directory of Open Access Journals (Sweden)

    Tiago Reis Dutra

    2012-06-01

    CA+15VC; four levels of shading (full sunlight (0%, 30, 50 and 70% and three replications. We evaluated the following variables: absolute growth rate in height and diameter, survival, dry mass of leaves, stem and root, total dry mass, dry mass ratio of shoot and root dry weight, and leaf weight. The results show that the seedlings need shade Copaiba in its early stage of development, and the level of 50% shading a viable alternative for production of its seedlings. The seedlings grown in Copaiba 70V+30CA produced more total dry mass, while in Bioplant® inferior characteristics observed for dry weight of leaves, total dry weight and leaf weight.

  17. Nitrogen-15 Uptake by Pinus contorta Seedlings in Relation to Phenological Stage and Season

    International Nuclear Information System (INIS)

    Amponsah, Isaac G.; Lieffers, Victor J.; Comeau, Philip G.; Landhaeusser, Simon M.

    2004-01-01

    This study measured the amount of uptake of labeled nitrogen ( 15 N) of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm) seedlings, at three different phenological stages, in a growth chamber experiment. Thirty days after 15 N application, the amount of 15 N recovered in seedlings as a percentage of the total 15 N fertilizer applied was 4% in early spring, 43% in summer and 33% in autumn. The total 15 N recovered in the plant-pot system ranged from 80 to 96%, and is higher than reported in other studies. Total 15 N recovered from the pot compartment alone ranged from 48 to 95%, suggesting that substantial pools of N remain in the soil. Results suggest that low 15 N uptake in the spring was associated with limited development of new root as a result of low spring soil temperatures. The lack of unsuberized roots in spring could be a key factor decreasing the effectiveness of early spring fertilization in the boreal forest

  18. Accelerated development in Johnsongrass seedlings (Sorghum halepense suppresses the growth of native grasses through size-asymmetric competition.

    Directory of Open Access Journals (Sweden)

    Susanne Schwinning

    Full Text Available Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense, big bluestem (Andropogon gerardii, little bluestem (Schizachyrium scoparius and switchgrass (Panicum virgatum. We predicted that a the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b competitive effect and response would be negatively correlated and c soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass < big bluestem < little bluestem/switchgrass, while Johnsongrass responded more strongly to competition from Johnsongrass than from native species. At final harvest, native plants growing with Johnsongrass attained between 2-5% of their single-plant non-root biomass, while Johnsongrass growing with native species attained 89% of single-plant non-root biomass. Fertilization enhanced Johnsongrass' competitive effects on native species, but added little to the already severe competitive suppression. Accelerated early growth of Johnsongrass seedlings relative to native seedlings appeared to enable subsequent resource pre-emption. Size-asymmetric competition and resource

  19. Effect of different substrates for organic agriculture in seedling development of traditional species of Solanaceae

    Energy Technology Data Exchange (ETDEWEB)

    Olaria, M.; Nebot, J.F.; Molina, H.; Troncho, P.; Lapeña, P.; Llorens, E.

    2016-11-01

    Sowing of seedlings is one of the most critical processes on the establishment of a crop, since the future development of the plant depends largely on its health when is planted on the field. Moreover, organic agriculture has to deal with the low application of fertilizers and pesticides, which hinder the growth of seedlings. In this work, we studied the big influence of different mixtures of substrates suitable for organic agriculture based on peat, coconut husk and vermicompost in traditional varieties of tomato, pepper and eggplant. Our results indicate that the use of coconut husk based substrates in organic agriculture can reduce the growth of seedlings between 20 and 30% compared with peat-based substrates. Moreover, the plants growth in this substrate showed lower levels of chlorophyll and lower weight, but the results are strongly dependent on the species tested. Comparison between traditional plants demonstrates that traditional varieties are strongly influenced by the substrate, whereas the growth of a commercial variety of tomato barely differs when different substrates are used. The election of the substrate in organic agriculture is critical to the correct development of the plant, especially when traditional plant varieties are used. (Author)

  20. Effect of different substrates for organic agriculture in seedling development of traditional species of Solanaceae

    Directory of Open Access Journals (Sweden)

    Hector Molina

    2016-03-01

    Full Text Available Sowing of seedlings is one of the most critical processes on the establishment of a crop, since the future development of the plant depends largely on its health when is planted on the field. Moreover, organic agriculture has to deal with the low application of fertilizers and pesticides, which hinder the growth of seedlings. In this work, we studied the big influence of different mixtures of substrates suitable for organic agriculture based on peat, coconut husk and vermicompost in traditional varieties of tomato, pepper and eggplant. Our results indicate that the use of coconut husk based substrates in organic agriculture can reduce the growth of seedlings between 20 and 30% compared with peat-based substrates. Moreover, the plants growth in this substrate showed lower levels of chlorophyll and lower weight, but the results are strongly dependent on the species tested. Comparison between traditional plants demonstrates that traditional varieties are strongly influenced by the substrate, whereas the growth of a commercial variety of tomato barely differs when different substrates are used. The election of the substrate in organic agriculture is critical to the correct development of the plant, especially when traditional plant varieties are used.

  1. Early plant growth and biochemical responses induced by Azospirillum brasilense Sp245 lipopolysaccharides in wheat (Triticum aestivum L.) seedlings are attenuated by procyanidin B2.

    Science.gov (United States)

    Vallejo-Ochoa, Juan; López-Marmolejo, Mariel; Hernández-Esquivel, Alma Alejandra; Méndez-Gómez, Manuel; Suárez-Soria, Laura Nicolasa; Castro-Mercado, Elda; García-Pineda, Ernesto

    2018-03-01

    This study analyzes the effects of procyanidin B2 on early wheat plant growth and plant biochemical responses promoted by lipopolysaccharides (LPS) derived from the rhizobacteria Azospirillum brasilense Sp245. Measurements of leaf, root length, fresh weight, and dry weight showed in vitro plant growth stimulation 4 days after treatment with A. brasilense as well as LPS. Superoxide anion (O 2 ·- ) and hydrogen peroxide (H 2 O 2 ) levels increased in seedling roots treated with LPS (100 μg mL -1 ). The chlorophyll content in leaf decreased while the starch content increased 24 h after treatment in seedling roots. The LPS treatment induced a high increase in total peroxidase (POX) (EC 1.11.1.7) activity and ionically bound cell wall POX content in roots, when compared to respective controls. Early plant growth and biochemical responses observed in wheat seedlings treated with LPS were inhibited by the addition of procyanidin B2 (5 μg mL -1 ), a B type proanthocyanidin (PAC), plant-derived polyphenolic compound with binding properties of LPS. All results suggest first that the ionically bound cell wall POX enzymes could be a molecular target of A. brasilense LPS, and second that the recognition or association of LPS by plant cells is required to activate plant responses. This last event could play a critical role during plant growth regulation by A. brasilense LPS.

  2. Potential production of Aspidosperma cylindrocarpon seedlings viarescue seedlings

    Directory of Open Access Journals (Sweden)

    Nathália Ferreira e Silva

    Full Text Available ABSTRACT: Translocation of rare populations is regarded as the last resort for the conservation of species whose habitat destruction is imminent. The objective of the present study was to evaluate the effect of two height classes and three leaf reduction intensities on growth and increases in height, stem diameter, survival, and new leaf production in seedlings of Aspidosperma cylindrocarpon (peroba obtained via rescue seedlings in a remnant of tropical semi deciduous forest. We recovered 240 individuals that were divided into two height classes (Class I-5 to 15cm and Class II-20 to 35cm and subjected to three leaf reduction intensities (0%, 50%, and 100%, which were then transported to a shade house with 50% light reduction. Measurements of height, stem diameter, and new leaf production were collected 8 times at 0, 15, 60, 75, 90, 105, 120, and 135 days, and survival rate was measured at day 135. The average survival rate was 82.9%; 77.5% for one Class I (5-15cm and 88.3% for Class II (20-35cm. Higher seedling growth was observed for the 0% leaf reduction treatment in both height classes. The leaves insertion were greater in the 100% cuts, with a decrease observed over time. It is advisable to restore A. cylindrocarpon seedlings in two height classes owing to the high survival rate, leaf appearance, and growth reported in the present study. The no-leaf reduction treatment (0% is the most viable alternative for the production of A. cylindrocarpon seedlings, via rescue seedlings.

  3. Potential effects of arboreal and terrestrial avian dispersers on seed dormancy, seed germination and seedling establishment in Ormosia (Papilionoideae) species in Peru

    Science.gov (United States)

    Foster, Mercedes S.

    2008-01-01

    The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.

  4. Sites of infection by pythium species in rice seedlings and effects of plant age and water depth on disease development.

    Science.gov (United States)

    Chun, S C; Schneider, R W

    1998-12-01

    ABSTRACT Seedling disease, caused primarily by several species of Pythium, is one of the major constraints to water-seeded rice production in Louisiana. The disease, also known as water-mold disease, seed rot, and seedling damping-off, causes stand reductions and growth abnormalities. In severe cases, fields must be replanted, which may result in delayed harvests and reduced yields. To develop more effective disease management tactics including biological control, this study was conducted primarily to determine sites of infection in seeds and seedlings; effect of plant age on susceptibility to P. arrhenomanes, P. myriotylum, and P. dissotocum; and minimum exposure times required for infection and seedling death. In addition, the effect of water depth on seedling disease was investigated. Infection rates of seed embryos were significantly higher than those of endosperms for all three Pythium spp. The development of roots from dry-seeded seedlings was significantly reduced by P. arrhenomanes and P. myriotylum at 5 days after planting compared with that of roots from noninoculated controls. Susceptibility of rice to all three species was sharply reduced within 2 to 6 days after planting, and seedlings were completely resistant at 8 days after planting. There was a steep reduction in emergence through the flood water, relative to the noninoculated control, following 2 to 3 days of exposure to inoculum of P. arrhenomanes and P. myriotylum. In contrast, P. dissotocum was much less virulent and required longer exposure times to cause irreversible seedling damage. Disease incidence was higher when seeds were planted into deeper water, implying that seedlings become resistant after they emerge through the flood water. These results suggest that disease control tactics including flood water management need to be employed for a very short period of time after planting. Also, given that the embryo is the primary site of infection and it is susceptible for only a few days, the

  5. Winter survival of Scots pine seedlings under different snow conditions.

    Science.gov (United States)

    Domisch, Timo; Martz, Françoise; Repo, Tapani; Rautio, Pasi

    2018-04-01

    Future climate scenarios predict increased air temperatures and precipitation, particularly at high latitudes, and especially so during winter. Soil temperatures, however, are more difficult to predict, since they depend strongly on the fate of the insulating snow cover. 'Rain-on-snow' events and warm spells during winter can lead to thaw-freeze cycles, compacted snow and ice encasement, as well as local flooding. These adverse conditions could counteract the otherwise positive effects of climatic changes on forest seedling growth. In order to study the effects of different winter and snow conditions on young Scots pine (Pinus sylvestris L.) seedlings, we conducted a laboratory experiment in which 80 1-year-old Scots pine seedlings were distributed between four winter treatments in dasotrons: ambient snow cover (SNOW), compressed snow and ice encasement (ICE), flooded and frozen soil (FLOOD) and no snow (NO SNOW). During the winter treatment period and a 1.5-month simulated spring/early summer phase, we monitored the needle, stem and root biomass of the seedlings, and determined their starch and soluble sugar concentrations. In addition, we assessed the stress experienced by the seedlings by measuring chlorophyll fluorescence, electric impedance and photosynthesis of the previous-year needles. Compared with the SNOW treatment, carbohydrate concentrations were lower in the FLOOD and NO SNOW treatments where the seedlings had almost died before the end of the experiment, presumably due to frost desiccation of aboveground parts during the winter treatments. The seedlings of the ICE treatment showed dead needles and stems only above the snow and ice cover. The results emphasize the importance of an insulating and protecting snow cover for small forest tree seedlings, and that future winters with changed snow patterns might affect the survival of tree seedlings and thus forest productivity.

  6. Seedling root targets

    Science.gov (United States)

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  7. Effects of untreated and treated oilfield-produced water on seed germination, seedling development, and biomass production of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    da Costa Marques, Mônica Regina; de Souza, Paulo Sérgio Alves; Rigo, Michelle Machado; Cerqueira, Alexandre Andrade; de Paiva, Julieta L; Merçon, Fábio; Perez, Daniel Vidal

    2015-10-01

    This study aims to evaluate possible toxic effects of oil and other contaminants from oilfield-produced water from oil exploration and production, on seed germination, and seedling development of sunflower (Helianthus annuus L.). In comparison, as treated by electroflocculation, oilfield-produced water, with lower oil and organic matter content, was also used. Electroflocculation treatment of oilfield-produced water achieved significant removals of chemical oxygen demand (COD) (94 %), oil and grease (O&G) (96 %), color (97 %), and turbidity (99 %). Different O&G, COD, and salt levels of untreated and treated oilfield-produced water did not influence germination process and seedling biomass production. Normal seedlings percentage and vigor tended to decrease more intensely in O&G and COD levels, higher than 337.5 mg L(-1) and 1321 mg O2 L(-1), respectively, using untreated oilfield-produced water. These results indicate that this industrial effluent must be treated, in order to not affect adversely seedling development. This way, electroflocculation treatment appears as an interesting alternative to removing oil and soluble organic matter in excess from oilfield-produced water improving sunflower's seedling development and providing a friendly environmental destination for this wastewater, reducing its potential to harm water resources, soil, and biota.

  8. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development

    Science.gov (United States)

    Zhang, Wei; Zhou, Xin; Wen, Chi-Kuang

    2012-01-01

    Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed. PMID:22451723

  9. Biodegradable bags for the production of plant seedlings

    Directory of Open Access Journals (Sweden)

    Ana Paula Bilck

    2014-10-01

    Full Text Available The production of plant seedlings has traditionally used polyethylene bags, which are thrown out in the soil or burned after transplant because the large amount of organic material attached to the bags makes recycling difficult. Additionally, when a seedling is taken from the bag for transplant, there is the risk of root damage, which compromises the plant’s development. In this study, we developed biodegradable bags to be used in seedling production, and we verify their influence on the development of Brazilian ginseng (Pfaffia glomerata (Spreng Pedersen, when the plant is planted without being removed from the bag. Both black and white biodegradable bags remained intact throughout the seedling production period (60 days. After being transplanted into containers (240 days, they were completely biodegraded, and there was no significant difference between the dry mass of these plants and that of plants that were transplanted without the bags. The plants that were cultivated without being removed from the polyethylene bags had root development difficulties, and the wrapping showed no signs of degradation. The use of biodegradable films is an alternative for the production of bags for seedlings, as these can then be transplanted directly into the soil without removing the bag, reducing the risk of damage to the roots during the moment of transplant.

  10. Seedling responses to water pulses in shrubs with contrasting histories of grassland encroachment.

    Directory of Open Access Journals (Sweden)

    Steven R Woods

    Full Text Available Woody plant encroachment into grasslands has occurred worldwide, but it is unclear why some tree and shrub species have been markedly more successful than others. For example, Prosopis velutina has proliferated in many grasslands of the Sonoran Desert in North America over the past century, while other shrub species with similar growth form and life history, such as Acacia greggii, have not. We conducted a glasshouse experiment to assess whether differences in early seedling development could help explain why one species and not the other came to dominate many Sonoran Desert grasslands. We established eight watering treatments mimicking a range of natural precipitation patterns and harvested seedlings 16 or 17 days after germination. A. greggii had nearly 7 times more seed mass than P. velutina, but P. velutina emerged earlier (by 3.0±0.3 d and grew faster (by 8.7±0.5 mg d⁻¹. Shoot mass at harvest was higher in A. greggii (99±6 mg seedling⁻¹ than in P. velutina (74±2 mg seedling⁻¹, but there was no significant difference in root mass (54±3 and 49±2 mg seedling⁻¹, respectively. Taproot elongation was differentially sensitive to water supply: under the highest initial watering pulse, taproots were 52±19 mm longer in P. velutina than in A. greggii. Enhanced taproot elongation under favorable rainfall conditions could give nascent P. velutina seedlings growth and survivorship advantages by helping reduce competition with grasses and maintain contact with soil water during drought. Conversely, A. greggii's greater investment in mass per seed appeared to provide little return in early seedling growth. We suggest that such differences in recruitment traits and their sensitivities to environmental conditions may help explain ecological differences between species that are highly similar as adults and help identify pivotal drivers of shrub encroachment into grasslands.

  11. Climate change alters seedling emergence and establishment in an old-field ecosystem.

    Directory of Open Access Journals (Sweden)

    Aimée T Classen

    2010-10-01

    Full Text Available Ecological succession drives large-scale changes in ecosystem composition over time, but the mechanisms whereby climatic change might alter succession remain unresolved. Here, we asked if the effects of atmospheric and climatic change would alter tree seedling emergence and establishment in an old-field ecosystem, recognizing that small shifts in rates of seedling emergence and establishment of different species may have long-term repercussions on the transition of fields to forests in the future.We introduced seeds from three early successional tree species into constructed old-field plant communities that had been subjected for 4 years to altered temperature, precipitation, and atmospheric CO(2 regimes in an experimental facility. Our experiment revealed that different combinations of atmospheric CO(2 concentration, air temperature, and soil moisture altered seedling emergence and establishment. Treatments directly and indirectly affected soil moisture, which was the best predictor of seedling establishment, though treatment effects differed among species.The observed impacts, coupled with variations in the timing of seed arrival, are demonstrated as predictors of seedling emergence and establishment in ecosystems under global change.

  12. Effect of saline water irrigation on seed germination and early seedling growth of the halophyte quinoa

    DEFF Research Database (Denmark)

    Panuccio, M.R.; Jacobsen, Sven-Erik; Saleem Akhtar, Saqib

    2014-01-01

    with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects...... been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its develop- ment. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds...... of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germi- nated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which...

  13. Can environmental variation affect seedling survival of plants in northeastern Mexico?

    Directory of Open Access Journals (Sweden)

    García Jaime F.

    2011-01-01

    Full Text Available The effects of global warming increase the frequency and intensity of many climate events such as rainfall. We evaluated the effects of environmental conditions on early stage seedling survival of the native thorn scrub species Caesalpinia mexicana A. Gray, Celtis pallida Torr., Cordia boissieri A. DC., and Ebenopsis ebano (Berland. Barneby and J.W. Grimes, during the summer of 2009 and 2010. The experimental design had two factors, two levels of rainfall and three microhabitats of thorn scrub: (i open interspace, (ii thorn scrub edge and (iii under the canopy of dense thorn scrub. In dense thorn scrub, seedling survival was higher for Caesalpinia mexicana and Celtis pallida, and for Cordia boissieri and Ebenopsis ebano seedling survival was higher in dense thorn scrub and thorn scrub edge. The effect of rainfall on seedling survival depended on the year. Rainfall in 2010 and dense thorn scrub increased seedling survival of native species. For survival, the limiting factors of microhabitats appear to change across the years. Besides rainfall events, biological aspects like competition and mycorrhiza effects would need to be considered in models of plant establishment.

  14. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare Seedlings.

    Directory of Open Access Journals (Sweden)

    Weiwei Deng

    Full Text Available The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare, a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.

  15. Population Structure, Diversity and Trait Association Analysis in Rice (Oryza sativa L. Germplasm for Early Seedling Vigor (ESV Using Trait Linked SSR Markers.

    Directory of Open Access Journals (Sweden)

    Annamalai Anandan

    Full Text Available Early seedling vigor (ESV is the essential trait for direct seeded rice to dominate and smother the weed growth. In this regard, 629 rice genotypes were studied for their morphological and physiological responses in the field under direct seeded aerobic situation on 14th, 28th and 56th days after sowing (DAS. It was determined that the early observations taken on 14th and 28th DAS were reliable estimators to study ESV as compared to 56th DAS. Further, 96 were selected from 629 genotypes by principal component (PCA and discriminate function analyses. The selected genotypes were subjected to decipher the pattern of genetic diversity in terms of both phenotypic and genotypic by using ESV QTL linked simple sequence repeat (SSR markers. To assess the genetic structure, model and distance based approaches were used. Genotyping of 96 rice lines using 39 polymorphic SSRs produced a total of 128 alleles with the phenotypic information content (PIC value of 0.24. The model based population structure approach grouped the accession into two distinct populations, whereas unrooted tree grouped the genotypes into three clusters. Both model based and structure based approach had clearly distinguished the early vigor genotypes from non-early vigor genotypes. Association analysis revealed that 16 and 10 SSRs showed significant association with ESV traits by general linear model (GLM and mixed linear model (MLM approaches respectively. Marker alleles on chromosome 2 were associated with shoot dry weight on 28 DAS, vigor index on 14 and 28 DAS. Improvement in the rate of seedling growth will be useful for identifying rice genotypes acquiescent to direct seeded conditions through marker-assisted selection.

  16. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    Science.gov (United States)

    Ma, Xiaoding; Ma, Jian; Zhai, Honghong; Xin, Peiyong; Chu, Jinfang; Qiao, Yongli; Han, Longzhi

    2015-01-01

    CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  17. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    Directory of Open Access Journals (Sweden)

    Xiaoding Ma

    Full Text Available CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483 exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  18. EFFECT OF ARBUSCULAR MYCORRHIZAL COLONIZATION ON EARLY GROWTH AND NUTRIENT CONTENT OF TWO PEAT­ SWAMP FOREST TREE SPECIES SEEDLINGS, Calophyllum hosei AND Ploiarium alternifolium

    Directory of Open Access Journals (Sweden)

    Maman Turjaman

    2006-03-01

    Full Text Available Tropical peat-swamp forests are one of  the largest near-surface reserves of terrestrial organic carbon,  but rnany peat-swamp forest tree species decreased due over-exploitation, forest fire and conversion of natural forests into agricultural lands. Among those species are slow-growing Calophyllum  hoseiand Ploiarium  alternifolium, two species are good for construction of boats, furniture, house building and considerable attention from pharmacological viewpoint for human healthly. This study was aimed at understanding the effects of arbuscular mycorrhizal (AM fungi on early growth of  C. hosei and P.alternifoliumunder greenhouse condition. Seedlings of C. hosei and P.alternifoliumwere inoculated with AM fungi: Glomus clarum and Glomus aggregatum ,or uninoculated under greenhouse condition during 6 months. AM colonization,   plant growth,  survival rate and  nutrient  content  (P, Zn  and B were measured. The percentage of C. hoseiand P.alternifolium ranged from 27-32% and 18-19%,  respectively. Both inoculated seedling species had greater plant  height, diameter, leaf number, shoot and root dry weight than control  seedlings.   Nutrient  content  of  inoculated  plants  were increased with AM colonization- Survival rates of  inoculated plants were higher (100%  than those of  control plants (67%. The results suggested that inoculation of AM fungi could improve the early growth of C. hoseiand P.alternifolium grown in tropical peat-swamp forest therefore  this finding has greater potential impact if this innovative technology applied in field scales which are socially acceptable, commercially profitable and environmentally friendly.

  19. Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings.

    Science.gov (United States)

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2015-07-01

    The effect of arbuscular mycorrhizal fungi (AMF) in combination with endophytic bacteria (EB) in reducing development of basal stem rot (BSR) disease in oil palm (Elaeis guineensis) was investigated. BSR caused by Ganoderma boninense leads to devastating economic loss and the oil palm industry is struggling to control the disease. The application of two AMF with two EB as biocontrol agents was assessed in the nursery and subsequently, repeated in the field using bait seedlings. Seedlings pre-inoculated with a combination of Glomus intraradices UT126, Glomus clarum BR152B and Pseudomonas aeruginosa UPMP3 significantly reduced disease development measured as the area under disease progression curve (AUDPC) and the epidemic rate (R L) of disease in the nursery. A 20-month field trial using similar treatments evaluated disease development in bait seedlings based on the rotting area/advancement assessed in cross-sections of the seedling base. Data show that application of Glomus intraradices UT126 singly reduced disease development of BSR, but that combination of the two AMF with P. aeruginosa UPMP3 significantly improved biocontrol efficacy in both nursery and fields reducing BSR disease to 57 and 80%, respectively. The successful use of bait seedlings in the natural environment to study BSR development represents a promising alternative to nursery trial testing in the field with shorter temporal assessment.

  20. Improved recruitment and early growth of Scots pine (Pinus sylvestris L.) seedlings after fire and soil scarification.

    NARCIS (Netherlands)

    Hille, M.G.; Ouden, den J.

    2004-01-01

    The success of seedling recruitment of Scots pine (Pinus sylvestris L.) is strongly dependent on soil surface properties, such as humus depth and moisture content. In an undisturbed forest floor, seedlings are seldom able to become established due to the high incidence of desiccation in the organic

  1. Tree seedling response to LED spectra: Implications for forest restoration

    Science.gov (United States)

    Antonio Montagnoli; R. Kasten Dumroese; Mattia Terzaghi; Jeremiah R. Pinto; Nicoletta Fulgaro; Gabriella Stefania Scippa; Donato Chiatante

    2018-01-01

    We found that different spectra, provided by light-emitting diodes or a fluorescent lamp, caused different photomorphological responses depending on tree seedling type (coniferous or broad-leaved), species, seedling development stage, and seedling fraction (shoot or root). For two conifers (Picea abies and Pinus sylvestris) soon after germination (≤40 days), more...

  2. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season.

    Science.gov (United States)

    Kaakinen, Seija; Jolkkonen, Annika; Iivonen, Sari; Vapaavuori, Elina

    2004-06-01

    One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.

  3. [Effects of gap size on seedling natural regeneration in artificial Pinus tabulaeformis plantation].

    Science.gov (United States)

    Han, Wen-Juan; Yuan, Xiao-Qing; Zhang, Wen-Hui

    2012-11-01

    To clarify the effects of gap size created by thinning on the seedling natural regeneration in artificial Pinus tabulaeformis plantation, a plot investigation was conducted to study the ecological factors and the age structure, height, diameter, length of needles, and dry biomass of roots, stems, and needles of 1-10 year-old seedlings in different habitats, and a path analysis was made on the environmental factors affecting the seedling regeneration. Obvious differences were observed in the ecological factors in different size gaps and slope aspects. There lacked of above 3 year-old seedlings in understory and of above 7 year-old seedlings in small gap, and the seedlings of 5 and 6 year-old were lesser in big gap. The 1-10 year-old seedlings could be divided into 3 development phases, i. e. , 1-3 year-old, 4-7 year-old, and 8-10 year-old seedlings, among which, 1-3 year-old seedlings were critical for the establishment and growth of the population. The growth situation of the seedlings in different habitats was in order of big gap in shady slope > big gap in sunny slope > small gap in sunny slope > small gap in shady slope > understory in sunny slope > understory in shady slope. Path analysis showed light intensity had decisive positive effects on the seedling number of different development phases, shrub coverage had decisive negative effects on the seedling number of 4-7 year-old and 8-10 year-old phases, whereas humus dry mass had negative effects on the seedling number of 4-7 year-old but positive effects on the seedling number of 8-10 year-old. It was suggested that in the management of artificial P. tabulaeformis plantation, relatively high intensity thinning combined with shrub clearing should be adopted to provide favorable conditions for the sustainable development of P. tabulaeformis population.

  4. SOURCES OF MYCORRHIZAL INFECTION OF SHOREA ACUMINATA SEEDLINGS UNDER LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    LEE Su SEE

    1995-01-01

    Full Text Available Uninoculated dipterocarp seedlings raised in normal field soil in nurseries were always found to have mycorrhizas after a few months. This study set out to determine whether dipterocarp seedlings could continue to grow and develop in the absence of mycorrhizas and also to determine possible sources of mycorrhizal infection of dipterocarp seedlings raised under laboratory conditions using Shorea acuminata as a typical example. Seedlings were planted in capped or uncapped perspex boxes containing sterile or non-sterile field soil and watered daily with sterile water or tap water. Seedling growth and development of mycorrhizas were monitored at monthly intervals for up to seven months. Seedlings grown in sterile soil remained uninfected after seven months while infection was found in some of the seedlings grown in normal soil regardless of whether they had been watered with tap water or sterile water. This showed that field soil (i.e. under grass far from the forest contained suitable inoculum for forest tree seedlings. Tap water and the air were not important sources of infection. However, mycorrhizal infection was very uneven indicating that the inoculum was probably very unevenly distributed in the soil or that the inoculum density was rather low. Seedlings grown in sterile soil showed better growth than those grown in normal soil and infection of roots by parasitic fungi in the latter was also observed.

  5. Germination and development of pecan cultivar seedlings by seed stratification

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate the effect of seed stratification on germination rate, germination speed, and initial development of seedlings of six pecan (Carya illinoinensis cultivars under subtropical climatic conditions in southern Brazil. For stratification, the seeds were placed in boxes with moist sand, in a cold chamber at 4°C, for 90 days. In the fourteenth week after sowing, the emergence speed index, total emergence, plant height, stem diameter, and number of leaves were evaluated. Seed stratification significantly improves the germination potential and morphological traits of the evaluated cultivars.

  6. Screening for salt tolerance in maize (zea mays l.) hybrids at an early seedling stage

    International Nuclear Information System (INIS)

    Akram, M.; Mohsan; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.

    2010-01-01

    An efficient and simple mass screening technique for selection of maize hybrids for salt tolerance has been developed. Genetic variation for salt tolerance was assessed in hybrid maize (Zea mays L.) using solution-culture technique. The study was conducted in solution culture exposed to four salinity levels (control, 40, 80 and 120 mM NaCl). Seven days old maize seedlings were transplanted in themopol sheet in iron tubs containing one half strength Hoagland nutrient solutions and salinized with common salt (NaCl). The experiment was conducted in the rain protected wire house of Stress Physiology Laboratory of NIAB, Faisalabad, Pakistan. Ten maize hybrids were used for screening against four salinity levels. Seedling of each hybrid was compared for their growth under saline conditions as a percentage of the control values. Considerable variations were observed in the root, shoot length and biomass of different hybrids at different salinity levels. The leaf sample analyzed for inorganic osmolytes (sodium, potassium and calcium) showed that hybrid Pioneer 32B33 and Pioneer 30Y87 have high biomass, root shoot fresh weight and high ratio and showed best salt tolerance performance at all salinity levels on overall basis. (author)

  7. Branching of the PIF3 regulatory network in Arabidopsis: roles of PIF3-regulated MIDAs in seedling development in the dark and in response to light.

    Science.gov (United States)

    Sentandreu, Maria; Leivar, Pablo; Martín, Guiomar; Monte, Elena

    2012-04-01

    Plants need to accurately adjust their development after germination in the underground darkness to ensure survival of the seedling, both in the dark and in the light upon reaching the soil surface. Recent studies have established that the photoreceptors phytochromes and the bHLH phytochrome interacting factors PIFs regulate seedling development to adjust it to the prevailing light environment during post-germinative growth. However, complete understanding of the downstream regulatory network implementing these developmental responses is still lacking. In a recent work, published in The Plant Cell, we report a subset of PIF3-regulated genes in dark-grown seedlings that we have named MIDAs (MISREGULATED IN DARK). Analysis of their functional relevance using mutants showed that four of them present phenotypic alterations in the dark, and that each affected a particular facet of seedling development, suggesting organ-specific branching in the signal that PIF3 relays downstream. Furthermore, our results also showed an altered response to light in seedlings with an impaired PIF3/MIDA regulatory network, indicating that these factors might also be essential to initiate and optimize the developmental adjustment of the seedling to the light environment.

  8. Effects of salt stress on germination and early seedling growth of rice ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... the relationship between speed of germination and seed vigor, salt stress decreased seed vigor of rice cultivars LD a superior ... Key words: Salinity, seed germination, seedling property, seed vigor. INTRODUCTION ... The salt solutions were prepared based on the methods by. (Rhoades et al., 1992) with ...

  9. Contribution of nitrogen derived from mineral supplementation for soybean seedlings

    Directory of Open Access Journals (Sweden)

    Gerusa Massuquini Conceição

    Full Text Available ABSTRACT Seeds can absorb N from mineral supplementation, thus stimulating seedling development in soybeans (Glycine max (L. Merrill. This study aimed to evaluate the contribution to soybean seedlings of N derived from mineral supplementation in seeds with different nutritional contents. Seeds of the cultivar BMX Potência RR received mineral supplementation enriched with 2.5% excess 15N. The treatments were performed in seeds in two lots, one with high and one with low nutritional content. At 2, 6 and 10 days after sowing on paper towels, the seedlings were collected and separated into cotyledons, roots and shoots. Dry matter production, root length and root volume were assessed. Total N and 15N values were analyzed in the seedling organ tissues. The seeds from the lot with lower nutritional content absorbed more N from the mineral supplement, which was accumulated in the cotyledons and redistributed to the root systems and cotyledons. At 10 days after sowing, most of the N in the organs of soybean seedlings was derived from the seed reserves, regardless of nutritional content. Thus, application of N through mineral supplementation is of low importance for the development and nutrition of seedlings.

  10. Stem Photosynthesis of Twig and Its Contribution to New Organ Development in Cutting Seedlings of Salix Matsudana Koidz.

    Directory of Open Access Journals (Sweden)

    Junxiang Liu

    2018-04-01

    Full Text Available The objective of this study was to illustrate the photosynthetic characteristics of current twigs of Salix matsudana Koidz., and clarify the effect of stem photosynthesis on the new organ development in cutting seedlings. Excised twigs were taken as the experimental samples. The response of the stem photosynthesis rate to increasing light intensity and the effective photochemical efficiency of the cross section of the twig were determined. Then, twigs were used as cuttings and exposed to 0, 20, and 100 μmol m−2 s−1 light intensities, respectively, to achieve distinctive stem photosynthetic rates. After 14 days of treatment, stem water and non-structural carbohydrate (NSC content, as well as the biomass and carbon isotopic composition, of new organs in the cutting seedlings under different light treatments were examined. The results showed that the gross photosynthetic rate significantly increased within 400 μmol m−2 s−1 of light intensity, and the maximum rate was approximately 1.27 μmol m−2 s−1. The effective photochemical efficiency of the PSⅡ of the cortex was significantly higher than the inner tissues in the cross section of the twig. When twig cuttings were exposed to different light intensities, stem water and starch content, as well as bud and root biomass, were significantly higher in the cutting seedling subjected to 100 μmol m−2 s−1 than the case treated in darkness; however, the bud δ13C trend was the opposite. Stem photosynthesis played a positive role in the maintenance of stem water and starch supply for the cutting seedlings, and 13C depleted assimilates produced by stem photosynthesis contributed to bud biomass, revealing that stem photosynthesis promotes organ development in cutting seedlings of Salix matsudana.

  11. AtMRP6/AtABCC6, an ATP-Binding Cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana

    Science.gov (United States)

    Gaillard, Stéphane; Jacquet, Hélène; Vavasseur, Alain; Leonhardt, Nathalie; Forestier, Cyrille

    2008-01-01

    Background ABC proteins constitute one of the largest families of transporters found in all living organisms. In Arabidopsis thaliana, 120 genes encoding ABC transporters have been identified. Here, the characterization of one member of the MRP subclass, AtMRP6, is described. Results This gene, located on chromosome 3, is bordered by AtMRP3 and AtMRP7. Using real-time quantitative PCR (RT-Q-PCR) and the GUS reporter gene, we found that this gene is essentially expressed during early seedling development, in the apical meristem and at initiation point of secondary roots, especially in xylem-opposite pericycle cells where lateral roots initiate. The level of expression of AtMRP6 in response to various stresses was explored and a significant up-regulation after cadmium (Cd) treatment was detected. Among the three T-DNA insertion lines available from the Salk Institute library, two knock-out mutants, Atmrp6.1 and Atmrp6.2 were invalidated for the AtMRP6 gene. In the presence of Cd, development of leaves was more affected in the mutants than wild-type plants, whereas root elongation and ramification was comparable. Conclusion The position of AtMRP6 on chromosome 3, flanked by two other MRP genes, (all of which being induced by Cd) suggests that AtMRP6 is part of a cluster involved in metal tolerance, although additional functions in planta cannot be discarded. PMID:18307782

  12. Short Communication. Recruitment and early growth of Pinus pinaster seedlings over five years after a wildfire in NW Spain

    Directory of Open Access Journals (Sweden)

    L. Calvo

    2013-12-01

    Full Text Available Aim of study: The main aim of this study was to analyse the post-fire recruitment and growth of Pinus pinaster seedlings during the first five years after wildfire and also to analyse the effects of climatic conditions on the survival of P. pinaster seedlingsArea of study: The study area was located in a P. pinaster stand in León province (NW Spain burned in 1998.Material and Methods: Three sites in the burned area were selected. In each site three permanent transects of 20m x 1m were placed. In each transect, twenty 1m2 sampling units were marked and the number and height of each pine seedlings was recorded at 7, 8, 9, 10, 11, 12 months and 2, 3, 4 and 5 years after the wildfire. The soil of study area is Cambisol.Mean results: Mean Pinus regeneration densities varied between 33.2 seedlings/m2 after 7 months and 6 seedlings/m2 five years after wildfire. In this P. pinaster stand, maximum mortality appeared during the summer months in the first year of regeneration. There was a significant increase in seedling height associated with a decrease in density.Research highlights: The post-fire recruitment is considered enough to ensure good natural Pinus pinaster forest regeneration. In the short term post-fire management strategy in this type of forest could be the remaining branches with cones of burned trees that allow the dissemination of the seeds during the first few years after fire and ensure natural regeneration.Keywords: Fire effects; natural regeneration; León province (NW Spain; seedlings density; growth and survival.

  13. Effects of age and stand density of mother trees on early Pinus thunbergii seedling establishment in the coastal zone, China.

    Science.gov (United States)

    Mao, Peili; Han, Guangxuan; Wang, Guangmei; Yu, Junbao; Shao, Hongbo

    2014-01-01

    Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest.

  14. Associations among arbuscular mycorrhizal fungi and seedlings are predicted to change with tree successional status.

    Science.gov (United States)

    Bachelot, Benedicte; Uriarte, María; Muscarella, Robert; Forero-Montaña, Jimena; Thompson, Jill; McGuire, Krista; Zimmerman, Jess; Swenson, Nathan G; Clark, James S

    2018-03-01

    Arbuscular mycorrhizal (AM) fungi in the soil may influence tropical tree dynamics and forest succession. The mechanisms are poorly understood, because the functional characteristics and abundances of tree species and AM fungi are likely to be codependent. We used generalized joint attribute modeling to evaluate if AM fungi are associated with three forest community metrics for a sub-tropical montane forest in Puerto Rico. The metrics chosen to reflect changes during forest succession are the abundance of seedlings of different successional status, the amount of foliar damage on seedlings of different successional status, and community-weighted mean functional trait values (adult specific leaf area [SLA], adult wood density, and seed mass). We used high-throughput DNA sequencing to identify fungal operational taxonomic units (OTUs) in the soil. Model predictions showed that seedlings of mid- and late-successional species had less leaf damage when the 12 most common AM fungi were abundant compared to when these fungi were absent. We also found that seedlings of mid-successional species were predicted to be more abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. In contrast, early-successional tree seedlings were predicted to be less abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. Finally, we showed that, among the 12 most common AM fungi, different AM fungi were correlated with functional trait characteristics of early- or late-successional species. Together, these results suggest that early-successional species might not rely as much as mid- and late-successional species on AM fungi, and AM fungi might accelerate forest succession. © 2017 by the Ecological Society of America.

  15. Light-emitting diode lighting for forest nursery seedling production

    Science.gov (United States)

    R. Kasten Dumroese; Jeremiah R. Pinto; Anthony S. Davis

    2015-01-01

    Crop lighting is an energy-intensive necessity for nursery production of high-quality native plants and forest tree seedlings. During the winter months (especially in northern USA latitudes) or overcast or cloudy days, the amount of solar radiation reaching greenhouse crops is insufficient resulting in growth cessation, early terminal bud formation, and failure of...

  16. Differential radiosensitivity of seeds, seedlings and callus cultures of Petunia inflata

    International Nuclear Information System (INIS)

    Bapat, V.A.; Rao, P.S.

    1976-01-01

    A comparative study of the effects of γ-irradiation on seeds, seedlings and callus cultures of Petunia inflata showed striking differences in radiosensitivity as reflected in differences in mean fresh and dry weights, seedling height and morphology. Seeds subjected to low doses (4-6 kR) of irradiation showed stimulation of seedling height. Direct exposure of seedlings to high doses (10 kR) of irradiation caused inhibition in their development. Callus cultures, however, were more radioresistant compared to seeds and seedlings. Tissues grown on either an irradiated nutrient medium or on a medium in which sucrose alone had been irradiated, showed a marked inhibition in their growth potential

  17. The influence of seedling density in containers on morphological characteristics of European beech

    Directory of Open Access Journals (Sweden)

    Wrzesiński Piotr

    2015-09-01

    Full Text Available This study examines the influence on growth parameters, in particular the morphological features of the root system, of 1-year-old European beech seedlings cultivated in containers with two different densities. The experiment was conducted in the container nursery in Skierdy (Forest District of Jabłonna in spring 2011. After 10 months of cultivation in Hiko polyethylene containers, above- and below-ground parts of the seedlings were measured. The measurements of the root system were conducted with a scanner and the WinRHIZO software. No influence due to the seedling density on either shoot height or thickness was observed, but instead the research showed that different seedling densities affected the development of root systems. The mean root thickness and dry mass of the European beech seedlings were significantly higher at the lower density. The influence of seedling density on the development of root mass deserves special attention as it is the most important factor affecting future growth of the seedlings during cultivation. This tendency also suggests that the amount of nutrients allocated to shoot development may be higher in order to improve the efficiency of photosynthesis. At both densities, differences in biomass accumulation affected the root-toshoot ratio. In seedlings cultivated at the lower density, the increased dry root matter of the seedlings resulted in a significant increase in the root-to-shoot ratio. This may cause a potential growth advantage of these seedlings after they are planted and may thus result in a more productive cultivation.

  18. The role of population origin and microenvironment in seedling emergence and early survival in Mediterranean maritime pine (Pinus pinaster Aiton.

    Directory of Open Access Journals (Sweden)

    Natalia Vizcaíno-Palomar

    Full Text Available Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover in the emergence and early survival of maritime pine (Pinus pinaster Aiton, an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes.

  19. The role of population origin and microenvironment in seedling emergence and early survival in Mediterranean maritime pine (Pinus pinaster Aiton).

    Science.gov (United States)

    Vizcaíno-Palomar, Natalia; Revuelta-Eugercios, Bárbara; Zavala, Miguel A; Alía, Ricardo; González-Martínez, Santiago C

    2014-01-01

    Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes.

  20. [Status of traditional Chinese medicine materials seed and seedling breeding bases].

    Science.gov (United States)

    Li, Ying; Huang, Lu-Qi; Zhang, Xiao-Bo; Wang, Hui; Cheng, Meng; Zhang, Tian; Yang, Guang

    2017-11-01

    Seeds and seedlings are the material basis of traditional Chinese medicine materials production, and the construction of traditional Chinese medicine materials seed and seedling breeding bases is beneficial to the production of high-quality traditional Chinese medicine materials. The construction of traditional Chinese medicine materials seed and seedling breeding bases is one of the major topics of Chinese medica resources census pilot. Targets, tasks of traditional Chinese medicine materials seed and seedling breeding bases based on Chinese medica resources census pilot were expounded.Construction progress including hardware construction, germplasm conservation and breeding, procedures and standardsestablishment, social servicesare presented. Development counter measures were proposed for the next step: perfect the standard and system, maintain and strengthen the breeding function, strengthen the cultivation of multi-level talents, explore market development model, joint efforts to deepen services and development. Copyright© by the Chinese Pharmaceutical Association.

  1. Growth, water relations and photosynthesis of seedlings and resprouts after fire

    Science.gov (United States)

    Clemente, Adelaide S.; Rego, Francisco C.; Correia, Otília A.

    2005-05-01

    Seasonal patterns of growth, water relations, photosynthesis and leaf characteristics were compared between obligate seeders ( Cistus monspeliensis and Cistus ladanifer) and resprouters ( Arbutus unedo and Pistacia lentiscus) from the first to the second year after fire. We hypothesized that seedlings would be more water-limited than resprouts due to their shallower root systems. Regarding water use strategies, Cistus species are drought semi-deciduous and A. unedo and P. lentiscus are evergreen sclerophylls, therefore, comparisons were based on the relative deviation from mature conspecific plants. Seedlings and resprouts had higher shoot elongation and leaf production than mature plants, and over an extended period. Differences from mature plants were larger in resprouts, with two-fold transpiration, leaf conductance and photosynthesis in late spring/early summer. Seedlings of C. monspeliensis exhibited higher transpiration and leaf conductance than mature plants, while those of C. ladanifer only exhibited higher water potential. Growth increments and ameliorated water relations and photosynthesis after fire were attributed to an increase in water and nutrient availability. The small differences in water relations and photosynthesis between seedlings and mature conspecifics are in accordance with the prediction of seedlings experiencing higher water limitation than resprouts. We attribute these results to differences in root systems: resprouters benefited from an increase in root/shoot ratios and the presence of deep roots whereas Cistus seedlings relied on very shallow roots, which cannot provide assess to deep water during summer. Nevertheless, seedlings did not show evidence of experiencing a more severe water limitation than mature conspecifics, which we attributed to the presence of efficient mechanisms of avoiding and tolerating water stress. The results are discussed in relation to post-fire demography of seeders and resprouters in Mediterranean

  2. IMPROVED METHODS OF OBTAINING PEPPER SEEDLINGS

    OpenAIRE

    Florina Uleanu

    2012-01-01

    This paper refers to the effect of different types of pots on the level of growth and development of the pepper seedlings in order to clarify the influences caused by use of different recipes transplanters pots. Different biocomposites from renewable resources biodegradable nutritive support were studied. Seedlings were grown in 4 variants of pots M1 (V1), M2 (V2), M3 (V3) and jiffy- pots (V4). The height of the aerial part varied from 14.5 (V1) to 17.4 cm (V4), whereas the root length varied...

  3. [Effects of precipitation and interspecific competition on Quercus mongolica and pinus koraiensis seedlings growth].

    Science.gov (United States)

    Wu, Jing-Lian; Wang, Miao; Lin, Fei; Hao, Zhan-Qing; Ji, Lan-Zhu; Liu, Ya-Qin

    2009-02-01

    Aiming at the variation of precipitation pattern caused by global warming, a field simulation experiment was conducted to study the effects of 30% increase (+W) and decrease (-W) of precipitation on the morphology, growth, and biomass partitioning of mono- and mixed cultured seedlings of Quercus mongolica and Pinus koraiensis, the two dominant tree species in temperate broad-leaved Korean pine mixed forest in Changbai Mountains. Comparing with monoculture, mixed culture increased the canopy width and main root length of Q. mongolica seedlings, but decreased the basal diameter, plant height, leaf number, and dry masses of root, stem, leaf and whole plant of P. koraiensis seedlings significantly. Treatment (-W) increased the stem/mass ratio while decreased the main root length of Q. mongolica seedlings, and decreased the main root length, leaf number, dry masses of leaf and whole plant, and leaf/mass ratio, while increased the stem/mass ratio of P. koraiensis seedlings significantly, compared with treatment CK. Treatment (+W) had no significant effect on these indices of the two species. At early growth stage, interspecific competition and precipitation pattern had significant effects on the morphology and growth of the seedlings, and the responses were much stronger for P. koraiensis than for Q. mongolica.

  4. Screening of Pearl Millet F1 Hybrids for Heat Tolerance at Early Seedling Stage

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2014-01-01

    Full Text Available Ten pearl millet genotypes selected on the basis of response to supra-optimal temperature tolerance were crossed in a half-diallel mating system. The 45 F1 hybrids produced were tested along with parents for heat tolerance and related traits at seedling stage. Field screening and laboratory screening techniques were simultaneously used for the evaluation of F1 hybrids and their parents. Heat tolerance was measured as seedling thermotolerance index (STI and seed to seedling thermotolerance index (SSTI under field conditions, but membrane thermostability (MTS in the laboratory. The hybrid H77/29-2 × CVJ-2-5-3-1-3 showed highest STI value followed by H77/833-2 × 96AC-93. The genotype H77/833-2 × 96AC-93 had the highest worth for SSTI. These three indices were highly correlated among themselves. STI values were invariably high, whereas SSTI has lower values, as it also covers the effect of under soil mortality (USM. It was seen that the heat tolerance indices STI and SSTI were not showing any perceptible pooled correlation with developmental traits except germination and emergence rate. Based on our results, it could be suggested that membrane thermostability (MTS may be used for screening large number of genotypes. Field based indices STI and SSTI may be used for evaluation of hybrids and varieties before they are released.

  5. Development of an automatic visual grading system for grafting seedlings

    Directory of Open Access Journals (Sweden)

    Subo Tian

    2017-01-01

    Full Text Available In this study, a visual grading system of vegetable grafting machine was developed. The study described key technology of visual grading system of vegetable grafting machine. First, the contrasting experiment was conducted between acquired images under blue background light and natural light conditions, with the blue background light chosen as lighting source. The Visual C++ platform with open-source computer vision library (Open CV was used for the image processing. Subsequently, maximum frequency of total number of 0-valued pixels was predicted and used to extract the measurements of scion and rootstock stem diameters. Finally, the developed integrated visual grading system was experimented with 100 scions and rootstock seedlings. The results showed that success rate of grading reached up to 98%. This shows that selection and grading of scion and rootstock could be fully automated with this developed visual grading system. Hence, this technology would be greatly helpful for improving the grading accuracy and efficiency.

  6. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation.

    Science.gov (United States)

    Gadelha, Cibelle Gomes; Miranda, Rafael de Souza; Alencar, Nara Lídia M; Costa, José Hélio; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2017-05-01

    Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na + and Cl - than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H 2 O 2 ) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Effects of chronic exposure of seeds and seeds and seedlings of Arabidopsis Thaliana by low doses of γ-radiation on plant growth and development

    International Nuclear Information System (INIS)

    Litvinov, S.V.

    2013-01-01

    Article presents the results of research on the effect of chronic γ-irradiation in small doses on A. Thaliana seedlings and seeds growth and development. Exposure rate for the seeds was 0,45 mGy/h (total absorbed dose 30 cSv) and 0,18 mGy/h for seedlings (total absorbed dose 3 cSv). Statistically significant differences in the germination capacity, in the time of primary leaf rosette formation, in the hypocotyl length were revealed between irradiated and control seedlings. Plants from irradiated seeds differed by the higher growth rate of stem, they flowered and fruited earlier, but they also characterized on average shorter vegetative cycle in comparison with control plants. In our experiments it is shown significant impact of chronic low doses of γ-irradiation of seeds and seedlings on the ontogeny in A. Thaliana and on the parameters that reflect the growth and development of the irradiated plants

  8. Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers.

    Science.gov (United States)

    Benjankar, Rohan; Burke, Michael; Yager, Elowyn; Tonina, Daniele; Egger, Gregory; Rood, Stewart B; Merz, Norm

    2014-12-01

    Dam operations have altered flood and flow patterns and prevented successful cottonwood seedling recruitment along many rivers. To guide reservoir flow releases to meet cottonwood recruitment needs, we developed a spatially-distributed, GIS-based model that analyzes the hydrophysical requirements for cottonwood recruitment. These requirements are indicated by five physical parameters: (1) annual peak flow timing relative to the interval of seed dispersal, (2) shear stress, which characterizes disturbance, (3) local stage recession after seedling recruitment, (4) recruitment elevation above base flow stage, and (5) duration of winter flooding, which may contribute to seedling mortality. The model categorizes the potential for cottonwood recruitment in four classes and attributes a suitability value at each individual spatial location. The model accuracy was estimated with an error matrix analysis by comparing simulated and field-observed recruitment success. The overall accuracies of this Spatially-Distributed Cottonwood Recruitment model were 47% for a braided reach and 68% for a meander reach along the Kootenai River in Idaho, USA. Model accuracies increased to 64% and 72%, respectively, when fewer favorability classes were considered. The model predicted areas of similarly favorable recruitment potential for 1997 and 2006, two recent years with successful cottonwood recruitment. This model should provide a useful tool to quantify impacts of human activities and climatic variability on cottonwood recruitment, and to prescribe instream flow regimes for the conservation and restoration of riparian woodlands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Seedling vigor and genetic variability for rice seed, seedling emergence and seedling traits

    International Nuclear Information System (INIS)

    Ali, S.S.; Jafri, S.J.H.; Jamil, M.; Ijaz, M.

    1994-01-01

    Eleven local rice cultivars including Basmati 370 were evaluated for seedling vigor. Three groups of traits were evaluated viz; seed traits (Seed density, seed volume see weight, paddy length and grain length), seed emergence traits (emergence %, emergence index and emergence rate index), and seedling traits (fresh root length, dry root weight, emergence percentage, root length, dry root weight, seed weight and relative root weight were observed significant, respectively. Seed density, relative root weight, emergence rate index and root to shoot ratio were relatively more amenable to improvement. Relative expected genetic advance was the function of heritability and coefficient of phenotypic variability, latter being more important. (author)

  10. Effect of Seed Priming on Germination Properties and Seedling Establishment of Cowpea (Vigna sinensis

    Directory of Open Access Journals (Sweden)

    Hamdollah ESKANDARI

    2011-11-01

    Full Text Available Early emergence and stand establishment of cowpea are considered to be the most important yield-contributing factors in rainfed areas. Laboratory tests and afield experiment were conducted in RCB design in 2011 at a research farm in Ramhormoz, Iran, to evaluate the effects of hydropriming (8, 12 and 16 hours duration and halo priming (solutions of 1.5% KNO3 and 0.8% NaCl on seedling vigor and field establishment of cowpea. Analysis of variance of laboratory data showed that hydropriming significantly improved germination rate, seed vigor index, and seedling dry weights. However, germination percentage for seeds primed with KNO3 and non-primed seeds were statistically similar, but higher than those for NaCl priming. Overall, hydropriming treatment was comparatively superior in the laboratory tests. Invigoration of cowpea seeds by hydropriming and NaCl priming resulted in higher seedling emergence and establishment in the field, compared to control and seed priming with KNO3. Seedling emergence rate was also enhanced by priming seeds with water, suggesting that hydropriming is a simple, low cost and environmentally friendly technique for improving seed and seedling vigor of cowpea.

  11. Microsite and elevation zone effects on seed pilferage, germination, and seedling survival during early whitebark pine recruitment.

    Science.gov (United States)

    Pansing, Elizabeth R; Tomback, Diana F; Wunder, Michael B; French, Joshua P; Wagner, Aaron C

    2017-11-01

    Tree recruitment is a spatially structured process that may undergo change over time because of variation in postdispersal processes. We examined seed pilferage, seed germination, and seedling survival in whitebark pine to determine whether 1) microsite type alters the initial spatial pattern of seed caches, 2) higher abiotic stress (i.e. higher elevations) exacerbates spatial distribution changes, and 3) these postdispersal processes are spatially clustered. At two study areas, we created a seed distribution pattern by burying seed caches in microsite types frequently used by whitebark pine's avian seed disperser (Clark's nutcracker) in upper subalpine forest and at treeline, the latter characterized by high abiotic environmental stress. We monitored caches for two years for pilferage, germination, and seedling survival. Odds of pilferage (both study areas), germination (northern study area), and survival (southern study area) were higher at treeline relative to subalpine forest. At the southern study area, we found higher odds of 1) pilferage near rocks and trees relative to no object in subalpine forest, 2) germination near rocks relative to trees within both elevation zones, and 3) seedling survival near rocks and trees relative to no object at treeline. No microsite effects were detected at the northern study area. Findings indicated that the microsite distribution of seed caches changes with seed/seedling stage. Higher odds of seedling survival near rocks and trees were observed at treeline, suggesting abiotic stress may limit safe site availability, thereby shifting the spatial distribution toward protective microsites. Higher odds of pilferage at treeline, however, suggest rodents may limit treeline recruitment. Further, odds of pilferage were higher near rocks and trees relative to no object in subalpine forest but did not differ among microsites at treeline, suggesting pilferage can modulate the spatial structure of regeneration, a finding supported by

  12. Quantitative trait loci associated with seed and seedling traits in Lactuca.

    Science.gov (United States)

    Argyris, Jason; Truco, María José; Ochoa, Oswaldo; Knapp, Steven J; Still, David W; Lenssen, Ger M; Schut, Johan W; Michelmore, Richard W; Bradford, Kent J

    2005-11-01

    Seed and seedling traits related to germination and stand establishment are important in the production of cultivated lettuce (Lactuca sativa L.). Six seed and seedling traits segregating in a L. sativa cv. Salinas x L. serriola recombinant inbred line population consisting of 103 F8 families revealed a total of 17 significant quantitative trait loci (QTL) resulting from three seed production environments. Significant QTL were identified for germination in darkness, germination at 25 and 35 degrees C, median maximum temperature of germination, hypocotyl length at 72 h post-imbibition, and plant (seedling) quality. Some QTL for germination and early seedling growth characteristics were co-located, suggestive of pleiotropic loci regulating these traits. A single QTL (Htg6.1) described 25 and 23% of the total phenotypic variation for high temperature germination in California- and Netherlands-grown populations, respectively, and was significant between 33 and 37 degrees C. Additionally, Htg6.1 showed significant epistatic interactions with other Htg QTL and a consistent effect across all the three seed production environments. L. serriola alleles increased germination at these QTL. The estimate of narrow-sense heritability (h2) of Htg6.1 was 0.84, indicating potential for L. serriola as a source of germination thermotolerance for lettuce introgression programs.

  13. Effects of hydropriming on seed germination and seedling growth in ...

    African Journals Online (AJOL)

    The germination of Salvia officinalis L. (sage) seeds is a problem of great concern that may be overcome by employing seed priming techniques. Seed priming is an efficient technique for improvement of seed vigor, increasing germination and seedling growth. Little information has been reported on seedling development ...

  14. Morphotypes of Dactylorhiza incarnata (L. Soу (Orchidaceae seedlings in vitro

    Directory of Open Access Journals (Sweden)

    Oleg A. Marakaev

    2012-03-01

    Full Text Available The morphotypes, linear parameters and morphological features for Dactylorhiza incarnata seedlings in vitro have been set. The uneven growth and development of seedlings in depending from the location and degree of contact with the medium have been identified.

  15. EVALUATION OF CO-PRODUCT OF VERMICULITE AS SUBSTRATE IN SEEDLINGS PRODUCTION OF NIM

    Directory of Open Access Journals (Sweden)

    G. H. Silva

    2014-09-01

    Full Text Available This study evaluated the effect of different doses of organic matter and fertilizer PK neem seedlings grown in co-product of vermiculite. At the end of the experiment, the seedlings were separated into root, stem and leaves, then the material was placed in an oven and subsequent weighing. The parameters evaluated were: height, diameter, number of leaves, root length, IQD (Dickson quality index and TDM (total dry mass. The design used in the experiment was the DIC with seven levels of organic matter (OM (0, 5, 10, 15, 20, 25, 30% and three fertilization PK (Phosphorus and Potassium (PK0, PK100, PK300 with four replications. For doses of OM and fertilization was applied polynomial regression grade 2 at 5% of probability. The results of the analysis of variance showed that there were significant positive quadratic effect among all levels of treatment with OM on all variables. However, all variables were not statistically different for PK and PK + OM in all parameters evaluated. Thus the species under study shows no demand of chemical fertilizer in their early growth stages. The IQD values at a dose of 20% of OM indicate higher rates of development. The dose of 5% of OM in co-product of vermiculite is enough to produce seedlings of nem of good quality.

  16. Use of aquatic macrophytes in substrate composition to produce moringa seedlings

    Directory of Open Access Journals (Sweden)

    Walda Monteiro Farias

    2016-03-01

    Full Text Available The use of aquatic macrophytes in substrate composition to produce seedlings of moringa is a sustainable alternative. Therefore, the objective of this research was to evaluate the development of moringa seedlings using substrates composed with aquatic macrophytes, and to determine concentrations of N, P and K in the seedlings. We used different combinations of weeds (M, manure (E and topsoil (TV to compose the substrates. The experiment was conducted in a 3 × 4 factorial in randomized arrangement with four replications. We evaluated plant height, crown diameter and stem, relative growth rate in height, canopy diameter and in stem, dry matter of aerial part and of roots, root length and root/shoot ratio, besides the content of N, P and K in seedlings. Moringa seedlings showed reduced growth when produced in substrates composed only with cattail. Water lettuce and substrates composed of 60% M + 30%E + 10 % TV and 70% M + 30% E, promoted greater nutrition and growth of moringa seedlings. The substrate 60M +30E +10TV composed by water hyacinth and cattail resulted in greater amount of P in moringa seedlings.

  17. Will increasing temperature and CO2 affect pumpkin early development in Brazilian semi-arid? | O aumento da temperatura e do CO2 afetará o desenvolvimento precoce da abóbora no semi-árido brasileiro?

    Directory of Open Access Journals (Sweden)

    Bárbara França Dantas

    2017-06-01

    Full Text Available With rising levels of CO2 in atmosphere, understanding possible impacts on development and growth of plants becomes increasingly important. The aim of this study was to evaluate interaction between different temperatures and CO2 levels in germination and early development of seedlings of different species of pumpkin. Seeds of Cucurbita pepo cultivars ‘Caserta’ and ‘Redonda’, and Cucurbita maxima ‘Coroa’ were sown in trays of 36 cells and held in growth chambers with different combinations of levels of CO2 and day/night temperatures. The experimental design was completely randomized in a 2 X 3 factorial scheme with two levels of CO2 concentration (360 and 550ppm and three day/night temperatures (26/20, 29/26 and 32/26°C, with four replicates of 18 seedlings for each treatment. CO2 levels used caused different effects among cultivars for most variables, but a significant change in physiological behavior of seedlings with increasing CO2 concentration was not observed. Increase in temperature led to physiological changes in both seeds and seedlings. The predicted conditions of increasing concentration of atmospheric CO2 and temperature are damaging to production of pumpkin seedlings

  18. Changes in the glucosinolate-myrosinase defense system in Brassica juncea cotyledons during seedling development.

    Science.gov (United States)

    Wallace, S K; Eigenbrode, Sanford D

    2002-02-01

    Optimal defense theory (ODT) predicts that plant defenses will be allocated to plant organs and tissues in proportion to their relative fitness values and susceptibilities to attack. This study was designed to test ODT predictions on the myrosinase-glucosinolate defense system in Brassica juncea by examining the relationships between the fitness value of B. juncea cotyledons and the levels and effectiveness of cotyledon defenses. Specifically, we estimated fitness value of cotyledons during plant development by measuring plant growth and seed production after cotyledon damage or removal at successive seedling ages. Cotyledon removal within five days of emergence had a significant impact on growth and seed production, but cotyledon removal at later stages did not. Consistent with ODT, glucosinolate and myrosinase levels in cotyledons also declined with seedling age, as did relative defenses against a generalist herbivore, Spodoptera eridania, as estimated by bioassay. Declines in glucosinolates were as predicted by a passive, allometric dilution model based on cotyledon expansion. Declines in myrosinase activity were significantly more gradual than predicted by allometric dilution, suggesting active retention of myrosinase activity as young cotyledons expand.

  19. Symbiotic propagation of seedlings of Cyrtopodium glutiniferum Raddi (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Fernanda Aparecida Rodrigues Guimarães

    2013-09-01

    Full Text Available In nature, orchid seeds obtain the nutrients necessary for germination by degrading intracellular fungal structures formed after colonization of the embryo by mycorrhizal fungi. Protocols for asymbiotic germination of orchid seeds typically use media with high concentrations of soluble carbohydrate and minerals. However, when reintroduced into the field, seedlings obtained via asymbiotic germination have lower survival rates than do seedlings obtained via symbiotic germination. Tree fern fiber, the ideal substrate for orchid seedling acclimatization, is increasingly scarce. Here, we evaluated seed germination and protocorm development of Cyrtopodium glutiniferum Raddi cultivated in asymbiotic media (Knudson C and Murashige & Skoog and in oatmeal agar (OA medium inoculated with the mycorrhizal fungus Epulorhiza sp., using non-inoculated OA medium as a control. We also evaluated the performance of tree fern fiber, pine bark, eucalyptus bark, corncob and sawdust as substrates for the acclimatization of symbiotically propagated plants. We determined germination percentages, protocorm development and growth indices at 35 and 70 days of cultivation. Relative growth rates and the effects of substrates on mycorrhizal formation were calculated after 165 days of cultivation. Germination efficiency and growth indices were best when inoculated OA medium was used. Corncob and pine bark showed the highest percentages of colonized system roots. The OA medium inoculated with Epulorhiza sp. shows potential for C. glutiniferum seedling production. Corncob and pine bark are promising substitutes for tree fern fiber as substrates for the acclimatization of orchid seedlings.

  20. Germination and seedling establishment in orchids: a complex of requirements.

    Science.gov (United States)

    Rasmussen, Hanne N; Dixon, Kingsley W; Jersáková, Jana; Těšitelová, Tamara

    2015-09-01

    Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult. An experimental approach using several

  1. Survival and Growth of Northern Red Oak Seedlings Following a Prescribed Burn

    Science.gov (United States)

    Paul S. Johnson

    1974-01-01

    Mortality of northern red oak seedlings in a spring prescribed burn was related to temperature near the root collar. Most of the 42 percent of seedlings that survived the burn developed new shoots from the root collar.

  2. The effect of passaging of Fusarium culmorum (W.G.Sm. Sacc.on media containing calcium on the growth and development of this fungus and on disease development in wheat seedlings

    Directory of Open Access Journals (Sweden)

    Marlena Zielińska

    2013-12-01

    Full Text Available Fusarium culmorum was transferred ten times on media with a different content of calcium (O, 2, 4, 8 mM and then was used for inoculation of winter wheat seedlings (cv. Grana. It was found that the disease of wheat seedlings was weaker when they were infected with the suspension of mycelium of fungi passaged on media containing higher concentration of calcium ions. It was also found that passaging Fusarium culmorum on media containing calcium causes the inhibition of growth and development of this pathogen. Basing on the results of these experiments it can be concluded, that passaging Fusarium culmorum on media with calcium reduces the pathogenicity of this fungus to wheat seedlings.

  3. Lead mobility within the xylem of red spruce seedlings: Implications for the development of pollution histories

    Science.gov (United States)

    John R. Donnelly; John B. Shane; Paul G. Schaberg

    1990-01-01

    Development of Pb pollution histories using tree ring analyses has been troubled by possible mobility of Pb within stem xylem. In a 2-yr study, we exposed red spruce (Picea rubens Sarg.) seedlings to Pb during one growing season, with Pb excluded in either the previous or following growing season. Lead levels within xylem rings and bark were...

  4. Mycorrhization of containerised Pinus nigra seedlings with Suillus granulatus under open field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, J.; Keca, N.; Martinovie, A.

    2012-07-01

    Seedling mycorrhization acts as an efficient tool for improving the quality of seedlings. In this study, the effectiveness of Suillus granulatus, originating from Pinus heldreichii forests (Montenegro), to produce containerized ectomycorrhizal seedlings of autochthonous Pinus nigra in open field conditions was investigated. Spore (106, 107, 108) and vegetative (1:16, 1:8, 1:4) inoculation on ectomycorrhizal formation and seedling growth were tested. Spore and vegetative inoculums of autochthonous Pisolithus arhizus were used in the same trial as additional control treatments. The utilization of vegetative and spore inoculums of autochthonous S. granulatus has proven to be an effective method of obtaining containerized ectomycorrhizal P. nigra seedlings under open field conditions after 11 months. S. granulatus spore inoculations resulted in well developed ectomycorrhiza, decreasing the growth of the P. nigra seedlings in the first growing season. Mycelial inoculations resulted in slightly developed S. granulatus ectomycorrhiza, which increased the growth of the seedlings. Therefore, it would be feasible to use spore inocula of S. granulatus, with 10{sup 6} spores per plant, to produce ectomycorrhizal P. nigra plants on a large scale. Controlled mycorrhizal inoculation of seedlings is not a common practice in Montenegrin and Serbian nurseries; as such, the obtained results will contribute to the enhancement of nursery production of Pinus nigra and other conifers. This also could be assumed as a starting point for many further efforts and investigations with autochthonous fungal and plant material in this region. (Author) 47 refs.

  5. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.

    Science.gov (United States)

    Hernán, Gema; Ortega, María J; Gándara, Alberto M; Castejón, Inés; Terrados, Jorge; Tomas, Fiona

    2017-11-01

    Increases in seawater temperature are expected to have negative consequences for marine organisms. Beyond individual effects, species-specific differences in thermal tolerance are predicted to modify species interactions and increase the strength of top-down effects, particularly in plant-herbivore interactions. Shifts in trophic interactions will be especially important when affecting habitat-forming species such as seagrasses, as the consequences on their abundance will cascade throughout the food web. Seagrasses are a major component of coastal ecosystems offering important ecosystem services, but are threatened by multiple anthropogenic stressors, including warming. The mechanistic understanding of seagrass responses to warming at multiple scales of organization remains largely unexplored, especially in early-life stages such as seedlings. Yet, these early-life stages are critical for seagrass expansion processes and adaptation to climate change. In this study, we determined the effects of a 3 month experimental exposure to present and predicted mean summer SST of the Mediterranean Sea (25°C, 27°C, and 29°C) on the photophysiology, size, and ecology (i.e., plant-herbivore interactions) of seedlings of the seagrass Posidonia oceanica. Warming resulted in increased mortality, leaf necrosis, and respiration as well as lower carbohydrate reserves in the seed, the main storage organ in seedlings. Aboveground biomass and root growth were also limited with warming, which could hamper seedling establishment success. Furthermore, warming increased the susceptibility to consumption by grazers, likely due to lower leaf fiber content and thickness. Our results indicate that warming will negatively affect seagrass seedlings through multiple direct and indirect pathways: increased stress, reduced establishment potential, lower storage of carbohydrate reserves, and increased susceptibly to consumption. This work provides a significant step forward in understanding the

  6. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest.

    Science.gov (United States)

    Winkler, Manuela; Hülber, Karl; Hietz, Peter

    2005-05-01

    Seeds of epiphytes must land on branches with suitable substrates and microclimates to germinate and for the resulting seedlings to survive. It is important to understand the fate of seeds and seedlings in order to model populations, but this is often neglected when only established plants are included in analyses. The seeds of five bromeliad species were exposed to different canopy positions in a Mexican montane forest, and germination and early seedling survival were recorded. Additionally, the survival of naturally dispersed seedlings was monitored in a census over 2.5 years. Survival analysis, a procedure rarely used in plant ecology, was used to study the influence of branch characteristics and light on germination and seedling survival in natural and experimental populations. Experimental germination percentages ranged from 7.2 % in Tillandsia deppeana to 33.7 % in T. juncea, but the seeds of T. multicaulis largely failed to germinate. Twenty months after exposure between 3.5 and 9.4 % of the seedlings were still alive. There was no evidence that canopy position affected the probability of germination, but time to germination was shorter in less exposed canopy positions indicating that higher humidity accelerates germination. More experimental seedlings survived when canopy openness was high, whereas survival in census-seedlings was influenced by moss cover. While mortality decreased steadily with age in juveniles of the atmospheric Tillandsia, in the more mesomorphic Catopsis sessiliflora mortality increased dramatically in the dry season. Seedling mortality, rather than the failure to germinate, accounts for the differential distribution of epiphytes within the canopy studied. With few safe sites to germinate and high seedling mortality, changes of local climate may affect epiphyte populations primarily through their seedling stage.

  7. Spatial and temporal distribution of root activity of Ramphal (Annona reticulata) seedlings and their grafts with 'Arka Sahan' scion determined using isotopic technique

    International Nuclear Information System (INIS)

    Kotur, S.C.

    2009-01-01

    In both seedlings and grafts of Ramphal, early rainy season showed the highest intensity of root activity followed by late rainy season and winter. During early rainy season, the active roots were predominantly surface oriented and clustered towards the trunk in both seedlings and grafts. During later seasons, however, the roots migrated from 20cm to 40cm depth and from 40cm to 80 and 120cm radial distance that resulted in a uniform distribution of active roots throughout the rooting volume. The grafts of 'Arka Sahan' scion on Ramphal rootstocks showed deeper root activity which had nearly one-half of active roots close to the trunk at 40cm distance, that may be more drought tolerant than the seedlings. (author)

  8. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  9. Regulation of gene expression for defensins and lipid transfer protein in Scots pine seedlings by necrotrophic pathogen Alternaria alternata (Fr.

    Directory of Open Access Journals (Sweden)

    Hrunyk Nataliya

    2017-06-01

    Full Text Available Damping-off disease in pine seedling, caused by fungi and oomycetes (Fusarium, Alternaria, Botrytis, Phytophthora and other species, is one of the most dangerous diseases in conifer nurseries and greenhouses worldwide. Alternaria alternata is a necrotrophic pathogen, which causes early blight in higher plants and results in massive economic losses in agro-industry as well as in forestry. Pine seedlings that lack strong lignificated and suberized cell walls at early stages of their growth are vulnerable to damping-off disease. So, triggering the synthesis of antimicrobial compounds, such as phytoalexins, anticipins and pathogenesis-related (PR proteins, is the main defense strategy to confine pathogens at early stages of pine ontogenesis. Defensins and lipid transfer proteins are members of two PR-protein families (PR-12 and PR-14 respectively and possess antimicrobial activities in vitro through contact toxicity, and the involvement in defense signalling. In this work, we describe the changes in the expression levels of four defensin genes and lipid transfer protein in Scots pine seedlings infected with A. alternata. The expression levels of PsDef1 and PsDef2 increased at 48 h.p.i. (hours post inoculation. The levels of PsDef4 transcripts have increased after 6 and 24 hours. Notably, at 48 h.p.i., the level of PsDef4 transcripts was decreased by 1.2 times compared to control. The level of PsDef3 transcripts was reduced at all three time points. On the other hand, the level of PsLTP1 transcripts increased at 6 h and 48 h.p.i.; while at 24 h.p.i., it decreased by 20% when compared to the control sample. Our results suggest that defensins and lipid transfer protein are involved in the defense response of young Scots pine to necrotrophic pathogen. Thus, those genes can be used as the molecular markers in forestry selection and development of the ecologically friendly remedies for coniferous seedlings cultivation in greenhouses and nurseries.

  10. Containers of Attalea funifera fibers to produce eucalyptus seedlings

    Directory of Open Access Journals (Sweden)

    Andrea Vita Reis Mendonça

    2016-09-01

    Full Text Available The aim of this study was to assess the technical feasibility of using biodegradable containers made of fiber waste of Attalea funifera Martius to produce seedling of Eucalyptus camaldulensis Dehnh. The work was carried out in three stages: manufacture of piassava fiber containers, seedling production and field simulation. The experiment of seedling production was in completely randomized design, with two treatments (polyethylene tube and biodegradable container and 10 repetitions, with 64 seedlings per repetition. After 93 days, seedlings were evaluated based on quality variables. The simuation of initial growth of seedlings in the field consisted in planting seedlings in containers of 11L, in completely randomized design, with three treatments: seedlings produced in polyethylene tubes; seedlings produced in biodegradable containers, without removal of the container during planting; and seedlings produced in biodegradable containers, with removal of the container at planting, with ten repetitions, with one seedling by repetition. The biodegradable container withstood the production cycle and resulted in seedlings within acceptable standards quality. The use of biodegradable container, made of palm fibers, waived the removal of this vessel in the final planting.

  11. In situ fossil seedlings of a Metasequoia-like taxodiaceous conifer from Paleocene river floodplain deposits of central Alberta, Canada.

    Science.gov (United States)

    Falder, A B; Stockey, R A; Rothwell, G W

    1999-06-01

    Fossil seeds and seedlings of a Metasequoia-like taxodiaceous conifer occur in Paleocene deposits at the Munce's Hill and Gao Mine localities of central Alberta, Canada. Compression/impression specimens are preserved in upright growth positions among seedlings of the cercidiphyllaceous dicot Joffrea speirsii Crane & Stockey. There are a large number of seeds, a few of which were buried while germinating and show a radicle or short primary root. More than 500 Metasequoia-like seedlings have been identified that have two linear cotyledons with parallel margins and rounded tips. Three specimens have been found that display three cotyledons. Slightly older seedlings show decussate pairs of leaves attached to the stem distal to the cotyledons. Still older seedlings have axillary branches that show varying sizes and numbers of opposite leaves arranged in a single plane distal to the opposite pairs. These specimens reveal that both Joffrea and this extinct taxodiaceous conifer were early colonizers of North American floodplain communities at the beginning of the Tertiary.

  12. Chemical evaluation of strawberry plants produced by tissue culturing of gamma irradiated seedlings

    International Nuclear Information System (INIS)

    Maraei, R.W.

    2007-01-01

    studies were conducted to evaluate the influence of gamma irradiation as a supplementary factor precedes tissue culture application on strawberry seedlings (c.v.Rosa Linda). the strawberry seedling were irradiated using 8 doses of co 60 gamma rays 50.75.100.125 ,150,250, 350 and 500 gray. tissue culture technique was applied on irradiated and unirradiated strawberry seedling. different characteristics of plantlets, plant and fruit of strawberry produced from the double treatment (irradiation followed by tissue culture) were studied as well as the early, total and exportable fruit yields. data indicated that, low radiation doses 50,75 and 100 gray increased all morphological and chemical characteristics of the plantlets, plant and fruit of strawberry, whereas radiation doses higher than 100 gray decreased them significantly. moreover 350 and gray were lethal doses. radiation dose 50 gray increased the survival percentage and the length of plantlets by 1.5% and 50% respectively more than the unirradiated treatment in all multiplication stages

  13. Line-scan inspection of conifer seedlings

    Science.gov (United States)

    Rigney, Michael P.; Kranzler, Glenn A.

    1993-05-01

    Almost two billion conifer seedlings are produced in the U.S. each year to support reforestation efforts. Seedlings are graded manually to improve viability after transplanting. Manual grading is labor-intensive and subject to human variability. Our previous research demonstrated the feasibility of automated tree seedling inspection with machine vision. Here we describe a system based on line-scan imaging, providing a three-fold increase in resolution and inspection rate. A key aspect of the system is automatic recognition of the seedling root collar. Root collar diameter, shoot height, and projected shoot and root areas are measured. Sturdiness ratio and shoot/root ratio are computed. Grade is determined by comparing measured features with pre-defined set points. Seedlings are automatically sorted. The precision of machine vision and manual measurements was determined in tests at a commercial forest nursery. Manual measurements of stem diameter, shoot height, and sturdiness ratio had standard deviations three times those of machine vision measurements. Projected shoot area was highly correlated (r2 equals 0.90) with shoot volume. Projected root area had good correlation (r2 equals 0.80) with root volume. Seedlings were inspected at rates as high as ten per second.

  14. The effects of size of opening in vegetation and litter cover on seedling establishment of goldenrods (Solidago spp.).

    Science.gov (United States)

    Goldberg, Deborah E; Werner, Patricia A

    1983-11-01

    We investigated the effects of size of opening in the vegetation and litter cover on seedling establishment of two species of goldenrods (Solidago spp.) in an abandoned field in southwestern Michigan, U.S.A. Seeds of S. canadensis and S. juncea were sown into clipped plots, ranging from 0 cm (control, unclipped) to 100 cm in diameter, with and without litter. Seedling emergence, survival and growth were followed for one year. Soil moisture was not significantly different among the opening sizes, but, within a size, tended to be lower when litter was removed. Light intensity at the soil surface was positively related to opening size early in the growing season, but later in the growing season reached a maximum in intermediate-sized openings and then leveled off.Litter strongly inhibited seedling emergence in both species. Emergence of S. canadensis seedlings was lower in 0 and 10 cm openings than in the larger openings, while emergence of S. juncea seedlings was lower in the largest openings (100 cm) than in all the smaller openings. In contrast, seedling growth and probability of survival increased with diameter of opening for both species. Some seedlings of S. juncea did survive in complete vegetation cover (controls, 0 cm openings) while seedlings of S. canadensis survived only in openings of at least 30 cm diameter. Thus, S. juncea had a smaller minimum opening size for seedling establishment than S. canadensis, although both species grew and survived best in the largest openings made in the experiment.

  15. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.

    Science.gov (United States)

    Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-11-01

    Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. The distribution and utilization of nitrogen in developing zea mays L. seedlings

    International Nuclear Information System (INIS)

    Watt, M.P.M. de O.C.

    1987-01-01

    During the first five days of germination, in the presence of NO - 3 - 15 N and N-SERVE, the nitrogen reserves of Zea mays L. caryopses accounted for 75% of the total nitrogen content of the seedlings. By day 7, exogenous nitrate contributed to all the inorganic nitrogen measured in the plant. Although NO - 3 - 15 N (94,2 atom % 15 N) was supplied throughout the germination process, and increasing pool of unlabelled nitrate was detected in both the grain and the seedling during this period. It appears that during germination in maize there is an oxidative pathway from reduced nitrogen in the reserve proteins to nitrate-nitrogen which is then supplied to the developing embryo. The levels of nitrate in the leaf increased towards the sheath, whereas other forms of nitrogen, nitrate reductase activity and capacity for nitrate accumulation increased in the opposite direction. Studies with mesophyll and bundle sheath protoplasts showed that the mesophyll tissue contributes over 80% of the total leaf content of inorganic nitrogen. Leaf tissue of Zea mays was found to have the capacity to assimilate nitrate in the dark, but at a lower rate than in the light. Oxygen did not restrict the initial rate of nitrate reduction in the dark. The rate of the in vivo nitrate reduction declined during the second hour of dark anaerobiosis, and was only restored upon supply of oxygen. Under dark anaerobic conditions nitrite accumulated and, on transfer to oxygen, the accumulate nitrite was reduced

  17. The Role of Superoxide Dismutase in Inducing of Wheat Seedlings Tolerance to Osmotic Shock

    Directory of Open Access Journals (Sweden)

    Oboznyi A.I.

    2013-08-01

    Full Text Available Influence of short-term hardening osmotic exposure (immersion in 1 M sucrose solution with subsequent transferring to distilled water for 20 min on the hydrogen peroxide generation and superoxide dismutase activity in wheat (Triticum aestivum L., cv. Elegiya seedlings and their tolerance to osmotic shock were investigated. During the initial 30 min after osmotic exposure, the increasing of hydrogen peroxide amount in roots and shoots (to a lesser extent was observed, but the resistance of the seedlings and superoxide dismutase (SOD activity decreased. Sometime later the decrease in hydrogen peroxide amount and the increase of seedlings tolerance to osmotic shock took place. SOD activity increased in 10 min after hardening osmotic exposure. Transient accumulation of hydrogen peroxide induced in this way was suppressed by the treatment of seedlings with sodium diethyldithiocarbamate (DDC, SOD inhibitor. DDC and hydrogen peroxide scavenger dimethylthiourea decreased positive hardening effect of osmotic exposure on the development of seedlings tolerance. It was concluded that SOD providing the generation of signal hydrogen peroxide pool took part in the induction of seedlings tolerance to osmotic shock development caused by preliminary hardening effect.

  18. Melatonin Has the Potential to Alleviate Cinnamic Acid Stress in Cucumber Seedlings

    Directory of Open Access Journals (Sweden)

    Juanqi Li

    2017-07-01

    Full Text Available Cinnamic acid (CA, which is a well-known major autotoxin secreted by the roots in cucumber continuous cropping, has been proven to exhibit inhibitory regulation of plant morphogenesis and development. Melatonin (MT has been recently demonstrated to play important roles in alleviating plant abiotic stresses. To investigate whether MT supplementation could improve cucumber seedling growth under CA stress, we treated cucumber seeds and seedlings with/without MT under CA- or non-stress conditions, and then tested their effects on cucumber seedling growth, morphology, nutrient element content, and plant hormone. Overall, 10 μM MT best rescued cucumber seedling growth under 0.4 mM CA stress. MT was found to alleviate CA-stressed seedling growth by increasing the growth rates of cotyledons and leaves and by stimulating lateral root growth. Additionally, MT increased the allocation of newly gained dry weight in roots and improved the tolerance of cucumber seedlings to CA stress by altering the nutrient elements and hormone contents of the whole plant. These results strongly suggest that the application of MT can effectively improve cucumber seedling tolerance to CA stress through the perception and integration of morphology, nutrient element content and plant hormone signaling crosstalk.

  19. The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice

    Directory of Open Access Journals (Sweden)

    Dongli He

    2014-07-01

    Full Text Available B12D belongs to a function unknown subgroup of the Balem (Barley aleurone and embryo proteins. In our previous work on rice seed germination, we identified a B12D-like protein encoded by LOC_Os7g41350 (named OsB12D1. OsB12D1 pertains to an ancient protein family with an amino acid sequence highly conserved from moss to angiosperms. Among the six OsB12Ds, OsB12D1 is one of the major transcripts and is primarily expressed in germinating seed and root. Bioinformatics analyses indicated that OsB12D1 is an anoxic or submergence resistance-related gene. RT-PCR results showed OsB12D1 is induced remarkably in the coleoptiles or roots by flooding during seed germination and early seedling growth. The OsB12D1-overexpressed rice seeds could protrude radicles in 8 cm deep water, further exhibiting significant flooding tolerance compared to the wild type. Moreover, this tolerance was not affected by the gibberellin biosynthesis inhibitor paclobutrazol. OsB12D1 was identified in the mitochondrion by subcellular localization analysis and possibly enhances electron transport through mediating Fe and oxygen availability under flooded conditions. This work indicated that OsB12D1 is a promising gene that can help to enhance rice seedling establishment in farming practices, especially for direct seeding.

  20. Effect of X-irradiation on the growth and some antioxidase activity in wheat seedlings

    International Nuclear Information System (INIS)

    Li Qun; Gu Ruiqi

    1997-01-01

    Wheat seedlings of 48h after germination were irradiated with various dosage of X-rays. High dosage X-irradiation, 8 Gy and 14 Gy can inhibited the growth, decrease the freshness weight of wheat seedlings. The height and weight of wheat seedlings decreased with the development of X-irradiation of dosage. The concentration of protein and activity of some antioxidases include ascorbic acid peroxidase (ASA-POD), glutathione peroxidase (GSH-Px) and glutathione transferase (GSH-Ts) were observed on 2nd and 4th day after irradiation. The concentration of protein in wheat seedlings decreases with the development of X-irradiation of dosage. The concentration of protein on 4th day was higher than that on 2nd day showed that the damage of wheat seedlings induced by X-irradiation was resumed during the culture process. X-irradiation can increase activity of ASA-POD, GSH-Px and GSH-Ts of wheat seedlings, and the increase rate of 14 Gy X-irradiation was higher than that of 8 Gy. The activity of ASA-POD and GSH-Px increased during the culture process and the activity of GSH-Ts decreased. That's show that wheat seedlings can increase the activity of antioxidases to resist the damage induced by high dosage X-irradiation. The results of low dosage X-irradiation, 2 Gy is similar as the control

  1. Final Report: N-Acylethanolamine metabolism and the acquisition of photoautotrophy during seedling establishment

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Kent

    2018-01-29

    Research in our labs, supported since 2005 by Basic Energy Sciences, has led to the discovery of a new lipid mediator pathway that influences phytohormone-mediated regulation of plant growth and development—the so-called N-acylethanolamine (NAE) regulatory pathway. This pathway in plants shares conserved metabolic machinery with the endocannabinoid signaling system of vertebrates that regulates a multitude of physiological and behavioral processes in mammals, suggesting that the metabolism of NAEs is an important regulatory feature of eukaryotic biology. Current evidence in plants points to interactions between NAE metabolism, abscisic acid (ABA) signaling and light signaling to modulate seedling establishment and the acquisition of photoautotrophic growth. The proposed research fits well within the mission of Photosynthetic Systems and Physical Biosciences which seek “to understand the processes by which plants, algae and non-medical microbes capture, convert and/or store energy”. The fundamental regulatory processes that govern seedling establishment directly influence the assembly of photosynthetic energy conversion systems in essentially all higher plants. Our main hypothesis is that seedlings coordinate the metabolic depletion of NAEs during seedling establishment through a complex interaction of hydrolysis (by fatty acid amide hydrolase, FAAH) and oxidation (by lipoxygenases, LOX) and that newly-reported oxylipin metabolites of polyunsaturated NAEs help to coordinate seedling development and acquisition of photoautotrophy in response to appropriate environmental cues. Evidence suggests that ethanolmide oxylipins derived from NAEs can reversibly accumulate in seedlings and adjust/arrest seedling establishment and chloroplast development in conjunction with ABA signaling and light-signaling pathways. Our results provide important new information linking the production of small molecule lipid mediators in seedlings to the coordinated development of

  2. Seedling recruitment of Colophospermum mopane on the Highveld ...

    African Journals Online (AJOL)

    Seedling recruitment of Colophospermum mopane on the Highveld of Zimbabwe: research note. ... Open areas with bare ground or sparse grass cover were favourable sites for seedling recruitment. Seedlings ... AJOL African Journals Online.

  3. A systems genetics study of seed quality and seedling vigour in Brassica rapa

    NARCIS (Netherlands)

    Basnet, R.K.

    2015-01-01

    Summary

    Seed is the basic and most critical input for seed propagated agricultural crops: seed quality and seedling vigour determine plant establishment, growth and development in both natural and agricultural ecosystems. Seed quality and seedling vigour are mainly

  4. Effects of soil quality and depth on seed germination and seedling survival at the Nevada test site

    International Nuclear Information System (INIS)

    Blomquist, K.W.; Lyon, G.E.

    1993-01-01

    The Nuclear Waste Policy Act, as amended in 1987, directs the US Department of Energy (DOE) to study Yucca Mountain, in southern Nevada, as a potential site for long-term storage of high-level nuclear waste. DOE policy mandates the restoration of all lands disturbed by site characterization activities and DOE has developed an environmental program that is to be implemented during site characterization activities at Yucca.Mountain. DOE is currently conducting reclamation feasibility trials as part of this environmental program. No topsoil was saved on disturbances during early site investigation and minimal soil remains at existing disturbances on Yucca Mountain. A study was developed to test the effects of soil quality and depth on seedling emergence and survival. A series of plots was established and two treatments were tested. The first treatment compared native topsoil to subsoil imported from a borrow pit. The second treatment compared four different depth ranges of both soil types. All plots received identical seeding treatments. Seedling density was measured after emergence. Overall seedling densities were low, averaging 10.3 ± 8.8 (SD) plants/m 2 . Statistical analysis revealed a significant interaction between the two treatment factors. The subsoil had increasing densities from the deep soil depths to the shallow depths while the topsoil had increasing densities from the shallow soil depths to the deep depths. The cause of this interaction may have resulted from the bedrock being close to the soil surface of the shallow plots

  5. Recruitment dynamics mediated by ungulate herbivory can affect species coexistence for tree seedling assemblages

    Directory of Open Access Journals (Sweden)

    Chi-Yu Weng

    2017-08-01

    Full Text Available The best-known mechanism that herbivory affects species coexistence of tree seedlings is negative density-dependency driven by specialist natural enemies. However, in a forest with intense herbivory by non-specialists, what causes a diversifying seedling bank if rare species do not benefit from negative density-dependency in dominant species? We hypothesize that generalist herbivores can cause unevenly distributed species-specific mortality, which mediates recruitment dynamics and therefore affects species coexistence. To answer this question, we conducted a fence-control experiment in a montane cloud forest, Taiwan, and found that herbivorous damages were mainly caused by ungulates, which are generalists. We explored ungulate herbivory effects on recruitment dynamics by censusing tree seedling dynamics for three years. We found that herbivorous damages by ungulates significantly cause seedling death, mostly at their early stage of establishment. The percentage of death caused by herbivory varied among species. In particular, nurse plants and seedling initial height help shade-tolerant species to persist under such intense herbivory. Whereas, deaths caused by other factors occurred more often in older seedlings, with a consistent low percentage among species. We then tested species coexistence maintenance by dynamic modelling under different scenarios of ungulate herbivory. Raising percentages of death by herbivory changes relative species abundances by suppressing light-demanding species and increasing shade-tolerant species. Density-dependent mortality immediately after bursts of recruitments can suppress dominance of abundant species. With ungulate herbivory, fluctuating recruitment further prevent rare species from apparent competition induced by abundant species. Such bio-processes can interact with ungulate herbivory so that long-term coexistence can be facilitated.

  6. Mechanisms of induction of cross thermo- and radioresitance of Zea mays seedlings

    International Nuclear Information System (INIS)

    Gikoshvili, T.I.; Beletskij, I.P.; Vilenchik, M.M.; Kuzin, A.M.

    1988-01-01

    Thermotolerance of plant seedlings was shown to be induced not only by their heating at 43 deg C but also by γ-irradiation with doses of 2 or 3 Gy, the kinetics of the tolerance development in both cases being similar to each other and to the kinetics of development of the radioresistance state induced by γ-radiation within the same dose range (1 to 3 Gy). This state did not develop in seedlings treated with cycloheximide, an inhibitor of protein synthesis. After a 15-minute heating at 43 deg C or γ-irradiation with a dose of 2 Gy, synthesis of some proteins was similarly activated, among which three had similar molecular mass. The data obtained suggest that γ-irradiation with low doses induces in plant seedlings the synthesis of proteins that can increase thermo- and radioresistance

  7. Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hangarter Roger P

    2007-07-01

    Full Text Available Abstract Background Proper development of plastids in embryo and seedling tissues is critical for plant development. During germination, plastids develop to perform many critical functions that are necessary to establish the seedling for further growth. A growing body of work has demonstrated that components of the plastid transcription and translation machinery must be present and functional to establish the organelle upon germination. Results We have identified Arabidopsis thaliana mutants in a gene that encodes a plastid-targeted elongation factor G (SCO1 that is essential for plastid development during embryogenesis since two T-DNA insertion mutations in the coding sequence (sco1-2 and sco1-3 result in an embryo-lethal phenotype. In addition, a point mutation allele (sco1-1 and an allele with a T-DNA insertion in the promoter (sco1-4 of SCO1 display conditional seedling-lethal phenotypes. Seedlings of these alleles exhibit cotyledon and hypocotyl albinism due to improper chloroplast development, and normally die shortly after germination. However, when germinated on media supplemented with sucrose, the mutant plants can produce photosynthetically-active green leaves from the apical meristem. Conclusion The developmental stage-specific phenotype of the conditional-lethal sco1 alleles reveals differences in chloroplast formation during seedling germination compared to chloroplast differentiation in cells derived from the shoot apical meristem. Our identification of embryo-lethal mutant alleles in the Arabidopsis elongation factor G indicates that SCO1 is essential for plant growth, consistent with its predicted role in chloroplast protein translation.

  8. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance

    Directory of Open Access Journals (Sweden)

    Frank Maulana

    2017-05-01

    Full Text Available Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1 to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2 to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp34, Xtxp88, and Xtxp319 as associated with seedling emergence, Xtxp211 and Xtxp304 with seedling dry weight, and Xtxp20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance.

  9. The fungi causin damping-off of carrot seedlings

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available When 136 samples of dying carrot seedlings from several fields were analyzed Alternaria rudicina proved to be the most common seedling pathogen (41%, followed by some Fusarium species (27%, mostly F. avenaceum.The less common seedling pathogens were Pythium spp. (13%, Phoma spp.(2,5% and Botrytis cinerea (1,4%. Some other fungi (Bipolaris sorokiniana, Sclerotinia sclerotiorum, Stemphylium botryosym and Ulocladium consortiale were found in less than 1% of seedlings examined.

  10. IMPROVED METHODS OF OBTAINING PEPPER SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Florina Uleanu

    2012-12-01

    Full Text Available This paper refers to the effect of different types of pots on the level of growth and development of the pepper seedlings in order to clarify the influences caused by use of different recipes transplanters pots. Different biocomposites from renewable resources biodegradable nutritive support were studied. Seedlings were grown in 4 variants of pots M1 (V1, M2 (V2, M3 (V3 and jiffy- pots (V4. The height of the aerial part varied from 14.5 (V1 to 17.4 cm (V4, whereas the root length varied from 5.4 (V1 to 12.6 cm (V4. The number of leaves ranged from 7 (V2 to 12 (V4. The total volume was lowest for V2 (1.5 cm3 and highest for V4 (2.5 cm3, but the root volume was lowest for V2 (0.5 cm3 and highest for V1 (1 cm3. V2 also resulted in the smallest total seedling mass (1.6 g aerial part mass (1.1 g and root mass (0.5 g. Excepting the root volume V4 had the greatest values for the studied indicators.

  11. Heat shock protein Hsp90-2 expression in the Arabidopsis thaliana seedlings under clinorotation

    Science.gov (United States)

    Kozeko, Liudmyla

    Heat shock proteins 90 kDa (Hsp90) are abundant under normal conditions and induced by stress. This family is distinguished from other chaperones in that most of its substrates are signal transduction proteins. Previously, we determined some time-dependent increase in the Hsp90 level in pea seedlings in response to simulated microgravity that indicated a stress-reaction. However, expression of the individual members of the Hsp90 family have specific pattern. The purpose of this study was to investigate possible alterations in the gene expression pattern of cytosolic Hsp90-2 in Arabidopsis thaliana seedlings under 2D-clinorotation. To obtain detailed expression pattern of the HSP90-2 genes we used seeds that provides a resource of loss-of-function mutations gene expression patterns via translational fusions with the reporter gene, GUS (a line N 166718, NASC). There were two variants of the experiment: 1) seedlings grew under clinorotation for 10, 12, 14 d; 2) seedlings grew in the stationary conditions for 10 d followed by clinorotation for 3 h -at 22o C and 16h light cycle. The seedlings grown in the stationary conditions were used as a control. GUS staining showed that HSP90-2 expression was regulated during seedling development and affected by clinorotation in the heterozygous mutant plants. In the homozygous for the mutation plants, HSP90-2 expression was stable during seedling development and not affected by clinorotation. GUS staining was observed in cotyledons, leaves and hypocotyls of the seedlings (especially intense in vascular bundles), indicating intensive cellular processes with participation of this chaperone. Possible pathways of influence of clinorotation on HSP90-2 expression are discussed.

  12. Development and evaluation of TDR probe for water rational management on substrates used in forest seedlings production

    Directory of Open Access Journals (Sweden)

    Lucas Masayuki Sato

    2009-04-01

    Full Text Available Time Domain Reflectometry (TDR is a reliable technique to estimate in situ moisture content in different types of materials using probes. The forest seedlings production implies in a comprehensive and empirical process of water management applied to the substrate used for cultivation in dibble-tube. This type of cultivation requires analysis of the physical characteristics of water and nutrients retention of the substrate. The main goal of this research was to develop and evaluate a TDR coaxial probe for rational management of water in the forest seedlings production. Initially, a physical validation of the probe was performed considering the following parameters: reflection coefficient, characteristic impedance and spatial sensitivity. Also, the performance of the probe was evaluated to estimate water content in laboratory conditions and we obtained a calibration curve for each type of porous material used. The results demonstrated the viability of TDR probes to estimate water content in soil and substrates.

  13. Effects of seed traits variation on seedling performance of the invasive weed, Ambrosia artemisiifolia L.

    Science.gov (United States)

    Ortmans, William; Mahy, Grégory; Monty, Arnaud

    2016-02-01

    Seedling performance can determine the survival of a juvenile plant and impact adult plant performance. Understanding the factors that may impact seedling performance is thus critical, especially for annuals, opportunists or invasive plant species. Seedling performance can vary among mothers or populations in response to environmental conditions or under the influence of seed traits. However, very few studies have investigated seed traits variations and their consequences on seedling performance. Specifically, the following questions have been addressed by this work: 1) How the seed traits of the invasive Ambrosia artemisiifolia L. vary among mothers and populations, as well as along the latitude; 2) How do seed traits influence seedling performance; 3) Is the influence on seedlings temperature dependent. With seeds from nine Western Europe ruderal populations, seed traits that can influence seedling development were measured. The seeds were sown into growth chambers with warmer or colder temperature treatments. During seedling growth, performance-related traits were measured. A high variability in seed traits was highlighted. Variation was determined by the mother identity and population, but not latitude. Together, the temperature, population and the identity of the mother had an effect on seedling performance. Seed traits had a relative impact on seedling performance, but this did not appear to be temperature dependent. Seedling performance exhibited a strong plastic response to the temperature, was shaped by the identity of the mother and the population, and was influenced by a number of seed traits.

  14. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation

    Directory of Open Access Journals (Sweden)

    Gray John C

    2006-11-01

    Full Text Available Abstract Background The floral dip method of transformation by immersion of inflorescences in a suspension of Agrobacterium is the method of choice for Arabidopsis transformation. The presence of a marker, usually antibiotic- or herbicide-resistance, allows identification of transformed seedlings from untransformed seedlings. Seedling selection is a lengthy process which does not always lead to easily identifiable transformants. Selection for kanamycin-, phosphinothricin- and hygromycin B-resistance commonly takes 7–10 d and high seedling density and fungal contamination may result in failure to recover transformants. Results A method for identifying transformed seedlings in as little as 3.25 d has been developed. Arabidopsis T1 seeds obtained after floral dip transformation are plated on 1% agar containing MS medium and kanamycin, phosphinothricin or hygromycin B, as appropriate. After a 2-d stratification period, seeds are subjected to a regime of 4–6 h light, 48 h dark and 24 h light (3.25 d. Kanamycin-resistant and phosphinothricin-resistant seedlings are easily distinguished from non-resistant seedlings by green expanded cotyledons whereas non-resistant seedlings have pale unexpanded cotyledons. Seedlings grown on hygromycin B differ from those grown on kanamycin and phosphinothricin as both resistant and non-resistant seedlings are green. However, hygromycin B-resistant seedlings are easily identified as they have long hypocotyls (0.8–1.0 cm whereas non-resistant seedlings have short hypocotyls (0.2–0.4 cm. Conclusion The method presented here is an improvement on current selection methods as it allows quicker identification of transformed seedlings: transformed seedlings are easily discernable from non-transformants in as little as 3.25 d in comparison to the 7–10 d required for selection using current protocols.

  15. Identification of 'Ubá' mango tree zygotic and nucellar seedlings using ISSR markers

    Directory of Open Access Journals (Sweden)

    Aline Rocha

    2014-10-01

    Full Text Available Polyembryonic seeds are characterized by the development of over one embryo in the same seed, which can be zygotic and nucellar. The objective of this work was to identify the genetic origin, whether zygotic or nucellar, of seedlings of polyembryonic seeds of 'Ubá' mango tree using ISSR markers, and relating them with the vigor of the seedlings. Thus, mangos were harvested in Visconde do Rio Branco (accession 102 and Ubá (accessions 112, 138, 152 and 159, whose seeds were germinated in plastic trays filled with washed sand. Fifty days after sowing, seedlings from five seeds of each one of the accessions 102, 112, 138, 159 and from 10 seeds of the accession 152, were analyzed. These sseedlings were characterized and evaluated for plant height, stem circumference and mass of fresh aerial part and the most vigorous seedling was the one displaying at least two of these traits higher than the other seedlings from seed. Leaves were collected for genomic DNA extraction, which was amplified using seven ISSR primers previously selected based on the amplification profile and considering the number and resolution of fragments. Zygotic seedlings were found in 18 seeds, which were the most vigorous in six seeds. The results evidenced the existence of genetic variability in orchards using seedlings grown from seeds, because the farmer usually uses the most vigorous ones, assuming that this is of nucellar origin. These results also indicate that the most vigorous seedling are not always nucellar, inasmuch as of 20% of the total seeds evaluated, the zygotic seedling was the most vigorous.

  16. Effects of light intensity and fertilization on the growth of Andean Oak Seedlings at Nursery

    International Nuclear Information System (INIS)

    Sepulveda, Yira Lucia; Diez, Maria Claudia; Moreno, Flavio Humberto; Leon, Juan Diego; Walter Osorio, Nelson

    2014-01-01

    Quercus humboldtii is a native plant species of great importance in Colombia for use in reforestation and restoration of degraded Andean highlands. The species is highly threatened and it is necessary to establish programs of propagation and planting. However, little is known about their nutritional and light requirements. The aim of this study was to determine the effects of single and combined relative illumination (IR) and fertilization on the growth of seedlings of Q. humboldtii at nursery. For this purpose three contrasting ir regimes (high, medium, and low ir) and nine fertilization treatments were established: complete (TC), a missing nutrient (-N,-P,-K,-Ca,-Mg, -S,-B) and a control without fertilization (TO). The best development of seedlings was showed in the medium ir condition. All treatments with a lacking nutrient showed decreases in seedling development regarding TC, except in the -B treatment. Nitrogen was the most limiting nutrient yielding biomass similar to that of TO. The impact of nutrient limitation on seedling performance was in the following order:-N>-Ca,-K,-P>-Mg,-S>-B. no significant interaction IR x fertilization was detected on seedling development.

  17. Measuring Maize Seedling Drought Response in Search of Tolerant Germplasm

    Directory of Open Access Journals (Sweden)

    Dirk Hays

    2013-02-01

    Full Text Available To identify and develop drought tolerant maize (Zea mays L., high-throughput and cost-effective screening methods are needed. In dicot crops, measuring survival and recovery of seedlings has been successful in predicting drought tolerance but has not been reported in C4 grasses such as maize. Seedlings of sixty-two diverse maize inbred lines and their hybrid testcross progeny were evaluated for germination, survival and recovery after a series of drought cycles. Genotypic differences among inbred lines and hybrid testcrosses were best explained approximately 13 and 18 days after planting, respectively. Genotypic effects were significant and explained over 6% of experimental variance. Specifically three inbred lines had significant survival, and 14 hybrids had significant recovery. However, no significant correlation was observed between hybrids and inbreds (R2 = 0.03, indicating seedling stress response is more useful as a secondary screening parameter in hybrids than in inbred lines per se. Field yield data under full and limited irrigation indicated that seedling drought mechanisms were independent of drought responses at flowering in this study.

  18. Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change.

    Science.gov (United States)

    Potter, Kevin M; Woodall, Christopher W

    2012-03-01

    Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years apart from more than 7000 forested plots in the eastern United States, we tested three hypotheses: phylogenetic diversity is substantially different from species richness as a measure of biodiversity; forest communities have undergone recent changes in phylogenetic diversity that differ by size class, region, and seed dispersal strategy; and these patterns are consistent with expected early effects of climate change. Specifically, the magnitude of diversity change across broad regions should be greater among seedlings than in trees, should be associated with latitude and elevation, and should be greater among species with high dispersal capacity. Our analyses demonstrated that phylogenetic diversity and species richness are decoupled at small and medium scales and are imperfectly associated at large scales. This suggests that it is appropriate to apply indicators of biodiversity change based on phylogenetic diversity, which account for evolutionary relationships among species and may better represent community functional diversity. Our results also detected broadscale patterns of forest biodiversity change that are consistent with expected early effects of climate change. First, the statistically significant increase over time in seedling diversity in the South suggests that conditions there have become more favorable for the reproduction and dispersal of a wider variety of species, whereas the significant decrease in northern seedling diversity indicates that northern conditions have become less favorable. Second, we found weak correlations between seedling diversity change and latitude in both zones

  19. The effect of gamma and fast neutron irradiations on M1 seedling growth in soybean

    International Nuclear Information System (INIS)

    Hassan, S.; Mohammad, T.; Khan, S.

    1985-01-01

    Seeds of three varieties of soybean, i.e. Bragg, Hodgson and Lee-74, having a moisture content of 11-13% were irradiated with doses of gamma, 100,200,300,400 and 500 Gray and fast neutron, 5,10,20,25 and 30 Gray, to study the effect on M1 seedling growth. The parameters studied were germination, seedling height and epicotyl length. Growth inhibition was found to increase with increasing radiation doses and the effect on germination was observed only at higher doses. Among early assessable M1 parameters for radio-sensitivity, epicotyl length has proved to be most sensitive, and hence most useful. The Relative Biological Effectiveness (RBE) values for the three varieties differed slightly for epicotyl length and the difference was more pronounced for seedling height. A dose range of 150-300 Gray of gamma rays and 10-15 Gray of fast neutron might prove useful for efficient induced mutation. (authors)

  20. Afforestation of Boreal Open Woodlands: Early Performance and Ecophysiology of Planted Black Spruce Seedlings

    OpenAIRE

    Tremblay, Pascal; Boucher, Jean-Francois; Tremblay, Marc; Lord, Daniel

    2013-01-01

    Open lichen woodlands (LWs) are degraded stands that lack the ability to regenerate naturally due to a succession of natural and/or anthropogenic disturbances. As they represent both interesting forest restoration and carbon sequestration opportunities, we tested disc scarification and planting of two sizes of containerized black spruce (Picea mariana Mill. (BSP)) seedlings for their afforestation. We compared treatment of unproductive LWs to reforestation of harvested, closed-crown black spr...

  1. Fusarium spp. and Pinus strobus seedlings: root disease pathogens and taxa associated with seed

    Science.gov (United States)

    C. M. Ocamb; J. Juzwik; F. B. Martin

    2002-01-01

    Eastern white pine (Pinus strobus L .) seeds were sown in soil infested wlth Fusarium proliferatum, root necrosis developed on seedling roots, and F. proliferatum as reisolated from symptomatic roots; thus, demonstrating that F. proliferatum is pathogenic to eastern white pine seedling. Soils...

  2. [Effect of ectomycorrhizae on the growth of Picea koraiensis seedlings].

    Science.gov (United States)

    Song, Rui-Qing; Wu, Ke

    2005-12-01

    Basidioscarps of Agaricales in different Picea koraiensis forest plantations were collected during August-October, 2000. 36 isolaters of species of Agaricales were obtained by isolating and culturing to the basidioscarps. Through indoor inoculation test on seedlings of Picea koraiensis, 6 ectomycorrhizae fungi cultures were obtained from 36 isolaters. The inoculation results show that the period for ectomycorrhizae inoculation to 1-year seedlings of Picea koraiensis should be about 30 days after seedlings emerging, the suitable temperature for ectomycorrhizae forming is about 20 degrees C. 6 ectomycorrhizae strains all have growth-promoting effect to the seedlings of Picea koraiensis. The contents of chlorophyll a of the seedlings inoculated strains of Agaricus silvaticus, 031 and L15 were significantly higher than other strains and control. The contents of chlorophyll b in the seedlings inoculated strains 009, 004, Agaricus silvaticus and L15 were significantly higher than other strains and control. The weights of seedlings which inoculated strains 009, 025, 031, Agaricus silvaticus and L15 were significantly different to control, the weight of seedlings inoculated strains of Agaricus silvaticus and L15 are 19.23% and 23.08% more than control; The heights of the seedlings inoculated 6 strains all have significant difference to control, the weight of seedlings inoculated strains of Agaricus silvaticus and L15 are 17.83% and 16.37% more than control. The results of outdoor inoculation show that the seedlings inoculated Agaricus silvaticus grow best on height, 9.25% more than control after inoculated 70 days; the seedlings inoculated strain L15 grow best on collar diameter, 9.92% more than control after inoculated 70 days; the lateral root numbers of seedlings inoculated strain 009 is largest, 51.91% more than control after inoculated 70 days; the main roots of seedlings inoculated strain 009 are longest, 3.36% more than control after inoculated 70 days; the

  3. Comparative proteomics of leaves found at different stem positions of maize seedlings.

    Science.gov (United States)

    Chen, Yi-Bo; Wang, Dan; Ge, Xuan-Liang; Zhao, Biligen-Gaowa; Wang, Xu-Chu; Wang, Bai-Chen

    2016-07-01

    To better understand the roles of leaves at different stem positions during plant development, we measured the physiological properties of leaves 1-4 on maize seedling stems, and performed a proteomics study to investigate the differences in protein expression in the four leaves using two-dimensional difference gel electrophoresis and tandem mass spectrometry in conjunction with database searching. A total of 167 significantly differentially expressed protein spots were found and identified. Of these, 35% are involved in photosynthesis. By further analysis of the data, we speculated that in leaf 1 the seedling has started to transition from a heterotroph to an autotroph, development of leaf 2 is the time at which the seedling fully transitions from a heterotroph to an autotroph, and leaf maturity was reached only with fully expanded leaves 3 and 4, although there were still some protein expression differences in the two leaves. These results suggest that the different leaves make different contributions to maize seedling growth via modulation of the expression of the photosynthetic proteins. Together, these results provide insight into the roles of the different maize leaves as the plant develops from a heterotroph to an autotroph. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. GROWTH OF Jacaranda puberula Cham. SEEDLINGS IN NURSERY UNDER DIFFERENT SHADING LEVELS

    Directory of Open Access Journals (Sweden)

    Lausanne Soraya de Almeida

    2010-08-01

    Full Text Available Jacaranda puberula, known as caroba, is a species that presents potential use for the recovery of degraded areas, since it possesses fast growth and adapts well to sandy and loamy soils. It presents great aggressiveness in secondary forests and it can be used as urban tree because it produces beautiful lilac flowers. With the intention of obtaining information about potential species for use in recovery of riparian forest, were tested in the nursery of the city hall of the municipal district of Colombo, the development of seedlings of Jacaranda puberula submitted at 30, 50 and 70% of shading. There were used 40 seedlings by treatment and there were evaluated the following parameters: height (60, 90 and 120 days and diameter (90 and 120 days of all seedlings, leaf area and root and shoot dry weight of 6 seedlings per treatment. The largest averages of the analyzed variables were obtained for the 30% shading, except for root dry weight.  The seedlings exposed to full sun presented high mortality rate and was not compared to the others. The smallest averages of the analyzed variables, except for height, were observed for the shading of 70%, indicating that this treatment is not advisable for the production of seedlings of this species in nursery. The best condition for planting the seedlings appears to be in open areas with shading of 30 to 50%, since its natural occurrence is not at full exposure.

  5. Rice Seedling Substrate Produced by Coal Gangue

    Directory of Open Access Journals (Sweden)

    SHAO Yu-fei

    2017-10-01

    Full Text Available Peats are the mostly used material in making rice seedling substrate. However, mining peats could cause environmental problems. In order to reduce or replace peats in rice seedling substrate industry, this paper studied suitable way to configure rice seedling. The coal gangue was used to experiment cultivating rice. Four rice seeding experiments were carried out based on physical and chemical properties of materials attributes. The results showed:(1 Coal gangue was feasible for rice seedling; (2 The maximum adding amount of coal gangue was 80%(volume ratio though the coal gangue need to be activated; (3 In the case of no activated treatment only 38%(volume ratio of coal gangue could be added to the substrate.

  6. Effects of sand burial and seed size on seed germination, seedling emergence and seedling biomass of anabasis aphylla

    International Nuclear Information System (INIS)

    Wang, T.T.; Chu, G.M.; Jiang, P.; Wang, M.

    2017-01-01

    Two greenhouse experiments were conducted to test the effects of sand burial (0-2 cm) and seed size (small, medium and large) on seed germination and seedling growth of Anabasis aphylla, which is typically used as a windbreak and for the fixation of sand in the Gurbantunggut desert of Xinjiang, region of northwest China. The results showed that sand burial significantly affected seed germination, seedling emergence, survival and biomass of A. aphylla. The seed germination rate, seedling emergence rate, seedling survival rate and biomass were highest at the 0.2 and 0.5 cm sand burial depths. At different burial depths, different sizes of A. aphylla seed showed a significant difference in the germination and emergence rate. At the same sand burial depth, the seedling emergence rate of the large seeds was significantly higher than that of medium and small seeds. At sand burial depth of 0.2-2 cm, germination of large seeds and seedling survival rates were significantly higher than those at the same sand burial depth for medium seed germination, and the latter was significantly higher than for small seed. We speculate that tolerance to sand burial and diversity of seed size increased the adaption of A. aphylla to this environment, contributing to its dominance in the windy and sandy area of Gurbantunggut desert. (author)

  7. Grazing on Regeneration Sites Encourages Pine Seedling Growth

    Science.gov (United States)

    Raymond D. Ratliff; Renee G. Denton

    1995-01-01

    Effects of season-long, deferred-rotation, and rest-rotation grazing, on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedling growth and herbaceous vegetation control were studied in regeneration sites at Boyd Hill, Modoc National Forest, California. Seedlings were planted in 1989. Pine seedling survival and damage did not differ, but the...

  8. Labelling of rice seedlings and rice plants with 32P

    International Nuclear Information System (INIS)

    Achmad Nasroh, K.

    1989-01-01

    Labelling of rice seedlings and rice plants with 32 P. Labelled rice seedlings can be used to tag insect pests that feed on. Radioactivity counting of 32 P in the endosperm and in the shoot of rice seeds that soaked for 72 hours in KH 2 32 PO 4 solution of 1 μCi/ml were 29,300 and 9,500 cpm respectively. When these labelled seedlings were grown in unlabelled medium the radioactivity in the shoot increased. It was due to the 32 P that was translocated to the shoot from the endosperm. The 32 P translocation reached maximum about one week after the seedling were grown in the unlabelled medium. Labelled seedlings could also be produced by growing 5, 10 and 15 days old seedlings hydroponically in Kimura B solution containing 32 P. Ten days after growing, the radioactivity concentration of the seedlings stem reached about 115,000; 85,000 and 170,000 cpm/mg dry weight for the 5, 10 and 15 days old seedlings respectively. For the implementation of this method, 20 ml labelled Kimura B was needed for labelling of one seedling. The seedlings should be prepared in tap water. During the growth the 32 P in the labelled seedlings was distributed throughout the plant, so that new leaves and tillers became also radioactive. (author). 5 refs

  9. Ex Vitro Seedling Development from In Vitro Rhizome-Like Bodies in Eulophia promensis Lindl.: A New Technique for Orchid Propagation

    Directory of Open Access Journals (Sweden)

    Mohammad Musharof Hossain

    2015-01-01

    Full Text Available This communication describes in vitro seed germination, embryo differentiation, and ex vitro seedling production from in vitro rhizome-like bodies of a terrestrial orchid, Eulophia promensis Lindl. Effects of two nutrient media, namely, Murashige and Skoog (MS and Phytotechnology Orchid Seed Sowing medium (P723 supplemented with 6-benzylaminopurine (BAP; 0.5–1.0 mgL−1 and/or α-naphthalene acetic acid (NAA; 0.5–1.0 mgL−1 and activated charcoal (2.0 gL−1, were studied on seed germination and subsequent development of embryos. Maximum seed germination (100% was recorded in P723 medium fortified with 1.0 mgL−1 BAP + 2.0 gL−1 activated charcoal. The different developmental stages of protocorm morphogenesis were traced out. In subsequent subcultures, the protocorms proliferated profusely and developed rhizome-like bodies (RLBs with numerous hair-like structures. These RLBs were transferred to pots containing potting mixture composed of humus + coir dust + saw dust (1 : 1 : 1 where ∼80% of RLBs survived and produced 1–3 seedlings per RLB. This is the first time report for in vitro germination of seeds and ex vitro seedling production from in vitro raised RLBs in Eulophia promensis. This is a time saving and cost effective protocol that could be extended to other economically important, rare, and endangered orchids for propagation and conservation.

  10. Lazy gene (la) responsible for both an agravitropism of seedlings and lazy habit of tiller growth in rice (Oryza sativa L.).

    Science.gov (United States)

    Abe, K; Takahashi, H; Suge, H

    1996-12-01

    Using an isogenic line of rice having lazy gene (la), we studied the correlation between the agravitropic response at the young seedling stage and the lazy habit (prostrate growth of tillers) at the more advanced stage of growth. In this study, it was found that both agravitropism and lazy habit were controlled by the single recessive la gene. That is, F2 segregants of Kamenoo x lazy-Kamenoo, which had an agravitropic response at their young seedling stage, showed a lazy habit of growth in the more advanced stage of vegetative growth. On the other hand, seedlings that showed normal gravitropic curvature at their early stage of growth had an upright growth in the mature stage.

  11. Influence of nutrition and various substrates on spruce seedling growth

    Directory of Open Access Journals (Sweden)

    Đukić Matilda

    2004-01-01

    Full Text Available The results of the influence of main macronutrients (N, P, and K on growth and development of spruce (Picea abies L. Karst one-year old seedlings are presented. They were grown in containers, in nursery conditions, on four different substrates. There is a good influence on biogenous element contents, height, root collar diameter, needle length and mass, root mass as well as physiological vitality of spruce seedlings. It was observed that the effect of nutrition depends also on the type of substrate.

  12. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings.

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association between the giant cardon cactus Pachycereus pringlei and endophytic bacteria help seedlings establish and grow on barren rock, This cactus, together with other desert plants, is responsible for weathering ancient lava flows in the Baja California Peninsula of Mexico.When cardon seeds are inoculated with endophytic...

  13. N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa.

    Science.gov (United States)

    Anand, Richa; Grayston, Susan; Chanway, Christopher

    2013-08-01

    We inoculated lodgepole pine (Pinus contorta var. latifolia (Dougl.) Engelm.) with Paenibacillus polymyxa P2b-2R, a diazotrophic bacterium previously isolated from internal stem tissue of a naturally regenerating pine seedling to evaluate biological nitrogen fixation and seedling growth promotion by this microorganism. Seedlings generated from pine seed inoculated with strain P2b-2R were grown for up to 13 months in a N-limited soil mix containing 0.7 mM available N labeled as Ca((15)NO3)2 to facilitate detection of N2-fixation. Strain P2b-2R developed a persistent endophytic population comprising 10(2)-10(6) cfu g(-1) plant tissue inside pine roots, stems, and needles during the experiment. At the end of the growth period, P2b-2R had reduced seedling mortality by 14 % and (15)N foliar N abundance 79 % and doubled foliar N concentration and seedling biomass compared to controls. Our results suggest that N2-fixation by P. polymyxa enhanced growth of pine seedlings and support the hypothesis that plant-associated diazotrophs capable of endophytic colonization can satisfy a significant proportion of the N required by tree seedlings growing under N-limited conditions.

  14. Synthesis of Pisolithus Ectomycorrhizae on Pecan Seedlings in Fumigated Soil

    Science.gov (United States)

    Donald H. Marx

    1979-01-01

    Curtis variety of pecan (Carya illinoensis) seedlings were grown for 8 months in fumigated soil infested at sowing with mycelial inoculum of Pisolithus tinctorius. Pisolithus ectomycorrhizae were formed on all inoculated seedlings and significantly improved their growth over control seedlings. Inoculated and control seedlings also formed ectomycorrhizae with naturally...

  15. Influence of seed priming and nitrogen application on the growth and development of maize seedlings in saline conditions

    International Nuclear Information System (INIS)

    Cao, D.; Zhang, Y.; Zhang, Y.; Guan, B.

    2018-01-01

    Seed priming and nitrogen application can promote plant tolerance and resistance to salt stress. To explore the combined effects of these two factors on the growth of salt-stressed seedlings, four treatments (priming + nitrogen application, PN; priming + no nitrogen application, P; unprimed + nitrogen application, UPN; and control treatment unprimed + no nitrogen application, UP) were applied to evaluate the responses of plant morphology, antioxidase systems, physiological and biochemical parameters of the maize seedlings under different concentrations of salt stress (0, 100, 200, and 300 mM). The results indicated that under salt stress, the priming treatment facilitated the growth of seedlings of root and stems, increased the amount of osmoregulatory substances, and enhanced the antioxidase activity and resistance of the maize seedlings. After nitrogen application during the maize growth stage, the growth of young leaves was greatly promoted along with an increase in the soluble protein and chlorophyll content. The combination of seed priming and nitrogen application significantly improved the plant growth, antioxidase activities and physiological and biochemical parameters. (author)

  16. Influence of establishment timing and planting stock on early rotational growth of loblolly pine plantations in Texas

    Science.gov (United States)

    M. A. Blazier; E. L. Taylor; A. G. Holley

    2010-01-01

    Planting container seedlings, which have relatively fully formed root systems encased in a soil-filled plug, may improve loblolly pine plantation productivity by increasing early survival and growth relative to that of conventionally planted bareroot seedlings. Planting seedlings in fall may also confer productivity increases to loblolly pine plantations by giving...

  17. Proteomics and Transcriptomics analysis of Arabidopsis Seedlings in Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — On Earth plants are constantly exposed to a gravitational field of 1g. Gravity affects a plant in every step of its development. Germinating seedlings orient their...

  18. Diversity of seedling responses to drought

    NARCIS (Netherlands)

    Slot, M.; Poorter, L.

    2007-01-01

    Drought is an important seedling mortality agent in dry and moist tropical forests, and more severe and frequent droughts are predicted in the future. The effect of drought on leaf gas exchange and seedling survival was tested in a dry-down experiment with four tree species from dry and moist

  19. Conifer seedling recruitment across a gradient from forest to alpine tundra: effects of species, provenance, and site

    Science.gov (United States)

    Castanha, C.; Torn, M.S.; Germino, M.J.; Weibel, Bettina; Kueppers, L.M.

    2013-01-01

    Background: Seedling germination and survival is a critical control on forest ecosystem boundaries, such as at the alpine–treeline ecotone. In addition, while it is known that species respond individualistically to the same suite of environmental drivers, the potential additional effect of local adaptation on seedling success has not been evaluated. Aims: To determine whether local adaptation may influence the position and movement of forest ecosystem boundaries, we quantified conifer seedling recruitment in common gardens across a subalpine forest to alpine tundra gradient at Niwot Ridge, Colorado, USA. Methods: We studied Pinus flexilis and Picea engelmannii grown from seed collected locally at High (3400 m a.s.l.) and Low (3060 m a.s.l.) elevations. We monitored emergence and survival of seeds sown directly into plots and survival of seedlings germinated indoors and transplanted after snowmelt. Results: Emergence and survival through the first growing season was greater for P. flexilis than P. engelmannii and for Low compared with High provenances. Yet survival through the second growing season was similar for both species and provenances. Seedling emergence and survival tended to be greatest in the subalpine forest and lowest in the alpine tundra. Survival was greater for transplants than for field-germinated seedlings. Conclusions: These results suggest that survival through the first few weeks is critical to the establishment of natural germinants. In addition, even small distances between seed sources can have a significant effect on early demographic performance – a factor that has rarely been considered in previous studies of tree recruitment and species range shifts.

  20. The impact of global warming on germination and seedling emergence in Alliaria petiolata, a woodland species with dormancy loss dependent on low temperature.

    Science.gov (United States)

    Footitt, S; Huang, Z; Ölcer-Footitt, H; Clay, H; Finch-Savage, W E

    2018-03-23

    The impact of global warming on seed dormancy loss and germination was investigated in Alliaria petiolata (garlic mustard), a common woodland/hedgerow plant in Eurasia, considered invasive in North America. Increased temperature may have serious implications, since seeds of this species germinate and emerge at low temperatures early in spring to establish and grow before canopy development of competing species. Dormancy was evaluated in seeds buried in field soils. Seedling emergence was also investigated in the field, and in a thermogradient tunnel under global warming scenarios representing predicted UK air temperatures through to 2080. Dormancy was simple, and its relief required the accumulation of low temperature chilling time. Under a global warming scenario, dormancy relief and seedling emergence declined and seed mortality increased as soil temperature increased along a thermal gradient. Seedling emergence advanced with soil temperature, peaking 8 days earlier under 2080 conditions. The results indicate that as mean temperature increases due to global warming, the chilling requirement for dormancy relief may not be fully satisfied, but seedling emergence will continue from low dormancy seeds in the population. Adaptation resulting from selection of this low dormancy proportion is likely to reduce the overall population chilling requirement. Seedling emergence is also likely to keep pace with the advancement of biological spring, enabling A. petiolata to maintain its strategy of establishment before the woodland canopy closes. However, this potential for adaptation may be countered by increased seed mortality in the seed bank as soils warm. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  1. Evaluation of substrates for seedlings establishment in laboratory of Puya raimondii Harms (Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Giovana Vadillo

    2006-10-01

    Full Text Available Puya raimondii Harms (Bromeliaceae is a monocarpic plant, that can produce about 6 to 12 million seeds, nevertheless is very rare to find seedlings in their natural habitat, indicating difficulties for its establishment. In this work, the conditions for establishment of P. raimondii under laboratory conditions were determined carrying out experiments to determine the better substrate. It was compared the survival and vigour of P. raimondii seedling that were transplanted in peat, moss, peat-soil and moss-soil substrates. The peat substrate showed high survival and was better for establishment of seedlings because it maintains steady and suitable humidity and pH conditions, this allowed that seedlings presents a good vigour. Substrates with very little (case peat-earth or too much (case moss humidity retention had a negative effect over vigour and development.

  2. Effect of ethephon on hardening of Pachystroma longifolium seedlings

    Directory of Open Access Journals (Sweden)

    João Alexandre Lopes Dranski

    2013-06-01

    Full Text Available Immediately after planting, tree seedlings face adverse environmental and biotic stresses that must be overcome to ensure survival and to yield a desirable growth. Hardening practices in the nursery may help improve seedling stress resistance through reduction of aboveground plant tissues and increased root volume and biomass. We conducted an assay to quantify changes in the morphogenesis following application of ethephon on seedlings of Pachystroma longifolium (Ness I. M. Johnst.during hardening. The results showed no effect of the ethephon treatments on the number of leaves but a reduction of up to 50% in seedling height increment, and an increase in stem diameter increment of up to 44% with the 600 mg L-1 ethephon treatment, which consequently altered seedling Dickson Quality Index. Our results indicate that ethephon may help to promote desired morphological changes that occur during seedling hardening in nurseries.

  3. High compatibility between arbuscular mycorrhizal fungal communities and seedlings of different land use types in a tropical dry ecosystem.

    Science.gov (United States)

    Gavito, Mayra E; Pérez-Castillo, Daniel; González-Monterrubio, César F; Vieyra-Hernández, Teresa; Martínez-Trujillo, Miguel

    2008-12-01

    We conducted this study to explore limitations for the establishment of mycorrhizal associations in disturbed areas of the tropical dry ecosystem in the Chamela region of Jalisco, Mexico. Specifically, we: (1) assessed the diversity and composition of arbuscular mycorrhizal fungal (AMF) communities through spore morphospecies identification in three common land uses (primary forest, secondary forest, and pasture), (2) tested the inoculum potential of the AMF communities and the effect of water stress on the establishment of mycorrhizal associations in seedlings of various plant species, and (3) explored the importance of AMF community composition on early seedling development. Soil and root samples were taken from 15 random points in each of three plots established in two primary forests, two 26-year-old secondary forests, and two 26-year-old pastures. We expected that because of soil degradation and management, pastures would have the lowest and primary forests the highest AMF species richness. We found evidence for changes in AMF species composition due to land use and for higher morphospecies richness in primary forests than in secondary forests and pastures. We expected also that water stress limited plant and mycorrhizal development and that plants and AMF communities from secondary forests and pastures would be less affected by (better adapted to) water stress than those from the primary forest. We found that although all plant species showed biomass reductions under water stress, only some of the plant species had lower mycorrhizal development under water stress, and this was regardless of the AMF community inoculated. The third hypothesis was that plant species common to all land use types would respond similarly to all AMF communities, whereas plant species found mainly in one land use type would grow better when inoculated with the AMF community of that specific land use type. All plant species were however equally responsive to the three AMF communities

  4. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    Science.gov (United States)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  5. Negative and positive interactions among plants: effects of competitors and litter on seedling emergence and growth of forest and grassland species.

    Science.gov (United States)

    Loydi, A; Donath, T W; Otte, A; Eckstein, R L

    2015-05-01

    Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co-occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Screening selected genotypes of cowpea [Vigna unguiculata (L.) Walp.] for salt tolerance during seedling growth stage.

    Science.gov (United States)

    Gogile, A; Andargie, M; Muthuswamy, M

    2013-07-15

    The environmental stress such as, salinity (soil or water) are serious obstacles for field crops especially in the arid and semi-arid parts of the world. This study was conducted to assess the potential for salt tolerance of cowpea genotypes during the seedling stage. The experimental treatments were 9 cowpea genotypes and 4 NaCl concentrations (0, 50, 100 and 200 mM) and they were tested in greenhouse. The experimental design was completely randomized design in factorial combination with three replications. Data analysis was carried out using SAS (version 9.1) statistical software. Seedling shoots and root traits, seedling shoots and root weight, number of leaves and total biological yield were evaluated. The analyzed data revealed highly significant (p cowpea genotypes, treatments and their interactions. It is found that salt stress significantly decreased root length, shoot length, seedling shoot and root weight of cowpea genotypes. The extent of decrease varied with genotypes and salt concentrations. Most genotypes were highly susceptible to 200 mM NaCl concentration. The correlation analysis revealed positive and significant association among most of the parameters. Genotypes 210856, 211557 and Asebot were better salt tolerant. The study revealed the presence of broad intra specific genetic variation in cowpea varieties for salt stress with respect to their early biomass production.

  7. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  8. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium

    International Nuclear Information System (INIS)

    Sousa, Nadine R.; Ramos, Miguel A.; Marques, Ana P.G.C.; Castro, Paula M.L.

    2012-01-01

    Cadmium is one of the most toxic heavy metals and its accumulation in the upper layers of forest soils affects plants, microorganisms and their interactions. Adequate strategies for the reforestation of metal contaminated sites are of vital importance. The aim of this work was to evaluate the response of Pinus pinaster seedlings to Cd exposure and to assess the effect of inoculation with two selected ectomycorrhizal fungi, Suillus bovinus and Rhizopogon roseolus on that response. Seedlings were exposed to soil contaminated at 15 and 30 mg Cd kg −1 . Shoot biomass of P. pinaster decreased ca. 36% when exposed to 15 mg Cd kg −1 . Overall, colonization by S. bovinus significantly enhanced shoot development up to 30% in contaminated soil while colonization by R. roseolus produced no significant effect at both Cd concentrations tested and significantly increased the level of Cd in the shoots at both Cd concentrations. Metal accumulation in the shoots and roots of non-inoculated and S. bovinus-inoculated seedlings increased at the higher Cd levels whereas R. roseolus-inoculated seedlings were not sensitive to Cd variation in the soil. The results from our research show that inoculation with ECM fungi has a significant impact on metal uptake and development of P. pinaster seedlings; the differential response induced by the two tested species highlights the importance of selecting the appropriate strains for nursery inoculation, and, as such, this biological tool ought to be considered in reforestation processes of heavy metal contaminated areas by woody species. - Highlights: ► Ectomycorrhizal fungi can aid the reforestation of heavy metal contaminated areas. ► Cd inhibited the growth of non-inoculated 6 months-old Pinus pinaster seedlings. ► Inoculation with Suillus bovinus enhanced P. pinaster growth in Cd contaminated soil. ► Mycorrhizal symbiosis influenced the accumulation of Cd in P. pinaster seedlings.

  9. Analysis on Factors Affecting Seedling Establishment in Rice

    Directory of Open Access Journals (Sweden)

    Ju LUO

    2007-03-01

    Full Text Available Elongations of coleoptile and mesocotyl are related directly to rice seedling establishment in soil and height of plant is related to lodging in rice production. Twelve typical rice cultivars with different lengths of coleoptile and mesocotyl (long, medium and short were selected by screening the lengths of coleoptile and mesocotyl in 1500 accessions. The seedling establishments of these typical cultivars were compared under the combinations of different sowing depths and flooding durations, and two semi-dwarf varieties (G140, Zhong 96–21 with good seedling establishments and optimum mesocotyl lengths were found. The length of mesocotyl was completely fitted negative binomial distribution and the length of coleoptile was nearly fitted lognormal distribution. Analysis of the relationships among mesocotyl, coleoptile, seeding depth, flooding duration, and their interactions to seedling establishment percentage showed that there existed significant relations among mesocotyl, coleoptile, mesocotyl × coleoptile, seeding depth, flooding duration and mesocotyl × sowing depth in the experiment for seedling establishment.

  10. Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea mays, L.

    Directory of Open Access Journals (Sweden)

    Davide Savy

    2015-11-01

    Full Text Available The molecular composition of water-soluble lignins isolated from four non-food bioenergy crops (cardoon CAR, eucalyptus EUC, and two black poplars RIP and LIM was characterized in detail, and their potential bioactivity towards maize germination and early growth evaluated. Lignins were found to not affect seed germination rates, but stimulated the maize seedling development, though to a different extent. RIP promoted root elongation, while CAR only stimulated the length of lateral seminal roots and coleoptile, and LIM improved only the coleoptile development. The most significant bioactivity of CAR was related to its large content of aliphatic OH groups, C-O carbons and lowest hydrophobicity, as assessed by 31P-NMR and 13C-CPMAS-NMR spectroscopies. Less bioactive RIP and LIM lignins were similar in composition, but their stimulation of maize seedling was different. This was accounted to their diverse content of aliphatic OH groups and S- and G-type molecules. The poorest bioactivity of the EUC lignin was attributed to its smallest content of aliphatic OH groups and largest hydrophobicity. Both these features may be conducive of a EUC conformational structure tight enough to prevent its alteration by organic acids exuded from vegetal tissues. Conversely the more labile conformational arrangements of the other more hydrophilic lignin extracts promoted their bioactivity by releasing biologically active molecules upon the action of exuded organic acids. Our findings indicate that water-soluble lignins from non-food crops may be effectively used as plant biostimulants, thus contributing to increase the economic and ecological liability of bio-based industries.

  11. Coupled hydrogeomorphic and woody-seedling responses to controlled flood releases in a dryland river

    Science.gov (United States)

    Wilcox, Andrew C.; Shafroth, Patrick B.

    2013-01-01

    Interactions among flow, geomorphic processes, and riparian vegetation can strongly influence both channel form and vegetation communities. To investigate such interactions, we took advantage of a series of dam-managed flood releases that were designed in part to maintain a native riparian woodland system on a sand-bed, dryland river, the Bill Williams River, Arizona, USA. Our resulting multiyear flow experiment examined differential mortality among native and nonnative riparian seedlings, associated flood hydraulics and geomorphic changes, and the temporal evolution of feedbacks among vegetation, channel form, and hydraulics. We found that floods produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach. We also observed significantly greater mortality among nonnative tamarisk (Tamarix) seedlings than among native willow (Salix gooddingii) seedlings, reflecting the greater first-year growth of willow relative to tamarisk. When vegetation was small early in our study period, the effects of vegetation on flood hydraulics and on mediating flood-induced channel change were minimal. Vegetation growth in subsequent years resulted in stronger feedbacks, such that vegetation's stabilizing effect on bars and its drag effect on flow progressively increased, muting the geomorphic effects of a larger flood release. These observations suggest that the effectiveness of floods in producing geomorphic and ecological changes varies not only as a function of flood magnitude and duration, but also of antecedent vegetation density and size.

  12. Effects of liquid fertilizer application on the morphology and outplanting success of container longleaf pine seedlings

    Science.gov (United States)

    D. Paul Jackson; R. Kasten Dumroese; James P. Barnett; William B. Patterson

    2010-01-01

    Of a range of fertilization rates (0.5, 1.0, 2.0, 3.0, and 4.0 mg nitrogen (N) per seedling per week) applied for 20 weeks, the 2.0-N and 3.0-N seedlings produced good root collar diameter (RCD) growth (6.9 and 7.1 mm, respectively) and needle length ≤ 30 cm. Root collar development did not differ significantly in seedlings receiving the 4.0-mg-N treatment from those...

  13. Innovating a system for producing and distributing hybrid oil palm seedlings to smallholder farmers in Benin

    NARCIS (Netherlands)

    Vissoh, Pierre V.; Tossou, Rigobert C.; Akpo, Essegbemon; Kossou, Dansou; Jiggins, Janice

    2017-01-01

    This article analyses the development of a system for producing and distributing hybrid oil palm seedlings to small-scale famers. The existing seed system had become so corrupted that the seedlings actually planted were largely of unimproved kinds. The article describes institutional experiments

  14. Responses of seminal wheat seedling roots to soil water deficits.

    Science.gov (United States)

    Trejo, Carlos; Else, Mark A; Atkinson, Christopher J

    2018-04-01

    The aims of this paper are to develop our understanding of the ways by which soil water deficits influence early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to which information on differences in soil water content are conveyed to the shoot and their impact on shoot behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the lower compartment was allowed to dry to different extents, while the upper was maintained close to field capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips first came into contact with drying soil, with the intentions of determining how the observed root growth rates were maintained as an explanation for the observed changes in root allocation. Measurements of seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known about the physiological control of root growth in drying soil. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Cavity size and copper root pruning affect production and establishment of container-grown longleaf pine seedlings

    Science.gov (United States)

    Marry Anne Sword Sayer; James D. Haywood; Shi-Jean Susana Sung

    2009-01-01

    With six container types, we tested the effects of cavity size (i.e., 60, 93, and 170 ml) and copper root pruning on the root system development of longleaf pine (Pinus palustris Mill.) seedlings grown in a greenhouse. We then evaluated root egress during a root growth potential test and assessed seedling morphology and root system development 1 year after planting in...

  16. Seedling recruitment of forb species under experimental microhabitats in alpine grassland

    International Nuclear Information System (INIS)

    Li, S. S.; Yu, L.; Lin, W. G.; Pingi, T. F.

    2015-01-01

    Which factors limit plant seedling recruitment in alpine meadow of the Qinghai-Tibetan Plateau (QTP), China? This study examined the relative influence of seed mass and microsites (resulted from grazing disturbance) on field seedling emergence and survival of nineteen alpine herbaceous species with a range of traits in QTP. Seed mass had significant effects on seedling emergence and survival eliminating influence of light and nutrient variances among these species. The larger-seed species had more advantageous than the smaller-seed species in seedling survival, but it was disadvatage for seedling emergence, especially under high nutrient availability and low light intensity conditions. Light had obvious effects on seedling survival, but less effects on seedling emergence for these species. Moreover, nutrient and light treatments altered the regression relationships of seed mass and seedling emergence and survival and the order of significances was L25>L50>L100>L10>L4. These results suggested that seed mass may restrict seedling recruitment processes, however, light and nutrient availability all have significant effects on seedling emergence and survival for these alpine species. Moderate light intensity was propitious to seedling emergence and survival in alpine grassland. This suggests that ecological factors in alpine grassland provide a stochastic influence on different seed-mass species. These trends may help to explain why many small-seeded species of Asteraceae and Gramineae tend to be more abundant in disturbed habitats. (author)

  17. Why Seedlings Die: Linking Carbon and Water Limitations to Mechanisms of Mortality During Establishment in Conifer Seedlings

    Science.gov (United States)

    Reinhardt, K.; Germino, M. J.; Kueppers, L. M.; Mitton, J.; Castanha, C.

    2012-12-01

    BACKGROUND Recent ecophysiological studies aimed at explaining adult tree mortality during drought have examined the carbon (C)-exhaustion compared to the hydraulic-failure hypotheses for death. Prolonged drought leads to durations of stomatal closure (and thus limited C gain), which could result in long periods of negative C balance and fatal reductions in whole-plant C reserves (i.e., available non-structural carbohydrates ["NSC"]). Alternatively, C reserves may not decrease much but could become increasingly inaccessible to sink tissues in long dry-periods due to impediments to translocation of photosynthate (e.g., through disruption of hydrostatic pressure flow in phloem). As C reserves decline or become inaccessible, continued maintenance respiration has been hypothesized to lead to exhaustion of NSC after extended durations of drought, especially in isohydric plant species. On the other hand, hydraulic failure (e.g., catastrophic xylem embolisms) during drought may be the proximate cause of death, occurring before true C starvation occurs. Few studies have investigated specifically the mechanism(s) of tree death, and no published studies that we know of have quantified changes in NSC during mortality. EXPERIMENTAL DESIGN AND HYPOTHESES We conducted two studies that investigated whole-tree and tissue-specific C relations (photosynthetic C gain, respiration, dry-mass gain, and NSC pools) in Pinus flexilis seedlings during the initial establishment phase, which is characterized by progressive drought during summer. We measured survival, growth and biomass allocation, and C-balance physiology (photosynthetic C-gain and chlorophyll fluorescence, respiration C-use, and NSC concentrations) from germination to mortality. We hypothesized that 1) stomatal and biochemical limitations to C gain would constrain seedling survival (through inadequate seasonal C-balance), as has been shown for conifer seedlings near alpine treeline; 2) hydraulic constraints (embolisms and

  18. The effect of microbial inocula on the growth of black locust, Siberian elm and silver maple seedlings

    Directory of Open Access Journals (Sweden)

    Hajnal-Jafari Timea

    2014-01-01

    Full Text Available Growth and development of forest plants depend mostly on the soil microbial activity since no mineral or organic fertilizers are applied. Microbial processes can be activated and conditions for plants development improved with the introduction of selected microorganisms in the soil. With the aim of obtaining quality planting material in a shorter period of time, the effects of Azotobacter chroococcum and Streptomyces sp. on the early growth of black locust (Robinia pseudoacacia, Siberian elm (Ulmus pumila and silver-leaf maple (Acer dasycarpum were investigated in this study. Microorganisms were applied individually and in a mixture (1:1. Plant height was measured on the 90th, 120th and 180th day after planting. Plant diameter, as well as the number of actinomycetes and azotobacters was measured at the end of the vegetation period (180 days after planting. Applied microorganisms had a positive effect on the seedling height in all three plant species, with the best effect found in the black locust. Effectiveness of applied microorganisms on seedling diameter was the highest in the silver-leaf maple. The largest number of azotobacters was found in the rhizosphere of black locust. Number of microorganisms from both groups was increased in the inoculated variants. [Projekat Ministarstva nauke Republike Srbije, br. III 43002

  19. Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates.

    Science.gov (United States)

    Kerr, Kelly L; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Marias, Danielle E

    2015-05-01

    First-year tree seedlings represent a particularly vulnerable life stage and successful seedling establishment is crucial for forest regeneration. We investigated the extent to which Pinus ponderosa P. & C. Lawson populations from different climate zones exhibit differential expression of functional traits that may facilitate their establishment. Seeds from two populations from sites with contrasting precipitation and temperature regimes east (PIPO dry) and west (PIPO mesic) of the Oregon Cascade mountains were sown in a common garden experiment and grown under two water availability treatments (control and drought). Aboveground biomass accumulation, vegetative phenology, xylem anatomy, plant hydraulic architecture, foliar stable carbon isotope ratios (δ(13)C), gas exchange and leaf water relations characteristics were measured. No treatment or population-related differences in leaf water potential were detected. At the end of the first growing season, aboveground biomass was 74 and 44% greater in PIPO mesic in the control and drought treatments, respectively. By early October, 73% of PIPO dry seedlings had formed dormant buds compared with only 15% of PIPO mesic seedlings. Stem theoretical specific conductivity, calculated from tracheid dimensions and packing density, declined from June through September and was nearly twice as high in PIPO mesic during most of the growing season, consistent with measured values of specific conductivity. Intrinsic water-use efficiency based on δ(13)C values was higher in PIPO dry seedlings for both treatments across all sampling dates. There was a negative relationship between values of δ(13)C and leaf-specific hydraulic conductivity across populations and treatments, consistent with greater stomatal constraints on gas exchange with declining seedling hydraulic capacity. Integrated growing season assimilation and stomatal conductance estimated from foliar δ(13)C values and photosynthetic CO2-response curves were 6 and 28

  20. Development and properties of a wax ester hydrolase in the cotyledons of jojoba seedlings.

    Science.gov (United States)

    Huang, A H; Moreau, R A; Liu, K D

    1978-03-01

    The activity of a wax ester hydrolase in the cotyledons of jojoba (Simmondsia chinensis) seedlings increased drastically during germination, parallel to the development of the gluconeogenic process. The enzyme at its peak of development was obtained in association with the wax body membrane, and its properties were studied. It had an optimal activity at alkaline pH (8.5-9). The apparent K(m) value for N-methylindoxylmyristate was 93 muM. It was stable at 40 C for 30 min but was inactivated at higher temperature. Various divalent cations and ethylenediaminetetraacetate had little effect on the activity. p-Chloromercuribenzoate was a strong inhibitor of the enzyme activity, and its effect was reversed by subsequent addition of dithiothreitol. It had a broad substrate specificity with highest activities on monoglycerides, wax esters, and the native substrate (jojoba wax).

  1. A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Sanghyun Shin

    2014-03-01

    Full Text Available Fusarium head blight (FHB; scab caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05. Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry and FHB resistance (Type I and Type II, respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

  2. Silvicultural Attempts to Induce Browse Resistance in Conifer Seedlings

    Directory of Open Access Journals (Sweden)

    Bruce A. Kimball

    2011-01-01

    Full Text Available A multiyear study was conducted to determine if soil amendment combined with topical application of elemental sulfur could be employed to reduce deer browse damage to four conifer species. Fertilizer and sulfur were applied to conifer seedlings at seven sites near Corvallis, OR. Growth and browse damage data were collected for all seedlings over a period of 17 months. Additionally, foliar concentrations of monoterpenes and simple carbohydrates were assessed in western redcedar (Thuja plicata seedlings over a period of three years. Fertilization and sulfur treatments had a moderate impact on growth and no influence on browse damage or the chemical responses. Over the course of the study, browse damage diminished while foliar monoterpene concentrations increased in redcedar. It appears that silvicultural manipulation via sulfur application and/or soil amendment cannot accelerate or alter the ontogenetical changes that may naturally defend seedlings against mammalian herbivores. In a brief trial with captive deer, redcedar browse resistance was influenced by seedling maturation, but not monoterpene content. Other maturation effects may yield significant browse protection to young seedlings.

  3. Image seedling analysis to evaluate tomato seed physiological potential

    Directory of Open Access Journals (Sweden)

    Vanessa Neumann Silva

    Full Text Available Computerized seedling image analysis are one of the most recently techniques to detect differences of vigor between seed lots. The aim of this study was verify the hability of computerized seedling image analysis by SVIS® to detect differences of vigor between tomato seed lots as information provided by traditionally vigor tests. Ten lots of tomato seeds, cultivar Santa Clara, were stored for 12 months in controlled environment at 20 ± 1 ºC and 45-50% of relative humidity of the air. The moisture content of the seeds was monitored and the physiological potential tested at 0, 6 and 12 months after storage, with germination test, first count of germination, traditional accelerated ageing and with saturated salt solution, electrical conductivity, seedling emergence and with seed vigor imaging system (SVIS®. A completely randomized experimental design was used with four replications. The parameters obtained by the computerized seedling analysis (seedling length and indexes of vigor and seedling growth with software SVIS® are efficient to detect differences between tomato seed lots of high and low vigor.

  4. Urban solid waste in the production of Lafoensia pacari seedlings

    Directory of Open Access Journals (Sweden)

    Alan H. M. de Abreu

    Full Text Available ABSTRACT This study aimed to verify the potential of urban solid wastes as substrate for production of seedlings of Lafoensia pacari. Five treatments were tested, four with solid wastes and one standard substrate, namely: sewage sludge from Alegria Wastewater Treatment Plant (WTP; sewage sludge from Ilha do Governador WTP; sewage sludge from Sarapuí WTP; domestic garbage compost (Fertlurb; and a commercial substrate made of biostabilized pine bark (standard substrate. The wastes received 20% (in volume of shredded coconut fiber. At 105 days after sowing, the seedlings were evaluated for different quality parameters. Seedlings produced with Sarapuí WTP sewage sludge showed the best results in all the parameters, followed by seedlings produced with sewage sludge from Alegria and Ilha do Governador WTPs, which did not differ. Seedlings produced with domestic garbage compost showed satisfactory results, higher than the ones observed for seedlings produced with commercial substrate. The urban solid wastes with 20% of coconut fiber showed high potential and can be recommended for the composition of substrate in the production of Lafoensia pacari seedlings.

  5. Immunologically related lectins from stems and roots of developing seedlings of Cucurbita ficifolia: purification and some properties of root and stem lectins

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-01-01

    Full Text Available Hemagglutinating activity has been found in acetate extracts from roots and stems of squash seedlings (Cucurbita ficifolia. The hemaglutinating activity changes during seeds germination and seedling development. Dot blot and Western blot techniques have shown that proteins from these vegetative tissues cross-reacted with antibodies raised against endogenous cotyledons lectin CLBa and Con A.Lectins were isolated from stems and roots of 6-day old seedlings by precipitation with ethanol, affinity chromatography on Con A-Sepharose, gel filtration on Bio-gel P100 and separated by electrophoresis on polyacrylamide gel. Three purified lectins (RLA1, RLA2, RLA3 were obtained from roots and four from stems (SLA1, SLA2, SLA3, SLA4. The purified lectins from roots and stems agglutinated all human red blood cells, but sheep erythrocytes were most sensitive to agglutination. The hemagglutination of the root lectins RLA2 and RLA3 was inhibited by a very low concentration of arabinose, while RLA1, of xylose and Ga1NAc. Arabinose and Xylose were also found to be the most effective inhibitors of all stem lectins.

  6. Effects of Seedbed Density on Seedling Morphological Characteristics of four Broadleaved Species

    Energy Technology Data Exchange (ETDEWEB)

    Yucedag, C.; Gailing, O.

    2012-11-01

    The aim of this study was to investigate the effects of seedling spacing on morphological characteristics of one year-old Amygdalus communis L., Prunus avium L., Pyrus elaeagnifolia Pall. and Eriolobus trilobatus (Poiret) Roemer seedlings under nursery conditions. Seedlings were grown in completely randomized blocks with four replications. Seedbeds were 1.2 m wide with 5 rows each 20 cm apart. Within-row spacings were chosen as 4, 8 and 12 cm to analyze the effect of seedlings density on growth performance. Seedling spacing significantly affected root collar diameter, shoot height, tap root length and number of fine roots in A. communis and P. avium, but not in P. elaeagnifolia and E. tribolatus. Additionally wider seedling spacings resulted in larger seedlings in A. communis and P. avium. In conclusion, it would be beneficial to use wider seedling spacing in order to obtain better seedling growth in A. communis and P. avium. Larger seedlings could also provide significant advantages because of reduced cultural activities and an expected higher growth and survival rate. (Author) 27 refs.

  7. Morphology and anatomy of the seedling and the tirodendro of Calophyllum brasiliense Cambess. (Clusiaceae

    Directory of Open Access Journals (Sweden)

    Valquíria Aparecida Mendes de Jesus

    2014-10-01

    Full Text Available Calophyllum brasiliense Cambess. is a tree species that is presented as an alternative to replace endangered species of hardwood. The morphology and anatomy of the seedling of this species is the object of the present study. Seedlings at different stages of development were obtained in greenhouse and analyzed fresh and fixed in FAA (Formalin-Acetic-Alcohol 50. The anatomical analysis was done by the freehand and microtome sections, according to standard techniques in plant anatomy. The seedling and/or tirodendro is cryptocotylar and hypogeal, has cataphylls, and presents eophylls and metaphylls simple with venation pinnate craspedodromous simple. The root is polyarch, the hypocotyl is very short, the cotyledons have an oily and starchy reserve, the epicotyl has stem structure, and eophylls and metaphylls are dorsiventral. The seedling may be classified in the Horsfieldia type/subtype.

  8. Effects of graphene on seed germination and seedling growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Gao, Bin, E-mail: bg55@ufl.edu [University of Florida, Department of Agricultural and Biological Engineering (United States); Chen, Jianjun [University of Florida, Department of Environmental Horticulture and Mid-Florida Research & Education Center (United States); Li, Yuncong [University of Florida, Soil and Water Science Department Tropical Research & Education Center (United States)

    2015-02-15

    The environmental impact of graphene has recently attracted great attention. In this work, we show that graphene at a low concentration affected tomato seed germination and seedling growth. Graphene-treated seeds germinated much faster than control seeds. Analytical results indicated that graphene penetrated seed husks. The penetration might break the husks to facilitate water uptake, resulting in faster germination and higher germination rates. At the stage of seedling growth, graphene was also able to penetrate root tip cells. Seedlings germinated from graphene-treated seeds had slightly lower biomass accumulation than the control, but exhibited significantly longer stems and roots than the control, which suggests that graphene, in contrast with other nanoparticles, had different effects on seedling growth. Taken together, our results imply that graphene played complicated roles in affecting the initial stage of seed germination and subsequent seedling growth.

  9. Production of desert rose seedlings in different potting media

    Directory of Open Access Journals (Sweden)

    Ronan Carlos Colombo

    2017-09-01

    Full Text Available Over the past decade the desert rose received fame in the flower market due to its striking and sculptural forms; however, the commercial production of these species is quite recent and little is known about its crop management, including substrates recommendation. The objectives of this study were to investigate the effect of different substrates on desert rose seed germination and production of its seedlings. Experiment I: freshly harvested seeds of desert rose were sown in different substrates e.g. sand, coconut fiber, semi-composted pine bark, sand + coconut fiber, semi-composted pine bark + sand and coconut fiber + semicomposted pine bark. These substrates were evaluated to study the emergence percentage of seeds, initial growth of seedlings and seedling emergence speed index (ESI. Experiment II: desert rose from the experiment I were transferred to plastic pots filled with the same substrates as in experiment I. The pH and electrical conductivity (EC of the substrates were noted every 30 days while the growth parameters of seedlings were recorded after 240 days. Results from experiment I showed higher germination rate and seedling growth in substrates containing semi-composted pine bark. Similarly, in experiment II, better quality seedlings were observed in substrates containing semi-composted pine bark. Thus, for desert rose seed germination and seedling growth, it is recommended to use substrates containing semi-composted pine bark.

  10. Variation in experimental flood impacts and ecogeomorphic feedbacks among native and exotic riparian tree seedlings

    Science.gov (United States)

    Kui, L.; Stella, J. C.; Skorko, K.; Lightbody, A.; Wilcox, A. C.; Bywater-Reyes, S.

    2012-12-01

    Flooding interacts with riparian plants on a variety of scales, resulting in coevolution of geomorphic surfaces with plant vegetation communities. Our research aims to develop a mechanistic understanding of riparian seedling damage from small floods, with a focus on differential responses among species (native and non-native), ecogeomorphic feedbacks, and implications for riparian restoration. We tested the effects of controlled flood events on cottonwood (Populus fremontii) and tamarisk (Tamarix spp.) seedlings in an experimental meandering stream channel. We hypothesized that seedling dislodgement and burial would be influenced by individual plant height, species-specific morphology, patch density, and differences in hydraulic forces (as a function of location on the bar). Four experimental floods were tested, with different combinations of plant species and seedling densities. For each flood run, rooted seedlings were installed within a 1.5-m-wide sandbar during low flow conditions and stream discharge was increased to a constant flood level for approximately 8 hours, after which seedling response was assessed. Seedling damage was analyzed within a logistic regression framework that predicted the probability of dislodgement or burial as a function of the explanatory variables. Plant dislodgement depended on root length and the location on the sandbar, whereas burial depended on plant height, species-specific morphology, and location. For every centimeter increase in plant height, the odds of plant burial decreased by 10 percent, illustrating the rate at which plants developed flood resistance as they grow taller. With every meter closer to the thalweg, plant dislodgement was four times more likely, and plant burial was 2.6 times more likely. The probability of burial was twice as great for tamarisk seedlings as for cottonwood. The increased sedimentation within tamarisk patches was associated with a denser foliage and a more compact crown for this species. The

  11. Dynamical behavior of psb gene transcripts in greening wheat seedlings. I. Time course of accumulation of the pshA through psbN gene transcripts during light-induced greening.

    Science.gov (United States)

    Kawaguchi, H; Fukuda, I; Shiina, T; Toyoshima, Y

    1992-11-01

    The time course of the accumulation of the transcripts from 13 psb genes encoding a major part of the proteins composing photosystem II during light-induced greening of dark-grown wheat seedlings was examined focusing on early stages of plastid development (0.5 h through 72 h). The 13 genes can be divided into three groups. (1) The psbA gene is transcribed as a single transcript of 1.3 kb in the dark-grown seedlings, but its level increases 5- to 7-fold in response to light due to selective increase in RNA stability as well as in transcription activity. (2) The psbE-F-L-J operon, psbM and psbN genes are transcribed as a single transcript of 1.1 kb, two transcripts of 0.5 and 0.7 kb and a single transcript of 0.3 kb, respectively, in the dark-grown seedlings. The levels of accumulation of every transcript remain unchanged or rather decrease during plastid development under illumination. (3) The psbK-I-D-C gene cluster and psbB-H operon exhibit fairly complicated northern hybridization patterns during the greening process. When a psbC or psbD gene probe was used for northern hybridization, five transcripts differing in length were detected in the etioplasts from 5-day old dark-grown seedlings. After 2 h illumination, two new transcripts of different length appeared. Light induction of new transcripts was also observed in the psbB-H operon.

  12. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil suppresiveness......The objective was to investigate the relationship between soil suppression of seedling blight of barley caused by Fusarium culmorum (W.G. Smith) Sacc. and the soil cellulolytic activity of beta-glucosidase, cellobiohydrolase and endocellulase. Disease suppression was investigated in bioassays...... with test soils mixed with sand, and barley seeds inoculated with F. culmorum. After 19 days, disease severity was evaluated on the barley seedlings. Soil cellulolytic activities were measured using 4-methylumbelliferyl-labelled fluorogenic substrates, and were expressed as V-max values obtained by using...

  14. Acclimation of seedlings of Gnetum leyboldii Tul. Gnetaceae to light changes in a tropical rain forest

    Directory of Open Access Journals (Sweden)

    Gerardo Celis

    2013-12-01

    Full Text Available The neotropical liana Gnetum leyboldii Gnetaceae is a gymnosperm that resembles angiosperms in wood anatomy, overall morphology, and seed dispersal mechanism. Like other woody lianas, seedlings germinate in the shaded forest understory and start climbing towards the canopy, being eposed to sites with etreme differences in light conditions. However, the etent of physiological and structural adjustment to contrasting light conditions in the early regeneration stages of Gnetum is unknown. To answer this question, we analyzed seedling growth and photosynthetic responses using a common garden eperiment with two light regimes: full sun and low light 20 of full sun at La Selva Biological Station, Costa Rica. We also characterized the germination pattern of this species. We monitored one and half-month old seedlings for four months. Leaf structure finely adapted to light treatments, but gas echange properties were buffered by large seed reserves, which dominated biomass distribution about 50 of the total biomass, followed by stem 27, leaf 16 and root biomass 6 across light conditions. The presence of large seeds and the low photosynthetic rates of seedlings in both environments show that G. leyboldii is specialized to eploit deep shade. More research is needed to determine if the patterns found in G. leyboldii are typical of similar lianas that initially eploit deep-shaded understories in their ascension to the canopy.

  15. Production of cell wall enzymes in pepper seedlings, inoculated with ...

    African Journals Online (AJOL)

    Pepper seedlings inoculated with arbuscular mycorrhizal AM fungus, Glomus etunicatum, produced cellulase, polygal-acturonase and pectin methylestrase enzymes. The activities of the enzymes increased as the pepper seedlings matured in age, showing that the activity of the enzymes in the seedlings was age mediated.

  16. STUDIES CONCERNING THE INFLUENCE OF BIODEGRADABLE SLOW-RELEASE FERTILIZER USE IN DEVELOPING THE CULTURE OF PETUNIA HYBRIDA SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Mona Popa

    2012-12-01

    Full Text Available Our research on the use of slow-release biodegradable fertilizers were applied to Petunia hybrida seedlings of the variety “White Surfinia”. Thus after 10 days subculturing procedure was to apply fertilizers containing NKP24 biodegradable and made in the form of sticks and granules with six concentrations of starch (5%, 10%, 15%, 20%, 25% and 50% quantaties (4-5 grams/ 1 pot. For each pot with of 8 cm diameter, we prepared a mixture of peat and garden soil in a rate of 1:1. During the vegetation periods, morphological analyses were made regarding the development of Petunia hybrida, cv. “White Surfinia”plants: the length of shoots and number of shoot. Average values recorded from morphological determinations after 1 month of starting experiments on biofertilizers influence on growth and development the seedlings of Petunia was demonstrated that the optimal variant was the fertilizer V5 with -25% WF (wood flour to 50% concentration of biofertilizers NKP24 (for both form of sticks A-big and B-medium and for fertilizer form C- granular the V6 variant with -50% concentration of biofertilizers NKP24, the petunia stem was recorded maximum of 58.92 cm length .The research is part of an international project FP7/2008 with the title "Forest Resource Sustainability through Bio-Based-Composite Development" – FORBIOPLAST. Multiple aims of FORBIOPLAST project are the valorization of forest resources for the production of bio-based products.

  17. Molecular biology of Ganoderma pathogenicity and diagnosis in coconut seedlings.

    Science.gov (United States)

    Kandan, A; Radjacommare, R; Ramanathan, A; Raguchander, T; Balasubramanian, P; Samiyappan, R

    2009-01-01

    The pathogenicity of Ganoderma boninense was tested on coconut seedlings under greenhouse conditions and infection confirmed by using immunological and molecular diagnostic tools. Desiccation of older leaves and the emergence of sporophores were observed from pathogen-inoculated seedlings, whereas a control seedling does not show any pathogenic symptoms. Mature sporophores were formed within 10-13 weeks after inoculation. Polyclonal antibodies raised against mycelial proteins of Ganoderma were used for detection of Ganoderma in infected field palm and seedlings through indirect enzyme-linked immunosorbent assay technique. We adopted dot-immunobinding assay for the detection of Ganoderma from greenhouse and field samples. Under nucleic-acid-based diagnosis, G. boninense (167 bp) was detected from artificially inoculated seedlings and infected field palms by polymerase chain reaction. Apart from these, histopathological studies also support the Ganoderma pathogenicity in coconut seedlings. The pathogenicity test and combination of all the three diagnostic methods for Ganoderma could be highly reliable, rapid, sensitive and effective screening of resistance in planting material in the future.

  18. Eastern Redcedar Seedling Assessment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Eastern redcedar tree seedling growth in response to various soil, nitrogen, and photosynthetic radiation characteristics. This dataset is associated with the...

  19. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Nadine R.; Ramos, Miguel A.; Marques, Ana P.G.C.; Castro, Paula M.L., E-mail: plcastro@esb.ucp.pt

    2012-01-01

    Cadmium is one of the most toxic heavy metals and its accumulation in the upper layers of forest soils affects plants, microorganisms and their interactions. Adequate strategies for the reforestation of metal contaminated sites are of vital importance. The aim of this work was to evaluate the response of Pinus pinaster seedlings to Cd exposure and to assess the effect of inoculation with two selected ectomycorrhizal fungi, Suillus bovinus and Rhizopogon roseolus on that response. Seedlings were exposed to soil contaminated at 15 and 30 mg Cd kg{sup -1}. Shoot biomass of P. pinaster decreased ca. 36% when exposed to 15 mg Cd kg{sup -1}. Overall, colonization by S. bovinus significantly enhanced shoot development up to 30% in contaminated soil while colonization by R. roseolus produced no significant effect at both Cd concentrations tested and significantly increased the level of Cd in the shoots at both Cd concentrations. Metal accumulation in the shoots and roots of non-inoculated and S. bovinus-inoculated seedlings increased at the higher Cd levels whereas R. roseolus-inoculated seedlings were not sensitive to Cd variation in the soil. The results from our research show that inoculation with ECM fungi has a significant impact on metal uptake and development of P. pinaster seedlings; the differential response induced by the two tested species highlights the importance of selecting the appropriate strains for nursery inoculation, and, as such, this biological tool ought to be considered in reforestation processes of heavy metal contaminated areas by woody species. - Highlights: Black-Right-Pointing-Pointer Ectomycorrhizal fungi can aid the reforestation of heavy metal contaminated areas. Black-Right-Pointing-Pointer Cd inhibited the growth of non-inoculated 6 months-old Pinus pinaster seedlings. Black-Right-Pointing-Pointer Inoculation with Suillus bovinus enhanced P. pinaster growth in Cd contaminated soil. Black-Right-Pointing-Pointer Mycorrhizal symbiosis

  20. Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala.

    Science.gov (United States)

    Srivastava, Sameer; Vishwakarma, Rishi K; Arafat, Yasir Ali; Gupta, Sushim K; Khan, Bashir M

    2015-04-01

    Aboitic stress such as drought and salinity are class of major threats, which plants undergo through their lifetime. Lignin deposition is one of the responses to such abiotic stresses. The gene encoding Cinnamoyl CoA Reductase (CCR) is a key gene for lignin biosynthesis, which has been shown to be over-expressed under stress conditions. In the present study, developing seedlings of Leucaena leucocephala (Vernacular name: Subabul, White popinac) were treated with 1 % mannitol and 200 mM NaCl to mimic drought and salinity stress conditions, respectively. Enzyme linked immunosorbant assay (ELISA) based expression pattern of CCR protein was monitored coupled with Phlorogucinol/HCl activity staining of lignin in transverse sections of developing L. leucocephala seedlings under stress. Our result suggests a differential lignification pattern in developing root and stem under stress conditions. Increase in lignification was observed in mannitol treated stems and corresponding CCR protein accumulation was also higher than control and salt stress treated samples. On the contrary CCR protein was lower in NaCl treated stems and corresponding lignin deposition was also low. Developing root tissue showed a high level of CCR content and lignin deposition than stem samples under all conditions tested. Overall result suggested that lignin accumulation was not affected much in case of developing root however developing stems were significantly affected under drought and salinity stress condition.

  1. Fungicidal control of Lophodermium seditiosum on Pinus sylvestris seedlings in Swedish forest nurseries

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, Elna [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Arvidsson, Bernt [Svenska Skogsplantor AB, Joenkoeping (Sweden)

    2001-07-01

    During the 1990s, there were serious outbreaks of the pathogen Lophodermium seditiosum on pine seedlings in Swedish forest nurseries, even though the seedlings had been treated with the fungicide propiconazole. The present experiment was carried out to evaluate two other fungicides, fluazinam and azoxystrobin, as possible alternatives to propiconazole. In the tests, which were all carried out in the same forest nursery, seedlings were treated with either propiconazole, fluazinam. or azoxystrobin, and the proportion of needles with ascocarps of L. seditiosum and the number of ascocarps per needle were recorded over the following 2 yrs. Seedlings treated with azoxystrobin already appeared healthier than control seedlings in September of the first year, and by November all azoxystrobin-treated seedlings had fewer ascocarps per needle compared with control seedlings. In autumn of the second year, there were no ascocarps on seedlings treated with fluazinam or azoxystrobin, whereas seedlings treated with propiconazole had similar numbers of ascocarps to non-treated control seedlings.

  2. The impact of birch seedlings on evapotranspiration from a mined peatland: an experimental study in southern Quebec, Canada

    Directory of Open Access Journals (Sweden)

    E. Fay

    2009-03-01

    Full Text Available Dense stands of birch (Betula spp. on abandoned peat workings have often been identified as potential barriers to site restoration, but little research has been conducted to evaluate their impact on water resources. The objective of this experimental study was to determine whether birch seedlings established on an abandoned mined peatland in eastern Canada had a significant impact on evapotranspiration. Transpiration rates from birch seedlings planted in containers filled with Sphagnum compost were measured gravimetrically. Unplanted containers were used to similarly measure evaporation rates from bare peat. On average, the measured rates of evaporation (per unit area from peat were 2.5 times the rates of transpiration from birch leaves. However, if the total leaf area of a dense birch population established on an abandoned mined peatland is considered, the total amount of water lost through birch transpiration could be higher than that lost by evaporation from the peat surface. This study provides a rough estimate of potential water losses due to birch seedling transpiration, and indicates that a dense population of birch on a mined peatland may influence site hydrology even at the early establishment phase (seedlings. Consequently, recently abandoned mined peatlands should be restored rapidly to prevent the establishment of birch trees.

  3. Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory

    KAUST Repository

    Hernán, Gema

    2016-12-01

    Under future increased CO2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed.

  4. Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory.

    Science.gov (United States)

    Hernán, Gema; Ramajo, Laura; Basso, Lorena; Delgado, Antonio; Terrados, Jorge; Duarte, Carlos M; Tomas, Fiona

    2016-12-01

    Under future increased CO 2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO 2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO 2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO 2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed.

  5. Design and force analysis of end-effector for plug seedling transplanter.

    Science.gov (United States)

    Jiang, Zhuohua; Hu, Yang; Jiang, Huanyu; Tong, Junhua

    2017-01-01

    Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.

  6. Effects of benzoic acid and cadmium toxicity on wheat seedlings

    Directory of Open Access Journals (Sweden)

    Kavita Yadav

    2013-06-01

    Full Text Available Benzoic acid (BA and Cd exhibit cumulative effects on plants due to their accumulation in the soil. The present study reports the effects of BA an allelochemical, Cd and their combinations on seed germination, seedling growth, biochemical parameters, and response of antioxidant enzymes in Triticum aestivum L. The experiment was conducted in sand supplemented with Hoagland nutrient solution. Benzoic acid was applied at concentrations of 0.5, 1.0, and 1.5 mM with or without Cd (7 mg L-1 to observe effects of allelochemical and Cd alone and in combination on wheat. Both stresses exhibited inhibitory effect on growth and metabolism of wheat seedlings. The allelochemical in single and combined treatments with Cd decreased seedling growth as compared to Cd stress. The two stresses significantly enhanced malondialdehyde content of wheat seedlings. The activity of other antioxidant enzymes, viz. superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and guaiacol peroxidase (POX were also recorded. SOD increased in seedlings under the two stresses. CAT more prominently ameliorates the toxic effects of H2O2 as compared with APX and POX and protected wheat seedlings from oxidative stress. Allelochemical buttressed the toxic effect of Cd on wheat seedlings.

  7. Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition.

    Science.gov (United States)

    Wang, Qifei; Sun, Genlou; Ren, Xifeng; Wang, Jibin; Du, Binbin; Li, Chengdao; Sun, Dongfa

    2017-11-07

    Seedling characteristics play significant roles in the growth and development of barley (Hordeum vulgare L.), including stable stand establishment, water and nutrients uptake, biotic resistance and abiotic stresses, and can influence yield and quality. However, the genetic mechanisms underlying seedling characteristics in barley are largely unknown and little research has been done. In the present work, 21 seedling-related characteristics are assessed in a barley double haploid (DH) population, grown under hydroponic conditions. Of them, leaf age (LAG), shoot height (SH), maximum root length (MRL), main root number (MRN) and seedling fresh weight (SFW) were investigated at the 13th, 20th, 27th, and 34th day after germination. The objectives were to identify quantitative trait loci (QTLs) underlying these seedling characteristics using a high-density linkage map and to reveal the QTL expression pattern by comparing the QTLs among four different seedling growth stages. A total of 70 QTLs were distributed over all chromosomes except 4H, and, individually, accounted for 5.01%-77.78% of phenotypic variation. Out of the 70 detected QTLs, 23 showed a major effect on 14 seedling-related characteristics. Ten co-localized chromosomal regions on 2H (five regions), 3H (two regions) and 7H (three regions) involved 39 QTLs (55.71%), each simultaneously influenced more than one trait. Meanwhile, 9 co-localized genomic regions involving 22 QTLs for five seedling characteristics (LAG, SH, MRL, MRN and SFW) at the 13th, 20th, 27th and 34th day-old seedling were common for two or more growth stages of seedling. QTL in the vicinity of Vrs1 locus on chromosome 2H with the favorable alleles from Huadamai 6 was found to have the largest main effects on multiple seedling-related traits. Six QTL cluster regions associated with 16 seedling-related characteristics were observed on chromosome 2H, 3H and 7H. The majority of the 29 regions identified for five seedling characteristics were

  8. Seedlings Of Ocotea puberula (Lauraceae): identification and monitoring of aporphinoid alkaloids; Mudas de Ocotea puberula (Lauraceae): identificacao e monitoramento de alcaloides aporfinoides

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Sandra Maria Warumby; Miguel, Obdulio Gomes; Montrucchio, Deise Prehs; Costa, Camila Klocker; Lagos, Jesse Boquett [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Farmacia; Lordello, Ana Luisa Lacava, E-mail: lordello@ufpr.b [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica

    2011-10-26

    This work describes the occurrence and contents of aporphinoids alkaloids in seedlings of Ocotea puberula from germination until 12 months old and in leaves from adult plants. Seedling leaves showed an alkaloids profile similar to leaves of adult plant. However, leaves in seedlings showed higher contents of the alkaloids boldine, dicentrine, leucoxine and isodomesticine when compared to adult plants. The alkaloids concentration in stems and leaves increased during the development of the seedlings, followed by a remarkable decrease of these compounds in roots. Cultivation in a seedling-nursery method is also described. (author)

  9. Early seedling development of Medicago truncatula genotypes ...

    African Journals Online (AJOL)

    adel

    2014-01-08

    Jan 8, 2014 ... heat shock proteins; ABA, abscisic acid. Page 2. Amar et al. 323. Figure 1. Seed vigor of M. truncatula genotypes under different salt stress conditions. Results are means ..... (HSPs) that accumulate during seed late maturation.

  10. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability.

    Science.gov (United States)

    Brown, Caleb E; Mickelbart, Michael V; Jacobs, Douglass F

    2014-12-01

    Partial canopy cover promotes regeneration of many temperate forest trees, but the consequences of shading on seedling drought resistance are unclear. Reintroduction of blight-resistant American chestnut (Castanea dentata (Marsh.) Borkh.) into eastern North American forests will often occur on water-limited sites and under partial canopy cover. We measured leaf pre-dawn water potential (Ψpd), leaf gas exchange, and growth and biomass allocation of backcross hybrid American chestnut seedlings from three orchard sources grown under different light intensities (76, 26 and 8% full photosynthetically active radiation (PAR)) and subjected to well-watered or mid-season water-stressed conditions. Seedlings in the water-stress treatment were returned to well-watered conditions after wilting to examine recovery. Seedlings growing under medium- and high-light conditions wilted at lower leaf Ψpd than low-light seedlings. Recovery of net photosynthesis (Anet) and stomatal conductance (gs) was greater in low and medium light than in high light. Seed source did not affect the response to water stress or light level in most cases. Between 26 and 8% full PAR, light became limiting to the extent that the effects of water stress had no impact on some growth and morphological traits. We conclude that positive and negative aspects of shading on seedling drought tolerance and recovery are not mutually exclusive. Partial shade may help American chestnut tolerate drought during early establishment through effects on physiological conditioning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Arabidopsis phosphoinositide-specific phospholipase C 4 negatively regulates seedling salt tolerance.

    Science.gov (United States)

    Xia, Keke; Wang, Bo; Zhang, Jiewei; Li, Yuan; Yang, Hailian; Ren, Dongtao

    2017-08-01

    Previous physiological and pharmacological studies have suggested that the activity of phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in regulating plant salt stress responses by altering the intracellular Ca 2+ concentration. However, the individual members of plant PLCs involved in this process need to be identified. Here, the function of AtPLC4 in the salt stress response of Arabidopsis seedlings was analysed. plc4 mutant seedlings showed hyposensitivity to salt stress compared with Col-0 wild-type seedlings, and the salt hyposensitive phenotype could be complemented by the expression of native promoter-controlled AtPLC4. Transgenic seedlings with AtPLC4 overexpression (AtPLC4 OE) exhibited a salt-hypersensitive phenotype, while transgenic seedlings with its inactive mutant expression (AtPLC4m OE) did not exhibit this phenotype. Using aequorin as a Ca 2+ indicator in plc4 mutant and AtPLC4 OE seedlings, AtPLC4 was shown to positively regulate the salt-induced Ca 2+ increase. The salt-hypersensitive phenotype of AtPLC4 OE seedlings was partially rescued by EGTA. An analysis of salt-responsive genes revealed that the transcription of RD29B, MYB15 and ZAT10 was inversely regulated in plc4 mutant and AtPLC4 OE seedlings. Our findings suggest that AtPLC4 negatively regulates the salt tolerance of Arabidopsis seedlings, and Ca 2+ may be involved in regulating this process. © 2017 John Wiley & Sons Ltd.

  12. Development and Properties of a Wax Ester Hydrolase in the Cotyledons of Jojoba Seedlings 1

    Science.gov (United States)

    Huang, Anthony H. C.; Moreau, Robert A.; Liu, Kitty D. F.

    1978-01-01

    The activity of a wax ester hydrolase in the cotyledons of jojoba (Simmondsia chinensis) seedlings increased drastically during germination, parallel to the development of the gluconeogenic process. The enzyme at its peak of development was obtained in association with the wax body membrane, and its properties were studied. It had an optimal activity at alkaline pH (8.5-9). The apparent Km value for N-methylindoxylmyristate was 93 μM. It was stable at 40 C for 30 min but was inactivated at higher temperature. Various divalent cations and ethylenediaminetetraacetate had little effect on the activity. p-Chloromercuribenzoate was a strong inhibitor of the enzyme activity, and its effect was reversed by subsequent addition of dithiothreitol. It had a broad substrate specificity with highest activities on monoglycerides, wax esters, and the native substrate (jojoba wax). PMID:16660288

  13. A Gate-to-gate Case Study of the Life Cycle Assessment of an Oil Palm Seedling

    Science.gov (United States)

    Muhamad, Halimah; Sahid, Ismail Bin; Surif, Salmijah; Ai, Tan Yew; May, Choo Yuen

    2012-01-01

    The palm oil industry has played an important role in the economic development of Malaysia and has enhanced the economic welfare of its people. To determine the environmental impact of the oil palm seedling at the nursery stage, information on inputs and outputs need to be assessed. The oil palm nursery is the first link in the palm oil supply chain. A gate-to-gate study was carried out whereby the system boundary was set to only include the process of the oil palm seedling. The starting point was a germinated seed in a small polyethylene bag (6 in × 9 in) in which it remained until the seedling was approximately 3 to 4 months old. The seedling was then transferred into a larger polyethylene bag (12 in × 15 in), where it remained until it was 10–12 months old, when it was planted in the field (plantation). The functional unit for this life cycle inventory (LCI) is based on the production of one seedling. Generally, within the system boundary, the production of an oil palm seedling has only two major environmental impact points, the polybags used to grow the seedling and the fungicide (dithiocarbamate) used to control pathogenic fungi, as both the polybags and the dithiocarbamate are derived from fossil fuel. PMID:24575222

  14. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.

    Science.gov (United States)

    Wang, Xin; Khodadadi, Ehsaneh; Fakheri, Baratali; Komatsu, Setsuko

    2017-06-06

    Organ-specific analyses enrich the understanding of plant growth and development under abiotic stresses. To elucidate the cellular responses in soybean seedlings exposed to flooding and drought stresses, organ-specific analysis was performed using a gel-free/label-free proteomic technique. Physiological analysis indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were markedly increased in leaf and root of plants treated with 6days of flooding and drought stresses, respectively. Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominately affected in leaf, hypocotyl, and root in response to flooding and drought. Notably, the tricarboxylic acid cycle was suppressed in leaf and root under both stresses. Moreover, 17 proteins, including beta-glucosidase 31 and beta-amylase 5, were identified in soybean seedlings under both stresses. The protein abundances of beta-glucosidase 31 and beta-amylase 5 were increased in leaf and root under both stresses. Additionally, the gene expression of beta-amylase 5 was upregulated in leaf exposed to the flooding and drought, and the expression level was highly correlated with the protein abundance. These results suggest that beta-amylase 5 may be involved in carbohydrate mobilization to provide energy to the leaf of soybean seedlings exposed to flooding and drought. This study examined the effects of flooding and drought on soybean seedlings in different organs using a gel-free/label-free proteomic approach. Physiological responses indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were increased in leaf and root of soybean seedlings exposed to flooding and drought for 6days. Functional analysis of acquired protein profiles exhibited that proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominated affected in leaf, hypocotyl, and root

  15. Short-day treatment alters Douglas-fir seedling dehardening and transplant root proliferation at varying rhizosphere temperatures

    Science.gov (United States)

    Douglass F. Jacobs; Anthony S. Davis; BArrett C. Wilson; R. Kasten Dumroese; Rosa C. Goodman; K. Francis Salifu

    2008-01-01

    We tested effects of shortened day length during nursery culture on Douglis-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) seedling development at dormancy release. Seedlings from a 42 N source were grown either under ambient photoperiods (long-day (LD)) or with a 28 day period of 9 h light: 15 h dark photoperiods (short...

  16. Machine vision system for measuring conifer seedling morphology

    Science.gov (United States)

    Rigney, Michael P.; Kranzler, Glenn A.

    1995-01-01

    A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.

  17. Seed loss and volunteer seedling establishment of rapeseed in the northernmost European conditions: potential for weed infestation and GM risks

    Directory of Open Access Journals (Sweden)

    Pirjo Peltonen-Sainio

    2014-11-01

    Full Text Available Rapeseed soil seed bank development and volunteer plant establishment represent substantial risk for crop infestation and GM contamination. This study was designed to complement such investigations with novel understanding from high latitude conditions. Four experiments were designed to characterise seed loss at harvest, persistence, viability and capacity for volunteer seedling establishment, as well as impact of management measures on soil seed bank dynamics. Oilseed rape was the primary crop investigated due to the availability of GM cultivars and because of the increasing importance. Harvest losses and soil seed bank development were significant. Volunteer seedlings emerged at reasonably high rates, especially in the first autumn after harvest, but about 10% of buried seeds maintained their viability for at least three years. Soil incorporation methods had no major effect on numbers of volunteer seedlings, but herbicide treatments controlled volunteer seedlings efficiently, though not completely, due to irregular timing of seedling emergence.

  18. Responses of endogenous proline in rice seedlings under chromium exposure

    Directory of Open Access Journals (Sweden)

    X.Z. Yu

    2016-12-01

    Full Text Available Hydroponic experiments were performed to exam the dynamic change of endogenous proline in rice seedlings exposed to potassium chromate chromium (VI or chromium nitrate chromium (III. Although accumulation of both chromium species in rice seedlings was obvious, more chromium was detected in plant tissues of rice seedlings exposed to chromium (III than those in chromium (VI, majority being in roots rather than shoots. Results also showed that the accumulation capacity of chromium by rice seedlings was positively correlated to chromium concentrations supplied in both chromium variants and the accumulation curve depicted an exponential trend in both chromium treatments over the entire period of exposure. Proline assays showed that both chromium variants induced the change of endogenous proline in shoots and roots of rice seedlings. Chromium (VI of 12.8 mg/L increased proline content significantly (p

  19. Response of Pinus ponderosa Seedlings to Stylet-Bearing Nematodes

    Science.gov (United States)

    Viglierchio, D. R.

    1979-01-01

    Of 12 stylet-bearing nematodes used for inoculations, Pratylenchus penetrans, P. brachyurus, P. vulnus, Ditylenchus destructor, Meloidogyne incognita, M. javanica, and M. hapla reproduced on Pinus ponderosa, while Xiphinema index, Aphelenchus avenae, Paratylenehus neoamblycephalus, Tylenchulus semipenetrans, and Macroposthonia xenoplax did not. P. vulnus, P. brachyurus, P. penetrans, A. avenae, D. destructor, T. semipenetrans, and P. neoamblycephalus significantly suppressed both the shoot and root wet weights of ponderosa pine seedlings obtained from stands in five different locations. X. index significantly suppressed root wet weights, M. xenoplax siguificantly suppressed shoot wet weight, and M. incognita, M. javanica, and M. hapla suppressed neither at the inoculation levels used. Injurious nematodes tended to suppress root growth more than shoot growth. Seedlings from two locations produced greater shoot growth wet weight than did seedlings from the other three locations. The more injurious nematodes tended to cause an increase in the water content of shoots. Frequency analyses of seedling population shoot-root ratios indicated that ponderosa pine seedlings could be selected for better shoot-root ratios as well as for resistance to several pathogenic nematodes. PMID:19300659

  20. Seasonal carbon storage and growth in Mediterranean tree seedlings under different water conditions.

    Science.gov (United States)

    Sanz-Pérez, Virginia; Castro-Díez, Pilar; Joffre, Richard

    2009-09-01

    In all Mediterranean-type ecosystems, evergreen and deciduous trees differing in wood anatomy, growth pattern and leaf habit coexist, suggesting distinct adaptative responses to environmental constraints. This study examined the effects of summer water stress on carbon (C) storage and growth in seedlings of three coexisting Mediterranean trees that differed in phenology and wood anatomy characteristics: Quercus ilex subsp. ballota (Desf.) Samp., Quercus faginea Lam. and Pinus halepensis L. Seedlings were subjected to two levels of watering during two consecutive summers and achieved a minimum of -0.5 and -2.5 MPa of predawn water potential in the control and water stress treatment, respectively. Both Quercus species concentrated their growth in the early growing season, demanding higher C in early spring but replenishing C-stores in autumn. These species allocated more biomass to roots, having larger belowground starch and lipid reserves. Quercus species differed in seasonal storage dynamics from P. halepensis. This species allocated most of its C to aboveground growth, which occurred gradually during the growing season, leading to fewer C-reserves. Soluble sugar and starch concentrations sharply declined in August in P. halepensis, probably because reserves support respiration demands as this species closed stomata earlier under water stress. Drought reduced growth of the three species, mainly in Q. faginea and P. halepensis, but not C-reserves, suggesting that growth under water stress conditions is not limited by C-availability.

  1. [Effects of different endophytic fungi on seedling growth of Dendrobium devonianum].

    Science.gov (United States)

    Huang, Hui; Shao, Shi-Cheng; Gao, Jiang-Yun

    2016-06-01

    To obtain seedling growth-promoting fungi is a key step in restoration-friendly cultivation of medicinal Dendrobium species, since there are a large number of functionally-unknown endophytic fungi in the roots of Dendrobium plants.In this study, six functionally-unknown endophytic fungal strains were isolated from roots of D.devonianum using single peleton isolation technology, and used in inoculation experiments to test their effectiveness for seedling growth in D.devonianum.After 90 days of inoculation, comparing with the control treatment, FDdS-1, FDdS-2 and FDdS-4 showed strong pathogenic or fatal effects on seedlings; while, FDdS-12, FDdS-9 and FDdS-5 had different effects on seedling growth.FDdS-5 had significant promoting effects on height, fresh and dry weight, stem diameter and root numbers, while FDdS-9 only had significant promoting effect on seedling height, and FDdS-12 had a negative effect on seedling growth.According to the anatomical features of the inoculated roots, FDdS-5 fungi could infect the velamina of seedlings and the existence of symbiosis pelotons in the cortex cells, suggesting that FDdS-5 is a mycorrhiza fungi of D.devonianum.FDdS-5 and FDdS-9 were identified as Sebacina vermifera and Sebacina sp.by molecular technologies.By using FDdS-5 in the restoration-friendly cultivation of D.devonianum, it could effectively promote seedling growth and shorten the seedling growth periods.The results will aid in reintroduction and cultivation of D.devonianum. Copyright© by the Chinese Pharmaceutical Association.

  2. The upregulation of thiamine (vitamin B1 biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response

    Directory of Open Access Journals (Sweden)

    Rapala-Kozik Maria

    2012-01-01

    Full Text Available Abstract Background Recent reports suggest that vitamin B1 (thiamine participates in the processes underlying plant adaptations to certain types of abiotic and biotic stress, mainly oxidative stress. Most of the genes coding for enzymes involved in thiamine biosynthesis in Arabidopsis thaliana have been identified. In our present study, we examined the expression of thiamine biosynthetic genes, of genes encoding thiamine diphosphate-dependent enzymes and the levels of thiamine compounds during the early (sensing and late (adaptation responses of Arabidopsis seedlings to oxidative, salinity and osmotic stress. The possible roles of plant hormones in the regulation of the thiamine contribution to stress responses were also explored. Results The expression of Arabidopsis genes involved in the thiamine diphosphate biosynthesis pathway, including that of THI1, THIC, TH1 and TPK, was analyzed for 48 h in seedlings subjected to NaCl or sorbitol treatment. These genes were found to be predominantly up-regulated in the early phase (2-6 h of the stress response. The changes in these gene transcript levels were further found to correlate with increases in thiamine and its diphosphate ester content in seedlings, as well as with the enhancement of gene expression for enzymes which require thiamine diphosphate as a cofactor, mainly α-ketoglutarate dehydrogenase, pyruvate dehydrogenase and transketolase. In the case of the phytohormones including the salicylic, jasmonic and abscisic acids which are known to be involved in plant stress responses, only abscisic acid was found to significantly influence the expression of thiamine biosynthetic genes, the thiamine diphosphate levels, as well as the expression of genes coding for main thiamine diphosphate-dependent enzymes. Using Arabidopsis mutant plants defective in abscisic acid production, we demonstrate that this phytohormone is important in the regulation of THI1 and THIC gene expression during salt stress

  3. Design and force analysis of end-effector for plug seedling transplanter.

    Directory of Open Access Journals (Sweden)

    Zhuohua Jiang

    Full Text Available Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients. Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.

  4. Effects Of Irrigation With Saline Water, And Soil Type On Germination And Seedling Growth Of Sweet Maize (Zea Mays L.)

    International Nuclear Information System (INIS)

    Mostafa, A.Z.; Amato, M.; Hamdi, A.; Mostafa, A.Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    Germination and early growth of maize Sweet Maize (Zea mays L.), var. (SEL. CONETA) under irrigation with saline water were investigated in a pot experiment with different soil types. Seven salinity levels of irrigation water up to 12 dS/m were used on a Clay soil (C) and a Sandy-Loam (SL). Emergence of maize was delayed under irrigation with saline water, and the final percentage of germination was reduced only at 8 dS/m or above. Seedling shoot and root growth were reduced starting at 4 dS/m of irrigation water. Salts accumulated more in the C soil but reductions in final germination rate and seedling growth were larger in the SL soil, although differences were not always significant. Data indicate that germination is rather tolerant to salinity level in var. SEL. CONETA whereas seedling growth is reduced at moderate salinity levels, and that soil type affects plant performance under irrigation with saline water

  5. The transition from a maternal to external nitrogen source in maize seedlings

    KAUST Repository

    Sabermanesh, Kasra

    2017-02-07

    Maximising NO3 - uptake during seedling development is important as it has a major influence on plant growth and yield. However, little is known about the processes leading to, and involved in, the initiation of root NO3 - uptake capacity in developing seedlings. This study examines the physiological processes involved in root NO3 - uptake and metabolism, to gain an understanding of how the NO3 - uptake system responds to meet demand as maize seedlings transition from seed N use to external N capture. The concentrations of seed-derived free amino acids within root and shoot tissues are initially high, but decrease rapidly until stabilising eight days after imbibition (DAI). Similarly, shoot N% decreases, but does not stabilise until 12-13 DAI. Following the decrease in free amino acid concentrations, root NO3 - uptake capacity increases until shoot N% stabilises. The increase in root NO3 uptake capacity corresponds with a rapid rise in transcript levels of putative NO3 - transporters, ZmNRT2.1 and ZmNRT2.2. The processes underlying the increase in root NO3 - uptake capacity to meet N demand provide an insight into the processes controlling N uptake.

  6. Quality of Heliconia psittacorum seedlings grown on different substrates

    Directory of Open Access Journals (Sweden)

    Raimundo Luiz Laurinho dos Santos

    2016-01-01

    Full Text Available The production of good seedlings depends on the quality of the matrix and propagation techniques used. In choosing a substrate should be particularly observed physical and chemical characteristics. The objective of this study was to assess the development and vigor of heliconia seedlings from Heliconia psittacorum species, grown on different substrates and mixtures. The materials that form the treatments were: burnt rice husk (RHB, vermiculite (VC, sugarcane waste burnt (SWB, subsoil (S, chicken bedding (CB, cattle manure (CM, earthworm humus (EH, coconut husk powder (CSP and Horticultural Plantmax (HP. The treatments chosen were: 1( ⅔ CM + ⅓ CSP, 2( ⅔CM + ⅓RHB, 3( ⅔CB + ⅓ SWB, 4(CSP, 5(½VC+ ½SWB, 6(⅔ S + ⅓ CB, 7(⅓CM + ⅔SWB, 8(⅔ CM + ⅓SWB, 9(⅔CB + ⅓RHB, 10(⅓CM + ⅔RHB, 11(⅓CB + ⅔SWB, 12(⅔CB + ⅓CSP, 13(⅔EH + ⅓CSP, 14(⅔EH + ⅓SWB, 15(⅓CB + ⅔RHB, 16(⅓EH + ⅔SWB, 17(⅔EH + ⅓RHB, 18( ½VC + ½RHB, 19(S, 20(⅔ S + ⅓ CM, 21(⅔ S + ⅓ EH, 22(EH, 23(HP, 24(⅓EH + ⅔RHB. Samples of all treatment compositions were taken and carried out chemical and physical analysis. A set of ten treatments (1, 2, 5, 7, 8, 10, 14, 16, 20 and 22 basically consisting of CM EH, RHB, CSP and SWB produced the best seedlings and treatment with CB as a main component or not produced the worst seedlings due to high electrical conductivity

  7. Response of fenugreek ( Trigonella foenum-graecum L.) seedlings ...

    African Journals Online (AJOL)

    In the present investigation, the impact of drought and heavy metal in fenugreek was critically monitored. Fenugreek seedlings were exposed to 1- bar polyethylene glycol (PEG) solution (osmotic stress) and 10 ppm solution of HgCl2 (heavy metal). Within 3 days of seedling growth, mercury exposure induced relatively high ...

  8. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    Science.gov (United States)

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  9. THE CULTURE OF ASIMINA TRILOBA (L. DUNAL SEEDLINGS WITH A VIEW TOWARD THEIR DEVELOPMENT AS PLANTING MATERIAL

    Directory of Open Access Journals (Sweden)

    Beatrice Agneta Szilagyi

    2015-07-01

    Full Text Available Asimina triloba (L. Dunal, an exotic North American temperate-climate species, is little known or appreciated in Europe, especially in Romania. This work, with its goal of remodeling green spaces in Baia Mare by introducing the decorative species Asimina triloba (L. Dunal, proposes to test seedlings of the species in forced cultivation for producing vigorous dendrological material in a reduced time frame. Thus, in the course of experiments that took place from January to May 2014, the ecological valences of Asimina triloba were measured. The pedoclimatic conditions experienced were favorable to the growth and development of the plant in question.

  10. Environmentally induced development costs underlie fitness tradeoffs.

    Science.gov (United States)

    Walter, Greg M; Wilkinson, Melanie J; Aguirre, J David; Blows, Mark W; Ortiz-Barrientos, Daniel

    2018-06-01

    Local adaptation can lead to genotype-by-environment interactions, which can create fitness tradeoffs in alternative environments, and govern the distribution of biodiversity across geographic landscapes. Exploring the ecological circumstances that promote the evolution of fitness tradeoffs requires identifying how natural selection operates and during which ontogenetic stages natural selection is strongest. When organisms disperse to areas outside their natural range, tradeoffs might emerge when organisms struggle to reach key life history stages, or alternatively, die shortly after reaching life history stages if there are greater risks of mortality associated with costs to developing in novel environments. We used multiple populations from four ecotypes of an Australian native wildflower (Senecio pinnatifolius) in reciprocal transplants to explore how fitness tradeoffs arise across ontogeny. We then assessed whether the survival probability for plants from native and foreign populations was contingent on reaching key developmental stages. We found that fitness tradeoffs emerged as ontogeny progressed when native plants were more successful than foreign plants at reaching seedling establishment and maturity. Native and foreign plants that failed to reach seedling establishment died at the same rate, but plants from foreign populations died quicker than native plants after reaching seedling establishment, and died quicker regardless of whether they reached sexual maturity or not. Development rates were similar for native and foreign populations, but changed depending on the environment. Together, our results suggest that natural selection for environment-specific traits early in life history created tradeoffs between contrasting environments. Plants from foreign populations were either unable to develop to seedling establishment, or they suffered increased mortality as a consequence of reaching seedling establishment. The observation of tradeoffs together with

  11. Effect of Ionic and Chelate Assisted Hexavalent Chromium on Mung Bean Seedlings (Vigna radiata L. wilczek. var k-851 During Seedling Growth

    Directory of Open Access Journals (Sweden)

    Mohanty, Monalisa

    2013-04-01

    Full Text Available The effect of Cr+6 with and without chelating agents were assessed in mung bean seedlings grown hydroponically. It was noted that the growth parameters showed a declining trend with increasing Cr+6 concentrations without chelate application. Among the seedlings grown with chelated chromium complexes, Cr+6–DTPA (10µM showed highest growth rate of roots as well as shoots. At higher concentration of Chromium i.e. Cr+6 (100µM, there exhibited high chlorophyll content in mung bean leaves where the seedlings showed stunted growth. The seedlings treated without and with chelated chromium complexes showed increased proline content as compared to control. The enzymatic study showed that, the catalase activity was maximum in shoots as compared to roots and the reverse is true in the case of peroxidase activity i.e. the roots showed higher value than that of the shoots.

  12. [Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation].

    Science.gov (United States)

    Wang, Yi; Ding, Gui-jie

    2013-03-01

    A greenhouse pot experiment was conducted to study the effects of inoculating Pisolithus tinctorius, Cenococcum geophilum, Cantharellus cibarius, and Suillus luteus on the physiological characteristics of Pinus massoniana seedlings under the conditions of drought stress and re-watering, with the drought resistance of the mycorrhizal seedlings evaluated. Under drought stress, the MDA content and membrane' s relative permeability of P. massoniana seedlings increased, but these two indices in the inoculated (mycorrhizal) seedlings were significantly lower than these in the un-inoculated (control) seedlings. After re-watering, the MDA content and membrane's relative permeability of mycorrhizal seedlings had a rapid decrease, as compared with the control. In the first 21 days of drought stress, the production rate of superoxide radical of the seedlings increased, and the SOD, POD and NR activities of mycorrhizal seedlings increased significantly. With the extending of drought stress, the seedlings after re-watering had different recovery ability. Under the re-watering after 14 days drought stress, the SOD, POD and NR activities recovered. The drought resistance of the mycorrhizal seedlings was in the order of Suillus luteus 1 > Suillus luteus 7 > Cantharellus cibarius > Cenococcum geophilum > Pisolithus tinctorius. The SOD and MDA activities had a greater correlation with the mycorrhizal seedlings drought resistance, being able to be used as the indicators to evaluate the drought resistance of mycorrhizal seedlings.

  13. Seedling characters at different temperatures in pearl millet ...

    African Journals Online (AJOL)

    The effect of six temperatures ranging from 20 to 45°C on the germination and seedling length of six grain pearl millet genotypes (KS, AM, HG, EC, ZZ and D) was determined. There was significant variation in germination and seedling length across temperatures and among genotypes. As a result, significant temperature ...

  14. Evaluation of Spring Wheat (20 Varieties Adaptation to Soil Drought during Seedlings Growth Stage

    Directory of Open Access Journals (Sweden)

    Jolanta Biesaga-Kościelniak

    2014-04-01

    Full Text Available The effect of soil drought (10 days on the growth of plants, the accumulation of water and leakage of electrolytes, gas exchange, the contents of chl a + b and carotenoids in leaves and photochemical activity of photosystem II was studied at the seedling stage by transient fluorescent analysis in 20 of the popular varieties of polish spring wheat. Drought caused a particularly strong reduction in vigor of growth of seedlings, net photosynthesis rate and triggered an increase in electrolyte leakage from the leaves. Certain varieties during the drought demonstrated relatively intense CO2 assimilation at low water loss through transpiration. The varieties tested were significantly different in terms of tolerance to drought of the processes of gas exchange and seedlings development. Photochemical processes in PSII showed high tolerance to drought and at the same time low differentiation among varieties. The results obtained suggested that tolerance of growth parameters to drought and CO2 assimilation at the seedling stage may alleviate consequent depression of final yield of the grain.

  15. Growth and ABA responses of maple seedlings to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, A.; Robitaille, G.; Boutin, R. [Canadian Forestry Service, Sainte Foy, PQ (Canada); Nadeau, P. [Agriculture and Agri-Food Canada Research Station, Sainte-Foy, PQ (Canada)

    1995-12-01

    The impacts of low pH and 2.0 mM aluminum (Al) on the growth of sugar maple seedlings was assessed over a 13-week period. The hypothesis was that low pH and high aluminum concentration would lower the vigor of sugar maple seedlings and were contributing factors to sugar maple stand decline. The effects of the stresses were measured in roots and shoots. The concentration of abscisis acid (ABA) in xylem sap in response to Al over time was measured to determine whether it could be used as an indicator of Al stress in sugar maple seedlings. At week 9, total leaf area of Al-treated seedlings was reduced by 27%, but by week 13 leaf area was similar for seedlings in all treatments. None of the other growth parameters examined were negatively affected by the treatments at either week 9 or week 13. ABA concentration in the xylem sap was not affected by any of the treatments. The duration of exposure to Al was found critical when assessing a threshold concentration for Al toxicity because plants can acclimate to an Al concentration previously considered toxic. 36 refs., 1 tab., 6 figs.

  16. Seed reserve composition and mobilization during germination and early seedling establishment of Cereus jamacaru D.C. ssp. jamacaru (Cactaceae).

    Science.gov (United States)

    Alencar, Nara L M; Innecco, Renato; Gomes-Filho, Enéas; Gallão, Maria Izabel; Alvarez-Pizarro, Juan C; Prisco, José T; Oliveira, Alexandre B De

    2012-09-01

    Cereus jamacaru, a Cactaceae found throughout northeast Brazil, is widely used as cattle food and as an ornamental and medicinal plant. However, there has been little information about the physiological and biochemical aspects involved in its germination. The aim of this study was to investigate its reserve mobilization during germination and early seedling growth. For this, C. jamacaru seeds were germinated in a growth chamber and collected at 0, 2, 4, 5, 6, 8 and 12 days after imbibition for morphological and biochemical analyses. Dry seeds had wrinkled seed coats and large, curved embryos. Lipids were the most abundant reserve, comprising approximately 55% and 65% of the dry mass for cotyledons and the hypocotylradicle axis, respectively. Soluble sugars and starch were the minor reserves, corresponding to approximately 2.2% of the cotyledons' dry mass, although their levels showed significant changes during germination. Soluble proteins corresponded to 40% of the cotyledons' dry mass, which was reduced by 81% at the final period of germination compared to dry seeds. C. jamacaru seed can be classified as an oil seed due to its high lipid content. Moreover, lipids were the main reserve mobilized during germination because their levels were strongly reduced after seed germination, while proteins were the second most utilized reserve in this process.

  17. Growth of seedlings of Corymbia citriodora as a function of hydrogel use and fertilization

    Directory of Open Access Journals (Sweden)

    Marlon Rodrigo Bernardi

    2012-03-01

    Full Text Available Corymbia citriodora, also known as lemon eucalyptus, is one of the most cultivated species for extraction of essential oils. Seedling production for this species, however, is more difficult than for other species, considering its slower growth, higher susceptibility to disease and nutrition requirements. As regards top dressing in particular, no established routine is available so far to ensure fertilizer savings and good seedling development. Slow growth reduces seedling capability to absorb nutrients before leaching starts, and a potential alternative to that is to add water-retaining polymers to the substrate so as to facilitate absorption of the fertilizers applied and their slow release in seedling tubes. The objective of this study was to evaluate the effect of different fertilizer dosages, as applied to substrates containing water-retaining polymers, on the growth of Corymbia citriodora seedlings. A completely randomized design was used, with four replicates, consisting of a control treatment with routine substrate and fertilizer used by a commercial nursery, plus five treatments with top dressing dosages ranging from 80% to 20% of commercial dosage plus addition of a polymer (6 g L-1. After 126 days, seedlings were evaluated for height, stem base diameter and ratio of height to stem base diameter. After analysis, it was concluded that the use of a water-retaining polymer had a positive effect on the height, stem base diameter and ratio of shoot height to stem base diameter, and that it helped reduce by at least 20% the amount of routine fertilizer used by the commercial nursery, whether basic fertilizer or top dressing.

  18. Diversity for seedling vigor in wild barley (hordeum vulgare L. subs. simpatina) germplasm

    International Nuclear Information System (INIS)

    Tyagi, K.; Park, M.R.; Lee, H.J.; Lee, C.A.; Rehman, S.; Steffenson, B.; Lee, K.J.; Yun, S.J.

    2011-01-01

    Seedling vigor is important for improving stand establishment of barley crops, particularly in arid regions and areas where the soil temperature is low at sowing time. Three hundred and fifteen wild barley accessions from the Wild Barley Diversity Collection (WBDC) were evaluated for nine seedling vigor traits in a poly house and growth chamber under hydroponic conditions. The accessions exhibited significant differences for all traits investigated. Traits showing greatest phenotypic variation were seedling visual score, plant height, shoot fresh weight, shoot dry weight and shoot length. Seed weight exhibited the least variation. Seed weight was significantly correlated with visual seedling score and shoot and seedling fresh and dry weight. Correlation analysis showed that the visual seedling score was a reliable method for estimating seedling vigor in wild barley. The first three principal components (PC) explained 82.3% of the variation present in the WBDC with PC1(54.0%) associated with shoot fresh weight, shoot dry weight, seedling dry weight, seedling fresh weight, shoot length and seedling length. Accessions from the southwest portion of the Fertile Crescent, like WBDC020 (Turkey), WBDC238 (Jordan) and WBDC244 (Jordan) exhibited the highest positive values for most of the plant vigor traits investigated. These wild barley accessions likely carry alleles that will be useful for the improvement of plant vigor traits in cultivated barley. (author)

  19. Contribution of seedling vigour and anoxia/hypoxia-responsive genes to submergence tolerance in Vietnamese lowland rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Hien Thi Thu Vu

    2016-09-01

    Full Text Available A direct-seeded rice cultivation system has been widely adopted in Asian countries. Optimum germination and vigorous seedling growth under submergence are key traits for the practice of direct seeding. We studied the post-germination seedling vigour in Vietnamese lowland rice accessions based on three bio-parameters, shoot elongation growth under five-day submergence in water-filled test-tubes, seedling recovery rate five days after transferring submerged seedlings to pots with soil and seedling survival rate 21 days after sowing seeds in nursery beds and immediate incubation under submergence. A large diversity was found in seedling vigour thus estimated among the accessions. Significantly high correlations were observed among all three bio-parameters, verifying the contribution of seedling vigour to the manifestation of submergence tolerance at this critical stage of rice development. To examine the roles of anoxia/hypoxia-responsive genes, the expression of 17 candidate genes was studied by reverse transcription polymerase chain reaction (RT-PCR and compared between selected vigorous and non-vigorous groups of accessions. Transcripts of all but two genes showed marked accumulation in submerged seedlings. No differences, however, were found between the two contrasting groups. The observed common and coordinate expression of anoxia/hypoxia-induced genes suggests that they might assume roles in attaining baseline tolerance against submergence stress. It was also suggested that some unknown genetic factors are operating in determining cultivar/genotype-specific levels of submergence tolerance as assessed by post-germination seedling vigour.

  20. Effect of length of interval between cereal rye cover crop termination and corn planting on seedling root disease and corn growth

    Science.gov (United States)

    Cereal rye cover crops terminated immediately before corn planting can sometimes reduce corn population, early growth, and yield. We hypothesized that cereal rye may act as a green bridge for corn pathogens and may increase corn seedling root disease. A field experiment was conducted over two years ...

  1. Effects of filamentous macroalgae on growth and survival of eelgrass, Zostera marina, seedlings

    DEFF Research Database (Denmark)

    Rasmussen, Jonas; Krause-Jensen, Dorte; Olesen, Birgit

    of oxygen and sulphide and their diurnal variations in the mats were measured using microelectrodes. Seedling growth rates declined 99 % from controls to the high C. linum cover treatment and 55 % to the high imitation algae treatment. But due to high water flow rates anoxic conditions failed to develop...... on a 2-factorial laboratory experiment. Eelgrass seedlings were grown with three different heights and two different types of algae mats: Chaetomorpha linum and artificial macroalgae. The two types of mats were used to separate the physical and metabolic effects of algal presence. Concentrations...

  2. Tree fern trunks facilitate seedling regeneration in a productive lowland temperate rain forest.

    Science.gov (United States)

    Gaxiola, Aurora; Burrows, Larry E; Coomes, David A

    2008-03-01

    Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.

  3. Quality assessment of truffle-inoculated seedlings in Italy: proposing revised parameters for certification

    Directory of Open Access Journals (Sweden)

    Domizia Donnini

    2014-08-01

    Full Text Available Aim of study: the main aims of this study were to evaluate the quality of truffle-inoculated seedlings produced by commercial nurseries in Italy and to identify their minimum requisites in terms of plant age, health, homogeneity, and cut-off percentage of inoculated Tuber and non-Tuber ectomycorrhizae, based on the analysis of an extensive sample of seedlings subjected to quality control and certification.Area of study: truffle-inoculated seedlings produced by Italian commercial nurseries.Material and Methods: analysis of truffle-inoculated seedlings for health and quality standards; recording of presence of inoculated Tuber spp. and other concurrent fungi according to the official Italian method for certification; selective amplification of ectomycorrhizal DNA by PCR species-specific primers.Main results: We showed that mycorrhization levels in truffle-inoculated seedlings increased with time after truffle-spore inoculation. The highest mean percentage of the inoculated Tuber spp., but also the highest presence of contaminants, were recorded after three years. The mycorrhization level of Tuber melanosporum and T. aestivum was higher in Corylus and Ostrya seedlings than in Q. ilex and Q. pubescens, but the latter two host species showed the lowest presence of other ectomycorrhizal fungi. Mycorrhization level distribution in truffle-inoculated seedlings of suitable batches differed very little from the distribution in only all suitable seedlings. Truffle seedlings with other Tuber spp. were very few and even absent after three years. The general quality of Italian truffle-inoculated seedlings is high but can be improved even further by revising the parameters used for their certification.Research highlights: Mycorrhization assessment in truffle-inoculated seedlings produced by commercial nurseries and a revision of the parameters of quality standards following several years of certification in Italy.Keywords: Truffle cultivation; truffle

  4. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation.

    Science.gov (United States)

    Krause, G Heinrich; Jahns, Peter; Virgo, Aurelio; García, Milton; Aranda, Jorge; Wellmann, Eckard; Winter, Klaus

    2007-10-01

    Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a

  5. The effect of the photoperiod on the level of endogenous growth regulators in pine (Pinus silvestris L. seedlings

    Directory of Open Access Journals (Sweden)

    Krystyna Kriesel

    2014-01-01

    Full Text Available The investigations were performed on pine seedlings growing under 12, 16 and 20 hour photoperiods. In 4 succesive stages of seedling development i.e. after 2, 12, 18 and 30 weeks of culture morphological characters of the seedlings were measured and the levels of auxins-, gibberellins-, cytokininsand abscisic acid-like inhibitor were determined. The intensity of growth and development of juvenile leaves, needles and of the shoot was the lowest in plants growing under 12 hour photoperiod conditions. As the length of the photoperiod increased so did the intensity of these processes. Under the 12 hour photoperiod the development of scale leaves, axillary buds and the formation of the terminal bud started earliest. This process reached completion under the 12 hour photoperiod and the bud remained in a state of dormancy. Seedlings growing under the 12 hour photoperiod were characterized by a low level of stimulators, and at the same time by a high level of inhibitors. On the other hand in seedlings grown at 16 and 20 hour photoperiods the content of stimulators was higher and that of inhibitors lower. A high intensity of growth and development processes was correlated with a high level of stimulators while a high level of inhibitors was correlated with a low intensity of these processes.The obtained results suggest the participation of gibberellins and cytokinins in the processes of regulation of the initiation of scale leaves and axillary buds, and the participation of these hormones and of abscisic acid in the regulation of needle elongation.

  6. Air lateral root pruning affects longleaf pine seedling root system morphology

    Science.gov (United States)

    Shi-Jean Susana Sung; Dave Haywood

    2016-01-01

    Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...

  7. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings

    Science.gov (United States)

    2014-01-01

    Background Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in Arabidopsis remains challenging. Results We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred 100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-gene regulation as well as protein subcellular localization and protein–protein interactions in physiological contexts. Conclusions AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to previous

  8. Use of rice seedlings to estimate uptake of radiocesium from soil to plants in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Suzuki, Yasukazu; Ohno, Takeshi

    2013-01-01

    The uptake of radiocesium to plants from the soil is affected by many environmental factors, and it is difficult to determine the contribution of uptake among these factors. In addition, these environmental factors should be investigated independently for each field. The aim of this study was to develop a practical and simple method for the estimate of uptake of radiocesium from soil to plants. Rice seedlings were used to estimate the root uptake of radiocesium from seven different soils. To confirm that the seedlings were the effective indicator, the concentration of "1"3"7Cs in the seedlings was compared with that in brown rice and sunflower. The seedlings were cultivated for a week from germination in a phytotron and the concentrations of "1"3"7Cs in the seedlings above ground were determined. To obtain brown rice and sunflower, rice and sunflower were cultivated either in a pot (1/5000 a Wagner pot, 4000 cm"3) placed in a glasshouse or in a paddy field in Fukushima prefecture for two to four months. The concentration of "1"3"7Cs in the rice seedlings ranged from 150 to 1900 Bq kg"-"1, and that in brown rice and sunflower ranged from 2 to 880 Bq kg"-"1 and from 580 to 3900 Bq kg"-"1, respectively. The Spearman's rank correlation coefficient between the measured concentration of "1"3"7Cs in rice seedlings and the measured concentration of "1"3"7Cs in brown rice and sunflower was 1.0 (p < 0.001 and p = 0.09, respectively). This suggests that the use of rice seedlings in this experiment over a period of two weeks provides an effective indicator for the uptake of "1"3"7Cs from soil to plants over a longer period of time. (author)

  9. Use of rice seedlings to estimate uptake of radiocesium from soil to plants in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Suzuki, Yasukazu; Ohno, Takeshi

    2012-01-01

    The uptake of radiocesium to plants from the soil is affected by many environmental factors, and it is difficult to determine the contribution of uptake among these factors. In addition, these environmental factors should be investigated independently for each field. The aim of this study was to develop a practical and simple method for the estimate of uptake of radiocesium from soil to plants. Rice seedlings were used to estimate the root uptake of radiocesium from seven different soils. To confirm that the seedlings were the effective indicator, the concentration of 137 Cs in the seedlings was compared with that in brown rice and sunflower. The seedlings were cultivated for a week from germination in a phytotron and the concentrations of 137 Cs in the seedlings above ground were determined. To obtain brown rice and sunflower, rice and sunflower were cultivated either in a pot (1/5000 a Wagner pot, 4000 cm 3 ) placed in a glasshouse or in a paddy field in Fukushima prefecture for two to four months. The concentration of 137 Cs in the rice seedlings ranged from 150 to 1900 Bq kg -1 , and that in brown rice and sunflower ranged from 2 to 880 Bq kg -1 and from 580 to 3900 Bq kg -1 , respectively. The Spearman's rank correlation coefficient between the measured concentration of 137 Cs in rice seedlings and the measured concentration of 137 Cs in brown rice and sunflower was 1.0 (p < 0.001 and p = 0.09, respectively). This suggests that the use of rice seedlings in this experiment over a period of two weeks provides an effective indicator for the uptake of 137 Cs from soil to plants over a longer period of time. (author)

  10. [Effects of sowing depth on seedling traits and root characteristics of summer maize].

    Science.gov (United States)

    Cao, Hui-ying; Wang, Ding-bo; Shi, Jian-guo; Zhu, Kun-lun; Dong, Shu-ting; Liu, Peng; Zhao, Bin; Zhang, Ji-wang

    2015-08-01

    Two summer maize hybrids, Zhengdan 958 (ZD958) and Xianyu 335 (XY335), were used as experimental materials. 4 sowing depths (3, 5, 7 and 9 cm) and uneven sowing depth (CK) were designed under sand culture and field experiments to investigate the effects of sowing depth on seedling traits and root characteristics of summer maize. The results showed that the seedling emergence rate gradually decreased and seedling emergence time gradually lengthened as the sowing depth increased. Compared with the sowing depth of 3 cm, the seedling emergence rates of ZD958 and XY335 sown at the depth of 9 cm were reduced by 9.4% and 11.8%, respectively, and the seedling emergence duration was prolonged 1.5 d. With the increasing sowing depth, the seedling length and uniformity decreased significantly, the mesocotyl length increased significantly, while the coleoptile length had no significant difference; the primary radicle length gradually decreased, the total length of secondary radicle gradually increased, and the total root length had no significant difference; the total dry mass of seedling and mesocotyl increased significantly, and the total root dry mass had no significant difference. With the increasing sowing depth, the soluble sugar content in each part of seedling increased and the amount of nutritional consumption of germinating seeds increased, the seedling root growth rate increased, but the root activity decreased, and the number of total nodal root and nodal layers increased. With the increasing sowing depth, harvested ears per unit area were reduced by decreased seedling emergence rate and seedling vigor, thus influenced the yield. In addition, uniform sowing depth could improve the canopy uniformity and relative characteristics, then increase the yield.

  11. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants

    DEFF Research Database (Denmark)

    Merrild, Marie Porret; Ambus, Per; Rosendahl, Søren

    2013-01-01

    ) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of 32P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact...... or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre‐established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed...

  12. Asymbiotic seed germination and in vitro seedling development of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... (M) and Knudson 'C' (KC) were evaluated for seed germination and early ... running tap water and Teepol. ... blade. The powdery seeds were inoculated on the surface of agar ... an interval of one week to trace different stages of development of .... round in shape and radially symmetrical that turned to.

  13. Evaluation of substrates on the emergence of "araticum-de-terra-fria" (Annona emarginata (Schltdl. H. Rainer Seedlings

    Directory of Open Access Journals (Sweden)

    Daniel Baron

    2011-06-01

    Full Text Available Choosing a substrate is the determinant factor for the seedling producer; thus, the aim of this study was to evaluate the effect of different types of substrates on the emergence of "araticum-de-terra-fria" (Annona emarginata (Schltdl. H. Rainer seedlings. The experiment was carried out in a greenhouse and the experimental design was in randomized blocks, with three treatments and five replicates of 72 seeds per plot. The treatments consisted of the following substrates: coconut fiber, vermiculite and Plantmax® Citrus. The number of emerged seedlings was weekly counted for 105 days. Data regarding seedling height were obtained, and the emergence velocity index and mean time, besides total emergence percentage and that over time were calculated. Results from total mean emergence percentage, seedling height, emergence velocity index (EVI, and mean emergence time (MET were subjected to analysis of variance and means were compared by the Tukey's test at 5% significance. The curves concerning the emergence percentage over time were fit by the logistic growth equation for each treatment and the means of each parameter (A, B, C were compared by the Duncan's test at 5% significance. The substrates vermiculite led to the highest values of emergence percentage differing from the PlantMax® Citrus, but not of the coconut fiber, however the vermiculite promoted seedling height in a shorter time; therefore, this substrate is recommended for the initial development of "araticum-de-terra-fria" (Annona emarginata (Schltdl. H. Rainer seedlings.

  14. Mangrove microclimates alter seedling dynamics at the range edge.

    Science.gov (United States)

    Devaney, John L; Lehmann, Michael; Feller, Ilka C; Parker, John D

    2017-10-01

    Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts. © 2017 by the Ecological Society of America.

  15. Influence of solar irradiance, watering frequency and inorganic fertilizer on incidence of dieback disease and growth of Ceiba pentendra (L.) seedlings

    International Nuclear Information System (INIS)

    Nkyi, K.A.; Owusu-Sekyere, E.; Ofori, D.

    2012-01-01

    Efforts at raising seedlings of Ceiba pentandra in nurseries have been hampered by damping-off, leaf spots and stem anthracnose causing stem dieback disease by fungal attack. Managing the disease by fungicides retarded growth of the seedlings; hence a method of controlling the dieback disease and boosting growth of Ceiba pentandra seedlings based on environmental factors was investigated. Using a randomised complete block design in a factorial split-plot experiment, the dependence of survival and growth of Ceiba pentandra seedlings on solar irradiance, watering frequency and NPK (15:15:15) fertilizer was studied to improve the survival rate of seedlings by preventing dieback disease in large-scale plantation development in Ghana. Solar irradiance, daily watering of 4.5 L per plot and inorganic fertilizer application of 1.0 g per seedling had the strongest effect in minimizing the incidence of dieback disease and ensuring 90 % survival and improved collar diameter growth. The levels of irradiance, watering regime and optimum fertilizer application required to control dieback disease and promote growth of Ceiba pentandra seedlings were set, and could be adopted by tree growers. (au)

  16. BIOACTIVE COMPOUNDS AND ANTIOXIDANT CAPACITY FROM FIVE TYPES OF SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Florina Maria Copaciu

    2016-10-01

    Full Text Available After germination process, the green seedlings accumulate important quantities of bioactive compounds such as: enzymes, vitamins, minerals, chlorophylls and nutrients. The current study presents a comparison between different bioactive compounds and their antioxidant capacity, after the seedling germination and growth of five seeds (arugula, lentil, wheat, beans and mustard both on soil, in a pot (natural system, and directly on cotton wool soaked, in water (artificial system. In this study the carotenoids content and the antioxidant capacity were analysed. The data of the present study showed that the highest amount of zeaxanthin and β - carotene was found in cultivars of wheat grown in natural system, while the highest antioxidant activity was found in cultivars of wheat, lentils and beans, though in this case with no statistical differences between the systems. The results show statistical differences between the values of bioactive compounds in the five types of seedlings but also in the values obtained for the same seedlings in different systems. The best cultivars for improving the nutritional quality for human consumption are wheat seedlings followed by lentil ones.

  17. Naturally seeded versus planted ponderosa pine seedlings in group-selection openings

    Science.gov (United States)

    Philip M. McDonald; Gary Fiddler; Martin Ritchie; Paula Anderson

    2009-01-01

    The purpose of this article was to determine whether natural regeneration or planted seedlings should be used in group-selection openings. The answer dependson the survival and growth rate of both types of seedlings, and that could depend on the size of the openings and the effect of trees on their edge. In thisside-by-side study, the natural pine seedlings originated...

  18. The chemical toxicity of cesium in Indian mustard (Brassica juncea L.) seedlings

    International Nuclear Information System (INIS)

    Lai, Jin-long; Tao, Zong-ya; Fu, Qian; Han, Na; Wu, Guo; Zhang, Hong; Lu, Hong; Luo, Xue-gang

    2016-01-01

    To distinguish between the radiological and chemical effects of radiocesium, we study the chemical toxicity of cesium in the seedlings of Indian mustard (Brassica juncea L.). In this study, the experiment was designed in two factors and five levels random block design to investigate the interaction effects of Cs and K. Results showed that excessive Cs was one of the main factors influence the growth of Brassica juncea seedlings. And the toxicity of Cs in Brassica juncea is likely to be caused by Cs interacts with K-binding sites in essential K-dependent protein, either competes with K for essential biochemical functions, causing intracellular metabolic disturbance. To test the hypothesis that the toxicity of Cs might cause intracellular metabolic disturbance, next-generation sequencing (NGS)-based Illumina paired-end Solexa sequencing platform was employed to analysis the changes in gene expression, and understand the key genes in B. juncea seedlings responding to the toxicity of Cs. Based on the assembled de novo transcriptome, 2032 DEGs that play significant roles in the response to the toxicity of Cs were identified. Further analysis showed that excessive Cs is disturbance the auxin signal transduction pathway, and inhibited the indoleacetic acid-induced protein (AUX/IAA) genes expression eventually lead the seedlings growth and development be inhibited. The results suggest that disturbances to tryptophan metabolism might be linked to changes in growth. - Highlights: • Analyze the chemical toxicity of cesium in seedlings of Indian mustard. • Distinguish between the radiological and chemical effects of radiocesium. • 2032 DEGs that play significant roles in the response to Cs toxicity were identified. • Excessive Cs is disturbance the auxin signal transduction pathway.

  19. Implications of seed size for seedling survival in Carnegiea gigantea and Ferocactus wislizeni (Cactaceae)

    Science.gov (United States)

    Bowers, Janice E.; Pierson, E.A.

    2001-01-01

    Larger seeds have been shown to convey benefits for seedling survival but the mechanisms of this process are not well understood. In this study, seed size and seedling survival were compared for 2 sympatric cactus species, Carnegiea gigantea (Engelm.) Britt. & Rose and Ferocactus wislizeni (Engelm.) Britt. & Rose, in laboratory and field experiments in the northern Sonoran Desert. Both species have small seeds, but Ferocactus seeds are nearly twice as long and 3 times as heavy as those of Carnegiea. The difference in size is perpetuated after germination: new Ferocactus seedlings have 4 times the estimated volume of new Carnegiea seedlings. In an outdoor experiment, annual survivorship of both species was low but was 6 times higher for Ferocactus (6 seedlings, 8.1%) than Carnegiea (1 seedling, 1.4%). The pattern of seedling mortality in relation to temperature and rain suggests that, after the initial flush of seed and seedling predation, drought and heat took a greater toll on Carnegiea than Ferocactus seedlings, probably because the larger seedling volume of Ferocactus conferred greater drought tolerance. In addition, F. wislizeni could become established without benefit of nurse plants whereas C. gigantea could not; this might reflect differential tolerance to high soil temperatures.

  20. Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245.

    Science.gov (United States)

    Yegorenkova, Irina V; Tregubova, Kristina V; Burygin, Gennady L; Matora, Larisa Y; Ignatov, Vladimir V

    2016-03-01

    Co-inoculation of associative bacteria, which have high nitrogen-fixing activity, tolerance for environmental conditions, and the ability to compete with the natural microflora, is used widely to enhance the growth and yields of agricultural plants. We evaluated the ability of 2 co-inoculated plant-growth-promoting rhizobacteria, Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245, to colonize roots of wheat (Triticum aestivum L. 'Saratovskaya 29') seedlings, and we assessed the morphometric parameters of wheat early in its development. Analysis by ELISA with polyclonal antibodies raised against the exopolysaccharide of P. polymyxa 1465 and the lipopolysaccharide of A. brasilense Sp245 demonstrated that the root-colonizing activity of A. brasilense was higher when the bacterium was co-inoculated with P. polymyxa than when it was inoculated singly. Immunofluorescence microscopy with Alexa Fluor 532-labeled antibodies revealed sites of attachment of co-inoculated P. polymyxa and A. brasilense and showed that the 2 bacteria colonized similar regions of the roots. Co-inoculation exerted a negative effect on wheat seedling development, inhibiting root length by 17.6%, total root weight by 11%, and total shoot weight by 12%. Under certain conditions, dual inoculation of wheat may prove ineffective, apparently owing to the competition between the rhizobacteria for colonization sites on the plant roots. The findings from this study may aid in developing techniques for mixed bacterial inoculation of cultivated plants.

  1. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants.

    Science.gov (United States)

    Merrild, Marie P; Ambus, Per; Rosendahl, Søren; Jakobsen, Iver

    2013-10-01

    Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of (32)P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network-induced suppression of seedling growth. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Early growth performances of various seed sources of black (Prunus ...

    African Journals Online (AJOL)

    Early growth performances of various seed sources of black (Prunus serotina Erhr.) and wild cherry ( Prunus avium L.) seedlings on low and high elevation sites in the western Black Sea Region of Turkey.

  3. Effect of organic media on growth of vegetable seedlings

    International Nuclear Information System (INIS)

    Unal, M.

    2013-01-01

    Organic media physical and chemical properties are suitable for growing seedling. It is not is low cost for additional chemical substances. In NP/sub 2/O/sub 5/K/sub 2/ O additional media M5 compared to organic media. The purpose of this study was to determine; the use of different growing media for organic production of tomatoes and peppers seedling quality characterictics. The trial was conducted the year 2010 in the greenhouse of Organic Agriculture Program of Arslanbey Vocational School of Kocaeli University. In this research M4 containing peat-stable manure-perlite, M5 containing peat-sand-NPK, M6 containing peat-stable manure and M8 containing peat gave positive results in tomato and pepper seedling cultivation. The quality of tomato and pepper seedling measured values and there were a difference between different growing media statistically at p<0.05 level. However, the width of cotyledons of pepper with different growing medium did not differ statistically. (author)

  4. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress.

  5. Bioaccumulation of hexachlorobutadiene in pumpkin seedlings after waterborne exposure.

    Science.gov (United States)

    Hou, Xingwang; Zhang, Haiyan; Li, Yanlin; Yu, Miao; Liu, Jiyan; Jiang, Guibin

    2017-10-18

    Hexachlorobutadiene (HCBD) has been listed as a persistent organic pollutant (POP) in the Stockholm Convention, and is now drawing more and more research interest. However, the understanding of its bioaccumulation, especially in plants, is still very limited. In this work, the behavior of HCBD in aqueous solution and pumpkin seedlings was studied through in-lab hydroponic exposure experiments. It was found that 69% of HCBD volatilized from water to the atmosphere after one day of exposure, and only 1% remained in the solution after four days. This high volatility might be the main cause of the low HCBD levels in aqueous environments. Although a great amount of HCBD volatilized into the atmosphere, only a small proportion of airborne HCBD was captured by the leaves and stems of the blank pumpkin seedling controls. The translocation of HCBD from the leaves to the bottom roots, as well as its release from the roots into the water, was detected. For the exposure groups, the pumpkin seedlings absorbed HCBD from both the hydroponic solution and the air via the roots and leaves, respectively. The concentration of HCBD in the exposed pumpkin roots linearly increased with the continuous addition of HCBD into the exposure system. Upward translocation from the roots to the leaves and downward translocation from the leaves to the roots existed simultaneously in the exposed pumpkin seedlings. However, the concentrations of HCBD in the leaves, stems and roots in the exposure group were much higher than those of the blank plant controls, suggesting little contribution from the airborne HCBD in the hydroponically exposed pumpkin seedlings. The lipid content did not show obvious effects on the bioaccumulation and biodistribution of HCBD in the pumpkin seedlings, indicating that the translocation of HCBD within the pumpkin seedlings might be an active process. This study provided new findings on the environmental behavior of HCBD, which will be helpful for understanding the exposure

  6. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism.

    Science.gov (United States)

    Kumar, Arvind; Singh, Harminder Pal; Batish, Daizy R; Kaur, Shalinder; Kohli, Ravinder Kumar

    2016-07-01

    The present study investigated the impact of 1800-MHz electromagnetic field radiations (EMF-r), widely used in mobile communication, on the growth and activity of starch-, sucrose-, and phosphate-hydrolyzing enzymes in Zea mays seedlings. We exposed Z. mays to modulated continuous wave homogenous EMF-r at specific absorption rate (SAR) of 1.69±0.0 × 10(-1) W kg(-1) for ½, 1, 2, and 4 h. The analysis of seedlings after 7 days revealed that short-term exposure did not induce any significant change, while longer exposure of 4 h caused significant growth and biochemical alterations. There was a reduction in the root and coleoptile length with more pronounced effect on coleoptile growth (23 % reduction on 4-h exposure). The contents of photosynthetic pigments and total carbohydrates declined by 13 and 18 %, respectively, in 4-h exposure treatments compared to unexposed control. The activity of starch-hydrolyzing enzymes-α- and β-amylases-increased by ∼92 and 94 %, respectively, at an exposure duration of 4 h, over that in the control. In response to 4-h exposure treatment, the activity of sucrolytic enzymes-acid invertases and alkaline invertases-was increased by 88 and 266 %, whereas the specific activities of phosphohydrolytic enzymes (acid phosphatases and alkaline phosphatases) showed initial increase up to ≤2 h duration and then declined at >2 h exposure duration. The study concludes that EMF-r-inhibited seedling growth of Z. mays involves interference with starch and sucrose metabolism.

  7. Effects of seed and seedling predation by small mammals on ...

    African Journals Online (AJOL)

    Seed predation reduced seedling recruitment from seeds planted in March 1986 in mature fynbos, but ... Seed predation did not significantly reduce seedling recruitment from seed planted in July, August and ... AJOL African Journals Online.

  8. Four different Phytophthora species that are able to infect Scots pine seedlings in laboratory conditions

    Directory of Open Access Journals (Sweden)

    Tkaczyk Miłosz

    2016-09-01

    Full Text Available To investigate susceptibility of young Scots pine seedlings to four Phytophthora species: Phytophthora cactorum, Phytophthora cambivora, Phytophthora plurivora and Phytophthora pini; seven-day-old seedlings of Scots pine (15 seedlings per experiment were infected using agar plugs of the respective species. Control group also consisted of 15 seedlings and was inoculated with sterile agar plugs. Results unambiguously show that after 4.5 days, all seedlings show clear signs of infection and display severe symptoms of tissue damage and necrosis. Moreover, three and two seedlings in the P. cactorum and P. cambivora infected seedlings groups, respectively, collapsed. The length of largest necrosis measured 13.4±3.90 mm and was caused by P. cactorum. To rule out any putative contamination or infection by secondary pathogens, re-isolations of pathogens from infection sites were performed and were positive in 100% of plated pieces of infected seedlings. All re-isolations were, however, negative in the case of the control group. Detailed microscopic analyses of infected tissues of young seedlings confirmed the presence of numerous Phytophthora species inside and on the surface of infected seedlings. Therefore, our results suggest Phytophthora spp. and mainly P. cactorum and P. cambivora as aggressive pathogens of Scots pine seedlings and highlight a putative involvement of these species in the damping off of young Scots pine seedlings frequently observed in forest nurseries.

  9. Survival of planted tupelo seedlings in F- and H-Area tree-kill zones

    International Nuclear Information System (INIS)

    Nelson, E.A.; Rogers, V.A.

    1995-01-01

    Swamp tupelo seedlings were planted in four areas which experienced previous tree mortality at the seeplines of the F- and H-Area Seepage Basins. The sites represented a range in severity of impact and stage of recovery. Seedlings were planted in February of 1994 and followed through the first growing season in the field. Survival on all sites through the first growing season was excellent, with greater than 92% of the seedlings still alive. Most seedlings appeared healthy with few external signs of stress. The performance of the seedlings will be followed in subsequent years to determine the physical state of the soil environment on seedling growth. Hopefully, the results will indicate that artificial reforestation can begin on similarly impacted sites prior to the beginning of natural revegetation of the site

  10. DETERMINATION OF THE SEEDLINGS QUALITY CLASSES OF BLACK LOCUST (Robinia pseudoacacia L. ORIGINS

    Directory of Open Access Journals (Sweden)

    İbrahim Turna

    2000-04-01

    Full Text Available classification criteria is the assesment of height and root-colar diameter together. newly seedling quality classification (YS have highly first grade seedlings. The most important According to the results of this study, all the origins determined with respect to either TSE or determined by using factor analysis. Furthermore the morphological characteristics that affect the seedling quality classification were diameter. The resulting seedling quality classification were controlled by using discriminant analysis. determined according to height, root-colar diameter and combination of both height and root-colar provenances were soved in KTÜ Nursery. One year later, these seedlings were lifted. Quality norms in KTÜ Nursery were used. Eighteen different origin seeds of Black locust of which eleven are egzotic In this present study, 1+0 Black Locust ( Robinia pseudoacacia L. seedlings grown

  11. Effects of Mulching, Fertilizer, Seeding and Seedling Treatments on ...

    African Journals Online (AJOL)

    Effects of Mulching, Fertilizer, Seeding and Seedling Treatments on Plant Species Recovery in Kondoa Irangi Hills, Tanzania. ... There were high significant correlations of 0.85 and 0.87 between seedling recruitment and mortality in both sites, indicating that other factors, probably aridity, rather than prevailing site conditions ...

  12. The role of onion-associated fungi in bulb mite infestation and damage to onion seedlings.

    Science.gov (United States)

    Ofek, Tal; Gal, Shira; Inbar, Moshe; Lebiush-Mordechai, Sara; Tsror, Leah; Palevsky, Eric

    2014-04-01

    In Israel Rhizoglyphus robini is considered to be a pest in its own right, even though the mite is usually found in association with fungal pathogens. Plant protection recommendations are therefore to treat germinating onions seedlings, clearly a crucial phase in crop production, when mites are discovered. The aim of this study was to determine the role of fungi in bulb mite infestation and damage to germinating onion seedlings. Accordingly we (1) evaluated the effect of the mite on onion seedling germination and survival without fungi, (2) compared the attraction of the mite to species and isolates of various fungi, (3) assessed the effect of a relatively non-pathogenic isolate of Fusarium oxysporum on mite fecundity, and (4) determined the effects of the mite and of F. oxysporum separately and together, on onion seedling germination and sprout development. A significant reduction of seedling survival was recorded only in the 1,000 mites/pot treatment, after 4 weeks. Mites were attracted to 6 out of 7 collected fungi isolates. Mite fecundity on onion sprouts infested with F. oxysporum was higher than on non-infested sprouts. Survival of seedlings was affected by mites, fungi, and their combination. Sprouts on Petri dishes after 5 days were significantly longer in the control and mite treatments than both fungi treatments. During the 5-day experiment more mites were always found on the fungi-infected sprouts than on the non-infected sprouts. Future research using suppressive soils to suppress soil pathogens and subsequent mite damage is proposed.

  13. Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape.

    Science.gov (United States)

    Frank, Aline; Sperisen, Christoph; Howe, Glenn Thomas; Brang, Peter; Walthert, Lorenz; St Clair, John Bradley; Heiri, Caroline

    2017-01-01

    Understanding the genecology of forest trees is critical for gene conservation, for predicting the effects of climate change and climate change adaptation, and for successful reforestation. Although common genecological patterns have emerged, species-specific details are also important. Which species are most vulnerable to climate change? Which are the most important adaptive traits and environmental drivers of natural selection? Even though species have been classified as adaptive specialists vs. adaptive generalists, large-scale studies comparing different species in the same experiment are rare. We studied the genecology of Norway spruce (Picea abies) and silver fir (Abies alba), two co-occurring but ecologically distinct European conifers in Central Europe. For each species, we collected seed from more than 90 populations across Switzerland, established a seedling common-garden test, and developed genecological models that associate population variation in seedling growth and phenology to climate, soil properties, and site water balance. Population differentiation and associations between seedling traits and environmental variables were much stronger for Norway spruce than for silver fir, and stronger for seedling height growth than for bud phenology. In Norway spruce, height growth and second flushing were strongly associated with temperature and elevation, with seedlings from the lowlands being taller and more prone to second flush than seedlings from the Alps. In silver fir, height growth was more weakly associated with temperature and elevation, but also associated with water availability. Soil characteristics explained little population variation in both species. We conclude that Norway spruce has become an adaptive specialist because trade-offs between rapid juvenile growth and frost avoidance have subjected it to strong diversifying natural selection based on temperature. In contrast, because silver fir has a more conservative growth habit, it has

  14. Grass defoliation affecting survival and growth of seedlings of ...

    African Journals Online (AJOL)

    Two experiments were conducted, one in the field and the other in the greenhouse, to investigate the effects of the intensity and frequency of grass defoliation on the survival and growth of Acacia karroo seedlings. In the greenhouse, seedlings growing with heavily clipped grasses had higher biomass production than those ...

  15. The growth of Balanites aegyptiaca (L.) seedlings under varied ...

    African Journals Online (AJOL)

    Drought and soil fertility are the major factors that influence seedling survival and growth in arid areas, thus it is of paramount importance to establish optimum water requirements for ... Two weeks old seedlings in polythene bag (2kg) containing the standard potting mixture as growing media were used for the experiments.

  16. Effects of ultraviolet-B irradiation on seedling growth in the Pinaceae

    International Nuclear Information System (INIS)

    Sullivan, J.H.; Teramura, A.H.

    1988-01-01

    Ten conifer species were grown in an unshaded greenhouse at the University of Maryland under 3 levels of biologically effective ultraviolet-B radiation. Ultraviolet-B radiation was supplied by Westinghouse FS-40 sunlamps and effective daily doses were 0, 12.4, and 19.1 kJ m-2. During the irradiation period, seedling growth and the development of stress symptoms were monitored. After 22 weeks of irradiation, seedlings were harvested and morphological characteristics analyzed. Visual symptoms included needle discoloration and stunting in three of the ten species tested. Seedling height was significantly reduced by supplemental UV-B in Pinus contorta (lodgepole pine), Pinus resinosa (red pine), and Pinus taeda (loblolly pine). Biomass increased in Picea engelmannii (Engelmann spruce). Abies fraseri (Fraser fir), Pinus edulus (pinyon pine), and Pinus nigra (black pine) were unaffected by UV-B while biomass reductions exceeding 5% were observed in all other species tested. These deleterious effects occurred despite the presence of morphological characteristics which would tend to reduce UV-B effectiveness. Generally, the effects of supplemental UV-B dose were less for those species native to higher elevations, implying the presence of natural adaptations to UV-B

  17. Microorganisms associated to tomato seedlings growing in saline culture act as osmoprotectant

    Directory of Open Access Journals (Sweden)

    Daniel Cortés-Jiménez

    2014-06-01

    Full Text Available Less than 0.5% of total water in the world is available for human consumption and agriculture. The major part of the world's water is saline and salinity in soils interferes in germination of seeds and the posterior development of the plant. In order to increase the osmotolerance of tomato, seedlings were associated with Azospirillum brasilense Cd, Azospirillum brasilense Cd transformed bacteria with a plasmid harboring a trehalose biosynthesis gene-fusion or Chlorella vulgaris. Two plant culture media: Hydroponic and Murashige and Skoog were tested. In the first set of studies seedlings were associated to single free cells meanwhile in a second set single and combined free cells were studied. A positive interaction between transformed Azospirillum and Chlorella vulagris and tomato plants was observed. Seedlings showed a salt concentration tolerance, as sodium chloride, up to 200 mM. According to our results, the association of plants with A. brasilense Cd-BIF and C. vulgaris is a viable approach to increase their salt tolerance and biomass, as consequence the possible use of sea water to irrigate horticultural plants.

  18. METHYL JASMONATE AND STEM BENDING HARDENING AND INITIAL GROWTH OF Cordia trichotoma SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Danielle Acco Cadorin

    2015-12-01

    Full Text Available The submission of seedlings to mechanical stimuli and plant growth regulator promote their hardening and can be included in the routine of nurseries, favoring the survival and initial growth in the field. The study aimed to evaluate the effects of applying methyl jasmonate and stem bending in hardening and initial growth of Cordia trichotoma seedlings. Seedlings were subjected to 20 stem bending daily for 4 weeks; 20 stem bending daily for 8 weeks; 50 µmol.L-1 of methyl jasmonate applied weekly for 4 weeks; 50 µmol.L-1 of methyl jasmonate applied weekly for 8 weeks and the control treatment. The design was a completely randomized, with five repetitions of the fourteen seedlings. Seedlings submitted to hardening treatments showed less increment in height, greater increment in stem diameter and less value for strength index. Seedlings of control treatment had greater loss of root tissue electrolytes and less potential for root regeneration. In the field, 180 days after planting, seedlings submitted to eight weeks of stem bending and eight methyl jasmonate applications showed greater increment in height and stem diameter. The results indicate that both stem bending such as methyl jasmonate application for eight weeks are effective in promoting hardening and improve the starting performance in field of Cordia trichotoma seedlings.

  19. Allelopathic Responses of Rice Seedlings under Some Different Stresses

    Directory of Open Access Journals (Sweden)

    Tran Dang Khanh

    2018-05-01

    Full Text Available The objective of this study was to evaluate the allelopathic responses of rice seedlings under submergence stress at different temperatures (10, 25, 32, and 37 °C. The results showed that a wide range of allelopathic responses of rice seedlings depended on varieties and stress conditions, with temperature was being a key factor. It showed that the extracts of rice seedlings induced significant suppression on lettuce and radish seedling germination, but had negligible allelopathic effects on growth of barnyardgrass, whilst the emergence and growth of natural weeds was stimulated. In contrast, the root exudates of Koshihikari rice seedlings (K32 at 32 °C reduced the number of total weeds by ≈60.0% and the total dry weight of weeds by 93.0%; i.e., to a greater extent than other root exudates. Among the 13 identified phenolic acids, p-hydroxybenzoic, vanillic, syringic, sinapic and benzoic acids—at concentrations of 0.360, 0.045, 3.052, 1.309 and 5.543 μg/mL might be involved in allelopathic responses of K32, inhibiting the growth of barnyardgrass and natural weeds. Findings of the present study may provide useful information on allelopathic responses of rice under environmental stresses and thus further understand of the competitive relationships between rice and weeds under natural conditions.

  20. Studies on effect of N+ ion beam implantation on some drought tolerant characteristics of liquorice seedlings (Glycyrrhiza uralensis Fisch)

    International Nuclear Information System (INIS)

    Wei Shenglin; Zhang Xiangsheng

    2004-01-01

    The taproot, lateral root and the growth of hypocotyl and root/shoot ratio of plant seedlings are important characteristics relevant to seedling drought tolerance. The N + ion beams with 25 keV energy and the doses of 600-3600 x 2.6 x 10 13 ·cm -2 were implanted into the liquorice dry seeds, among which 1800 x 2.6 x 10 13 · cm -2 could improve effectively the taproot growth of liquorice seedlings at period of 4d and root/shoot ratio (dry weight and fresh weight) and promote the development of lateral roots of liquorice seedlings at the period of 30d, and stimulate obviously the growth of hypocotyl and taproot and stem height of seedlings at the period of 6d and 30d. The parameters can be considered as those of energy and dose of N + ion beam irradiation whose M1 mutagenesis effect on liquorice plant vegetation in desert area is to be studied for reference. Within the implantation parameter ranges in this experiment, the response of N + implantation to drought tolerant characteristics of liquorice seedlings also shows the 'damage-repair-damage' effect. (authors)

  1. Acclimatization and growth of ornamental pineapple seedlings under organic substrates

    Directory of Open Access Journals (Sweden)

    Ronan Carlos Colombo

    2017-09-01

    Full Text Available The in vitro propagation techniques are commonly used to produce ornamental pineapple seedlings in commercial scale, aiming to attend the growers with genetic and sanitary quality seedlings. However, the choice of the ideal substrate is essential for the acclimatization and growth stage of the seedlings propagated by this technique, since some substrates can increase the seedling mortality and/or limit the seedling growth due to its physical and chemical characteristics. Thus, the aim of this study was to evaluate the acclimatization of ornamental pineapple [Ananas comosus (L. Merr. var. ananassoides (Baker Coppens & Leal] on different substrates. Seedlings with approximately seven centimeters, obtained from in vitro culture, were transplanted into styrofoam trays filled with the following substrates: sphagnum; semi-composed pine bark; carbonized rice husk; sphagnum + semicomposed pine bark; sphagnum + carbonized rice husk; and semi-composed pine bark + carbonized rice husk. Each treatment was replicated five times using 10 plants. At 180 days, there were evaluated the following variables: survival percentage, plant height, number of leaves, leaf area, largest root length, and shoot and root dry matter. The substrate semi-composed pine bark + carbonized rice husk presented the lowest mean (62% for survival percentage. The semi-composed pine bark and semi-composed pine bark + carbonized rice husk treatments presented significant increments in some evaluated biometric characteristics. The semi-composed pine bark is the most favorable substrate for the A. comosus var. ananassoids acclimatization.

  2. Early Childhood Development and E-Learning in Africa: The Early Childhood Development Virtual University Programme

    Science.gov (United States)

    Pence, Alan

    2007-01-01

    This article explores the development and evaluation of the graduate-level Early Childhood Development Virtual University (ECDVU) programme in Sub-Saharan Africa from 2001 through to 2004. It outlines the history of the ECDVU and the establishing of a Sub-Saharan programme for future leaders in the early childhood field guided by the key principle…

  3. Assessing Nitrogen Treatment Efficiency in Schima Superba Seedlings Detected Using Hyperspectral Reflectance

    Directory of Open Access Journals (Sweden)

    Miaomiao Cheng

    2014-01-01

    Full Text Available The sharp change in nitrate (N deposition fluxes due to anthropogenic influences has major consequences for terrestrial plant productivity. Early detection of plants under nitrate stress is important for forest management in the subtropical region. This study used leaf-scale hyperspectral reflectance measurements to detect the seedling growth response of Schima superba (S. superba under simulated N deposition during a period of two years. Two-year-old S. superba seedlings were planted under natural field conditions and treated with four N treatments at CK, LN-6, MN-10, and HN-24g N m-2 year-1. The chlorophyll content and leaf reflectance were examined to detect the N addition temporal effects. Results indicated that S. superba responded significantly with differences in chlorophyll content and leaf reflectance to N additional treatment. Compared with the N deficiency (CK plots, plots with higher N addition rate (HN reduced the chlorophyll concentration of S. superba seedlings. However, the long-term observed impact of LN and MN treatments increased the S. superba chlorophyll during the two years. Nitrogen additional treatments can be distinguished using the hyperspectral indices (R700/R720, R695/R420, and R695/R760 retrieved from the differences in leaf reflectance at the green spectrum and the red spectrum. The derivative shift to longer wavelength peaks with increasing N supply, accompanied by the increase in chlorophyll content. Leaf reflectance at 559 nm was negatively correlated with leaf chlorophyll content (R = -0.77. The identified N specific spectral ratios may be used for image interpretation and plant N status diagnosis for site-specific N management.

  4. Morphological Diversity of Fruits, Seeds and Seedlings of Pongamia (Pongamia pinnata (L. Pierre in Java Island

    Directory of Open Access Journals (Sweden)

    NFN Supriyanto

    2017-12-01

    Full Text Available Pongamia (Pongamia pinnata (L. Pierre is one of a potential tree species to produce biodiesel. Pongamia-based biodiesel development program is still constrained by the availability of quality and quantity seeds due to the limited of seed sources. The purpose of this research was to identify the morphological diversity of fruits, seeds and seedlings from 5 populations in Java Island. Randomized completely design and randomized block design were used to assess the difference of fruits, seeds and seedlings morphological characteristics among populations. Principal component and hierarchy cluster analysis were used to explain variation pattern among populations. The results showed that the difference of populations was significantly affected by the difference of fruits, seeds, and seedlings morphology of pongamia. Seeds from Carita population showed good quality seed indicators with moisture content of 19.31%, and germination capacity of 74.50%. Sturdiness quotient of the seedling was 10.78. Contribution of genetic factor was higher than environtment factor is relation to the differences of morphological characteristics of fruits, seeds and seedlings of pongamia. Morphological character of the five populations can be divided into 3 groups, i.e. the first group of Batukaras and Kebumen, second group of Alas Purwo and Baluran, and group 3 was Carita.

  5. Planting and care of fine hardwood seedlings: Nursery production of hardwood seedlings

    Science.gov (United States)

    Douglass F. Jacobs

    2003-01-01

    Access to quality tree seedlings is an essential component of a successful hardwood reforestation project. Hardwood plantations may be established by sowing seed directly to a field site, but the success of direct seeding operations has been inconsistent for many species, which indicates that more research is needed before this practice can be recommended. For...

  6. (GPx) activity in young barley seedlings enriched with selenium

    African Journals Online (AJOL)

    AJB_YOMI

    2011-09-21

    Sep 21, 2011 ... E-mail: guzx@njau.edu.cn. Tel/Fax: +86. 25 84396293. have been used for animal feeds and beer malts. Recently, young barley seedlings have been used as food material for people in Asian countries such as China,. Japan, and Korea. Young barley seedlings are rich in dietary fiber, chlorophyll, carotene ...

  7. Measuring Tree Seedlings and Associated Understory Vegetation in Pennsylvania's Forests

    Science.gov (United States)

    William H. McWilliams; Todd W. Bowersox; Patrick H. Brose; Daniel A. Devlin; James C. Finley; Kurt W. Gottschalk; Steve Horsley; Susan L. King; Brian M. LaPoint; Tonya W. Lister; Larry H. McCormick; Gary W. Miller; Charles T. Scott; Harry Steele; Kim C. Steiner; Susan L. Stout; James A. Westfall; Robert L. White

    2005-01-01

    The Northeastern Research Station's Forest Inventory and Analysis (NE-FIA) unit is conducting the Pennsylvania Regeneration Study (PRS) to evaluate composition and abundance of tree seedlings and associated vegetation. Sampling methods for the PRS were tested and developed in a pilot study to determine the appropriate number of 2-m microplots needed to capture...

  8. Differences between tree species seedling and adult altitudinal distribution in mountain foests during the recent warm period (1986-2006)

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Gégout, Jean-Claude; Pierrat, Jean-Claude

    2009-01-01

    Spatial fingerprints of climate change on tree species distribution are usually detected at latitudinal or altitudinal extremes (arctic or alpine tree line), where temperatures play a key role in tree species distribution. However, early detection of recent climate change effects on tree species...... distribution across the overall temperature gradient remains poorly explored. Within French mountain forests, we investigated altitudinal distribution differences between seedling (≤50 cm tall and >1 yr old) and adult (>8 m tall) life stages for 17 European tree taxa, encompassing the entire forest elevation...... range from lowlands to the subalpine vegetation belt (50-2250 m a.s.l.) and spanning the latitudinal gradient from northern temperate to southern Mediterranean forests. We simultaneously identified seedlings and adults within the same vegetation plots. These twin observations gave us the equivalent...

  9. Linking carbon and water limitations to drought-induced mortality of Pinus flexilis seedlings

    Science.gov (United States)

    Reinhardt, Keith; Germino, Matthew J.; Kueppers, Lara M.; Domec, Jean-Christophe; Mitton, Jeffry

    2015-01-01

    Survival of tree seedlings at high elevations has been shown to be limited by thermal constraints on carbon balance, but it is unknown if carbon relations also limit seedling survival at lower elevations, where water relations may be more important. We measured and modeled carbon fluxes and water relations in first-year Pinus flexilis seedlings in garden plots just beyond the warm edge of their natural range, and compared these with dry-mass gain and survival across two summers. We hypothesized that mortality in these seedlings would be associated with declines in water relations, more so than with carbon-balance limitations. Rather than gradual declines in survivorship across growing seasons, we observed sharp, large-scale mortality episodes that occurred once volumetric soil-moisture content dropped below 10%. By this point, seedling water potentials had decreased below −5 MPa, seedling hydraulic conductivity had decreased by 90% and seedling hydraulic resistance had increased by >900%. Additionally, non-structural carbohydrates accumulated in aboveground tissues at the end of both summers, suggesting impairments in phloem-transport from needles to roots. This resulted in low carbohydrate concentrations in roots, which likely impaired root growth and water uptake at the time of critically low soil moisture. While photosynthesis and respiration on a leaf area basis remained high until critical hydraulic thresholds were exceeded, modeled seedling gross primary productivity declined steadily throughout the summers. At the time of mortality, modeled productivity was insufficient to support seedling biomass-gain rates, metabolism and secondary costs. Thus the large-scale mortality events that we observed near the end of each summer were most directly linked with acute, episodic declines in plant hydraulic function that were linked with important changes in whole-seedling carbon relations.

  10. Linking carbon and water relations to drought-induced mortality in Pinus flexilis seedlings.

    Science.gov (United States)

    Reinhardt, Keith; Germino, Matthew J; Kueppers, Lara M; Domec, Jean-Christophe; Mitton, Jeffry

    2015-07-01

    Survival of tree seedlings at high elevations has been shown to be limited by thermal constraints on carbon balance, but it is unknown if carbon relations also limit seedling survival at lower elevations, where water relations may be more important. We measured and modeled carbon fluxes and water relations in first-year Pinus flexilis seedlings in garden plots just beyond the warm edge of their natural range, and compared these with dry-mass gain and survival across two summers. We hypothesized that mortality in these seedlings would be associated with declines in water relations, more so than with carbon-balance limitations. Rather than gradual declines in survivorship across growing seasons, we observed sharp, large-scale mortality episodes that occurred once volumetric soil-moisture content dropped below 10%. By this point, seedling water potentials had decreased below -5 MPa, seedling hydraulic conductivity had decreased by 90% and seedling hydraulic resistance had increased by >900%. Additionally, non-structural carbohydrates accumulated in aboveground tissues at the end of both summers, suggesting impairments in phloem-transport from needles to roots. This resulted in low carbohydrate concentrations in roots, which likely impaired root growth and water uptake at the time of critically low soil moisture. While photosynthesis and respiration on a leaf area basis remained high until critical hydraulic thresholds were exceeded, modeled seedling gross primary productivity declined steadily throughout the summers. At the time of mortality, modeled productivity was insufficient to support seedling biomass-gain rates, metabolism and secondary costs. Thus the large-scale mortality events that we observed near the end of each summer were most directly linked with acute, episodic declines in plant hydraulic function that were linked with important changes in whole-seedling carbon relations. © The Author 2015. Published by Oxford University Press. All rights reserved

  11. Effects of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species.

    Science.gov (United States)

    Caglar, S; Akgun, A

    2006-07-01

    The experiment was undertaken to test the efficiency of inoculation of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species used as rootstocks. The stratified Pistacia seeds were inoculated with VAM fungi. The highest rate of inoculated roots was 96.7% in P. khinjuck seedlings with G. clarum and G. etunicatum, 83.3% in P. vera seedlings with G. caledonium and 73.3% in P. terebinthus seedlings with G. caledonium. Mycorrhizal inoculations improved seedling height only in P. terebinthus. Certain mycorrhizal inoculations increased the leaf N, but not P and K contents. Seedlings inoculated with G. caledonium had higher reducing sugar contents. It was concluded that pre-inoculated Pistacia seedlings could have a better growth in the harsh field conditions.

  12. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium

    DEFF Research Database (Denmark)

    Trieu, A.T.; Burleigh, S.H.; Kardailsky, I.V.

    2000-01-01

    Two rapid and simple in planta transformation methods have been developed for the model legume Medicago truncatula. The first approach is based on a method developed for transformation of Arabidopsis thaliana and involves infiltration of flowering plants with a suspension of Agrobacterium....... The second method involves infiltration of young seedlings with Agrobacterium. In both cases a proportion of the progeny of the infiltrated plants is transformed. The transformation frequency ranges from 4.7 to 76% for the flower infiltration method, and from 2.9 to 27.6% for the seedling infiltration method....... Both procedures resulted in a mixture of independent transformants and sibling transformants. The transformants were genetically stable, and analysis of the T-2 generation indicates that the transgenes are inherited in a Mendelian fashion. These transformation systems will increase the utility of M...

  13. Genetics of early growth vigour in lentil (Lens culinaris Medik.)

    Indian Academy of Sciences (India)

    Rapid early growth vigour, 70–75 days to flowering. Figure 1. Frequency distributions of early growth vigour based on seedling length in parents (DPL15, ILL7663 and ILL6002) and F2 populations derived from two crosses (DPL15 × ILL7663; DPL15 × ILL6002) in lentil. 324. Journal of Genetics, Vol. 92, No. 2, August 2013 ...

  14. Long-term Seedling Dynamics of Tree Species in a Subtropical Rain Forest, Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Hao Chang-Yang

    2013-03-01

    Full Text Available Knowledge of demographical rates at seedling stage is critical for understanding forest composition and dynamics. We monitored the seedling dynamics of tree species in a subtropical rain forest in Fushan, northern Taiwan (24°45’ N, 121°35’ E during an 8-yr period (2003–2010. There were great temporal fluctuations in the seedling density, which might be largely driven by the pulses of seedling recruitment. Interspecific variation in the seedling abundance, however, was not related to the reproductive adult abundance. Previous studies showed that frequent typhoon disturbances contributed to the high canopy openness and high understory light availability at Fushan, which might benefit tree regeneration. But our results do not support this idea. Most of the newly recruited seedlings died within six months and only grew 1.55 ± 0.20 cm per year, which might be suppressed by the dense understory vegetation. Our results suggested that the majority of tree species in Fushan were recruitment limited, which might have important consequences for species coexistence. High temporal variability in recruitment density and low growth rates of seedlings emphasize the importance of long-term studies to our understandings of forest dynamics.

  15. Seedling performance within eight different seed-size alpine forbs under experimentation with irradiance and nutrient gradients

    International Nuclear Information System (INIS)

    Dong, W.; Jun, Z.Y.; Lin, W.G.; Jin, F.

    2014-01-01

    Relative performance of seedlings of species with different seed sizes may vary in response to resource availability, and may affect seedling growth. The objective was to test this hypothesis from alpine forbs species in the Qinghai-Tibetan Plateau. We examined the relative growth rate, allocation and performances of eight native forbs species covering a wide range of seed size in response to four light and three nutrient regimes. Light availability had a significant effect on seedling emergence time, but not on other seedling morphological performances. Seedling emergence time and seed size were negatively correlated with each other for three species within Asteraceae family, i.e. heaviest seeds emerged earlier. Seed size, nutrient availability and their interaction affected most of studied morphological and growth traits of seedlings. Fertilisation modified the relationship between seed size and seedling biomass. Our study showed that seed size and nutrient availability had significant effects on seedling performance in alpine meadows. Seedlings from the larger-seed species presented stronger advantage in initial seedling mass and height under most of resources conditions. (author)

  16. Morphology of seeds and seedlings of four species of Vigna Savi (Leguminosae, Phaseolinae

    Directory of Open Access Journals (Sweden)

    Fabiana Soledad Ojeda

    2013-09-01

    Full Text Available Four neotropical species of Vigna Savi (Leguminosae, Phaseolinae have potential value as forage crops or ornamentals and could be cultivated in tropical or subtropical areas, even on floodplains. In order to obtain useful data for their culture and taxonomy, the seed morphology, germination pattern (hypogeal or epigeal and seedling development were studied. The studied species belong to different sections of the genus: V. adenantha (G.F.W. Meyer Maréchal, Mascherpa & Stainier (Sect. Leptospron; V. candida (Vell. Maréchal, Mascherpa & Stainier (Sect. Sigmoidotropis; V. caracalla (L. Verdc. (Sect. Caracallae and V. luteola (Jacq. Benth. (Sect. Vigna. The seeds were collected during fieldwork conducted in northwestern and northeastern Argentina. The qualitative and quantitative characters of the seeds were registered, after which they were sown. The development of the emerged seedlings was followed, first in a greenhouse and thereafter in open field. We recorded the type of germination, the thigmotropic movements of the hypocotyl and of the stem, seedling architecture and plant longevity. These traits allowed us to differentiate the species and construct an identification key that could be useful for agronomic or floricultural purposes. The data obtained partially support the current taxonomic treatment of the genus.

  17. Efeito da qualidade das sementes sobre a formação de mudas de alface Effect of seed quality on lettuce seedlings development

    Directory of Open Access Journals (Sweden)

    Simone M. Franzin

    2005-06-01

    Full Text Available Determinou-se o efeito da qualidade fisiológica das sementes sobre a formação de mudas de alface. Utilizaram-se dois lotes de sementes com diferentes níveis de qualidade inicial, das cultivares Regina e Vera, selecionados por meio dos testes de germinação, primeira contagem, envelhecimento acelerado, condutividade elétrica e emergência em "gerbox". Os efeitos dos níveis de qualidade sobre a produção de mudas foram avaliados por meio dos testes de índice de velocidade de emergência, número de folhas, altura da parte aérea, comprimento de raízes, massa úmida e seca das mudas e classificação do vigor das mudas. Utilizou-se o delineamento inteiramente casualizado, com os dados analisados pelo teste Tukey em 5% de probabilidade. Houve efeito favorável na qualidade das sementes das cultivares Regina e Vera para a formação de mudas aos 20 dias após a semeadura. Concluiu-se que sementes de alta qualidade fisiológica produzem maior percentagem de mudas vigorosas, com maior número de folhas, maior altura da parte aérea e comprimento de raízes e maior massa aos 20 dias de cultivo.The effect of the physiological quality of the seeds on lettuce seedlings was established. Two lots of lettuce seeds cv. Regina and Vera with different levels of initial quality were used. These lots were selected based upon germination tests: first score, fast aging, electrical conductivity and emergence in gerbox. The effects of the quality levels on the seedling production were evaluated through the parameters: speed rate emergence tests, number of leaves, height of the aerial part, root length, dry and wet mass of the seedlings and classification of the vitality of the seedlings. The experiment was carried out in a completely randomized design with four replications. Seed quality of the cultivars Regina and Vera have a positive effect on the formation of seedlings 20 days after sowing. High physiological quality seeds produce a higher percentage of

  18. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Steiner, K.C.; Davis, D.D.; Pennypacker, S.P.; Zhang, J.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2003-01-01

    High soil water availability favors ozone uptake, increases foliar injury, and exacerbates the negative ozone effect on gas exchange of seedlings of deciduous tree species. - Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O 3 ; non-filtered air: 98% ambient O 3 ; charcoal-filtered air: 50% ambient O 3 ) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons. During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data, ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (<34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures

  19. Economic rationale for planting less trees in the face of seedling mortality

    Science.gov (United States)

    Thomas J. Dean; S. Joseph Chang

    2002-01-01

    Simple economic analyses are used to demonstrate that planting extra trees to compensate for initial seedling mortality can actually reduce the profit expected from a pine plantation. At a 6-percent interest rate, the cost of planting 15 or 25 percent additional seedlings compounded to the end of a 30-year rotation exceeds the revenue lost to these rates of seedling...

  20. Translocation of 14-C in ponderosa pine seedlings

    Science.gov (United States)

    Robert R. Ziemer

    1971-01-01

    The movement of 14-C from the old needles to the roots, and later to the new needles, was measured in 2-year-old ponderosa pine seedlings. The seedlings were in one of three growth stages at the time of the feeding of 14-CO-2: 9 days before spring bud break with no root activity; 7 days before spring bud break with high root activity; and 7 days after spring bud break...

  1. Root graviresponsiveness and columella cell structure in carotenoid-deficient seedlings of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    Root graviresponsiveness in normal and carotenoid-deficient mutant seedlings of Zea mays was not significantly different. Columella cells in roots of mutant seedlings were characterized by fewer, smaller, and a reduced relative volume of plastids as compared to columella cells of normal seedlings. Plastids in columella cells of mutant seedlings possessed reduced amounts of starch. Although approximately 10 per cent of the columella cells in mutant seedlings lacked starch, their plastids were located at the bottom of the cell. These results suggest that (i) carotenoids are not necessary for root gravitropism, (ii) graviresponsiveness is not necessarily proportional to the size, number, or relative volume of plastids in columella cells, and (iii) sedimentation of plastids in columella cells may not result directly from their increased density due to starch content. Plastids in columella cells of normal and mutant seedlings were associated with bands of microtubule-like structures, suggesting that these structures may be involved in 'positioning' plastids in the cell.

  2. Sugar maple and yellow birch seedling growth after simulated browsing.

    Science.gov (United States)

    Frederick T. Metzger

    1977-01-01

    Simulating natural damage to leaders of forest-grown seedlings of yellow birch and sugar maple resulted in no loss of vigor but a loss in net height growth. Leader elongation depended upon seedling, shoot, and bud characteristics rather than on the extent of damage.

  3. Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto).

    Science.gov (United States)

    Perry, L; Williams, K

    1996-03-01

    Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO 2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO 2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt

  4. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  5. Influence of selected Rhizoctonia solani isolates on sugar beet seedlings

    Directory of Open Access Journals (Sweden)

    Skonieczek Paweł

    2016-04-01

    Full Text Available From 2008 to 2010 the levels of sugar beet seedlings infection caused by Rhizoctonia solani were compared in laboratory tests. Seven sugar beet lines were tested: H56, H66, S2, S3, S4, S5 and S6 as well as three control cultivars: Carlos, Esperanza and Janosik. Sugar beet lines with tolerance to rhizoctoniosis and cultivars without tolerance were infected artificially by R. solani isolates: R1, R28a and R28b. These isolates belong to the second anastomosis group (AG, which is usually highly pathogenic to beet roots. The aim of the experiment was to test whether the tolerance of sugar beet genotypes to R. solani AG 2 prevents both root rot, and damping-off of seedlings, induced by the pathogen. Sugar beet lines tolerant to brown root rot in laboratory tests were significantly less sensitive to infection of the seedlings by R. solani AG 2 isolates in comparison to control cultivars. Rhizoctonia solani AG 2 isolates demonstrated considerable differences in pathogenicity against seedlings of sugar beet lines and cultivars. The strongest infection of sugar beet seedlings occurred with the isolate R28b. The greatest tolerance to infection by AG 2 isolates was found for the S5 and S3 breeding lines.

  6. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    Science.gov (United States)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  7. Performance of Oak Seedlings Grown under Different Oust® XP Regimes

    Directory of Open Access Journals (Sweden)

    Andrew Self

    2014-06-01

    Full Text Available Herbaceous weed control (HWC is prescribed for growing season control of vegetative competition in hardwood afforestation attempts on former agricultural areas. Without HWC, planted seedlings often exhibit poor growth and survival. While currently employed HWC methods are proven, there is a substantial void in research comparing HWC treatments spanning multiple years. A total of 4,320 bare-root seedlings of three oak species were planted on three Mississippi sites. All sites were of comparable soils and received above average precipitation for the majority of the three-year study. Eight combinations of HWC and mechanical site preparation were utilized at each site, with 480 seedlings planted in each of the nine blocks, and a total of 1,440 seedlings per species planted across all sites. Treatments were installed on 3.1 m centers, with mechanical treatments as follows: control, subsoiling, bedding, and combination plowing. HWC treatments included one and two-year applications of Oust® XP. Treatments were applied over seedlings post-planting in 1.5 m bands, at a rate of 140.1 g product/hectare. Excepting one species, HWC dependent height or groundline diameter differences were not detected among mechanical treatments, species, HWC regime, or combinations thereof. No survival differences were observed among site preparation treatments or species. However, analysis detected a growing season/HWC treatment interaction for seedling survival.

  8. Morphological and photosynthetic adaptations of Tabebuia aurea seedlings in the nursery

    Directory of Open Access Journals (Sweden)

    Eduardo R Gonçalves

    2013-11-01

    Full Text Available Tabebuia aurea (Benth. & Hook. f. ex S. Moore (Bignoniaceae is a boreal species common in Brazil. It is used for ornamental parks and along sidewalks. Its timber is also used for furniture. The objective of this study was to evaluate the effect of nursery shading on the growth and photosynthesis of T. aurea and their photosynthetic adaptation after being transferred to direct sunlight. The T. aurea seedlings were grown under 0, 50, 70 or 95% shade. The photosynthetic active radiation and leaf gas exchange were measured over two distinct periods: 51 (young seedlings and 70 days after having been sown under each shade treatment. Immediately after the measurements were taken, the seedlings were transferred into full sunlight and the measurements were repeated two times after 15 min and 3 days under ambient sunlight. T. aurea seedlings showed satisfactory growth up to 50% shade in the nursery, which could be verified both by growth measurement and by total biomass accumulation. Shading greater than 70% reduced the number of leaves, the leaf area and the stem diameter in relation to plants exposed to full sunlight. The results suggest that T. aurea seedlings should be grown under full sunlight or under shading up to 50% to maximize their growth in the nursery and to minimize stress when transferring the seedlings to their final planting sites.

  9. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    Science.gov (United States)

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  10. Morphophysiological Behavior and Cambial Activity in Seedlings of Two Amazonian Tree Species under Shade

    Directory of Open Access Journals (Sweden)

    Monyck Jeane dos Santos Lopes

    2015-01-01

    Full Text Available Variations in light intensity can lead to important anatomical and morphophysiological changes in plants. Aiming to increase knowledge about the Amazonian tree species, this study examines the influence of shade on the cambial activity and development of Parkia gigantocarpa Ducke and Schizolobium parahyba var. amazonicum (Huber ex Ducke Barneby seedlings. Seedlings of the two species were grown in a nursery under four shade intensities (treatments: full sun, low, moderate, and high shade (resp., 0%, 23%, 67%, and 73% of shade, or 2000, 1540, 660, and 540 µmol·m−2·s−1 obtained with polyethylene screens. We measured plant height, stem diameter, biomass production, stomatal conductance (gs, transpiration (E, photosynthesis (A, and cambial activity (CA (xylem, cambium, and phloem. Also, we calculated the Dickson Quality Index (DQI. The highest values of biomass production, gs,  E, A, and DQI, were found under full sun, in P. gigantocarpa, and under low shade intensity in S. parahyba. In both species high shade intensity reduced CA. We concluded that the CA and the physiological and morphological attributes work together, explaining the radial growth and increasing seedlings quality, which optimized efficient seedling production under full sun, in P. gigantocarpa, and under low shade intensity in S. parahyba.

  11. Consequences of a Deficit in Vitamin B-6 Biosynthesis de Novo for Hormone Homeostasis and Root Development in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Boycheva, S.; Dominguez, A.; Rolčík, Jakub; Dominguez, T.; Fitzpatrick, T.B.

    2015-01-01

    Roč. 167, č. 1 (2015), s. 102-117 ISSN 0032-0889 Institutional support: RVO:61389030 Keywords : PYRIDOXAL 5'-PHOSPHATE SYNTHASE * EARLY SEEDLING DEVELOPMENT * AUXIN RESPONSE ELEMENTS Subject RIV: CE - Biochemistry Impact factor: 6.280, year: 2015

  12. Effects of exogenous melatonin on antioxidant capacity in Actinidia seedlings under salt stress

    Science.gov (United States)

    Xia, Hui; Ni, Zhiyou; Pan, Dongming

    2017-11-01

    To investigate the alleviation of exogenous melatonin (MT) in Actinidia seedlings under 100 mM NaCl stress, one-year-old Actinidia deliciosa seedlings were treated with 0.1, 0.5 and 1μM of exogenous melatonin solution, respectively. The results showed that the antioxidant substance (ASA, TPC, TFC and TFAC) contents and antioxidative capacity (DPPH, ABTS and FRAP) of Actinidia seedlings under salt stress were significantly increased compared with the CK. At the same time, the antioxidant substance contents of Actinidia seedlings with MT pretreatment were significantly higher than those of CK and S, then the antioxidative capacity was improved, and the damage of Actinidia seedlings under salt stress was alleviated. And the treatment with 0.1μM MT solution was the most significant.

  13. Carbon dynamics of Acer pseudoplatanus seedlings under drought and complete darkness.

    Science.gov (United States)

    Piper, Frida I; Fajardo, Alex

    2016-11-01

    Carbon (C) storage is considered a key component to plant survival under drought and shade, although the combined effects of these factors on survival remain poorly understood. We investigated how drought and shade alter the C dynamics and survival of tree seedlings, and whether drought limits the access to or usage of stored C. We experimentally applied two levels of soil humidity (well-watered versus drought, the latter induced by dry-down) and light availability (light versus complete darkness) on 1-year-old seedlings of Acer pseudoplatanus L. for 3 months. We quantified the survival, biomass, growth rate and non-structural carbohydrates (NSC) of seedlings at their time of death or at the end of the experiment for those that survived. We found that the soil dried out faster when drought was combined with light than when it was combined with complete darkness. Seedlings subjected to both drought and light showed reduced growth and reached 100% mortality earlier than any other treatment, with the highest NSC concentrations at the time of death. Seedlings exposed to both drought and complete darkness died significantly earlier than seedlings exposed to complete darkness only, but had similar NSC concentrations at time of their death, suggesting that drought accelerated the use of stored C under complete darkness. Complete darkness significantly reduced seedling growth and whole-plant NSC concentrations regardless of soil humidity, while root NSC concentrations were significantly more reduced when complete darkness was combined with drought conditions. Thus, the C dynamics in A. pseudoplatanus seedlings under complete darkness was not hindered by drought, i.e., the access and use of stored C was not limited by drought. The contrasting growth and C storage responses driven by drought under light versus complete darkness are consistent with a key role of the drought progression in the C dynamics of trees. © The Author 2016. Published by Oxford University Press. All

  14. Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Bardees M. Mickky

    2017-03-01

    Full Text Available The objective of the present study was to find out a straightforward technique for screening the tolerance of ten wheat genotypes to two levels of osmotic stress at early seedling stage. Data revealed that polyethylene glycol-induced drought had general negative effect on seedling morphological characters indicated by plumule and radicle length, number of adventitious roots as well as seedling biomass and water content. Water deficit could also suppress membrane integrity by stimulating lipid peroxidation with marked increase in membrane leakage and subsequent decrease in its stability index. For all the addressed germination parameters and seedling membrane features, the impact of severe drought was more pronounced than that of moderate drought. Simultaneously, moderate stress could activate peroxidase, polyphenol oxidase and ascorbic peroxidase of the studied genotypes; but these enzymes were inhibited by severe stress. The activity of catalase, superoxide dismutase and glutathione reductase was conversely retarded by drought whether at moderate or severe level. More interestingly, a novel function “Stress Impact Index; SII” was introduced to rank the estimated morpho-physiological traits (SIItrait as well as the considered genotypes (SIIgenotype according to their sensitivity to stress. Values of SIItrait implied that germination parameters were generally affected by drought more intensively than membrane characteristics and finally came the antioxidant enzymes with the least degree of suppression when applying stress. Based on the magnitudes of SIIgenotype, Sids 13 seemed to be the most drought-tolerant wheat cultivar while Shandawel 1 could be the most sensitive one at their juvenile growth stage.

  15. In vitro germination and acclimatization of cambui tree type seedlings

    Directory of Open Access Journals (Sweden)

    Ana da Silva Lédo

    2014-01-01

    Full Text Available There are few reports in literature on the in vitro behavior of cambui tree (Myrciaria tenella O. Berg and acclimatization conditions. The aim of this study was to evaluate the effect of culture media on in vitro germination and the effect of different substrates on the acclimatization of two Myrciaria tenella types. The study was carried out at the Embrapa Tabuleiros Costeiros Laboratory of Plant Tissue Culture, Aracaju, SE. Seeds were extracted from fruits of two Myrciaria tenella types: Orange and Purple Types. The seeds were inoculated in the following culture media: T1 - MS medium + 30g L -1 sucrose, T2 - 1/2 MS medium + 15g L -1 sucrose and T3 - control without MS salts. To study the effect of substrates on acclimatization, seedlings were transferred to plastic containers with capacity of 300cm 3 containing the following sterilized substrates: S1 - soil and powdered coconut husk - SPC (1:1 by volume; S2 - soil, washed sand and powdered coconut husk - SAPC (1:1:1 by volume and S3 - Biomix (r commercial substrate - SC. The medium without MS salts promoted 100% in vitro germination and 1/2 MS medium greater development of seedlings. All substrates studied are suitable for acclimatization of seedlings germinated in vitro. Myrciaria tenella of yellow type showed greater vigor during acclimatization.

  16. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    Science.gov (United States)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  17. Identification of zygotic and nucellar seedlings in polyembryonic mango cultivars

    Directory of Open Access Journals (Sweden)

    Elisa del Carmen Martínez Ochoa

    2012-11-01

    Full Text Available The objective of this work was to evaluate the occurrence of polyembryony in the mango cultivars Manila and Ataulfo, and to determine whether seedlings cultured in vitro are zygotic or nucelar. Percentage of polyembryony was calculated and the number of embryos in 100 seeds of each cultivar was recorded. 'Manila' exhibited 97% polyembryony with 3.4 embryos per seed, while 'Ataulfo' had 95% polyembryony with 3.2 embryos per seed. Later, 20 seeds of each cultivar were established in vitro, and it was analyzed those in which all embryos germinated (12 seeds from 'Manila' and 7 from 'Ataulfo'. DNA was extracted from seedling leaf tissue, and its origin was identified with 14 RAPD primers. The polymorphic markers recognized the seedlings of sexual origin in seven of nine 'Manila' polyembryonic seeds, and in four of seven 'Ataulfo' ones. Also, in polyembryonic seeds not all zygotic seedlings were produced by small embryos located at the micropyle.

  18. Natural seedlings and sprouts after regeneration cuttings in old-growth redwood

    Science.gov (United States)

    Kenneth N. Boe

    1975-01-01

    Natural regeneration of harvested old-growth stands of redwood (Sequoia sempervirens) is one way to start a new forest that is needed quickly for continuous timber production. Natural seedlings and sprouts developing after stands were cut were studied on the Redwood Experimental Forest, northern California. Three types of regeneration cuttings were...

  19. Propagation of Aquilaria malaccensis seedlings through tissue culture techniques

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Zaiton Ahmad; Mohd Rafaie Abdul Salam; Nurhayati Irwan; Affrida Abu Hassan; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis or karas is the principal source of gaharu resin, which is used in many cultures for incense, perfumes and traditional medicines. The species is mainly propagated conventionally through seeds, cuttings and graftings. Propagation by seeds is usually a reliable method for other forest species, but for karas, this technique is inadequate to meet the current demand of seedling supplies. This is principally due to its low seed viability, low germination rate, delayed rooting of seedlings, long life-cycle and rare seed production. Tissue culture has several advantages over conventional propagation, especially for obtaining large number of uniform and high-yielding plantlets or clones. This paper presents the current progress on mass-propagation of Aquilaria malaccensis seedlings through tissue culture technique at Nuclear Malaysia. (author)

  20. Colonization with Arbuscular Mycorrhizal Fungi Promotes the Growth of Morus alba L. Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2015-03-01

    Full Text Available Morus alba L. is an important tree species planted widely in China because of its economic value. In this report, we investigated the influence of two arbuscular mycorrhizal fungal (AMF species, Glomus mosseae and Glomus intraradices, alone and together, on the growth of M. alba L. seedlings under greenhouse conditions. The growth parameters and physiological performance of M. alba L. seedlings were evaluated 90 days after colonization with the fungi. The growth and physiological performance of M. alba L. seedlings were significantly affected by the AMF species. The mycorrhizal seedlings were taller, had longer roots, more leaves and a greater biomass than the non-mycorrhizae-treated seedlings. In addition, the AMF species-inoculated seedlings had increased root activity and a higher chlorophyll content compared to non-inoculated seedlings. Furthermore, AMF species colonization increased the phosphorus and nitrogen contents of the seedlings. In addition, simultaneous root colonization by the two AMF species did not improve the growth of M. alba L. seedlings compared with inoculation with either species alone. Based on these results, these AMF species may be applicable to mulberry seedling cultivation.

  1. The effect of seedling chilling on glutathione content, catalase and peroxidase activity in Brassica oleracea L. var. italica

    Directory of Open Access Journals (Sweden)

    Renata Wojciechowska

    2013-09-01

    Full Text Available The study was designed to determine the possible relationship between Brassica oleracea var. italica seedlings stored at 2°C in the dark for seven and fourteen days, respectively, and the level of certain antioxidant parameters in particular organs. A parallel objective of the experiment was to determine if the reaction of seedlings to low temperature might be persistent in fully developed plants until harvest time. After 14 days of chilling a significant increase in the glutathione content was observed in the seedling leaves in comparison to the non-chilled plants. During vegetation in field conditions this effect was maintained in leaves up to the stage of formation of flower buds. At harvest the highest content of glutathione was demonstrated in broccoli heads, obtained from plants, which were previously chilled in the seedling phase for two weeks. Peroxidase activity in broccoli seedlings increased each year of the three-year study due to the duration of the cooling time, whereas in the case of catalase the changes were not so distinct. At harvest time the activity of both enzymes in the leaves and flower buds fluctuated according to the particular year of study.

  2. EFFECT OF DROUGHT STRESS ON EARLY GROWTH OF ...

    African Journals Online (AJOL)

    Ridwan

    ABSTRACT. Drought and high temperatures are said to have triggered increased tree mortality and could be linked to the menace of climate change. This research therefore investigated the effect of drought stress on early growth of Adansonia digitata where seedlings were exposed to different watering frequencies (Once ...

  3. Effects of gravel mulch on emergence of galleta grass seedlings

    International Nuclear Information System (INIS)

    Winkel, V.K.; Medrano, J.C.; Stanley, C.; Walo, M.D.

    1993-03-01

    The Department of Energy Nevada Operations Office, Technology Development and Program Management Division, has identified the need to clean up several sites on the Nevada Test Site and Tonopah Test Range contaminated with surface plutonium. An important objective of the project identified as the Plutonium In Soils Integrated Demonstration is to develop technologies to stabilize and restore the disturbed sites after decontamination. Revegetation of these contaminated sites will be difficult due to their location in the arid Mojave and Great Basin Deserts. The major factors which will affect successful plant establishment and growth at these sites are limited and sporadic precipitation, limited soil water, extreme air and soil temperatures, limited topsoil, and herbivory . Research has shown that providing microsites for seed via mulching can aid in plant emergence and establishment. Since many of the soils at the sites slated for plutonium decontamination have a large percentage of gravel in the upper 10 cm of soil, the use of gravel as mulch could provide microsites for seed and stabilize soils during subsequent revegetation of the sites. In July 1992, EG ampersand G/EM Environmental Sciences Department initiated a greenhouse study to examine the possible benefits of gravel mulch. The specific objectives of this greenhouse study were to: (1) determine the effects seedling emergence and soil water, and (2) determine effects of irrigation rates on seedling emergence for gravel mulches and other conventional seedbed preparation techniques. A secondary objective was to determine the depth of gravel mulch that was optimal for seedling emergence. Results from this greenhouse study will assist in formulating specific reclamation plans for sites chosen for cleanup

  4. Critical water stress levels in Pinus patula seedlings and their ...

    African Journals Online (AJOL)

    Critical water stress levels in Pinus patula seedlings and their relation to measures of seedling morphology. ... Southern Forests: a Journal of Forest Science ... A pot trial was implemented to determine the effect of soil water stress following transplanting on shoot water potential and stomatal conductance of Pinus patula ...

  5. 90SR uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi

    International Nuclear Information System (INIS)

    Entry, J.A.; Emmingham, W.H.; Rygiewicz, P.T.

    1994-01-01

    Strontium-90 ( 90 Sr) is a radionuclide characteristic of fallout from nuclear reactor accidents and nuclear weapons testing. Prior studies have shown that Pinus ponderosa and P. radiata seedlings can remove appreciable quantities of 90 Sr from soil and store it in plant tissue. In this study, we inoculated P. ponderosa and P. radiata seedlings with one of five isolates of ectomycorrhizal fungi. Inoculated and noninoculated (control) seedlings were compared for their ability to remove 90 Sr from an organic growth medium. Ectomycorrhizal P. ponderosa and P. radiata seedlings are able to remove 3-5 times more 90 Sr from contaminated soil than seedlings without ectomycorrhizae. (Author)

  6. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    Science.gov (United States)

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  7. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  8. Seedling Composition and Facilitative Effects of the Herbaceous Layer in a Monsoon-Affected Forest in Nanjenshan, Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Su-Wei Fan

    2010-11-01

    Full Text Available Tree seedlings play an important role in forest regeneration. To understand the factors that control seedling establishment, we (1 compared the composition patterns of tree seedlings and their corresponding overstories, (2 examined the relationships between seedling composition and environmental factors and (3 evaluated the interaction (competition or facilitation between seedlings and herbaceous layer in a wind-stressed forest in Nanjenshan, southern Taiwan. In the study plot, seedling abundance of canopy, subcanopy and shrub species (with true leaves and < 1 cm diameter at breast height and coverage of herbaceous species (including herbaceous species, climbers and tree ferns ≤ ca. 1 m in height were investigated on three transects with a total of 180 contiguous 5 × 5 m quadrats. Clustering classification and ordination methods were used to reveal the tree seedling composition patterns and the relationships between seedling composition and environmental factors. Correlation coefficients were computed between herbaceous coverage and seedling abundance among herb-seedling species pairs and between tall (≥ 1 m high/short (< 0.5 m high herbs and seedlings pairs to test the herb-seedling interaction. The spatial distribution of tree seedlings presented a perfect match to the overstory vegetation pattern. There was a strong relationship among seedling composition, herbaceous composition and topographic features, especially exposure to monsoon winds. Because of the absence of strong correlations between herbaceous structure/species and seedling abundances, the strong linkage in spatial patterns between seedling and herbaceous compositions suggests that certain plant species in the study plot have similar responses to the monsoon exposure. Our results also indicated that seedlings < 1 cm in diameter were strongly influenced by wind stress, similar to the response of the overstory composition, and that the facilitative/competitive effects of the

  9. Seedling growth of Adenanthera pavonina L. in polluted soils of ...

    African Journals Online (AJOL)

    The seedling growth performance of Adenanthera pavonina L. in polluted soils of different railway tracks viz. Karachi Cantt. Station, Malir Halt, Malir 15, Landhi Junction and University Campus (control) was studied under in pots under natural field conditions. The results showed that the root, shoot and seedling size, number ...

  10. Herbivory of tropical rain forest tree seedlings correlates with future mortality.

    Science.gov (United States)

    Eichhorn, Markus P; Nilus, Reuben; Compton, Stephen G; Hartley, Sue E; Burslem, David F R P

    2010-04-01

    Tree seedlings in tropical rain forests are subject to both damage from natural enemies and intense interspecific competition. This leads to a trade-off in investment between defense and growth, and it is likely that tree species specialized to particular habitats tailor this balance to correspond with local resource availability. It has also been suggested that differential herbivore impacts among tree species may drive habitat segregation, favoring species adapted to particular resource conditions. In order to test these predictions, a reciprocal transplant experiment in Sabah, Malaysia, was established with seedlings of five species of Dipterocarpaceae. These were specialized to either alluvial (Hopea nervosa, Parashorea tomentella) or sandstone soils (Shorea multiflora, H. beccariana), or were locally absent (S. fallax). A total of 3000 seedlings were planted in paired gap and understory plots in five sites on alluvial and sandstone soils. Half of all seedlings were fertilized. Seedling growth and mortality were recorded in regular samples over 3.5 years, and rates of insect herbivore damage were estimated from censuses of foliar tissue loss on marked mature leaves and available young leaves. Greater herbivory rates on mature leaves had no measurable effects on seedling growth but were associated with a significantly increased likelihood of mortality during the following year. In contrast, new-leaf herbivory rates correlated with neither growth nor mortality. There were no indications of differential impacts of herbivory among the five species, nor between experimental treatments. Herbivory was not shown to influence segregation of species between soil types, although it may contribute toward differential survival among light habitats. Natural rates of damage were substantially lower than have been shown to influence tree seedling growth and mortality in previous manipulative studies.

  11. Short Communication. Physiological effects of Rhizopogon Roseolus on Pinus halepensis seedlings

    Directory of Open Access Journals (Sweden)

    J.A. Alfonso Domínguez Núñez

    2013-12-01

    Full Text Available Aim of study: The inoculation of forest seedlings with ectomycorrhizal fungi can improve the morphological and physiological qualities of plants, especially those used for regeneration of arid areas. Rhizopogon roseolus is an ectomycorrhizal fungus (ECM commonly used for reforestation. In this study, the specific objectives were to know some morphophysiological effects of Rhizopogon Roseolus on Pinus halepensis seedlings under standard nursery conditionsArea of study: ETSI Montes and EUIT Forestal, Madrid.Material and Methods: In nursery, under well watered conditions and peat growing substrates, Aleppo pine seedlings were inoculated with R. roseolus. Five months after the inoculations, we examined the growth, water parameters (osmotic potential at full turgor [Ψπfull], osmotic potential at zero turgor [Ψπ0], and the tissue modulus of elasticity near full turgor [Emax], mycorrhizal colonization, and concentration and content of macronutrients in the seedlings. Subsequently, a trial was conducted to assess the root growth potential.Main results: The mycorrhization decreased the height and diameter of mycorrhizal seedlings but increased the root weight and root branching. R. roseolus did not cause any significant effect on the regeneration of new roots or on any of the tested hydric parameters, but it did improve N uptake of the seedlings.Research highlights: The mycorrhizal inoculation increased the N uptake. The mycorrhizal inoculation caused opposite effects on some growth parametersKeywords: Osmotic adjustment; elastic adjustment; mineral nutrition; root growth potential; nursery; Rhizopogon roseolus;  Pinus halepensis. 

  12. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    Science.gov (United States)

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  13. SEED, SEEDLINGS AND GERMINATION MORPHOLOGY OF Copaifera langsdorfii Desf. (Leguminosae-Caesalpinioideae

    Directory of Open Access Journals (Sweden)

    Maria Elane de Carvalho Guerra

    2006-12-01

    Full Text Available The knowledge of seed and seedling morphology are extremely important to the identification and preservation of plant species. In order to studying seed and seedling morphology and seed germination of copaiba (Copaifera langsdorfii Desf seeds, experiments were conducted at the Laboratory of Seed Analysis and Laboratory of Botany of the Federal University of Ceará. In copaíba seeds the characteristics studied were shape, size (length, width, thickness and morphology. The kind of germination, the root systems, hypocotyls, epicotyls and first leaves were the characteristics evaluated in copaiba seedlings. Ruler and pachimeter were used to make the measurements, as well as optical microscope and magnifying glass. The seeds are exalbumin kind, have neuter photoblastism and epigeous germination. Seed coat shows a palisade cell layer with a conspicuous light line. The seedlings have compound first leaves and axial root system.

  14. Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings.

    Science.gov (United States)

    Guerrero-Meseguer, Laura; Marín, Arnaldo; Sanz-Lázaro, Carlos

    2017-11-01

    Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. WAY OF PRE-PLANTING TREATMENT OF EARLY-RIPENNING POTATO

    Directory of Open Access Journals (Sweden)

    T. V. Semibratskaja

    2015-01-01

    Full Text Available The technology of pre-planting treatment of early-ripening potato increasing the volume of production in the Eastern forest-Steppe of Ukraine is presented. This technology is referred to development of organic-mineral container, which covers the surface of tubers and remains there until planting. During this period, the substance of the substrate has a direct impact on growth of apical points of tubers that stimulate its germination and development of root system, and prevent the breaking of sprouts. Comparative data of time of seedling emergence and yield of different potato varieties are presented.

  16. THE EFFECT OF MAGNETIC LIQUIDS IN SOME TREE SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Ioan Creanga

    2005-08-01

    Full Text Available The seedlings of two tree species, the black poplar hybrid (Populus canadiensis Moench. and the pedunculate oak (Quercus robur L., among the most important for the temperate region, were treated with various concentrations of oil-ferrofluid based on natural hydrocarbons. The experiment has revealed the ferrofluid influence on the assimilatory pigments as well as on the nucleic acids (spectral measurements in young plantlets aged of 3 months. It was found that the levels of assimilatory pigments are generally diminished though the ratio chlorophyll a/chlorophyll b is generally enhanced for ferrofluid samples suggesting the seedlings sensitivity to the chemical and magnetic stimuli consistent with the ferrofuid addition. The LHC II system (Light Harvesting Complex II sensitivity to external factors might be associated with the ferrofluid influence on the young seedlings photosynthesis.

  17. Development and growth of plantlets of Pinus contorta regenerated from adventitious buds

    Energy Technology Data Exchange (ETDEWEB)

    Flygh, G.; Groenroos, R.; Arnold, S. von [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics; Hoegberg, K.A. [The Association for Forest Tree Breeding, Svaloev (Sweden)

    1998-11-01

    Before micropropagation techniques can be applied to a particular species, it is crucial to optimize the method and to determine how the micropropagated plants grow in the field. Adventitious shoots developed on embryos of Pinus contorta Dougl. ex Loud. after a 2 h pulse treatment with 250 {mu}M N6-benzyladenine. The time to first subculture after the pulse treatment influenced the yield of adventitious shoots. On average, 68% of the adventitious shoots had developed roots 12 weeks after treatment with 1.25 mM indole-3-butyric acid for 6 h. The auxin treatment stimulated early rooting (i.e. within 6 weeks) but had no effect on late rooting (i.e. after 6 weeks). The size of the plantlets was of importance for the survival when potted. All plantlets with a distinct stem elongated during the first growth period while some without did not. The relative height growth rate of plantlets was similar to that of seedlings. In the field the increase of height was similar for plantlets and seedlings. Plagiotropy was higher for the plantlets than for the seedlings (35 and 10% respectively). We concluded that most plantlets of P. contorta elongate normally and have a similar gross morphology to seedlings 23 refs, 8 figs, 4 tabs

  18. CONTAINER DISTRIBUTION AND SLOW RELEASE FERTILIZERS APPLICATION ALONG THE PRE-NURSERY INFLUENCING OIL PALM SEEDLINGS GROWTH

    Directory of Open Access Journals (Sweden)

    Paulo César Teixeira

    2009-09-01

    Full Text Available This research had as objective to verify the influence in growth, nutrition and dry matter partition in oil palm seedling by type and dosages of slow release fertilizers (SRF and percentage of tray occupation by plastic containers during pre-nursery. The experiment consisted of 16 treatments, in factorial scheme: two types of SRF (Osmocote® e Basacote mini, two dosages (0 and 3 kg/m3 and four schemes for the container distribution used to attain 100%, 66%, 50% and 25% of tray occupation. An additional treatment composed of 15 x 15 cm plastic bags filled with soil was added. Pre-germinated seeds of oil palm were put in plastic containers of 120 cm3 containing substratum and in plastic bags containing soil. After three months, the seedlings were transplanted to 40 x 40 cm plastic bags containing soil. At this time, height, diameter, dry matter and concentration of N, P, K, Ca and Mg were evaluated. After 10 months, seedlings were evaluated for height and diameter and after 16 months, seedlings had the height, diameter and dry matter weight evaluated. Addition of SRF was fundamental for seedlings development. Different percentages of tray occupation by containers during pre-nursery did not influence height and diameter of oil palm seedlings at 10 and 16 months old. The evaluation after 10 months showed that plants fertilized with Osmocote® were higher than those fertilized with Basacote mini. The evaluations after 16 months showed that plants fertilized during the pre-nursery had higher height, diameter and leaflets, leaf, aboveground and total dry matter than plants not fertilized.

  19. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition.

    Science.gov (United States)

    Smith, Alistair J H; Potvin, Lynette R; Lilleskov, Erik A

    2015-11-01

    Ectomycorrhizal fungi (EcMF) typically colonize nursery seedlings, but nutritional and growth effects of these communities are only partly understood. To examine these effects, Picea glauca seedlings collected from a tree nursery naturally colonized by three dominant EcMF were divided between fertilized and unfertilized treatments. After one growing season seedlings were harvested, ectomycorrhizas identified using DNA sequencing, and seedlings analyzed for leaf nutrient concentration and content, and biomass parameters. EcMF community structure-nutrient interactions were tested using nonmetric multidimensional scaling (NMDS) combined with vector analysis of foliar nutrients and biomass. We identified three dominant species: Amphinema sp., Atheliaceae sp., and Thelephora terrestris. NMDS + envfit revealed significant community effects on seedling nutrition that differed with fertilization treatment. PERMANOVA and regression analyses uncovered significant species effects on host nutrient concentration, content, and stoichiometry. Amphinema sp. had a significant positive effect on phosphorus (P), calcium and zinc concentration, and P content; in contrast, T. terrestris had a negative effect on P concentration. In the unfertilized treatment, percent abundance of the Amphinema sp. negatively affected foliar nitrogen (N) concentration but not content, and reduced foliar N/P. In fertilized seedlings, Amphinema sp. was positively related to foliar concentrations of N, magnesium, and boron, and both concentration and content of manganese, and Atheliaceae sp. had a negative relationship with P content. Findings shed light on the community and species effects on seedling condition, revealing clear functional differences among dominants. The approach used should be scalable to explore function in more complex communities composed of unculturable EcMF.

  20. Unexpected ancestry of Populus seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species.

    Science.gov (United States)

    Lindtke, Dorothea; Gompert, Zachariah; Lexer, Christian; Buerkle, C Alex

    2014-09-01

    In the context of potential interspecific gene flow, the integrity of species will be maintained by reproductive barriers that reduce genetic exchange, including traits associated with prezygotic isolation or poor performance of hybrids. Hybrid zones can be used to study the importance of different reproductive barriers, particularly when both parental species and hybrids occur in close spatial proximity. We investigated the importance of barriers to gene flow that act early vs. late in the life cycle of European Populus by quantifying the prevalence of homospecific and hybrid matings within a mosaic hybrid zone. We obtained genotypic data for 11 976 loci from progeny and their maternal parents and constructed a Bayesian model to estimate individual admixture proportions and hybrid classes for sampled trees and for the unsampled pollen parent. Matings that included one or two hybrid parents were common, resulting in admixture proportions of progeny that spanned the whole range of potential ancestries between the two parental species. This result contrasts strongly with the distribution of admixture proportions in adult trees, where intermediate hybrids and each of the parental species are separated into three discrete ancestry clusters. The existence of the full range of hybrids in seedlings is consistent with weak reproductive isolation early in the life cycle of Populus. Instead, a considerable amount of selection must take place between the seedling stage and maturity to remove many hybrid seedlings. Our results highlight that high hybridization rates and appreciable hybrid fitness do not necessarily conflict with the maintenance of species integrity. © 2014 John Wiley & Sons Ltd.

  1. Utilization of lightflecks by seedlings of five dominant tree species of different subtropical forest successional stages under low-light growth conditions.

    Science.gov (United States)

    Zhang, Q; Chen, Y J; Song, L Y; Liu, N; Sun, L L; Peng, C L

    2012-05-01

    We selected five typical tree species, including one early-successional species (ES) Pinus massoniana Lamb., two mid-successional species (MS) Schima superba Gardn. et Champ. and Castanopsis fissa (Champ. ex Benth.) Rehd. et Wils. and two late-successional species (LS) Cryptocarya concinna Hance. and Acmena acuminatissima (BI.) Merr et Perry., which represent the plants at three successional periods in Dinghushan subtropical forest succession of southern China. Potted seedlings of the five species were grown under 12% of full sunlight for 36 months. The ES and MS showed the slowest and fastest responses to lightflecks, respectively, which correlated with the rate of stomatal opening. In contrast to P. massoniana and C. concinna, the other three species exhibited a high induction loss. Early-successional species showed the lowest specific leaf area and chlorophyll content, the highest photosynthetic capacity (A(max)) and respiratory carbon losses (R(d)). Compared with ES and MS, LS showed lower A(max) and R(d). The five tree species showed a similar chlorophyll a/b ratio after long-term low-light adaptations. On the other hand, LS had a relatively higher de-epoxidation state to protect themselves from excess light during lightflecks. Our results indicated that (i) slower responses to lightflecks could partially explain why ES species could not achieve seedling regeneration in low-light conditions; (ii) fast responses to lightflecks could partially explain why MS species could achieve seedling regeneration in low-light conditions; and (iii) smaller respiratory carbon losses might confer on the LS species a competitive advantage in low-light conditions.

  2. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice

    Directory of Open Access Journals (Sweden)

    Jia Yulin

    2007-06-01

    Full Text Available Abstract Background Plants respond to low temperature through an intricately coordinated transcriptional network. The CBF/DREB-regulated network of genes has been shown to play a prominent role in freeze-tolerance of Arabidopsis through the process of cold acclimation (CA. Recent evidence also showed that the CBF/DREB regulon is not unique to CA but evolutionarily conserved between chilling-insensitive (temperate and chilling-sensitive (warm-season plants. In this study, the wide contrast in chilling sensitivity between indica and japonica rice was used as model to identify other regulatory clusters by integrative analysis of promoter architecture (ab initio and gene expression profiles. Results Transcriptome analysis in chilling tolerant japonica rice identified a subset of 121 'early response' genes that were upregulated during the initial 24 hours at 10°C. Among this group were four transcription factors including ROS-bZIP1 and another larger sub-group with a common feature of having as1/ocs-like elements in their promoters. Cold-induction of ROS-bZIP1 preceded the induction of as1/ocs-like element-containing genes and they were also induced by exogenous H2O2 at ambient temperature. Coordinated expression patterns and similar promoter architectures among the 'early response' genes suggest that they belong to a potential regulon (ROS-bZIP – as1/ocs regulatory module that responds to elevated levels of ROS during chilling stress. Cultivar-specific expression signatures of the candidate genes indicate a positive correlation between the activity of the putative regulon and genotypic variation in chilling tolerance. Conclusion A hypothetical model of an ROS-mediated regulon (ROS-bZIP – as1/ocs triggered by chilling stress was assembled in rice. Based on the current results, it appears that this regulon is independent of ABA and CBF/DREB, and that its activation has an important contribution in configuring the rapid responses of rice seedlings

  3. Anatomical and morphological features of seedlings of some Cactoideae Eaton (Cactaceae Juss. species

    Directory of Open Access Journals (Sweden)

    Halyna Kalashnyk

    2016-12-01

    Full Text Available Three-month-old seedlings of 11 species of the subfamily Cactoideae (Melocactus bahiensis, Melocactus curvispinus, Echinopsis eyriesii, E. mirablis, E. peruviana, Oreocereus celsianus, Rebutia flavistyla, Rebutia minuscula, Astrophytum myriostigma, Mamillaria columbiana, and M. prolifera have been studied. These plants exhibit a uniseriate epidermis, covered by a thin cuticle. Except for E. peruviana and A. myriostigma, no hypodermis could be detected. The shoots of all studied specimens consist mainly of cortex parenchyma with large thin-walled cells. The pith parenchyma is composed of much smaller cells. Due to the fact that the cortex parenchyma comprises the largest portion of the cross-sectional area, it can be concluded that it is the main water-storing tissue. The extent of vascular tissue development varies. Collateral vascular bundles are present in the stele. The studied seedlings contain various ergastic substances, in particular inclusions of calcium oxalate (all studied species, starch (Mammillaria prolifera, E. mirabilis, and the genus Melocactus, inulin-like inclusions, and occasionally lipid drops (some Echinopsis species. Thus, it was found that all studied plants have a highly specialized anatomical and morphological structure. At the same time, the epidermis and hypodermis are poorly developed. Accordingly, the adaptation to arid conditions of the examined seedlings involves an increased growth of the water-storing tissue and the production of ergastic substances.

  4. Desenvolvimento vegetativo inicial de porta-enxertos cítricos cultivados em diferentes substratos Vegetative development of citrus rootstocks seedlings cultivated in different growing media

    Directory of Open Access Journals (Sweden)

    Gilmar Schäfer

    2006-12-01

    Full Text Available Com o objetivo de avaliar o desenvolvimento vegetativo de porta-enxertos cítricos em diferentes substratos de cultivo, foi instalado um experimento, conduzido em casa de vegetação, com sistema de irrigação por microaspersão, na Estação Experimental Agronômica da UFRGS, a partir do dia 27 de setembro de 2001. O delineamento experimental adotado foi em blocos ao acaso, em esquema de parcela subdividida, com quatro repetições. Nas parcelas principais, foram testados substratos, sendo dois encontrados no comércio especializado em horticultura (Comercial 1 e 2 e uma mistura (turfa mais casca de arroz carbonizada - na proporção de 1:1 em v:v. Nas subparcelas, foram testados quatro porta-enxertos cítricos ("Trifoliata", Citrange "C13", Citrange "C37" e Limoeiro "Cravo". Os principais resultados demonstram que é possível produzir porta-enxertos, na fase de sementeira, com bom tamanho e desenvolvimento radicular, com 120 dias após a semeadura, e que as características químicas dos substratos são determinantes para o desenvolvimento adequado dos porta-enxertos, sendo prejudicial a salinidade elevada.The present study was aimed at evaluating the vegetative development of citrus seedlings rootstocks cultivated in different substrates. The experiment was installed at greenhouse conditions in the Estação Experimental Agronômica UFRGS, from September 27, 2001. The experimental design used was that of randomized blocks, in a split plot scheme, with four replications. In the main parcels were tested substrate, two commercial, found in the specialized trade in horticulture and a mixture. In the sub parcels were tested four citrus rootstock (Trifoliate orange, 'C13' Citrange, 'C37' Citrange and 'Rangpur' Lime. The main results showing that is possible to produce citrus rootstock seedlings with good size and root development, with 120 days after sowing. The chemistries characteristics of the substrate are decisive for the appropriate

  5. Effects of Different Ectomycorrhizal Fungal Inoculates on the Growth of Pinus tabulaeformis Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2016-12-01

    Full Text Available The tree species Pinus tabulaeformis Carr. (P. tabulaeformis is commonly planted in China due to its economic and ecological value. In order to identify one or more ectomycorrhizal (ECM fungal species for future P. tabulaeformis afforestation, we investigated the effects of five ECM fungal species: Laccaria laccata, Boletus edulis, Gomphidius viscidus, Suillus grevillei, and Suillus luteus on the growth of P. tabulaeformis seedlings under greenhouse conditions. The growth parameters of P. tabulaeformis seedlings were evaluated 90 days following fungal colonisation. The majority of seedlings were significantly affected by ECM inoculation. Mycorrhizal inoculated seedlings were taller, had more lateral roots, and a greater biomass compared with the non-mycorrhizal (CK seedlings. With the exception of G. viscidus, inoculated seedlings exhibited higher phosphorus, potassium, and nitrogen content compared with the CK seedlings. In addition, ECM colonisation increased the enzymatic activity of catalase, acidic phosphatase, protease, and the urease content in the rhizosphere soil. Our study showed that Laccaria laccata, Suillus grevillei, and Suillus luteus may be useful for improving the growth and cultivation of P. tabulaeformis seedlings. Furthermore, we observed that S. luteus inoculation increased the gas exchange parameters of P. tabulaeformis seedlings under field conditions.

  6. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    Science.gov (United States)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  7. Interspecific variation in tree seedlings establishment in canopy gaps in relation to tree density

    Energy Technology Data Exchange (ETDEWEB)

    Reader, R.J.; Bonser, S.P.; Duralia, T.E.; Bricker, B.D. [Guelph Univ., ON (Canada). Dept. of Botany

    1995-10-01

    We tested whether interspecific variation in tree seedling establishment in canopy gaps was significantly related to interspecific variation in tree density, for seven deciduous forest tree species (Quercus alba, Hamamelis virginiana, Acer rubrum, Sassafras albidum, Quercus rubra, Prunus serotina, Ostrya virginiana). For each species, seedling establishment was calculated as the difference in seedling density before experimental gap creation versus three years after gap creation. In each of the six experimentally-created gap types (33% or 66% removal of tree basal area from 0.01ha, 0.05ha or 0.20ha patches), differences in seedling establishment among species were significantly related to differences in their density in the tree canopy. A regression model with log{sub e} tree density as the independent variable accounted for between 93% and 98% of interspecific variation in seedling establishment. Our results provide empirical support for models of tree dynamics in gaps that assume seedling establishment depends on canopy tree density. 17 refs, 1 fig, 3 tabs

  8. The effect of ectomycorrhizal fungi and bacteria on pine seedlings

    Directory of Open Access Journals (Sweden)

    Hanna Dahm

    2014-08-01

    Full Text Available The effect of ecomycorrhizal fungi (Hebelon crustuliniforme(Bull.: Fr. Quél. 5392 and Pisolithus tinctorius (Pers. Coker et Couch 5335 and bacteria (Bacillus polymyxa and Azospirillum brasilense. associated with mycorrhizas on the growth of pine seedligs was investigated. In addition the influence of bacteria on fungal biomass production and the relationship between ectomycorrhizal fungi and fungi pathogenic to root of pine seedlings were determined. In general, the shoot/root ratio was higher in plants inoculated with Hebeloma crustuliniforme and bacteria than in the control seedlings (grown only under sterile conditions. In non-sterile substrate the root/shoot ratio of the mycorrhizal seedlings was lower as compared to the control. Similar phenomenon was noted in plants inoculated with the mycorrhizal fungus Pisolithus tinetorius. The bacteria used as well as the time of introduction of these organisms into the cultures of mycorrhiza fungi affected the production of fungal biomass. Hebeloma crustuliniforme and Pisolithus tinctorius inhibited the growth of Rizoctonia solani and Fusarium oxysporum fungi pathogenic to pine seedlings.

  9. Frost heaving of planted tree seedlings in the boreal forest of northern Sweden

    International Nuclear Information System (INIS)

    Goulet, France

    2000-01-01

    maximum frost heaving of the seedlings. In the third field experiment snow cover also showed to be an important factor in regard to frost heaving of tree seedlings. In a snow-free treatment combined with soil scarification, an uplift of 14.6 cm was measured during a winter season. In contrast no vertical displacement was observed under a simulated snow cover. The strong influence of snow on the extent of frost heaving indicates that further investigation should be focused on the interaction between maximum frost heaving and snow depth. In the laboratory freezing chamber experiment it was demonstrated that soil from spodic B horizon is less susceptible to frost heaving than soil from E horizon. Needle ice did not grow at all on soil samples from E horizon during a 3-day test, neither on fresh, nor on oven dried samples. On fresh samples of soil from Bs horizon, needle ices reached a maximum height of 9.7 cm in average. The use of theodolite and wooden dowels to estimate the extent of frost heaving in this study allowed to follow the process during the frost heaving period. A vertical uplift in millimetres could be recorded. A development of reliable measuring methods which allow a continuous estimation of the extent of frost heaving damage during the whole process, would undoubtedly represent an important step towards a better understanding of frost heaving of tree seedlings

  10. Frost heaving of planted tree seedlings in the boreal forest of northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, France

    2000-07-01

    maximum frost heaving of the seedlings. In the third field experiment snow cover also showed to be an important factor in regard to frost heaving of tree seedlings. In a snow-free treatment combined with soil scarification, an uplift of 14.6 cm was measured during a winter season. In contrast no vertical displacement was observed under a simulated snow cover. The strong influence of snow on the extent of frost heaving indicates that further investigation should be focused on the interaction between maximum frost heaving and snow depth. In the laboratory freezing chamber experiment it was demonstrated that soil from spodic B horizon is less susceptible to frost heaving than soil from E horizon. Needle ice did not grow at all on soil samples from E horizon during a 3-day test, neither on fresh, nor on oven dried samples. On fresh samples of soil from Bs horizon, needle ices reached a maximum height of 9.7 cm in average. The use of theodolite and wooden dowels to estimate the extent of frost heaving in this study allowed to follow the process during the frost heaving period. A vertical uplift in millimetres could be recorded. A development of reliable measuring methods which allow a continuous estimation of the extent of frost heaving damage during the whole process, would undoubtedly represent an important step towards a better understanding of frost heaving of tree seedlings.

  11. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.

    Science.gov (United States)

    Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S

    2017-03-01

    The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.

  12. Accelerated development in Johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition.

    Science.gov (United States)

    Schwinning, Susanne; Meckel, Heather; Reichmann, Lara G; Polley, H Wayne; Fay, Philip A

    2017-01-01

    Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense), big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparius) and switchgrass (Panicum virgatum). We predicted that a) the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b) competitive effect and response would be negatively correlated and c) soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding) ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass critical mechanism by which exotic invasive species displace functionally similar native species and alter the functional dynamics of native communities.

  13. Performance of Jatropha curcas L. in Semi-arid Zone: Seed Germination, Seedling Growth and Early Field Growth

    Directory of Open Access Journals (Sweden)

    Sharif AHAMAD

    2013-05-01

    Full Text Available There is a lack of information on basic agronomic properties of Jatropha curcas L. (jatropha cultivation on the marginal lands in the semi-arids. Evaluation of agronomic performance of identified elite strains of J. curcas in marginal lands would be of paramount importance for addressing gap areas in their agronomic properties and subsequently for harnessing their optimum economic potentials. The present study undertook the task of analysing the growth performance of a high oil bearing elite strain of J. curcas–DARL-2 in degraded land in semi-arid zone of Deccan Plateau, India. While undertaking the assessment of growth performance of elite strain DARL-2, two other native (wild strains (namely AHN-1 and AHN-2 of J. curcas were also considered so that a comparative evaluation could be carried out. The role of gypsum was also investigated on J. curcas in the nursery stage as well its carry over effects on growth performance of transplanted trees in the field. Two types of substrates, gypsum-treated soil (GS and untreated soil (SL were used for growing seedlings of all the three jatropha strains. Seedlings (120-days-old of DARL-2 exhibited greater plant height, collar diameter and number of branches but root length was greater in the local strains. In the second year of field transplantation, DARL-2 strain exhibited significantly (p<0.05 greater plant height and number of branches/plant. No carry over effects of gypsum treatment were observed in field transplanted plants as none of the growth parameters significantly varied among the substrate types.

  14. High-light acclimation in Quercus robur L.seedlings upon over-topped a shaded environment

    Science.gov (United States)

    Anna M. Jensen; Emile S. Gardiner; Kevin C. Vaughn

    2012-01-01

    High developmental plasticity at the seedling-level during acclimation to the light environment may be an important determinant of seedling establishment and growth in temperate broadleaf forests, especially in dense understories where spatial light availability can vary greatly. Pedunculate oak (Quercus robur L.) seedlings were raised beneath a...

  15. Effect of irradiation on physiological and biochemical properties of Bt rice seedlings

    International Nuclear Information System (INIS)

    Wang Zhonghua; Chen Xiaojian; Bao Xusheng; Chen Yuling; Gu Qinqin

    2011-01-01

    The seeds of two varieties of Bt rice were treated by 60 Co γ-rays at the doses of 50, 100, 150, 250 and 350 Gy, respectively, their original parent was used as control material. The seedlings cultured from above seeds were used to detect the root activity, seedling growth, chlorophyll content,activities of phenylalanine ammonialyase (PAL), polyphenol oxidase (PPO), catalase(CAT), superoxide dismutase (SOD) and amylase to investigate the effect of irradiation treatment on the physiological and biochemical properties of Bt rice. The results showed that root activity, chlorophyll content, activities of PAL, PPO, CAT, SOD of Bt rice seedlings and amylase of germinating seeds were lower than those of the control group after irradiation treatment of < 250 Gy, but the differences were not significant, which was similar to those of original parent. Meanwhile, it was found that with dose increasing, the seedling height was increased, suggesting that irradiation treatment could stimulate the seedling growth. Therefore, Bt transgene can not change the irradiation sensitivity of rice and the conventional method of rice can be used in Bt rice irradiation mutation breeding. (authors)

  16. Fate of 14C-labelled diazinon in rice seedling and paddy soil

    International Nuclear Information System (INIS)

    Lee, Seong Kye; Kim, Kyoon; Park, Chang Kyu; Hwang, Eul Chul

    1985-01-01

    The fate of diazinon in the intact rice plants and submerged paddy soil has been investigated with (2- 14 C pyrimidine) diazinon. The labelled diazinon solution was applied to paddy water and distribution of radioactivities in the rice seedlings, paddy soil, volatile fraction and carbon dioxide has been ascertained at end the of incubation times of 0.5,1,4,6 and 9 days respectively. In addition, extract of plants and paddy soils were subjected to TLC separation for examination of possible transformation products of diazinon. The results may be summarized as follow; 1. Total recoveries of radiactivities were between 57.2∼73.6 per cent. 2. Radioactivity in rice seedlings increased with incubation periods reaching one tenth of treated radioactivity at the end of 9 day incubation. 3. Non-extractable radioactivity in paddy soil increased with incubation periods. 4. Radioactive volatile fraction increased in the presence of the rice seedlings. 5. Pyrimidinol was unique conversion product of diazinon in rice seedlings and paddy soils. 6. Pyrimidinol applied to paddy soil is readily absorbed by rice seedlings. (Author)

  17. Impact of Methyl Jasmonate on Enhancing Chilling Tolerance of Cucumber (Cucumis sativus L. Seedlings

    Directory of Open Access Journals (Sweden)

    F. Saydpour

    2016-12-01

    Full Text Available Cucumber is a warm season crop that suffers from chilling injury at temperatures below 10°C. In recent years, jasmonates have been used for reduction of chilling injuries in plants. An experiment was, therefore, conducted to test whether methyl jasmonate (MeJA application at various concentrations (0, 0.05, 0.1 and 0.15 mM through seed soaking or foliar spray would protect cucumber seedlings, subjected to chilling stress. Results showed that MeJA application decreased chilling index, ion leakage, malondialdehyde content and hydrogen peroxide free radical and increased growth parameters, proline contents, chlorophylls contents and antioxidant activity. Although, seed soaking method provided better protection compared to foliar spray method, the highest cold tolerance was obtained with 0.15mM MeJA application in both application methods that caused low level of chilling index (1.67, malondialdehyde content (0.11 nm g-1 FW, hydrogen peroxide free radical (0.22 nm g-1 FW and ion leakage (32.87%. In general, it may be concluded that MeJA could be used effectively to protect cucumber seedling from damaging effects of chilling stress at the early stages of growth.

  18. Physico-chemical changes in karkade (Hibiscus sabdariffa L.) seedlings responding to salt stress.

    Science.gov (United States)

    Galal, Abdelnasser

    2017-03-01

    Salinity is one of the major abiotic stress factors affecting series of morphological, physiological, metabolic and molecular changes in plant growth. The effect of different concentrations (0, 25, 50, 100 and 150 mM) of NaCl on the vegetative growth and some physiological parameters of karkade (Hibiscus sabdariffa var. sabdariffa) seedling were investigated. NaCl affected the germination rate, delayed emergence and retarded vegetative growth of seedlings. The length of seedling as well as the leaf area was significantly reduced. The fresh weight remained lower in NaCl treated seedlings compared to control. NaCl at 100 and 150 mM concentrations had significant effect on the dry matter contents of the treated seedlings. The chloroplast pigments in the treated seedlings were affected, suggesting that the NaCl had a significant effect on the chlorophyll and carotenoid biosynthesis. The results showed that the salt treatments induced an increase in proline concentration of the seedlings. The osmotic potential (ψs) of NaCl treated seedlings decreased with increasing NaCl concentrations. Salt treatments resulted in dramatic quantitative reduction in the total sterol percent compared with control ones. Salt stress resulted in increase and decrease of Na + and K + ions, respectively. NaCl salinity increased lipid peroxidation. SDS-PAGE was used to evaluate protein pattern after applying salt stress. High molecular weight proteins were intensified, while low molecular weight proteins were faint. NaCl at 100 and 150 mM concentration distinguished with new protein bands. Salt stress induced a new peroxidase bands and increased the band intensity, indicating the protective role of peroxidase enzyme.

  19. SALINITY TOLERANCE OF SEVERAL RICE GENOTYPES AT SEEDLING STAGE

    Directory of Open Access Journals (Sweden)

    Heni Safitri

    2018-01-01

    Full Text Available Salinity is one of the most serious problems in rice cultivation. Salinity drastically reduced plant growth and yield, especially at seedling stage. Several rice genotypes have been produced, but their tolerance to salinity has not yet been evaluated. The study aimed to evaluate salinity tolerance of rice genotypes at seedling stage. The glasshouse experiment was conducted at Cimanggu Experimental Station, Bogor, from April to May 2013. Thirteen rice genotypes and two check varieties, namely Pokkali (salt tolerant and IR29 (salt sensitive were tested at seedling stage. The experiment was arranged in a randomized complete block design with three replications and two factors, namely the levels of NaCl (0 and 120 mM and 13 genotypes of rice. Rice seedlings were grown in the nutrient culture (hydroponic supplemented with NaCl at different levels. The growth and salinity injury levels of the genotypes were recorded periodically. The results showed that salinity level of 120 mM NaCl reduced seedling growth of all rice genotypes, but the tolerant ones were survived after 14 days or until the sensitive check variety died. Based on the visual injury symptoms on the leaves, five genotypes, i.e. Dendang, Inpara 5, Inpari 29, IR77674-3B-8-2-2-14-4-AJY2, and IR81493-BBB-6-B- 2-1-2 were tolerant to 120 mM salinity level, while Inpara 4 was comparable to salt sensitive IR29. Hence, Inpara 4 could be used as a salinity sensitive genotype for future research of testing tolerant variety. Further evaluation is needed to confirm their salinity tolerance under field conditions. 

  20. Do seedling functional groups reflect ecological strategies of woody plant species in Caatinga?

    Directory of Open Access Journals (Sweden)

    Tatiane Gomes Calaça Menezes

    2017-11-01

    Full Text Available ABSTRACT It is assumed that morphological traits of seedlings reflect different strategies in response to environmental conditions. The ecological significance of this has been widely documented in rainforests, where habitat structure and species interactions play an important role in community assembly. However, in seasonally dry ecosystems, where environmental filtering is expected to strongly influence community structure, this relationship is poorly understood. We investigated this relationship between functional groups of seedlings and life history traits and tested whether functional group predicts the ecological strategies employed by woody species to deal with the stressful conditions in seasonally dry ecosystems. Seedling functional groups, life history traits and traits that reflect ecological strategies for occupying seasonally dry environments were described for twenty-six plant species. Seedlings of species from the Caatinga vegetation exhibited a functional profile different from that observed in rainforests ecosystems. Phanerocotylar-epigeal seedlings were the most frequently observed groups, and had the largest range of ecological strategies related to dealing with seasonally dry environments, while phanerocotylar-hypogeal-reserve seedlings exhibited an increase in frequency with seasonality. We discuss these results in relation to those observed in other tropical forests and their ecological significance in seasonally dry environments.

  1. Somatic mutations in leafs of tobacco seedlings induced by ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Shin, H. S.; Kim, J. K.; Song, H. S.; Lee, Y. I.

    2001-01-01

    Somatic mutations induced by the combined treatment of pesticide and ionizing radiation were analyzed in the leaves of tobacco seedlings. The pesticide (1,5 and 10 ppm of parathion) was sprayed directly onto the seedlings. The seedlings, with or without pretreatment of pesticide, were irradiated with 0.1 ∼10 Gy of gamma ray. The difference in the somatic mutation frequencies were not significant among groups treated with different concentration of pesticide. The somatic mutations in tobacco seedlings irradiated with gamma-ray showed a clear dose-response relationship in a range of 0.1 to 10 Gy. However, the combined treatment of pesticide and radiation did not cause any synergistic enhancement in the mutation frequencies. The highest efficiency in the induction of somatic mutations could be obtained by irradiating the seedlings with 5 Gy, 12 hours after 1 ppm of pesticide treatment, or 24 hours after 5 ppm of pesticide treatment

  2. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings

    Directory of Open Access Journals (Sweden)

    Zhujia Ye

    2016-08-01

    Full Text Available Switchgrass (Panicum virgatum is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome expressed a significant difference (p < 0.05, fold change <0.6 or >1.7 from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes that can be employed to improve switchgrass seedling growth and

  3. Node Detection and Internode Length Estimation of Tomato Seedlings Based on Image Analysis and Machine Learning

    Directory of Open Access Journals (Sweden)

    Kyosuke Yamamoto

    2016-07-01

    Full Text Available Seedling vigor in tomatoes determines the quality and growth of fruits and total plant productivity. It is well known that the salient effects of environmental stresses appear on the internode length; the length between adjoining main stem node (henceforth called node. In this study, we develop a method for internode length estimation using image processing technology. The proposed method consists of three steps: node detection, node order estimation, and internode length estimation. This method has two main advantages: (i as it uses machine learning approaches for node detection, it does not require adjustment of threshold values even though seedlings are imaged under varying timings and lighting conditions with complex backgrounds; and (ii as it uses affinity propagation for node order estimation, it can be applied to seedlings with different numbers of nodes without prior provision of the node number as a parameter. Our node detection results show that the proposed method can detect 72% of the 358 nodes in time-series imaging of three seedlings (recall = 0.72, precision = 0.78. In particular, the application of a general object recognition approach, Bag of Visual Words (BoVWs, enabled the elimination of many false positives on leaves occurring in the image segmentation based on pixel color, significantly improving the precision. The internode length estimation results had a relative error of below 15.4%. These results demonstrate that our method has the ability to evaluate the vigor of tomato seedlings quickly and accurately.

  4. Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.).

    Science.gov (United States)

    Hu, Songlin; Sanchez, Darlene L; Wang, Cuiling; Lipka, Alexander E; Yin, Yanhai; Gardner, Candice A C; Lübberstedt, Thomas

    2017-10-01

    In this study, we established two doubled haploid (DH) libraries with a total of 207 DH lines. We applied BR and GA inhibitors to all DH lines at seedling stage and measured seedling BR and GA inhibitor responses. Moreover, we evaluated field traits for each DH line (untreated). We conducted genome-wide association studies (GWAS) with 62,049 genome wide SNPs to explore the genetic control of seedling traits by BR and GA. In addition, we correlate seedling stage hormone inhibitor response with field traits. Large variation for BR and GA inhibitor response and field traits was observed across these DH lines. Seedling stage BR and GA inhibitor response was significantly correlate with yield and flowering time. Using three different GWAS approaches to balance false positive/negatives, multiple SNPs were discovered to be significantly associated with BR/GA inhibitor responses with some localized within gene models. SNPs from gene model GRMZM2G013391 were associated with GA inhibitor response across all three GWAS models. This gene is expressed in roots and shoots and was shown to regulate GA signaling. These results show that BRs and GAs have a great impact for controlling seedling growth. Gene models from GWAS results could be targets for seeding traits improvement. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Light affects the chloroplast ultrastructure and post-storage photosynthetic performance of watermelon (Citrullus lanatus) plug seedlings.

    Science.gov (United States)

    Duan, Qingqing; Jiang, Wu; Ding, Ming; Lin, Ye; Huang, Danfeng

    2014-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] plug seedlings were stored at 15°C in the light at a photosynthetic photon flux density of 15 µmol·m(-2)·s(-1) or in darkness for 6 days, to evaluate their chloroplast ultrastructure, and associated photosynthetic characteristics. Storage in the dark caused swelling, disordered granal arrangement, and starch grain disappearance in the chloroplasts. In contrast, the chloroplasts stored in the light were relatively normal. As a result, the light-stored seedlings had a significantly higher chlorophyll content, Fv/Fm, and Pn than did dark-stored seedlings. Regardless of whether the seedlings were stored in light or darkness, the Gs and Ls of the seedlings significantly decreased, while the Ci obviously increased when the Pn decreased after 6 days of storage. This result suggests that the decreased Pn is not solely a stomatal effect, as the effects on the chloroplasts contributed to this photosynthetic inhibition. Six days after transplanting, seedlings that were stored in the light or darkness for 2 or 4 days showed complete recovery of chloroplast ultrastructure, chlorophyll content, Fv/Fm, Gs and Pn. When the storage period increased to 6 days, the dark-stored seedlings had a significantly lower Fv/Fm and Pn than the light-stored and control seedlings 6 days after transplanting, which was mainly ascribed to incomplete recovery of chloroplast ultrastructure. Furthermore, the light-stored seedlings exhibited a significantly higher shoot dry weight during storage and a higher percentage dry weight increase after transplanting than the dark-stored seedlings. These effects were enhanced by prolonged storage (4 to 6 days). This study demonstrated that dim light during storage is beneficial for maintaining chloroplast ultrastructure as well as photosynthetic efficiency in watermelon seedlings, thus contributing to the rapid recovery of post-storage photosynthetic performance, which ensures the transplant quality

  6. Growth Responses of Acacia mangium and Paraserianthes falcataria Seedlings on Different Soil Origin under Nursery Condition

    Directory of Open Access Journals (Sweden)

    Tirtha Ayu Paramitha

    2015-12-01

    Full Text Available The objective of the present study was to examine the growth responses of Acacia mangium (mangium and Paraserianthes falcataria (sengon seedlings growing on different soil origin under nursery condition. This study was started in September 2012 and terminated in March 2013.  The seedlings were grown from seeds sown in a plastic box filled with sterilized sands. One week after sowing, the seedlings were transplanted into polybags contained sterilized soils originated from secondary forest, Imperata cylindrica grassland and ex-coal mining. The number of all seedlings were 180 seedlings consisted of 3 different soils, 2 species of seedlings with 10 seedlings replicated 3 times. Assessment was conducted one week after transplanting, then subsequently monitored every 2 weeks, except dry weighing and counting nodules were performed at the end of the study. A completely randomized design was used in this study. The data was analyzed using Costat software. The study resulted that the different of soil origin influenced on all growth variables of mangium and sengon of 4.5 months old. The survival rate of seedlings, height and diameter increments, dry weight and root nodules were better in both species of seedlings growing on soil originated from secondary forest and Imperata grassland compared with the soil from ex-coal mining. But the survival rates of sengon seedlings were higher than that of mangium on these three soils. The highest dry weight of sengon seedlings was achieved on soil originated from secondary forest. In the present study, soil originated from secondary forest increased more in weight of shoot than root, so that the shoot-root ratio was unbalanced more than one. Based on the results of this study, it is recommended that soil from secondary forest and Imperata grassland can be used as growing media for mangium and sengon seedlings in the nursery.

  7. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes.

    Science.gov (United States)

    Ma, Qian; Hedden, Peter; Zhang, Qifa

    2011-08-01

    Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA₂₉ but negatively correlated with that of GA₁₉. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development.

  8. Growth and nutrition of eucalyptus clones seedlings inoculated with mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Francisco de Sousa Lima

    2014-06-01

    Full Text Available Eucalyptus is one of the most planted forest species, in Brazil, due to its rapid growth and high economic yield. Arbuscular mycorrhizal fungi improve the seedlings nutritional and phytosanitary status, besides increasing their resistance to biotic and abiotic stress. This study aimed to evaluate the effect of inoculation with arbuscular mycorrhizal fungi species on the growth and nutrition of different eucalyptus clones seedlings. The experiment was conducted under greenhouse conditions, in a randomized blocks design and a 5x5 factorial scheme (five fungal species and five eucalyptus clones, with five replications. In general, the mycorrhizal symbiosis significantly increased the growth and nutrition of eucalyptus seedlings, when compared to the non-inoculated seedlings. The most efficient interaction occured between the 2361 clone and the Entrophospora infrequens fungus, with increases of 107.3% and 120.6%, for the shoot and root dry biomass yield, and 107.7%, 94.1% and 103.3%, respectively for the accumulation of N, P and K in the seedlings shoots. All the fungal species studied showed a high absolute compatibility index with eucalyptus clones. The Glomus manihots and E. infrequens fungi presented a higher functional compatibility index with the clones tested. The 5204 clone showed 75% of compatibility with the fungi evaluated.

  9. Effect of accelerating growth on flowering in lodgepole pine seedlings and grafts

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, N.C.; Ying, C.C.; Murphy, J.C.

    1982-09-01

    Seedlings and grafts from lodgepole pine (Pinus contorta var. latifolia Dougl.) plus-tree selections in British Columbia were established and maintained in the greenhouse under 24-hour photoperiod for 6 months. Subsequently, seedlings were outplanted in the nursery and grafts in a breeding orchard at Red Rock Research Centre. In the 5th year from seed (1980), the proportion of flowering trees and the average number of seed cones per flowering tree were roughly six times greater for accelerated growth seedlings (81%, 18 flowers/tree) than for controls (12%, 3.6 flowers/tree). Differences in pollen cone production were of similar magnitude. Flower enhancement in seedlings carried over into the next year. Grafted trees were considerably less productive than seedlings. At age 5 a mean of four female strobili were produced on 77% of treated grafts compared with 1.6 strobili on 36% of untreated controls. These values decreased slightly in 1981. Pollen production was yet to be observed on grafted materials. While the superiority in height of accelerated seedlings relative to controls has steadily decreased since time of establishment, large differences in number of branches per tree and biomass remain. Root systems of accelerated seedlings generally were excessively pot-bound, resulting in considerable root grafting after outplanting. The possible causes of increased flower production in accelerated growth trees are briefly discussed. The production of both pollen and seed cones in numbers large enough to support a modest breeding scheme greatly increases the opportunity for rapid generation turnover in forest trees such as logepole pine and permits greater flexibility in planning a long-term tree improvement program.

  10. Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field.

    Science.gov (United States)

    De Ron, Antonio M; Rodiño, Ana P; Santalla, Marta; González, Ana M; Lema, María J; Martín, Isaura; Kigel, Jaime

    2016-01-01

    Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L.) differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were (i) to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and (ii) to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate, and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA) representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593, and the cultivar Borlotto, with stress-tolerance at emergence, and high yield

  11. Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field

    Directory of Open Access Journals (Sweden)

    Antonio M. DE RON

    2016-08-01

    Full Text Available Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L. differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were i to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and ii to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593 and the cultivar Borlotto, with stress-tolerance at emergence and high

  12. Efeito de diferentes substratos sobre o desenvolvimento de mudas de Acacia sp. Effect of different substrates on the development of Acacia sp. seedlings

    Directory of Open Access Journals (Sweden)

    Alexson de Mello Cunha

    2006-04-01

    Full Text Available Os biossólidos têm sido estudados como fonte de matéria orgânica na agricultura. Objetivou-se avaliar o desenvolvimento de mudas de Acacia mangium e Acacia auriculiformis em diferentes substratos: a horizonte Bw com areia lavada (1:1, v:v e adubação mineral de 160, 640 e 160 g m-3de N, P2O5 e K2O, respectivamente (HB; b horizonte Bw com areia lavada e esterco bovino (1:1:1, v:v (HBE; c horizonte Bw com areia lavada e lodo de esgoto (1:1:1, v:v (HBL; e d 100% de lodo de esgoto (LE. Aplicou-se 1 kg de CaCO3 p.a. por m³ de substrato. Foram utilizadas sementes inoculadas com rizóbio e não-inoculadas, determinando-se, aos 90 dias após a semeadura, a altura das plantas, o diâmetro do colo e o peso da matéria seca da raiz e da parte aérea, na qual se determinaram N, P, K, Ca e Mg. O delineamento estatístico foi inteiramente casualizado, no esquema fatorial 2 x 4 (com ou sem inoculação x 4 substratos. No LE com inoculação, obteve-se melhor crescimento das mudas. O HBE produziu efeito superior no desenvolvimento das mudas em relação àquele com a mesma proporção de material orgânico na forma de lodo (HBL. Na maioria dos parâmetros avaliados não houve diferença devido à inoculação dos substratos HBE, HBL e HB, provavelmente devido à existência de bactérias nativas nesses substratos. As mudas desenvolvidas no substrato LE foram as que acumularam mais N e Ca, principalmente quando inoculadas. Houve tendência de maior acúmulo de P, K e Mg na parte aérea das mudas desenvolvidas no substrato HBE.Sewage sludge has been studied as source of organic matter on seedling production. Thus, this study aimed to evaluate the development of Acacia mangium and Acacia auriculiformis seedlings in the following substrates: a oxic horizon + sand (1:1, v:v + 160, 640 e 160 g m-3 of N, P2O5 and K2O respectively (HB; b oxic horizon + sand + cattle manure (1:1:1, v:v (HBE; c oxic horizon + sand + sewage sludge (1:1:1, v:v (HBL and; d 100% sewage

  13. Factors Affecting Planting Depth and Standing of Rice Seedling in Parachute Rice Transplanting

    Science.gov (United States)

    Astika, I. W.; Subrata, I. D. M.; Pramuhadi, G.

    2018-05-01

    Parachute rice transplanting is a simple and practical rice transplanting method. It can be done manually or mechanically, with various possible designs of machines or tools. This research aimed at quantitatively formulating related factors to the planting depth and standing of rice seedling. Parachute seedlings of rice were grown at several sizes of parachute soil bulb sizes. The trays were specially designed with a 3D printer having bulb sizes 7, 8, 9, 10 mm in square sides and 15 mm depth. At seedling ages of 8-12 days after sowing the seedling bulbs were drops into puddled soil. Soil hardness was set at 3 levels of hardness, measured in hardness index using golf ball test. Angle of dropping was set at 3 levels: 0°, 30°and 45° from the vertical axis. The height of droppings was set at 100 cm, 75 cm, and 50 cm. The relationship between bulb size, height of dropping, soil hardness, dropping angle and planting depth was formulated with ANN. Most of input variables did not significantly affect the planting depth, except that hard soil significantly differs from mild soil and soft soil. The dropping also resulted in various positions of the planted seedlings: vertical standing, sloped, and falling. However, at any position of the planted seedlings, the seedlings would recover themselves into normally vertical position. With this result, the design of planting machinery, as well as the manual planting operation, can be made easier.

  14. Retardation of hypocotyl elongation of ornamental and vegetable seedlings by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Bae, E.; Inamoto, K.; Doi, M.; Imanishi, H.

    1998-01-01

    Seedlings of cosmos (Cosmos bipinnatus Cav.), lettuce (Lactuca sativa L.), sunflower (Helianthus annuus L), ornamental kale (Brassica oleracea L. var. acephara), tomato (Lycopersicon esculentum Mill.), bell pepper (Capsicum annuum L.), and cucumber (Cucumis sativus L.) were irradiated by a UV-B lamp (fluorescent sun lamp) or a three-band fluorescent lamp (control) for 72 hr just after sowing. Hypocotyl elongation was repressed by all species during the irradiation with UV-B. The retarding effects of UV-B persisted when these seedlings were placed in dark or a greenhouse with 30% shade after irradiation. The most effective timing of UV-B irradiation for cosmos and ornamental kale seedlings was from 48 hr to 72 hr after sowing, when the seedlings were rapidly increasing their surface area to UV-B

  15. Growth of short-day treated spruce seedlings planted throughout British Columbia. FRDA report No. 209

    Energy Technology Data Exchange (ETDEWEB)

    Krasowski, M.J.; Letchford, T.; Eastham, A.M.

    1993-01-01

    Short photoperiod (SD) treatments of conifer seedlings induce bud dormancy and enhance cold acclimation. Such treatments are also useful in regulating seedling height to meet a specific target and in preparing seedlings for lifting at a desirable time. These trials were designed to compare different SD-treated and untreated stock in terms of their annual height and ground-line stem diameter increments, 1st year post-planting terminal bud phenology, and seedling survival and condition.

  16. AMMONIUM TOXICITY AND NITRATE RESPONSE OF AXENICALLY GROWN DACTYLORHIZA-INCARNATA SEEDLINGS

    NARCIS (Netherlands)

    DIJK, E; ECK, N

    1995-01-01

    The response to ammonium- and nitrate-nitrogen of seedlings of the calcicole orchid species Dactylorhiza incarnata (L.) Soo was tested in axenic in vitro culture of c. 3-month-old protocorms. A pronounced toxicity of ammonium ions was observed. Seedlings raised from plants of a coastal population

  17. Hydraulic and topographic response of sand-bed rivers to woody riparian seedlings: field-scale laboratory methods and results

    Science.gov (United States)

    Lightbody, A.; Skorko, K.; Kui, L.; Stella, J. C.; Wilcox, A. C.

    2012-12-01

    Feedbacks between topography, flow fields and vegetation community structure are fundamental processes in many rivers. In addition, predicting seedling mortality in response to flood events requires a detailed understanding of the influence of flow on seedling scour and burial. As of yet, however, flow and sediment transport in the presence of seedlings are poorly understood. Measurements quantifying the response of topography and flow to the presence of seedlings with differing plant architectures were obtained within a field-scale meandering stream channel with a mobile sand bed (median grain size of 0.7 mm) and full experimental control over sediment and water discharge. Seedlings of Tamarix spp. (tamarisk) and Populus fremontii (cottonwood) with intact roots were installed on a point bar during low flow conditions. Flow rate was then elevated to a constant flood level, while sediment feed rate, plant density, and plant species were varied during each of eight different experimental runs. Flood conditions were maintained long enough for bar topography to reach steady state. The presence of all types of vegetation on the bar decreased the height and lateral extent of dunes migrating across the bar, thereby preventing the development of dunes as the primary mechanism of sediment transport through the bend. Time-averaged bar volume increased from bare-bed conditions when sparse tamarisk, dense tamarisk, or mixed cottonwood and tamarisk seedlings were present on the bar. The presence of dense cottonwood seedlings, however, did not result in an increase in either bar size or height, likely because an increase in steady-state turbulence intensities on the bar when dense cottonwood was present interfered with sediment deposition. Thus, differing plant architecture was an important influence on topographic evolution. In particular, it is possible that the flexibility of tamarisk seedlings causes them to behave analogously to herbaceous vegetation, sheltering the bar

  18. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    Science.gov (United States)

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  19. ECR-MAPK regulation in liver early development.

    Science.gov (United States)

    Zhao, Xiu-Ju; Zhuo, Hexian

    2014-01-01

    Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region)-socs2 (-SH2-containing signals/receptor tyrosine kinases)-ppp2r2a/pik3c3 (MAPK signaling)-hsd3b5/cav2 (metabolism/organization) plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  20. Growth of young Tabebuia aurea seedlings under irrigation with wastewater from fish farming

    Directory of Open Access Journals (Sweden)

    José R. de S. Pinto

    2016-06-01

    Full Text Available ABSTRACT This study aimed to evaluate the growth of young Tabebuia aurea seedlings irrigated with different concentrations of wastewater from fish farming. The experiment was conducted in a seedling nursery, from June to August 2013. The treatments consisted of five concentrations of wastewater from fish farming diluted in freshwater (0, 25, 50, 75 and 100% of wastewater. Plant height, stem diameter and plant height/stem diameter ratio were evaluated every 15 days to verify the effects of treatments on seedlings growth. At the end of the experiment, individual leaf area, leaf area, leaf dry matter, stem dry matter, root dry matter, total dry matter and Dickson quality index were also evaluated. The reuse of wastewater from fish farming diluted at concentrations of 25 and 50% in freshwater is a viable alternative in the production of Tabebuia aurea seedlings. However, higher concentrations hinder the production of seedlings of this species.

  1. Stimulatory effects of aluminum on growth of sugar maple seedlings

    Science.gov (United States)

    George A. Schier; Carolyn J. McQuattie

    2002-01-01

    To determine the effect of aluminum (Al) on sugar maple (Acer saccharum Marsh.), seedlings were grown in sand irrigated with nutrient solution (pH 3.8) containing 0, 2.5, 5, 10, 20, or 40 mg L-1 Al. Seedling growth was enhanced at 2.5 and 5mgL-1 Al. Although higher levels of Al reduced calcium (Ca) and...

  2. Machine site preparation improves seedling performance on a high-elevation site in southwest Oregon

    International Nuclear Information System (INIS)

    McNabb, D.H.; Baker-Katz, K.; Tesch, S.D.

    1993-01-01

    Douglas-fir (Pseudotsuga menziesii) seedlings planted on areas receiving one of four site-preparation treatments (scarify, scarify/till, soil removal, and soil removal/till) and on unprepared control areas were compared for 5 yr at a high-elevation, nutrient-poor site in the western Siskiyou Mountains of southwest Oregon. Fifth-year survival of seedlings was at least 85% among machine-prepared plots, compared to 42% on control plots. Cover of competing vegetation remained less than 25% during the period for all machine treatments. In contrast, vegetation cover on control plots was 30% at the time of planting and increased to nearly 75% after 5 yr. Competing vegetation clearly impeded seedling performance. The effects of unusually droughty conditions at the time of planting in 1982 were examined further by interplanting additional seedlings in the soil-removal treatment in 1985. The interplanting was followed by more normal spring precipitation, and seedlings grew better over 5 yr than those planted in 1982. The slow recovery of competing vegetation and generally poor seedling growth on all treatments during both planting years are attributed to low soil fertility

  3. Early Growth Of Some Introduced Agroforestry Species In Akure ...

    African Journals Online (AJOL)

    This study investigated the early growth performance of potted seedlings of Grevillea robusta, Dalbergia sissoo, Albizia lebbeck, Prosopis juliflora and Acacia mearnsii . Two types of potting containers were used - the conventional black polypot (size: 10 cm x 15 cm) and the transparent \\"pure water\\' bags (size: 14 cm x 15 ...

  4. Rapid root extension during water pulses enhances establishment of shrub seedlings in the Atacama Desert

    NARCIS (Netherlands)

    Leon, M.F.; Squeo, F.A.; Gutierrez, J.R.; Holmgren, M.

    2011-01-01

    Questions: (1) What is the water threshold for shrub seedling establishment in arid scrubland? (2) How do seedling root growth morphological traits affect the water threshold required for seedling establishment? Location: Arid scrubland, Atacama Desert, north-central Chile. Methods: We conducted a

  5. Onion seedlings versus onion sets in organic onion production

    OpenAIRE

    Kivijärvi, Pirjo; Hannukkala, Asko; Haapalainen, Minna; Iivonen, Sari

    2017-01-01

    The objective of this study is to find onion varieties that are suitable for seedling cultivation and high-yielding in our relatively cool and short growing season. In addition, the yield quantity, quality and long-term storage durability of onions produced from either seedlings or sets are compared. Rot incidence and composition of pathogen populations in diseased onions is monitored during the growing season and long-term storage. The field experiments and on-farm trials will be carried out...

  6. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    Science.gov (United States)

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  7. Seedling Regeneration in the Alpine Treeline Ecotone: Comparison of Wood Microsites and Adjacent Soil Substrates

    Directory of Open Access Journals (Sweden)

    Adelaide Chapman Johnson

    2016-11-01

    Full Text Available Although climate warming is generally expected to facilitate upward advance of forests, conifer seedling regeneration and survival may be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better understand substrate-related factors promoting regeneration in the alpine treeline ecotone, this study compared 2 substrates supporting conifer seedlings: rotten downed wood and adjacent soil. Study locations, each with 3 levels of incoming radiation, were randomly selected at forest line–alpine meadow borders in Pacific Northwest wilderness areas extending along an east–west precipitation gradient. Associations among substrate type, seedling density, radiation, site moisture, site temperature, plant water potential, and plant stomatal conductance were assessed. Wood microsites, flush with the ground and supporting Abies spp conifer seedlings, extended up to 20 m into alpine meadows from the forest line. Although wood microsites thawed later in the spring and froze earlier in the fall, they had warmer summer temperatures, greater volumetric water content, and more growing degree hours, and seedlings growing on wood had higher water potentials than seedlings growing on adjacent soil. At drier eastern sites, there was a positive relationship between seedling density and volumetric water content. Further, there was a positive relationship between seedling stomatal conductance and volumetric water content. Our study indicates that in the Pacific Northwest. and likely elsewhere, seedlings benefit from wood microsites, which provide greater water content. Given predictions of increased summer drought in some locations globally, wood microsites at forest line–alpine meadows and forest line–grasslands borders may become increasingly important for successful conifer regeneration.

  8. Antioxidant properties of soybean seedlings inoculated with Trichoderma asperellum

    Directory of Open Access Journals (Sweden)

    Manojlović Ana S.

    2017-01-01

    Full Text Available This study was conducted in order to assess the effect of inoculation of soybean (Glycine max L. seeds with Trichoderma asperellum, followed by mites (Tetranychus urticae exposure on lipid peroxidation (LP process and the activity of antioxidant enzymes. T. urticae is an occasional pest of soybean that causes biotic stress. Biotic stress leads to overproduction of reactive oxygen species (ROS which may cause damage to vital biomolecules. Enzymatic antioxidant defense systems protect plants against oxidative stress. T. asperellum is commonly used as biocontrol agent against plant pathogens. It has been suggested that previous inoculation of seeds with T. asperellum may cause induced resistance against biotic stress. The aim of this study was to determine LP intensity and antioxidant enzymes activity in inoculated and non-inoculated soybean seedlings with and without exposure to mites. Noticeably higher LP intensity was detected in non-inoculated group treated with mites compared to control group. Inoculated soybean seedlings treated with mites had lower LP intensity compared to noninoculated group. Also, it has been noticed that inoculation with Trichoderma asperellum itself, produced mild stress in plants. In addition, positive correlation between enzymes activity and LP was noticed. The level of oxidative stress in plants was followed by the change of LP intensity. According to results obtained, it was concluded that the greatest oxidative stress occurred in non-inoculated group treated with mites and that inoculation successfully reduced oxidative stress. The results indicate that inoculation of soybean seeds with T. asperellum improves resistance of soybean seedlings against mites attack. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31022

  9. Shrinking windows of opportunity for oak seedling establishment in southern California mountains

    Science.gov (United States)

    Davis, Frank W.; Sweet, Lynn C.; Serra-Diaz, Josep M.; Franklin, Janet; McCullough, Ian M.; Flint, Alan L.; Flint, Lorraine E.; Dingman, John; Regan, Helen M.; Syphard, Alexandra D.; Hannah, Lee; Redmond, Kelly; Moritz, Max A.

    2016-01-01

    Seedling establishment is a critical step that may ultimately govern tree species’ distribution shifts under environmental change. Annual variation in the location of seed rain and microclimates results in transient “windows of opportunity” for tree seedling establishment across the landscape. These establishment windows vary at fine spatiotemporal scales that are not considered in most assessments of climate change impacts on tree species range dynamics and habitat displacement. We integrate field seedling establishment trials conducted in the southern Sierra Nevada and western Tehachapi Mountains of southern California with spatially downscaled grids of modeled water-year climatic water deficit (CWDwy) and mean August maximum daily temperature (Tmax) to map historical and projected future microclimates suitable for establishment windows of opportunity for Quercus douglasii, a dominant tree species of warm, dry foothill woodlands, and Q. kelloggii, a dominant of cooler, more mesic montane woodlands and forests. Based on quasi-binomial regression models, Q. douglasii seedling establishment is significantly associated with modeled CWDwy and to a lesser degree with modeled Tmax. Q. kelloggii seedling establishment is most strongly associated with Tmax and best predicted by a two-factor model including CWDwy and Tmax. Establishment niche models are applied to explore recruitment window dynamics in the western Tehachapi Mountains, where these species are currently widespread canopy dominants. Establishment windows are projected to decrease by 50–95%, shrinking locally to higher elevations and north-facing slopes by the end of this century depending on the species and climate scenario. These decreases in establishment windows suggest the potential for longer-term regional population declines of the species. While many additional processes regulate seedling establishment and growth, this study highlights the need to account for topoclimatic controls and

  10. Photosynthetic efficiency of Pedunculate oak seedlings under simulated water stress

    Directory of Open Access Journals (Sweden)

    Popović Zorica

    2010-01-01

    Full Text Available Photosynthetic performance of seedlings of Quercus robur exposed to short-term water stress in the laboratory conditions was assessed through the method of induced fluorometry. The substrate for seedlings was clayey loam, with the dominant texture fraction made of silt, followed by clay and fine sand, with total porosity 68.2%. Seedlings were separated in two groups: control (C (soil water regime in pots was maintained at the level of field water capacity and treated (water-stressed, WS (soil water regime was maintained in the range of wilting point and lentocapillary capacity. The photosynthetic efficiency was 0.642±0.25 and 0.522±0.024 (WS and C, respectively, which was mostly due to transplantation disturbances and sporadic leaf chlorosis. During the experiment Fv/Fm decreased in both groups (0.551±0.0100 and 0.427±0.018 in C and WS, respectively. Our results showed significant differences between stressed and control group, in regard to both observed parameters (Fv/Fm and T½. Photosynthetic efficiency of pedunculate oak seedlings was significantly affected by short-term water stress, but to a lesser extent than by sufficient watering.

  11. Characterizing Betula litwinowii seedling microsites at the alpine-treeline ecotone, central Greater Caucasus Mountains, Georgia

    Science.gov (United States)

    Nicole M Hughes; Daniel M. Johnson; Maia Akhalkatsi; Otar Abdaladze

    2009-01-01

    Seedling establishment is an important factor dictating the altitudinal limits of treeline species. Factors that affect seedling mortality and survival, however, have yet to be fully characterized, especially for deciduous treeline species. Here we describe microsite characteristics of successfully established Betula litwinowii seedlings at the...

  12. Genetic variation of seedling traits in a random mating population of sunflower

    International Nuclear Information System (INIS)

    Habib, S.

    2004-01-01

    Forty S/sub 1/ families obtained from a random mating population of sunflower were evaluated in the laboratory for various seedling traits. The objectives of this study were to investigate the extent and nature of genetic variability and to determine the estimates of genotypic and phenotypic correlations among ten seedling traits prevailing in a random mating population of sunflower. The results indicated that significant differences existed among the 40 S/sub 1/ families for all the traits evaluated. Genotypic and phenotypic coefficients of variation were comparatively high for emergence rate index, root/shoot ratio, dry root weight, fresh root weight and fresh shoot weight. The estimates of broad-sense heritability were high and significant for all the traits. The study of genotypic and phenotypic correlations among these traits revealed that generally, the seedlings which took more time to emerge were vigorous for most of the traits except fresh shoot length. However, rapidly emerging seedlings had higher emergence percentage. The root traits appeared to be better indicators of seedling vigour compared to other traits as these traits exhibited strong and positive genotypic and phenotypic correlations among them. (author)

  13. Establishment of northern red oak genetic tests with nursery-graded seedlings

    Science.gov (United States)

    S. A. Lay; M. A. Remaley; S. E. Schlarbaum; P. P. Kormanik; T. Tibbs; R. A. Cox; T. LaFarge; A. M. Saxton

    1997-01-01

    Artificial regeneration of northern red oak (Quercus rubra L.) has had variable success over time. Current nursery practices generally involve the growth of seedlings to a standardized height and form with little regard to seed source, seedling quality, or subsequent field performance. Additionally, there is not an accepted culling criteria for...

  14. ECR-MAPK Regulation in Liver Early Development

    Directory of Open Access Journals (Sweden)

    Xiu-Ju Zhao

    2014-01-01

    Full Text Available Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region-socs2 (-SH2-containing signals/receptor tyrosine kinases-ppp2r2a/pik3c3 (MAPK signaling-hsd3b5/cav2 (metabolism/organization plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  15. Salt tolerance of physalis during germination and seedling growth

    International Nuclear Information System (INIS)

    Yildirim, E.; Karlidag, H.

    2011-01-01

    The study was conducted to evaluate the effect of NaCl salinity on germination and emergence of Physalis ixocarpa and Physalis peruviana. Seeds of P. ixocarpa and P. peruviana were germinated by the use of 0, 30, 60, 90, 120 and 180 mM NaCl solutions in petri dishes. Final germination percentage (FGP) decreased with the increase in NaCl concentration. Both species germinated at the ranges of salinity. P. peruviana gave the greater germination percentages under salt stress than P. ixocarpa. NaCl salinity at different concentrations adversely affected germination rates. For seedling growth, seeds of both species were sown at 10 mm depth in plastic trays filled with peat to determine final emergence percentage (FEP). The trays were irrigated manually to saturation every day with 0, 30, 60, 90, 120, 150 or 180 mM NaCl solutions to maintain the level of salinity. Salinity affected seed emergence and seedlings growth more than seed germination. The study showed that no emergence of Physalis was observed at 90, 120 and 180 mM NaCl salinity. Fresh and dry weights of normal seedlings were also evaluated. Salt stress significantly decreased the plant fresh and dry weight of both species. Based on the results of the experiment, it can be concluded that seedling emergence and growth is more sensitive to salt stress than seed germination in Physalis. (author)

  16. Desenvolvimento de mudas de Aroeira (Schinus terebinthifolius e sombreiro (Clitoria fairchildiana sob condições de sombreamento Development of Schinus terebinthifolius and Clitoria fairchildiana seedlings under shading

    Directory of Open Access Journals (Sweden)

    Silvana de Paula Quintão Scalon

    2006-02-01

    Full Text Available Objetivou-se com este trabalho avaliar o desenvolvimento das mudas de Schinus terebinthifolius e Clitoria fairchildiana sob condiç��es de sombreamento e pleno sol. As mudas foram cultivadas sob sombrites de 70% e 50% de luz e sob luz plena. O experimento foi conduzido em DBC com 4 repetições de 20 mudas. Foram avaliados a altura do caule e o diâmetro do colo a cada vinte e um dias. Ao final do experimento foram realizadas as avaliações de peso seco total (PST-g, área foliar (AF-dm², razão de peso foliar (RPF -g/g; e peso específico de folha (PEF -g/ dm². As sementes de aroeira do campo e do sombreiro apresentaram 70% e 85% de germinação, respectivamente. S.terebinthifolius tolera bem um sombreamento moderado (70% de luz, sendo seu cultivo a pleno sol o mais indicado, pois é quando as mudas atingem menor altura (32,93 cm, diâmetro médio de 7,15 mm, maior PST (74,66 g; menor PEF (0,025; as mudas de C.fairchildiana sob condições de pleno sol não se desenvolveram satisfatoriamente, embora a altura não tenha variado entre os níveis de luz (16,39 cm, apresentaram menor diâmetro (5,32 mm, menor PST (26,22 g, menor AF (32,98 dm² e maior PEF (0,4.The objective of this work was to evaluate the development of S. terebinthifolius and C. fairchildiana seedlings under shade and full sunlight conditions. The seedlings were cultivated under 70% and 50% sunlight and full sunlight. The experiment was carried out in a randomized block design with four replications of twenty seedlings. Stem height and collar diameter were evaluated every 21 days. At the end of the experiment total dried weight (TDW-g, leaf area (LA-dm², leaf weight rate LWR-g/g and leaf specific weight (LSW-g/dm² were also evaluated. The seeds of S.terebinthifolius and C. fairchildiana showed a germination of 70% and 85% respectively. S. terebinthifolius tolerated moderate shade (70% sunligth however, full sunlight seemed to be most appropriate. C. fairchildiana

  17. Early history of tree seedling nurseries in the South

    Science.gov (United States)

    James P. Barnett

    2013-01-01

    The forests in the South were devastated by aggressive harvesting that began following the Civil War. By the early in the 20th century, many millions of acres of land needed reforestation. Foresighted individuals began a committed effort to restore this land to a productive condition. This effort required dedication, innovation, cooperation, and leadership. The...

  18. Bacillus amyloliquefaciens L-S60 Reforms the Rhizosphere Bacterial Community and Improves Growth Conditions in Cucumber Plug Seedling

    Directory of Open Access Journals (Sweden)

    Yuxuan Qin

    2017-12-01

    Full Text Available Vegetable plug seedling has become the most important way to produce vegetable seedlings in China. This seedling method can significantly improve the quality and yield of vegetables compared to conventional methods. In the process of plug seedling, chemical fertilizers or pesticides are often used to improve the yield of the seedlings albeit with increasing concerns. Meanwhile, little is known about the impact of beneficial bacteria on the rhizosphere microbiota and the growth conditions of vegetables during plug seedling. In this study, we applied a culture-independent next-generation sequencing-based approach and investigated the impact of a plant beneficial bacterium, Bacillus amyloliquefaciens L-S60, on the composition and dynamics of rhizosphere microbiota and the growth conditions of cucumbers during plug seedling. Our results showed that application of L-S60 significantly altered the structure of the bacterial community associated with the cucumber seedling; presence of beneficial rhizosphere species such as Bacillus, Rhodanobacter, Paenibacillus, Pseudomonas, Nonomuraea, and Agrobacterium was higher upon L-S60 treatment than in the control group. We also measured the impact of L-S60 application on the physiological properties of the cucumber seedlings as well as the availability of main mineral elements in the seedling at different time points during the plug seedling. Results from those measurements indicated that L-S60 application promoted growth conditions of cucumber seedlings and that more available mineral elements were detected in the cucumber seedlings from the L-S60 treated group than from the control group. The findings in this study provided evidence for the beneficial effects of plant growth-promoting rhizosphere bacteria on the bacterial community composition and growth conditions of the vegetables during plug seedling.

  19. Growing container seedlings: Three considerations

    Science.gov (United States)

    Kas Dumroese; Thomas D. Landis

    2015-01-01

    The science of growing reforestation and conservation plants in containers has continually evolved, and three simple observations may greatly improve seedling quality. First, retaining stock in its original container for more than one growing season should be avoided. Second, strongly taprooted species now being grown as bareroot stock may be good candidates...

  20. The role of large container seedlings in afforesting oaks in bottomlands

    Science.gov (United States)

    Daniel C. Dey; John M. Kabrick; Michael Gold

    2006-01-01

    We planted large container (RPM®) and 1-0 bareroot seedlings of pin oak (Quercus palustris Muenchh.) and swamp white oak (Q. bicolor Willd.) in crop fields in the Missouri River floodplain. We also evaluated the benefits of soil mounding and a grass (Agrostis gigantea Roth) cover crop. RPM®) oak seedlings had significantly greater...

  1. Effects of Azospirillum lipoferum on seedling characteristics derived from sunflower (Helianthus annus L. seed water deficit conditions

    Directory of Open Access Journals (Sweden)

    H. Hadi

    2016-05-01

    Full Text Available Seedling characteristics of different sunflower (Helianthus annus L. cultivars under drought stress and inoculation with the Azospirillum lipoferum in a spilt-factorial layout based on randomized complete block design with three replications were evaluated. Treatments included dehydration stress (seed produced on maternal plants which irrigated after 60 (desirable irrigation, 120 (medium stress, 180 mm (severe stress evaporation from evaporation pan class A, different sunflower cultivars (Lakomka, Master, Favorite, Soor and Armavirosky and inoculation with bacteria (Azospirillum lipoferum and control. Bacteria allocated in the main plots and seeds which derived from dehydration stress conditions and different cultivars were allocated in sub plots as a factorial layout. Results showed that the time of seedling emergence, seedling vigor index, leaf petiole, stem and seedling dry weight were increased 14, 44, 30, 31, 22 and 27 percent by inoculating with bacteria, respectively. The percent of Seedling emergence of seeds derived from medium stress 48 percent was more than optimal irrigation conditions. Final appearance, speed of emergence, emergence index, dry weight and stamina seedling resulting from severe stress conditions were decreased compared with optimal irrigation. Seedling emergence of seeds derived from medium stress which inoculated with bacteria increased by 9 percent. Emergence speed index, appearance, stamina and seedling dry weights of seeds which inoculated with bacteria increased at medium and sever water stress. With consideration of the effect of dehydration stress on germination and seedling emergence, seed inoculation with bacteria improved seedling emergence and seedling vigor of seeds derived from dehydration stress conditions.

  2. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons.

    Science.gov (United States)

    Singh, Neha; Bhatla, Satish C

    2016-02-29

     kDa) of HO-1. NaCl-modulated HO-1 activity correlates with endogenous NO content in the cotyledons. Increased NO accumulation by hemin treatment also correlates with enhanced activity of HO-1 in both control and NaCl stress conditions. Present work indicates that NO positively modulates HO-1 activity in sunflower seedling cotyledons. NaCl stress tends to antagonize NO action on HO-1 activity. NO (from sodium nitroprusside; SNP) is probably positively modulating HO-1 activity by way of its interaction/binding with heme group. Present work also shows enhanced NO accumulation in seedling cotyledons both in the absence or presence of iron in the growth medium, in response to NaCl stress. Thus, a probable link between endogenous NO, NaCl stress and iron-homeostasis by way of modulation of HO-1 activity at early stage of sunflower seedling growth has been proposed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The differentiation of fibre- and drug type Cannabis seedlings by gas chromatography/mass spectrometry and chemometric tools.

    Science.gov (United States)

    Broséus, Julian; Anglada, Frédéric; Esseiva, Pierre

    2010-07-15

    Cannabis cultivation in order to produce drugs is forbidden in Switzerland. Thus, law enforcement authorities regularly ask forensic laboratories to determinate cannabis plant's chemotype from seized material in order to ascertain that the plantation is legal or not. As required by the EU official analysis protocol the THC rate of cannabis is measured from the flowers at maturity. When laboratories are confronted to seedlings, they have to lead the plant to maturity, meaning a time consuming and costly procedure. This study investigated the discrimination of fibre type from drug type Cannabis seedlings by analysing the compounds found in their leaves and using chemometrics tools. 11 legal varieties allowed by the Swiss Federal Office for Agriculture and 13 illegal ones were greenhouse grown and analysed using a gas chromatograph interfaced with a mass spectrometer. Compounds that show high discrimination capabilities in the seedlings have been identified and a support vector machines (SVMs) analysis was used to classify the cannabis samples. The overall set of samples shows a classification rate above 99% with false positive rates less than 2%. This model allows then discrimination between fibre and drug type Cannabis at an early stage of growth. Therefore it is not necessary to wait plants' maturity to quantify their amount of THC in order to determine their chemotype. This procedure could be used for the control of legal (fibre type) and illegal (drug type) Cannabis production. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Adaptive transgenerational plasticity in an annual plant: grandparental and parental drought stress enhance performance of seedlings in dry soil.

    Science.gov (United States)

    Herman, Jacob J; Sultan, Sonia E; Horgan-Kobelski, Tim; Riggs, Charlotte

    2012-07-01

    Stressful parental (usually maternal) environments can dramatically influence expression of traits in offspring, in some cases resulting in phenotypes that are adaptive to the inducing stress. The ecological and evolutionary impact of such transgenerational plasticity depends on both its persistence across generations and its adaptive value. Few studies have examined both aspects of transgenerational plasticity within a given system. Here we report the results of a growth-chamber study of adaptive transgenerational plasticity across two generations, using the widespread annual plant Polygonum persicaria as a naturally evolved model system. We grew five inbred Polygonum genetic lines in controlled dry vs. moist soil environments for two generations in a fully factorial design, producing replicate individuals of each genetic line with all permutations of grandparental and parental environment. We then measured the effects of these two-generational stress histories on traits critical for functioning in dry soil, in a third (grandchild) generation of seedling offspring raised in the dry treatment. Both grandparental and parental moisture environment significantly influenced seedling development: seedlings of drought-stressed grandparents or parents produced longer root systems that extended deeper and faster into dry soil compared with seedlings of the same genetic lines whose grandparents and/or parents had been amply watered. Offspring of stressed individuals also grew to a greater biomass than offspring of nonstressed parents and grandparents. Importantly, the effects of drought were cumulative over the course of two generations: when both grandparents and parents were drought-stressed, offspring had the greatest provisioning, germinated earliest, and developed into the largest seedlings with the most extensive root systems. Along with these functionally appropriate developmental effects, seedlings produced after two previous drought-stressed generations had

  5. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach

    NARCIS (Netherlands)

    Ribeiro de Jesus, P.R.; Fernandez, L.G.; Delmondez de Castro, R.; Ligterink, W.; Hilhorst, H.W.M.

    2014-01-01

    Background Compared with major crops, growth and development of Ricinus communis is still poorly understood. A better understanding of the biochemical and physiological aspects of germination and seedling growth is crucial for the breeding of high yielding varieties adapted to various growing

  6. Limits to seaward expansion of mangroves: Translating physical disturbance mechanisms into seedling survival gradients

    NARCIS (Netherlands)

    Balke, T.; Swales, A.; Lovelock, C.E.; Herman, P.M.J.; Bouma, T.J.

    2015-01-01

    Mangroves are valuable coastal habitats that are globally under pressure due to climate change and coastal development. Small-scale physical disturbance by tidal inundation and wave-induced sediment dynamics has been described as the main bottlenecks to mangrove seedling establishment on exposed

  7. Physiological responses of seeds and seedlings of lettuce submitted to Philodendron bipinnatifidum extract

    Directory of Open Access Journals (Sweden)

    Tiago Zanatta Aumonde

    2013-12-01

    Full Text Available The work was conducted to evaluate the effect of different Philodendron bipinnatifidum Schott. extract concentrations on the physiology and enzymatic metabolism of lettuce seeds and seedlings. The treatments extracts of mature leaves at concentrations of 0, 6, 12, 25 and 50%. Were evaluated the germination, first count germination, speed and germination speed index, length of shoot and primary root, seedling total dry mass, electrical conductivity, chlorophyll content, activity of the enzymes ?-amilase, superoxide dismutase, catalase and ascorbarto peroxidase, lipid peroxidation, hydrogen peroxide content and seedling emergence, length of shoot and total dry mass of emerged seedlings. There was a reduction of germination, germination speed index and total dry mass by increasing the concentration of the extract. While the content of hydrogen peroxide, lipid peroxidation and activity of superoxide dismutase, catalase and peroxidase ascorbarto increased with concentration. The increasing of concentration the leaf extracts of the P. bipinnatifidum negatively affects the activity of the enzyme ?-amylase and causes increase in the activity of antioxidant enzymes, affecting the physiologic performance and growth of lettuce seedlings.

  8. Polyembryony and identification of Volkamerian lemon zygotic and nucellar seedlings using RAPD Poliembrionia e identificação de seedlings zigóticos e nucelares de limão volkameriano com RAPD

    Directory of Open Access Journals (Sweden)

    María Andrade-Rodríguez

    2004-06-01

    Full Text Available The objectives of this work were to evaluate the frequency of polyembryony, and to identify zygotic and nucellar seedlings of Citrus volkameriana using RAPD. Twenty-five polyembryonic and eight monoembryonic seeds were cultivated in vitrofor six months. DNA from seedlings was extracted and used in combination with five RAPD primers to identify zygotic or nucellar origin of the seedlings. Environmental conditions of the year affected significantly (POs objetivos deste trabalho foram avaliar a freqüência da poliembrionia e indentificar os seedlings zigóticos e nucelares de Citrus volkameriana usando RAPD. Cultivaram-se in vitro 25 sementes poliembriônicas e 8 monoembriônicas, por seis meses. Extraiu-se o DNA dos seedlings e usou-se em combinação com cinco primers RAPD para identificar a origem zigótica e nucelar das plântulas. Os resultados mostraram que as condições ambientais do ano afetaram significativamente (P<0,05 as características morfológicas dos frutos e o número de embriões por semente. Os índices de sementes poliembriônicas variaram nos três anos de avaliação (30,9%, 44,8% e 54,4%. As características morfológicas não se correlacionaram com a poliembrionia. A cultura in vitro possibilita que todos os embriões de cada semente cresçam, favorecendo os seedlings identificados como zigóticos. Nas sementes poliembriônicas e monoembriônicas, 25,9% e 87,5% dos seedlings, respectivamente, originaram-se sexualmente. Nem todos os seedlings zigóticos foram produzidos por embriões localizados no micrófilo das sementes poliembriônicas.

  9. The impact of the herbicide atrazine on growth and photosynthesis of seagrass, Zostera marina (L.), seedlings

    International Nuclear Information System (INIS)

    Gao Yaping; Fang Jianguang; Zhang Jihong; Ren Lihua; Mao Yuze; Li Bin; Zhang Mingliang; Liu Dinghai; Du Meirong

    2011-01-01

    Highlights: → Impact of the widely used herbicide atrazine on eelgrass seedlings was studied. → Atrazine presents a threat to eelgrass seedlings growth and photosynthesis. → The impact of atrazine on eelgrass seedlings is much higher than for adult plants. - Abstract: The impact of the widely used herbicide atrazine on seedling growth and photosynthesis of eelgrass was determined. The long-term impact of the herbicide atrazine (1, 10 and 100 μg/L) on growth of eelgrass Zostera marina (L.) seedlings, maintained in outdoor aquaria, was monitored over 4 weeks. Exposure to 10 μg/L atrazine resulted in significantly lower plant fresh weight and total chlorophyll concentration and up to 86.67% mortality at the 100 μg/L concentration. Short-term photosynthetic stress on eelgrass seedlings was determined and compared with adult eelgrass using chlorophyll fluorescence. The effective quantum yield in eelgrass seedlings was significantly depressed at all atrazine concentrations (2, 4, 8, 16, 32 and 64 μg/L) even within 2 h and remained at a lower level than for adult plants for each concentration. These results indicate that atrazine presents a potential threat to seagrass seedling functioning and that the impact is much higher than for adult plants.

  10. Electrical conductivity of the seed soaking solution and soybean seedling emergence

    Directory of Open Access Journals (Sweden)

    Vieira Roberval Daiton

    2004-01-01

    Full Text Available Vigor of soybean [Glycine max (L. Merrill] seeds can be evaluated by measuring the electrical conductivity (EC of the seed soaking solution, which has shown a satisfactory relationship with field seedling emergence, but has not had aproper definition of range yet. This work studies the relationship between EC and soybean seedling emergence both in the field and laboratory conditions, using twenty two seed lots. Seed water content, standard germination and vigor (EC, accelerated aging and cold tests were evaluated under laboratory conditions using -0.03; -0.20; -0.40 and -0.60 MPa matric potentials, and field seedling emergence was also observed. There was direct relationship between EC and field seedling emergence (FE. Under laboratory conditions, a decreasing relationship was found between EC and FE as water content in the substrate decreased. Relationships between these two parameters were also found when -0.03; -0.20 and -0.40 MPa matric potentials were used. EC tests can be used successfully to evaluate soybean seed vigor and identify lots with higher or lower field emergence potential.

  11. Effect on isoflavone of soybean seedlings by 532nm laser irradiation

    Science.gov (United States)

    Tian, J.; Jin, L. H.; Li, J. M.; Shen, B. J.; Wang, C. Y.; Lu, X.; Zhao, X. L.

    2010-02-01

    We took soybeans as experimental substance to study how the 532nm laser with different power density and irradiation time affected the pullulation ratio of the soybeans, average height of seedlings and the isoflavone content of seedlings' cotyledon and laminae. The mechanism that laser pretreatment of soybean seeds could increase the isoflavone content of the seedlings was discussed in such both aspects as the efficiency of the photosynthesis and the activity of a phenylalanine ammonia-lyase (PAL) as an initial enzyme for synthesizing the isoflavone. The results showed that after the soybean seeds were pretreated by laser, the activity of the PAL and the resultants of the photosynthesis such as the sugar of dissolubility, the sucrose, and the amylum all increased with the soybean seeds irradiated by laser in which the effect on the soybean seeds pretreated by 15mW/mm2 laser for 5 min was the most obvious. As a result, the photosynthesis efficiency of the soybean seedlings increased after being pretreated by laser, which might offer the foundation for accumulating a large amount of isoflavone.

  12. Seedling regeneration on decayed pine logs after the deforestation events caused by pine wilt disease

    Directory of Open Access Journals (Sweden)

    Y. Fukasawa

    2016-12-01

    Full Text Available Coarse woody debris (CWD forms an important habitat suitable for tree seedling establishment, and the CWD decay process influences tree seedling community. In Japan, a severe dieback of Pinus densiflora Sieb. & Zucc. caused by pine wilt disease (PWD damaged huge areas of pine stands but creates huge mass of pine CWD. It is important to know the factors influencing seedling colonization on pine CWD and their variations among geographical gradient in Japan to expect forest regeneration in post-PWD stands. I conducted field surveys on the effects of latitude, climates, light condition, decay type of pine logs, and log diameter on tree seedling colonization at ten geographically distinct sites in Japan. In total, 59 tree taxa were recorded as seedlings on pine logs. Among them, 13 species were recorded from more than five sites as adult trees or seedlings and were used for the analyses. A generalized linear model showed that seedling colonization of Pinus densiflora was negatively associated with brown rot in sapwood, while that of Rhus trichocarpa was positively associated with brown rot in heartwood. Regeneration of Ilex macropoda had no relationships with wood decay type but negatively associated with latitude and MAT, while positively with log diameter. These results suggested that wood decay type is a strong determinant of seedling establishment for certain tree species, even at a wide geographical scale; however, the effect is tree species specific.

  13. Inhibiting effect of ponderosa pine seed trees on seedling growth

    Science.gov (United States)

    Philip M. McDonald

    1976-01-01

    Ponderosa pine seed trees, numbering 4, 8, and 12 per acre, were left standing for 9 years after harvest cutting on the Challenge Experimental Forest, Calif. Seedling heights were measured at ages 5, 9, and 14, and for all ages were poorest if within 20 feet of a seed tree. Seedlings 20 feet or less from a seed tree at the ages given lost the equivalent in years of...

  14. Morphological and biological features of seedlings of some Trifolium species

    Directory of Open Access Journals (Sweden)

    Valentina A. Kalinkina

    2013-04-01

    Full Text Available The author conducted morphological and biological characteristics of seedlings of six species belonging to three sections: Lupinaster(T. lupinasterL, T. pacificumBobr, T. eximium Steph. Ex. DC., Chronosemium(T. campestre Schreb. and Trifolium (T. arvenseL., T. pratense L. of the genus Trifolium. Dimensional and qualitative morphological characteristics of the main structural elements of the seedlings of these species are represented in the article.

  15. Effect of long-term drought on carbon allocation and nitrogen uptake of Pinus sylvestris seedlings

    Science.gov (United States)

    Pumpanen, Jukka; Aaltonen, Heidi; Lindén, Aki; Köster, Kajar; Biasi, Christina; Heinonsalo, Jussi

    2015-04-01

    Weather extremes such as drought events are expected to increase in the future as a result of climate change. The drought affects the allocation of carbon assimilated by plants e.g. by modifying the root to shoot ratio, amount of fine roots and the amount of mycorrhizal fungal hyphae. We studied the effect of long term drought on the allocation of carbon in a common garden experiment with 4-year-old Pinus sylvestris seedlings. Half of the seedlings were exposed to long-term drought by setting the soil water content close to wilting point for over two growing seasons whereas the other half was grown in soil close to field capacity. We conducted a pulse labelling with 13CO2 in the end of the study by injecting a known amount of 13C enriched CO2 to the seedlings and measuring the CO2 uptake and distribution of 13C to the biomass of the seedlings and to the root and rhizosphere respiration. In addition, we studied the effect of drought on the decomposition of needle litter and uptake of nitrogen by 15N labelled needles buried in the soil in litter bags. The litterbags were collected and harvested in the end of the experiment and the changes in microbial community in the litterbags were studied from the phospholipid fatty acid (PLFA) composition. We also determined the 15N isotope concentrations from the needles of the seedlings to study the effect of drought on the nitrogen uptake of the seedlings. Our results indicate that the drought had a significant effect both on the biomass allocation of the seedlings and on the microbial species composition. The amount of carbon allocated belowground was much higher in the seedlings exposed to drought compared to the control seedlings. The seedlings seemed to adapt their carbon allocation to long-term drought to sustain adequate needle biomass and water uptake. The seedlings also adapted their osmotic potential and photosynthesis capacity to sustain the long-term drought as was indicated by the measurements of osmotic potential

  16. Component optimization of dairy manure vermicompost, straw, and peat in seedling compressed substrates using simplex-centroid design.

    Science.gov (United States)

    Yang, Longyuan; Cao, Hongliang; Yuan, Qiaoxia; Luoa, Shuai; Liu, Zhigang

    2018-03-01

    Vermicomposting is a promising method to disposal dairy manures, and the dairy manure vermicompost (DMV) to replace expensive peat is of high value in the application of seedling compressed substrates. In this research, three main components: DMV, straw, and peat, are conducted in the compressed substrates, and the effect of individual components and the corresponding optimal ratio for the seedling production are significant. To address these issues, the simplex-centroid experimental mixture design is employed, and the cucumber seedling experiment is conducted to evaluate the compressed substrates. Results demonstrated that the mechanical strength and physicochemical properties of compressed substrates for cucumber seedling can be well satisfied with suitable mixture ratio of the components. Moreover, DMV, straw, and peat) could be determined at 0.5917:0.1608:0.2475 when the weight coefficients of the three parameters (shoot length, root dry weight, and aboveground dry weight) were 1:1:1. For different purpose, the optimum ratio can be little changed on the basis of different weight coefficients. Compressed substrate is lump and has certain mechanical strength, produced by application of mechanical pressure to the seedling substrates. It will not harm seedlings when bedding out the seedlings, since the compressed substrate and seedling are bedded out together. However, there is no one using the vermicompost and agricultural waste components of compressed substrate for vegetable seedling production before. Thus, it is important to understand the effect of individual components to seedling production, and to determine the optimal ratio of components.

  17. Jasmonic acid protects etiolated seedlings of Arabidopsis thaliana against herbivorous arthropods.

    Science.gov (United States)

    Boex-Fontvieille, Edouard; Rustgi, Sachin; Von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane

    2016-08-02

    Seed predators can cause mass ingestion of larger seed populations. As well, herbivorous arthropods attempt to attack etiolated seedlings and chose the apical hook for ingestion, aimed at dropping the cotyledons for later consumption. Etiolated seedlings, as we show here, have established an efficient mechanism of protecting their Achilles' heel against these predators, however. Evidence is provided for a role of jasmonic acid (JA) in this largely uncharacterized plant-herbivore interaction during skotomorphogenesis and that this comprises the temporally and spatially tightly controlled synthesis of a cysteine protease inhibitors of the Kunitz family. Interestingly, the same Kunitz protease inhibitor was found to be expressed in flowers of Arabidopsis where endogenous JA levels are high for fertility. Because both the apical hook and inflorescences were preferred isopod targets in JA-deficient plants that could be rescued by exogenously administered JA, our data identify a JA-dependent mechanism of plant arthropod deterrence that is recalled in different organs and at quite different times of plant development.

  18. SEEDLING PRODUCTION OF Hymenaea courbaril L. IN DIFFERENT ENVIRONMENTS, RECIPIENTS AND SUBSTRATE COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    José Luiz Sandes de Carvalho Filho

    2003-01-01

    Full Text Available ABSTRACT: The aim of this work was to evaluate the effect of two environments, differentsubstrate mixtures and two recipient sizes on emergence and seedling development of Hymenaeacourbaril L. Two environments (full sun and environment protected with 50% black screen, foursubstrate mixtures [soil; soil + bovine manure (2:1; soil + sand (1:1 and soil + sand + bovinemanure (1:2:1] and two recipient sizes (11x18cm and 15x20cm plastic bags were tested.Emergency started 20 days after sowing and prolonged till 180 days. Seed emergency reached41% at full sun and 26% in environment protected with 50% black screen. The substrate mixturesoil + sand + bovine manure (1:2:1 can be used for Hymenaea courbaril seedling production in15x20cm plastic bags and full sun environment.

  19. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils

    International Nuclear Information System (INIS)

    Fuentes, David; Disante, Karen B.; Valdecantos, Alejandro; Cortina, Jordi; Ramon Vallejo, V.

    2007-01-01

    We investigated the response of Pinus halepensis seedlings to the application of biosolids enriched with Cu, Ni and Zn on three Mediterranean forest soils under semiarid conditions. One-year-old seedlings were planted in lysimeters on soils developed from marl, limestone and sandstone which were left unamended, amended with biosolids, or amended with biosolids enriched in Cu, Ni and Zn. Enriched biosolids increased plant heavy metal concentration, but always below phytotoxic levels. Seedlings receiving unenriched biosolids showed a weak reduction in Cu and Zn concentration in needles, negatively affecting physiological status during drought. This effect was alleviated by the application of enriched sludge. Sewage sludge with relatively high levels of Cu, Zn and Ni had minor effects on plant performance on our experimental conditions. Results suggest that micronutrient limitations in these soils may be alleviated by the application of biosolids with a higher Cu, Zn and Ni content than those established by current regulations. - Biosolid-borne Cu, Ni and Zn did not show negative effects on Pinus halepensis seedlings performance after application on three Mediterranean forest soils

  20. Effect of CO2 Enrichment on the Growth and Nutrient Uptake of Tomato Seedlings

    Institute of Scientific and Technical Information of China (English)

    LI Juan; ZHOU Jian-Min; DUAN Zeng-Qiang; DU Chang-Wen; WANG Huo-Yan

    2007-01-01

    Exposing tomato seedlings to elevated CO2 concentrations may have potentially profound impacts on the tomato yield and quality. A growth chamber experiment was designed to estimate how different nutrient concentrations influenced the effect of elevated CO2 on the growth and nutrient uptake of tomato seedlings. Tomato (Hezuo 906) was grown in pots placed in controlled growth chambers and was subjected to ambient or elevated CO2 (360 or 720 μL L-1), and four nutrient solutions of different strengths (1/2-, 1/4-, 1/8-, and 1/16-strength Japan Yamazaki nutrient solutions) in a completely randomized design. The results indicated that some agricultural characteristics of the tomato seedlings such as the plant height, stem thickness, total dry and fresh weights of the leaves, stems and roots, the G value (G value = total plant dry weight/seedling age),and the seedling vigor index (seedling vigor index = stem thickness/(plant height × total plant dry weight) increased with the elevated CO2, and the increases were strongly dependent on the nutrient solution concentrations, being greater with higher nutrient solution concentrations. The elevated CO2 did not alter the ratio of root to shoot. The total N, P, K, and C absorbed from all the solutions except P in the 1/8- and 1/16-strength nutrient solutions increased in the elevated CO2 treatment. These results demonstrate that the nutrient demands of the tomato seedlings increased at elevated CO2 concentrations.

  1. Specific effects of certain salts on nitrogen metabolism of young corn seedlings

    Directory of Open Access Journals (Sweden)

    Mohammad Hatata

    2014-01-01

    Full Text Available The effect of sodium and magnesium chlorides and sulphates on nitrogen metabolism of corn seedlings and their constituent parts have been studied. Treatment with all salts led to a decrease in the nitrogen content of the seedling as a whole, and the decrease became more pronounced with the increase of salt concentration, though these concentrations were too low to induce any osmotic action. The same trend of changes was noticed as regards nonprotein-N, whereas the opposite was recorded in reference to the changes; of protein-N. Higher concentrations of the salt solutions led to leaching out of more nonprotein-N than did lower concentrations. The study of the distribution of nitrogenous constituents among the different organs of the seedling showed that while the total-N content of the whole seedling decreased with the increase of salt concentration, the total-N content of the roots decreased markedly, and the total-N content of the tops decreased also but less whereas, the total-N content of the grains increased with the increase of salt concentration as compared with that in the control. As a result of disturbances of nitrogen metabolism under salinization, more ammonia and amides were accumulated in all seedling organs.

  2. Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome

    Directory of Open Access Journals (Sweden)

    Melchinger Albrecht E

    2010-04-01

    Full Text Available Abstract Background The importance of maize for human and animal nutrition, but also as a source for bio-energy is rapidly increasing. Maize yield is a quantitative trait controlled by many genes with small effects, spread throughout the genome. The precise location of the genes and the identity of the gene networks underlying maize grain yield is unknown. The objective of our study was to contribute to the knowledge of these genes and gene networks by transcription profiling with microarrays. Results We assessed the grain yield and grain dry matter content (an indicator for early maturity of 98 maize hybrids in multi-environment field trials. The gene expression in seedlings of the parental inbred lines, which have four different genetic backgrounds, was assessed with genome-scale oligonucleotide arrays. We identified genes associated with grain yield and grain dry matter content using a newly developed two-step correlation approach and found overlapping gene networks for both traits. The underlying metabolic pathways and biological processes were elucidated. Genes involved in sucrose degradation and glycolysis, as well as genes involved in cell expansion and endocycle were found to be associated with grain yield. Conclusions Our results indicate that the capability of providing energy and substrates, as well as expanding the cell at the seedling stage, highly influences the grain yield of hybrids. Knowledge of these genes underlying grain yield in maize can contribute to the development of new high yielding varieties.

  3. Arabidopsis plastidial folylpolyglutamate synthetase is required for seed reserve accumulation and seedling establishment in darkness.

    Directory of Open Access Journals (Sweden)

    Hongyan Meng

    Full Text Available Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3 of the plastidial folylpolyglutamate synthetase gene (AtDFB was defective in seed reserves and skotomorphogenesis. Lower carbon (C and higher nitrogen (N content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3-. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3- conditions, and further enhanced under NO3- limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3- during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3- as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis.

  4. Experiences in the containerized tree seedlings forest nurseries production

    Directory of Open Access Journals (Sweden)

    Eduardo González-Izquierdo

    2014-12-01

    Full Text Available The work summarizes the results of the research carried out by the team of forest nurseries at Sustainable Forest Management Group in Pinar del Río University Forest Research Centre in the last 25 years. The characteristics of seedlings quality are presented, the best growing media, the water management to harden the forest species under the ecological conditions of more and more lingering periods of drought. The studied forest species were: Talipariti elatum (Sw. Fryxell, Pinus tropicalis Morelet , Swietenia mahagon(L.Jacq. Swietenia macrophylla King, Caesalpinia violacea (Mill. Stand, Genipa americana L, Gerascanthus gerascanthoides (Kunth Borhidi y Cedrela odorata L. y Eucalyptus grandis Hill ex Maiden. The main results can be summarized in the following way: the size of the containers oscillates between 90 and 300 cubic centimeters; the growing media combines organic and composted components fundamentally of Pinus caribaea and Eucalyptus ssp bark., with proportions that they vary according to the species and the disposability of these components in the nurseries where the plants take place; for the water management hardening procedures were used by watering in last month of the cultivation. In general the economic analyses demonstrated the decrease of the production costs for seedlings with the employment of this novel technology, the same as their advantages on the traditional technology of seedlings production in polybags: humanization of manpower work in forest nursery, reduction of costs production, improvement of produced seedling quality and productivity increase of their workers.

  5. Freeze injury to roots of southern pine seedlings in the USA | South ...

    African Journals Online (AJOL)

    ... and therefore root injury was often overlooked. Many freeze-injured seedlings died within two months of the freeze event. Since freeze injury symptoms to roots were overlooked, foresters offered various reasons (other than the freeze) for the poor seedling performance. Keywords: acclimation, frost, nursery, Pinus elliottii, ...

  6. Project 722: Seedling diseases of sugar beet – diversity and host interactions

    Science.gov (United States)

    In five years of testing, Rhizoctonia solani and Fusarium spp. were commonly isolated from infected field-isolated diseased sugar beet seedlings. Which fungus is more commonly isolated from seedlings has varied over the seasons. For example, R. solani was the most frequently isolated pathogen in 201...

  7. Seed size effects on the response of seedlings of Acacia asak (Forssk.) Willd to water stress

    International Nuclear Information System (INIS)

    El Atta, H.A.; Areef, I.M.; Ahmed, A.I.

    2016-01-01

    Dry tropical forests are characterized by unpredictable spells of drought and climate change. Saudi Arabia mostly falls within the arid zone and some few scattered areas fall in the semiarid zone mainly in the South Western region. Rainfall is sparse and with sporadic distribution. Drought is the most critical factor for restoration of the tree cover. Within a tree, seeds vary in size from large to small seeds. Although several researchers have studied the effect of within species variation in seed size on seedlings growth parameters, however there is a lack of knowledge regarding the effect of seed size on stress tolerance (Khurana and Singh 2000). We assumed that seedlings grown from different seed sizes from the same tree species may influence their response to water stress. Seeds of Acacia asak (Forssk.) Willd. were categorized into large, medium and small seeds on the basis of the seed weight. Seedlings from the three seed sizes were grown in potted soil and subjected to 5 levels of field water capacity (FC) (100, 75, 50, 25 and 15 percent) in the greenhouse. The Objective was to evaluate the response of seedling grown (from different seed sizes) to water stress and to understand the acclimation of seedlings to water stress. Water stress significantly reduced RWC, leaf area, and shoot length, fresh and dry weight. Significant correlations between growth parameters and water stress level were recorded. Seedlings from large seeds were heavier and comparatively less affected by drought compared to seedlings from smaller seeds. In all seedlings root length increased significantly and more biomass was allocated to roots than to shoots. However, at severe water stress (15 percent FC) no significant differences were reported between the three seedling categories. Therefore, raising of seedlings from large seeds is more appropriate for tree restoration programs under drought conditions. (author)

  8. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings.

    Science.gov (United States)

    Srivastava, Rajneesh Kumar; Pandey, Poonam; Rajpoot, Ritika; Rani, Anjana; Dubey, R S

    2014-09-01

    Interactive effects of two heavy metal pollutants Cd and Pb in the growth medium were examined on their uptake, production of reactive oxygen species (ROS), induction of oxidative stress and antioxidative defence responses in Indica rice (Oryza sativa L.) seedlings. When rice seedlings in sand culture were exposed to 150 μM Cd (NO3)2 or 600 μM Pb (CH3COO)2 individually or in combination for 8-16 days, a significant reduction in root/shoot length, fresh weight, relative water content, photosynthetic pigments and increased production of ROS (O2˙- and H2O2) was observed. Both Cd and Pb were readily taken up by rice roots and localisation of absorbed metals was greater in roots than in shoots. When present together in the growth medium, uptake of both the metals Cd and Pb declined by 25-40%. Scanning electron microscope (SEM) imaging of leaf stomata revealed that Pb caused more distortion in the shape of guard cells than Cd. Dithizone staining of roots showed localisation of absorbed Cd on root hairs and epidermal cells. Both Cd and Pb caused increased lipid peroxidation, protein carbonylation, decline in protein thiol and increase in non-protein thiol. The level of reduced forms of non-enzymic antioxidants glutathione (GSH) and ascorbate (AsA) and their redox ratios (GSH/AsA) declined, whereas the activities of antioxidative enzymes superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased in metal treated seedlings compared to controls. In-gel activity staining also revealed increased intensities of SOD and GPX isoforms with metal treatments. Catalase (CAT) activity increased during early days (8 days) of metal exposure and declined by 16 days. Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium.

  9. Relationships between soluble sugar concentrations in roots and ecosystem stress for first-year sugar maple seedlings

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.W.; Reed, D.D.; Jurgensen, M.F.; Mroz, G.D.; Bagley, S.T. [Michigan Technological University, Houghton, MI (United States). School of Forestry and Wood Products

    1996-03-01

    Accumulation of reducing sugars (i.e. glucose and fructose) in plant roots has been consistently correlated with forest dieback and decline and, therefore, has potential as a biological indicator of ecosystem stress. In this study, the relationships between acidic deposition and `natural` (temperature, mycorrhizae, and nutrition) factors with first-year sugar maple seedling root sugar concentrations and growth were assessed in two sugar maple dominated forests in Michigan. Seedlings at the southern site (Wellston) had greater root growth, phosphorus, total sugar, and sucrose concentrations in roots, but lower reducing sugar concentration in roots. In addition, percent root length colonized by vesicular-arbuscular mycorrhizal fungi was less than that found for seedlings growing at the northern site (Alberta). Throughfall deposition of nitrate, sulfate, and hydrogen ions was not significantly correlated with seedling total or reducing sugar concentration. Total sugar concentration in seedling roots was positively correlated with air and soil temperatures at the southern site, but not at the northern site. Seedling tissue phosphorus concentration was correlated with total sugars at both sites, with sucrose at the southern site, and reducing sugars at the northern site. Mycorrhizal colonization rates at the Alberta site were positively correlated with reducing sugar concentration in seedling roots and negatively correlated with sucrose concentration. The results suggest that differences in seedling root sugar concentrations in these two forests are related to seedling root growth and are most likely due to ecological variables, such as available soil phosphorus, temperature, and growing season length through some complex interaction with mycorrhizae rather than acidic deposition stress. 56 refs., 3 figs.

  10. Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone.

    Science.gov (United States)

    Tingstad, Lise; Olsen, Siri Lie; Klanderud, Kari; Vandvik, Vigdis; Ohlson, Mikael

    2015-10-01

    Seedling recruitment is a critical life history stage for trees, and successful recruitment is tightly linked to both abiotic factors and biotic interactions. In order to better understand how tree species' distributions may change in response to anticipated climate change, more knowledge of the effects of complex climate and biotic interactions is needed. We conducted a seed-sowing experiment to investigate how temperature, precipitation and biotic interactions impact recruitment of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings in southern Norway. Seeds were sown into intact vegetation and experimentally created gaps. To study the combined effects of temperature and precipitation, the experiment was replicated across 12 sites, spanning a natural climate gradient from boreal to alpine and from sub-continental to oceanic. Seedling emergence and survival were assessed 12 and 16 months after sowing, respectively, and above-ground biomass and height were determined at the end of the experiment. Interestingly, very few seedlings were detected in the boreal sites, and the highest number of seedlings emerged and established in the alpine sites, indicating that low temperature did not limit seedling recruitment. Site precipitation had an overall positive effect on seedling recruitment, especially at intermediate precipitation levels. Seedling emergence, establishment and biomass were higher in gap plots compared to intact vegetation at all temperature levels. These results suggest that biotic interactions in the form of competition may be more important than temperature as a limiting factor for tree seedling recruitment in the sub- and low-alpine zone of southern Norway.

  11. Produce of seedlings of cedar in function of types of container and fertilization sources

    Directory of Open Access Journals (Sweden)

    Osmar Henrique de Castro Pias

    2015-06-01

    Full Text Available The aim of this study was to evaluate the production of cedar seedlings according to the size of containers and nutrient sources. It was tested three types of containers (Root trainers, plastic bag and plastic vase, three sources of fertilization (Conventional, Kimcoat® and Osmocote® in seven evaluations. The cedar seedlings in root trainers, fertilized with source Osmocote® presented the greatest increments in height and stem diameter when compared to another sources of fertilization. The plastic bag and plastic vase containers promoted similar seedlings height growth. However the seedlings grown in plastic vase presented greatest growth in stem diameter when compared with the ones in plastic bag.

  12. Effect of elevated CO2 concentration on growth course of tree seed-lings in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    One-year-old seedlings of Pinus koraiensis, Pinus sylvestriformis, Phellodendron amurense were grown in open-top chambers (OTCs) with 700 and 500 mmol/mol CO2 concentrations, control chamber and on open site (ambient CO2, about 350 mmol/mol CO2) respectively at the Open Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, and the growth course responses of three species to elevated CO2 and temperature during one growing season was studied from May to Oct. 1999. The results showed that increase in CO2 concentration enhanced the growth of seedlings and the effect of 700 mmol/mol CO2 was more remarkable than 500 mmol/mol CO2 on seedling growth. Under the condition of doubly elevated CO2 concentration, the biomass increased by 38% in average for coniferous seedlings and 60% for broad-leaved seedlings. With continuous treatment of high CO2 concentration, the monthly-accumulated biomass of shade-tolerant Pinus koraiensis seedlings was bigger in July than in August and September, while those of Pinus sylvestriformis and Phellodendron amurense seedlings showed an increase in July and August, or did not decrese until September. During the hot August, high CO2 concentration enhanced the growth of Pinus koraiensis seedlings by increasing temperature, but it did not show dominance in other two species.

  13. Low power continuous wave-laser seed irradiation effect on Moringa oleifera germination, seedling growth and biochemical attributes.

    Science.gov (United States)

    Urva; Shafique, Hina; Jamil, Yasir; Haq, Zia Ul; Mujahid, Tamveel; Khan, Aman Ullah; Iqbal, Munawar; Abbas, Mazhar

    2017-05-01

    Recently, laser application in agriculture has gained much attention since plant characteristics were improved significantly in response of pre-sowing seed treatment. Pre-sowing laser seed treatment effects on germination, seedling growth and mineral profile were studied in Moringa olifera. M. olifera healthy seeds were exposed to 25, 50, 75mJ low power continuous wave laser light and grown under greenhouse conditions. The seedling growth and biochemical attributes were evaluated from 10-day-old seedlings. The germination parameters (percentage, mean germination time), vigor index, seedling growth (root length, seedling length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight) enhanced considerably. The laser energy levels used for seed irradiation showed variable effects on germination, seedling growth and mineral profile. The mineral contents were recorded to be higher in seedling raised from laser treated seeds, which were higher in roots versus shoots and leaves. The effect of laser treatment on seedling fat, nitrogen and protein content was insignificant and at higher energy level both nitrogen and protein contents decreased versus control. Results revealed that M. olifera germination, seedling growth and mineral contents were enhanced and optimum laser energy level has more acceleratory effect since at three laser energy levels the responses were significantly different. Overall the laser energy levels effect on germination and seedling growth was found in following order; 75mJ>50mJ>25mJ, where as in case of fat, protein and nitrogen contents the trend was as; 25mJ>50mJ and 75mJ. However, this technique could possibly be used to improve the M. olifera germination, seedling growth, and minerals contents where germination is low due to unfavorable conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Root system architecture: The invisible trait in container longleaf pine seedlings

    Science.gov (United States)

    Shi-Jean Susana Sung; R. Kasten Dumroese

    2013-01-01

    Longleaf pine (Pinus palustris Mill.) seedlings cultured in four cavity volumes (60 to 336 ml [3.7 to 20.5 cubic inches]), two root pruning treatments (with or without copper coating), and 3 nitrogen levels (low to high) were grown for 29 weeks before they were outplanted into an open area in central Louisiana. Twenty-two months after outplanting, 3 seedlings were...

  15. RESULTS ON THE EFFECT OF DIFFERENT TYPES OF ROMANIAN NATIVE PEAT BIO COMPOSITES POTS ON SEEDLING GROWTH

    Directory of Open Access Journals (Sweden)

    Florina Uleanu

    2013-07-01

    Full Text Available Seedlings production is an important link in vegetable culture because many vegetables species are grown by producing prior of seedlings. The theme work is in line with Western trends to produce seedlings by integrating new vegetables technologies, profitable, with positive effect on limiting pathogens to obtain seedlings, using biodegradable pots. Were conducted various observations and measurements on plants when they have reached the optimum phase for planting. We have determined: height of seedlings, root length, leaf number, root volume total weight, weight of the aerial and weight of roots. The obtained data was calculated and considered as average / variant.

  16. Gas exchange, phisiological indexes and ionic accumulation in Annona emarginata (Schltdl. H. Rainer seedlings in nutrients solution

    Directory of Open Access Journals (Sweden)

    Daniel Baron

    2013-06-01

    Full Text Available "Araticum-de-terra-fria" (Annona emarginata (Schltdl. H. Rainer has been consider a good alternative in rootstock production for the main commercial Annonaceae species. Although this species develops in different soil and climate conditions, there is no understanding by the physiological responses of this species at different nutritional levels. Thus, the objective of this study was to evaluate the influence of different ionic strengths on development of vegetative species known as "Araticum-de-terra-fria". It was evaluated in seedlings grown in different ionic strengths (25% I, 50% I, 75% I and 100% I of the complete nutrient solution Hoagland and Arnon (1950 nº 2, for 140 days, the following characteristics: Gas Exchange (CO2 assimilation rate, stomatal conductance, internal CO2 concentration, transpiration rate, water use efficiency, Rubisco carboxylation efficiency; Vegetative growth characteristics (diameter, leaf number, dry matter; Physiological Indexes (leaf area ratio, specific leaf area, relative growth rate, net assimilation rate, leaf weight ratio and Ionic Accumulation (nutrients leaf analysis. Seedlings grown under 50% I showed the highest values of Leaf CO2 assimilation rate, water use efficiency, carboxylation efficiency, growth, relative growth rate, net assimilation rate and ionic accumulation in the total dry matter. So it is concluded that "Araticum-de-terra-fria" seedlings grown under intermediate nutrient concentrations of complete nutrient solution Hoagland and Arnon (1950 nº 2, explored more adequately their physiological potential that justify their adaptation in different nutritional conditions and allow reducing the amount of mineral nutrition of seedlings production.

  17. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    Science.gov (United States)

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  18. Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Esringu, Aslıhan; Aksakal, Ozkan; Tabay, Dilruba; Kara, Ayse Aydan

    2016-01-01

    Ultraviolet-B (UV-B) radiation is one of the most important abiotic stress factors that could influence plant growth, development, and productivity. Nitric oxide (NO) is an important plant growth regulator involved in a wide variety of physiological processes. In the present study, the possibility of enhancing UV-B stress tolerance of lettuce seedlings by the exogenous application of sodium nitroprusside (SNP) was investigated. UV-B radiation increased the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and total phenolic concentrations, antioxidant capacity, and expression of phenylalanine ammonia lyase (PAL) gene in seedlings, but the combination of SNP pretreatment and UV-B enhanced antioxidant enzyme activities, total phenolic concentrations, antioxidant capacity, and PAL gene expression even more. Moreover, UV-B radiation significantly inhibited chlorophylls, carotenoid, gibberellic acid (GA), and indole-3-acetic acid (IAA) contents and increased the contents of abscisic acid (ABA), salicylic acid (SA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radical (O2•(-)) in lettuce seedlings. When SNP pretreatment was combined with the UV-B radiation, we observed alleviated chlorophylls, carotenoid, GA, and IAA inhibition and decreased content of ABA, SA, MDA, H2O2, and O2•(-) in comparison to non-pretreated stressed seedlings.

  19. Short dry spells in the wet season increase mortality of tropical pioneer seedlings.

    Science.gov (United States)

    Engelbrecht, Bettina M J; Dalling, James W; Pearson, Timothy R H; Wolf, Robert L; Gálvez, David A; Koehler, Tobias; Tyree, Melvin T; Kursar, Thomas A

    2006-06-01

    Variation in plant species performance in response to water availability offers a potential axis for temporal and spatial habitat partitioning and may therefore affect community composition in tropical forests. We hypothesized that short dry spells during the wet season are a significant source of mortality for the newly emerging seedlings of pioneer species that recruit in treefall gaps in tropical forests. An analysis of a 49-year rainfall record for three forests across a rainfall gradient in central Panama confirmed that dry spells of > or = 10 days during the wet season occur on average once a year in a deciduous forest, and once every other year in a semi-deciduous moist and an evergreen wet forest. The effect of wet season dry spells on the recruitment of pioneers was investigated by comparing seedling survival in rain-protected dry plots and irrigated control plots in four large artificially created treefall gaps in a semi-deciduous tropical forest. In rain-protected plots surface soil layers dried rapidly, leading to a strong gradient in water potential within the upper 10 cm of soil. Seedling survival for six pioneer species was significantly lower in rain-protected than in irrigated control plots after only 4 days. The strength of the irrigation effect differed among species, and first became apparent 3-10 days after treatments started. Root allocation patterns were significantly, or marginally significantly, different between species and between two groups of larger and smaller seeded species. However, they were not correlated with seedling drought sensitivity, suggesting allocation is not a key trait for drought sensitivity in pioneer seedlings. Our data provide strong evidence that short dry spells in the wet season differentially affect seedling survivorship of pioneer species, and may therefore have important implications to seedling demography and community dynamics.

  20. Seedling establishment in a masting desert shrub parallels the pattern for forest trees

    Science.gov (United States)

    Meyer, Susan E.; Pendleton, Burton K.

    2015-05-01

    The masting phenomenon along with its accompanying suite of seedling adaptive traits has been well studied in forest trees but has rarely been examined in desert shrubs. Blackbrush (Coleogyne ramosissima) is a regionally dominant North American desert shrub whose seeds are produced in mast events and scatter-hoarded by rodents. We followed the fate of seedlings in intact stands vs. small-scale disturbances at four contrasting sites for nine growing seasons following emergence after a mast year. The primary cause of first-year mortality was post-emergence cache excavation and seedling predation, with contrasting impacts at sites with different heteromyid rodent seed predators. Long-term establishment patterns were strongly affected by rodent activity in the weeks following emergence. Survivorship curves generally showed decreased mortality risk with age but differed among sites even after the first year. There were no detectable effects of inter-annual precipitation variability or site climatic differences on survival. Intraspecific competition from conspecific adults had strong impacts on survival and growth, both of which were higher on small-scale disturbances, but similar in openings and under shrub crowns in intact stands. This suggests that adult plants preempted soil resources in the interspaces. Aside from effects on seedling predation, there was little evidence for facilitation or interference beneath adult plant crowns. Plants in intact stands were still small and clearly juvenile after nine years, showing that blackbrush forms cohorts of suppressed plants similar to the seedling banks of closed forests. Seedling banks function in the absence of a persistent seed bank in replacement after adult plant death (gap formation), which is temporally uncoupled from masting and associated recruitment events. This study demonstrates that the seedling establishment syndrome associated with masting has evolved in desert shrublands as well as in forests.