WorldWideScience

Sample records for early endosomes reveals

  1. Conformational biosensors reveal GPCR signalling from endosomes

    DEFF Research Database (Denmark)

    Irannejad, R; Tomshine, Jin C; Tomshine, Jon R

    2013-01-01

    A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited...... or no subcellular resolution. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins, or GPCR activation elicits a discrete form of persistent G protein signalling, or that internalized GPCRs can indeed contribute...... in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane...

  2. The p25 Subunit of the Dynactin Complex is Required for Dynein-Early Endosome Interaction

    Science.gov (United States)

    2011-01-01

    early endosome movement. In filamentous hyphae , dynein powers the minus end–directed movement of early endosomes (Steinberg and Schuster 2011...observed in time-lapse sequences (Video 1; Abenza et al., 2009). In still images, early endosomes were seen to distribute along the hyphae (Fig. 2 A...nuclear distribution along elongated hyphae and also for the microtubule minus end–directed movement of early endosomes away from the tip (Morris

  3. Promyelocytic leukemia bodies tether to early endosomes during mitosis.

    Science.gov (United States)

    Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove

    2014-01-01

    During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.

  4. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi

    Science.gov (United States)

    McKenzie, Jenna E.; Raisley, Brent; Zhou, Xin; Naslavsky, Naava; Taguchi, Tomohiko; Caplan, Steve; Sheff, David

    2012-01-01

    Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB. PMID:22540229

  5. Small Molecules for Early Endosome-Specific Patch Clamping.

    Science.gov (United States)

    Chen, Cheng-Chang; Butz, Elisabeth S; Chao, Yu-Kai; Grishchuk, Yulia; Becker, Lars; Heller, Stefan; Slaugenhaupt, Susan A; Biel, Martin; Wahl-Schott, Christian; Grimm, Christian

    2017-07-20

    To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A Role for EHD4 in the Regulation of Early Endosomal Transport

    Science.gov (United States)

    Sharma, Mahak; Naslavsky, Naava; Caplan, Steve

    2009-01-01

    All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway. PMID:18331452

  7. IL4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent

    International Nuclear Information System (INIS)

    Wainszelbaum, Marisa J.; Proctor, Brandon M.; Pontow, Suzanne E.; Stahl, Philip D.; Barbieri, M. Alejandro

    2006-01-01

    The endosomal compartment and the plasma membrane form a complex partnership that controls signal transduction and trafficking of different molecules. The specificity and functionality of the early endocytic pathway are regulated by a growing number of Rab GTPases, particularly Rab5. In this study, we demonstrate that IL4 (a Th-2 cytokine) and prostaglandin E 2 (PGE 2 ) synergistically induce Rab5 and several Rab effector proteins, including Rin1 and EEA1, and promote the formation of an enlarged early endocytic (EEE) compartment. Endosome enlargement is linked to a substantial induction of the mannose receptor (MR), a well-characterized macrophage endocytic receptor. Both MR levels and MR-mediated endocytosis are enhanced approximately 7-fold. Fluid-phase endocytosis is also elevated in treated cells. Light microscopy and fractionation studies reveal that MR colocalizes predominantly with Rab5a and partially with Rab11, an endosomal recycling pathway marker. Using retroviral expression of Rab5a:S34N, a dominant negative mutant, and siRNA Rab5a silencing, we demonstrate that Rab5a is essential for the large endosome phenotype and for localization of MR in these structures. We speculate that the EEE is maintained by activated Rab5, and that the EEE phenotype is part of some macrophage developmental program such as cell fusion, a characteristic of IL4-stimulated cells

  8. Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in rab11-positive endosomes

    Czech Academy of Sciences Publication Activity Database

    Liebl, D.; Difato, F.; Horníková, L.; Mannová, P.; Štokrová, Jitka; Forstová, J.

    2006-01-01

    Roč. 80, č. 9 (2006), s. 4610-4622 ISSN 0022-538X R&D Projects: GA ČR(CZ) GA204/03/0593; GA MŠk(CZ) LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : Polyomavirus internalization and trafficking * Early endosomes * Dependence of infection on endosomal pH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.341, year: 2006

  9. Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hirokazu Tanaka

    2013-05-01

    Full Text Available PIN-FORMED (PIN proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking. BEN1 and BEN2 are collectively required for polar PIN localization, for their dynamic repolarization, and consequently for auxin activity gradient formation and auxin-related developmental processes including embryonic patterning, organogenesis, and vasculature venation patterning. These results show that early endosomal trafficking is crucial for cell polarity and auxin-dependent regulation of plant architecture.

  10. Acid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression.

    Science.gov (United States)

    Schwartz, Verena; Friedrich, Katharina; Polleichtner, Georg; Gründer, Stefan

    2015-12-15

    Acid-sensing ion channels (ASICs) are voltage-independent proton-gated amiloride sensitive sodium channels, belonging to the DEG/ENaC gene family. Six different ASICs have been identified (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4) that are activated by a drop in extracellular pH, either as homo- or heteromers. An exception is ASIC4, which is not activated by protons as a homomer and which does not contribute to functional heteromeric ASICs. Insensitivity of ASIC4 to protons and its comparatively low sequence identity to other ASICs (45%) raises the question whether ASIC4 may have different functions than other ASICs. In this study, we therefore investigated the subcellular localization of ASIC4 in heterologous cell lines, which revealed a surprising accumulation of the channel in early endosome-related vacuoles. Moreover, we identified an unique amino-terminal motif as important for forward-trafficking from the ER/Golgi to the early endosome-related compartment. Collectively, our results show that heterologously expressed ASIC4 predominantly resides in an intracellular endosomal compartment.

  11. Altered neurological function in mice immunized with early endosome antigen 1

    Directory of Open Access Journals (Sweden)

    Fritzler Marvin J

    2004-01-01

    Full Text Available Abstract Background Autoantibodies directed against the 160 kDa endosome protein early endosome antigen 1 (EEA1 are seen in patients with neurological diseases. To determine if antibodies to EEA1 have a neuropathological effect, mice from three major histocompatability haplotype backgrounds (H2q, H2b and H2d were immunized with EEA1 (amino acids 82–1411 that was previously shown to contain the target EEA1 epitopes. The mice were then subjected to five neuro-behavioural tests: grid walking, forelimb strength, open field, reaching and rotarod. Results The immunized SWR/J mice with sustained anti-EEA1 antibodies had significantly reduced forelimb strength than the control non-immune mice of the same strain, and BALB/CJ immune mice demonstrated significantly more forelimb errors on the grid walk test than the control group. Conclusions Antibodies to recombinant EEA1 in mice may mediate neurological deficits that are consistent with clinical features of some humans that spontaneously develop anti-EEA1 autoantibodies.

  12. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    Science.gov (United States)

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  13. Peroxisomes, lipid droplets, and endoplasmic reticulum "hitchhike" on motile early endosomes.

    Science.gov (United States)

    Guimaraes, Sofia C; Schuster, Martin; Bielska, Ewa; Dagdas, Gulay; Kilaru, Sreedhar; Meadows, Ben R A; Schrader, Michael; Steinberg, Gero

    2015-12-07

    Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3- and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell. © 2015 Guimaraes et al.

  14. Membrane Tethering Complexes in the Endosomal System

    OpenAIRE

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is...

  15. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar CellsSummary

    Directory of Open Access Journals (Sweden)

    Scott W. Messenger

    2015-11-01

    Full Text Available Background & Aims: Pancreatic acinar cells have an expanded apical endosomal system, the physiologic and pathophysiologic significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate [PI(3,5P2] is an essential phospholipid generated by phosphatidylinositol 3-phosphate 5-kinase (PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI3P. PI(3,5P2 is necessary for maturation of early endosomes (EE to late endosomes (LE. Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Methods: Inhibition of EE to LE trafficking was achieved using pharmacologic inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1, and trypsinogen activation in response to supramaximal cholecystokinin (CCK-8, bile acids, and cigarette toxin was determined. Results: PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to supramaximal CCK-8, tobacco toxin, and bile salts in both rodent and human acini. Conclusions: These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular

  16. Rabies virus co-localizes with early (Rab5) and late (Rab7) endosomal proteins in neuronal and SH-SY5Y cells.

    Science.gov (United States)

    Ahmad, Waqas; Li, Yingying; Guo, Yidi; Wang, Xinyu; Duan, Ming; Guan, Zhenhong; Liu, Zengshan; Zhang, Maolin

    2017-06-01

    Rabies virus (RABV) is a highly neurotropic virus that follows clathrin-mediated endocytosis and pH-dependent pathway for trafficking and invasion into endothelial cells. Early (Rab5, EEA1) and late (Rab7, LAMP1) endosomal proteins play critical roles in endosomal sorting, maturity and targeting various molecular cargoes, but their precise functions in the early stage of RABV neuronal infection remain elusive. In this study, the relationship between enigmatic entry of RABV with these endosomal proteins into neuronal and SH-SY5Y cells was investigated. Immunofluorescence, TCID 50 titers, electron microscopy and western blotting were carried out to determine the molecular interaction of the nucleoprotein (N) of RABV with early or late endosomal proteins in these cell lines. The expression of N was also determined by down-regulating Rab5 and Rab7 in both cell lines through RNA interference. The results were indicative that N proficiently colocalized with Rab5/EEA1 and Rab7/LAMP1 in both cell lines at 24 and 48 h post-infection, while N titers significantly decreased in early infection of RABV. Down-regulation of Rab5 and Rab7 did not inhibit N expression, but it prevented productive infection via blocking the normal trafficking of RABV in a low pH environment. Ultrathin sections of cells studied by electron microscope also verified the close association of RABV with Rab5 and Rab7 in neurons. From the data it was concluded that primary entry of RABV strongly correlates with the kinetics of Rab-proteins present on early and late vesicles, which provides helpful clues to explain the early events of RABV in nerve cells.

  17. Endocytosis and Endosomal Trafficking in Plants.

    Science.gov (United States)

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  18. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  19. Early etiology of Alzheimer's disease: tipping the balance toward autophagy or endosomal dysfunction?

    Science.gov (United States)

    Peric, Aleksandar; Annaert, Wim

    2015-03-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. This brain neuropathology is characterized by a progressive synaptic dysfunction and neuronal loss, which lead to decline in memory and other cognitive functions. Histopathologically, AD manifests via synaptic abnormalities, neuronal degeneration as well as the deposition of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. While the exact pathogenic contribution of these two AD hallmarks and their abundant constituents [aggregation-prone amyloid β (Aβ) peptide species and hyperphosphorylated tau protein, respectively] remain debated, a growing body of evidence suggests that their development may be paralleled or even preceded by the alterations/dysfunctions in the endolysosomal and the autophagic system. In AD-affected neurons, abnormalities in these cellular pathways are readily observed already at early stages of disease development, and even though many studies agree that defective lysosomal degradation may relate to or even underlie some of these deficits, specific upstream molecular defects are still deliberated. In this review we summarize various pathogenic events that may lead to these cellular abnormalities, in light of our current understanding of molecular mechanisms that govern AD progression. In addition, we also highlight the increasing evidence supporting mutual functional dependence of the endolysosomal trafficking and autophagy, in particular focusing on those molecules and processes which may be of significance to AD.

  20. PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading.

    Science.gov (United States)

    Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J

    2001-09-18

    It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.

  1. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    Science.gov (United States)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  2. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494

    Science.gov (United States)

    Verma, Jitender Kumar; Rastogi, Ruchir

    2017-01-01

    Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment. PMID:28650977

  3. On the entry of an emerging arbovirus into host cells: Mayaro virus takes the highway to the cytoplasm through fusion with early endosomes and caveolae-derived vesicles

    Directory of Open Access Journals (Sweden)

    Carlos A.M. Carvalho

    2017-04-01

    Full Text Available Mayaro virus (MAYV is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell.

  4. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking.

    Directory of Open Access Journals (Sweden)

    Komla Sobo

    Full Text Available BACKGROUND: Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2-3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. CONCLUSIONS/SIGNIFICANCE: These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation.

  5. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    Directory of Open Access Journals (Sweden)

    Miranda Arnold

    2016-09-01

    Full Text Available AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3 and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1. Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD and schizophrenia (SZ; yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines, and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse orthologue of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.

  6. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity

    NARCIS (Netherlands)

    van der Kant, Rik; Jonker, Caspar T. H.; Wijdeven, Ruud H.; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques

    2015-01-01

    Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail

  7. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    2010-09-01

    Full Text Available Zaire ebolavirus (ZEBOV, a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new

  8. Molecular assemblies and membrane domains in multivesicular endosome dynamics

    International Nuclear Information System (INIS)

    Falguieres, Thomas; Luyet, Pierre-Philippe; Gruenberg, Jean

    2009-01-01

    Along the degradation pathway, endosomes exhibit a characteristic multivesicular organization, resulting from the budding of vesicles into the endosomal lumen. After endocytosis and transport to early endosomes, activated signaling receptors are incorporated into these intralumenal vesicles through the action of the ESCRT machinery, a process that contributes to terminate signaling. Then, the vesicles and their protein cargo are further transported towards lysosomes for degradation. Evidence also shows that intralumenal vesicles can undergo 'back-fusion' with the late endosome limiting membrane, a route exploited by some pathogens and presumably followed by proteins and lipids that need to be recycled from within the endosomal lumen. This process depends on the late endosomal lipid lysobisphosphatidic acid and its putative effector Alix/AIP1, and is presumably coupled to the invagination of the endosomal limiting membrane at the molecular level via ESCRT proteins. In this review, we discuss the intra-endosomal transport routes in mammalian cells, and in particular the different mechanisms involved in membrane invagination, vesicle formation and fusion in a space inaccessible to proteins known to control intracellular membrane traffic.

  9. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    Science.gov (United States)

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  10. Charcot-Marie-Tooth disease-linked protein SIMPLE functions with the ESCRT machinery in endosomal trafficking

    OpenAIRE

    Lee, Samuel M.; Chin, Lih-Shen; Li, Lian

    2012-01-01

    Mutations in small integral membrane protein of lysosome/late endosome (SIMPLE) cause autosomal dominant, Charcot-Marie-Tooth disease (CMT) type 1C. The cellular function of SIMPLE is unknown and the pathogenic mechanism of SIMPLE mutations remains elusive. Here, we report that SIMPLE interacted and colocalized with endosomal sorting complex required for transport (ESCRT) components STAM1, Hrs, and TSG101 on early endosomes and functioned with the ESCRT machinery in the control of endosome-to...

  11. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin

    Science.gov (United States)

    Chia, Pei Zhi Cheryl; Gasnereau, Isabelle; Lieu, Zi Zhao; Gleeson, Paul A.

    2011-01-01

    The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin–TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail. PMID:21693586

  12. Internal structure of magnetic endosomes

    Science.gov (United States)

    Rivière, C.; Wilhelm, C.; Cousin, F.; Dupuis, V.; Gazeau, F.; Perzynski, R.

    2007-01-01

    The internal structure of biological vesicles filled with magnetic nanoparticles is investigated using the following complementary analyses: electronic transmission microscopy, dynamic probing by magneto-optical birefringence and structural probing by Small Angle Neutron Scattering (SANS). These magnetic vesicles are magnetic endosomes obtained via a non-specific interaction between cells and anionic magnetic iron oxide nanoparticles. Thanks to a magnetic purification process, they are probed at two different stages of their formation within HeLa cells: (i) adsorption of nanoparticles onto the cellular membrane and (ii) their subsequent internalisation within endosomes. Differences in the microenvironment of the magnetic nanoparticles at those two different stages are highlighted here. The dynamics of magnetic nanoparticles adsorbed onto cellular membranes and confined within endosomes is respectively 3 and 5 orders of magnitude slower than for isolated magnetic nanoparticles in aqueous media. Interestingly, SANS experiments show that magnetic endosomes have an internal structure close to decorated vesicles, with magnetic nanoparticles locally decorating the endosome membrane, inside their inner-sphere. These results, important for future biomedical applications, suggest that multiple fusions of decorated vesicles are the biological processes underlying the endocytosis of that kind of nanometric materials.

  13. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking.

    Directory of Open Access Journals (Sweden)

    Carl Haag

    2017-04-01

    Full Text Available In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport.

  14. Effect of diphtheria toxin T-domain on endosomal pH

    Directory of Open Access Journals (Sweden)

    A. J. Labyntsev

    2015-08-01

    Full Text Available A key step in the mode of cytotoxic action of diphtheria toxin (DT is the transfer of its catalytic domain (Cd from endosomes into the cytosol. The main activity in this process is performed by the transport domain (Td, but the molecular mechanism of its action remains unknown. We have previously shown that Td can have some influence on the endosomal transport of DT. The aim of this work was to study the effect of diphtheria toxin on the toxin compartmentalization in the intracellular transporting pathway and endosomal pH. We used recombinant fragments of DT, which differed only by the presence of Td in their structure, fused with fluorescent proteins. It was shown that the toxin fragment with Td moved slower by the pathway early-late endosomes-lysosomes, and had a slightly different pattern of colocalization with endosomal markers than DT fragment without Td. In addition, endosomes containing DT fragments with Td had a constant pH of about 6.5 from the 10th to 50th minute of observation, for the same time endosomes containing DT fragments without Td demons­trated a decrease in pH from 6.3 to 5.5. These results indicate that Td inhibits acidification of endosomal medium. One of possible explanations for this may be the effect of the ion channel formed by the T-domain on the process of the endosomal acidification. This property of Td may not only inhibit maturation of endosomes but also inhibit activation of endosomal pH-dependent proteases, and this promotes successful transport of Cd into the cell cytosol.

  15. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    Science.gov (United States)

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  16. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae

    International Nuclear Information System (INIS)

    Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi; Arioka, Manabu; Kitamoto, Katsuhiko

    2007-01-01

    Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in the wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function

  17. Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction.

    Science.gov (United States)

    Song, Lili; Zhuang, Pengwei; Lin, Mengya; Kang, Mingqin; Liu, Hongyue; Zhang, Yuping; Yang, Zhen; Chen, Yunlong; Zhang, Yanjun

    2017-09-01

    Recently, increasing attention has been paid to diabetic encephalopathy, which is a frequent diabetic complication and affects nearly 30% of diabetics. Because cognitive dysfunction from diabetic encephalopathy might develop into irreversible dementia, early diagnosis and detection of this disease is of great significance for its prevention and treatment. This study is to investigate the early specific metabolites biomarkers in urine prior to the onset of diabetic cognitive dysfunction (DCD) by using metabolomics technology. An ultra-high performance liquid-chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) platform was used to analyze the urine samples from diabetic mice that were associated with mild cognitive impairment (MCI) and nonassociated with MCI in the stage of diabetes (prior to the onset of DCD). We then screened and validated the early biomarkers using OPLS-DA model and support vector machine (SVM) method. Following multivariate statistical and integration analysis, we found that seven metabolites could be accepted as early biomarkers of DCD, and the SVM results showed that the prediction accuracy is as high as 91.66%. The identities of four biomarkers were determined by mass spectrometry. The identified biomarkers were largely involved in nicotinate and nicotinamide metabolism, glutathione metabolism, tryptophan metabolism, and sphingolipid metabolism. The present study first revealed reliable biomarkers for early diagnosis of DCD. It provides new insight and strategy for the early diagnosis and treatment of DCD.

  18. Structural Basis for Endosomal Targeting by the Bro1 Domain

    Science.gov (United States)

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.

    2010-01-01

    Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782

  19. The structure and function of presynaptic endosomes

    Energy Technology Data Exchange (ETDEWEB)

    Jähne, Sebastian, E-mail: sebastian.jaehne1@stud.uni-goettingen.de [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); International Max Planck Research School for Neurosciences, 37077 Göttingen (Germany); Rizzoli, Silvio O. [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); Helm, Martin S., E-mail: martin.helm@med.uni-goettingen.de [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); International Max Planck Research School for Molecular Biology, 37077 Göttingen (Germany)

    2015-07-15

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.

  20. The structure and function of presynaptic endosomes

    International Nuclear Information System (INIS)

    Jähne, Sebastian; Rizzoli, Silvio O.; Helm, Martin S.

    2015-01-01

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures

  1. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production

    Science.gov (United States)

    Toh, Wei Hong; Chia, Pei Zhi Cheryl; Hossain, Mohammed Iqbal; Gleeson, Paul A.

    2018-01-01

    The diversion of the membrane-bound β-site amyloid precursor protein–(APP) cleaving enzyme (BACE1) from the endolysosomal pathway to recycling endosomes represents an important transport step in the regulation of amyloid beta (Aβ) production. However, the mechanisms that regulate endosome sorting of BACE1 are poorly understood. Here we assessed the transport of BACE1 from early to recycling endosomes and have identified essential roles for the sorting nexin 4 (SNX4)-mediated, signal-independent pathway and for a novel signal-mediated pathway. The signal-mediated pathway is regulated by the phosphorylation of the DXXLL-motif sequence DISLL in the cytoplasmic tail of BACE1. The phosphomimetic S498D BACE1 mutant was trafficked to recycling endosomes at a faster rate compared with wild-type BACE1 or the nonphosphorylatable S498A mutant. The rapid transit of BACE1 S498D from early endosomes was coupled with reduced levels of amyloid precursor protein processing and Aβ production, compared with the S498A mutant. We show that the adaptor, GGA1, and retromer are essential to mediate rapid trafficking of phosphorylated BACE1 to recycling endosomes. In addition, the BACE1 DISLL motif is phosphorylated and regulates endosomal trafficking, in primary neurons. Therefore, post-translational phosphorylation of DISLL enhances the exit of BACE1 from early endosomes, a pathway mediated by GGA1 and retromer, which is important in regulating Aβ production. PMID:29142073

  2. The endosomal recycling of FgSnc1 by FgSnx41-FgSnx4 heterodimer is essential for polarized growth and pathogenicity in Fusarium graminearum.

    Science.gov (United States)

    Zheng, Wenhui; Lin, Yahong; Fang, Wenqin; Zhao, Xu; Lou, Yi; Wang, Guanghui; Zheng, Huawei; Liang, Qifu; Abubakar, Yakubu Saddeeq; Olsson, Stefan; Zhou, Jie; Wang, Zonghua

    2018-04-20

    Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  3. Early Neolithic water wells reveal the world's oldest wood architecture.

    Science.gov (United States)

    Tegel, Willy; Elburg, Rengert; Hakelberg, Dietrich; Stäuble, Harald; Büntgen, Ulf

    2012-01-01

    The European Neolithization ~6000-4000 BC represents a pivotal change in human history when farming spread and the mobile style of life of the hunter-foragers was superseded by the agrarian culture. Permanent settlement structures and agricultural production systems required fundamental innovations in technology, subsistence, and resource utilization. Motivation, course, and timing of this transformation, however, remain debatable. Here we present annually resolved and absolutely dated dendroarchaeological information from four wooden water wells of the early Neolithic period that were excavated in Eastern Germany. A total of 151 oak timbers preserved in a waterlogged environment were dated between 5469 and 5098 BC and reveal unexpectedly refined carpentry skills. The recently discovered water wells enable for the first time a detailed insight into the earliest wood architecture and display the technological capabilities of humans ~7000 years ago. The timbered well constructions made of old oak trees feature an unopened tree-ring archive from which annually resolved and absolutely dated environmental data can be culled. Our results question the principle of continuous evolutionary development in prehistoric technology, and contradict the common belief that metal was necessary for complex timber constructions. Early Neolithic craftsmanship now suggests that the first farmers were also the first carpenters.

  4. Early Neolithic water wells reveal the world's oldest wood architecture.

    Directory of Open Access Journals (Sweden)

    Willy Tegel

    Full Text Available The European Neolithization ~6000-4000 BC represents a pivotal change in human history when farming spread and the mobile style of life of the hunter-foragers was superseded by the agrarian culture. Permanent settlement structures and agricultural production systems required fundamental innovations in technology, subsistence, and resource utilization. Motivation, course, and timing of this transformation, however, remain debatable. Here we present annually resolved and absolutely dated dendroarchaeological information from four wooden water wells of the early Neolithic period that were excavated in Eastern Germany. A total of 151 oak timbers preserved in a waterlogged environment were dated between 5469 and 5098 BC and reveal unexpectedly refined carpentry skills. The recently discovered water wells enable for the first time a detailed insight into the earliest wood architecture and display the technological capabilities of humans ~7000 years ago. The timbered well constructions made of old oak trees feature an unopened tree-ring archive from which annually resolved and absolutely dated environmental data can be culled. Our results question the principle of continuous evolutionary development in prehistoric technology, and contradict the common belief that metal was necessary for complex timber constructions. Early Neolithic craftsmanship now suggests that the first farmers were also the first carpenters.

  5. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  6. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Science.gov (United States)

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  7. Comparative genomics of neuroglobin reveals its early origins.

    Directory of Open Access Journals (Sweden)

    Jasmin Dröge

    Full Text Available Neuroglobin (Ngb is a hexacoordinated globin expressed mainly in the central and peripheral nervous system of vertebrates. Although several hypotheses have been put forward regarding the role of neuroglobin, its definite function remains uncertain. Ngb appears to have a neuro-protective role enhancing cell viability under hypoxia and other types of oxidative stress. Ngb is phylogenetically ancient and has a substitution rate nearly four times lower than that of other vertebrate globins, e.g. hemoglobin. Despite its high sequence conservation among vertebrates Ngb seems to be elusive in invertebrates.We determined candidate orthologs in invertebrates and identified a globin of the placozoan Trichoplax adhaerens that is most likely orthologous to vertebrate Ngb and confirmed the orthologous relationship of the polymeric globin of the sea urchin Strongylocentrotus purpuratus to Ngb. The putative orthologous globin genes are located next to genes orthologous to vertebrate POMT2 similarly to localization of vertebrate Ngb. The shared syntenic position of the globins from Trichoplax, the sea urchin and of vertebrate Ngb strongly suggests that they are orthologous. A search for conserved transcription factor binding sites (TFBSs in the promoter regions of the Ngb genes of different vertebrates via phylogenetic footprinting revealed several TFBSs, which may contribute to the specific expression of Ngb, whereas a comparative analysis with myoglobin revealed several common TFBSs, suggestive of regulatory mechanisms common to globin genes.Identification of the placozoan and echinoderm genes orthologous to vertebrate neuroglobin strongly supports the hypothesis of the early evolutionary origin of this globin, as it shows that neuroglobin was already present in the placozoan-bilaterian last common ancestor. Computational determination of the transcription factor binding sites repertoire provides on the one hand a set of transcriptional factors that are

  8. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.

    Directory of Open Access Journals (Sweden)

    Sofie Ignoul

    Full Text Available BACKGROUND: The mammalian CLC protein family comprises nine members (ClC-1 to -7 and ClC-Ka, -Kb that function either as plasma membrane chloride channels or as intracellular chloride/proton antiporters, and that sustain a broad spectrum of cellular processes, such as membrane excitability, transepithelial transport, endocytosis and lysosomal degradation. In this study we focus on human ClC-6, which is structurally most related to the late endosomal/lysomal ClC-7. PRINCIPAL FINDINGS: Using a polyclonal affinity-purified antibody directed against a unique epitope in the ClC-6 COOH-terminal tail, we show that human ClC-6, when transfected in COS-1 cells, is N-glycosylated in a region that is evolutionary poorly conserved between mammalian CLC proteins and that is located between the predicted helices K and M. Three asparagine residues (N410, N422 and N432 have been defined by mutagenesis as acceptor sites for N-glycosylation, but only two of the three sites seem to be simultaneously N-glycosylated. In a differentiated human neuroblastoma cell line (SH-SY5Y, endogenous ClC-6 colocalizes with LAMP-1, a late endosomal/lysosomal marker, but not with early/recycling endosomal markers such as EEA-1 and transferrin receptor. In contrast, when transiently expressed in COS-1 or HeLa cells, human ClC-6 mainly overlaps with markers for early/recycling endosomes (transferrin receptor, EEA-1, Rab5, Rab4 and not with late endosomal/lysosomal markers (LAMP-1, Rab7. Analogously, overexpression of human ClC-6 in SH-SY5Y cells also leads to an early/recycling endosomal localization of the exogenously expressed ClC-6 protein. Finally, in transiently transfected COS-1 cells, ClC-6 copurifies with detergent-resistant membrane fractions, suggesting its partitioning in lipid rafts. Mutating a juxtamembrane string of basic amino acids (amino acids 71-75: KKGRR disturbs the association with detergent-resistant membrane fractions and also affects the segregation of ClC-6

  9. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes

    Science.gov (United States)

    Liu, Ou; Grant, Barth D.

    2015-01-01

    The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361

  10. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  11. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    2016-03-01

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2 and LBPA (lysobisphosphatidic acid, which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1 and coatomer subunit β (β-COP were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality.

  12. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  13. Proteolytic processing of epidermal growth factor within endosomes

    International Nuclear Information System (INIS)

    Gorman, R.M.; Savage, C.R. Jr.; Poretz, R.D.; Schaudies, R.P.

    1986-01-01

    The authors have reported previously that EGF enters 3 biochemically distinct non-lysosomal intracellular compartments prior to detection within lysosomes. Earlier studies have demonstrated that EGF is processes by sequential removal of 1, 4 and 1 aminoacyl residues at the C-terminus. The final form, which lacks the 6 residues, accumulates in secondary lysosomes. After subcellular fractionation of fibroblasts exposed to 125 I-EGF, ligand is detected with 3 non-lysosomal endocytic compartments and is fully processed prior to entrance into secondary lysosome. Following internalization, EGF enters an early endosomal compartment (E 1 ). The composition of the ligand (60%, -1 form; 40%, native form) represents an enhancement of the -1 form relative to that on the plasma membrane following the 90 min, 0 0 binding period. The proportion of different EGF forms in E 1 remains constant through the 2 min pulse and chase periods up to 30 min. However, in the ultimate endosomal compartment, E 4 , the proportion of the -6 form increases from 25% at 15 min to greater than 75% in 30 min, with a concomitant decrease of the -1 and -5 forms. Secondary lysosomes contain an EGF composition similar to that found in E 4 at 30 min. Accordingly, it appears that EGF is processed to the -6 form following passage through E 1 and during its tenure in E 4

  14. Neurotrophin signaling endosomes; biogenesis, regulation, and functions

    Science.gov (United States)

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-01-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  15. The hand of birds revealed by early ostrich embryos

    Science.gov (United States)

    Feduccia, Alan; Nowicki, Julie

    2002-08-01

    The problem of resolving the homology of the digits of the avian hand has been framed as a conflict between paleontological and embryological evidence, the former thought to support a hand composed of digits I, II, III, because of similarity of the phalangeal formulae of the earliest known bird Archaeopteryx to that of Mesozoic pentadactyl archosaurs, while embryological evidence has traditionally favored a II, III, IV avian hand. We have identified the critical developmental period for the major features of the avian skeleton in a primitive bird, the ostrich. Analysis of digit anlagen in the avian hand has revealed those for digits/metacarpals I and V, thus confirming previous embryological studies that indirectly suggested that the avian hand comprises digits II, III, IV, and was primitively pentadactyl.

  16. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1

    Science.gov (United States)

    Renigunta, Vijay; Fischer, Thomas; Zuzarte, Marylou; Kling, Stefan; Zou, Xinle; Siebert, Kai; Limberg, Maren M.; Rinné, Susanne; Decher, Niels; Schlichthörl, Günter; Daut, Jürgen

    2014-01-01

    The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion. PMID:24743596

  17. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection.

    Directory of Open Access Journals (Sweden)

    Andreea Popa

    2015-02-01

    Full Text Available Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.

  19. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array

    NARCIS (Netherlands)

    Schuster, M.; Kilaru, S.; Fink, G.; Collemare, J.A.R.; Roger, Y.; Steinberg, G.

    2011-01-01

    The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to

  20. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    NARCIS (Netherlands)

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; De Sluis, Bart van; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex

  1. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    Directory of Open Access Journals (Sweden)

    Marta Esteves da Silva

    2015-11-01

    Full Text Available Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C or myosin (MyosinV/VI motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.

  2. Heterotrimeric G protein subunits are located on rat liver endosomes

    Directory of Open Access Journals (Sweden)

    Van Dyke Rebecca W

    2004-01-01

    Full Text Available Abstract Background Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors. Results By Western blotting Gsα, Giα1,2, Giα3 and Gβ were enriched in both canalicular (CM and basolateral (BLM membranes but also readily detectable on three types of purified rat liver endosomes in the order recycling receptor compartment (RRC > compartment for uncoupling of receptor and ligand (CURL > multivesicular bodies (MVB >> purified secondary lysosomes. Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma membranes and intracellular organelles indicated this was not due to contamination of endosome preparations by CM or BLM. Adenylate cyclase (AC was also identified on purified CM, BLM, RRC, CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma membrane markers. By confocal microscopy, punctate staining for Gsα, Giα3 and Gβ corresponded to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera toxin-treated livers. Conclusion We conclude that heterotrimeric G protein subunits as well as AC likely traffic into hepatocytes on endosome membranes, possibly generating downstream signals spatially separate from signalling generated at the plasma membrane, analogous to the role(s of internalized insulin receptors.

  3. ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments.

    Science.gov (United States)

    Wu, Yu; Pons, Valérie; Goudet, Amélie; Panigai, Laetitia; Fischer, Annette; Herweg, Jo-Ana; Kali, Sabrina; Davey, Robert A; Laporte, Jérôme; Bouclier, Céline; Yousfi, Rahima; Aubenque, Céline; Merer, Goulven; Gobbo, Emilie; Lopez, Roman; Gillet, Cynthia; Cojean, Sandrine; Popoff, Michel R; Clayette, Pascal; Le Grand, Roger; Boulogne, Claire; Tordo, Noël; Lemichez, Emmanuel; Loiseau, Philippe M; Rudel, Thomas; Sauvaire, Didier; Cintrat, Jean-Christophe; Gillet, Daniel; Barbier, Julien

    2017-11-14

    Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identified the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efficiently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.

  4. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  6. Cholesterol transfer at endosomal-organelle membrane contact sites.

    Science.gov (United States)

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  7. The PDZ protein GIPC regulates trafficking of the LPA1 receptor from APPL signaling endosomes and attenuates the cell's response to LPA.

    Directory of Open Access Journals (Sweden)

    Tal Varsano

    Full Text Available Lysophosphatidic acid (LPA mediates diverse cellular responses through the activation of at least six LPA receptors--LPA(1-6, but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA(1 contains a PDZ binding motif (SVV identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA(1 but not that of other LPA receptors. LPA(1 colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA(1 to EEA1 early endosomes and promoted LPA(1 mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA(1 and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes.

  8. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma.

    Science.gov (United States)

    Naboulsi, Wael; Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Turewicz, Michael; Eisenacher, Martin; Voss, Don Marvin; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2016-01-04

    Hepatocellular carcinoma (HCC) is one of the most aggressive tumors, and the treatment outcome of this disease is improved when the cancer is diagnosed at an early stage. This requires biomarkers allowing an accurate and early tumor diagnosis. To identify potential markers for such applications, we analyzed a patient cohort consisting of 50 patients (50 HCC and 50 adjacent nontumorous tissue samples as controls) using two independent proteomics approaches. We performed label-free discovery analysis on 19 HCC and corresponding tissue samples. The data were analyzed considering events known to take place in early events of HCC development, such as abnormal regulation of Wnt/b-catenin and activation of receptor tyrosine kinases (RTKs). 31 proteins were selected for verification experiments. For this analysis, the second set of the patient cohort (31 HCC and corresponding tissue samples) was analyzed using selected (multiple) reaction monitoring (SRM/MRM). We present the overexpression of ATP-dependent RNA helicase (DDX39), Fibulin-5 (FBLN5), myristoylated alanine-rich C-kinase substrate (MARCKS), and Serpin H1 (SERPINH1) in HCC for the first time. We demonstrate Versican core protein (VCAN) to be significantly associated with well differentiated and low-stage HCC. We revealed for the first time the evidence of VCAN as a potential biomarker for early-HCC diagnosis.

  9. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells

    Directory of Open Access Journals (Sweden)

    Guillaume van Niel

    2015-10-01

    Full Text Available Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.

  10. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  11. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-01-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier. PMID:26123532

  12. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery.

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-30

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds' escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds' cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  13. Shoc2 is targeted to late endosomes and required for Erk1/2 activation in EGF-stimulated cells.

    Directory of Open Access Journals (Sweden)

    Emilia Galperin

    Full Text Available Shoc2 is the putative scaffold protein that interacts with RAS and RAF, and positively regulates signaling to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2. To elucidate the mechanism by which Shoc2 regulates ERK1/2 activation by the epidermal growth factor (EGF receptor (EGFR, we studied subcellular localization of Shoc2. Upon EGFR activation, endogenous Shoc2 and red fluorescent protein tagged Shoc2 were translocated from the cytosol to a subset of late endosomes containing Rab7. The endosomal recruitment of Shoc2 was blocked by overexpression of a GDP-bound H-RAS (N17S mutant and RNAi knockdown of clathrin, suggesting the requirement of RAS activity and clathrin-dependent endocytosis. RNAi depletion of Shoc2 strongly inhibited activation of ERK1/2 by low, physiological EGF concentrations, which was rescued by expression of wild-type recombinant Shoc2. In contrast, the Shoc2 (S2G mutant, that is myristoylated and found in patients with the Noonan-like syndrome, did not rescue ERK1/2 activation in Shoc2-depleted cells. Shoc2 (S2G was not located in late endosomes but was present on the plasma membrane and early endosomes. These data suggest that targeting of Shoc2 to late endosomes may facilitate EGFR-induced ERK activation under physiological conditions of cell stimulation by EGF, and therefore, may be involved in the spatiotemporal regulation of signaling through the RAS-RAF module.

  14. Solo/Trio8, a membrane-associated short isoform of Trio, modulates endosome dynamics and neurite elongation.

    Science.gov (United States)

    Sun, Ying-Jie; Nishikawa, Kaori; Yuda, Hideki; Wang, Yu-Lai; Osaka, Hitoshi; Fukazawa, Nobuna; Naito, Akira; Kudo, Yoshihisa; Wada, Keiji; Aoki, Shunsuke

    2006-09-01

    With DNA microarrays, we identified a gene, termed Solo, that is downregulated in the cerebellum of Purkinje cell degeneration mutant mice. Solo is a mouse homologue of rat Trio8-one of multiple Trio isoforms recently identified in rat brain. Solo/Trio8 contains N-terminal sec14-like and spectrin-like repeat domains followed by a single guanine nucleotide exchange factor 1 (GEF1) domain, but it lacks the C-terminal GEF2, immunoglobulin-like, and kinase domains that are typical of Trio. Solo/Trio8 is predominantly expressed in Purkinje neurons of the mouse brain, and expression begins following birth and increases during Purkinje neuron maturation. We identified a novel C-terminal membrane-anchoring domain in Solo/Trio8 that is required for enhanced green fluorescent protein-Solo/Trio8 localization to early endosomes (positive for both early-endosome antigen 1 [EEA1] and Rab5) in COS-7 cells and primary cultured neurons. Solo/Trio8 overexpression in COS-7 cells augmented the EEA1-positive early-endosome pool, and this effect was abolished via mutation and inactivation of the GEF domain or deletion of the C-terminal membrane-anchoring domain. Moreover, primary cultured neurons transfected with Solo/Trio8 showed increased neurite elongation that was dependent on these domains. These results suggest that Solo/Trio8 acts as an early-endosome-specific upstream activator of Rho family GTPases for neurite elongation of developing Purkinje neurons.

  15. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    Science.gov (United States)

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  16. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.; Betts, Laurie; Sondek, John E.; Dohlman, Henrik G.; (UNC)

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesize that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.

  17. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  18. The Processed Amino-Terminal Fragment of Human TLR7 Acts as a Chaperone To Direct Human TLR7 into Endosomes

    Science.gov (United States)

    Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano

    2015-01-01

    TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086

  19. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    Science.gov (United States)

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony.

  20. Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes

    Directory of Open Access Journals (Sweden)

    Maria Rödiger

    2018-02-01

    Full Text Available Objective: Intracellular vesicle trafficking maintains cellular structures and functions. The assembly of cargo-laden vesicles at the trans-Golgi network is initiated by the ARF family of small GTPases. Here, we demonstrate the role of the trans-Golgi localized monomeric GTPase ARFRP1 in endosomal-mediated vesicle trafficking of mature adipocytes. Methods: Control (Arfrp1flox/flox and inducible fat-specific Arfrp1 knockout (Arfrp1iAT−/− mice were metabolically characterized. In vitro experiments on mature 3T3-L1 cells and primary mouse adipocytes were conducted to validate the impact of ARFRP1 on localization of adiponectin and the insulin receptor. Finally, secretion and transferrin-based uptake and recycling assays were performed with HeLa and HeLa M-C1 cells. Results: We identified the ARFRP1-based sorting machinery to be involved in vesicle trafficking relying on the endosomal compartment for cell surface delivery. Secretion of adiponectin from fat depots was selectively reduced in Arfrp1iAT−/− mice, and Arfrp1-depleted 3T3-L1 adipocytes revealed an accumulation of adiponectin in Rab11-positive endosomes. Plasma adiponectin deficiency of Arfrp1iAT−/− mice resulted in deteriorated hepatic insulin sensitivity, increased gluconeogenesis and elevated fasting blood glucose levels. Additionally, the insulin receptor, undergoing endocytic recycling after ligand binding, was less abundant at the plasma membrane of adipocytes lacking Arfrp1. This had detrimental effects on adipose insulin signaling, followed by insufficient suppression of basal lipolytic activity and impaired adipose tissue expansion. Conclusions: Our findings suggest that adiponectin secretion and insulin receptor surface targeting utilize the same post-Golgi trafficking pathways that are essential for an appropriate systemic insulin sensitivity and glucose homeostasis. Keywords: Adiponectin, ARFRP1, Exocytosis, Insulin receptor, trans-Golgi

  1. Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells

    International Nuclear Information System (INIS)

    Kosheverova, Vera V.; Kamentseva, Rimma S.; Gonchar, Ilya V.; Kharchenko, Marianna V.; Kornilova, Elena S.

    2016-01-01

    Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time of slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.

  2. Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kosheverova, Vera V., E-mail: kosheverova_vera@incras.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kamentseva, Rimma S., E-mail: rkamentseva@yandex.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034 (Russian Federation); Gonchar, Ilya V., E-mail: ample@mail.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kharchenko, Marianna V., E-mail: mariannakharchenko@gmail.com [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kornilova, Elena S., E-mail: lenkor@mail.cytspb.rssi.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034 (Russian Federation); Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya, St.Petersburg, 195251 (Russian Federation)

    2016-04-22

    Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time of slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.

  3. Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages

    Science.gov (United States)

    Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.

    2018-01-01

    ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656

  4. Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes.

    Directory of Open Access Journals (Sweden)

    Evgeny A Zemskov

    2011-04-01

    Full Text Available Although endosomal compartments have been suggested to play a role in unconventional protein secretion, there is scarce experimental evidence for such involvement. Here we report that recycling endosomes are essential for externalization of cytoplasmic secretory protein tissue transglutaminase (tTG. The de novo synthesized cytoplasmic tTG does not follow the classical ER/Golgi-dependent secretion pathway, but is targeted to perinuclear recycling endosomes, and is delivered inside these vesicles prior to externalization. On its route to the cell surface tTG interacts with internalized β1 integrins inside the recycling endosomes and is secreted as a complex with recycled β1 integrins. Inactivation of recycling endosomes, blocking endosome fusion with the plasma membrane, or downregulation of Rab11 GTPase that controls outbound trafficking of perinuclear recycling endosomes, all abrogate tTG secretion. The initial recruitment of cytoplasmic tTG to recycling endosomes and subsequent externalization depend on its binding to phosphoinositides on endosomal membranes. These findings begin to unravel the unconventional mechanism of tTG secretion which utilizes the long loop of endosomal recycling pathway and indicate involvement of endosomal trafficking in non-classical protein secretion.

  5. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  6. Arf6, Rab11 and transferrin receptor define distinct populations of recycling endosomes.

    Science.gov (United States)

    Kobayashi, Hotaka; Fukuda, Mitsunori

    2013-09-01

    Recycling endosomes are key platforms for endocytic recycling that return internalized molecules back to the plasma membrane. To determine how recycling endosomes perform their functions, searching for proteins and lipids that specifically localized at recycling endosomes has often been performed by colocalization analyses between candidate molecules and conventional recycling endosome markers. However, it remains unclear whether all the conventional markers have identical localizations. Here we report finding that three well-known recycling endosome markers, i.e., Arf6, Rab11 and transferrin receptor (TfR), have different intracellular localizations in PC12 cells. The results of immunofluorescence analyses showed that the signals of endogenous Arf6, Rab11 and TfR in nerve growth factor-stimulated PC12 cells generally differed, although there was some overlapping. Our findings provide new information about recycling endosome markers, and they highlight the heterogeneity of recycling endosomes.

  7. An Inside Job: How Endosomal Na+/H+ Exchangers Link to Autism and Neurological Disease

    Directory of Open Access Journals (Sweden)

    Kalyan C. Kondapalli

    2014-06-01

    Full Text Available Autism imposes a major impediment to childhood development and a huge emotional and financial burden on society. In recent years, there has been rapidly accumulating genetic evidence that links the eNHE, a subset of Na+/H+ exchangers that localize to intracellular vesicles, to a variety of neurological conditions including autism, attention deficit hyperactivity disorder, intellectual disability and epilepsy. By providing a leak pathway for protons pumped by the V-ATPase, eNHE determine luminal pH and regulate cation (Na+, K+ content in early and recycling endosomal compartments. Loss-of-function mutations in eNHE cause hyperacidification of endosomal lumen, as a result of imbalance in pump and leak pathways. Two isoforms, NHE6 and NHE9 are highly expressed in brain, including hippocampus and cortex. Here, we summarize evidence for the importance of luminal cation content and pH on processing, delivery and fate of cargo and on the surface expression and function of membrane receptors and neurotransmitter transporters, drawing upon insights from model organisms and mammalian cells. These studies lead to cellular models of eNHE activity in pre- and post-synaptic neurons and astrocytes, where they could impact synapse development and plasticity. The study of eNHE has provided new insight on the mechanism of autism and other debilitating neurological disorders and opened up new possibilities for therapeutic intervention.

  8. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes

    Science.gov (United States)

    Caviston, Juliane P.; Zajac, Allison L.; Tokito, Mariko; Holzbaur, Erika L.F.

    2011-01-01

    Huntingtin (Htt) is a membrane-associated scaffolding protein that interacts with microtubule motors as well as actin-associated adaptor molecules. We examined a role for Htt in the dynein-mediated intracellular trafficking of endosomes and lysosomes. In HeLa cells depleted of either Htt or dynein, early, recycling, and late endosomes (LE)/lysosomes all become dispersed. Despite altered organelle localization, kinetic assays indicate only minor defects in intracellular trafficking. Expression of full-length Htt is required to restore organelle localization in Htt-depleted cells, supporting a role for Htt as a scaffold that promotes functional interactions along its length. In dynein-depleted cells, LE/lysosomes accumulate in tight patches near the cortex, apparently enmeshed by cortactin-positive actin filaments; Latrunculin B-treatment disperses these patches. Peripheral LE/lysosomes in dynein-depleted cells no longer colocalize with microtubules. Htt may be required for this off-loading, as the loss of microtubule association is not seen in Htt-depleted cells or in cells depleted of both dynein and Htt. Inhibition of kinesin-1 relocalizes peripheral LE/lysosomes induced by Htt depletion but not by dynein depletion, consistent with their detachment from microtubules upon dynein knockdown. Together, these data support a model of Htt as a facilitator of dynein-mediated trafficking that may regulate the cytoskeletal association of dynamic organelles. PMID:21169558

  9. A short-time scale colloidal system reveals early bacterial adhesion dynamics.

    Directory of Open Access Journals (Sweden)

    Christophe Beloin

    2008-07-01

    Full Text Available The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.

  10. Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2017-07-26

    The mechanisms governing neutrophil response to Mycobacterium tuberculosis remain poorly understood. In this study we utilise biotagging, a novel genome-wide profiling approach based on cell type-specific in vivo biotinylation in zebrafish to analyse the initial response of neutrophils to Mycobacterium marinum, a close genetic relative of M. tuberculosis used to model tuberculosis. Differential expression analysis following nuclear RNA-seq of neutrophil active transcriptomes reveals a significant upregulation in both damage-sensing and effector components of the inflammasome, including caspase b, NLRC3 ortholog (wu: fb15h11) and il1β. Crispr/Cas9-mediated knockout of caspase b, which acts by proteolytic processing of il1β, results in increased bacterial burden and less infiltration of macrophages to sites of mycobacterial infection, thus impairing granuloma development. We also show that a number of immediate early response genes (IEGs) are responsible for orchestrating the initial neutrophil response to mycobacterial infection. Further perturbation of the IEGs exposes egr3 as a key transcriptional regulator controlling il1β transcription.

  11. MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mathieu Salaün

    Full Text Available Several matrix metalloproteinases (MMPs are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging.To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma.K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors.In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27, but in none of the non-invasive (0/4 (p=0.001.MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer.

  12. MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma

    Science.gov (United States)

    Salaün, Mathieu; Peng, Jing; Hensley, Harvey H.; Roder, Navid; Flieder, Douglas B.; Houlle-Crépin, Solène; Abramovici-Roels, Olivia; Sabourin, Jean-Christophe; Thiberville, Luc; Clapper, Margie L.

    2015-01-01

    Introduction Several matrix metalloproteinases (MMPs) are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging. Objective To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma. Methods K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT) and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors. Results In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27), but in none of the non-invasive (0/4) (p=0.001). Conclusion MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer. PMID:26193700

  13. Protein complexes and cholesterol in the control of late endosomal dynamicsCholesterol and multi-protein complexes in the control of late endosomal dynamics

    NARCIS (Netherlands)

    Kant, Rik Henricus Nicolaas van der

    2013-01-01

    Late endosomal transport is disrupted in several diseases such as Niemann-Pick type C, ARC syndrome and Alzheimer’s disease. This thesis describes the regulation of late endosomal dynamics by cholesterol and multi-protein complexes. We find that cholesterol acts as a cellular tomtom that steers the

  14. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  15. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.

    Science.gov (United States)

    Nixon, Ralph A

    2017-07-01

    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  16. Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.

    Science.gov (United States)

    Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence

    2018-03-15

    Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of

  17. Ancient DNA from European Early Neolithic Farmers Reveals Their Near Eastern Affinities

    Science.gov (United States)

    Haak, Wolfgang; Balanovsky, Oleg; Sanchez, Juan J.; Koshel, Sergey; Zaporozhchenko, Valery; Adler, Christina J.; Der Sarkissian, Clio S. I.; Brandt, Guido; Schwarz, Carolin; Nicklisch, Nicole; Dresely, Veit; Fritsch, Barbara; Balanovska, Elena; Villems, Richard; Meller, Harald; Alt, Kurt W.; Cooper, Alan

    2010-01-01

    In Europe, the Neolithic transition (8,000–4,000 b.c.) from hunting and gathering to agricultural communities was one of the most important demographic events since the initial peopling of Europe by anatomically modern humans in the Upper Paleolithic (40,000 b.c.). However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. To date, inferences about the genetic make up of past populations have mostly been drawn from studies of modern-day Eurasian populations, but increasingly ancient DNA studies offer a direct view of the genetic past. We genetically characterized a population of the earliest farming culture in Central Europe, the Linear Pottery Culture (LBK; 5,500–4,900 calibrated b.c.) and used comprehensive phylogeographic and population genetic analyses to locate its origins within the broader Eurasian region, and to trace potential dispersal routes into Europe. We cloned and sequenced the mitochondrial hypervariable segment I and designed two powerful SNP multiplex PCR systems to generate new mitochondrial and Y-chromosomal data from 21 individuals from a complete LBK graveyard at Derenburg Meerenstieg II in Germany. These results considerably extend the available genetic dataset for the LBK (n = 42) and permit the first detailed genetic analysis of the earliest Neolithic culture in Central Europe (5,500–4,900 calibrated b.c.). We characterized the Neolithic mitochondrial DNA sequence diversity and geographical affinities of the early farmers using a large database of extant Western Eurasian populations (n = 23,394) and a wide range of population genetic analyses including shared haplotype analyses, principal component analyses, multidimensional scaling, geographic mapping of genetic distances, and Bayesian Serial Simcoal analyses. The results reveal that the LBK population shared an affinity with the modern-day Near East and Anatolia, supporting a major

  18. Ancient DNA from European early neolithic farmers reveals their near eastern affinities.

    Directory of Open Access Journals (Sweden)

    Wolfgang Haak

    Full Text Available In Europe, the Neolithic transition (8,000-4,000 B.C. from hunting and gathering to agricultural communities was one of the most important demographic events since the initial peopling of Europe by anatomically modern humans in the Upper Paleolithic (40,000 B.C.. However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. To date, inferences about the genetic make up of past populations have mostly been drawn from studies of modern-day Eurasian populations, but increasingly ancient DNA studies offer a direct view of the genetic past. We genetically characterized a population of the earliest farming culture in Central Europe, the Linear Pottery Culture (LBK; 5,500-4,900 calibrated B.C. and used comprehensive phylogeographic and population genetic analyses to locate its origins within the broader Eurasian region, and to trace potential dispersal routes into Europe. We cloned and sequenced the mitochondrial hypervariable segment I and designed two powerful SNP multiplex PCR systems to generate new mitochondrial and Y-chromosomal data from 21 individuals from a complete LBK graveyard at Derenburg Meerenstieg II in Germany. These results considerably extend the available genetic dataset for the LBK (n = 42 and permit the first detailed genetic analysis of the earliest Neolithic culture in Central Europe (5,500-4,900 calibrated B.C.. We characterized the Neolithic mitochondrial DNA sequence diversity and geographical affinities of the early farmers using a large database of extant Western Eurasian populations (n = 23,394 and a wide range of population genetic analyses including shared haplotype analyses, principal component analyses, multidimensional scaling, geographic mapping of genetic distances, and Bayesian Serial Simcoal analyses. The results reveal that the LBK population shared an affinity with the modern-day Near East and Anatolia, supporting

  19. Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs.

    Science.gov (United States)

    Chen, Mo; Qiu, Tao; Wu, Jiajie; Yang, Yang; Wright, Graham D; Wu, Min; Ge, Ruowen

    2018-03-09

    Classic endocytosis destinations include the recycling endosome returning to the plasma membrane or the late endosome (LE) merging with lysosomes for cargo degradation. However, the anti-angiogenic proteins angiostatin and isthmin, are endocytosed and trafficked to mitochondria (Mito) to execute apoptosis of endothelial cells. How these extracellular proteins reach mitochondria remains a mystery. Through confocal and super-resolution fluorescent microscopy, we demonstrate that angiostatin and isthmin are trafficked to mitochondria through the interaction between LE and Mito. Using purified organelles, the LE-Mito interaction is confirmed through in vitro lipid-fusion assay, as well as single vesicle total internal reflection fluorescent microscopy. LE-Mito interaction enables the transfer of not only lipids but also proteins from LE to Mito. Angiostatin and isthmin augment this endosomal protein trafficking pathway and make use of it to reach mitochondria to execute apoptosis. Cell fractionation and biochemical analysis identified that the cytosolic scaffold protein Na+/H+ exchanger regulatory factor 1 (NHERF1) associated with LE and the t-SNARE protein synaptosome-associated protein 25 kDa (SNAP25) associated with Mito form an interaction complex to facilitate LE-Mito interaction. Proximity ligation assay coupled with fluorescent microscopy showed that both NHERF1 and SNAP25 are located at the contacting face between LE and Mito. RNAi knockdown of either NHERF1 or SNAP25 suppressed not only the mitochondrial trafficking of angiostatin and isthmin but also their anti-angiogenic and pro-apoptotic functions. Hence, this study reveals a previously unrealized endosomal protein trafficking pathway from LE to Mito that allows extracellular proteins to reach mitochondria and execute apoptosis.

  20. Early herding practices revealed through organic residue analysis of pottery from the early Neolithic rock shelter of Mala Triglavca, Slovenia

    Directory of Open Access Journals (Sweden)

    Lucija Šoberl

    2008-12-01

    Full Text Available A collection of pottery from the early Neolithic site of Mala Triglavca was analysed with the aim of obtaining insights into vessel use and early animal domestication and husbandry practices in the Adriatic region. Total lipid extracts were submitted to gas chromatography (GC, GC-mass spectrometry (GC-MS and GC-combustion-isotope ratio MS (GC-C-IRMS in order to obtain molecular and stable carbon isotope signatures as the basis for determining the nature and origins of the residues. The extracts were dominated by degraded animal fats. The majority (70% of the total lipid extracts displayed intact triacylglycerol distributions attributable to ruminant adipose and dairy fats, which were subsequently confirmed through C16:0 and C18:0 fatty acid δ13C values.

  1. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    Science.gov (United States)

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  2. Oxygen restriction as challenge test reveals early high-fat-diet-induced changes in glucose and lipid metabolism

    NARCIS (Netherlands)

    Duivenvoorde, L.P.M.; Schothorst, van E.M.; Derous, D.; Stelt, van der I.; Masania, J.; Rabbani, N.; Thornalley, P.J.; Keijer, J.

    2015-01-01

    Challenge tests stress homeostasis and may reveal deviations in health that remain masked under unchallenged conditions. Ideally, challenge tests are non-invasive and applicable in an early phase of an animal experiment. Oxygen restriction (OxR; based on ambient, mild normobaric hypoxia) is a

  3. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds.

    Science.gov (United States)

    Knoll, Fabien; Chiappe, Luis M; Sanchez, Sophie; Garwood, Russell J; Edwards, Nicholas P; Wogelius, Roy A; Sellers, William I; Manning, Phillip L; Ortega, Francisco; Serrano, Francisco J; Marugán-Lobón, Jesús; Cuesta, Elena; Escaso, Fernando; Sanz, Jose Luis

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.

  4. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis.

    Science.gov (United States)

    Gao, Xueqin; Ke, Chaofu; Liu, Haixia; Liu, Wei; Li, Kang; Yu, Bo; Sun, Meng

    2017-09-18

    Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and chronic life-threatening disease. Initially, this disease is not always detected until a patient presents with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine metabolites was then tested with an independent cohort of samples, which also yielded satisfactory diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of early-stage CAS.

  5. Transcriptomic profiling of bovine IVF embryos revealed candidate genes and pathways involved in early embryonic development

    Directory of Open Access Journals (Sweden)

    Yandell Brian S

    2010-01-01

    Full Text Available Abstract Background Early embryonic loss is a large contributor to infertility in cattle. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. The objective of this study was to identify genes differentially expressed between blastocysts and degenerative embryos at early stages of development. Results Using microarrays, genome-wide RNA expression was profiled and compared for in vitro fertilization (IVF - derived blastocysts and embryos undergoing degenerative development up to the same time point. Surprisingly similar transcriptomic profiles were found in degenerative embryos and blastocysts. Nonetheless, we identified 67 transcripts that significantly differed between these two groups of embryos at a 15% false discovery rate, including 33 transcripts showing at least a two-fold difference. Several signaling and metabolic pathways were found to be associated with the developmental status of embryos, among which were previously known important steroid biosynthesis and cell communication pathways in early embryonic development. Conclusions This study presents the first direct and comprehensive comparison of transcriptomes between IVF blastocysts and degenerative embryos, providing important information for potential genes and pathways associated with early embryonic development.

  6. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda.

    Science.gov (United States)

    Yoon, June-Sun; Gurusamy, Dhandapani; Palli, Subba Reddy

    2017-11-01

    RNA interference (RNAi) efficiency varies among insects studied. The barriers for successful RNAi include the presence of double-stranded ribonucleases (dsRNase) in the lumen and hemolymph that could potentially digest double-stranded RNA (dsRNA) and the variability in the transport of dsRNA into and within the cells. We recently showed that the dsRNAs are transported into lepidopteran cells, but they are not processed into small interference RNAs (siRNAs) because they are trapped in acidic bodies. In the current study, we focused on the identification of acidic bodies in which dsRNAs accumulate in Sf9 cells. Time-lapse imaging studies showed that dsRNAs enter Sf9 cells and accumulate in acidic bodies within 20 min after their addition to the medium. CypHer-5E-labeled dsRNA also accumulated in the midgut and fat body dissected from Spodoptera frugiperda larvae with similar patterns observed in Sf9 cells. Pharmacological inhibitor assays showed that the dsRNAs use clathrin mediated endocytosis pathway for transport into the cells. We investigated the potential dsRNA accumulation sites employing LysoTracker and double labeling experiments using the constructs to express a fusion of green fluorescence protein with early or late endosomal marker proteins and CypHer-5E-labeled dsRNA. Interestingly, CypHer-5E-labeled dsRNA accumulated predominantly in early and late endosomes. These data suggest that entrapment of internalized dsRNA in endosomes is one of the major factors contributing to inefficient RNAi response in lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis

    Science.gov (United States)

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Bagheri, Abouzar; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Soheili, Zahra-Soheila; Frimmel, Sonja; Zhang, Zhongyu; Ablonczy, Zsolt; Ahmadieh, Hamid; Hafezi-Moghadam, Ali

    2014-01-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (PM. R., Samiei, S., Soheili, Z.-S., Frimmel, S., Zhang, Z., Ablonczy, Z., Ahmadieh, H., Hafezi-Moghadam, A. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis. PMID:24903276

  8. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster.

    Science.gov (United States)

    Sriram, V; Krishnan, K S; Mayor, Satyajit

    2003-05-12

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.

  9. Early Top-Down Influences on Bistable Perception Revealed by Event-Related Potentials

    Science.gov (United States)

    Pitts, Michael A.; Gavin, William J.; Nerger, Janice L.

    2008-01-01

    A longstanding debate exists in the literature concerning bottom-up vs. top-down influences on bistable perception. Recently, a technique has been developed to measure early changes in brain activity (via ERPs) related to perceptual reversals (Kornmeier & Bach, 2004). An ERP component, the reversal negativity (RN) has been identified, and is…

  10. Barium distributions in teeth reveal early-life dietary transitions in primates.

    Science.gov (United States)

    Austin, Christine; Smith, Tanya M; Bradman, Asa; Hinde, Katie; Joannes-Boyau, Renaud; Bishop, David; Hare, Dominic J; Doble, Philip; Eskenazi, Brenda; Arora, Manish

    2013-06-13

    Early-life dietary transitions reflect fundamental aspects of primate evolution and are important determinants of health in contemporary human populations. Weaning is critical to developmental and reproductive rates; early weaning can have detrimental health effects but enables shorter inter-birth intervals, which influences population growth. Uncovering early-life dietary history in fossils is hampered by the absence of prospectively validated biomarkers that are not modified during fossilization. Here we show that large dietary shifts in early life manifest as compositional variations in dental tissues. Teeth from human children and captive macaques, with prospectively recorded diet histories, demonstrate that barium (Ba) distributions accurately reflect dietary transitions from the introduction of mother's milk through the weaning process. We also document dietary transitions in a Middle Palaeolithic juvenile Neanderthal, which shows a pattern of exclusive breastfeeding for seven months, followed by seven months of supplementation. After this point, Ba levels in enamel returned to baseline prenatal levels, indicating an abrupt cessation of breastfeeding at 1.2 years of age. Integration of Ba spatial distributions and histological mapping of tooth formation enables novel studies of the evolution of human life history, dietary ontogeny in wild primates, and human health investigations through accurate reconstructions of breastfeeding history.

  11. Barium distributions in teeth reveal early life dietary transitions in primates

    Science.gov (United States)

    Austin, Christine; Smith, Tanya M.; Bradman, Asa; Hinde, Katie; Joannes-Boyau, Renaud; Bishop, David; Hare, Dominic J.; Doble, Philip; Eskenazi, Brenda; Arora, Manish

    2013-01-01

    Early life dietary transitions reflect fundamental aspects of primate evolution and are important determinants of health in contemporary human populations1,2. Weaning is critical to developmental and reproductive rates; early weaning can have detrimental health effects but enables shorter inter-birth intervals, which influences population growth3. Uncovering early life dietary history in fossils is hampered by the absence of prospectively-validated biomarkers that are not modified during fossilisation4. Here we show that major dietary shifts in early life manifest as compositional variations in dental tissues. Teeth from human children and captive macaques, with prospectively-recorded diet histories, demonstrate that barium (Ba) distributions accurately reflect dietary transitions from the introduction of mother’s milk and through the weaning process. We also document transitions in a Middle Palaeolithic juvenile Neanderthal, which shows a pattern of exclusive breastfeeding for seven months, followed by seven months of supplementation. After this point, Ba levels in enamel returned to baseline prenatal levels, suggesting an abrupt cessation of breastfeeding at 1.2 years of age. Integration of Ba spatial distributions and histological mapping of tooth formation enables novel studies of the evolution of human life history, dietary ontogeny in wild primates, and human health investigations through accurate reconstructions of breastfeeding history. PMID:23698370

  12. Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Wilson

    Full Text Available BACKGROUND: A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. METHODOLOGY/PRINCIPAL FINDINGS: The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees , and plantigrade and digitigrade foot posture. CONCLUSIONS/SIGNIFICANCE: The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors.

  13. An Essential Role of Hrs/Vps27 in Endosomal Cholesterol Trafficking

    Directory of Open Access Journals (Sweden)

    Ximing Du

    2012-01-01

    Full Text Available The endosomal sorting complex required for transport (ESCRT plays a crucial role in the degradation of ubiquitinated endosomal membrane proteins. Here, we report that Hrs, a key protein of the ESCRT-0 complex, is required for the transport of low-density lipoprotein-derived cholesterol from endosomes to the endoplasmic reticulum. This function of Hrs in cholesterol transport is distinct from its previously defined role in lysosomal sorting and downregulation of membrane receptors via the ESCRT pathway. In line with this, knocking down other ESCRT proteins does not cause prominent endosomal cholesterol accumulation. Importantly, the localization and biochemical properties of key cholesterol-sorting proteins, NPC1 and NPC2, appear to be unchanged upon Hrs knockdown. Our data identify Hrs as a regulator of endosomal cholesterol trafficking and provide additional insights into the budding of intralumenal vesicles.

  14. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lehigh

    2017-04-01

    Full Text Available Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes.

  15. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment.

    Science.gov (United States)

    Girada, Shravan Babu; Kuna, Ramya S; Bele, Shilpak; Zhu, Zhimeng; Chakravarthi, N R; DiMarchi, Richard D; Mitra, Prasenjit

    2017-10-01

    Upon activation, G protein coupled receptors (GPCRs) associate with heterotrimeric G proteins at the plasma membrane to initiate second messenger signaling. Subsequently, the activated receptor experiences desensitization, internalization, and recycling back to the plasma membrane, or it undergoes lysosomal degradation. Recent reports highlight specific cases of persistent cyclic AMP generation by internalized GPCRs, although the functional significance and mechanistic details remain to be defined. Cyclic AMP generation from internalized Glucagon-Like Peptide-1 Receptor (GLP-1R) has previously been reported from our laboratory. This study aimed at deciphering the molecular mechanism by which internalized GLP-R supports sustained cyclic AMP generation upon receptor activation in pancreatic beta cells. We studied the time course of cyclic AMP generation following GLP-1R activation with particular emphasis on defining the location where cyclic AMP is generated. Detection involved a novel GLP-1 conjugate coupled with immunofluorescence using specific endosomal markers. Finally, we employed co-immunoprecipitation as well as immunofluorescence to assess the protein-protein interactions that regulate GLP-1R mediated cyclic AMP generation at endosomes. Our data reveal that prolonged association of G protein α subunit Gαs with activated GLP-1R contributed to sustained cyclic AMP generation at Rab 5 endosomal compartment. The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Chinese characters reveal impacts of prior experience on very early stages of perception

    Directory of Open Access Journals (Sweden)

    Stollhoff Rainer

    2011-01-01

    Full Text Available Abstract Background Visual perception is strongly determined by accumulated experience with the world, which has been shown for shape, color, and position perception, in the field of visuomotor learning, and in neural computation. In addition, visual perception is tuned to statistics of natural scenes. Such prior experience is modulated by neuronal top-down control the temporal properties of which had been subject to recent studies. Here, we deal with these temporal properties and address the question how early in time accumulated past experience can modulate visual perception. Results We performed stimulus discrimination experiments and compared a group of Chinese participants with a German control group. The perception of our briefly presented visual objects (targets was disturbed by masking stimuli which appeared in close spatiotemporal proximity. These masking stimuli were either intact or scrambled Chinese characters and did not overlap with the targets. In contrast to German controls, Chinese participants show substantial performance differences for real versus scrambled Chinese characters if these masking stimuli were presented as early as less than 100 milliseconds after the onset of the target. For Chinese observers, it even occured that meaningful masking stimuli enhanced target identification if they were shown at least 100 milliseconds after target onset while the same stimuli impaired recognition if presented in close temporal proximity to the target. The latter finding challenges interpretations of our data that solely rely on stimulus contours or geometric properties and emphasizes the impact of prior experience on the very early temporal dynamics of the visual system. Conclusions Our findings demonstrate that prior experience which had been accummulated long before the experiments can modulate the time course of perception intriguingly early, namely already immediately after the perceptual onset of a visual event. This modulation

  17. Bird-like anatomy, posture, and behavior revealed by an early jurassic theropod dinosaur resting trace

    Science.gov (United States)

    Milner, Andrew R.C.; Harris, J.D.; Lockley, M.G.; Kirkland, J.I.; Matthews, N.A.

    2009-01-01

    Background: Fossil tracks made by non-avian theropod dinosaurs commonly reflect the habitual bipedal stance retained in living birds. Only rarely-captured behaviors, such as crouching, might create impressions made by the hands. Such tracks provide valuable information concerning the often poorly understood functional morphology of the early theropod forelimb. Methodology/Principal Findings: Here we describe a well-preserved theropod trackway in a Lower Jurassic (???198 millionyear- old) lacustrine beach sandstone in the Whitmore Point Member of the Moenave Formation in southwestern Utah. The trackway consists of prints of typical morphology, intermittent tail drags and, unusually, traces made by the animal resting on the substrate in a posture very similar to modern birds. The resting trace includes symmetrical pes impressions and well-defined impressions made by both hands, the tail, and the ischial callosity. Conclusions/Significance: The manus impressions corroborate that early theropods, like later birds, held their palms facing medially, in contrast to manus prints previously attributed to theropods that have forward-pointing digits. Both the symmetrical resting posture and the medially-facing palms therefore evolved by the Early Jurassic, much earlier in the theropod lineage than previously recognized, and may characterize all theropods.

  18. The TESIS Project: Revealing Massive Early-Type Galaxies at z > 1

    Science.gov (United States)

    Saracco, P.; Longhetti, M.; Severgnini, P.; Della Ceca, R.; Braito, V.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    How and when present-day massive early-type galaxies built up and what type of evolution has characterized their growth (star formation and/or merging) still remain open issues. The different competing scenarios of galaxy formation predict much different properties of early-type galaxies at z > 1. The "monolithic" collapse predicts that massive spheroids formed at high redshift (z > 2.5-3) and that their comoving density is constant at z 1, their comoving density decreases from z = 0 to z ~ 1.5 and they should experience their last burst of star formation at z 1 can be probed observationally once a well defined sample of massive early-types at z > 1 is available. We are constructing such a sample through a dedicated near-IR very low resolution (λ/Δλ≃50) spectroscopic survey (TNG EROs Spectroscopic Identification Survey, TESIS, [6]) of a complete sample of 30 bright (K < 18.5) Extremely Red Objects (EROs).

  19. Bird-like anatomy, posture, and behavior revealed by an early jurassic theropod dinosaur resting trace.

    Directory of Open Access Journals (Sweden)

    Andrew R C Milner

    Full Text Available BACKGROUND: Fossil tracks made by non-avian theropod dinosaurs commonly reflect the habitual bipedal stance retained in living birds. Only rarely-captured behaviors, such as crouching, might create impressions made by the hands. Such tracks provide valuable information concerning the often poorly understood functional morphology of the early theropod forelimb. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a well-preserved theropod trackway in a Lower Jurassic ( approximately 198 million-year-old lacustrine beach sandstone in the Whitmore Point Member of the Moenave Formation in southwestern Utah. The trackway consists of prints of typical morphology, intermittent tail drags and, unusually, traces made by the animal resting on the substrate in a posture very similar to modern birds. The resting trace includes symmetrical pes impressions and well-defined impressions made by both hands, the tail, and the ischial callosity. CONCLUSIONS/SIGNIFICANCE: The manus impressions corroborate that early theropods, like later birds, held their palms facing medially, in contrast to manus prints previously attributed to theropods that have forward-pointing digits. Both the symmetrical resting posture and the medially-facing palms therefore evolved by the Early Jurassic, much earlier in the theropod lineage than previously recognized, and may characterize all theropods.

  20. Bird-like anatomy, posture, and behavior revealed by an early jurassic theropod dinosaur resting trace.

    Science.gov (United States)

    Milner, Andrew R C; Harris, Jerald D; Lockley, Martin G; Kirkland, James I; Matthews, Neffra A

    2009-01-01

    Fossil tracks made by non-avian theropod dinosaurs commonly reflect the habitual bipedal stance retained in living birds. Only rarely-captured behaviors, such as crouching, might create impressions made by the hands. Such tracks provide valuable information concerning the often poorly understood functional morphology of the early theropod forelimb. Here we describe a well-preserved theropod trackway in a Lower Jurassic ( approximately 198 million-year-old) lacustrine beach sandstone in the Whitmore Point Member of the Moenave Formation in southwestern Utah. The trackway consists of prints of typical morphology, intermittent tail drags and, unusually, traces made by the animal resting on the substrate in a posture very similar to modern birds. The resting trace includes symmetrical pes impressions and well-defined impressions made by both hands, the tail, and the ischial callosity. The manus impressions corroborate that early theropods, like later birds, held their palms facing medially, in contrast to manus prints previously attributed to theropods that have forward-pointing digits. Both the symmetrical resting posture and the medially-facing palms therefore evolved by the Early Jurassic, much earlier in the theropod lineage than previously recognized, and may characterize all theropods.

  1. PTP1B targets the endosomal sorting machinery

    DEFF Research Database (Denmark)

    Stuible, Matthew; Abella, Jasmine V; Feldhammer, Matthew

    2010-01-01

    Dephosphorylation and endocytic down-regulation are distinct processes that together control the signaling output of a variety of receptor tyrosine kinases (RTKs). PTP1B can directly dephosphorylate several RTKs, but it can also promote activation of downstream pathways through largely unknown...... mechanisms. These positive signaling functions likely contribute to the tumor-promoting effect of PTP1B in mouse cancer models. Here, we have identified STAM2, an endosomal protein involved in sorting activated RTKs for lysosomal degradation, as a substrate of PTP1B. PTP1B interacts with STAM2 at defined...... phosphotyrosine sites, and knockdown of PTP1B expression augments STAM2 phosphorylation. Intriguingly, manipulating the expression and phosphorylation state of STAM2 did not have a general effect on epidermal growth factor (EGF)-induced EGF receptor trafficking, degradation, or signaling. Instead, phosphorylated...

  2. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    Science.gov (United States)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  3. The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Ravikrishna Ramanujam

    Full Text Available In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA, Adenylate cyclase and Pth11 (a non-canonical GPCR in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.

  4. Classification tree analyses reveal limited potential for early targeted prevention against childhood overweight.

    Science.gov (United States)

    Beyerlein, Andreas; Kusian, Dennis; Ziegler, Anette-Gabriele; Schaffrath-Rosario, Angelika; von Kries, Rüdiger

    2014-02-01

    Whether specific combinations of risk factors in very early life might allow identification of high-risk target groups for overweight prevention programs was examined. Data of n = 8981 children from the German KiGGS study were analyzed. Using a classification tree approach, predictive risk factor combinations were assessed for overweight in 3-6, 7-10, and 11-17-year-old children. In preschool children, the subgroup with the highest overweight risk were migrant children with at least one obese parent, with a prevalence of 36.6 (95% confidence interval or CI: 22.9, 50.4)%, compared to an overall prevalence of 10.0 (8.9, 11.2)%. The prevalence of overweight increased from 18.3 (16.8, 19.8)% to 57.9 (46.6, 69.3)% in 7-10-year-old children, if at least one parent was obese and the child had been born large-for-gestational-age. In 11-17-year-olds, the overweight risk increased from 20.1 (18.9, 21.3)% to 63.0 (46.4, 79.7)% in the highest risk group. However, high prevalence ratios were found only in small subgroups, containing <10% of all overweight cases in the respective age group. Our results indicate only a limited potential for early targeted preventions against overweight in children and adolescents. Copyright © 2013 The Obesity Society.

  5. Starch grains reveal early root crop horticulture in the Panamanian tropical forest.

    Science.gov (United States)

    Piperno, D R; Ranere, A J; Holst, I; Hansell, P

    2000-10-19

    Native American populations are known to have cultivated a large number of plants and domesticated them for their starch-rich underground organs. Suggestions that the likely source of many of these crops, the tropical forest, was an early and influential centre of plant husbandry have long been controversial because the organic remains of roots and tubers are poorly preserved in archaeological sediments from the humid tropics. Here we report the occurrence of starch grains identifiable as manioc (Manihot esculenta Crantz), yams (Dioscorea sp.) and arrowroot (Maranta arundinacea L.) on assemblages of plant milling stones from preceramic horizons at the Aguadulce Shelter, Panama, dated between 7,000 and 5,000 years before present (BP). The artefacts also contain maize starch (Zea mays L.), indicating that early horticultural systems in this region were mixtures of root and seed crops. The data provide the earliest direct evidence for root crop cultivation in the Americas, and support an ancient and independent emergence of plant domestication in the lowland Neotropical forest.

  6. Synchrotron Reveals Early Triassic Odd Couple: Injured Amphibian and Aestivating Therapsid Share Burrow.

    Directory of Open Access Journals (Sweden)

    Vincent Fernandez

    Full Text Available Fossorialism is a beneficial adaptation for brooding, predator avoidance and protection from extreme climate. The abundance of fossilised burrow casts from the Early Triassic of southern Africa is viewed as a behavioural response by many tetrapods to the harsh conditions following the Permo-Triassic mass-extinction event. However, scarcity of vertebrate remains associated with these burrows leaves many ecological questions unanswered. Synchrotron scanning of a lithified burrow cast from the Early Triassic of the Karoo unveiled a unique mixed-species association: an injured temnospondyl amphibian (Broomistega that sheltered in a burrow occupied by an aestivating therapsid (Thrinaxodon. The discovery of this rare rhinesuchid represents the first occurrence in the fossil record of a temnospondyl in a burrow. The amphibian skeleton shows signs of a crushing trauma with partially healed fractures on several consecutive ribs. The presence of a relatively large intruder in what is interpreted to be a Thrinaxodon burrow implies that the therapsid tolerated the amphibian's presence. Among possible explanations for such unlikely cohabitation, Thrinaxodon aestivation is most plausible, an interpretation supported by the numerous Thrinaxodon specimens fossilised in curled-up postures. Recent advances in synchrotron imaging have enabled visualization of the contents of burrow casts, thus providing a novel tool to elucidate not only anatomy but also ecology and biology of ancient tetrapods.

  7. Immediate relativity: EEG reveals early engagement of comparison in social information processing.

    Science.gov (United States)

    Ohmann, Katharina; Stahl, Jutta; Mussweiler, Thomas; Kedia, Gayannée

    2016-11-01

    A wide array of social decisions relies on social comparisons. As such, these decisions require fast access to relative information. Therefore, we expect that signatures of the comparative process should be observable in electrophysiological components at an early stage of information processing. However, to date, little is known about the neural time course of social target comparisons. Therefore, we tested this hypothesis in 2 electroencephalography (EEG) studies using a social distance effect paradigm. The distance effect capitalizes on the fact that stimuli close on a certain dimension take longer to compare than stimuli clearly differing on this dimension. Here, we manipulated the distance of face characteristics regarding their levels of attractiveness (Study 1) and trustworthiness (Study 2), 2 essential social dimensions. In both studies, size comparisons served as a nonsocial control condition. In Study 1, distance related effects were apparent 170 ms (vertex positive potential, VPP) and 200 ms (N2) after stimulus onset for attractiveness comparisons. In Study 2, trustworthiness comparisons took effect already after 100 ms (N1) and likewise carried over to an event-related N2. Remarkably, we observed a similar temporal pattern for social (attractiveness, trustworthiness) and nonsocial (size) dimensions. These results speak in favor of an early encoding of comparative information and emphasize the primary role of comparison in social information processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Role of the Small GTPase Rho3 in Golgi/Endosome trafficking through functional interaction with adaptin in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Ayako Kita

    Full Text Available BACKGROUND: We had previously identified the mutant allele of apm1(+ that encodes a homolog of the mammalian µ1A subunit of the clathrin-associated adaptor protein-1 (AP-1 complex, and we demonstrated the role of Apm1 in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we isolated rho3(+, which encodes a Rho-family small GTPase, an important regulator of exocystosis, as a multicopy-suppressor of the temperature-sensitive growth of the apm1-1 mutant cells. Overexpression of Rho3 suppressed the Cl(- sensitivity and immunosuppressant sensitivity of the apm1-1 mutant cells. Overexpression of Rho3 also suppressed the fragmentation of vacuoles, and the accumulation of v-SNARE Syb1 in Golgi/endosomes and partially suppressed the defective secretion associated with apm1-deletion cells. Notably, electron microscopic observation of the rho3-deletion cells revealed the accumulation of abnormal Golgi-like structures, vacuole fragmentation, and accumulation of secretory vesicles; these phenotypes were very similar to those of the apm1-deletion cells. Furthermore, the rho3-deletion cells and apm1-deletion cells showed very similar phenotypic characteristics, including the sensitivity to the immunosuppressant FK506, the cell wall-damaging agent micafungin, Cl(-, and valproic acid. Green fluorescent protein (GFP-Rho3 was localized at Golgi/endosomes as well as the plasma membrane and division site. Finally, Rho3 was shown to form a complex with Apm1 as well as with other subunits of the clathrin-associated AP-1 complex in a GTP- and effector domain-dependent manner. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings reveal a novel role of Rho3 in the regulation of Golgi/endosome trafficking and suggest that clathrin-associated adaptor protein-1 and Rho3 co-ordinate in intracellular transport in fission yeast. To the best of our knowledge, this study provides the first evidence

  9. ER network homeostasis is critical for plant endosome streaming and endocytosis

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Lai, YaShiuan; Slabaugh, Erin; Mannino, Nicole; Buono, Rafael A; Otegui, Marisa S; Brandizzi, Federica

    2015-01-01

    Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored. Here, we probed the existence of ER–endosome association in plant cells and assayed its physiological role in endocytosis. Through live-cell imaging and electron microscopy studies, we established that endosomes are extensively associated with the plant ER, supporting conservation of interaction between heterotypic organelles in evolutionarily distant kingdoms. Furthermore, by analyzing ER–endosome dynamics in genetic backgrounds with defects in ER structure and movement, we also established that the ER network integrity is necessary for homeostasis of the distribution and streaming of various endosome populations as well as for efficient endocytosis. These results support a novel model that endocytosis homeostasis depends on a spatiotemporal control of the endosome dynamics dictated by the ER membrane network. PMID:27462431

  10. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry.

    Science.gov (United States)

    Andrews-Hanna, Jeffrey C; Asmar, Sami W; Head, James W; Kiefer, Walter S; Konopliv, Alexander S; Lemoine, Frank G; Matsuyama, Isamu; Mazarico, Erwan; McGovern, Patrick J; Melosh, H Jay; Neumann, Gregory A; Nimmo, Francis; Phillips, Roger J; Smith, David E; Solomon, Sean C; Taylor, G Jeffrey; Wieczorek, Mark A; Williams, James G; Zuber, Maria T

    2013-02-08

    The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moon's radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models.

  11. Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning

    Science.gov (United States)

    Ulivieri, Giacomo; Ripepe, Maurizio; Marchetti, Emanuele

    2013-06-01

    present the analysis of ~4 million infrasonic signals which include 39 episodes of lava fountains recorded at 5.5 km from the active vents. We show that each eruptive episode is characterized by a distinctive trend in the amplitude, waveform, and frequency content of the acoustic signals, reflecting different explosive levels. Lava fountain starts with an ~93 min long violent phase of acoustic transients at ~1.25 Hz repeating every 2-5 s. Infrasound suddenly evolves into a persistent low-frequency quasi-monochromatic pressure oscillation at ~0.4 Hz. We interpret this shift as induced by the transition from the slug (discrete Strombolian) to churn flow (sustained lava fountain) regime that is reflecting an increase in the gas discharge rate. We calculate that infrasonic transition can occur at a gas superficial velocity of ≤76 m/s and it can be used to define infrasonic-based thresholds for an efficient early warning system.

  12. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development

    Science.gov (United States)

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging. PMID:25368561

  13. Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese.

    Science.gov (United States)

    Li, Jiawei; Zeng, Wen; Zhang, Ye; Ko, Albert Min-Shan; Li, Chunxiang; Zhu, Hong; Fu, Qiaomei; Zhou, Hui

    2017-12-04

    Ancient Di-Qiang people once resided in the Ganqing region of China, adjacent to the Central Plain area from where Han Chinese originated. While gene flow between the Di-Qiang and Han Chinese has been proposed, there is no evidence to support this view. Here we analyzed the human remains from an early Di-Qiang site (Mogou site dated ~4000 years old) and compared them to other ancient DNA across China, including an early Han-related site (Hengbei site dated ~3000 years old) to establish the underlying genetic relationship between the Di-Qiang and ancestors of Han Chinese. We found Mogou mtDNA haplogroups were highly diverse, comprising 14 haplogroups: A, B, C, D (D*, D4, D5), F, G, M7, M8, M10, M13, M25, N*, N9a, and Z. In contrast, Mogou males were all Y-DNA haplogroup O3a2/P201; specifically one male was further assigned to O3a2c1a/M117 using targeted unique regions on the non-recombining region of the Y-chromosome. We compared Mogou to 7 other ancient and 38 modern Chinese groups, in a total of 1793 individuals, and found that Mogou shared close genetic distances with Taojiazhai (a more recent Di-Qiang population), Hengbei, and Northern Han. We modeled their interactions using Approximate Bayesian Computation, and support was given to a potential admixture of ~13-18% between the Mogou and Northern Han around 3300-3800 years ago. Mogou harbors the earliest genetically identifiable Di-Qiang, ancestral to the Taojiazhai, and up to ~33% paternal and ~70% of its maternal haplogroups could be found in present-day Northern Han Chinese.

  14. Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma.

    Science.gov (United States)

    Yang, Jun; Hou, Ziming; Wang, Changjiang; Wang, Hao; Zhang, Hongbing

    2018-04-23

    Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis

  15. Early Gene Expression in Wounded Human Keratinocytes Revealed by DNA Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Pascal Barbry

    2006-04-01

    Full Text Available Wound healing involves several steps: spreading of the cells, migration and proliferation. We have profiled gene expression during the early events of wound healing in normal human keratinocytes with a home-made DNA microarray containing about 1000 relevant human probes. An original wounding machine was used, that allows the wounding of up to 40% of the surface of a confluent monolayer of cultured cells grown on a Petri dish (compared with 5% with a classical ‘scratch’ method. The two aims of the present study were: (a to validate a limited number of genes by comparing the expression levels obtained with this technique with those found in the literature; (b to combine the use of the wounding machine with DNA microarray analysis for large-scale detection of the molecular events triggered during the early stages of the wound-healing process. The time-courses of RNA expression observed at 0.5, 1.5, 3, 6 and 15 h after wounding for genes such as c-Fos, c-Jun, Egr1, the plasminogen activator PLAU (uPA and the signal transducer and transcription activator STAT3, were consistent with previously published data. This suggests that our methodologies are able to perform quantitative measurement of gene expression. Transcripts encoding two zinc finger proteins, ZFP36 and ZNF161, and the tumour necrosis factor α-induced protein TNFAIP3, were also overexpressed after wounding. The role of the p38 mitogen-activated protein kinase (p38MAPK in wound healing was shown after the inhibition of p38 by SB203580, but our results also suggest the existence of surrogate activating pathways.

  16. Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes

    Directory of Open Access Journals (Sweden)

    Tracy P. M. Chong

    2011-03-01

    Full Text Available The potent mitogenic toxin from Pasteurella multocida (PMT is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn and cholera toxin (CT, the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity.

  17. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)

    International Nuclear Information System (INIS)

    Duke, Elizabeth M.H.; Razi, Minoo; Weston, Anne; Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Tooze, Sharon A.; Collinson, Lucy M.

    2014-01-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. - Highlights: • We image whole, unstained mammalian cells using cryo-soft X-ray tomography. • Endosomes are identified using a gold marker for the transferrin receptor. • A new workflow for correlative cryo-fluorescence and cryo-SXT is used to locate early autophagosomes. • Interactions between endosomes, endoplasmic reticulum and forming autophagosomes are mapped in 3D. • Multiple omegasomes are shown to form at ‘hotspots’ on the endoplasmic reticulum

  18. Integrative analyses reveal novel strategies in HPV11,-16 and-45 early infection

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Rossing, Maria; Andersen, Ditte

    2012-01-01

    of genes not previously implicated in HPV biology, such as the PSG family and ANKRD1, and of genes implicated in the biology of other viruses, e. g. MX1, IFI44 and DDX60. Carcinogenesis-related genes, e. g. ABL2, MGLL and CYR61, were upregulated by high-risk HPV16 and -45. The integrative analysis revealed...... the suppression of DNA repair by HPV11 and -16, and downregulation of cytoskeleton genes by all HPV types. Various signalling pathways were affected by the HPVs: IL-2 by HPV11; JAK-STAT by HPV16; and TGF-beta, NOTCH and tyrosine kinase signalling by HPV45. This study uncovered novel strategies employed by HPV...... to establish infection and promote uncontrolled growth....

  19. Early Miocene amber inclusions from Mexico reveal antiquity of mangrove-associated copepods.

    Science.gov (United States)

    Huys, Rony; Suárez-Morales, Eduardo; Serrano-Sánchez, María de Lourdes; Centeno-García, Elena; Vega, Francisco J

    2016-10-12

    Copepods are aquatic microcrustaceans and represent the most abundant metazoans on Earth, outnumbering insects and nematode worms. Their position of numerical world predominance can be attributed to three principal radiation events, i.e. their major habitat shift into the marine plankton, the colonization of freshwater and semiterrestrial environments, and the evolution of parasitism. Their variety of life strategies has generated an incredible morphological plasticity and disparity in body form and shape that are arguably unrivalled among the Crustacea. Although their chitinous exoskeleton is largely resistant to chemical degradation copepods are exceedingly scarce in the geological record with limited body fossil evidence being available for only three of the eight currently recognized orders. The preservation of aquatic arthropods in amber is unusual but offers a unique insight into ancient subtropical and tropical ecosystems. Here we report the first discovery of amber-preserved harpacticoid copepods, represented by ten putative species belonging to five families, based on Early Miocene (22.8 million years ago) samples from Chiapas, southeast Mexico. Their close resemblance to Recent mangrove-associated copepods highlights the antiquity of the specialized harpacticoid fauna living in this habitat. With the taxa reported herein, the Mexican amber holds the greatest diversity of fossil copepods worldwide.

  20. Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments.

    Science.gov (United States)

    Borges, Rui; Johnson, Warren E; O'Brien, Stephen J; Gomes, Cidália; Heesy, Christopher P; Antunes, Agostinho

    2018-02-05

    Based on evolutionary patterns of the vertebrate eye, Walls (1942) hypothesized that early placental mammals evolved primarily in nocturnal habitats. However, not only Eutheria, but all mammals show photic characteristics (i.e. dichromatic vision, rod-dominated retina) suggestive of a scotopic eye design. Here, we used integrative comparative genomic and phylogenetic methodologies employing the photoreceptive opsin gene family in 154 mammals to test the likelihood of a nocturnal period in the emergence of all mammals. We showed that mammals possess genomic patterns concordant with a nocturnal ancestry. The loss of the RH2, VA, PARA, PARIE and OPN4x opsins in all mammals led us to advance a probable and most-parsimonious hypothesis of a global nocturnal bottleneck that explains the loss of these genes in the emerging lineage (> > 215.5 million years ago). In addition, ancestral character reconstruction analyses provided strong evidence that ancestral mammals possessed a nocturnal lifestyle, ultra-violet-sensitive vision, low visual acuity and low orbit convergence (i.e. panoramic vision). Overall, this study provides insight into the evolutionary history of the mammalian eye while discussing important ecological aspects of the photic paleo-environments ancestral mammals have occupied.

  1. Comparative Genomics of Early-Diverging Brucella Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway

    Science.gov (United States)

    Wattam, Alice R.; Inzana, Thomas J.; Williams, Kelly P.; Mane, Shrinivasrao P.; Shukla, Maulik; Almeida, Nalvo F.; Dickerman, Allan W.; Mason, Steven; Moriyón, Ignacio; O’Callaghan, David; Whatmore, Adrian M.; Sobral, Bruno W.; Tiller, Rebekah V.; Hoffmaster, Alex R.; Frace, Michael A.; De Castro, Cristina; Molinaro, Antonio; Boyle, Stephen M.; De, Barun K.; Setubal, João C.

    2012-01-01

    ABSTRACT Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1T and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted. Here we present a phylogenomic analysis of the draft genome sequences of BO1T and BO2 and of the Australian rodent strains 83-13 and NF2653 that shows that they form two groups well separated from the other sequenced Brucella spp. Several important differences were noted. Both BO1T and BO2 did not agglutinate significantly when live or inactivated cells were exposed to monospecific A and M antisera against O-side chain sugars composed of N-formyl-perosamine. While BO1T maintained the genes required to synthesize a typical Brucella O-antigen, BO2 lacked many of these genes but still produced a smooth LPS (lipopolysaccharide). Most missing genes were found in the wbk region involved in O-antigen synthesis in classic smooth Brucella spp. In their place, BO2 carries four genes that other bacteria use for making a rhamnose-based O-antigen. Electrophoretic, immunoblot, and chemical analyses showed that BO2 carries an antigenically different O-antigen made of repeating hexose-rich oligosaccharide units that made the LPS water-soluble, which contrasts with the homopolymeric O-antigen of other smooth brucellae that have a phenol-soluble LPS. The results demonstrate the existence of a group of early-diverging brucellae with traits that depart significantly from those of the Brucella species described thus far. PMID:22930339

  2. Genome-wide allelotyping of a new in vitro model system reveals early events in breast cancer progression.

    Science.gov (United States)

    Li, Zheng; Meng, Zhen Hang; Sayeed, Aejaz; Shalaby, Refaat; Ljung, Britt-Marie; Dairkee, Shanaz H

    2002-10-15

    Toward the goal of identifying early genetic losses, which mediate the release of human breast epithelium from replicative suppression leading to cellular immortalization, we have used a newly developed in vitro model system. This system consists of epithelial cultures derived from noncancerous breast tissue, treated with the chemical carcinogen N-ethyl-N-nitrosourea, and continuously passaged to yield cell populations culminating in the immortal phenotype. Genome-wide allelotyping of early passage N-ethyl-N-nitrosourea-exposed cell populations revealed aberrations at >10% (18 of 169) loci examined. Allelic losses encompassing chromosomes 6q24-6q27, implicating immortalization-associated candidate genes, hZAC and SEN6, occurred in two independently derived cell lines before the Hayflick limit. Additional LOH sites were present in one cell line at 3p11-3p26, 11p15, and 20p12-13. Allelic losses reported in this cell line preceded detectable levels of telomerase activity and the occurrence of p53-related aberrations. Information gained from the search for early immortalization-associated genetic deletions in cultured cells was applied in a novel approach toward the analysis of morphologically normal terminal ductal lobular units microdissected from 20 cases of ductal carcinoma in situ. Notably, clonal allelic losses at chromosome 3p24 and 6q24 were an early occurrence in adjoining terminal ductal lobular units of a proportion of primary tumors, which displayed loss of heterozygosity (3 of 11 and 3 of 6, respectively). The biological insights provided by the new model system reported here strongly suggest that early allelic losses delineated in immortalized cultures and validated in vivo could serve as surrogate endpoints to assist in the identification and intervention of high-risk benign breast tissue, which sustains the potential for continuous proliferation.

  3. Liquefaction along Late Pleistocene to early Holocene Faults as Revealed by Lidar in Northwest Tasmania, Australia

    Science.gov (United States)

    Webb, J.; Gardner, T.

    2016-12-01

    In northwest Tasmania well-preserved mid-Holocene beach ridges with maximum radiocarbon ages of 5.25 ka occur along the coast; inland are a parallel set of lower relief beach ridges of probable MIS 5e age. The latter are cut by northeast-striking faults clearly visible on LIDAR images, with a maximum vertical displacement (evident as difference in topographic elevation) of 3 m. Also distinct on the LIDAR images are large sand boils along the fault lines; they are up to 5 m in diameter and 2-3 m high and mostly occur on the hanging wall close to the fault traces. Without LIDAR it would have been almost impossible to distinguish either the fault scarps or the sand boils. Excavations through the sand boils show that they are massive, with no internal structure, suggesting that they formed in a single event. They are composed of well-sorted, very fine white sand, identical to the sand in the underlying beach ridges. The sand boils overlie a peaty paleosol; this formed in the tea-tree swamp that formerly covered the area, and has been offset along the faults. Radiocarbon dating of the buried organic-rich paleosol gave ages of 14.8-7.2 ka, suggesting that the faulting is latest Pleistocene to early Holocene in age; it occurred prior to deposition of the mid-Holocene beach ridges, which are not offset. The beach ridge sediments are up to 7 m thick and contain an iron-cemented hard pan 1-3 m below the surface. The water table is very shallow and close to the ground surface, so the sands of the beach ridges are mostly saturated. During faulting these sands experienced extensive liquefaction. The resulting sand boils rose to a substantial height of 2-3 m, probably possibly reflecting the elevation of the potentiometric surface within the confined part of the beach ridge sediments below the iron-cemented hard pan. Motion on the faults was predominantly dip slip (shown by an absence of horizontal offset) and probably reverse, which is consistent with the present-day northwest

  4. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    Science.gov (United States)

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  5. Correlation of transcriptomic responses and metal bioaccumulation in Mytilus edulis L. reveals early indicators of stress

    Energy Technology Data Exchange (ETDEWEB)

    Poynton, Helen C., E-mail: helen.poynton@umb.edu; Robinson, William E.; Blalock, Bonnie J.; Hannigan, Robyn E.

    2014-10-15

    , three transcripts directly involved in the unfolded protein response (UPR) were induced in the metal treatments at 2 weeks and were further up-regulated at 4 weeks. Overall, correlation of tissue concentrations and gene expression responses indicates that as mussels accumulate higher concentrations of metals, initial stress responses are mobilized to protect tissues. However, given the role of UPR in apoptosis, it serves as an early indicator of stress, which once overwhelmed will result in adverse physiological effects.

  6. Methods of early revealing, prognosis of further course and complications of pollinosis

    Directory of Open Access Journals (Sweden)

    Chukhrienko N.D.

    2013-10-01

    Full Text Available Under our observation there were 59 patients with pollinosis – 39 females and 20 males at the age from 18 to 68 years. All patients were in the phase of disease exacerbation. General clinical symptoms were: rhinitis, conjunctivitis and bronchial spasm. The results showed that first clinical manifestations appear in persons of young age. Half of the patients had aggravated allergologic anamnesis. Taking into account that pollinosis is a typical representative of diseases having mechanism of immunoglobulin E (IgE-dependent allergic reactions of the first type, the authors have studied in detail level of IgE and its link with other factors. Practically in all patients with pollinosis level of total IgE exceeded the norm. As a result of studies performed, it was established that high IgE level, presence of phagocytosis defect and prolong duration of illness are the criteria which affect disease progress, aggravation of patients’ state, less efficacy of treatment. Due to the fact that development of bronchial obstruction and transformation of pollinosis into bronchial asthma is the most topical issue nowadays, the authors studied its link with other factors and findings. It was established that risk of pollinosis transformation into pollen bronchial asthma increases in the presence of high level of total IgE, aggravation of allergologic anamnesis, decrease of forced expiration volume (FEV, significant duration of disease course. In the course of investigation it was revealed that the highest efficacy of treatment is noted in patients receiving allergen-specific therapy; this confirms data of world scientific literature. The best treatment results are observed in pollinosis patients, with aggravated family history not in parents but in grandparents.

  7. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity

    NARCIS (Netherlands)

    Golachowska, Magdalena R.; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    2010-01-01

    Recycling endosomes have taken central stage in the intracellular sorting and polarized trafficking of apical and basolateral plasma membrane components. Molecular players in the underlying mechanisms are now emerging, including small GTPases, class V myosins and adaptor proteins. In particular,

  8. An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport

    NARCIS (Netherlands)

    Jongsma, Marlieke L. M.; Berlin, Ilana; Wijdeven, Ruud H. M.; Janssen, Lennert; Janssen, George M. C.; Garstka, Malgorzata A.; Janssen, Hans; Mensink, Mark; van Veelen, Peter A.; Spaapen, Robbert M.; Neefjes, Jacques

    2016-01-01

    Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent.

  9. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.

    Science.gov (United States)

    Hamdi, Amel; Roshan, Tariq M; Kahawita, Tanya M; Mason, Anne B; Sheftel, Alex D; Ponka, Prem

    2016-12-01

    In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe 2+ into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the "kiss-and-run" hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a "chase" with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of 59 Fe by reticulocytes and diminishes 59 Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a "traffic jam" leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster

    OpenAIRE

    Sriram, V.; Krishnan, K.S.; Mayor, Satyajit

    2003-01-01

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defec...

  11. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    Science.gov (United States)

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  12. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Science.gov (United States)

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  13. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    Science.gov (United States)

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  14. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus

    International Nuclear Information System (INIS)

    Mesa, Rosana; Magadan, Javier; Barbieri, Alejandro; Lopez, Cecilia; Stahl, Philip D.; Mayorga, Luis S.

    2005-01-01

    The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN)

  15. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport

    Science.gov (United States)

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-01-01

    The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. PMID:26157166

  16. PIKfyve mediates the motility of late endosomes and lysosomes in neuronal dendrites.

    Science.gov (United States)

    Tsuruta, Fuminori; Dolmetsch, Ricardo E

    2015-09-25

    The endosome/lysosome system in the nervous system is critically important for a variety of neuronal functions such as neurite outgrowth, retrograde transport, and synaptic plasticity. In neurons, the endosome/lysosome system is crucial for the activity-dependent internalization of membrane proteins and contributes to the regulation of lipid level on the plasma membrane. Although homeostasis of membrane dynamics plays important roles in the properties of central nervous systems, it has not been elucidated how endosome/lysosome system is regulated. Here, we report that phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) mediates the motility of late endosomes and lysosomes in neuronal dendrites. Endosomes and lysosomes are highly motile in resting neurons, however knockdown of PIKfyve led to a significant reduction in late endosomes and lysosomes motility. We also found that vesicle acidification is crucial for their motility and PIKfyve is associated with this process indirectly. These data suggest that PIKfyve mediates vesicle motility through the regulation of vesicle integrity in neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Smart DNA vectors based on cyclodextrin polymers: compaction and endosomal release.

    Science.gov (United States)

    Wintgens, Véronique; Leborgne, Christian; Baconnais, Sonia; Burckbuchler, Virginie; Le Cam, Eric; Scherman, Daniel; Kichler, Antoine; Amiel, Catherine

    2012-02-01

    Neutral β-cyclodextrin polymers (polyβCD) associated with cationic adamantyl derivatives (Ada) can be used to deliver plasmid DNA into cells. In absence of an endosomolytic agent, transfection efficiency remains low because most complexes are trapped in the endosomal compartment. We asked whether addition of an imidazole-modified Ada can increase efficiency of polyβCD/cationic Ada-based delivery system. We synthesized two adamantyl derivatives: Ada5, which has a spacer arm between the Ada moiety and a bi-cationic polar head group, and Ada6, which presents an imidazole group. Strength of association between polyβCD and Ada derivatives was evaluated by fluorimetric titration. Gel mobility shift assay, zeta potential, and dark field transmission electron microscopy experiments demonstrated the system allowed for efficient DNA compaction. In vitro transfection experiments performed on HepG2 and HEK293 cells revealed the quaternary system polyβCD/Ada5/Ada6/DNA has efficiency comparable to cationic lipid DOTAP. We successfully designed fine-tuned DNA vectors based on cyclodextrin polymers combined with two new adamantyl derivatives, leading to significant transfection associated with low toxicity.

  18. Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome.

    Directory of Open Access Journals (Sweden)

    Fumitaka Momose

    Full Text Available Influenza A virus RNA genome exists as eight-segmented ribonucleoprotein complexes containing viral RNA polymerase and nucleoprotein (vRNPs. Packaging of vRNPs and virus budding take place at the apical plasma membrane (APM. However, little is known about the molecular mechanisms of apical transport of newly synthesized vRNP. Transfection of fluorescent-labeled antibody and subsequent live cell imaging revealed that punctate vRNP signals moved along microtubules rapidly but intermittently in both directions, suggestive of vesicle trafficking. Using a series of Rab family protein, we demonstrated that progeny vRNP localized to recycling endosome (RE in an active/GTP-bound Rab11-dependent manner. The vRNP interacted with Rab11 through viral RNA polymerase. The localization of vRNP to RE and subsequent accumulation to the APM were impaired by overexpression of Rab binding domains (RBD of Rab11 family interacting proteins (Rab11-FIPs. Similarly, no APM accumulation was observed by overexpression of class II Rab11-FIP mutants lacking RBD. These results suggest that the progeny vRNP makes use of Rab11-dependent RE machinery for APM trafficking.

  19. The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes.

    Science.gov (United States)

    Wang, Zheng; Miao, Guangyan; Xue, Xue; Guo, Xiangyang; Yuan, Chongzhen; Wang, Zhaoyu; Zhang, Gangming; Chen, Yingyu; Feng, Du; Hu, Junjie; Zhang, Hong

    2016-09-01

    Mutations in the human autophagy gene EPG5 cause the multisystem disorder Vici syndrome. Here we demonstrated that EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. EPG5 is recruited to late endosomes/lysosomes by direct interaction with Rab7 and the late endosomal/lysosomal R-SNARE VAMP7/8. EPG5 also binds to LC3/LGG-1 (mammalian and C. elegans Atg8 homolog, respectively) and to assembled STX17-SNAP29 Qabc SNARE complexes on autophagosomes. EPG5 stabilizes and facilitates the assembly of STX17-SNAP29-VAMP7/8 trans-SNARE complexes, and promotes STX17-SNAP29-VAMP7-mediated fusion of reconstituted proteoliposomes. Loss of EPG5 activity causes abnormal fusion of autophagosomes with various endocytic vesicles, in part due to elevated assembly of STX17-SNAP25-VAMP8 complexes. SNAP25 knockdown partially suppresses the autophagy defect caused by EPG5 depletion. Our study reveals that EPG5 is a Rab7 effector involved in autophagosome maturation, providing insight into the molecular mechanism underlying Vici syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness

    Science.gov (United States)

    Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier

    2017-01-01

    In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed

  1. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis.

    Science.gov (United States)

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Bagheri, Abouzar; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Soheili, Zahra-Soheila; Frimmel, Sonja; Zhang, Zhongyu; Ablonczy, Zsolt; Ahmadieh, Hamid; Hafezi-Moghadam, Ali

    2014-09-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (P<0.01), compared to normal controls. More than 80% of the VEGFR-2 in the diabetic retina was in the capillaries, compared to 47% in normal controls (P<0.01). Angiography in rabbit retinas revealed microvascular capillaries to be the location for VEGF-A-induced leakage, as expressed by significantly higher rate of fluorophore spreading with VEGF-A injection when compared to vehicle control (26±2 vs. 3±1 μm/s, P<0.05). Immunohistochemistry showed VEGFR-2 expression in capillaries of diabetic animals but not in normal controls. Macular vessels from diabetic patients (n=7) showed significantly more VEGFR-2 compared to nondiabetic controls (n=5) or peripheral retinal regions of the same retinas (P<0.01 in both cases). Here we introduce a new approach for early diagnosis of DR and VEGFR-2 as a molecular marker. VEGFR-2 could become a key diagnostic target, one that might help to prevent retinal vascular leakage and proliferation in diabetic patients. © FASEB.

  2. Single-virus tracking approach to reveal the interaction of Dengue virus with autophagy during the early stage of infection

    Science.gov (United States)

    Chu, Li-Wei; Huang, Yi-Lung; Lee, Jin-Hui; Huang, Long-Ying; Chen, Wei-Jun; Lin, Ya-Hsuan; Chen, Jyun-Yu; Xiang, Rui; Lee, Chau-Hwang; Ping, Yueh-Hsin

    2014-01-01

    Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.

  3. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Directory of Open Access Journals (Sweden)

    Ewoud Bernardus Compeer

    2012-03-01

    Full Text Available The cross-presentation of endocytosed antigen as peptide/class I MHC complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells (APC capable of antigen cross-presentation, description of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC, there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlight DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, recycling and maturation including the sorting of membrane proteins, dynamic remodeling of endosomal structures and cell-surface directed endosomal trafficking. We will conclude with description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  4. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  5. Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes.

    Science.gov (United States)

    Tornieri, Karine; Zlatic, Stephanie A; Mullin, Ariana P; Werner, Erica; Harrison, Robert; L'hernault, Steven W; Faundez, Victor

    2013-12-20

    Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion.

  6. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  7. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape

    KAUST Repository

    Alamoudi, Kholod; Martins, Patricia; Croissant, Jonas G.; Patil, Sachin; Omar, Haneen; Khashab, Niveen M.

    2017-01-01

    Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy.A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing.The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes.The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.

  8. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape

    KAUST Repository

    Alamoudi, Kholod

    2017-05-19

    Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy.A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing.The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes.The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.

  9. Sulfur Geochemistry of a Lacustrine Record from Taiwan Reveals Enhanced Marine Aerosol Input during the Early Holocene.

    Science.gov (United States)

    Ding, Xiaodong; Li, Dawei; Zheng, Liwei; Bao, Hongyan; Chen, Huei-Fen; Kao, Shuh-Ji

    2016-12-12

    Lacustrine record of marine aerosol input has rarely been documented. Here, we present the sulfur geochemistry during the last deglaciation and early Holocene of a sediment core retrieved from the Dongyuan Lake in southern Taiwan. An unusually high sulfur peak accompanying pyrite presence is observed at 10.5 ka BP. Such high sulfur content in lacustrine record is unusual. The δ 34 S of sulfur varied from +9.5 to + 17.1‰ with two significant positive shifts at 10.5 and 9.4 ka BP. The sources of sulfur and potential processes involving the sulfur isotope variation including bacterial sulfate reduction, volcanic emissions, in-catchment sulfide oxidation and marine aerosol input are discussed. Enhanced marine aerosol input is the most likely explanation for such sulfur peaks and δ 34 S shifts. The positive δ 34 S shifts appeared concurrently with the maximum landslide events over Taiwan resulted from enhanced typhoon activities. The synchronicity among records suggests that increased typhoon activities promoted sea spray, and consequently enhanced the marine aerosol input with 34 S-enriched sulfate. Our sulfur geochemistry data revealed sea spray history and marine influence onto terrestrial environment at coastal regions. Wider coverage of spatial-temporal lacustrine sulfur geochemistry record is needed to validate the applicability of sulfur proxy in paleoenvironmental research.

  10. G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes.

    Science.gov (United States)

    Tsvetanova, Nikoleta G; Irannejad, Roshanak; von Zastrow, Mark

    2015-03-13

    Some G protein-coupled receptors (GPCRs), in addition to activating heterotrimeric G proteins in the plasma membrane, appear to elicit a "second wave" of G protein activation after ligand-induced internalization. We briefly summarize evidence supporting this view and then discuss what is presently known about the functional significance of GPCR-G protein activation in endosomes. Endosomal activation can shape the cellular response temporally by prolonging its overall duration, and may shape the response spatially by moving the location of intracellular second messenger production relative to effectors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment

    Directory of Open Access Journals (Sweden)

    Shravan Babu Girada

    2017-10-01

    Conclusions: The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex.

  12. The complete mitochondrial genome of Pauropus longiramus (Myriapoda: Pauropoda): implications on early diversification of the myriapods revealed from comparative analysis.

    Science.gov (United States)

    Dong, Yan; Sun, Hongying; Guo, Hua; Pan, Da; Qian, Changyuan; Hao, Sijing; Zhou, Kaiya

    2012-08-15

    Myriapods are among the earliest arthropods and may have evolved to become part of the terrestrial biota more than 400 million years ago. A noticeable lack of mitochondrial genome data from Pauropoda hampers phylogenetic and evolutionary studies within the subphylum Myriapoda. We sequenced the first complete mitochondrial genome of a microscopic pauropod, Pauropus longiramus (Arthropoda: Myriapoda), and conducted comprehensive mitogenomic analyses across the Myriapoda. The pauropod mitochondrial genome is a circular molecule of 14,487 bp long and contains the entire set of thirty-seven genes. Frequent intergenic overlaps occurred between adjacent tRNAs, and between tRNA and protein-coding genes. This is the first example of a mitochondrial genome with multiple intergenic overlaps and reveals a strategy for arthropods to effectively compact the mitochondrial genome by overlapping and truncating tRNA genes with neighbor genes, instead of only truncating tRNAs. Phylogenetic analyses based on protein-coding genes provide strong evidence that the sister group of Pauropoda is Symphyla. Additionally, approximately unbiased (AU) tests strongly support the Progoneata and confirm the basal position of Chilopoda in Myriapoda. This study provides an estimation of myriapod origins around 555 Ma (95% CI: 444-704 Ma) and this date is comparable with that of the Cambrian explosion and candidate myriapod-like fossils. A new time-scale suggests that deep radiations during early myriapod diversification occurred at least three times, not once as previously proposed. A Carboniferous origin of pauropods is congruent with the idea that these taxa are derived, rather than basal, progoneatans. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2010-08-01

    Full Text Available Abstract Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR, which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.

  14. Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics.

    Science.gov (United States)

    Huang, Chien-Hsun; Zhang, Caifei; Liu, Mian; Hu, Yi; Gao, Tiangang; Qi, Ji; Ma, Hong

    2016-11-01

    Biodiversity results from multiple evolutionary mechanisms, including genetic variation and natural selection. Whole-genome duplications (WGDs), or polyploidizations, provide opportunities for large-scale genetic modifications. Many evolutionarily successful lineages, including angiosperms and vertebrates, are ancient polyploids, suggesting that WGDs are a driving force in evolution. However, this hypothesis is challenged by the observed lower speciation and higher extinction rates of recently formed polyploids than diploids. Asteraceae includes about 10% of angiosperm species, is thus undoubtedly one of the most successful lineages and paleopolyploidization was suggested early in this family using a small number of datasets. Here, we used genes from 64 new transcriptome datasets and others to reconstruct a robust Asteraceae phylogeny, covering 73 species from 18 tribes in six subfamilies. We estimated their divergence times and further identified multiple potential ancient WGDs within several tribes and shared by the Heliantheae alliance, core Asteraceae (Asteroideae-Mutisioideae), and also with the sister family Calyceraceae. For two of the WGD events, there were subsequent great increases in biodiversity; the older one proceeded the divergence of at least 10 subfamilies within 10 My, with great variation in morphology and physiology, whereas the other was followed by extremely high species richness in the Heliantheae alliance clade. Our results provide different evidence for several WGDs in Asteraceae and reveal distinct association among WGD events, dramatic changes in environment and species radiations, providing a possible scenario for polyploids to overcome the disadvantages of WGDs and to evolve into lineages with high biodiversity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods.

    Science.gov (United States)

    Janssen, Ralf

    2012-09-01

    Arthropods show two kinds of developmental mode. In the so-called long germ developmental mode (as exemplified by the fly Drosophila), all segments are formed almost simultaneously from a preexisting field of cells. In contrast, in the so-called short germ developmental mode (as exemplified by the vast majority of arthropods), only the anterior segments are patterned similarly as in Drosophila, and posterior segments are added in a single or double segmental periodicity from a posterior segment addition zone (SAZ). The addition of segments from the SAZ is controlled by dynamic waves of gene activity. Recent studies on a spider have revealed that a similar dynamic process, involving expression of the segment polarity gene (SPG) hedgehog (hh), is involved in the formation of the anterior head segments. The present study shows that in the myriapod Glomeris marginata the early expression of hh is also in a broad anterior domain, but this domain corresponds only to the ocular and antennal segment. It does not, like in spiders, represent expression in the posterior adjacent segment. In contrast, the anterior hh pattern is conserved in Glomeris and insects. All investigated myriapod SPGs and associated factors are expressed with delay in the premandibular (tritocerebral) segment. This delay is exclusively found in insects and myriapods, but not in chelicerates, crustaceans and onychophorans. Therefore, it may represent a synapomorphy uniting insects and myriapods (Atelocerata hypothesis), contradicting the leading opinion that suggests a sister relationship of crustaceans and insects (Pancrustacea hypothesis). In Glomeris embryos, the SPG engrailed is first expressed in the mandibular segment. This feature is conserved in representatives of all arthropod classes suggesting that the mandibular segment may have a special function in anterior patterning.

  16. Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes

    NARCIS (Netherlands)

    C.C. Hoogenraad (Casper); I. Popa (Ioana); K. Futai (Kensuke); E. Sanchez-Martinez (Emma); P. Wulf (Phebe); T. van Vlijmen (Thijs); B.R. Dortland (Bjorn); V. Oorschot (Viola); R. Govers (Robert); M. Monti (Maria); A.J.R. Heck (Albert); M. Sheng (Morgan); J. Klumperman (Judith); H. Rehmann (Holger); D. Jaarsma (Dick); L.C. Kapitein (Lukas); P. van der Sluijs

    2010-01-01

    textabstractThe endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1

  17. Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation

    Directory of Open Access Journals (Sweden)

    Chao-Yang Lai

    2017-01-01

    Full Text Available Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs, particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed, Antrodia cinnamomea extract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options.

  18. TLR2 ligands induce NF-κB activation from endosomal compartments of human monocytes.

    Directory of Open Access Journals (Sweden)

    Karim J Brandt

    Full Text Available Localization of Toll-like receptors (TLR in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.

  19. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules

    DEFF Research Database (Denmark)

    van Weering, Jan R.T.; Sessions, Richard B.; Traer, Colin J.

    2012-01-01

    that dimerization is achieved in part through neutralization of charged residues in the hydrophobic BAR-dimerization interface. Membrane remodelling also requires functional amphipathic helices, predicted to be present in all SNX-BARs, and the formation of high order SNX-BAR oligomers through selective 'tip...... and organizes the tubular endosomal network....

  20. Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons.

    Science.gov (United States)

    Cai, Qian; Lu, Li; Tian, Jin-Hua; Zhu, Yi-Bing; Qiao, Haifa; Sheng, Zu-Hang

    2010-10-06

    Neuron maintenance and survival require late endocytic transport from distal processes to the soma where lysosomes are predominantly localized. Here, we report a role for Snapin in attaching dynein to late endosomes through its intermediate chain (DIC). snapin(-/-) neurons exhibit aberrant accumulation of immature lysosomes, clustering and impaired retrograde transport of late endosomes along processes, reduced lysosomal proteolysis due to impaired delivery of internalized proteins and hydrolase precursors from late endosomes to lysosomes, and impaired clearance of autolysosomes, combined with reduced neuron viability and neurodegeneration. The phenotypes are rescued by expressing the snapin transgene, but not the DIC-binding-defective Snapin-L99K mutant. Snapin overexpression in wild-type neurons enhances late endocytic transport and lysosomal function, whereas expressing the mutant defective in Snapin-DIC coupling shows a dominant-negative effect. Altogether, our study highlights new mechanistic insights into how Snapin-DIC coordinates retrograde transport and late endosomal-lysosomal trafficking critical for autophagy-lysosomal function, and thus neuronal homeostasis. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Endosomal gene expression: a new indicator for prostate cancer patient prognosis?

    LENUS (Irish Health Repository)

    Johnson, Ian R D

    2015-11-10

    Prostate cancer continues to be a major cause of morbidity and mortality in men, but a method for accurate prognosis in these patients is yet to be developed. The recent discovery of altered endosomal biogenesis in prostate cancer has identified a fundamental change in the cell biology of this cancer, which holds great promise for the identification of novel biomarkers that can predict disease outcomes. Here we have identified significantly altered expression of endosomal genes in prostate cancer compared to non-malignant tissue in mRNA microarrays and confirmed these findings by qRT-PCR on fresh-frozen tissue. Importantly, we identified endosomal gene expression patterns that were predictive of patient outcomes. Two endosomal tri-gene signatures were identified from a previously published microarray cohort and had a significant capacity to stratify patient outcomes. The expression of APPL1, RAB5A, EEA1, PDCD6IP, NOX4 and SORT1 were altered in malignant patient tissue, when compared to indolent and normal prostate tissue. These findings support the initiation of a case-control study using larger cohorts of prostate tissue, with documented patient outcomes, to determine if different combinations of these new biomarkers can accurately predict disease status and clinical progression in prostate cancer patients.

  2. Integrin-linked kinase and ELMO2 modulate recycling endosomes in keratinocytes.

    Science.gov (United States)

    Ho, Ernest; Ivanova, Iordanka A; Dagnino, Lina

    2016-12-01

    The formation of tight cell-cell junctions is essential in the epidermis for its barrier properties. In this tissue, keratinocytes follow a differentiation program tightly associated with their movement from the innermost basal to the outer suprabasal layers, and with changes in their cell-cell adhesion profile. Intercellular adhesion in keratinocytes is mediated through cell-cell contacts, including E-cadherin-based adherens junctions. Although the mechanisms that mediate E-cadherin delivery to the plasma membrane have been widely studied in simple epithelia, this process is less well understood in the stratified epidermis. In this study, we have investigated the role of Engulfment and Cell Motility 2 (ELMO2) and integrin-linked kinase (ILK) in the positioning of E-cadherin-containing recycling endosomes during establishment of cell-cell contacts in differentiating keratinocytes. We now show that induction of keratinocyte differentiation by Ca 2+ is accompanied by localization of ELMO2 and ILK to Rab4- and Rab11a-containing recycling endosomes. The positioning of long-loop Rab11a-positive endosomes at areas adjacent to cell-cell contacts is disrupted in ELMO2- or ILK-deficient keratinocytes, and is associated with impaired localization of E-cadherin to cell borders. Our studies show a previously unrecognized role for ELMO2 and ILK in modulation of endosomal positioning, which may play key roles in epidermal sheet maintenance and permeability barrier function. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Characteristics of juvenile survivors reveal spatio-temporal differences in early life stage survival of Baltic cod

    DEFF Research Database (Denmark)

    Huwer, Bastian; Hinrichsen, H.H.; Böttcher, U.

    2014-01-01

    with previous modeling studies on the survival chances of early-stage larvae and with general spatio-temporal patterns of larval prey availability suggests that differences in survival are related to food availability during the early larval stage. Results are discussed in relation to the recruitment process...

  4. The V-ATPase a2-subunit as a putative endosomal pH-sensor.

    Science.gov (United States)

    Marshansky, V

    2007-11-01

    V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.

  5. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

  6. Peroxiredoxin-controlled G-CSF signalling at the endoplasmic reticulum-early endosome interface

    NARCIS (Netherlands)

    K.K. Palande (Karishma); O. Roovers (Onno); J. Gits (Judith); C. Verwijmeren (Carola); Y. Iuchi (Yoshihito); J. Fujii (Junichi); B. Neel; R. Karisch (Robert); J. Tavernier; I.P. Touw (Ivo)

    2011-01-01

    textabstractReactive oxygen species (ROS) regulate growth factor receptor signalling at least in part by inhibiting oxidation-sensitive phosphatases. An emerging concept is that ROS act locally to affect signal transduction in different subcellular compartments and that ROS levels are regulated by

  7. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    Science.gov (United States)

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis

    OpenAIRE

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Bagheri, Abouzar; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Soheili, Zahra-Soheila; Frimmel, Sonja; Zhang, Zhongyu; Ablonczy, Zsolt; Ahmadieh, Hamid; Hafezi-Moghadam, Ali

    2014-01-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (P

  9. 7T T-2*-weighted magnetic resonance imaging reveals cortical phase differences between early- and late-onset Alzheimer's disease

    NARCIS (Netherlands)

    van Rooden, S.; Doan, N.T.; Versluis, M.J.; Goos, J.D.C.; Webb, A.G.; Oleksik, A.M.; van der Flier, W.M.; Scheltens, P.; Barkhof, F.; Weverlinge-Rynsburger, A.W.E.; Blauw, G. J.; Reiber, J.H.C.; van Buchem, M.A.; Milles, J.; van der Grond, J.

    2015-01-01

    The aim of this study is to explore regional iron-related differences in the cerebral cortex, indicative of Alzheimer's disease pathology, between early- and late-onset Alzheimer's disease (EOAD, LOAD, respectively) patients using 7T magnetic resonance phase images. High-resolution T

  10. Comparative Analysis of WUSCHEL-Related Homeobox Genes Revealed Their Parent-of-Origin and Cell Type-Specific Expression Pattern During Early Embryogenesis in Tobacco

    Directory of Open Access Journals (Sweden)

    Xuemei Zhou

    2018-03-01

    Full Text Available WUSCHEL-related homeobox (WOX gene is a plant-specific clade of homeobox transcription factors. Increasing evidences reveal that WOXs play critical roles in early embryogenesis, which involves zygote development, initiation of zygote division, and apical or basal cell lineage establishment. However, how WOXs regulate these developmental events remains largely unknown, and even detailed expression pattern in gametes and early proembryos is not yet available. Here, 13 WOX family genes were identified in Nicotiana tabacum genome. Comparative analysis of 13 WOX family genes with their homologs in Arabidopsis thaliana reveals relatively conserved expression pattern of WUS and WOX5 in shoot/root apical meristem. Whereas variations were also found, e.g., lacking homolog of WOX8 (a marker for suspensor cell in tobacco genome and the expression of WOX2/WOX9 in both apical cell and basal cell. Transient transcriptional activity analysis revealed that WOXs in WUS clade have repressive activities for their target's transcription, whereas WOXs in ancient and intermediate clade have activation activities, giving a molecular basis for the phylogenetic classification of tobacco WOXs into three major clades. Expression pattern analysis revealed that some WOXs (e.g., WOX 13a expressed in both male and female gametes and some WOXs (e.g., WOX 11 and WOX 13b displayed the characteristics of parent-of-origin genes. Interestingly, some WOXs (e.g., WOX2 and WOX9, which are essential for early embryo patterning, were de novo transcribed in zygote, indicating relevant mechanism for embryo pattern formation is only established in zygote right after fertilization and not carried in by gametes. We also found that most WOXs displayed a stage-specific and cell type-specific expression pattern. Taken together, this work provides a detailed landscape of WOXs in tobacco during fertilization and early embryogenesis, which will facilitate the understanding of their specific roles

  11. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes.

    Science.gov (United States)

    Takano, Tetsuya; Urushibara, Tomoki; Yoshioka, Nozomu; Saito, Taro; Fukuda, Mitsunori; Tomomura, Mineko; Hisanaga, Shin-Ichi

    2014-06-01

    Neurons extend two types of neurites-axons and dendrites-that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth. © 2014 Takano et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Endosomal protein sorting and autophagy genes contribute to the regulation of yeast life span.

    Science.gov (United States)

    Longo, Valter D; Nislow, Corey; Fabrizio, Paola

    2010-11-01

    Accumulating evidence from various organisms points to a role for autophagy in the regulation of life span. By performing a genome-wide screen to identify novel life span determinants in Saccharomyces cerevisiae, we have obtained further insights into the autophagy-related and -unrelated degradation processes that may be important for preventing cellular senescence. The generation of multivesicular bodies and their fusion with the vacuole in the endosomal pathway emerged as novel cell functions involved in yeast chronological survival and longevity extension.

  13. Endosome-based protein trafficking and Ca2+ homeostasis in the heart

    Directory of Open Access Journals (Sweden)

    Jerry eCurran

    2015-02-01

    Full Text Available The ability to dynamically regulate, traffic, retain, and recycle proteins within the cell membrane is fundamental to life and central to the normal function of the heart and cardiovascular system. In the heart, these systems are essential for the regulation of cardiac calcium, both at the level of the plasma membrane, but also at local domains of the endoplasmic reticulum, sarcoplasmic reticulum, mitochondria, nucleus, and nuclear envelope. One intracellular pathway often overlooked in relation to cardiovascular calcium regulation and signaling is the endosome-based trafficking pathway. Highlighting its importance, this system and its molecular components are evolutionarily conserved across all metazoans. However, remarkably little is known of how endosome-based protein trafficking and recycling functions within mammalian cells systems, especially in the heart. The vast majority of what is known has been derived from heterologous cell systems. However, recently, more appropriate cell and animal models been developed that have allowed researchers to begin to understand how this system functions within the intact physiological environment. All excitable cells, including cardiomyocytes, depend on the proper expression and organization of multiple ion channels, pumps, exchangers, and transporters within the plasma membrane. As the endosomal system acts to regulate the expression and localization of membrane proteins, understanding the in vivo function of this system in the heart is important. This review will focus on endosome-based protein trafficking in the heart in both health and disease. Special emphasis will be given to the role played by the family of endocytic regulatory proteins, C-terminal Eps15 homology domain -containing proteins (EHDs, as recent data demonstrates that this family of proteins is essential for the proper trafficking and localization and of key proteins involved in excitation-contraction coupling.

  14. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease

    DEFF Research Database (Denmark)

    Kovács, Gábor G; Gelpi, Ellen; Ströbel, Thomas

    2007-01-01

    The endosomal-lysosomal system (ELS) has been suggested to play a role in the pathogenesis of prion diseases. The purpose of this study was to examine how experimental observations can be translated to human neuropathology and whether alterations of the ELS relate to neuropathologic changes...... correlate with regional pathology. Overloading of this system might impair the function of lysosomal enzymes and thus may mimic some features of lysosomal storage disorders. Udgivelsesdato: 2007-Jul...

  15. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.

    Science.gov (United States)

    Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi

    2016-02-01

    Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    International Nuclear Information System (INIS)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose; Okada, Masato

    2012-01-01

    Highlights: ► p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. ► We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. ► The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. ► Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. ► The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome–lysosome fusion, which is required for processing of various macromolecules.

  17. Two novel WD40 domain–containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway

    Science.gov (United States)

    Shi, Yufeng; Stefan, Christopher J.; Rue, Sarah M.; Teis, David; Emr, Scott D.

    2011-01-01

    Regulated secretion, nutrient uptake, and responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. However, the underlying mechanisms that govern membrane protein recycling to the cell surface are not fully known. Using a chemical-genetic screen in yeast, we show that the arginine transporter Can1 is recycled back to the cell surface via two independent pathways mediated by the sorting nexins Snx4/41/42 and the retromer complex, respectively. In addition, we identify two novel WD40-domain endosomal recycling proteins, Ere1 and Ere2, that function in the retromer pathway. Ere1 is required for Can1 recycling via the retromer-mediated pathway, but it is not required for the transport of other retromer cargoes, such as Vps10 and Ftr1. Biochemical studies reveal that Ere1 physically interacts with internalized Can1. Ere2 is present in a complex containing Ere1 on endosomes and functions as a regulator of Ere1. Taken together, our results suggest that Snx4/41/42 and the retromer comprise two independent pathways for the recycling of internalized cell-surface proteins. Moreover, a complex containing the two novel proteins Ere1 and Ere2 mediates cargo-specific recognition by the retromer pathway. PMID:21880895

  18. Molecular determinants of the interaction between Doa1 and Hse1 involved in endosomal sorting.

    Science.gov (United States)

    Han, Seungsu; Shin, Donghyuk; Choi, Hoon; Lee, Sangho

    2014-03-28

    Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. dOCRL maintains immune cell quiescence by regulating endosomal traffic.

    Directory of Open Access Journals (Sweden)

    Steven J Del Signore

    2017-10-01

    Full Text Available Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome.

  20. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2018-01-01

    Full Text Available The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR, GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5-associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders.

  1. Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

    Directory of Open Access Journals (Sweden)

    Meritxell Reverter

    2014-05-01

    Full Text Available Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN. Here, using Chinese hamster ovary (CHO Niemann-Pick type C1 (NPC1 mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6 accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs. This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.

  2. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    Directory of Open Access Journals (Sweden)

    Hendrik Fuchs

    2016-07-01

    Full Text Available The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  3. Methods of analysis of the membrane trafficking pathway from recycling endosomes to lysosomes.

    Science.gov (United States)

    Matsui, Takahide; Fukuda, Mitsunori

    2014-01-01

    The transferrin receptor (TfR) is responsible for iron uptake through its trafficking between the plasma membrane and recycling endosomes, and as a result it has become a well-known marker for recycling endosomes. Although the molecular basis of the TfR recycling pathway has been thoroughly investigated, the TfR degradation mechanism has been poorly understood. Exposure of cultured cells to two drugs, the protein synthesis inhibitor cycloheximide and the V-ATPase inhibitor bafilomycin A1, recently showed that TfR is not only recycled back to the plasma membrane after endocytosis but is constitutively transported to lysosomes for degradation. The results of genome-wide screening of mouse Rab small GTPases (common regulators of membrane trafficking in all eukaryotes) have indicated that Rab12 regulates TfR trafficking to lysosomes independently of the known membrane trafficking pathways, for example, the conventional endocytic pathway and recycling pathway. This chapter summarizes the methods that the authors used to analyze the membrane trafficking pathway from recycling endosomes to lysosomes that is specifically regulated by Rab12. © 2014 Elsevier Inc. All rights reserved.

  4. Integration of two RAB5 groups during endosomal transport in plants

    Science.gov (United States)

    Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko

    2018-01-01

    RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929

  5. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.; Muskhelishvili, Levan; Rodriguez-Juarez, Rocio; Kovalchuk, Olga; Han Tao; Fuscoe, James C.; Ross, Sharon A.; Beland, Frederick A.

    2007-01-01

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. In the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G 1 to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen

  6. Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio).

    Science.gov (United States)

    Teng, Miaomiao; Zhu, Wentao; Wang, Dezhen; Qi, Suzhen; Wang, Yao; Yan, Jin; Dong, Kai; Zheng, Mingqi; Wang, Chengju

    2018-01-01

    Difenoconazole is widely used to inhibit the growth of fungi, but its residue in the water environment may threaten ecosystem and human health. Here, 1 H nuclear magnetic resonance (NMR) and LC-MS/MS based metabolomics and transcriptomics approaches were used to assess the response of zebrafish to difenoconazole exposure. Early life stages of zebrafish were exposed to difenoconazole at environmentally relevant concentrations for 168h. Their comparison with the control group suggested an adverse development and disturbance of steroid hormones and VTG. KEGG pathway analysis identified five biological processes on the basis of differentially expressed genes (DEGs), as well as altered metabolites and amino acids in zebrafish following difenoconazole exposure. These affected processes included energy metabolism, amino acids metabolism, lipid metabolism, nucleotide metabolism, and an immune-related pathway. Collectively, these results bring us closer to an incremental understanding of the toxic effects of difenoconazole on zebrafish in its early development, and lend support to the continued use of the early life stages of zebrafish as a classical model to evaluate underlying environmental risks of xenobiotics in aquatic organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Tikal, Guatemala, and Emergent Maya Civilization: Excavations reveal evidence of early complex-living at a prime Maya Indian site.

    Science.gov (United States)

    Coe, W R

    1965-03-19

    It would be extravagant to claim that these pages have outlined meaningfully the early evolution of Tikal. Data have been provided largely for one excavation locus at a site which, for all its importance, merely has symptomatic value. We cannot claim to have, at present, sufficient material to document satisfyingly the conditions and products of community-wide living at any point in these early times. Present knowledge of Eb and Tzec ceramics and of all the usual archeological correlates (architecture and so on) is disturbingly incomplete. While we do have a good many data on residence throughout much of Preclassic time, considerably more information is needed before a solid evaluation of Preclassic Tikal society can be achieved. One can only hope that pending excavation programs will provide it. Yet, experience shows that probably only a tiny percentage of early cultural remains, regardless of their grandeur and importance at the time, would have survived the constant quest for construction fills to satisfy a seemingly interminable need to build and revamp.

  8. A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging.

    Science.gov (United States)

    Baroncelli, Laura; Molinaro, Angelo; Cacciante, Francesco; Alessandrì, Maria Grazia; Napoli, Debora; Putignano, Elena; Tola, Jonida; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2016-10-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement and autistic-like behavioural disturbances, language and speech impairment. Since no data are available about the neural and molecular underpinnings of this disease, we performed a longitudinal analysis of behavioural and pathological alterations associated with CrT deficiency in a CCDS1 mouse model. We found precocious cognitive and autistic-like defects, mimicking the early key features of human CCDS1. Moreover, mutant mice displayed a progressive impairment of short and long-term declarative memory denoting an early brain aging. Pathological examination showed a prominent loss of GABAergic synapses, marked activation of microglia, reduction of hippocampal neurogenesis and the accumulation of autofluorescent lipofuscin. Our data suggest that brain Cr depletion causes both early intellectual disability and late progressive cognitive decline, and identify novel targets to design intervention strategies aimed at overcoming brain CCDS1 alterations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    Science.gov (United States)

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  10. New early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities

    Directory of Open Access Journals (Sweden)

    Thierry Smith

    2016-11-01

    Full Text Available The Ypresian Cambay Shale Formation at Vastan and Mangrol lignite mines in Gujarat, western India, has yielded a rich vertebrate fauna with numerous taxa of European affinities. Here we report a new, approximately contemporary vertebrate assemblage from two fossiliferous layers in the nearby mine of Tadkeshwar. These layers have yielded a similar mammal fauna with the co-occurrence of the perissodactyl-like cambaytheriid Cambaytherium thewissi, the adapoid primates Marcgodinotius indicus and cf. Asiadapis cambayensis, and the hyaenodontid Indohyaenodon raoi. The presence of these species in both Vastan and Tadkeshwar mines and at different levels suggests that the deposits between the two major lignite seams represent a single land mammal age. Apart from the aforementioned species there is a new, smaller species of Cambaytherium, and a new genus and species of esthonychid tillodont. This fauna also contains the first large early Eocene vertebrates from India, including an unidentified Coryphodon-like pantodont, a dyrosaurid crocodyliform and a new giant madtsoiid snake. Among the Tadkeshwar vertebrates several taxa are of Gondwana affinities, such as Pelomedusoides turtles, dyrosaurids, and large madtsoiids, attesting that the early Eocene was a crucial period in India during which Laurasian taxa of European affinities co-existed with relict taxa from Gondwana before the India-Asia collision. Our results suggest that terrestrial faunas could have dispersed to or from Europe during episodes of contact between the Indian subcontinent and different island blocks along the northern margin of the Neotethys, such as the Kohistan–Ladakh island-arc system. Gondwana taxa might represent remnants of ghost lineages shared with Madagascar, which reached the Indian subcontinent during the late Cretaceous; alternatively they might have come from North Africa and passed along the southern margin of the Neotethys to reach the Indian subcontinent. These

  11. Serum Metabolomics Reveals Serotonin as a Predictor of Severe Dengue in the Early Phase of Dengue Fever

    Science.gov (United States)

    Thein, Tun Linn; Fang, Jinling; Pang, Junxiong; Ooi, Eng Eong; Leo, Yee Sin; Ong, Choon Nam; Tannenbaum, Steven R.

    2016-01-01

    Effective triage of dengue patients early in the disease course for in- or out-patient management would be useful for optimal healthcare resource utilization while minimizing poor clinical outcome due to delayed intervention. Yet, early prognosis of severe dengue is hampered by the heterogeneity in clinical presentation and routine hematological and biochemical measurements in dengue patients that collectively correlates poorly with eventual clinical outcome. Herein, untargeted liquid-chromatography mass spectrometry metabolomics of serum from patients with dengue fever (DF) and dengue hemorrhagic fever (DHF) in the febrile phase (1.5) in the serum, among which are two products of tryptophan metabolism–serotonin and kynurenine. Serotonin, involved in platelet aggregation and activation decreased significantly, whereas kynurenine, an immunomodulator, increased significantly in patients with DHF, consistent with thrombocytopenia and immunopathology in severe dengue. To sensitively and accurately evaluate serotonin levels as prognostic biomarkers, we implemented stable-isotope dilution mass spectrometry and used convalescence samples as their own controls. DHF serotonin was significantly 1.98 fold lower in febrile compared to convalescence phase, and significantly 1.76 fold lower compared to DF in the febrile phase of illness. Thus, serotonin alone provided good prognostic utility (Area Under Curve, AUC of serotonin = 0.8). Additionally, immune mediators associated with DHF may further increase the predictive ability than just serotonin alone. Nine cytokines, including IFN-γ, IL-1β, IL-4, IL-8, G-CSF, MIP-1β, FGF basic, TNFα and RANTES were significantly different between DF and DHF, among which IFN-γ ranked top by multivariate statistics. Combining serotonin and IFN-γ improved the prognosis performance (AUC = 0.92, sensitivity = 77.8%, specificity = 95.8%), suggesting this duplex panel as accurate metrics for the early prognosis of DHF. PMID:27055163

  12. Ancient DNA from South-East Europe Reveals Different Events during Early and Middle Neolithic Influencing the European Genetic Heritage.

    Science.gov (United States)

    Hervella, Montserrat; Rotea, Mihai; Izagirre, Neskuts; Constantinescu, Mihai; Alonso, Santos; Ioana, Mihai; Lazăr, Cătălin; Ridiche, Florin; Soficaru, Andrei Dorian; Netea, Mihai G; de-la-Rua, Concepcion

    2015-01-01

    The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starčevo Criş culture in Romania (Cârcea, Gura Baciului and Negrileşti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelniţa cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations.

  13. Historical DNA reveals the demographic history of Atlantic cod (Gadus morhua) in medieval and early modern Iceland.

    Science.gov (United States)

    Ólafsdóttir, Guðbjörg Ásta; Westfall, Kristen M; Edvardsson, Ragnar; Pálsson, Snæbjörn

    2014-02-22

    Atlantic cod (Gadus morhua) vertebrae from archaeological sites were used to study the history of the Icelandic Atlantic cod population in the time period of 1500-1990. Specifically, we used coalescence modelling to estimate population size and fluctuations from the sequence diversity at the cytochrome b (cytb) and Pantophysin I (PanI) loci. The models are consistent with an expanding population during the warm medieval period, large historical effective population size (NE), a marked bottleneck event at 1400-1500 and a decrease in NE in early modern times. The model results are corroborated by the reduction of haplotype and nucleotide variation over time and pairwise population distance as a significant portion of nucleotide variation partitioned across the 1550 time mark. The mean age of the historical fished stock is high in medieval times with a truncation in age in early modern times. The population size crash coincides with a period of known cooling in the North Atlantic, and we conclude that the collapse may be related to climate or climate-induced ecosystem change.

  14. Effects of Repeated Concussions and Sex on Early Processing of Emotional Facial Expressions as Revealed by Electrophysiology.

    Science.gov (United States)

    Carrier-Toutant, Frédérike; Guay, Samuel; Beaulieu, Christelle; Léveillé, Édith; Turcotte-Giroux, Alexandre; Papineau, Samaël D; Brisson, Benoit; D'Hondt, Fabien; De Beaumont, Louis

    2018-05-06

    Concussions affect the processing of emotional stimuli. This study aimed to investigate how sex interacts with concussion effects on early event-related brain potentials (ERP) measures (P1, N1) of emotional facial expressions (EFE) processing in asymptomatic, multi-concussion athletes during an EFE identification task. Forty control athletes (20 females and 20 males) and 43 multi-concussed athletes (22 females and 21 males), recruited more than 3 months after their last concussion, were tested. Participants completed the Beck Depression Inventory II, the Beck Anxiety Inventory, the Post-Concussion Symptom Scale, and an Emotional Facial Expression Identification Task. Pictures of male and female faces expressing neutral, angry, and happy emotions were randomly presented and the emotion depicted had to be identified as fast as possible during EEG acquisition. Relative to controls, concussed athletes of both sex exhibited a significant suppression of P1 amplitude recorded from the dominant right hemisphere while performing the emotional face expression identification task. The present study also highlighted a sex-specific suppression of the N1 component amplitude after concussion which affected male athletes. These findings suggest that repeated concussions alter the typical pattern of right-hemisphere response dominance to EFE in early stages of EFE processing and that the neurophysiological mechanisms underlying the processing of emotional stimuli are distinctively affected across sex. (JINS, 2018, 24, 1-11).

  15. New Genetic Insights into Pearl Millet Diversity As Revealed by Characterization of Early- and Late-Flowering Landraces from Senegal

    Directory of Open Access Journals (Sweden)

    Oumar Diack

    2017-05-01

    Full Text Available Pearl millet (Pennisetum glaucum (L. R. Br. is a staple food and a drought-tolerant cereal well adapted to Sub-Saharan Africa agro-ecosystems. An important diversity of pearl millet landraces has been widely conserved by farmers and therefore could help copping with climate changes and contribute to future food security. Hence, characterizing its genetic diversity and population structure can contribute to better assist breeding programs for a sustainable agricultural productivity enhancement. Toward this goal, a comprehensive panel of 404 accessions were used that correspond to 12 improved varieties, 306 early flowering and 86 late-flowering cultivated landraces from Senegal. Twelve highly polymorphic SSR markers were used to study diversity and population structure. Two genes, PgMADS11 and PgPHYC, were genotyped to assess their association to flowering phenotypic difference in landraces. Results indicate a large diversity and untapped potential of Senegalese pearl millet germplasm as well as a genetic differentiation between early- and late-flowering landraces. Further, a fine-scale genetic difference of PgPHYC and PgMADS11 (SNP and indel, respectively and co-variation of their alleles with flowering time were found among landraces. These findings highlight new genetic insights of pearl millet useful to define heterotic populations for breeding, genomic association panel, or crosses for trait-specific mapping.

  16. Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response.

    Directory of Open Access Journals (Sweden)

    Maria Jesus Iglesias

    Full Text Available Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS.To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches--gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII, which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF, was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines, was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/-LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40% was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at

  17. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki

    2012-10-18

    Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land. © 2012 Blackwell Publishing Ltd.

  18. Automated analysis of connected speech reveals early biomarkers of Parkinson's disease in patients with rapid eye movement sleep behaviour disorder.

    Science.gov (United States)

    Hlavnička, Jan; Čmejla, Roman; Tykalová, Tereza; Šonka, Karel; Růžička, Evžen; Rusz, Jan

    2017-02-02

    For generations, the evaluation of speech abnormalities in neurodegenerative disorders such as Parkinson's disease (PD) has been limited to perceptual tests or user-controlled laboratory analysis based upon rather small samples of human vocalizations. Our study introduces a fully automated method that yields significant features related to respiratory deficits, dysphonia, imprecise articulation and dysrhythmia from acoustic microphone data of natural connected speech for predicting early and distinctive patterns of neurodegeneration. We compared speech recordings of 50 subjects with rapid eye movement sleep behaviour disorder (RBD), 30 newly diagnosed, untreated PD patients and 50 healthy controls, and showed that subliminal parkinsonian speech deficits can be reliably captured even in RBD patients, which are at high risk of developing PD or other synucleinopathies. Thus, automated vocal analysis should soon be able to contribute to screening and diagnostic procedures for prodromal parkinsonian neurodegeneration in natural environments.

  19. Weighted gene co-expression network analysis reveals potential genes involved in early metamorphosis process in sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Li, Yongxin; Kikuchi, Mani; Li, Xueyan; Gao, Qionghua; Xiong, Zijun; Ren, Yandong; Zhao, Ruoping; Mao, Bingyu; Kondo, Mariko; Irie, Naoki; Wang, Wen

    2018-01-01

    Sea cucumbers, one main class of Echinoderms, have a very fast and drastic metamorphosis process during their development. However, the molecular basis under this process remains largely unknown. Here we systematically examined the gene expression profiles of Japanese common sea cucumber (Apostichopus japonicus) for the first time by RNA sequencing across 16 developmental time points from fertilized egg to juvenile stage. Based on the weighted gene co-expression network analysis (WGCNA), we identified 21 modules. Among them, MEdarkmagenta was highly expressed and correlated with the early metamorphosis process from late auricularia to doliolaria larva. Furthermore, gene enrichment and differentially expressed gene analysis identified several genes in the module that may play key roles in the metamorphosis process. Our results not only provide a molecular basis for experimentally studying the development and morphological complexity of sea cucumber, but also lay a foundation for improving its emergence rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Differential gene expression profile reveals deregulation of pregnancy specific β1 glycoprotein 9 early during colorectal carcinogenesis

    Directory of Open Access Journals (Sweden)

    Gallinger Steven

    2005-06-01

    Full Text Available Abstract Background APC (Adenomatous polyposis coli plays an important role in the pathogenesis of both familial and sporadic colorectal cancer. Patients carrying germline APC mutations develop multiple colonic adenomas at younger age and higher frequency than non-carrier cases which indicates that silencing of one APC allele may be sufficient to initiate the transformation process. Methods To elucidate the biological dysregulation underlying adenoma formation we examined global gene expression profiles of adenomas and corresponding normal mucosa from an FAP patient. Differential expression of the most significant gene identified in this study was further validated by mRNA in situ hybridization, reverse transcriptase PCR and Northern blotting in different sets of adenomas, tumours and cancer cell lines. Results Eighty four genes were differentially expressed between all adenomas and corresponding normal mucosa, while only seven genes showed differential expression within the adenomas. The first group included pregnancy specific β-1 glycoprotein 9 (PSG9 (p PSG9 is a member of the carcinoembryonic antigen (CEA/PSG family and is produced at high levels during pregnancy, mainly by syncytiotrophoblasts. Further analysis of sporadic and familial colorectal cancer confirmed that PSG9 is ectopically upregulated in vivo by cancer cells. In total, deregulation of PSG9 mRNA was detected in 78% (14/18 of FAP adenomas and 75% (45/60 of sporadic colorectal cancer cases tested. Conclusion Detection of PSG9 expression in adenomas, and at higher levels in FAP cases, indicates that germline APC mutations and defects in Wnt signalling modulate PSG9 expression. Since PSG9 is not found in the non-pregnant adult except in association with cancer, and it appears to be an early molecular event associated with colorectal cancer monitoring of its expression may be useful as a biomarker for the early detection of this disease.

  1. An alternative model for the early peopling of southern South America revealed by analyses of three mitochondrial DNA haplogroups.

    Science.gov (United States)

    de Saint Pierre, Michelle; Bravi, Claudio M; Motti, Josefina M B; Fuku, Noriyuki; Tanaka, Masashi; Llop, Elena; Bonatto, Sandro L; Moraga, Mauricio

    2012-01-01

    After several years of research, there is now a consensus that America was populated from Asia through Beringia, probably at the end of the Pleistocene. But many details such as the timing, route(s), and origin of the first settlers remain uncertain. In the last decade genetic evidence has taken on a major role in elucidating the peopling of the Americas. To study the early peopling of South America, we sequenced the control region of mitochondrial DNA from 300 individuals belonging to indigenous populations of Chile and Argentina, and also obtained seven complete mitochondrial DNA sequences. We identified two novel mtDNA monophyletic clades, preliminarily designated B2l and C1b13, which together with the recently described D1g sub-haplogroup have locally high frequencies and are basically restricted to populations from the extreme south of South America. The estimated ages of D1g and B2l, about ~15,000 years BP, together with their similar population dynamics and the high haplotype diversity shown by the networks, suggests that they probably appeared soon after the arrival of the first settlers and agrees with the dating of the earliest archaeological sites in South America (Monte Verde, Chile, 14,500 BP). One further sub-haplogroup, D4h3a5, appears to be restricted to Fuegian-Patagonian populations and reinforces our hypothesis of the continuity of the current Patagonian populations with the initial founders. Our results indicate that the extant native populations inhabiting South Chile and Argentina are a group which had a common origin, and suggest a population break between the extreme south of South America and the more northern part of the continent. Thus the early colonization process was not just an expansion from north to south, but also included movements across the Andes.

  2. Multisensory representation of frequency across audition and touch: high density electrical mapping reveals early sensory-perceptual coupling.

    Science.gov (United States)

    Butler, John S; Foxe, John J; Fiebelkorn, Ian C; Mercier, Manuel R; Molholm, Sophie

    2012-10-31

    The frequency of environmental vibrations is sampled by two of the major sensory systems, audition and touch, notwithstanding that these signals are transduced through very different physical media and entirely separate sensory epithelia. Psychophysical studies have shown that manipulating frequency in audition or touch can have a significant cross-sensory impact on perceived frequency in the other sensory system, pointing to intimate links between these senses during computation of frequency. In this regard, the frequency of a vibratory event can be thought of as a multisensory perceptual construct. In turn, electrophysiological studies point to temporally early multisensory interactions that occur in hierarchically early sensory regions where convergent inputs from the auditory and somatosensory systems are to be found. A key question pertains to the level of processing at which the multisensory integration of featural information, such as frequency, occurs. Do the sensory systems calculate frequency independently before this information is combined, or is this feature calculated in an integrated fashion during preattentive sensory processing? The well characterized mismatch negativity, an electrophysiological response that indexes preattentive detection of a change within the context of a regular pattern of stimulation, served as our dependent measure. High-density electrophysiological recordings were made in humans while they were presented with separate blocks of somatosensory, auditory, and audio-somatosensory "standards" and "deviants," where the deviant differed in frequency. Multisensory effects were identified beginning at ∼200 ms, with the multisensory mismatch negativity (MMN) significantly different from the sum of the unisensory MMNs. This provides compelling evidence for preattentive coupling between the somatosensory and auditory channels in the cortical representation of frequency.

  3. Lysosomal and endosomal heterogeneity in the liver: A comparison of the intracellular pathways of endocytosis in rat liver cells

    International Nuclear Information System (INIS)

    Kindberg, G.M.; Tolleshaug, H.; Gjoen, T.; Berg, T.

    1991-01-01

    Air-filled albumin microspheres, asialoorosomucoid and formaldehyde-treated serum albumin are selectively taken up by endocytosis in rat liver Kupffer cells, parenchymal cells and endothelial cells, respectively. Intracellular transport and degradation of endocytosed material were studied by subcellular fractionation in sucrose and Nycodenz gradients after intravenous injection of the ligand. By using ligands labeled with 125I-tyramine-cellobiose, the subcellular distribution of labeled degradation products can be studied because they are trapped at the site of formation. The results show that the kinetics of intracellular transport are different in hepatic parenchymal, endothelial and Kupffer cells. In endothelial cells, the ligand is associated with two types of endosomes during the first minutes after internalization and then is transferred rapidly to the lysosomes. In parenchymal cells, 125I-tyramine-cellobiose-asialoorosomucoid was located in a relatively slowly sedimenting vesicle during the first minute after internalization and subsequently in denser endosomes. Degradation of 125I-tyramine-cellobiose-asialoorosomucoid in parenchymal cells started later than that of 125I-tyramine-cellobiose-formaldehyde-treated serum albumin in endothelial cells. Furthermore, the ligand seemed to be transferred relatively slowly from endosomes to lysosomes, and most of the undegraded ligand was in the endosomes. The rate-limiting step of proteolysis in parenchymal cells is probably the transport from endosomes to lysosomes. In Kupffer cells, most 125I-tyramine-cellobiose-microspheres are found as undegraded material in very dense endosomes up to 3 hr after injection. After 20 hr, most of the ligand is degraded in lysosomes distributed at a lower density than the endosomes in Nycodenz and sucrose gradients

  4. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Katrina L Paumier

    Full Text Available Parkinson's disease (PD pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn. Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age. Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1-2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD. Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic

  5. Behavioral Characterization of A53T Mice Reveals Early and Late Stage Deficits Related to Parkinson’s Disease

    Science.gov (United States)

    Paumier, Katrina L.; Sukoff Rizzo, Stacey J.; Berger, Zdenek; Chen, Yi; Gonzales, Cathleen; Kaftan, Edward; Li, Li; Lotarski, Susan; Monaghan, Michael; Shen, Wei; Stolyar, Polina; Vasilyev, Dmytro; Zaleska, Margaret; D. Hirst, Warren; Dunlop, John

    2013-01-01

    Parkinson's disease (PD) pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn). Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K) are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn) and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age). Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1–2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD). Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic impairments

  6. Quantitative N-linked Glycoproteomics of Myocardial Ischemia and Reperfusion Injury Reveals Early Remodeling in the Extracellular Environment

    DEFF Research Database (Denmark)

    Parker, Benjamin L; Palmisano, Giuseppe; Edwards, Alistair V G

    2011-01-01

    , while dimethyl labeling confirmed 46 of these and revealed an additional 62 significant changes. These were mainly from predicted extracellular matrix and basement membrane proteins that are implicated in cardiac remodeling. Analysis of N-glycans released from myocardial proteins suggest...... that the observed changes were not due to significant alterations in N-glycan structures. Altered proteins included the collagen-laminin-integrin complexes and collagen assembly enzymes, cadherins, mast cell proteases, proliferation-associated secreted protein acidic and rich in cysteine, and microfibril......Extracellular and cell surface proteins are generally modified with N-linked glycans and glycopeptide enrichment is an attractive tool to analyze these proteins. The role of N-linked glycoproteins in cardiovascular disease, particularly ischemia and reperfusion injury, is poorly understood...

  7. Targeted Metabolomics Reveals Early Dominant Optic Atrophy Signature in Optic Nerves of Opa1delTTAG/+ Mice.

    Science.gov (United States)

    Chao de la Barca, Juan Manuel; Simard, Gilles; Sarzi, Emmanuelle; Chaumette, Tanguy; Rousseau, Guillaume; Chupin, Stéphanie; Gadras, Cédric; Tessier, Lydie; Ferré, Marc; Chevrollier, Arnaud; Desquiret-Dumas, Valérie; Gueguen, Naïg; Leruez, Stéphanie; Verny, Christophe; Miléa, Dan; Bonneau, Dominique; Amati-Bonneau, Patrizia; Procaccio, Vincent; Hamel, Christian; Lenaers, Guy; Reynier, Pascal; Prunier-Mirebeau, Delphine

    2017-02-01

    Dominant optic atrophy (MIM No. 165500) is a blinding condition related to mutations in OPA1, a gene encoding a large GTPase involved in mitochondrial inner membrane dynamics. Although several mouse models mimicking the disease have been developed, the pathophysiological mechanisms responsible for retinal ganglion cell degeneration remain poorly understood. Using a targeted metabolomic approach, we measured the concentrations of 188 metabolites in nine tissues, that is, brain, three types of skeletal muscle, heart, liver, retina, optic nerve, and plasma in symptomatic 11-month-old Opa1delTTAG/+ mice. Significant metabolic signatures were found only in the optic nerve and plasma of female mice. The optic nerve signature was characterized by altered concentrations of phospholipids, amino acids, acylcarnitines, and carnosine, whereas the plasma signature showed decreased concentrations of amino acids and sarcosine associated with increased concentrations of several phospholipids. In contrast, the investigation of 3-month-old presymptomatic Opa1delTTAG/+ mice showed no specific plasma signature but revealed a significant optic nerve signature in both sexes, although with a sex effect. The Opa1delTTAG/+ versus wild-type optic nerve signature was characterized by the decreased concentrations of 10 sphingomyelins and 10 lysophosphatidylcholines, suggestive of myelin sheath alteration, and by alteration in the concentrations of metabolites involved in neuroprotection, such as dimethylarginine, carnitine, spermine, spermidine, carnosine, and glutamate, suggesting a concomitant axonal metabolic dysfunction. Our comprehensive metabolomic investigations revealed in symptomatic as well as in presymptomatic Opa1delTTAG/+ mice, a specific sensitiveness of the optic nerve to Opa1 insufficiency, opening new routes for protective therapeutic strategies.

  8. Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of Type 1 Diabetes progression

    International Nuclear Information System (INIS)

    Liu, Chih-Wei; Bramer, Lisa; Computational Modeling); Webb-Robertson, Bobbie-Jo; Computational Modeling); Waugh, Kathleen; Rewers, Marian J.; Zhang, Qibin; Biochemistry)

    2017-01-01

    We report that blood markers other than islet autoantibodies are greatly needed to indicate the pancreatic beta cell destruction process as early as possible, and more accurately reflect the progression of Type 1 Diabetes Mellitus (T1D). To this end, a longitudinal proteomic profiling of human plasma using TMT-10plex-based LC-MS/MS analysis was performed to track temporal proteomic changes of T1D patients (n = 11) across 9 serial time points, spanning the period of T1D natural progression, in comparison with those of the matching healthy controls (n = 10). To our knowledge, the current study represents the largest (> 2000 proteins measured) longitudinal expression profiles of human plasma proteome in T1D research. By applying statistical trend analysis on the temporal expression patterns between T1D and controls, and Benjamini-Hochberg procedure for multiple-testing correction, 13 protein groups were regarded as having statistically significant differences during the entire follow-up period. Moreover, 16 protein groups, which play pivotal roles in response to oxidative stress, have consistently abnormal expression trend before seroconversion to islet autoimmunity. Importantly, the expression trends of two key reactive oxygen species-decomposing enzymes, Catalase and Superoxide dismutase were verified independently by ELISA.

  9. 7T T₂*-weighted magnetic resonance imaging reveals cortical phase differences between early- and late-onset Alzheimer's disease.

    Science.gov (United States)

    van Rooden, Sanneke; Doan, Nhat Trung; Versluis, Maarten J; Goos, Jeroen D C; Webb, Andrew G; Oleksik, Ania M; van der Flier, Wiesje M; Scheltens, Philip; Barkhof, Frederik; Weverling-Rynsburger, Annelies W E; Blauw, Gerard Jan; Reiber, Johan H C; van Buchem, Mark A; Milles, Julien; van der Grond, Jeroen

    2015-01-01

    The aim of this study is to explore regional iron-related differences in the cerebral cortex, indicative of Alzheimer's disease pathology, between early- and late-onset Alzheimer's disease (EOAD, LOAD, respectively) patients using 7T magnetic resonance phase images. High-resolution T2(∗)-weighted scans were acquired in 12 EOAD patients and 17 LOAD patients with mild to moderate disease and 27 healthy elderly control subjects. Lobar peak-to-peak phase shifts and regional mean phase contrasts were computed. An increased peak-to-peak phase shift was found for all lobar regions in EOAD patients compared with LOAD patients (p < 0.05). Regional mean phase contrast in EOAD patients was higher than in LOAD patients in the superior medial and middle frontal gyrus, anterior and middle cingulate gyrus, postcentral gyrus, superior and inferior parietal gyrus, and precuneus (p ≤ 0.042). These data suggest that EOAD patients have an increased iron accumulation, possibly related to an increased amyloid deposition, in specific cortical regions as compared with LOAD patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage.

    Science.gov (United States)

    Tulpule, Asmin; Lensch, M William; Miller, Justine D; Austin, Karyn; D'Andrea, Alan; Schlaeger, Thorsten M; Shimamura, Akiko; Daley, George Q

    2010-04-29

    Fanconi anemia (FA) is a genetically heterogeneous, autosomal recessive disorder characterized by pediatric bone marrow failure and congenital anomalies. The effect of FA gene deficiency on hematopoietic development in utero remains poorly described as mouse models of FA do not develop hematopoietic failure and such studies cannot be performed on patients. We have created a human-specific in vitro system to study early hematopoietic development in FA using a lentiviral RNA interference (RNAi) strategy in human embryonic stem cells (hESCs). We show that knockdown of FANCA and FANCD2 in hESCs leads to a reduction in hematopoietic fates and progenitor numbers that can be rescued by FA gene complementation. Our data indicate that hematopoiesis is impaired in FA from the earliest stages of development, suggesting that deficiencies in embryonic hematopoiesis may underlie the progression to bone marrow failure in FA. This work illustrates how hESCs can provide unique insights into human development and further our understanding of genetic disease.

  11. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species.

    Science.gov (United States)

    Bright, Lydia J; Gout, Jean-Francois; Lynch, Michael

    2017-04-15

    New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. © 2017 Bright et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes.

    Directory of Open Access Journals (Sweden)

    Stella A G D Salvo

    Full Text Available Embryogenic tissue culture systems are utilized in propagation and genetic engineering of crop plants, but applications are limited by genotype-dependent culture response. To date, few genes necessary for embryogenic callus formation have been identified or characterized. The goal of this research was to enhance our understanding of gene expression during maize embryogenic tissue culture initiation. In this study, we highlight the expression of candidate genes that have been previously regarded in the literature as having important roles in somatic embryogenesis. We utilized RNA based sequencing (RNA-seq to characterize the transcriptome of immature embryo explants of the highly embryogenic and regenerable maize genotype A188 at 0, 24, 36, 48, and 72 hours after placement of explants on tissue culture initiation medium. Genes annotated as functioning in stress response, such as glutathione-S-transferases and germin-like proteins, and genes involved with hormone transport, such as PINFORMED, increased in expression over 8-fold in the study. Maize genes with high sequence similarity to genes previously described in the initiation of embryogenic cultures, such as transcription factors BABY BOOM, LEAFY COTYLEDON, and AGAMOUS, and important receptor-like kinases such as SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASES and CLAVATA, were also expressed in this time course study. By combining results from whole genome transcriptome analysis with an in depth review of key genes that play a role in the onset of embryogenesis, we propose a model of coordinated expression of somatic embryogenesis-related genes, providing an improved understanding of genomic factors involved in the early steps of embryogenic culture initiation in maize and other plant species.

  13. Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging

    International Nuclear Information System (INIS)

    Dubois, J.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L.; Dehaene-Lambertz, G.; Dubois, J.; Dehaene-Lambertz, G.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L.

    2008-01-01

    Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatio-temporal progression of white matter myelination. However, in vivo quantification of the maturation phases of fiber bundles is still lacking. We used noninvasive diffusion tensor MR imaging and tractography in twenty-three 1-4-month-old healthy infants to quantify the early maturation of the main cerebral fascicles. A specific maturation model, based on the respective roles of different maturational processes on the diffusion phenomena, was designed to highlight asynchronous maturation across bundles by evaluating the time-course of mean diffusivity and anisotropy changes over the considered developmental period. Using an original approach, a progression of maturation in four relative stages was determined in each tract by estimating the maturation state and speed, from the diffusion indices over the infants group compared with an adults group on one hand, and in each tract compared with the average over bundles on the other hand. Results were coherent with, and extended previous findings in 8 of 11 bundles, showing the anterior limb of the internal capsule and cingulum as the most immature, followed by the optic radiations, arcuate and inferior longitudinal fascicles, then the spino-thalamic tract and fornix, and finally the cortico-spinal tract as the most mature bundle. Thus, this approach provides new quantitative landmarks for further noninvasive research on brain-behavior relationships during normal and abnormal development. (authors)

  14. Contrasting Networks for Recognition Memory and Recency Memory Revealed by Immediate-Early Gene Imaging in the Rat

    Science.gov (United States)

    2014-01-01

    The expression of the immediate-early gene c-fos was used to compare networks of activity associated with recency memory (temporal order memory) and recognition memory. In Experiment 1, rats were first familiarized with sets of objects and then given pairs of different, familiar objects to explore. For the recency test group, each object in a pair was separated by 110 min in the time between their previous presentations. For the recency control test, each object in a pair was separated by less than a 1 min between their prior presentations. Temporal discrimination of the objects correlated with c-fos activity in the recency test group in several sites, including area Te2, the perirhinal cortex, lateral entorhinal cortex, as well as the dentate gyrus, hippocampal fields CA3 and CA1. For both the test and control conditions, network models were derived using structural equation modeling. The recency test model emphasized serial connections from the perirhinal cortex to lateral entorhinal cortex and then to the CA1 subfield. The recency control condition involved more parallel pathways, but again highlighted CA1 within the hippocampus. Both models contrasted with those derived from tests of object recognition (Experiment 2), because stimulus novelty was associated with pathways from the perirhinal cortex to lateral entorhinal cortex that then involved both the dentate gyrus (and CA3) and CA1 in parallel. The present findings implicate CA1 for the processing of familiar stimuli, including recency discriminations, while the dentate gyrus and CA3 pathways are recruited when the perirhinal cortex signals novel stimuli. PMID:24933661

  15. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation

    Directory of Open Access Journals (Sweden)

    Jaime Chu

    2013-01-01

    Individuals with congenital disorders of glycosylation (CDG have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO, which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf, which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy

  16. Deep RNA sequencing reveals hidden features and dynamics of early gene transcription in Paramecium bursaria chlorella virus 1.

    Directory of Open Access Journals (Sweden)

    Guillaume Blanc

    Full Text Available Paramecium bursaria chlorella virus 1 (PBCV-1 is the prototype of the genus Chlorovirus (family Phycodnaviridae that infects the unicellular, eukaryotic green alga Chlorella variabilis NC64A. The 331-kb PBCV-1 genome contains 416 major open reading frames. A mRNA-seq approach was used to analyze PBCV-1 transcriptomes at 6 progressive times during the first hour of infection. The alignment of 17 million reads to the PBCV-1 genome allowed the construction of single-base transcriptome maps. Significant transcription was detected for a subset of 50 viral genes as soon as 7 min after infection. By 20 min post infection (p.i., transcripts were detected for most PBCV-1 genes and transcript levels continued to increase globally up to 60 min p.i., at which time 41% or the poly (A+-containing RNAs in the infected cells mapped to the PBCV-1 genome. For some viral genes, the number of transcripts in the latter time points (20 to 60 min p.i. was much higher than that of the most highly expressed host genes. RNA-seq data revealed putative polyadenylation signal sequences in PBCV-1 genes that were identical to the polyadenylation signal AAUAAA of green algae. Several transcripts have an RNA fragment excised. However, the frequency of excision and the resulting putative shortened protein products suggest that most of these excision events have no functional role but are probably the result of the activity of misled splicesomes.

  17. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Nissen, Silke [ORNL; Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Shah, Manesh B [ORNL; Pffifner, Susan [University of Tennessee, Knoxville (UTK); Hettich, Robert {Bob} L [ORNL; Loeffler, Frank E [ORNL

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.

  18. A fluorescence resonance energy transfer-based approach for investigating late endosome-lysosome retrograde fusion events.

    Science.gov (United States)

    Kaufmann, A M; Goldman, S D B; Krise, J P

    2009-03-01

    Traditionally, lysosomes have been considered to be a terminal endocytic compartment. Recent studies suggest that lysosomes are quite dynamic, being able to fuse with other late endocytic compartments as well as with the plasma membrane. Here we describe a quantitative fluorescence energy transfer (FRET)-based method for assessing rates of retrograde fusion between terminal lysosomes and late endosomes in living cells. Late endosomes were specifically labeled with 800-nm latex beads that were conjugated with streptavidin and Alexa Fluor 555 (FRET donor). Terminal lysosomes were specifically labeled with 10,000-MW dextran polymers conjugated with biotin and Alexa Fluor 647 (FRET acceptor). Following late endosome-lysosome fusion, the strong binding affinity between streptavidin and biotin brought the donor and acceptor fluorophore molecules into close proximity, thereby facilitating the appearance of a FRET emission signal. Because apparent size restrictions in the endocytic pathway do not permit endocytosed latex beads from reaching terminal lysosomes in an anterograde fashion, the appearance of the FRET signal is consistent with retrograde transport of lysosomal cargo back to late endosomes. We assessed the efficiency of this transport step in fibroblasts affected by different lysosome storage disorders-Niemann-Pick type C, mucolipidosis type IV, and Sandhoff's disease, all of which have a similar lysosomal lipid accumulation phenotype. We report here, for the first time, that these disorders can be distinguished by their rate of transfer of lysosome cargos to late endosomes, and we discuss the implications of these findings for developing new therapeutic strategies.

  19. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dogus Murat Altintas

    Full Text Available BACKGROUND: Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa among androgen-regulated genes (ARG and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely give rise to cancer. METHODS: ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1. RESULTS AND DISCUSSION: By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91 and DLX1 (0.94. CONCLUSIONS: We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could

  20. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease.

    Science.gov (United States)

    Kelsen, Judith R; Dawany, Noor; Moran, Christopher J; Petersen, Britt-Sabina; Sarmady, Mahdi; Sasson, Ariella; Pauly-Hubbard, Helen; Martinez, Alejandro; Maurer, Kelly; Soong, Joanne; Rappaport, Eric; Franke, Andre; Keller, Andreas; Winter, Harland S; Mamula, Petar; Piccoli, David; Artis, David; Sonnenberg, Gregory F; Daly, Mark; Sullivan, Kathleen E; Baldassano, Robert N; Devoto, Marcella

    2015-11-01

    Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the

  1. Small interference RNA profiling reveals the essential role of human membrane trafficking genes in mediating the infectious entry of dengue virus

    Directory of Open Access Journals (Sweden)

    Chu Justin

    2010-02-01

    Full Text Available Abstract Background Dengue virus (DENV is the causative agent of Dengue fever and the life-threatening Dengue Haemorrhagic fever or Dengue shock syndrome. In the absence of anti-viral agents or vaccine, there is an urgent need to develop an effective anti-viral strategy against this medically important viral pathogen. The initial interplay between DENV and the host cells may represent one of the potential anti-viral targeting sites. Currently the involvements of human membrane trafficking host genes or factors that mediate the infectious cellular entry of dengue virus are not well defined. Results In this study, we have used a targeted small interfering RNA (siRNA library to identify and profile key cellular genes involved in processes of endocytosis, cytoskeletal dynamics and endosome trafficking that are important and essential for DENV infection. The infectious entry of DENV into Huh7 cells was shown to be potently inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis. The important role of clathrin-mediated endocytosis was confirmed by the expression of well-characterized dominant-negative mutants of genes in this pathway and by using the clathrin endocytosis inhibitor chlorpromazine. Furthermore, DENV infection was shown to be sensitive to the disruption of human genes in regulating the early to late endosomal trafficking as well as the endosomal acidic pH. The importance and involvement of both actin and microtubule dynamics in mediating the infectious entry of DENV was also revealed in this study. Conclusions Together, the findings from this study have provided a detail profiling of the human membrane trafficking cellular genes and the mechanistic insight into the interplay of these host genes with DENV to initiate an infection, hence broadening our understanding on the entry pathway of this medically important viral pathogen. These data may also provide a new potential avenue for development of anti

  2. Screening of the Open Source Malaria Box Reveals an Early Lead Compound for the Treatment of Alveolar Echinococcosis.

    Directory of Open Access Journals (Sweden)

    Britta Stadelmann

    2016-03-01

    Full Text Available The metacestode (larval stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE, a very severe and in many cases incurable disease. To date, benzimidazoles such as albendazole and mebendazole are the only approved chemotherapeutical treatment options. Benzimidazoles inhibit metacestode proliferation, but do not act parasiticidal. Thus, benzimidazoles have to be taken a lifelong, can cause adverse side effects such as hepatotoxicity, and are ineffective in some patients. We here describe a newly developed screening cascade for the evaluation of the in vitro efficacy of new compounds that includes assessment of parasiticidal activity. The Malaria Box from Medicines for Malaria Venture (MMV, comprised of 400 commercially available chemicals that show in vitro activity against Plasmodium falciparum, was repurposed. Primary screening was carried out at 10 μM by employing the previously described PGI assay, and resulted in the identification of 24 compounds that caused physical damage in metacestodes. Seven out of these 24 drugs were also active at 1 μM. Dose-response assays revealed that only 2 compounds, namely MMV665807 and MMV665794, exhibited an EC50 value below 5 μM. Assessments using human foreskin fibroblasts and Reuber rat hepatoma cells showed that the salicylanilide MMV665807 was less toxic for these two mammalian cell lines than for metacestodes. The parasiticidal activity of MMV665807 was then confirmed using isolated germinal layer cell cultures as well as metacestode vesicles by employing viability assays, and its effect on metacestodes was morphologically evaluated by electron microscopy. However, both oral and intraperitoneal application of MMV665807 to mice experimentally infected with E. multilocularis metacestodes did not result in any reduction of the parasite load.

  3. RNA-Seq reveals the dynamic and diverse features of digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Wei, Jiankai; Zhang, Xiaojun; Yu, Yang; Li, Fuhua; Xiang, Jianhai

    2014-09-01

    The Pacific white shrimp (Litopenaeus vannamei), with high commercial value, has a typical metamorphosis pattern by going through embryo, nauplius, zoea, mysis and postlarvae during early development. Its diets change continually in this period, and a high mortality of larvae also occurs in this period. Since there is a close relationship between diets and digestive enzymes, a comprehensive investigation about the types and expression patterns of all digestive enzyme genes during early development of L. vannamei is of considerable significance for shrimp diets and larvae culture. Using RNA-Seq data, the types and expression characteristics of the digestive enzyme genes were analyzed during five different development stages (embryo, nauplius, zoea, mysis and postlarvae) in L. vannamei. Among the obtained 66,815 unigenes, 296 were annotated as 16 different digestive enzymes including five types of carbohydrase, seven types of peptidase and four types of lipase. Such a diverse suite of enzymes illustrated the capacity of L. vannamei to exploit varied diets to fit their nutritional requirements. The analysis of their dynamic expression patterns during development also indicated the importance of transcriptional regulation to adapt to the diet transition. Our study revealed the diverse and dynamic features of digestive enzymes during early development of L. vannamei. These results would provide support to better understand the physiological changes during diet transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape.

    Science.gov (United States)

    Salomone, Fabrizio; Cardarelli, Francesco; Di Luca, Mariagrazia; Boccardi, Claudia; Nifosì, Riccardo; Bardi, Giuseppe; Di Bari, Lorenzo; Serresi, Michela; Beltram, Fabio

    2012-11-10

    Efficient endocytosis into a wide range of target cells and low toxicity make the arginine-rich Tat peptide (Tat(11): YGRKKRRQRRR, residues 47-57 of HIV-1 Tat protein) an excellent transporter for delivery purposes. Unfortunately, molecules taken up by endocytosis undergo endosomal entrapment and possible metabolic degradation. Escape from the endosome is therefore actively researched. In this context, antimicrobial peptides (AMPs) provide viable templates for the design of new membrane-disruptive motifs. In particular the Cecropin-A and Melittin hybrids (CMs) are among the smallest and most effective peptides with membrane-perturbing abilities. Here we present a novel chimeric peptide in which the Tat(11) motif is fused to the CM(18) hybrid (KWKLFKKIGAVLKVLTTG, residues 1-7 of Cecropin-A and 2-12 of Melittin). When administered to cells, CM(18)-Tat(11) combines the two desired functionalities: efficient uptake and destabilization of endocytotic-vesicle membranes. We show that this chimeric peptide effectively increases cargo-molecule cytoplasm availability and allows the subsequent intracellular localization of diverse membrane-impermeable molecules (i.e. Tat(11)-EGFP fusion protein, calcein, dextrans, and plasmidic DNA) with no detectable cytotoxicity. The present results open the way to the rational engineering of "modular" cell-penetrating peptides (CPPs) that combine (i) efficient translocation from the extracellular milieu into vesicles and (ii) efficient release of molecules from vesicles into the cytoplasm. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The Annexin A1 Receptor FPR2 Regulates the Endosomal Export of Influenza Virus

    Directory of Open Access Journals (Sweden)

    Fryad Rahman

    2018-05-01

    Full Text Available The Formyl Peptide Receptor 2 (FPR2 is a novel promising target for the treatment of influenza. During viral infection, FPR2 is activated by annexinA1, which is present in the envelope of influenza viruses; this activation promotes virus replication. Here, we investigated whether blockage of FPR2 would affect the genome trafficking of influenza virus. We found that, upon infection and cell treatment with the specific FPR2 antagonist WRW4 or the anti-FPR2 monoclonal antibody, FN-1D6-AI, influenza viruses were blocked into endosomes. This effect was independent on the strain and was observed for H1N1 and H3N2 viruses. In addition, blocking FPR2signaling in alveolar lung A549 epithelial cells with the monoclonal anti-FPR2 antibody significantly inhibited virus replication. Altogether, these results show that FPR2signaling interferes with the endosomal trafficking of influenza viruses and provides, for the first time, the proof of concept that monoclonal antibodies directed against FPR2 inhibit virus replication. Antibodies-based therapeutics have emerged as attractive reagents in infectious diseases. Thus, this study suggests that the use of anti-FPR2 antibodies against influenza hold great promise for the future.

  6. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1.

    Science.gov (United States)

    Wang, Han; Shi, Yi; Song, Jian; Qi, Jianxun; Lu, Guangwen; Yan, Jinghua; Gao, George F

    2016-01-14

    Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes*

    Science.gov (United States)

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-01-01

    NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. PMID:26987901

  8. Pannexin2 oligomers localize into endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Daniela eBoassa

    2015-02-01

    Full Text Available Pannexin2 (Panx2 is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS have been documented. Whereas Pannexin1 (Panx1 is fairly ubiquitous and Pannexin3 (Panx3 is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa and HEK293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the

  9. The NKG2D ligand ULBP2 is specifically regulated through an invariant chain-dependent endosomal pathway

    DEFF Research Database (Denmark)

    Uhlenbrock, Franziska Katharina; Hagemann-Jensen, Michael Henrik; Kehlet, Stephanie

    2014-01-01

    by affecting endosomal/lysosomal integrity and protein kinase C activity. The invariant chain was further essential for endosomal transport of ULBP2. This novel pathway was identified through screening experiments by which methylselenic acid was found to possess notable NKG2D ligand regulatory properties....... The protein kinase C inhibitor methylselenic acid induced MICA/B surface expression but dominantly blocked ULBP2 surface transport. Remarkably, by targeting this novel pathway we could specifically block the production of soluble ULBP2 from different, primary melanomas. Our findings strongly suggest...

  10. The N-terminal domains of Vps3 and Vps8 are critical for localization and function of the CORVET tethering complex on endosomes.

    Directory of Open Access Journals (Sweden)

    Nadine Epp

    Full Text Available Endosomal biogenesis depends on multiple fusion and fission events. For fusion, the heterohexameric CORVET complex as an effector of the endosomal Rab5/Vps21 GTPase has a central function in the initial tethering event. Here, we show that the CORVET-specific Vps3 and Vps8 subunits, which interact with Rab5/Vps21, require their N-terminal domains for localization and function. Surprisingly, CORVET may lack either one of the two N-terminal domains, but not both, to promote protein sorting via the endosome. The dually truncated complex mislocalizes to the cytosol and is impaired in endocytic protein sorting, but not in assembly. Furthermore, the endosomal localization can be rescued by overexpression of Vps21 or one of the truncated CORVET subunits, even though CORVET assembly is not impaired by loss of the N-terminal domains or in strains lacking all endosomal Rab5s and Ypt7. We thus conclude that CORVET requires only its C-terminal domains for assembly and has beyond its putative β-propeller domains additional binding sites for endosomes, which could be important to bind Vps21 and other endosome-specific factors for efficient endosome tethering.

  11. Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition

    Science.gov (United States)

    Baumuratova, Tatiana; Dobre, Simona; Bastogne, Thierry; Sauter, Thomas

    2013-01-01

    Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA – a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits. PMID:24367574

  12. A synthetic eicosanoid LX-mimetic unravels host-donor interactions in allogeneic BMT-induced GvHD to reveal an early protective role for host neutrophils.

    Science.gov (United States)

    Devchand, Pallavi R; Schmidt, Birgitta A; Primo, Valeria C; Zhang, Qing-yin; Arnaout, M Amin; Serhan, Charles N; Nikolic, Boris

    2005-02-01

    Lipoxin A(4) (LXA(4)) and aspirin-triggered 15-epi-LXA(4) are potent endogenous lipid mediators thought to define the inflammatory set-point. We used single prophylactic administrations of a synthetic aspirin-triggered lipoxin A(4) signal mimetic, ATLa, to probe dynamics of early host-donor interactions in a mouse model for the inflammation-associated multifactorial disease of allogeneic bone marrow transplant (BMT) -induced graft-vs.-host disease (GvHD). We first demonstrated that both host and donor are responsive to the ATLa signals. The simple and restricted regimen of a single prophylactic administration of ATLa [100 ng/mL to donor cells or 1 microg (approximately 50 microg/kg) i.v. to host] was sufficient to delay death. Clinical indicators of weight, skin lesions, diarrhea and eye inflammation were monitored. Histological analyses on day 45 post-BMT showed that the degree of cellular trafficking, particularly neutrophil infiltrate, and protection of end-organ target pathology are different, depending on whether the host or donor was treated with ATLa. Taken together, these results chart some ATLa protective effects on GvHD cellular dynamics over time and identify a previously unrecognized effect of host neutrophils in the early phase post-BMT as important determinants in the dynamics of GvHD onset and progression.-Devchand, P. R., Schmidt, B. A., Primo, V. C., Zhang, Q.-y., Arnaout, M. A., Serhan, C. N., Nikolic, B. A synthetic eicosanoid LX-mimetic unravels host-donor interactions in allogeneic BMT-induced GvHD to reveal an early protective role for host neutrophils.

  13. Switch of sensitivity dynamics revealed with DyGloSA toolbox for dynamical global sensitivity analysis as an early warning for system's critical transition.

    Science.gov (United States)

    Baumuratova, Tatiana; Dobre, Simona; Bastogne, Thierry; Sauter, Thomas

    2013-01-01

    Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA - a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits.

  14. Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression.

    Directory of Open Access Journals (Sweden)

    Ingo Ahrens

    Full Text Available Endothelial progenitor cells (EPCs can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP, PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15 or pro-angiogenic (galectin-3 properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP was the most up-regulated gene.

  15. Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice

    Directory of Open Access Journals (Sweden)

    Grau Georges E

    2007-12-01

    Full Text Available Abstract Background Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R and CM-susceptible (CM-S mice, upon infection by Plasmodium berghei ANKA (PbA. We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays. Results Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c, and in CM-S (CBA/J and C57BL/6 mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of β-amyloid proteins in brains of CM-S mice, but not of CM-R mice. Conclusion Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.

  16. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    Science.gov (United States)

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  17. Characterization of PEBBLEs as a Tool for Real-Time Measurement of Dictyostelium discoideum Endosomal pH

    Directory of Open Access Journals (Sweden)

    Everett Moding

    2009-01-01

    Full Text Available The measurement of intracellular ion concentration change is important for understanding the cellular mechanisms for communication. Recently developed nanosensors, (Photonic Explorers for Biomedical use with Biologically Localized Embedding PEBBLEs, have a number of advantages for measuring ions in cells over established methods using microelectrodes, unbound fluorescent dyes, or NMR. PEBBLE sensors have been shown to work in principle for measuring dynamic ion changes, but few in vivo applications have been demonstrated. We modified the protocol for the fabrication of pH sensing PEBBLEs and developed a protocol for the utilization of these sensors for the monitoring of dynamic pH changes in the endosomes of slime mold Dictyostelium discoideum (D. discoideum. Oregon Green 514-CdSe Quantum Dot PEBBLEs were used to measure real-time pH inside D. discoideum endosomes during cAMP stimulation. Endosomal pH was shown to decrease during cAMP signaling, demonstrating a movement of protons into the endosomes of D. discoideum amoebae.

  18. Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins

    NARCIS (Netherlands)

    Peden, A.A.; Oorschot, V.; Hesser, B.A.; Austin, C.D.; Scheller, R.H.; Klumperman, J.

    2004-01-01

    The adaptor protein (AP) 3 adaptor complex has been implicated in the transport of lysosomal membrane proteins, but its precise site of action has remained controversial. Here, we show by immuno-electron microscopy that AP-3 is associated with budding profiles evolving from a tubular endosomal

  19. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    NARCIS (Netherlands)

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; Van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    2016-01-01

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal

  20. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    NARCIS (Netherlands)

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal

  1. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction.

    Science.gov (United States)

    Liao, Edward H; Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Farzin, Sarah; Calderon, Mario R; Kauwe, Grant; Haghighi, A Pejmun

    2018-01-01

    Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons.

  2. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.

    Science.gov (United States)

    Hsiang, Allison Y; Field, Daniel J; Webster, Timothy H; Behlke, Adam D B; Davis, Matthew B; Racicot, Rachel A; Gauthier, Jacques A

    2015-05-20

    The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new 'tip-dating' and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group - approximated by the Coniophis node - is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K

  3. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  4. Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant.

    Science.gov (United States)

    Cunningham, Margaret R; Nisar, Shaista P; Cooke, Alexandra E; Emery, Elizabeth D; Mundell, Stuart J

    2013-05-01

    P2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic. Treatment with ADP resulted in delayed Rab5-dependent internalization of P341A when compared with WT P2Y12 . While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7-positive endosomes with considerable agonist-dependent accumulation in the trans-Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT-P2Y12 . Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12 -P341A-expressing patient. © 2013 John Wiley & Sons A/S.

  5. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos

    Science.gov (United States)

    Wang, Xinyi; Liu, Denghui; He, Dajian; Suo, Shengbao; Xia, Xian; He, Xiechao; Han, Jing-Dong J.; Zheng, Ping

    2017-01-01

    Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey. PMID:28223401

  6. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.

    Science.gov (United States)

    Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L

    2017-07-10

    ) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.

  7. Spontaneous Recovery from Unresponsive Wakefulness Syndrome to a Minimally Conscious State: Early Structural Changes Revealed by 7-T Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xufei Tan

    2018-01-01

    Full Text Available BackgroundDetermining the early changes of brain structure that occur from vegetative state/unresponsive wakefulness syndrome (VS/UWS to a minimally conscious state (MCS is important for developing our understanding of the processes underlying disorders of consciousness (DOC, particularly during spontaneous recovery from severe brain damage.ObjectiveThis study used a multi-modal neuroimaging approach to investigate early structural changes during spontaneous recovery from VS/UWS to MCS.MethodsThe Coma Recovery Scale-Revised (CRS-R score, 24-h electroencephalography (EEG, and ultra-high field 7-T magnetic resonance imaging were used to investigate a male patient with severe brain injury when he was in VS/UWS compared to MCS. Using white matter connectometry analysis, fibers in MCS were compared with the same fibers in VS/UWS. Whole-brain analysis was used to compare all fibers showing a 10% increase in density with each other as a population.ResultsBased on connectometry analysis, the number of fibers with increased density, and the magnitude of increase in MCS compared to VS/UWS, was greatest in the area of the temporoparietal junction (TPJ, and was mostly located in the right hemisphere. These results are in accordance with the active areas observed on 24-h EEG recordings. Moreover, analysis of different fibers across the brain, showing at least a 10% increase in density, revealed that altered white matter connections with higher discriminative weights were located within or across visual-related areas, including the cuneus_R, calcarine_R, occipital_sup_R, and occipital_mid_R. Furthermore, the temporal_mid_R, which is related to the auditory cortex, showed the highest increase in connectivity to other areas. This was consistent with improvements in the visual and auditory components of the CRS-R, which were greater than other improvements.ConclusionThese results provide evidence to support the important roles for the TPJ and the visual and

  8. Two barcodes encoded by the type-1 PDZ and by phospho-Ser312 regulate retromer/WASH-mediated sorting of the ß1-adrenergic receptor from endosomes to the plasma membrane.

    Science.gov (United States)

    Nooh, Mohammed M; Bahouth, Suleiman W

    2017-01-01

    Recycling of the majority of agonist-internalized GPCR is dependent on a type I-PDZ "barcode" in their C-tail. The recycling of wild-type (WT) ß 1 -AR is also dependent on its default "type-1 PDZ barcode", but trafficking of the ß 1 -AR is inhibited when PKA or its substrate serine at position 312 (Ser 312 ) are inactivated. We tested the hypothesis that phospho-Ser 312 provided a second barcode for ß 1 -AR sorting from endosomes to the plasma membrane by determining the role of retromer/WASH complexes in ß 1 -AR trafficking. Recycling of WT ß 1 -AR or WT ß 2 -AR was dependent on targeting the retromer to endosomal membranes via SNX3 and rab7a, and on complexing the retromer to the WASH pentamer via the C-tail of FAM21 (FAM21 C ). These maneuvers however, did not inhibit the recycling of a phospho-Ser 312 ß 1 -AR mimic ((S312D) ß 1 -AR). Knockdown of the trans-acting PDZ protein sorting nexin27 (SNX27) inhibited the recycling of WT ß 1 -AR and WT ß 2 -AR, but had no effect on (S312D) ß 1 -AR∆PDZ or on phosphorylation of WT ß 1 -AR by PKA at Ser 312 . However, depletion of FKBP15, a FAM21 C -binding endosomal protein, selectively inhibited WT ß 1 -AR but not ß 2 -AR recycling, suggesting divergence might exist in GPCR trafficking roadmaps. These results indicate that two barcodes are involved in sorting WT ß 1 -AR out of early endosomes. The first and antecedent "barcode" was the "type-1 PDZ", followed by a second reversible "phospho-Ser 312 " verification "barcode". This organization allows tight regulation of ß 1 -AR density to signaling intensity in conditions associated with aberrant ß 1 -AR signaling such as in hypertension and heart failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb.

    Science.gov (United States)

    Domżalska, Lucyna; Kędracka-Krok, Sylwia; Jankowska, Urszula; Grzyb, Małgorzata; Sobczak, Mirosław; Rybczyński, Jan J; Mikuła, Anna

    2017-05-01

    Using cyto-morphological analysis of somatic embryogenesis (SE) in the tree fern Cyathea delgadii as a guide, we performed a comparative proteomic analysis in stipe explants undergoing direct SE. Plant material was cultured on hormone-free medium supplemented with 2% sucrose. Phenol extracted proteins were separated using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed for protein identification. A total number of 114 differentially regulated proteins was identified during early SE, i.e. when the first cell divisions started and several-cell pro-embryos were formed. Proteins were assigned to seven functional categories: carbohydrate metabolism, protein metabolism, cell organization, defense and stress responses, amino acid metabolism, purine metabolism, and fatty acid metabolism. Carbohydrate and protein metabolism were found to be the most sensitive SE functions with the greatest number of alterations in the intensity of spots in gel. Differences, especially in non-enzymatic and structural protein abundance, are indicative for cell organization, including cytoskeleton rearrangement and changes in cell wall components. The highest induced changes concern those enzymes related to fatty acid metabolism. Global analysis of the proteome reveals several proteins that can represent markers for the first 16days of SE induction and expression in fern. The findings of this research improve the understanding of molecular processes involved in direct SE in C. delgadii. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Paleoarchean bedrock lithologies across the Makhonjwa Mountains of South Africa and Swaziland linked to geochemical, magnetic and tectonic data reveal early plate tectonic genes flanking subduction margins

    Directory of Open Access Journals (Sweden)

    Maarten de Wit

    2018-05-01

    Full Text Available The Makhonjwa Mountains, traditionally referred to as the Barberton Greenstone Belt, retain an iconic Paleoarchean archive against which numerical models of early earth geodynamics can be tested. We present new geologic and structural maps, geochemical plots, geo- and thermo-chronology, and geophysical data from seven silicic, mafic to ultramafic complexes separated by major shear systems across the southern Makhonjwa Mountains. All reveal signs of modern oceanic back-arc crust and subduction-related processes. We compare the rates of processes determined from this data and balance these against plate tectonic and plume related models. Robust rates of both horizontal and vertical tectonic processes derived from the Makhonjwa Mountain complexes are similar, well within an order of magnitude, to those encountered across modern oceanic and orogenic terrains flanking Western Pacific-like subduction zones. We conclude that plate tectonics and linked plate-boundary processes were well established by 3.2–3.6 Ga. Our work provides new constraints for modellers with rates of a ‘basket’ of processes against which to test Paleoarchean geodynamic models over a time period close to the length of the Phanerozoic. Keywords: Paleoarchean, Barberton Greenstone Belt, Onverwacht Suite, Geologic bedrock and structural maps, Geochemistry and geophysics, Plate tectonics

  11. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains*

    Science.gov (United States)

    Guo, Emily Z.; Xu, Zhaohui

    2015-01-01

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. PMID:25657007

  12. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    Science.gov (United States)

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Analysis of a vinculin homolog in a sponge (phylum Porifera) reveals that vertebrate-like cell adhesions emerged early in animal evolution.

    Science.gov (United States)

    Miller, Phillip W; Pokutta, Sabine; Mitchell, Jennyfer M; Chodaparambil, Jayanth V; Clarke, D Nathaniel; Nelson, William; Weis, William I; Nichols, Scott A

    2018-06-07

    The evolution of cell adhesion mechanisms in animals facilitated the assembly of organized multicellular tissues. Studies in traditional animal models have revealed two predominant adhesion structures, the adherens junction (AJ) and focal adhesions (FAs), which are involved in the attachment of neighboring cells to each other and to the secreted extracellular matrix (ECM), respectively. The AJ (containing cadherins and catenins) and FAs (comprising integrins, talin, and paxillin) differ in protein composition, but both junctions contain the actin-binding protein vinculin. The near ubiquity of these structures in animals suggests that AJ and FAs evolved early, possibly coincident with multicellularity. However, a challenge to this perspective is that previous studies of sponges-a divergent animal lineage-indicate that their tissues are organized primarily by an alternative, sponge-specific cell adhesion mechanism called "aggregation factor." In this study, we examined the structure, biochemical properties, and tissue localization of a vinculin ortholog in the sponge Oscarella pearsei ( Op ). Our results indicate that Op vinculin localizes to both cell-cell and cell-ECM contacts and has biochemical and structural properties similar to those of vertebrate vinculin. We propose that Op vinculin played a role in cell adhesion and tissue organization in the last common ancestor of sponges and other animals. These findings provide compelling evidence that sponge tissues are indeed organized like epithelia in other animals and support the notion that AJ- and FA-like structures extend to the earliest periods of animal evolution. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Effect of Warfarin Treatment on Survival of Patients With Pulmonary Arterial Hypertension (PAH) in the Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL).

    Science.gov (United States)

    Preston, Ioana R; Roberts, Kari E; Miller, Dave P; Sen, Ginny P; Selej, Mona; Benton, Wade W; Hill, Nicholas S; Farber, Harrison W

    2015-12-22

    Long-term anticoagulation is recommended in idiopathic pulmonary arterial hypertension (IPAH). In contrast, limited data support anticoagulation in pulmonary arterial hypertension (PAH) associated with systemic sclerosis (SSc-PAH). We assessed the effect of warfarin anticoagulation on survival in IPAH and SSc-PAH patients enrolled in Registry to Evaluate Early and Long-term PAH Disease Management (REVEAL), a longitudinal registry of group I PAH. Patients who initiated warfarin on study (n=187) were matched 1:1 with patients never on warfarin, by enrollment site, etiology, and diagnosis status. Descriptive analyses were conducted to compare warfarin users and nonusers by etiology. Survival analyses with and without risk adjustment were performed from the time of warfarin initiation or a corresponding quarterly update in matched pairs to avoid immortal time bias. Time-varying covariate models were used as sensitivity analyses. Mean warfarin treatment was 1 year; mean international normalized ratios were 1.9 (IPAH) and 2.0 (SSc-PAH). Two-thirds of patients initiating warfarin discontinued treatment before the last study assessment. There was no survival difference with warfarin in IPAH patients (adjusted hazard ratio, 1.37; P=0.21) or in SSc-PAH patients (adjusted hazard ratio, 1.60; P=0.15) in comparison with matched controls. However, SSc-PAH patients receiving warfarin within the previous year (hazard ratio, 1.57; P=0.031) or any time postbaseline (hazard ratio, 1.49; P=0.046) had increased mortality in comparison with warfarin-naïve patients. No significant survival advantage was observed in IPAH patients who started warfarin. In SSc-PAH patients, long-term warfarin was associated with poorer survival than in patients not receiving warfarin, even after adjusting for confounders. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00370214. © 2015 The Authors.

  15. Mass Cytometry Analysis Reveals the Landscape and Dynamics of CD32a+ CD4+ T Cells From Early HIV Infection to Effective cART.

    Science.gov (United States)

    Coindre, Sixtine; Tchitchek, Nicolas; Alaoui, Lamine; Vaslin, Bruno; Bourgeois, Christine; Goujard, Cecile; Avettand-Fenoel, Veronique; Lecuroux, Camille; Bruhns, Pierre; Le Grand, Roger; Beignon, Anne-Sophie; Lambotte, Olivier; Favier, Benoit

    2018-01-01

    CD32a has been proposed as a specific marker of latently HIV-infected CD4 + T cells. However, CD32a was recently found to be expressed on CD4 + T cells of healthy donors, leading to controversy on the relevance of this marker in HIV persistence. Here, we used mass cytometry to characterize the landscape and variation in the abundance of CD32a + CD4 + T cells during HIV infection. To this end, we analyzed CD32a + CD4 + T cells in primary HIV infection before and after effective combination antiretroviral therapy (cART) and in healthy donors. We found that CD32a + CD4 + T cells include heterogeneous subsets that are differentially affected by HIV infection. Our analysis revealed that naive ( N ), central memory ( CM ), and effector/memory ( Eff/Mem ) CD32a + CD4 + T-cell clusters that co-express LILRA2- and CD64-activating receptors were more abundant in primary HIV infection and cART stages. Conversely, LILRA2 - CD32a + CD4 + T-cell clusters of either the T N , T CM , or T Eff/Mem phenotype were more abundant in healthy individuals. Finally, an activated CD32a + CD4 + T Eff/Mem cell cluster co-expressing LILRA2, CD57, and NKG2C was more abundant in all HIV stages, particularly during primary HIV infection. Overall, our data show that multiple abundance modifications of CD32a + CD4 + T-cell subsets occur in the early phase of HIV infection, and some of which are conserved after effective cART. Our study brings a better comprehension of the relationship between CD32a expression and CD4 + T cells during HIV infection.

  16. Mass Cytometry Analysis Reveals the Landscape and Dynamics of CD32a+ CD4+ T Cells From Early HIV Infection to Effective cART

    Directory of Open Access Journals (Sweden)

    Sixtine Coindre

    2018-06-01

    Full Text Available CD32a has been proposed as a specific marker of latently HIV-infected CD4+ T cells. However, CD32a was recently found to be expressed on CD4+ T cells of healthy donors, leading to controversy on the relevance of this marker in HIV persistence. Here, we used mass cytometry to characterize the landscape and variation in the abundance of CD32a+ CD4+ T cells during HIV infection. To this end, we analyzed CD32a+ CD4+ T cells in primary HIV infection before and after effective combination antiretroviral therapy (cART and in healthy donors. We found that CD32a+ CD4+ T cells include heterogeneous subsets that are differentially affected by HIV infection. Our analysis revealed that naive (N, central memory (CM, and effector/memory (Eff/Mem CD32a+ CD4+ T-cell clusters that co-express LILRA2- and CD64-activating receptors were more abundant in primary HIV infection and cART stages. Conversely, LILRA2− CD32a+ CD4+ T-cell clusters of either the TN, TCM, or TEff/Mem phenotype were more abundant in healthy individuals. Finally, an activated CD32a+ CD4+ TEff/Mem cell cluster co-expressing LILRA2, CD57, and NKG2C was more abundant in all HIV stages, particularly during primary HIV infection. Overall, our data show that multiple abundance modifications of CD32a+ CD4+ T-cell subsets occur in the early phase of HIV infection, and some of which are conserved after effective cART. Our study brings a better comprehension of the relationship between CD32a expression and CD4+ T cells during HIV infection.

  17. Augmented internalisation of ferroportin to late endosomes impairs iron uptake by enterocyte-like IEC-6 cells.

    Science.gov (United States)

    Oates, Phillip S; Thomas, Carla

    2005-08-01

    Absorption of iron occurs by duodenal enterocytes, involving uptake by the divalent metal transporter-1 (DMT1) and release by ferroportin. Ferroportin responds to the hepatocyte-produced 25-amino-acid-peptide hepcidin-25 by undergoing internalisation to late endosomes that impair iron release. Ferroportin is also expressed on the apical membrane of polarised Caco-2 cells, rat intestinal cells and in IEC-6 cells (an intestinal epithelial cell line). A blocking antibody to ferroportin also impairs the uptake, but not the release, of iron. In this study IEC-6 cells were used to study the mechanism of impairment or recovery from impairment produced by the blocking antibody and the fate of DMT1 and ferroportin. Uptake of 1 muM Fe(II) was studied by adding the antibody from time 0 and after adding or removing the antibody once a steady state had been reached. Surface binding, maximum iron transport rate V(max) and transporter affinity (K(m)) were measured after impairment of iron uptake. Ferroportin and DMT1 distribution were assessed by immunofluorescence microscopy. Antibody-mediated impairment, or recovery from impairment, of Fe(II) uptake occurred within minutes. Impairment was lost when the antibody was combined with the immunizing peptide. DMT1 and ferroportin undergo internalisation to late endosomes and, in the presence of the antibody, augmented internalisation of DMT1 and ferroportin caused swelling of late endosomes. Surface binding of Fe(II) and iron transport V(max) were reduced by 50%, indicating that the antibody removed membrane-bound DMT1. The ferroportin antibody induced rapid turnover of membrane ferroportin and DMT1 and its internalisation to late endosomes, resulting in impaired Fe(II) uptake.

  18. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

    DEFF Research Database (Denmark)

    Yarani, Reza; Shiraishi, Takehiko; Nielsen, Peter E.

    2018-01-01

    Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginin...... indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore....

  19. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Science.gov (United States)

    Jurgeit, Andreas; McDowell, Robert; Moese, Stefan; Meldrum, Eric; Schwendener, Reto; Greber, Urs F

    2012-01-01

    Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV) and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+)-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  20. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Directory of Open Access Journals (Sweden)

    Andreas Jurgeit

    Full Text Available Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  1. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration.

    Science.gov (United States)

    Kaul, Zenia; Chakrabarti, Oishee

    2018-03-25

    The endosomal sorting complexes required for transport (ESCRT) proteins help in the recognition, sorting and degradation of ubiquitinated cargoes from the cell surface, long-lived proteins or aggregates, and aged organelles present in the cytosol. These proteins take part in the endo-lysosomal system of degradation. The ESCRT proteins also play an integral role in cytokinesis, viral budding and mRNA transport. Many neurodegenerative diseases are caused by toxic accumulation of cargo in the cell, which causes stress and ultimately leads to neuronal death. This accumulation of cargo occurs because of defects in the endo-lysosomal degradative pathway-loss of function of ESCRTs has been implicated in this mechanism. ESCRTs also take part in many survival processes, lack of which can culminate in neuronal cell death. While the role played by the ESCRT proteins in maintaining healthy neurons is known, their role in neurodegenerative diseases is still poorly understood. In this review, we highlight the importance of ESCRTs in maintaining healthy neurons and then suggest how perturbations in many of the survival mechanisms governed by these proteins could eventually lead to cell death; quite often these correlations are not so obviously laid out. Extensive neuronal death eventually culminates in neurodegeneration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Lucas, Leanne J.; Chen, Xiaoke K.; Smith, Aaron J.; Korbelik, Mladen; Zeng, Haishan; Lee, Patrick W. K.; Hewitt, Kevin Cecil

    2015-01-01

    The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per mL) were incubated with cells (106 per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm-1 peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals.

  3. Vascular endothelial growth factor A-stimulated signaling from endosomes in primary endothelial cells.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Odell, Adam F; Latham, Antony M; Wheatcroft, Stephen B; Harrison, Michael A; Tomlinson, Darren C; Ponnambalam, Sreenivasan

    2014-01-01

    The vascular endothelial growth factor A (VEGF-A) is a multifunctional cytokine that stimulates blood vessel sprouting, vascular repair, and regeneration. VEGF-A binds to VEGF receptor tyrosine kinases (VEGFRs) and stimulates intracellular signaling leading to changes in vascular physiology. An important aspect of this phenomenon is the spatiotemporal coordination of VEGFR trafficking and intracellular signaling to ensure that VEGFR residence in different organelles is linked to downstream cellular outputs. Here, we describe a series of assays to evaluate the effects of VEGF-A-stimulated intracellular signaling from intracellular compartments such as the endosome-lysosome system. These assays include the initial isolation and characterization of primary human endothelial cells, performing reverse genetics for analyzing protein function; methods used to study receptor trafficking, signaling, and proteolysis; and assays used to measure changes in cell migration, proliferation, and tubulogenesis. Each of these assays has been exemplified with studies performed in our laboratories. In conclusion, we describe necessary techniques for studying the role of VEGF-A in endothelial cell function. © 2014 Elsevier Inc. All rights reserved.

  4. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin

    Science.gov (United States)

    Lesteberg, Kelsey E.; Orange, Jordan S.; Makedonas, George

    2018-01-01

    Background Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein we aimed to determine how new perforin transits to the synapse if not via lytic granules. Results We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. Conclusions The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response. PMID:28822075

  5. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content

    Science.gov (United States)

    Mundy, Dorothy I.; Li, Wei Ping; Luby-Phelps, Katherine; Anderson, Richard G. W.

    2012-01-01

    Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking. PMID:22238363

  6. Modeling the signaling endosome hypothesis: Why a drive to the nucleus is better than a (random walk

    Directory of Open Access Journals (Sweden)

    Howe Charles L

    2005-10-01

    Full Text Available Abstract Background Information transfer from the plasma membrane to the nucleus is a universal cell biological property. Such information is generally encoded in the form of post-translationally modified protein messengers. Textbook signaling models typically depend upon the diffusion of molecular signals from the site of initiation at the plasma membrane to the site of effector function within the nucleus. However, such models fail to consider several critical constraints placed upon diffusion by the cellular milieu, including the likelihood of signal termination by dephosphorylation. In contrast, signaling associated with retrogradely transported membrane-bounded organelles such as endosomes provides a dephosphorylation-resistant mechanism for the vectorial transmission of molecular signals. We explore the relative efficiencies of signal diffusion versus retrograde transport of signaling endosomes. Results Using large-scale Monte Carlo simulations of diffusing STAT-3 molecules coupled with probabilistic modeling of dephosphorylation kinetics we found that predicted theoretical measures of STAT-3 diffusion likely overestimate the effective range of this signal. Compared to the inherently nucleus-directed movement of retrogradely transported signaling endosomes, diffusion of STAT-3 becomes less efficient at information transfer in spatial domains greater than 200 nanometers from the plasma membrane. Conclusion Our model suggests that cells might utilize two distinct information transmission paradigms: 1 fast local signaling via diffusion over spatial domains on the order of less than 200 nanometers; 2 long-distance signaling via information packets associated with the cytoskeletal transport apparatus. Our model supports previous observations suggesting that the signaling endosome hypothesis is a subset of a more general hypothesis that the most efficient mechanism for intracellular signaling-at-a-distance involves the association of signaling

  7. Decoupling internalization, acidification and phagosomal-endosomal/lysosomal fusion during phagocytosis of InlA coated beads in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Craig D Blanchette

    Full Text Available BACKGROUND: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK and Caco-2 epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA, a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. CONCLUSIONS/SIGNIFICANCE: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply

  8. Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth.

    Directory of Open Access Journals (Sweden)

    Heather E Miller

    2018-04-01

    Full Text Available Coxiella burnetii is an intracellular bacterium that replicates within an expansive phagolysosome-like vacuole. Fusion between the Coxiella-containing vacuole (CCV and late endosomes/multivesicular bodies requires Rab7, the HOPS tethering complex, and SNARE proteins, with actin also speculated to play a role. Here, we investigated the importance of actin in CCV fusion. Filamentous actin patches formed around the CCV membrane that were preferred sites of vesicular fusion. Accordingly, the mediators of endolysosomal fusion Rab7, VAMP7, and syntaxin 8 were concentrated in CCV actin patches. Generation of actin patches required C. burnetii type 4B secretion and host retromer function. Patches decorated with VPS29 and VPS35, components of the retromer, FAM21 and WASH, members of the WASH complex that engage the retromer, and Arp3, a component of the Arp2/3 complex that generates branched actin filaments. Depletion by siRNA of VPS35 or VPS29 reduced CCV actin patches and caused Rab7 to uniformly distribute in the CCV membrane. C. burnetii grew normally in VPS35 or VPS29 depleted cells, as well as WASH-knockout mouse embryo fibroblasts, where CCVs are devoid of actin patches. Endosome recycling to the plasma membrane and trans-Golgi of glucose transporter 1 (GLUT1 and cationic-independent mannose-6-phosphate receptor (CI-M6PR, respectively, was normal in infected cells. However, siRNA knockdown of retromer resulted in aberrant trafficking of GLUT1, but not CI-M6PR, suggesting canonical retrograde trafficking is unaffected by retromer disruption. Treatment with the specific Arp2/3 inhibitor CK-666 strongly inhibited CCV formation, an effect associated with altered endosomal trafficking of transferrin receptor. Collectively, our results show that CCV actin patches generated by retromer, WASH, and Arp2/3 are dispensable for CCV biogenesis and stability. However, Arp2/3-mediated production of actin filaments required for cargo transport within the

  9. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-02-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae, in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR featuring an inverted rRNA operon and a small single-copy (SSC region containing 14 genes normally found in the large single-copy (LSC region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of

  10. Decoupling Internalization, Acidification and Phagosmal-Endosomal/Iysosomal Phagocytosis of Internalin A coated Beads in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, C D; Woo, Y; Thomas, C; Shen, N; Sulchek, T A; Hiddessen, A L

    2008-12-22

    Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established, and in several cases, it was treated as a one-step process. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells, such as epithelial cells. Therefore, in this study, we developed a simple and novel method to decouple and accurately measure particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated internalization. We achieved independent measurements of the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, pH sensitive dyes and endosomal/lysosomal dyes, as follows: the rate of InlA bead internalization was measured via antibody quenching of a pH independent dye (Alexa488) conjugated to InlA-beads, the rate at which phagosomes containing internalized InlA beads became acidified was measured using a pH dependent dye (FITC) conjugated to the beads and the rate of phagosomal-endosomal/lysosomal fusion was measured using a combination of unlabeled InlA-beads and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we also exploited the phagosomal acidification

  11. The Serotonin Transporter Undergoes Constitutive Internalization and Is Primarily Sorted to Late Endosomes and Lysosomal Degradation*

    Science.gov (United States)

    Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob; Gether, Ulrik; Jørgensen, Trine Nygaard

    2014-01-01

    The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of the surface resident SERT, two functional epitope-tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope was generated by introducing an HA (hemagglutinin) tag in the extracellular loop 2 of SERT (HA-SERT). By using TacSERT and HA-SERT in antibody-based internalization assays, we show that SERT undergoes constitutive internalization in a dynamin-dependent manner. Confocal images of constitutively internalized SERT demonstrated that SERT primarily co-localized with the late endosomal/lysosomal marker Rab7, whereas little co-localization was observed with the Rab11, a marker of the “long loop” recycling pathway. This sorting pattern was distinct from that of a prototypical recycling membrane protein, the β2-adrenergic receptor. Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analog JHC1-64 and by reversible and pulse-chase biotinylation assays showing evidence for lysosomal degradation of the internalized transporter. Finally, we found that SERT internalized in response to stimulation with 12-myristate 13-acetate co-localized primarily with Rab7- and LysoTracker-positive compartments. We conclude that SERT is constitutively internalized and that the internalized transporter is sorted mainly to degradation. PMID:24973209

  12. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Mate Suzanne E

    2012-09-01

    Full Text Available Abstract Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ. We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs.

  13. DNA methylation profiling of sorted cells from myelofibrosis patients reveals aberrant epigenetic regulation of immune pathways and identifies early MPN driver genes

    DEFF Research Database (Denmark)

    Nielsen, Helene Myrtue; Andersen, Christen Lykkegaard; Kristensen, Lasse Sommer

    2015-01-01

    Background: Primary myelofibrosis (PMF) belongs to the heterogeneous group of chronic myeloproliferative neoplasms (MPN) together with essential thrombocytosis (ET) and polycythemia vera (PV). It has been suggested that these neoplasms represent a biological continuum from early cancer stage (ET...

  14. The ATLAS3D project - IX. The merger origin of a fast- and a slow-rotating early-type galaxy revealed with deep optical imaging: first results

    Science.gov (United States)

    Duc, Pierre-Alain; Cuillandre, Jean-Charles; Serra, Paolo; Michel-Dansac, Leo; Ferriere, Etienne; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-10-01

    The mass assembly of galaxies leaves imprints in their outskirts, such as shells and tidal tails. The frequency and properties of such fine structures depend on the main acting mechanisms - secular evolution, minor or major mergers - and on the age of the last substantial accretion event. We use this to constrain the mass assembly history of two apparently relaxed nearby early-type galaxies (ETGs) selected from the ATLAS3D sample, NGC 680 and 5557. Our ultra-deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope reach 29 mag arcsec-2 in the g band. They reveal very low surface brightness (LSB) filamentary structures around these ellipticals. Among them, a gigantic 160 kpc long, narrow, tail east of NGC 5557 hosts three gas-rich star-forming objects, previously detected in H I with the Westerbork Synthesis Radio Telescope and in UV with GALEX. NGC 680 exhibits two major diffuse plumes apparently connected to extended H I tails, as well as a series of arcs and shells. Comparing the outer stellar and gaseous morphology of the two ellipticals with that predicted from models of colliding galaxies, we argue that the LSB features are tidal debris and that each of these two ETGs was assembled during a relatively recent, major wet merger, which most likely occurred after the redshift z ≃ 0.5 epoch. Had these mergers been older, the tidal features should have already fallen back or be destroyed by more recent accretion events. However, the absence of molecular gas and of a prominent young stellar population in the core region of the galaxies indicates that the merger is at least 1-2 Gyr old: the memory of any merger-triggered nuclear starburst has indeed been lost. The star-forming objects found towards the collisional debris of NGC 5557 are then likely tidal dwarf galaxies. Such recycled galaxies here appear to be long-lived and continue to form stars while any star formation activity has stopped in their parent galaxy. The inner kinematics of NGC

  15. Community Structure Analysis of Transcriptional Networks Reveals Distinct Molecular Pathways for Early- and Late-Onset Temporal Lobe Epilepsy with Childhood Febrile Seizures

    Science.gov (United States)

    Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Iamashita, Priscila; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Silva, Alexandre Valotta; Castro, Luiz Henrique Martins; Wen, Hung-Tzu

    2015-01-01

    Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system’s constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to

  16. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8(+) T cells.

    Science.gov (United States)

    Zehner, Matthias; Marschall, Andrea L; Bos, Erik; Schloetel, Jan-Gero; Kreer, Christoph; Fehrenschild, Dagmar; Limmer, Andreas; Ossendorp, Ferry; Lang, Thorsten; Koster, Abraham J; Dübel, Stefan; Burgdorf, Sven

    2015-05-19

    The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Genetic reconstitution of the human Adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape

    Directory of Open Access Journals (Sweden)

    Gastaldelli Michele

    2009-10-01

    Full Text Available Abstract Human Adenoviruses infect the upper and lower respiratory tracts, the urinary and digestive tracts, lymphoid systems and heart, and give rise to epidemic conjunctivitis. More than 51 human serotypes have been identified to-date, and classified into 6 species A-F. The species C Adenoviruses Ad2 and Ad5 (Ad2/5 cause upper and lower respiratory disease, but how viral structure relates to the selection of particular infectious uptake pathways is not known. An adenovirus mutant, Ad2-ts1 had been isolated upon chemical mutagenesis in the past, and shown to have unprocessed capsid proteins. Ad2-ts1 fails to package the viral protease L3/p23, and Ad2-ts1 virions do not efficiently escape from endosomes. It had been suggested that the C22187T point mutation leading to the substitution of the conserved proline 137 to leucine (P137L in the L3/p23 protease was at least in part responsible for this phenotype. To clarify if the C22187T mutation is necessary and sufficient for the Ad2-ts1 phenotype, we sequenced the genes encoding the structural proteins of Ad2-ts1, and confirmed that the Ad2-ts1 DNA carries the point mutation C22187T. Introduction of C22187T to the wild-type Ad2 genome in a bacterial artificial chromosome (Ad2-BAC gave Ad2-BAC46 virions with the full Ad2-ts1 phenotype. Reversion of Ad2-BAC46 gave wild-type Ad2 particles indicating that P137L is necessary and sufficient for the Ad2-ts1 phenotype. The kinetics of Ad2-ts1 uptake into cells were comparable to Ad2 suggesting similar endocytic uptake mechanisms. Surprisingly, infectious Ad2 or Ad5 but not Ad2-ts1 uptake required CALM (clathrin assembly lymphoid myeloid protein, which controls clathrin-mediated endocytosis and membrane transport between endosomes and the trans-Golgi-network. The data show that no other mutations than P137L in the viral protease are necessary to give rise to particles that are defective in capsid processing and endosomal escape. This provides a basis for

  18. Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and late-onset preeclampsia.

    Science.gov (United States)

    Liang, Mengmeng; Niu, Jianmin; Zhang, Liang; Deng, Hua; Ma, Jian; Zhou, Weiping; Duan, Dongmei; Zhou, Yuheng; Xu, Huikun; Chen, Longding

    2016-04-01

    Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; 36 weeks) preeclampsia and their controls who delivered preterm (n = 5; 36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early- and late-onset preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    Science.gov (United States)

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  20. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane.

    Science.gov (United States)

    Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E

    2014-01-01

    Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.

  1. Early transcriptome analyses of Z-3-Hexenol-treated zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles.

    Directory of Open Access Journals (Sweden)

    Jurgen Engelberth

    Full Text Available Green leaf volatiles (GLV, which are rapidly emitted by plants in response to insect herbivore damage, are now established as volatile defense signals. Receiving plants utilize these molecules to prime their defenses and respond faster and stronger when actually attacked. To further characterize the biological activity of these compounds we performed a microarray analysis of global gene expression. The focus of this project was to identify early transcriptional events elicited by Z-3-hexenol (Z-3-HOL as our model GLV in maize (Zea mays seedlings. The microarray results confirmed previous studies on Z-3-HOL -induced gene expression but also provided novel information about the complexity of Z-3-HOL -induced transcriptional networks. Besides identifying a distinct set of genes involved in direct and indirect defenses we also found significant expression of genes involved in transcriptional regulation, Ca(2+-and lipid-related signaling, and cell wall reinforcement. By comparing these results with those obtained by treatment of maize seedlings with insect elicitors we found a high degree of correlation between the two expression profiles at this early time point, in particular for those genes related to defense. We further analyzed defense gene expression induced by other volatile defense signals and found Z-3-HOL to be significantly more active than methyl jasmonate, methyl salicylate, and ethylene. The data presented herein provides important information on early genetic networks that are activated by Z-3-HOL and demonstrates the effectiveness of this compound in the regulation of typical plant defenses against insect herbivores in maize.

  2. Magnetic fabrics of arc plutons reveal a significant Late Jurassic to Early Cretaceous change in the relative plate motions of the Pacific Ocean basin and North America

    Czech Academy of Sciences Publication Activity Database

    Žák, J.; Verner, K.; Tomek, Filip; Johnson, K.; Schwartz, J. J.

    2017-01-01

    Roč. 13, č. 1 (2017), s. 11-21 ISSN 1553-040X Grant - others:AV ČR(CZ) MSM100131601 Program:Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků Institutional support: RVO:67985831 Keywords : PB geochronology * Late Jurassic/Early Cretaceous * Blue Mountains province Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.304, year: 2016

  3. High performance mass spectrometry based proteomics reveals enzyme and signaling pathway regulation in neutrophils during the early stage of surgical trauma

    DEFF Research Database (Denmark)

    Arshid, Samina; Tahir, Muhammad; Fontes, Belchor

    2017-01-01

    and surgical trauma rats in this study. Extracted proteins were analyzed using nano liquid chromatography coupled to tandem mass spectrometry. A total of 2924 rat neutrophil proteins were identified in our analysis, of which 393 were found differentially regulated between control and trauma groups. By using...... functional pathways analysis of the 190 proteins up-regulated in surgical trauma we found proteins related to transcription initiation and protein biosynthesis. On the other hand, among the 203 proteins down-regulated in surgical trauma we found enrichment for proteins of the immune response, proteasome...... degradation and actin cytoskeleton. Overall, enzyme prediction analysis revealed that regulated enzymes are directly involved in neutrophil apoptosis, directional migration and chemotaxis. Our observations were then confirmed by in silico protein-protein interaction analysis. Collectively, our results reveal...

  4. Diffusion tractography and graph theory analysis reveal the disrupted rich-club organization of white matter structural networks in early Tourette Syndrome children

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Shengpei; Zhang, Jishui; Peng, Yun; He, Huiguang

    2017-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. At present, the topological disruptions of the whole brain white matter (WM) structural networks remain poorly understood in TS children. Considering the unique position of the topologically central role of densely interconnected brain hubs, namely the rich club regions, therefore, we aimed to investigate whether the rich club regions and their related connections would be particularly vulnerable in early TS children. In our study, we used diffusion tractography and graph theoretical analyses to explore the rich club structures in 44 TS children and 48 healthy children. The structural networks of TS children exhibited significantly increased normalized rich club coefficient, suggesting that TS is characterized by increased structural integrity of this centrally embedded rich club backbone, potentially resulting in increased global communication capacity. In addition, TS children showed a reorganization of rich club regions, as well as significantly increased density and decreased number in feeder connections. Furthermore, the increased rich club coefficients and feeder connections density of TS children were significantly positively correlated to tic severity, indicating that TS may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher bridging with non-rich club regions, which may increase the integration among tic-related brain circuits with more excitability but less inhibition for information exchanges between highly centered brain regions and peripheral areas. In all, our results suggest the disrupted rich club organization in early TS children and provide structural insights into the brain networks.

  5. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT Machinery via Ubiquitination To Facilitate Viral Envelopment

    Directory of Open Access Journals (Sweden)

    Rina Barouch-Bentov

    2016-11-01

    Full Text Available Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate, an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses.

  6. Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene.

    Science.gov (United States)

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-01-01

    Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA 1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon de-submergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence.

  7. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B

    2011-01-01

    occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic......The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  8. De novo analysis of Wolfiporia cocos transcriptome to reveal the differentially expressed carbohydrate-active enzymes (CAZymes genes during the early stage of sclerotial growth

    Directory of Open Access Journals (Sweden)

    Shaopeng eZhang

    2016-02-01

    Full Text Available The sclerotium of Wolfiporia cocos has been used as an edible mushroom and/or a traditional herbal medicine for centuries. W. cocos sclerotial formation is dependent on parasitism of the wood of Pinus species. Currently, the sclerotial development mechanisms of W. cocos remain largely unknown and the lack of pine resources limit the commercial production. The CAZymes (carbohydrate-active enzymes play important roles in degradation of the plant cell wall to provide carbohydrates for fungal growth, development and reproduction. In this study, the transcript profiles from W. cocos mycelium and two-months-old sclerotium, the early stage of sclerotial growth, were specially analyzed using de novo sequencing technology. A total of 142,428,180 high-quality reads of mycelium and 70,594,319 high-quality reads of two-months-old sclerotium were obtained. Additionally, differentially expressed genes from the W. cocos mycelium and two-months-old sclerotium stages were analyzed, resulting in identification of 69 CAZymes genes which were significantly up-regulated during the early stage of sclerotial growth compared to that of in mycelium stage, and more than half of them belonged to glycosyl hydrolases (GHs family, indicating the importance of W. cocos GHs family for degrading the pine woods. And qRT-PCR was further used to confirm the expression pattern of these up-regulated CAZymes genes. Our results will provide comprehensive CAZymes genes expression information during W. cocos sclerotial growth at the transcriptional level and will lay a foundation for functional genes studies in this fungus. In addition, our study will also facilitate the efficient use of limited pine resources, which is significant for promoting steady development of Chinese W. cocos industry.

  9. Eye Tracking Reveals Abnormal Visual Preference for Geometric Images as an Early Biomarker of an Autism Spectrum Disorder Subtype Associated With Increased Symptom Severity.

    Science.gov (United States)

    Pierce, Karen; Marinero, Steven; Hazin, Roxana; McKenna, Benjamin; Barnes, Cynthia Carter; Malige, Ajith

    2016-04-15

    Clinically and biologically, autism spectrum disorder (ASD) is heterogeneous. Unusual patterns of visual preference as indexed by eye tracking are hallmarks; however, whether they can be used to define an early biomarker of ASD as a whole or leveraged to define a subtype is unclear. To begin to examine this issue, large cohorts are required. A sample of 334 toddlers from six distinct groups (115 toddlers with ASD, 20 toddlers with ASD features, 57 toddlers with developmental delay, 53 toddlers with other conditions [e.g., premature birth, prenatal drug exposure], 64 toddlers with typical development, and 25 unaffected toddlers with siblings with ASD) was studied. Toddlers watched a movie containing geometric and social images. Fixation duration and number of saccades within each area of interest and validation statistics for this independent sample were computed. Next, to maximize power, data from our previous study (n = 110) were added for a total of 444 subjects. A subset of toddlers repeated the eye-tracking procedure. As in the original study, a subset of toddlers with ASD fixated on geometric images >69% of the time. Using this cutoff, sensitivity for ASD was 21%, specificity was 98%, and positive predictive value was 86%. Toddlers with ASD who strongly preferred geometric images had 1) worse cognitive, language, and social skills relative to toddlers with ASD who strongly preferred social images and 2) fewer saccades when viewing geometric images. Unaffected siblings of ASD probands did not show evidence of heightened preference for geometric images. Test-retest reliability was good. Examination of age effects suggested that this test may not be appropriate with children >4 years old. Enhanced visual preference for geometric repetition may be an early developmental biomarker of an ASD subtype with more severe symptoms. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Eye-tracking Reveals Abnormal Visual Preference for Geometric Images as an Early Biomarker of an ASD Subtype Associated with Increased Symptom Severity

    Science.gov (United States)

    Pierce, Karen; Marinero, Steven; Hazin, Roxana; McKenna, Benjamin; Barnes, Cynthia Carter; Malige, Ajith

    2015-01-01

    Background Clinically and biologically, ASD is heterogeneous. Unusual patterns of visual preference as indexed by eye-tracking are hallmarks, yet whether they can be used to define an early biomarker of ASD as a whole, or leveraged to define a subtype is unclear. To begin to examine this issue, large cohorts are required. Methods A sample of 334 toddlers from 6 distinct groups (115 ASD, 20 ASD-Features, 57 DD, 53 Other, 64 TD, and 25 Typ SIB) participated. Toddlers watched a movie containing both geometric and social images. Fixation duration and number of saccades within each AOI and validation statistics for this independent sample computed. Next, to maximize power, data from our previous study (N=110) was added totaling 444 subjects. A subset of toddlers repeated the eye-tracking procedure. Results As in the original study, a subset of toddlers with ASD fixated on geometric images greater than 69%. Using this cutoff, sensitivity for ASD was 21%, specificity 98%, and PPV 86%. Toddlers with ASD who strongly preferred geometric images had (a) worse cognitive, language, and social skills relative to toddlers with ASD who strongly preferred social images and (b) fewer saccades when viewing geometric images. Unaffected siblings of ASD probands did not show evidence of heightened preference for geometric images. Test-retest reliability was good. Examination of age effects suggest that this test may not be appropriate with children > 4 years. Conclusions Enhanced visual preference for geometric repetition may be an early developmental biomarker of an ASD subtype with more severe symptoms. PMID:25981170

  11. Unbiased cell quantification reveals a continued increase in the number of neocortical neurones during early post-natal development in mice

    DEFF Research Database (Denmark)

    Lyck, Lise; Krøigård, Thomas; Finsen, Bente

    2007-01-01

    The post-natal growth spurt of the mammalian neocortex has been attributed to maturation of dendritic arborizations, growth and myelination of axons, and addition of glia. It is unclear whether this growth may also involve recruitment of additional neurones. Using stereological methods, we analysed...... the number of neurones and glia in the neocortex during post-natal development in two separate strains of mice. Cell counting by the optical fractionator revealed that the number of neurones increased 80-100% from the time of birth to post-natal day (P)16, followed by a reduction by approximately 25...... was delayed until P16. The number of glia reached its maximum at P16, whereas the number of oligodendroglia, identified using a transgenic marker, increased until P55, the latest time of observation. Neurones continued to accumulate in the developing neocortex during the first 2 weeks of post...

  12. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways.

    Science.gov (United States)

    Mallet, W G; Maxfield, F R

    1999-07-26

    Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J. Cell Biol.142:923-936). Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.

  13. Increased expression of endosomal members of toll-like receptor family abrogates wound healing in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2016-10-01

    The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  14. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger

    NARCIS (Netherlands)

    Oude Blenke, E.; Sleszynska, M.; Evers, M. J W; Storm, G.; Martin, N. I.; Mastrobattista, E.

    2017-01-01

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high

  15. Detection of histone acetylation levels in the dorsal hippocampus reveals early tagging on specific residues of H2B and H4 histones in response to learning.

    Directory of Open Access Journals (Sweden)

    Olivier Bousiges

    Full Text Available The recent literature provides evidence that epigenetic mechanisms such as DNA methylation and histone modification are crucial to gene transcription linked to synaptic plasticity in the mammalian brain--notably in the hippocampus--and memory formation. We measured global histone acetylation levels in the rat hippocampus at an early stage of spatial or fear memory formation. We found that H3, H4 and H2B underwent differential acetylation at specific sites depending on whether rats had been exposed to the context of a task without having to learn or had to learn about a place or fear therein: H3K9K14 acetylation was mostly responsive to any experimental conditions compared to naive animals, whereas H2B N-terminus and H4K12 acetylations were mostly associated with memory for either spatial or fear learning. Altogether, these data suggest that behavior/experience-dependent changes differently regulate specific acetylation modifications of histones in the hippocampus, depending on whether a memory trace is established or not: tagging of H3K9K14 could be associated with perception/processing of testing-related manipulations and context, thereby enhancing chromatin accessibility, while tagging of H2B N-terminus tail and H4K12 could be more closely associated with the formation of memories requiring an engagement of the hippocampus.

  16. Fetal and early post-natal mineralization of the tympanic bulla in fin whales may reveal a Hitherto undiscovered evolutionary trait.

    Directory of Open Access Journals (Sweden)

    Bruno Cozzi

    Full Text Available The evolution of the cetacean skeleton followed a path that differentiated this group from other terrestrial mammals about 50 million years ago [1], and debate is still going on about the relationships between Cetacea and Artiodactyla [2], [3], [4]. Some skeletal traits of the basilosaurids (the more advanced forms of Archaeocetes, such as the expansion of the peribullary air sinuses, dental modification and vertebral size uniformity [5] are maintained and further emphasized also in contemporary odontocetes and mysticetes. Using Dual-Energy X-Ray Absorptiometry here we report that the deposition of bone mineral in fetal and newborn specimens of the fin whale Balaenoptera physalus is remarkably higher in the bulla tympanica than in the adjacent basal skull or in the rest of the skeleton. Ossification of the tympanic bulla in fetal Artiodactyla (bovine, hippopotamus is minimal, becomes sensible after birth and then progresses during growth, contrarily to the precocious mineralization that we observed in fin whales. Given the importance of the ear bones for the precise identification of phylogenetic relationship in therian evolution [6], this feature may indicate a specific evolutionary trait of fin whales and possibly other cetacean species or families. Early mineralization of the tympanic bulla allows immediate sound conduction in the aquatic medium and consequently holds potential importance for mother-calf relationship and postnatal survival.

  17. Proteomics Analysis Reveals Abnormal Electron Transport and Excessive Oxidative Stress Cause Mitochondrial Dysfunction in Placental Tissues of Early-Onset Preeclampsia.

    Science.gov (United States)

    Xu, Zhongwei; Jin, Xiaohan; Cai, Wei; Zhou, Maobin; Shao, Ping; Yang, Zhen; Fu, Rong; Cao, Jin; Liu, Yan; Yu, Fang; Fan, Rong; Zhang, Yan; Zou, Shuang; Zhou, Xin; Yang, Ning; Chen, Xu; Li, Yuming

    2018-04-20

    Early-onset preeclampsia (EOS-PE) refers to preeclampsia that occurred before 34 gestation weeks. This study was conducted to explore the relationship between mitochondrial dysfunction and the pathogenesis of EOS-PE using proteomic strategy. To identify altering expressed mitochondrial proteins between severe EOS-PE and healthy pregnancies, enrichment of mitochondria coupled with iTRAQ-based quantitative proteomic method was performed. IHC and western blot were performed to detect the alteration of changing expression proteins, and confirmed the accuracy of proteomic results. We totally quantified 1372 proteins and screened 132 altering expressed mitochondrial proteins, including 86 down-regulated expression proteins and 46 up-regulated expression proteins (pelectron transport chain and oxidative phosphorylation. Especially, mitochondrial related molecules, PRDX2, PARK7, BNIP3, BCL2, PDHA1, SUCLG1, ACADM and NDUFV1, were involved in energy production process in the matrix and membrane of mitochondria. Our results showed that abnormal electron transport, excessive oxidative stress and mitochondrion disassembly might be the main cause of mitochondrial dysfunction, and was related to the pathogenesis of EOS-PE. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. THE LOCATION OF NON-THERMAL VELOCITY IN THE EARLY PHASES OF LARGE FLARES—REVEALING PRE-ERUPTION FLUX ROPES

    International Nuclear Information System (INIS)

    Harra, Louise K.; Matthews, Sarah; Culhane, J. L.; Cheung, Mark C. M.; Kontar, Eduard P.; Hara, Hirohisa

    2013-01-01

    Non-thermal velocity measurements of the solar atmosphere, particularly from UV and X-ray emission lines have demonstrated over the decades that this parameter is important in understanding the triggering of solar flares. Enhancements have often been observed before intensity enhancements are seen. However, until the launch of Hinode, it has been difficult to determine the spatial location of the enhancements to better understand the source region. The Hinode EUV Imaging Spectrometer has the spectral and spatial resolution to allow us to probe the early stages of flares in detail. We analyze four events, all of which are GOES M- or X-classification flares, and all are located toward the limb for ease of flare geometry interpretation. Three of the flares were eruptive and one was confined. In all events, pre-flare enhancement in non-thermal velocity at the base of the active region and its surroundings has been found. These enhancements seem to be consistent with the footpoints of the dimming regions, and hence may be highlighting the activation of a coronal flux rope for the three eruptive events. In addition, pre-flare enhancements in non-thermal velocity were found above the looptops for the three eruptive events

  19. Molecular characterization of WFS1 in an Iranian family with Wolfram syndrome reveals a novel frameshift mutation associated with early symptoms.

    Science.gov (United States)

    Sobhani, Maryam; Tabatabaiefar, Mohammad Amin; Rajab, Asadollah; Kajbafzadeh, Abdol-Mohammad; Noori-Daloii, Mohammad Reza

    2013-10-10

    Wolfram syndrome (WS) is a rare autosomal recessive neurodegenerative disorder that represents a likely source of childhood diabetes especially among countries in the consanguinity belt. The main responsible gene is WFS1 for which over one hundred mutations have been reported from different ethnic groups. The aim of this study was to identify the molecular etiology of WS and to perform a possible genotype-phenotype correlation in Iranian kindred. An Iranian family with two patients was clinically studied and WS was suspected. Genetic linkage analysis via 5 STR markers was carried out. For identification of mutations, DNA sequencing of WFS1 including all the exons, exon-intron boundaries and the promoter was performed. Linkage analysis indicated linkage to the WFS1 region. After DNA sequencing of WFS1, one novel pathogenic mutation, which causes frameshift alteration c.2177_2178insTCTTC (or c.2173_2177dupTCTTC) in exon eight, was found. The genotype-phenotype correlation analysis suggests that the presence of the homozygous mutation may be associated with early onset of disease symptoms. This study stresses the necessity of considering the molecular analysis of WFS1 in childhood diabetes with some symptoms of WS. © 2013 Elsevier B.V. All rights reserved.

  20. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

    KAUST Repository

    Alsaiari, Shahad K.

    2017-12-22

    CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days employing CRISPR/Cas9 machinery. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled co-delivery of intact Cas9 protein and sgRNA.

  1. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

    KAUST Repository

    Alsaiari, Shahad K.; Patil, Sachin; Alyami, Mram Z.; Alamoudi, Kholod; Aleisa, Fajr A; Merzaban, Jasmeen; Li, Mo; Khashab, Niveen M.

    2017-01-01

    CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days employing CRISPR/Cas9 machinery. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled co-delivery of intact Cas9 protein and sgRNA.

  2. Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin

    DEFF Research Database (Denmark)

    Enkavi, Giray; Mikkolainen, Heikki; Güngör, Burçin

    2017-01-01

    remained elusive. Here, based on an extensive set of atomistic simulations and free energy calculations, we clarify the mechanism and energetics of npc2-membrane binding and characterize the roles of physiologically relevant key lipids associated with the binding process. Our results capture in atomistic......Niemann-Pick Protein C2 (npc2) is a small soluble protein critical for cholesterol transport within and from the lysosome and the late endosome. Intriguingly, npc2-mediated cholesterol transport has been shown to be modulated by lipids, yet the molecular mechanism of npc2-membrane interactions has......). This mode is associated with cholesterol uptake and release. On the other hand, the second mode (Supine) places the cholesterol binding pocket away from the membrane surface, but has overall higher membrane binding affinity. We determined that bis(monoacylglycero)phosphate (bmp) is specifically required...

  3. Constitutively internalized dopamine transporter is targeted to late endosomes and lysosomal degradation in heterologous cell lines and dopaminergic neurons

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Madsen, Kenneth; Vægter, Christian Bjerggaard

    and amphetamine, a substrate of the DAT. In antibody feeding experiments we observed that Tac-DAT was constitutively internalized faster than Tac alone and using an ELISA based assay we could quantify time-dependent intracellular accumulation of the transporter. Incubation with inhibitors of lysosomal degradation...... (leupeptin, chloroquine, or ammonium chloride) increased the amount of transporter accumulated intracellularly over time, suggesting that constitutively endocytosed transporter was targeted to lysosomal degradation. This was further supported by expression of Tac-DAT in the immortalized dopaminergic cell...... dopaminergic neurons and visualized the DAT directly in the neurons using the fluorescent cocaine analog JHC 1-064. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little co-lolization was observed with Alexa488...

  4. Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon.

    Science.gov (United States)

    Skaftnesmo, K O; Edvardsen, R B; Furmanek, T; Crespo, D; Andersson, E; Kleppe, L; Taranger, G L; Bogerd, J; Schulz, R W; Wargelius, A

    2017-10-18

    Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b

  5. High-Throughput Genetic Screen Reveals that Early Attachment and Biofilm Formation Are Necessary for Full Pyoverdine Production by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Donghoon Kang

    2017-09-01

    Full Text Available Pseudomonas aeruginosa is a re-emerging, multidrug-resistant, opportunistic pathogen that threatens the lives of immunocompromised patients, patients with cystic fibrosis, and those in critical care units. One of the most important virulence factors in this pathogen is the siderophore pyoverdine. Pyoverdine serves several critical roles during infection. Due to its extremely high affinity for ferric iron, pyoverdine gives the pathogen a significant advantage over the host in their competition for iron. In addition, pyoverdine can regulate the production of multiple bacterial virulence factors and perturb host mitochondrial homeostasis. Inhibition of pyoverdine biosynthesis decreases P. aeruginosa pathogenicity in multiple host models. To better understand the regulation of pyoverdine production, we developed a high-throughput genetic screen that uses the innate fluorescence of pyoverdine to identify genes necessary for its biosynthesis. A substantial number of hits showing severe impairment of pyoverdine production were in genes responsible for early attachment and biofilm formation. In addition to genetic disruption of biofilm, both physical and chemical perturbations also attenuated pyoverdine production. This regulatory relationship between pyoverdine and biofilm is particularly significant in the context of P. aeruginosa multidrug resistance, where the formation of biofilm is a key mechanism preventing access to antimicrobials and the immune system. Furthermore, we demonstrate that the biofilm inhibitor 2-amino-5,6-dimethylbenzimidazole effectively attenuates pyoverdine production and rescues Caenorhabditis elegans from P. aeruginosa-mediated pathogenesis. Our findings suggest that targeting biofilm formation in P. aeruginosa infections may have multiple therapeutic benefits and that employing an unbiased, systems biology-based approach may be useful for understanding the regulation of specific virulence factors and identifying novel anti

  6. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development.

    Science.gov (United States)

    Rodrigues-Pinto, Ricardo; Berry, Andrew; Piper-Hanley, Karen; Hanley, Neil; Richardson, Stephen M; Hoyland, Judith A

    2016-08-01

    In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte-like cells. Although animal studies indicate that notochord-derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5-18 weeks post-conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E-cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co-expressed by sclerotomal cells. CD90, Tie2, and E-cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord-specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327-1340, 2016. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc.

  7. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord‐specific markers during early human intervertebral disc development

    Science.gov (United States)

    Rodrigues‐Pinto, Ricardo; Berry, Andrew; Piper‐Hanley, Karen; Hanley, Neil; Richardson, Stephen M.

    2016-01-01

    ABSTRACT In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte‐like cells. Although animal studies indicate that notochord‐derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5–18 weeks post‐conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E‐cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co‐expressed by sclerotomal cells. CD90, Tie2, and E‐cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord‐specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327–1340, 2016. PMID:26910849

  8. Unsupervised Analysis of Array Comparative Genomic Hybridization Data from Early-Onset Colorectal Cancer Reveals Equivalence with Molecular Classification and Phenotypes

    Directory of Open Access Journals (Sweden)

    María Arriba

    2017-01-01

    Full Text Available AIM: To investigate whether chromosomal instability (CIN is associated with tumor phenotypes and/or with global genomic status based on MSI (microsatellite instability and CIMP (CpG island methylator phenotype in early-onset colorectal cancer (EOCRC. METHODS: Taking as a starting point our previous work in which tumors from 60 EOCRC cases (≤45 years at the time of diagnosis were analyzed by array comparative genomic hybridization (aCGH, in the present study we performed an unsupervised hierarchical clustering analysis of those aCGH data in order to unveil possible associations between the CIN profile and the clinical features of the tumors. In addition, we evaluated the MSI and the CIMP statuses of the samples with the aim of investigating a possible relationship between copy number alterations (CNAs and the MSI/CIMP condition in EOCRC. RESULTS: Based on the similarity of the CNAs detected, the unsupervised analysis stratified samples into two main clusters (A, B and four secondary clusters (A1, A2, B3, B4. The different subgroups showed a certain correspondence with the molecular classification of colorectal cancer (CRC, which enabled us to outline an algorithm to categorize tumors according to their CIMP status. Interestingly, each subcluster showed some distinctive clinicopathological features. But more interestingly, the CIN of each subcluster mainly affected particular chromosomes, allowing us to define chromosomal regions more specifically affected depending on the CIMP/MSI status of the samples. CONCLUSIONS: Our findings may provide a basis for a new form of classifying EOCRC according to the genomic status of the tumors.

  9. Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin

    Science.gov (United States)

    Farr, Glen A.; Hull, Michael; Stoops, Emily H.; Bateson, Rosalie; Caplan, Michael J.

    2015-01-01

    Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking. PMID:26424804

  10. A novel comparative pattern count analysis reveals a chronic ethanol-induced dynamic shift in immediate early NF-κB genome-wide promoter binding during liver regeneration.

    Science.gov (United States)

    Kuttippurathu, Lakshmi; Patra, Biswanath; Hoek, Jan B; Vadigepalli, Rajanikanth

    2016-03-01

    Liver regeneration after partial hepatectomy is a clinically important process that is impaired by adaptation to chronic alcohol intake. We focused on the initial time points following partial hepatectomy (PHx) to analyze the genome-wide binding activity of NF-κB, a key immediate early regulator. We investigated the effect of chronic alcohol intake on immediate early NF-κB genome-wide localization, in the adapted state as well as in response to partial hepatectomy, using chromatin immunoprecipitation followed by promoter microarray analysis. We found many ethanol-specific NF-κB binding target promoters in the ethanol-adapted state, corresponding to the regulation of biosynthetic processes, oxidation-reduction and apoptosis. Partial hepatectomy induced a diet-independent shift in NF-κB binding loci relative to the transcription start sites. We employed a novel pattern count analysis to exhaustively enumerate and compare the number of promoters corresponding to the temporal binding patterns in ethanol and pair-fed control groups. The highest pattern count corresponded to promoters with NF-κB binding exclusively in the ethanol group at 1 h post PHx. This set was associated with the regulation of cell death, response to oxidative stress, histone modification, mitochondrial function, and metabolic processes. Integration with the global gene expression profiles to identify putative transcriptional consequences of NF-κB binding patterns revealed that several of ethanol-specific 1 h binding targets showed ethanol-specific differential expression through 6 h post PHx. Motif analysis yielded co-incident binding loci for STAT3, AP-1, CREB, C/EBP-β, PPAR-γ and C/EBP-α, likely participating in co-regulatory modules with NF-κB in shaping the immediate early response to PHx. We conclude that adaptation to chronic ethanol intake disrupts the NF-κB promoter binding landscape with consequences for the immediate early gene regulatory response to the acute challenge of PHx.

  11. Neutral Polymer Micelle Carriers with pH-Responsive, Endosome-Releasing Activity Modulate Antigen Trafficking to Enhance CD8 T-Cell Responses

    Science.gov (United States)

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-01-01

    Synthetic subunit vaccines need to induce CD8+ cytotoxic T-cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8+ cytotoxic T-cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8+ T-cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendant pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25–30 nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5 h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4 h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8+ T cell responses (0.4 % IFN-γ+ of CD8+) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells in the

  12. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses.

    Science.gov (United States)

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-10-10

    Synthetic subunit vaccines need to induce CD8(+) cytotoxic T cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8(+) cytotoxic T cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8(+) T cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendent pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25-30nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non-pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC 2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8(+) T cell responses (0.4% IFN-γ(+) of CD8(+)) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells

  13. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    Science.gov (United States)

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  14. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the mu subunit of the AP-1 endosomal coat complex.

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar Singh

    2009-12-01

    Full Text Available The down-regulation of the major histocompatibility complex class I (MHC-I from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1. The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxphi, which mediates binding to the medium (micro subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the mu subunit of AP-1 (micro1 as if it contained a Yxxphimotif.Here, we show that a direct interaction between the MHC-I CD/Nef and micro1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of micro1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and micro1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on micro1 for Yxxphi motifs were required for a robust interaction.These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the mu subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in micro1 for interaction with MHC-I CD/Nef.

  15. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment.

    Science.gov (United States)

    Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves; Einav, Shirit

    2016-11-01

    Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. Viruses commonly bud at the plasma membrane by recruiting the host ESCRT machinery via conserved motifs termed late domains. The mechanism by which some viruses, such as HCV, bud intracellularly is, however, poorly characterized. Moreover, whether

  16. The Subduction of an Exhumed and Serpentinized Magma-Poor Basement Beneath the Northern Lesser Antilles Reveals the Early Tectonic Fabric at Slow-Spreading Mid-Oceanic Ridges

    Science.gov (United States)

    Marcaillou, B.; Klingelhoefer, F.; Laurencin, M.; Biari, Y.; Graindorge, D.; Jean-Frederic, L.; Laigle, M.; Lallemand, S.

    2017-12-01

    Multichannel and wide-angle seismic data as well as heat-flow measurements (ANTITHESIS cruise, 2016) reveal a 200x200km patch of magma-poor oceanic basement in the trench and beneath the outer fore-arc offshore of Antigua to Saint Martin in the Northern Lesser Antilles. These data highlight an oceanic basement with the following features: 1/ Absence of any reflection at typical Moho depth and layer2/layer3 limit depths. 2/ High Velocity Vp at the top (>5.5 km/s), low velocity gradient with depth (serpentinized at the slow-spreading mid-Atlantic Ridge 80 Myr ago, is currently subducting beneath the Northern Lesser Antilles. During the exhumation, early extension triggers penetrative shear zones sub-parallel to the ridge and to the transform fault. Eventually, this early extension generates sliding along the so-called detachment fault, while the other proto-detachment abort. Approaching the trench, the plate bending reactivates these weak zones in normal faults and fluid pathways promoting deep serpentinisation and localizing tectonic deformation at the plate interface. These subducting fluid-rich mechanically weak mantle rocks rise questions about their relation to the faster slab deepening, the lower seismic activity and the pervasive tectonic partitioning in this margin segment.

  17. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger.

    Science.gov (United States)

    Oude Blenke, E; Sleszynska, M; Evers, M J W; Storm, G; Martin, N I; Mastrobattista, E

    2017-02-15

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high membranolytic activity. However, such lytic peptides also impose a significant safety risk when applied in vivo as they often have similar activity against red blood cells and other nontarget cell membranes. Our aim is to control the membrane-disrupting capacity of these peptides in time and space by physically constraining them to a nanocarrier surface in such a way that they only become activated when delivered inside acidic endosomes. To this end, a variety of chemical approaches for the coupling of lytic peptides to liposomes via functionalized PEG-lipids were explored, including maleimide-thiol chemistry, click-chemistry, and aldehyde-hydrazide chemistry. The latter enables reversible conjugation via a hydrazone bond, allowing for release of the peptide under endosomal conditions. By carefully choosing the conjugation site and by using a pH activated analog of the melittin peptide, lytic activity toward a model membrane is completely inhibited at physiological pH. At endosomal pH the activity is restored by hydrolysis of the acid-labile hydrazone bond, releasing the peptide in its most active, free form. Furthermore, using an analogue containing a nonhydrolyzable bond as a control, it was shown that the activity observed can be completely attributed to release of the peptide, validating dynamic covalent conjugation as a suitable strategy to maintain safety during circulation.

  18. The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi

    Directory of Open Access Journals (Sweden)

    Cláudia Rosa-Ferreira

    2015-03-01

    Full Text Available The small G proteins of the Arf family play critical roles in membrane trafficking and cytoskeleton organization. However, the function of some members of the family remains poorly understood including Arl5 which is widely conserved in eukaryotes. Humans have two closely related Arl5 paralogues (Arl5a and Arl5b, and both Arl5a and Arl5b localize to the trans-Golgi with Arl5b being involved in retrograde traffic from endosomes to the Golgi apparatus. To investigate the function of Arl5, we have used Drosophila melanogaster as a model system. We find that the single Arl5 orthologue in Drosophila also localizes to the trans-Golgi, but flies lacking the Arl5 gene are viable and fertile. By using both liposome and column based affinity chromatography methods we find that Arl5 interacts with the Golgi-associated retrograde protein (GARP complex that acts in the tethering of vesicles moving from endosomes to the trans-Golgi network (TGN. In Drosophila tissues the GARP complex is partially displaced from the Golgi when Arl5 is absent, and the late endosomal compartment is enlarged. In addition, in HeLa cells GARP also becomes cytosolic upon depletion of Arl5b. These phenotypes are consistent with a role in endosome-to-Golgi traffic, but are less severe than loss of GARP itself. Thus it appears that Arl5 is one of the factors that directs the recruitment of the GARP complex to the trans-Golgi, and this function is conserved in both flies and humans.

  19. L-Type Voltage-Gated Ca2+ Channels Regulate Synaptic-Activity-Triggered Recycling Endosome Fusion in Neuronal Dendrites

    Directory of Open Access Journals (Sweden)

    Brian G. Hiester

    2017-11-01

    Full Text Available The repertoire and abundance of proteins displayed on the surface of neuronal dendrites are tuned by regulated fusion of recycling endosomes (REs with the dendritic plasma membrane. While this process is critical for neuronal function and plasticity, how synaptic activity drives RE fusion remains unexplored. We demonstrate a multistep fusion mechanism that requires Ca2+ from distinct sources. NMDA receptor Ca2+ initiates RE fusion with the plasma membrane, while L-type voltage-gated Ca2+ channels (L-VGCCs regulate whether fused REs collapse into the membrane or reform without transferring their cargo to the cell surface. Accordingly, NMDA receptor activation triggered AMPA-type glutamate receptor trafficking to the dendritic surface in an L-VGCC-dependent manner. Conversely, potentiating L-VGCCs enhanced AMPA receptor surface expression only when NMDA receptors were also active. Thus L-VGCCs play a role in tuning activity-triggered surface expression of key synaptic proteins by gating the mode of RE fusion.

  20. The Human ABCG1 Transporter Mobilizes Plasma Membrane and Late Endosomal Non-Sphingomyelin-Associated-Cholesterol for Efflux and Esterification

    Directory of Open Access Journals (Sweden)

    Edward B. Neufeld

    2014-12-01

    Full Text Available We have previously shown that GFP-tagged human ABCG1 on the plasma membrane (PM and in late endosomes (LE mobilizes sterol on both sides of the membrane lipid bilayer, thereby increasing cellular cholesterol efflux to lipid surfaces. In the present study, we examined ABCG1-induced changes in membrane cholesterol distribution, organization, and mobility. ABCG1-GFP expression increased the amount of mobile, non-sphingomyelin(SM-associated cholesterol at the PM and LE, but not the amount of SM-associated-cholesterol or SM. ABCG1-mobilized non-SM-associated-cholesterol rapidly cycled between the PM and LE and effluxed from the PM to extracellular acceptors, or, relocated to intracellular sites of esterification. ABCG1 increased detergent-soluble pools of PM and LE cholesterol, generated detergent-resistant, non-SM-associated PM cholesterol, and increased resistance to both amphotericin B-induced (cholesterol-mediated and lysenin-induced (SM-mediated cytolysis, consistent with altered organization of both PM cholesterol and SM. ABCG1 itself resided in detergent-soluble membrane domains. We propose that PM and LE ABCG1 residing at the phase boundary between ordered (Lo and disordered (Ld membrane lipid domains alters SM and cholesterol organization thereby increasing cholesterol flux between Lo and Ld, and hence, the amount of cholesterol available for removal by acceptors on either side of the membrane bilayer for either efflux or esterification.

  1. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    Science.gov (United States)

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    2016-10-01

    Full Text Available Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs. The VRCs built by Tomato bushy stunt virus (TBSV are enriched with phosphatidylethanolamine (PE through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5-positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment.

  3. The functional interplay of Rab11, FIP3 and Rho proteins on the endosomal recycling pathway controls cell shape and symmetry.

    Science.gov (United States)

    Bouchet, Jérôme; McCaffrey, Mary W; Graziani, Andrea; Alcover, Andrés

    2018-07-04

    Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.

  4. Analysis of the asymmetrically expressed Ablim1 locus reveals existence of a lateral plate Nodal-independent left sided signal and an early, left-right independent role for nodal flow

    Directory of Open Access Journals (Sweden)

    Hilton Helen

    2010-05-01

    Full Text Available Abstract Background Vertebrates show clear asymmetry in left-right (L-R patterning of their organs and associated vasculature. During mammalian development a cilia driven leftwards flow of liquid leads to the left-sided expression of Nodal, which in turn activates asymmetric expression of the transcription factor Pitx2. While Pitx2 asymmetry drives many aspects of asymmetric morphogenesis, it is clear from published data that additional asymmetrically expressed loci must exist. Results A L-R expression screen identified the cytoskeletally-associated gene, actin binding lim protein 1 (Ablim1, as asymmetrically expressed in both the node and left lateral plate mesoderm (LPM. LPM expression closely mirrors that of Nodal. Significantly, Ablim1 LPM asymmetry was detected in the absence of detectable Nodal. In the node, Ablim1 was initially expressed symmetrically across the entire structure, resolving to give a peri-nodal ring at the headfold stage in a flow and Pkd2-dependent manner. The peri-nodal ring of Ablim1 expression became asymmetric by the mid-headfold stage, showing stronger right than left-sided expression. Node asymmetry became more apparent as development proceeded; expression retreated in an anticlockwise direction, disappearing first from the left anterior node. Indeed, at early somite stages Ablim1 shows a unique asymmetric expression pattern, in the left lateral plate and to the right side of the node. Conclusion Left LPM Ablim1 is expressed in the absence of detectable LPM Nodal, clearly revealing existence of a Pitx2 and Nodal-independent left-sided signal in mammals. At the node, a previously unrecognised action of early nodal flow and Pkd2 activity, within the pit of the node, influences gene expression in a symmetric manner. Subsequent Ablim1 expression in the peri-nodal ring reveals a very early indication of L-R asymmetry. Ablim1 expression analysis at the node acts as an indicator of nodal flow. Together these results make

  5. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  6. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    Science.gov (United States)

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  7. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    Science.gov (United States)

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  8. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis.

    Directory of Open Access Journals (Sweden)

    Xuejun Tian

    2015-03-01

    Full Text Available Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj, causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.

  9. Prognostic implications of serial risk score assessments in patients with pulmonary arterial hypertension: a Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) analysis.

    Science.gov (United States)

    Benza, Raymond L; Miller, Dave P; Foreman, Aimee J; Frost, Adaani E; Badesch, David B; Benton, Wade W; McGoon, Michael D

    2015-03-01

    Data from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) were used previously to develop a risk score calculator to predict 1-year survival. We evaluated prognostic implications of changes in the risk score and individual risk-score parameters over 12 months. Patients were grouped by decreased, unchanged, or increased risk score from enrollment to 12 months. Kaplan-Meier estimates of subsequent 1-year survival were made based on change in the risk score during the initial 12 months of follow-up. Cox regression was used for multivariable analysis. Of 2,529 patients in the analysis cohort, the risk score was decreased in 800, unchanged in 959, and increased in 770 at 12 months post-enrollment. Six parameters (functional class, systolic blood pressure, heart rate, 6-minute walk distance, brain natriuretic peptide levels, and pericardial effusion) each changed sufficiently over time to improve or worsen risk scores in ≥5% of patients. One-year survival estimates in the subsequent year were 93.7%, 90.3%, and 84.6% in patients with a decreased, unchanged, and increased risk score at 12 months, respectively. Change in risk score significantly predicted future survival, adjusting for risk at enrollment. Considering follow-up risk concurrently with risk at enrollment, follow-up risk was a much stronger predictor, although risk at enrollment maintained a significant effect on future survival. Changes in REVEAL risk scores occur in most patients with pulmonary arterial hypertension over a 12-month period and are predictive of survival. Thus, serial risk score assessments can identify changes in disease trajectory that may warrant treatment modifications. Copyright © 2015 International Society for Heart and Lung Transplantation. All rights reserved.

  10. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  11. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    Science.gov (United States)

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Recruitment of Cbl-b to B cell antigen receptor couples antigen recognition to Toll-like receptor 9 activation in late endosomes.

    Directory of Open Access Journals (Sweden)

    Margaret Veselits

    Full Text Available Casitas B-lineage lymphoma-b (Cbl-b is a ubiquitin ligase (E3 that modulates signaling by tagging molecules for degradation. It is a complex protein with multiple domains and binding partners that are not involved in ubiquitinating substrates. Herein, we demonstrate that Cbl-b, but not c-Cbl, is recruited to the clustered B cell antigen receptor (BCR and that Cbl-b is required for entry of endocytosed BCRs into late endosomes. The E3 activity of Cbl-b is not necessary for BCR endocytic trafficking. Rather, the ubiquitin associated (UBA domain is required. Furthermore, the Cbl-b UBA domain is sufficient to confer the receptor trafficking functions of Cbl-b on c-Cbl. Cbl-b is also required for entry of the Toll-like receptor 9 (TLR9 into late endosomes and for the in vitro activation of TLR9 by BCR-captured ligands. These data indicate that Cbl-b acts as a scaffolding molecule to coordinate the delivery of the BCR and TLR9 into subcellular compartments required for productively delivering BCR-captured ligands to TLR9.

  13. Involvement of Gβγ subunits of Gi protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes.

    Science.gov (United States)

    Kajimoto, Taketoshi; Mohamed, Nesma Nabil Ibrahim; Badawy, Shaymaa Mohamed Mohamed; Matovelo, Shubi Ambwene; Hirase, Mitsuhiro; Nakamura, Shunsuke; Yoshida, Daisuke; Okada, Taro; Ijuin, Takeshi; Nakamura, Shun-Ichi

    2018-01-05

    Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gβγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gβγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies.

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L; Hacia, Joseph G; Paine, Michael L

    2017-03-13

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.

  15. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of

  16. Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent.

    Directory of Open Access Journals (Sweden)

    Claudia A Bertuccio

    Full Text Available The intermediate conductance, Ca2+-activated K+ channel (KCa3.1 targets to the basolateral (BL membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3

  17. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy.

    Science.gov (United States)

    Bostad, Monica; Olsen, Cathrine Elisabeth; Peng, Qian; Berg, Kristian; Høgset, Anders; Selbo, Pål Kristian

    2015-05-28

    The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis. Copyright © 2015

  18. Endosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects.

    Science.gov (United States)

    Stein, Karina; Brand, Stephanie; Jenckel, André; Sigmund, Anna; Chen, Zhijian James; Kirschning, Carsten J; Kauth, Marion; Heine, Holger

    2017-02-01

    Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions. We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection. L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4 + T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy. L lactis G121-treated murine BMDCs and human moDCs released T H 1-polarizing cytokines and induced T H 1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of T H 1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13 -/- BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The T H 1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2. Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8. Copyright © 2016 American Academy of Allergy, Asthma & Immunology

  19. Liposome Model Systems to Study the Endosomal Escape of Cell-Penetrating Peptides: Transport across Phospholipid Membranes Induced by a Proton Gradient

    Directory of Open Access Journals (Sweden)

    Fatemeh Madani

    2011-01-01

    Full Text Available Detergent-mediated reconstitution of bacteriorhodopsin (BR into large unilamellar vesicles (LUVs was investigated, and the effects were carefully characterized for every step of the procedure. LUVs were prepared by the extrusion method, and their size and stability were examined by dynamic light scattering. BR was incorporated into the LUVs using the detergent-mediated reconstitution method and octyl glucoside (OG as detergent. The result of measuring pH outside the LUVs suggested that in the presence of light, BR pumps protons from the outside to the inside of the LUVs, creating acidic pH inside the vesicles. LUVs with 20% negatively charged headgroups were used to model endosomes with BR incorporated into the membrane. The fluorescein-labeled cell-penetrating peptide penetratin was entrapped inside these BR-containing LUVs. The light-induced proton pumping activity of BR has allowed us to observe the translocation of fluorescein-labeled penetratin across the vesicle membrane.

  20. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis.

    Science.gov (United States)

    Peters, Brian M; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M; Rogers, P David; Palmer, Glen E

    2017-06-01

    We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21 Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro , it does not seem to affect azole susceptibility in vivo . Copyright © 2017 American Society for Microbiology.

  1. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways–Novel Insight into the Origins of Enamel Pathologies

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L.; Hacia, Joseph G.; Paine, Michael L.

    2017-01-01

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3′-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI. PMID:28287144

  2. Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Navare, Arti T.; Sova, Pavel; Purdy, David E.; Weiss, Jeffrey M. [Department of Microbiology, University of Washington, Seattle, WA (United States); Wolf-Yadlin, Alejandro [Department of Genome Sciences, University of Washington, Seattle, WA (United States); Korth, Marcus J.; Chang, Stewart T.; Proll, Sean C. [Department of Microbiology, University of Washington, Seattle, WA (United States); Jahan, Tahmina A. [Proteomics Resource, UW Medicine at South Lake Union, Seattle, WA (United States); Krasnoselsky, Alexei L.; Palermo, Robert E. [Department of Microbiology, University of Washington, Seattle, WA (United States); Katze, Michael G., E-mail: honey@uw.edu [Department of Microbiology, University of Washington, Seattle, WA (United States); Washington National Primate Research Center, University of Washington, Seattle, WA (United States)

    2012-07-20

    Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value{<=}0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before.

  3. Detection of the Endosomal Sorting Complex Required for Transport in Entamoeba histolytica and Characterization of the EhVps4 Protein

    Directory of Open Access Journals (Sweden)

    Israel López-Reyes

    2010-01-01

    Full Text Available Eukaryotic endocytosis involves multivesicular bodies formation, which is driven by endosomal sorting complexes required for transport (ESCRT. Here, we showed the presence and expression of homologous ESCRT genes in Entamoeba histolytica. We cloned and expressed the Ehvps4 gene, an ESCRT member, to obtain the recombinant EhVps4 and generate specific antibodies, which immunodetected EhVps4 in cytoplasm of trophozoites. Bioinformatics and biochemical studies evidenced that rEhVps4 is an ATPase, whose activity depends on the conserved E211 residue. Next, we generated trophozoites overexpressing EhVps4 and mutant EhVps4-E211Q FLAG-tagged proteins. The EhVps4-FLAG was located in cytosol and at plasma membrane, whereas the EhVps4-E211Q-FLAG was detected as abundant cytoplasmic dots in trophozoites. Erythrophagocytosis, cytopathic activity, and hepatic damage in hamsters were not improved in trophozoites overexpressing EhVps4-FLAG. In contrast, EhVps4-E211Q-FLAG protein overexpression impaired these properties. The localization of EhVps4-FLAG around ingested erythrocytes, together with our previous results, strengthens the role for EhVps4 in E. histolytica phagocytosis and virulence.

  4. The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system.

    Science.gov (United States)

    Weng, Yuejin; Lu, Wuxun; Harmon, Aaron; Xiang, Xiaoxiao; Deng, Qiji; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng

    2011-05-01

    Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus Metapneumovirus in the family Paramyxoviridae. Little is currently known about the mechanisms involved in the budding of metapneumovirus. By using AMPV as a model system, we showed that the matrix (M) protein by itself was insufficient to form virus-like-particles (VLPs). The incorporation of M into VLPs was shown to occur only when both the viral nucleoprotein (N) and the fusion (F) proteins were co-expressed. Furthermore, we provided evidence indicating that two YSKL and YAGL segments encoded within the M protein were not a functional late domain, and the endosomal sorting complex required for transport (ESCRT) machinery was not involved in metapneumovirus budding, consistent with a recent observation that human respiratory syncytial virus, closely related to HMPV, uses an ESCRT-independent budding mechanism. Taken together, these results suggest that metapneumovirus budding is independent of the ESCRT pathway and the minimal budding machinery described here will aid our future understanding of metapneumovirus assembly and egress.

  5. Tri-membrane nanoparticles produced by combining liposome fusion and a novel patchwork of bicelles to overcome endosomal and nuclear membrane barriers to cargo delivery.

    Science.gov (United States)

    Yamada, Asako; Mitsueda, Asako; Hasan, Mahadi; Ueda, Miho; Hama, Susumu; Warashina, Shota; Nakamura, Takashi; Harashima, Hideyoshi; Kogure, Kentaro

    2016-03-01

    Membrane fusion is a rational strategy for crossing intracellular membranes that present barriers to liposomal nanocarrier-mediated delivery of plasmid DNA into the nucleus of non-dividing cells, such as dendritic cells. Based on this strategy, we previously developed nanocarriers consisting of a nucleic acid core particle coated with four lipid membranes [Akita, et al., Biomaterials, 2009, 30, 2940-2949]. However, including the endosomal membrane and two nuclear membranes, cells possess three intracellular membranous barriers. Thus, after entering the nucleus, nanoparticles coated with four membranes would still have one lipid membrane remaining, and could impede cargo delivery. Until now, coating a core particle with an odd number of lipid membranes was challenging. To produce nanocarriers with an odd number of lipid membranes, we developed a novel coating method involving lipid nano-discs, also known as bicelles, as a material for packaging DNA in a carrier with an odd number of lipid membranes. In this procedure, bicelles fuse to form an outer coating that resembles a patchwork quilt, which allows the preparation of nanoparticles coated with only three lipid membranes. Moreover, the transfection activity of dendritic cells with these three-membrane nanoparticles was higher than that for nanoparticles coated with four lipid membranes. In summary, we developed novel nanoparticles coated with an odd number of lipid membranes using the novel "patchwork-packaging method" to deliver plasmid DNA into the nucleus via membrane fusion.

  6. Radioactive particles revealed by electron microscopy. Chemical and physical properties of radioactive particles in aerosol samples emitted during the early stage of Fukushima Dai-ichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Adachi, Kouji

    2015-01-01

    Water-insoluble radioactive materials emitted during an early stage of the Fukushima Dai-ichi Nuclear Power Plant accident in 2011 were identified, and their chemical and physical properties were characterized as particulate matters. In this report, studies on radioactive particles collected from filter samples in Tsukuba on March 14–15, 2011 are summarized. Their compositions, chemical states, sizes, shapes, crystallinity, and hygroscopicity were analyzed using microscopic analyses such as electron microscopy and synchrotron with a micro-beam. The results indicate that they include Cs, Fe, and Zn as well as elements from fission products and are water insoluble, spherical-glassy particles with ca. 2 micrometer in size. Understanding of their detailed properties is significant to improve the numerical models during the accident and to understand their occurrences in soil as well as the accident itself. In addition to the water-insoluble radioactive materials, water-soluble radioactive materials, which were likely emitted in different events during the accident, should be investigated to have comprehensive understanding of the accident and its environmental effects. More samples from various environments such as soil will be needed, and more detailed chemical and physical analyses will help to understand their formation process, influences on human health, and long term decrements in ambient conditions. (author)

  7. Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes.

    Science.gov (United States)

    Hermans, Christian; Vuylsteke, Marnik; Coppens, Frederik; Craciun, Adrian; Inzé, Dirk; Verbruggen, Nathalie

    2010-07-01

    *Plant growth and development ultimately depend on environmental variables such as the availability of essential minerals. Unravelling how nutrients affect gene expression will help to understand how they regulate plant growth. *This study reports the early transcriptomic response to magnesium (Mg) deprivation in Arabidopsis. Whole-genome transcriptome was studied in the roots and young mature leaves 4, 8 and 28 h after the removal of Mg from the nutrient solution. *The highest number of regulated genes was first observed in the roots. Contrary to other mineral deficiencies, Mg depletion did not induce a higher expression of annotated genes in Mg uptake. Remarkable responses include the perturbation of the central oscillator of the circadian clock in roots and the triggering of abscisic acid (ABA) signalling, with half of the up-regulated Mg genes in leaves being ABA-responsive. However, no change in ABA content was observed. *The specificity of the response of some Mg-regulated genes was challenged by studying their expression after other mineral deficiencies and environmental stresses. The possibility to develop markers for Mg incipient deficiency is discussed here.

  8. Three-Dimensional Spatiotemporal Modeling of Colon Cancer Organoids Reveals that Multimodal Control of Stem Cell Self-Renewal is a Critical Determinant of Size and Shape in Early Stages of Tumor Growth.

    Science.gov (United States)

    Yan, Huaming; Konstorum, Anna; Lowengrub, John S

    2018-05-01

    We develop a three-dimensional multispecies mathematical model to simulate the growth of colon cancer organoids containing stem, progenitor and terminally differentiated cells, as a model of early (prevascular) tumor growth. Stem cells (SCs) secrete short-range self-renewal promoters (e.g., Wnt) and their long-range inhibitors (e.g., Dkk) and proliferate slowly. Committed progenitor (CP) cells proliferate more rapidly and differentiate to produce post-mitotic terminally differentiated cells that release differentiation promoters, forming negative feedback loops on SC and CP self-renewal. We demonstrate that SCs play a central role in normal and cancer colon organoids. Spatial patterning of the SC self-renewal promoter gives rise to SC clusters, which mimic stem cell niches, around the organoid surface, and drive the development of invasive fingers. We also study the effects of externally applied signaling factors. Applying bone morphogenic proteins, which inhibit SC and CP self-renewal, reduces invasiveness and organoid size. Applying hepatocyte growth factor, which enhances SC self-renewal, produces larger sizes and enhances finger development at low concentrations but suppresses fingers at high concentrations. These results are consistent with recent experiments on colon organoids. Because many cancers are hierarchically organized and are subject to feedback regulation similar to that in normal tissues, our results suggest that in cancer, control of cancer stem cell self-renewal should influence the size and shape in similar ways, thereby opening the door to novel therapies.

  9. Tectonic/climatic control on sediment provenance in the Cape Roberts Project core record (southern Victoria Land, Antarctica): A pulsing late Oligocene/early Miocene signal from south revealed by detrital thermochronology

    Science.gov (United States)

    Olivetti, V.; Balestrieri, M. L.; Rossetti, F.; Talarico, F. M.

    2012-04-01

    The Mesozoic-Cenozoic West Antarctic Rift System (WARS) is one of the largest intracontinental rift on Earth. The Transantarctic Mountains (TAM) form its western shoulder, marking the boundary between the East and West Antarctica. The rifting evolution is commonly considered polyphase and involves an Early Cretaceous phase linked to the Gondwana break-up followed by a major Cenozoic one, starting at c. 50-40 Ma. This Cenozoic episode corresponds to the major uplift/denudation phase of the TAM, which occurred concurrently with transition from orthogonal to oblique rifting. The Cenozoic rift reorganization occurred concurrently with a major change in the global climate system and a global reorganization of plate motions. This area thus provide an outstanding natural laboratory for studying a range of geological problems that involve feedback relationships between tectonics and climate. A key to address the tectonic/climate feedback relations is to look on apparent synchronicity in erosion signal between different segments, and to compare these with well-dated regional and global climatic events. However, due to the paucity of Cenozoic rock sequences exposed along the TAM front, a few information is available about the neotectonics of the rift and rift-flank uplift system. The direct physical record of the tectonic/climate history of the WARS recovered by core drillings along the western margin of the Ross sea (DSDP, CIROS, Cape Roberts and ANDRILL projects) provides an invaluable tool to address this issue. Twenty-three samples distributed throughout the entire composite drill-cored stratigraphic succession of Cape Roberts were analyzed. Age probability plots of eighteen detrital samples with depositional ages between 34 Ma and the Pliocene were decomposed into statistically significant age populations or peaks using binomial peak-fitting. Moreover, three granitic pebbles, one dolerite clast and one sample of Beacon sandstones have been dated. From detrital samples

  10. OSBP-related protein 11 (ORP11) dimerizes with ORP9 and localizes at the Golgi-late endosome interface

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, You [Minerva Foundation Institute for Medical Research, Biomedicum 2U, and National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum 1, FI-00290, Helsinki (Finland); Li, Shiqian [Department of Biology, Jinan University, Guangzhou 510632 (China); Maeyraenpaeae, Mikko I. [Wihuri Research Institute, FI-00140 Helsinki, and the Department of Forensic Medicine, FI-00014 University of Helsinki (Finland); Zhong, Wenbin [Department of Biology, Jinan University, Guangzhou 510632 (China); Baeck, Nils [Institute of Biomedicine/Anatomy, FI-00014 University of Helsinki, Helsinki (Finland); Yan, Daoguang [Department of Biology, Jinan University, Guangzhou 510632 (China); Olkkonen, Vesa M., E-mail: vesa.olkkonen@helsinki.fi [Minerva Foundation Institute for Medical Research, Biomedicum 2U, and National Institute for Health and Welfare/Public Health Genomics Unit, Biomedicum 1, FI-00290, Helsinki (Finland); Institute of Biomedicine/Anatomy, FI-00014 University of Helsinki, Helsinki (Finland)

    2010-11-15

    We characterize here ORP11, a member of the oxysterol-binding protein family. ORP11 is present at highest levels in human ovary, testis, kidney, liver, stomach, brain, and adipose tissue. Immunohistochemistry demonstrates abundant ORP11 in the epithelial cells of kidney tubules, testicular tubules, caecum, and skin. ORP11 in HEK293 cells resides on Golgi complex and LE, co-localizing with GFP-Rab9, TGN46, GFP-Rab7, and a fluorescent medial-trans-Golgi marker. Under electron microscopic observation, cells overexpressing ORP11 displayed lamellar lipid bodies associated with vacuolar structures or the Golgi complex, indicating a disturbance of lipid trafficking. N-terminal fragment of ORP11 (aa 1-292) localized partially to Golgi, but displayed enhanced localization on Rab7- and Rab9-positive LE, while the C-terminal ligand-binding domain (aa 273-747) was cytosolic, demonstrating that the membrane targeting determinants are N-terminal. Yeast two-hybrid screen revealed interaction of ORP11 with the related ORP9. The interacting region was delineated within aa 98-372 of ORP9 and aa 154-292 of ORP11. Overexpressed ORP9 was able to recruit EGFP-ORP11 to membranes, and ORP9 silencing inhibited ORP11 Golgi association. The results identify ORP11 as an OSBP homologue distributing at the Golgi-LE interface and define the ORP9-ORP11 dimer as a functional unit that may act as an intracellular lipid sensor or transporter.

  11. OSBP-related protein 11 (ORP11) dimerizes with ORP9 and localizes at the Golgi-late endosome interface

    International Nuclear Information System (INIS)

    Zhou, You; Li, Shiqian; Maeyraenpaeae, Mikko I.; Zhong, Wenbin; Baeck, Nils; Yan, Daoguang; Olkkonen, Vesa M.

    2010-01-01

    We characterize here ORP11, a member of the oxysterol-binding protein family. ORP11 is present at highest levels in human ovary, testis, kidney, liver, stomach, brain, and adipose tissue. Immunohistochemistry demonstrates abundant ORP11 in the epithelial cells of kidney tubules, testicular tubules, caecum, and skin. ORP11 in HEK293 cells resides on Golgi complex and LE, co-localizing with GFP-Rab9, TGN46, GFP-Rab7, and a fluorescent medial-trans-Golgi marker. Under electron microscopic observation, cells overexpressing ORP11 displayed lamellar lipid bodies associated with vacuolar structures or the Golgi complex, indicating a disturbance of lipid trafficking. N-terminal fragment of ORP11 (aa 1-292) localized partially to Golgi, but displayed enhanced localization on Rab7- and Rab9-positive LE, while the C-terminal ligand-binding domain (aa 273-747) was cytosolic, demonstrating that the membrane targeting determinants are N-terminal. Yeast two-hybrid screen revealed interaction of ORP11 with the related ORP9. The interacting region was delineated within aa 98-372 of ORP9 and aa 154-292 of ORP11. Overexpressed ORP9 was able to recruit EGFP-ORP11 to membranes, and ORP9 silencing inhibited ORP11 Golgi association. The results identify ORP11 as an OSBP homologue distributing at the Golgi-LE interface and define the ORP9-ORP11 dimer as a functional unit that may act as an intracellular lipid sensor or transporter.

  12. Expression profiling of migrated and invaded breast cancer cells predicts early metastatic relapse and reveals Krüppel-like factor 9 as a potential suppressor of invasive growth in breast cancer

    Science.gov (United States)

    Limame, Ridha; de Beeck, Ken Op; Van Laere, Steven; Croes, Lieselot; De Wilde, Annemieke; Dirix, Luc; Van Camp, Guy; Peeters, Marc; De Wever, Olivier; Lardon, Filip; Pauwels, Patrick

    2014-01-01

    Cell motility and invasion initiate metastasis. However, only a subpopulation of cancer cells within a tumor will ultimately become invasive. Due to this stochastic and transient nature, in an experimental setting, migrating and invading cells need to be isolated from the general population in order to study the gene expression profiles linked to these processes. This report describes microarray analysis on RNA derived from migrated or invaded subpopulations of triple negative breast cancer cells in a Transwell set-up, at two different time points during motility and invasion, pre-determined as “early” and “late” in real-time kinetic assessments. Invasion- and migration-related gene expression signatures were generated through comparison with non-invasive cells, remaining at the upper side of the Transwell membranes. Late-phase signatures of both invasion and migration indicated poor prognosis in a series of breast cancer data sets. Furthermore, evaluation of the genes constituting the prognostic invasion-related gene signature revealed Krüppel-like factor 9 (KLF9) as a putative suppressor of invasive growth in breast cancer. Next to loss in invasive vs non-invasive cell lines, KLF9 also showed significantly lower expression levels in the “early” invasive cell population, in several public expression data sets and in clinical breast cancer samples when compared to normal tissue. Overexpression of EGFP-KLF9 fusion protein significantly altered morphology and blocked invasion and growth of MDA-MB-231 cells in vitro. In addition, KLF9 expression correlated inversely with mitotic activity in clinical samples, indicating anti-proliferative effects. PMID:25593984

  13. Somatic mutations, allele loss, and DNA methylation of the Cub and Sushi Multiple Domains 1 (CSMD1 gene reveals association with early age of diagnosis in colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Austin Y Shull

    Full Text Available The Cub and Sushi Multiple Domains 1 (CSMD1 gene, located on the short arm of chromosome 8, codes for a type I transmembrane protein whose function is currently unknown. CSMD1 expression is frequently lost in many epithelial cancers. Our goal was to characterize the relationships between CSMD1 somatic mutations, allele imbalance, DNA methylation, and the clinical characteristics in colorectal cancer patients.We sequenced the CSMD1 coding regions in 54 colorectal tumors using the 454FLX pyrosequencing platform to interrogate 72 amplicons covering the entire coding sequence. We used heterozygous SNP allele ratios at multiple CSMD1 loci to determine allelic balance and infer loss of heterozygosity. Finally, we performed methylation-specific PCR on 76 colorectal tumors to determine DNA methylation status for CSMD1 and known methylation targets ALX4, RUNX3, NEUROG1, and CDKN2A.Using 454FLX sequencing and confirming with Sanger sequencing, 16 CSMD1 somatic mutations were identified in 6 of the 54 colorectal tumors (11%. The nonsynonymous to synonymous mutation ratio of the 16 somatic mutations was 15:1, a ratio significantly higher than the expected 2:1 ratio (p = 0.014. This ratio indicates a presence of positive selection for mutations in the CSMD1 protein sequence. CSMD1 allelic imbalance was present in 19 of 37 informative cases (56%. Patients with allelic imbalance and CSMD1 mutations were significantly younger (average age, 41 years than those without somatic mutations (average age, 68 years. The majority of tumors were methylated at one or more CpG loci within the CSMD1 coding sequence, and CSMD1 methylation significantly correlated with two known methylation targets ALX4 and RUNX3. C:G>T:A substitutions were significantly overrepresented (47%, suggesting extensive cytosine methylation predisposing to somatic mutations.Deep amplicon sequencing and methylation-specific PCR reveal that CSMD1 alterations can correlate with earlier clinical

  14. Host cell entry of powdery mildew is correlated with endosomal transport of antagonistically acting VvPEN1 and VvMLO to the papilla.

    Science.gov (United States)

    Feechan, A; Jermakow, A M; Ivancevic, A; Godfrey, D; Pak, H; Panstruga, R; Dry, I B

    2013-10-01

    Challenge by a nonadapted powdery mildew fungal pathogen leads to the formation of a local cell-wall apposition (papilla) beneath the point of attempted penetration. Several plasma membrane (PM) proteins with opposing roles in powdery mildew infection, including Arabidopsis thaliana PENETRATION1 (PEN1) and barley (Hordeum vulgare) MILDEW RESISTANCE LOCUS O (MLO), are localized to the site of powdery mildew attack. PEN1 contributes to penetration resistance to nonadapted powdery mildews, whereas MLO is a susceptibility factor required by adapted powdery mildew pathogens for host cell entry. Our previous studies have demonstrated that the vesicle and endosomal trafficking inhibitors, brefeldin A and wortmannin, have opposite effects on the penetration rates of adapted and nonadapted powdery mildews on grapevine. These findings prompted us to study the pathogen-induced intracellular trafficking of grapevine variants of MLO and PEN1. We first identified grapevine (Vitis vinifera) VvPEN1 and VvMLO orthologs that rescue Arabidopsis Atpen1 and Atmlo2 mlo6 mlo12 null mutants, respectively. By using endomembrane trafficking inhibitors in combination with fluorescence microscopy, we demonstrate that VvMLO3/VvMLO4 and VvPEN1 are co-trafficked together from the PM to the site of powdery mildew challenge. This focal accumulation of VvMLO3/VvMLO4 and VvPEN1 to the site of attack seems to be required for their opposing functions during powdery mildew attack, because their subcellular localization is correlated with the outcome of attempted powdery mildew penetration.

  15. The C proteins of human parainfluenza virus type 1 block IFN signaling by binding and retaining Stat1 in perinuclear aggregates at the late endosome.

    Directory of Open Access Journals (Sweden)

    Henrick Schomacker

    Full Text Available Interferons (IFNs play a crucial role in the antiviral immune response. Whereas the C proteins of wild-type human parainfluenza virus type 1 (WT HPIV1 inhibit both IFN-β induction and signaling, a HPIV1 mutant encoding a single amino acid substitution (F170S in the C proteins is unable to block either host response. Here, signaling downstream of the type 1 IFN receptor was examined in Vero cells to define at what stage WT HPIV1 can block, and F170S HPIV1 fails to block, IFN signaling. WT HPIV1 inhibited phosphorylation of both Stat1 and Stat2, and this inhibition was only slightly reduced for F170S HPIV1. Degradation of Stat1 or Stat2 was not observed. The HPIV1 C proteins were found to accumulate in the perinuclear space, often forming large granules, and co-localized with Stat1 and the cation-independent mannose 6-phosphate receptor (M6PR that is a marker for late endosomes. Upon stimulation with IFN-β, both the WT and F170S C proteins remained in the perinuclear space, but only the WT C proteins prevented Stat1 translocation to the nucleus. In addition, WT HPIV1 C proteins, but not F170S C proteins, co-immunoprecipitated both phosphorylated and unphosphorylated Stat1. Our findings suggest that the WT HPIV1 C proteins form a stable complex with Stat1 in perinuclear granules that co-localize with M6PR, and that this direct interaction between the WT HPIV1 C proteins and Stat1 is the basis for the ability of HPIV1 to inhibit IFN signaling. The F170S mutation in HPIV1 C did not prevent perinuclear co-localization with Stat1, but apparently weakened this interaction such that, upon IFN stimulation, Stat1 was translocated to the nucleus to induce an antiviral response.

  16. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

    Science.gov (United States)

    Merriam, Laura A; Baran, Caitlin N; Girard, Beatrice M; Hardwick, Jean C; May, Victor; Parsons, Rodney L

    2013-03-06

    After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.

  17. Effectiveness of a dynein team in a tug of war helped by reduced load sensitivity of detachment: evidence from the study of bidirectional endosome transport in D. discoideum.

    Science.gov (United States)

    Bhat, Deepak; Gopalakrishnan, Manoj

    2012-08-01

    Bidirectional cargo transport by molecular motors in cells is a complex phenomenon in which the cargo (usually a vesicle) alternately moves in retrograde and anterograde directions. In this case, teams of oppositely pulling motors (e.g., kinesin and dynein) bind to the cargo, simultaneously, and 'coordinate' their activity such that the motion consists of spells of positively and negatively directed segments, separated by pauses of varying duration. A set of recent experiments have analyzed the bidirectional motion of endosomes in the amoeba D. discoideum in detail. It was found that in between directional switches, a team of five to six dyneins stall a cargo against a stronger kinesin in a tug of war, which lasts for almost a second. As the mean detachment time of a kinesin under its stall load was also observed to be ∼1 s, we infer that the collective detachment time of the dynein assembly must also be similar. Here, we analyze this inference from a modeling perspective, using experimentally measured single-molecule parameters as inputs. We find that the commonly assumed exponential load-dependent detachment rate is inconsistent with observations, as it predicts that a five-dynein assembly will detach under its combined stall load in less than a hundredth of a second. A modified model where the load-dependent unbinding rate is assumed to saturate at stall-force level for super-stall loads gives results which are in agreement with experimental data. Our analysis suggests that the load-dependent detachment of a dynein in a team is qualitatively different at sub-stall and super-stall loads, a conclusion which is likely to have implications in other situations involving collective effects of many motors.

  18. Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Navya Nair

    2016-12-01

    Full Text Available Endometrial cancer is the most common gynecologic malignancy, and its incidence and associated mortality are increasing. Despite the immediate need to detect these cancers at an earlier stage, there is no effective screening methodology or protocol for endometrial cancer. The comprehensive, genomics-based analysis of endometrial cancer by The Cancer Genome Atlas (TCGA revealed many of the molecular defects that define this cancer. Based on these cancer genome results, and in a prospective study, we hypothesized that the use of ultra-deep, targeted gene sequencing could detect somatic mutations in uterine lavage fluid obtained from women undergoing hysteroscopy as a means of molecular screening and diagnosis.Uterine lavage and paired blood samples were collected and analyzed from 107 consecutive patients who were undergoing hysteroscopy and curettage for diagnostic evaluation from this single-institution study. The lavage fluid was separated into cellular and acellular fractions by centrifugation. Cellular and cell-free DNA (cfDNA were isolated from each lavage. Two targeted next-generation sequencing (NGS gene panels, one composed of 56 genes and the other of 12 genes, were used for ultra-deep sequencing. To rule out potential NGS-based errors, orthogonal mutation validation was performed using digital PCR and Sanger sequencing. Seven patients were diagnosed with endometrial cancer based on classic histopathologic analysis. Six of these patients had stage IA cancer, and one of these cancers was only detectable as a microscopic focus within a polyp. All seven patients were found to have significant cancer-associated gene mutations in both cell pellet and cfDNA fractions. In the four patients in whom adequate tumor sample was available, all tumor mutations above a specific allele fraction were present in the uterine lavage DNA samples. Mutations originally only detected in lavage fluid fractions were later confirmed to be present in tumor but at

  19. Endosomes: guardians against [Ru(Phen)3]2+ photo-action in endothelial cells during in vivo pO2 detection?

    Science.gov (United States)

    Huntosova, Veronika; Stroffekova, Katarina; Wagnieres, Georges; Novotova, Marta; Nichtova, Zuzana; Miskovsky, Pavol

    2014-12-01

    Phototoxicity is a side-effect of in vitro and in vivo oxygen partial pressure (pO2) detection by luminescence lifetime measurement methods. Dichlorotris(1,10-phenanthroline)-ruthenium(ii) hydrate ([Ru(Phen)3]2+) is a water soluble pO2 probe associated with low phototoxicity, which we investigated in vivo in the chick's chorioallantoic membrane (CAM) after intravenous or topical administration and in vitro in normal human coronary artery endothelial cells (HCAEC). In vivo, the level of intravenously injected [Ru(Phen)3]2+ decreases within several minutes, whereas the maximum of its biodistribution is observed during the first 2 h after topical application. Both routes are followed by convergence to almost identical "intra/extra-vascular" levels of [Ru(Phen)3]2+. In vitro, we observed that [Ru(Phen)3]2+ enters cells via endocytosis and is then redistributed. None of the studied conditions induced modification of lysosomal or mitochondrial membranes without illumination. No nuclear accumulation was observed. Without illumination [Ru(Phen)3]2+ induces changes in endoplasmic reticulum (ER)-to-Golgi transport. The phototoxic effect of [Ru(Phen)3]2+ leads to more marked ultrastructural changes than administration of [Ru(Phen)3]2+ only (in the dark). These could lead to disruption of Ca2+ homeostasis accompanied by mitochondrial changes or to changes in secretory pathways. In conclusion, we have demonstrated that the intravenous injection of [Ru(Phen)3]2+ into the CAM model mostly leads to extracellular localization of [Ru(Phen)3]2+, while its topical application induces intracellular localization. We have shown in vivo that [Ru(Phen)3]2+ induces minimal photo-damage after illumination with light doses larger by two orders of magnitude than those used for pO2 measurements. This low phototoxicity is due to the fact that [Ru(Phen)3]2+ enters endothelial cells via endocytosis and is then redistributed towards peroxisomes and other endosomal and secretory vesicles before it

  20. Novel ethyl methanesulfonate (EMS-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo

    Directory of Open Access Journals (Sweden)

    Mark W. Dodson

    2014-12-01

    Full Text Available Mutations in LRRK2 cause a dominantly inherited form of Parkinson’s disease (PD and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 remain unclear. Several recent studies have linked the toxicity caused by overexpression of pathogenic mutant forms of LRRK2 to defects in the endolysosomal and autophagy pathways, raising the question of whether endogenous LRRK2 might play a role in these processes. Here, we report the characterization of multiple novel ethyl methanesulfonate (EMS-induced nonsense alleles in the Drosophila LRRK2 homolog, lrrk. Using these alleles, we show that lrrk loss-of-function causes striking defects in the endolysosomal and autophagy pathways, including the accumulation of markedly enlarged lysosomes that are laden with undigested contents, consistent with a defect in lysosomal degradation. lrrk loss-of-function also results in the accumulation of autophagosomes, as well as the presence of enlarged early endosomes laden with mono-ubiquitylated cargo proteins, suggesting an additional defect in lysosomal substrate delivery. Interestingly, the lysosomal abnormalities in these lrrk mutants can be suppressed by a constitutively active form of the small GTPase rab9, which promotes retromer-dependent recycling from late endosomes to the Golgi. Collectively, our data provides compelling evidence of a vital role for lrrk in lysosomal function and endolysosomal membrane transport in vivo, and suggests a link between lrrk and retromer-mediated endosomal recycling.

  1. Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo.

    Science.gov (United States)

    Dodson, Mark W; Leung, Lok K; Lone, Mohiddin; Lizzio, Michael A; Guo, Ming

    2014-12-01

    Mutations in LRRK2 cause a dominantly inherited form of Parkinson's disease (PD) and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 remain unclear. Several recent studies have linked the toxicity caused by overexpression of pathogenic mutant forms of LRRK2 to defects in the endolysosomal and autophagy pathways, raising the question of whether endogenous LRRK2 might play a role in these processes. Here, we report the characterization of multiple novel ethyl methanesulfonate (EMS)-induced nonsense alleles in the Drosophila LRRK2 homolog, lrrk. Using these alleles, we show that lrrk loss-of-function causes striking defects in the endolysosomal and autophagy pathways, including the accumulation of markedly enlarged lysosomes that are laden with undigested contents, consistent with a defect in lysosomal degradation. lrrk loss-of-function also results in the accumulation of autophagosomes, as well as the presence of enlarged early endosomes laden with mono-ubiquitylated cargo proteins, suggesting an additional defect in lysosomal substrate delivery. Interestingly, the lysosomal abnormalities in these lrrk mutants can be suppressed by a constitutively active form of the small GTPase rab9, which promotes retromer-dependent recycling from late endosomes to the Golgi. Collectively, our data provides compelling evidence of a vital role for lrrk in lysosomal function and endolysosomal membrane transport in vivo, and suggests a link between lrrk and retromer-mediated endosomal recycling. © 2014. Published by The Company of Biologists Ltd.

  2. Recycling Endosomes and Viral Infection.

    Science.gov (United States)

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-03-08

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral-host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.

  3. Early phonology revealed by international adoptees' birth language retention.

    Science.gov (United States)

    Choi, Jiyoun; Broersma, Mirjam; Cutler, Anne

    2017-07-11

    Until at least 6 mo of age, infants show good discrimination for familiar phonetic contrasts (i.e., those heard in the environmental language) and contrasts that are unfamiliar. Adult-like discrimination (significantly worse for nonnative than for native contrasts) appears only later, by 9-10 mo. This has been interpreted as indicating that infants have no knowledge of phonology until vocabulary development begins, after 6 mo of age. Recently, however, word recognition has been observed before age 6 mo, apparently decoupling the vocabulary and phonology acquisition processes. Here we show that phonological acquisition is also in progress before 6 mo of age. The evidence comes from retention of birth-language knowledge in international adoptees. In the largest ever such study, we recruited 29 adult Dutch speakers who had been adopted from Korea when young and had no conscious knowledge of Korean language at all. Half were adopted at age 3-5 mo (before native-specific discrimination develops) and half at 17 mo or older (after word learning has begun). In a short intensive training program, we observe that adoptees (compared with 29 matched controls) more rapidly learn tripartite Korean consonant distinctions without counterparts in their later-acquired Dutch, suggesting that the adoptees retained phonological knowledge about the Korean distinction. The advantage is equivalent for the younger-adopted and the older-adopted groups, and both groups not only acquire the tripartite distinction for the trained consonants but also generalize it to untrained consonants. Although infants younger than 6 mo can still discriminate unfamiliar phonetic distinctions, this finding indicates that native-language phonological knowledge is nonetheless being acquired at that age.

  4. Imaging Early Steps of Sindbis Virus Infection by Total Internal Reflection Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Youling Gu

    2011-01-01

    Full Text Available Sindbis virus (SINV is an alphavirus that has a broad host range and has been widely used as a vector for recombinant gene transduction, DNA-based vaccine production, and oncolytic cancer therapy. The mechanism of SINV entry into host cells has yet to be fully understood. In this paper, we used single virus tracking under total internal reflection fluorescence microscopy (TIRFM to investigate SINV attachment to cell surface. Biotinylated viral particles were labeled with quantum dots, which retained viral viability and infectivity. By time-lapse imaging, we showed that the SINV exhibited a heterogeneous dynamics on the surface of the host cells. Analysis of SINV motility demonstrated a two-step attachment reaction. Moreover, dual color TIRFM of GFP-Rab5 and SINV suggested that the virus was targeted to the early endosomes after endocytosis. These findings demonstrate the utility of quantum dot labeling in studying the early steps and behavior of SINV infection.

  5. Early prenatal syphilis

    Directory of Open Access Journals (Sweden)

    Santosh Rathod

    2010-01-01

    Full Text Available Syphilis in pregnancy still remains a challenge despite the availability of adequate diagnostic tests for serological screening and penicillin therapy. We report a case of 2 month old female infant who presented with runny nose, papulosquamous lesions over both palms and soles and perianal erosions since 1 month after birth. Cutaneous examination revealed moist eroded areas in the perianal region and fine scaly lesions over palms and soles. Radiograph of both upper limbs and limbs revealed early periosteal changes in lower end of humerus and lower end of tibia. Diagnosis of early pre-natal syphilis was confirmed by Child′s Serum Rapid Plasma Reagin Antibody test [S.RPR] being positive with 1:64 dilution while that of mother was 1:8.

  6. Early discontinuation

    DEFF Research Database (Denmark)

    Hansen, Dorte Gilså; Felde, Lina; Gichangi, Anthony

    2007-01-01

    prevalence and rate of early discontinuation of different drugs consisting of, in this study, lipid-lowering drugs, antihypertensive drugs, antidepressants, antidiabetics and drugs against osteoporosis. Material and methods This was a register study based on prescription data covering a 4-year period...... and consisting of 470,000 citizens. For each practice and group of drug, a 1-year prevalence for 2002 and the rate of early discontinuation among new users in 2002-2003 were estimated. Early discontinuation was defined as no prescriptions during the second half-year following the first prescription....... There was a positive association between the prevalence of prescribing for the specific drugs studied (antidepressants, antidiabetics, drugs against osteoporosis and lipid-lowering drugs) and early discontinuation (r = 0.29 -0.44), but not for anti-hypertensive drugs. The analysis of the association between prevalence...

  7. Early literacy

    DEFF Research Database (Denmark)

    Jensen, Anders Skriver

    2012-01-01

    This paper discusses findings from the Danish contribution to the EASE project, a European research project running from 2008 to 2010 on early literacy in relation to the transition from childcare to school. It explores a holistic, inclusive approach to early literacy that resists a narrow...... and schools. The paper also draws on Gee’s (2001, 2003, 2004, 2008) sociocultural approach to literacy, and Honneth’s (2003, 2006) concept of recognition. Emphasizing participation and recognition as key elements, it claims that stakeholders in early liter- acy must pay attention to how diverse early literacy...... opportunities empower children, especially when these opportunities are employed in a project-based learning environ- ment in which each child is able to contribute to the shared literacy events....

  8. Early Math.

    Science.gov (United States)

    Van Nuys, Ute Elisabeth

    1986-01-01

    Presents reviews of the following mathematics software designed to teach young children counting, number recognition, visual discrimination, matching, addition, and subtraction skills; Stickybear Numbers, Learning with Leeper, Getting Ready to Read and Add, Counting Parade, Early Games for Young Children, Charlie Brown's 1,2,3's, Let's Go Fishing,…

  9. Revealing the programming process

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2005-01-01

    One of the most important goals of an introductory programming course is that the students learn a systematic approach to the development of computer programs. Revealing the programming process is an important part of this; however, textbooks do not address the issue -- probably because...... the textbook medium is static and therefore ill-suited to expose the process of programming. We have found that process recordings in the form of captured narrated programming sessions are a simple, cheap, and efficient way of providing the revelation.We identify seven different elements of the programming...

  10. TypeScript revealed

    CERN Document Server

    Maharry, Dan

    2013-01-01

    TypeScript Revealed is a quick 100-page guide to Anders Hejlsberg's new take on JavaScript. With this brief, fast-paced introduction to TypeScript, .NET, Web and Windows 8 application developers who are already familiar with JavaScript will easily get up to speed with TypeScript and decide whether or not to start incorporating it into their own development. TypeScript is 'JavaScript for Application-scale development'; a superset of JavaScript that brings to it an additional object-oriented-like syntax familiar to .NET programmers that compiles down into simple, clean JavaScript that any browse

  11. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  12. Chemistry of plutonium revealed

    International Nuclear Information System (INIS)

    Connick, R.E.

    1992-01-01

    In 1941 one goal of the Manhattan Project was to unravel the chemistry of the synthetic element plutonium as rapidly as possible. In this paper the work carried out at Berkeley from the spring of 1942 to the summer of 1945 is described briefly. The aqueous chemistry of plutonium is quite remarkable. Important insights were obtained from tracer experiments, but the full complexity was not revealed until macroscopic amounts (milligrams) became available. Because processes for separation from fission products were based on aqueous solutions, such solution chemistry was emphasized, particularly precipitation and oxidation-reduction behavior. The latter turned out to be unusually intricate when it was discovered that two more oxidation states existed in aqueous solution than had previously been suspected. Further, an equilibrium was rapidly established among the four aqueous oxidation states, while at the same time any three were not in equilibrium. These and other observations made while doing a crash study of a previously unknown element are reported

  13. Android Emotions Revealed

    DEFF Research Database (Denmark)

    Vlachos, Evgenios; Schärfe, Henrik

    2012-01-01

    This work presents a method for designing facial interfaces for sociable android robots with respect to the fundamental rules of human affect expression. Extending the work of Paul Ekman towards a robotic direction, we follow the judgment-based approach for evaluating facial expressions to test...... findings are based on the results derived from a number of judgments, and suggest that before programming the facial expressions of a Geminoid, the Original should pass through the proposed procedure. According to our recommendations, the facial expressions of an android should be tested by judges, even...... in which case an android robot like the Geminoid|DK –a duplicate of an Original person- reveals emotions convincingly; when following an empirical perspective, or when following a theoretical one. The methodology includes the processes of acquiring the empirical data, and gathering feedback on them. Our...

  14. Hydrogen-deuterium exchange and mass spectrometry reveal the pH-dependent conformational changes of diphtheria toxin T domain.

    Science.gov (United States)

    Li, Jing; Rodnin, Mykola V; Ladokhin, Alexey S; Gross, Michael L

    2014-11-04

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our "standard condition" (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W(+)-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8-9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8-9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.

  15. Hydrogen–Deuterium Exchange and Mass Spectrometry Reveal the pH-Dependent Conformational Changes of Diphtheria Toxin T Domain

    Science.gov (United States)

    2015-01-01

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen–deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our “standard condition” (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W+-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8–9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8–9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain. PMID:25290210

  16. Selective phosphorylation during early macrophage differentiation

    KAUST Repository

    Zhang, Huoming; Qian, Pei-Yuan; Ravasi, Timothy

    2015-01-01

    -regulated phosphoproteins in the early stages of differentiation. Further analysis of the PMA-regulated phosphoproteins revealed that transcriptional suppression, cytoskeletal reorganization and cell adhesion were among the most significantly activated pathways. Some key

  17. Titan Casts Revealing Shadow

    Science.gov (United States)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  18. Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport.

    Science.gov (United States)

    Arlt, Henning; Auffarth, Kathrin; Kurre, Rainer; Lisse, Dominik; Piehler, Jacob; Ungermann, Christian

    2015-04-01

    Organelles of the endolysosomal system undergo multiple fission and fusion events to combine sorting of selected proteins to the vacuole with endosomal recycling. This sorting requires a consecutive remodeling of the organelle surface in the course of endosomal maturation. Here we dissect the remodeling and fusion machinery on endosomes during the process of endocytosis. We traced selected GFP-tagged endosomal proteins relative to exogenously added fluorescently labeled α-factor on its way from the plasma membrane to the vacuole. Our data reveal that the machinery of endosomal fusion and ESCRT proteins has similar temporal localization on endosomes, whereas they precede the retromer cargo recognition complex. Neither deletion of retromer nor the fusion machinery with the vacuole affects this maturation process, although the kinetics seems to be delayed due to ESCRT deletion. Of importance, in strains lacking the active Rab7-like Ypt7 or the vacuolar SNARE fusion machinery, α-factor still proceeds to late endosomes with the same kinetics. This indicates that endosomal maturation is mainly controlled by the early endosomal fusion and remodeling machinery but not the downstream Rab Ypt7 or the SNARE machinery. Our data thus provide important further understanding of endosomal biogenesis in the context of cargo sorting. © 2015 Arlt et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Organization of organelles within hyphae of Ashbya gossypii revealed by electron tomography.

    Science.gov (United States)

    Gibeaux, Romain; Hoepfner, Dominic; Schlatter, Ivan; Antony, Claude; Philippsen, Peter

    2013-11-01

    Ashbya gossypii grows as multinucleated and constantly elongating hyphae. Nuclei are in continuous forward and backward motion, also move during mitosis, and frequently bypass each other. Whereas these nuclear movements are well documented, comparatively little is known about the density and morphology of organelles which very likely influence these movements. To understand the three-dimensional subcellular organization of hyphae at high resolution, we performed large-scale electron tomography of the tip regions in A. gossypii. Here, we present a comprehensive space-filling model in which most membrane-limited organelles including nuclei, mitochondria, endosomes, multivesicular bodies, vacuoles, autophagosomes, peroxisomes, and vesicles are modeled. Nuclei revealed different morphologies and protrusions filled by the nucleolus. Mitochondria are very abundant and form a tubular network with a polarized spherical fraction. The organelles of the degradative pathways show a clustered organization. By analyzing vesicle-like bodies, we identified three size classes of electron-dense vesicles (∼200, ∼150, and ∼100 nm) homogeneously distributed in the cytoplasm which most likely represent peroxisomes. Finally, coated and uncoated vesicles with approximately 40-nm diameters show a polarized distribution toward the hyphal tip with the coated vesicles preferentially localizing at the hyphal periphery.

  20. Essential role of the unordered VP2 n-terminal domain of the parvovirus MVM capsid in nuclear assembly and endosomal enlargement of the virion fivefold channel for cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Martinez, Cristina; Grueso, Esther [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain); Carroll, Miles [Health Protection Agency, Centre for Emergency Preparedness and Response, Porton Down, Salisbury SP4 OJG, Wilts (United Kingdom); Rommelaere, Jean [Deutsches Krebsforschungszentrum Division F010, Im Neuenheimer Feld 242, D-69120 Heidelberg (Germany); Almendral, Jose M., E-mail: jmalmendral@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2012-10-10

    The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaic MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect.

  1. Essential role of the unordered VP2 n-terminal domain of the parvovirus MVM capsid in nuclear assembly and endosomal enlargement of the virion fivefold channel for cell entry

    International Nuclear Information System (INIS)

    Sánchez-Martínez, Cristina; Grueso, Esther; Carroll, Miles; Rommelaere, Jean; Almendral, José M.

    2012-01-01

    The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaic MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect.

  2. Explaining Why Early-Maturing Girls Are More Exposed to Sexual Harassment in Early Adolescence

    Science.gov (United States)

    Skoog, Therése; Bayram Özdemir, Sevgi

    2016-01-01

    In this study, we tested two competing explanations of the previously established link between early female puberty and sexual harassment in early adolescence. The sample included 680 seventh-grade Swedish girls (M[subscript age] = 13.40, SD = 0.53). Findings revealed that looking more sexually mature and being sexually active mediated the link…

  3. Early or Premature Menopause

    Science.gov (United States)

    ... email updates Enter email Submit Early or premature menopause Menopause that happens before age 40 is called ... What is the difference between early and premature menopause? Early or premature menopause happens when ovaries stop ...

  4. Early hospital discharge and early puerperal complications.

    Science.gov (United States)

    Ramírez-Villalobos, Dolores; Hernández-Garduño, Adolfo; Salinas, Aarón; González, Dolores; Walker, Dilys; Rojo-Herrera, Guadalupe; Hernández-Prado, Bernardo

    2009-01-01

    To evaluate the association between time of postpartum discharge and symptoms indicative of complications during the first postpartum week. Women with vaginal delivery at a Mexico City public hospital, without complications before the hospital discharge, were interviewed seven days after delivery. Time of postpartum discharge was classified as early (25 hours). The dependent variable was defined as the occurrence and severity of puerperal complication symptoms. Out of 303 women, 208 (68%) were discharged early. However, women with early discharge and satisfactory prenatal care had lower odds of presenting symptoms in early puerperium than women without early discharge and inadequate prenatal care (OR 0.36; 95% confidence intervals = 0.17-0.76). There was no association between early discharge and symptoms of complications during the first postpartum week; the odds of complications were lower for mothers with early discharge and satisfactory prenatal care.

  5. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes

    Science.gov (United States)

    van Manen, Henk-Jan; Kraan, Yvonne M.; Roos, Dirk; Otto, Cees

    2005-01-01

    Cellular imaging techniques based on vibrational spectroscopy have become powerful tools in cell biology because the molecular composition of subcellular compartments can be visualized without the need for labeling. Using high-resolution, nonresonant confocal Raman microscopy on individual cells, we demonstrate here that lipid bodies (LBs) rich in arachidonate as revealed by their Raman spectra associate with latex bead-containing phagosomes in neutrophilic granulocytes. This finding was corroborated in macrophages and in PLB-985 cells, which can be induced to differentiate into neutrophil-like cells, by selective staining of LBs and visualization by confocal fluorescence microscopy. We further show that the accumulation of LBs near phagosomes is mediated at least in part by the flavohemoprotein gp91phox (in which “phox” is phagocyte oxidase), because different LB distributions around phagocytosed latex beads were observed in WT and gp91phox-deficient PLB-985 cells. gp91phox, which accumulates in the phagosomal membrane, is the catalytic subunit of the leukocyte NADPH oxidase, a critical enzyme in the innate immune response. Finally, time-lapse fluorescence microscopy experiments on neutrophils revealed that the LB-phagosome association is transient, similar to the “kiss-and-run” behavior displayed by endosomes involved in phagosome maturation. Because arachidonic acid (AA) has been shown to be involved in NADPH oxidase activation and phagosome maturation in neutrophils and macrophages, respectively, the findings reported here suggest that LBs may provide a reservoir of AA for local activation of these essential leukocyte functions. PMID:16002471

  6. De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2016-04-01

    Full Text Available A fundamental step in cellular defense mechanisms is the recognition of “danger signals” made of conserved pathogen associated molecular patterns (PAMPs expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs. In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG to identify PRRs together with the network pathway of differentially expressed genes (DEGs that recognize salmonid alphavirus subtype 3 (SAV-3 infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs 3 and 8 together with RIG-I-like receptors (RLRs and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I, melanoma differentiation association 5 (MDA5 and laboratory of genetics and physiology 2 (LGP2. The study points to possible involvement of the tripartite motif containing 25 (TRIM25 and mitochondrial antiviral signaling protein (MAVS in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN regulatory factors (IRFs 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon.

  7. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry

    Science.gov (United States)

    Yang, Jing; McCormick, Mark A.; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K.; Li, Hao

    2015-01-01

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials (“aging factors”) through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms. PMID:26351681

  8. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

    Science.gov (United States)

    Yang, Jing; McCormick, Mark A; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K; Li, Hao

    2015-09-22

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.

  9. [Localized purpura revealing vascular prosthetic graft infection].

    Science.gov (United States)

    Boureau, A S; Lescalie, F; Cassagnau, E; Clairand, R; Connault, J

    2013-07-01

    Prosthetic graft infection after vascular reconstruction is a rare but serious complication. We report a case of infection occurring late after implantation of an iliofemoral prosthetic vascular graft. The Staphylococcus aureus infection was revealed by vascular purpura localized on the right leg 7 years after implantation of a vascular prosthesis. This case illustrates an uncommonly late clinical manifestation presenting as an acute infection 7 years after the primary operation. In this situation, the presentation differs from early infection, which generally occurs within the first four postoperative months. Diagnosis and treatment remain a difficult challenge because prosthetic graft infection is a potentially life-threatening complication. Morbidity and mortality rates are high. Here we detail specific aspects of the clinical and radiological presentation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Cerebral imaging revealing Alzheimer's disease

    International Nuclear Information System (INIS)

    2011-01-01

    Cerebral imaging is the only non-invasive means of examining the brain and is essential in studying Alzheimer's disease. As a tool for early diagnosis, evaluation and treatment monitoring, this technology is at the heart of the research being done to further improve its reliability and sensitivity. (authors)

  11. Early Childhood Systems: Transforming Early Learning

    Science.gov (United States)

    Kagan, Sharon Lynn, Ed.; Kauertz, Kristie, Ed.

    2012-01-01

    In this seminal volume, leading authorities strategize about how to create early childhood systems that transcend politics and economics to serve the needs of all young children. The authors offer different interpretations of the nature of early childhood systems, discuss the elements necessary to support their development, and examine how…

  12. Long-term Consequences of Early Parenthood

    DEFF Research Database (Denmark)

    Johansen, Eva Rye; Nielsen, Helena Skyt; Verner, Mette

    (and to lesser extent employment), as fathers appear to support the family, especially when early parenthood is combined with cohabitation with the mother and the child. Heterogeneous effects reveal that individuals with a more favorable socioeconomic background are affected more severely than......Having children at an early age is known to be associated with unfavorable economic outcomes, such as lower education, employment and earnings. In this paper, we study the long-term consequences of early parenthood for mothers and fathers. Our study is based on rich register-based data that......, importantly, merges all childbirths to the children’s mothers and fathers, allowing us to study the consequences of early parenthood for both parents. We perform a sibling fixed effects analysis in order to account for unobserved family attributes that are possibly correlated with early parenthood...

  13. Precursors of adolescent substance use from early childhood and early adolescence: testing a developmental cascade model.

    Science.gov (United States)

    Sitnick, Stephanie L; Shaw, Daniel S; Hyde, Luke W

    2014-02-01

    This study examined developmentally salient risk and protective factors of adolescent substance use assessed during early childhood and early adolescence using a sample of 310 low-income boys. Child problem behavior and proximal family risk and protective factors (i.e., parenting and maternal depression) during early childhood, as well as child and family factors and peer deviant behavior during adolescence, were explored as potential precursors to later substance use during adolescence using structural equation modeling. Results revealed that early childhood risk and protective factors (i.e., child externalizing problems, mothers' depressive symptomatology, and nurturant parenting) were indirectly related to substance use at the age of 17 via risk and protective factors during early and middle adolescence (i.e., parental knowledge and externalizing problems). The implications of these findings for early prevention and intervention are discussed.

  14. Revealed preference with limited consideration

    NARCIS (Netherlands)

    Demuynck, T.; Seel, C.

    2014-01-01

    We derive revealed preference tests for models where individuals use consideration sets to simplify their consumption problem. Our basic test provides necessary and sufficient conditions for consistency of observed choices with the existence of consideration set restrictions. The same conditions can

  15. Decision Making and Revealed Preference

    DEFF Research Database (Denmark)

    de la Rosa, Leonidas Enrique

    If our decision-making processes are to some extent shaped by evolutionary pressures and our environment is different from that to which we adapted, some of our choices will not be in our best interest. But revealed preference is the only tool that we have so far to conduct a normative analysis...

  16. Early discharge following birth

    DEFF Research Database (Denmark)

    Nilsson, Ingrid M. S.; Kronborg, Hanne; Knight, Christopher H.

    2017-01-01

    .26–0.48) and primiparous compared to multiparous had an OR of 0.22 (CI 0.17–0.29) for early discharge. Other predictors for early discharge were: no induction of labour, no epidural painkiller, bleeding less than 500 ml during delivery, higher gestational age, early expected discharge and positive breastfeeding experience...

  17. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    International Nuclear Information System (INIS)

    Hu, Dong; Wu, Jing; Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan; Xiao, Jian; Hu, Fengyu; Yang, Yabo; Zhang, Rongbo

    2015-01-01

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy

  18. The interaction properties of the human Rab GTPase family--comparative analysis reveals determinants of molecular binding selectivity.

    Directory of Open Access Journals (Sweden)

    Matthias Stein

    Full Text Available Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood.Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics.We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity.

  19. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dong, E-mail: austhudong@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wu, Jing, E-mail: wujing8008@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Hu, Fengyu; Yang, Yabo [Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Zhang, Rongbo, E-mail: lory456@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China)

    2015-05-29

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.

  20. Implementing Children's Rights in Early Education

    Science.gov (United States)

    Te One, Sarah

    2011-01-01

    Recent research (Te One, 2009) investigated perceptions of children's rights in a New Zealand early childhood care and education service (the Creche) for under-two-year-olds. Focus group interviews, interviews with teachers, observational field notes, photographs and a researcher's journal were used to generate data. Findings revealed that…

  1. [Postnatal diagnosis of gastric volvulus revealing congenital diaphragmatic hernia].

    Science.gov (United States)

    Aprahamian, A; Nouyrigat, V; Grévent, D; Hervieux, E; Chéron, G

    2017-05-01

    Postnatally diagnosed congenital diaphragmatic hernias (CDH) are rare and have a better prognosis than those diagnosed prenatally. Postnatal symptoms can be respiratory, digestive, or mixed. Gastric volvulus can reveal CDH. Symptoms are pain, abdominal distension, and/or vomiting. Upper gastrointestinal barium X-ray radiography provides the diagnosis. Prognosis is related to early surgical management in complicated forms with intestinal occlusion or sub-occlusion. We report on an infant who presented with vomiting, which revealed gastric volvulus associated with a CDH. Progression was favorable after surgical treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Natural course of early COPD

    Directory of Open Access Journals (Sweden)

    Rhee CK

    2017-02-01

    care for COPD in 2007, and this number increased to 179 in 2012. The total mean number of days used per person increased from 4.9 in 2007 to 7.8 in 2012. The total medical cost per person also increased from 248.8 US dollar (USD in 2007 to 780.6 USD in 2013. A multiple linear regression revealed that age, lower body mass index, lower FEV1 (%, and lower EQ-5D score were significantly associated with medical costs. Conclusion: Even in early COPD patients, some of them eventually progressed and utilized health care for COPD. Keywords: early COPD, KNHANES, NHI, HIRA, utilization, cost

  3. Ceres Revealed in a Grain of Salt

    Science.gov (United States)

    Zolensky, M. E.; Bodnar, R. J.; Fries, M.; Chan, Q. H.-S.; Kebukawa, Y.; Mikouchi, T.; Hagiya, K.; Komatsu, M.; Ohsumi, K.; Steele, A.

    2016-01-01

    Introduction: Zag and Monahans (1998) are H chondrite regolith breccias containing 4.5 giga-year-old halite crystals which contain abundant inclusions of aqueous fluids, solids and organics. These all originated on a cryo-volcanically-active C class asteroid, probably 1 Ceres; the halite was transported to the regolith of the H chondrite parent asteroid, potentially 6 Hebe. Detailed analysis of these solids will thus potentially reveal the mineralogy of Ceres. Mineralogy of solids in the Monahans Halite Solid grains are present in the halites, which were entrained within the mother brines during eruption, including material from the interior and surface of the erupting body. The solids include abundant, widely variable organics that could not have been significantly heated (which would have resulted in the loss of fluids from the halite). Our analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction, UPLC-FD/QToF-MS, C-XANES and TEM reveal that these trapped grains include macromolecular carbon (MMC) similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, phyllosilicates, magnetite, sulfides, metal, lepidocrocite, carbonates, diamond, apatite and zeolites. Conclusions: The halite in Monahans and Zag derive from a water and carbon-rich object that was cryo-volcanically active in the early solar system, probably Ceres. The Dawn spacecraft found that Ceres includes C chondrite materials. Our samples include both protolith and aqueously-altered samples of the body, permitting understanding of alteration conditions. Whatever the halite parent body, it was rich in a wide variety of organics and warm, liquid water at the solar system's dawn.

  4. Membrane localization and dynamics of geranylgeranylated Rab5 hypervariable region.

    Science.gov (United States)

    Edler, Eileen; Schulze, Eric; Stein, Matthias

    2017-08-01

    The small GTPase Rab5 is a key regulator of endosomal trafficking processes and a marker for the early endosome. The C-terminal hypervariable region (HVR) of Rab5 is post-translationally modified at residues Cys 212 and Cys 213 to accommodate two geranylgeranyl anchors (C20 carbon chain length) in order to associate Rab5 with the membrane. The structural role of the HVR regarding protein-early endosome membrane recruitment is not resolved due to its high degree of flexibility and lack of crystallographic information. Here, full-atomistic and coarse-grained molecular dynamics simulations of the truncated Rab5 HVR 206-215 in three model membranes of increasing complexity (pure phospholipid bilayer, ternary membrane with cholesterol, six-component early endosome) were performed. Specific electrostatic interactions between the HVR 206-215 Arg 209 residue and the phosphate group of the inositol ring of PI(3)P were detected. This shows that PI(3)P acts as a first contact site of protein recruitment to the early endosome. The free energy change of HVR 206-215 extraction from the bilayer was largest for the physiological negatively charged membrane. 5μs coarse-grained simulations revealed an active recruitment of PI(3)P to the HVR 206-215 supporting the formation of Rab5- and PI(3)P enriched signaling platforms. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Transparency masters for mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1980-01-01

    Transparency Masters for Mathematics Revealed focuses on master diagrams that can be used for transparencies for an overhead projector or duplicator masters for worksheets. The book offers information on a compilation of master diagrams prepared by John R. Stafford, Jr., audiovisual supervisor at the University of Missouri at Kansas City. Some of the transparencies are designed to be shown horizontally. The initial three masters are number lines and grids that can be used in a mathematics course, while the others are adaptations of text figures which are slightly altered in some instances. The

  6. Maternal Education, Early Child Care and the Reproduction of Advantage

    Science.gov (United States)

    Augustine, Jennifer March; Cavanagh, Shannon E.; Crosnoe, Robert

    2009-01-01

    The social and human capital that educational attainment provides women enables them to better navigate their children's passages through school. In this study, we examine a key mechanism in this intergenerational process: mothers' selection of early child care. Analyses of the NICHD Study of Early Child Care and Youth Development revealed that…

  7. Early Transcendental Analysis

    OpenAIRE

    Cowell, Simon; Poulin, Philippe

    2015-01-01

    In Early Transcendentals (The American Mathematical Monthly, Vol. 104, No 7) Steven Weintraub presents a rigorous justifcation of the "early transcendental" calculus textbook approach to the exponential and logarithmic functions. However, he uses tools such as term-by-term differentiation of infinite series. We present a rigorous treatment of the early transcendental approach suitable for a first course in analysis, using mainly the supremum property of the real numbers.

  8. Compartment-Specific Biosensors Reveal a Complementary Subcellular Distribution of Bioactive Furin and PC7

    Directory of Open Access Journals (Sweden)

    Pierpaolo Ginefra

    2018-02-01

    Full Text Available Furin trafficking, and that of related proprotein convertases (PCs, may regulate which substrates are accessible for endoproteolysis, but tools to directly test this hypothesis have been lacking. Here, we develop targeted biosensors that indicate Furin activity in endosomes is 10-fold less inhibited by decanoyl-RVKR-chloromethylketone and enriched >3-fold in endosomes compared to the trans-Golgi network (TGN. Endogenous PC7, which resists this inhibitor, was active in distinct vesicles. Only overexpressed PC7 activity reached the cell surface, endosomes, and the TGN. A PLC motif in the cytosolic tail of PC7 was dispensable for endosomal activity, but it was specifically required for TGN recycling and to rescue proActivin-A cleavage in Furin-depleted B16F1 melanoma cells. In sharp contrast, PC7 complemented Furin in cleaving Notch1 independently of PLC-mediated TGN access. Our study provides a proof in principle that compartment-specific biosensors can be used to gain insight into the regulation of PC trafficking and to map the tropism of PC-specific inhibitors.

  9. Communication Games Reveal Preparation Contextuality

    Science.gov (United States)

    Hameedi, Alley; Tavakoli, Armin; Marques, Breno; Bourennane, Mohamed

    2017-12-01

    A communication game consists of distributed parties attempting to jointly complete a task with restricted communication. Such games are useful tools for studying limitations of physical theories. A theory exhibits preparation contextuality whenever its predictions cannot be explained by a preparation noncontextual model. Here, we show that communication games performed in operational theories reveal the preparation contextuality of that theory. For statistics obtained in a particular family of communication games, we show a direct correspondence with correlations in spacelike separated events obeying the no-signaling principle. Using this, we prove that all mixed quantum states of any finite dimension are preparation contextual. We report on an experimental realization of a communication game involving three-level quantum systems from which we observe a strong violation of the constraints of preparation noncontextuality.

  10. The chemistry of plutonium revealed

    International Nuclear Information System (INIS)

    Connick, R.E.

    1990-01-01

    In 1941 one goal of the Manhattan Project was to unravel the chemistry of the synthetic element plutonium as rapidly as possible. Important insights were obtained from tracer experiments, but the full complexity of plutonium chemistry was not revealed until macroscopic amounts (milligrams) became available. Because processes for separation from fission products were aqueous solution based, such solution chemistry was emphasized, particularly precipitation and oxidation-reduction behavior. The latter turned out to be unusually intricate when it was discovered that two more oxidation states existed in aqueous solution than had previously been suspected. Further, it was found that an equilibrium was rapidly established among the four aqueous oxidation states while at the same time any three were not in equilibrium. These and other observations made while doing a crash study of a previously unknown element will be reported

  11. Plan competitions reveal entrepreneurial talent

    Energy Technology Data Exchange (ETDEWEB)

    Madison, Alison L.

    2011-05-15

    Monthly economic diversity column for Tri-City Herald business section. Excerpt below: There’s something to be said for gaining valuable real-world experience in a structured, nurturing environment. Take for instance learning to scuba dive in the comfort of my resort pool rather than immediately hanging out with sharks while I figure out little things like oxygen tanks and avoiding underwater panic attacks. Likewise, graduate students are getting some excellent, supportive real-world training through university business plan competitions. These competitions are places where smart minds, new technologies, months of preparation and coaching, and some healthy pre-presentation jitters collide to reveal not only solid new business ideas, but also some promising entrepreneurial talent. In fact, professionals from around our region descend upon college campuses every spring to judge these events, which help to bridge the gap between academics and the real technology and business-driven economy.

  12. Early Retirement Payoff

    Science.gov (United States)

    Fitzpatrick, Maria D.; Lovenheim, Michael F.

    2014-01-01

    As public budgets have grown tighter over the past decade, states and school districts have sought ways to control the growth of spending. One increasingly common strategy employed to rein in costs is to offer experienced teachers with high salaries financial incentives to retire early. Although early retirement incentive (ERI) programs have been…

  13. Early Modern Philosophical Systems

    NARCIS (Netherlands)

    L. van Bunge (Wiep)

    2014-01-01

    textabstractThe occurrence of an entry on early modern philosophical systems in an encyclopaedia of Neo-Latin studies is fraught with complications, if only on account of the gradual disappearance during the early modern period of Latin as the main vehicle of philosophical communication. What

  14. Early Intervention in Budapest.

    Science.gov (United States)

    Gallai, Maria; Katona, Ferenc; Balogh, Erzsebet; Schultheisz, Judit; Deveny, Anna; Borbely, Sjoukje

    2000-01-01

    This article presents five models of early intervention used in Budapest. Diagnostic and treatment methods used by the Pediatric Institute and the Conductive Education System are described, along with the Deveny Special Manual Technique and Gymnastic Method, the Gezenguz method and techniques used in the Early Developmental Center. (CR)

  15. The early universe

    International Nuclear Information System (INIS)

    Steigman, G.

    1989-01-01

    The author discusses the physics of the early universe: the production and survival of relics from the big bang. The author comments on relic WIMPs as the dark matter in the universe. The remainder of this discussion is devoted to a review of the status of the only predictions from the early evolution of the universe that are accessible to astronomical observation: primordial nucleosynthesis

  16. Early College High Schools

    Science.gov (United States)

    Dessoff, Alan

    2011-01-01

    For at-risk students who stand little chance of going to college, or even finishing high school, a growing number of districts have found a solution: Give them an early start in college while they still are in high school. The early college high school (ECHS) movement that began with funding from the Bill and Melinda Gates Foundation 10 years ago…

  17. Early tetrapod relationships revisited.

    Science.gov (United States)

    Ruta, Marcello; Coates, Michael I; Quicke, Donald L J

    2003-05-01

    In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relationships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differences between these trees concern: (1) the internal relationships of aïstopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria crassidisca and Pholiderpeton scut collapsed in a trichotomy with a clade formed by Anthracosaurus russelli and Pholiderpeton attheyi; (3) the internal relationships of derived dissorophoids, with four amphibamid species forming an unresolved node with a clade consisting of micromelerpetontids and branchiosaurids and a clade consisting of albanerpetontids plus basal crown-group lissamphibians; (4) the position of albenerpetontids and Eocaecilia micropoda, which form an unresolved node with a trichotomy subtending Karaurus sharovi, Valdotriton gracilis and Triadobatrachus massinoti; (5) the branching pattern of derived diplocaulid nectrideans, with Batrachiderpeton reticulatum and Diceratosaurus brevirostris collapsed in a trichotomy with a clade formed by Diplocaulus magnicornis and Diploceraspis burkei. The results of the original parsimony run--as well as those retrieved from several other treatments of the data set (e.g. exclusion of postcranial and lower jaw data; character reweighting; reverse weighting)--indicate a deep split of early tetrapods between lissamphibian- and amniote-related taxa. Colosteids, Crassigyrinus

  18. Hubble Images Reveal Jupiter's Auroras

    Science.gov (United States)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data

  19. Systematic and Engaging Early Literacy: Examining the Effects of Paraeducator Implemented Early Literacy Instruction

    Science.gov (United States)

    Bingham, Gary E.; Hall-Kenyon, Kendra M.; Culatta, Barbara

    2010-01-01

    This study examined the effect of explicit and engaging supplemental early literacy instruction on at-risk kindergarten children's literacy development. Sixty-three kindergarten-aged children who had been ranked in the lowest 20th percentile on basic literacy skills participated in this study (38 treatment). Results reveal that children who…

  20. A systematic High-Content Screening microscopy approach reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells

    NARCIS (Netherlands)

    Panarella, Angela; Bexiga, Mariana G; Galea, George; O' Neill, Elaine D; Salvati, Anna; Dawson, Kenneth A; Simpson, Jeremy C

    2016-01-01

    Synthetic nanoparticles are promising tools for imaging and drug delivery; however the molecular details of cellular internalization and trafficking await full characterization. Current knowledge suggests that following endocytosis most nanoparticles pass from endosomes to lysosomes. In order to

  1. Atypical manifestations of early syphilis

    Directory of Open Access Journals (Sweden)

    R V Koranne

    1990-01-01

    Full Text Available A study of 36 untreated patients with early syphilis revealed atypical variations namely; long incubation period of 101 days in I patient, more than 3 chancres in 1, undermined margin of the chancre along with tenderness in 1 and moderate to severe tenderness of the ulcers in 2 cases. In 3 patients there was no indurations of the ulcers. Three patients with primary syphilis had unilateral lymphadenitis, and in I case the lymph nodes were not only tender but showed tendency towardsmatingawell. Insecondarysyphilis, 11 out of 16 patients having condylomata lata had no other muco-cutaneous lesions. Concomitant presence of other venereal disease to account for the atypical manifestations was discounted- by appropriate laboratory tests, response to therapeutic agents and follow up.

  2. Early Option Exercise

    DEFF Research Database (Denmark)

    Heje Pedersen, Lasse; Jensen, Mads Vestergaard

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  3. Early Option Exercise

    DEFF Research Database (Denmark)

    Jensen, Mads Vestergaard; Heje Pedersen, Lasse

    2016-01-01

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  4. Early detection of psychosis

    DEFF Research Database (Denmark)

    Larsen, Tor Ketil; Melle, Ingrid; Auestad, B.

    2011-01-01

    Background During the last decades we have seen a new focus on early treatment of psychosis. Several reviews have shown that duration of untreated psychosis (DUP) is correlated to better outcome. However, it is still unknown whether early treatment will lead to a better long-term outcome....... This study reports the effects of reducing DUP on 5-year course and outcome. Method During 1997–2000 a total of 281 consecutive patients aged >17 years with first episode non-affective psychosis were recruited, of which 192 participated in the 5-year follow-up. A comprehensive early detection (ED) programme...... and cognitive factors and for global assessment of functioning for social functioning at 5-year follow-up. The ED group also had more contacts with friends. Regression analysis did not find that these differences could be explained by confounders. Conclusions Early treatment had positive effects on clinical...

  5. Early Head Start Evaluation

    Data.gov (United States)

    U.S. Department of Health & Human Services — Longitudinal information from an evaluation where children were randomly assigned to Early Head Start or community services as usual;direct assessments and...

  6. Guideline for Early Interventions

    National Research Council Canada - National Science Library

    Vries, de, Maaike

    2006-01-01

    .... During the last years, the demand for early interventions has been increasing. International literature has shown that the psychosocial effects of disaster and military deployment may last for years...

  7. Early Life Stages

    Science.gov (United States)

    Childhood should be viewed as a sequence of lifestages, from birth through infancy and adolescence. When assessing early life risks, consideration is given to risks resulting from fetal exposure via the pregnant mother, as well as postnatal exposures.

  8. Cancer treatment - early menopause

    Science.gov (United States)

    Premature menopause; Ovarian insufficiency - cancer ... Cancer treatments that can cause early menopause include: Surgery. Having both ovaries removed causes menopause to happen right away. If you are age 50 or younger, your provider may ...

  9. Early intervention in psychosis

    DEFF Research Database (Denmark)

    Csillag, Claudio; Nordentoft, Merete; Mizuno, Masafumi

    2017-01-01

    AIM: Early intervention in psychosis (EIP) is a well-established approach with the intention of early detection and treatment of psychotic disorders. Its clinical and economic benefits are well documented. This paper presents basic aspects of EIP services, discusses challenges to their implementa......AIM: Early intervention in psychosis (EIP) is a well-established approach with the intention of early detection and treatment of psychotic disorders. Its clinical and economic benefits are well documented. This paper presents basic aspects of EIP services, discusses challenges...... benefits alone is not enough to promote implementation, as economic arguments and political and social pressure have shown to be important elements in efforts to achieve implementation. CONCLUSIONS: Users' narratives, close collaboration with community organizations and support from policy-makers and known...

  10. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  11. Mercury's Early Geologic History

    Science.gov (United States)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  12. BAD-LAMP defines a subset of early endocytic organelles in subpopulations of cortical projection neurons.

    Science.gov (United States)

    David, Alexandre; Tiveron, Marie-Catherine; Defays, Axel; Beclin, Christophe; Camosseto, Voahirana; Gatti, Evelina; Cremer, Harold; Pierre, Philippe

    2007-01-15

    The brain-associated LAMP-like molecule (BAD-LAMP) is a new member of the family of lysosome associated membrane proteins (LAMPs). In contrast to other LAMPs, which show a widespread expression, BAD-LAMP expression in mice is confined to the postnatal brain and therein to neuronal subpopulations in layers II/III and V of the neocortex. Onset of expression strictly parallels cortical synaptogenesis. In cortical neurons, the protein is found in defined clustered vesicles, which accumulate along neurites where it localizes with phosphorylated epitopes of neurofilament H. In primary neurons, BAD-LAMP is endocytosed, but is not found in classical lysosomal/endosomal compartments. Modification of BAD-LAMP by addition of GFP revealed a cryptic lysosomal retention motif, suggesting that the cytoplasmic tail of BAD-LAMP is actively interacting with, or modified by, molecules that promote its sorting away from lysosomes. Analysis of BAD-LAMP endocytosis in transfected HeLa cells provided evidence that the protein recycles to the plasma membrane through a dynamin/AP2-dependent mechanism. Thus, BAD-LAMP is an unconventional LAMP-like molecule and defines a new endocytic compartment in specific subtypes of cortical projection neurons. The striking correlation between the appearance of BAD-LAMP and cortical synatogenesis points towards a physiological role of this vesicular determinant for neuronal function.

  13. Embracing early literacy indicators

    DEFF Research Database (Denmark)

    Broström, Stig; Hansen, Ole Henrik; Jensen, Anders Skriver

    2010-01-01

    Abstract til paper om early literacy indikatorer. Det paper abstractet er knyttet til var en del af et inviteret, selvorganiseret symposium som afrapporterede EASE-projektet (www.ease-eu.com) på OMEP's 26. verdenskongres.......Abstract til paper om early literacy indikatorer. Det paper abstractet er knyttet til var en del af et inviteret, selvorganiseret symposium som afrapporterede EASE-projektet (www.ease-eu.com) på OMEP's 26. verdenskongres....

  14. Early history of physics with accelerators

    International Nuclear Information System (INIS)

    Anderson, H.L.

    1982-01-01

    The early history of physics at accelerators is reviewed, with emphasis on three experiments which have had a profound influence on our veiw of the structure of matter: The Franck and Hertz experiment opening practical ways of studying nuclear disintegration, and the discovery of the del ++ isobar of the proton by Fermi and collaborators, revealing structure in the nucleon. Fermi's work is illustrated by pages from his notebooks

  15. Who Gets Early Tracheostomy?

    Science.gov (United States)

    Shaw, Joshua J.

    2015-01-01

    BACKGROUND: Although the benefits of early tracheostomy in patients dependent on ventilators are well established, the reasons for variation in time from intubation to tracheostomy remain unclear. We identified clinical and demographic disparities in time to tracheostomy. METHODS: We performed a level 3 retrospective prognostic study by querying the University HealthSystem Consortium (2007-2010) for adult patients receiving a tracheostomy after initial intubation. Time to tracheostomy was designated early ( 10 days). Cohorts were stratified by time to tracheostomy and compared using univariate tests of association and multivariable adjusted models. RESULTS: A total of 49,191 patients underwent tracheostomy after initial intubation: 42% early (n = 21,029) and 58% late (n = 28,162). On both univariate and multivariable analyses, women, blacks, Hispanics, and patients receiving Medicaid were less likely to receive an early tracheostomy. Patients in the early group also experienced lower rates of mortality (OR, 0.84; 95% CI, 0.79-0.88). CONCLUSIONS: Early tracheostomy was associated with increased survival. Yet, there were still significant disparities in time to tracheostomy according to sex, race, and type of insurance. Application of evidence-based algorithms for tracheostomy may reduce unequal treatment and improve overall mortality rates. Additional research into this apparent bias in referral/rendering of tracheostomy is needed. PMID:26313324

  16. Focus groups reveal consumer ambivalence.

    Science.gov (United States)

    1983-01-01

    According to qualitative research, Salvadoreans are ambivalent about the use of contraceptives. Since complete responsibility for management of the CSM project was accepted by the Association Demografica Salvadorena (ADS), the agency which operates the contraceptive social marketing project in El Salvador, in November 1980, the need for decisions in such areas as product price increases, introduction of new condom brands, promotion of the vaginal foaming tablet, and assessment of product sales performance had arisen. The ICSMP funded market research, completed during 1983, was intended to provide the data on which such decisions by ADS could be based. The qualitative research involved 8 focus groups, comprised of men and women, aged 18-45, contraceptive users and nonusers, from the middle and lower socioeconomic strata of the city of San Salvador and other suburban areas. In each group a moderator led discussion of family planning and probed respondents for specific attitudes, knowledge, and behavior regarding the use of contraceptives. To assess attitudes at a more emotional level, moderators asked respondents to "draw" their ideas on certain issues. A marked discrepancy was revealed between respondents' intellectual responses to the issues raised in group discussion, as opposed to their feelings expressed in the drawings. Intellectually, participants responded very positively to family planning practice, but when they were asked to draw their perceptions, ambivalent feelings emerged. Drawings of both the user and the nonuser convey primarily negative aspects for either choice. The user is tense and moody toward her children; the nonuser loses her attractiveness and "dies." Figures also show drawings of some of the attitudes of single and married male participants. 1 drawing shows an incomplete and a complete circle, symbolizing a sterilized man (incomplete) and a nonsterilized man (complete). Another picture depicts a chained man who has lost his freedom

  17. Redefining early gastric cancer.

    Science.gov (United States)

    Barreto, Savio G; Windsor, John A

    2016-01-01

    The problem is that current definitions of early gastric cancer allow the inclusion of regional lymph node metastases. The increasing use of endoscopic submucosal dissection to treat early gastric cancer is a concern because regional lymph nodes are not addressed. The aim of the study was thus to critically evaluate current evidence with regard to tumour-specific factors associated with lymph node metastases in "early gastric cancer" to develop a more precise definition and improve clinical management. A systematic and comprehensive search of major reference databases (MEDLINE, EMBASE, PubMed and the Cochrane Library) was undertaken using a combination of text words "early gastric cancer", "lymph node metastasis", "factors", "endoscopy", "surgery", "lymphadenectomy" "mucosa", "submucosa", "lymphovascular invasion", "differentiated", "undifferentiated" and "ulcer". All available publications that described tumour-related factors associated with lymph node metastases in early gastric cancer were included. The initial search yielded 1494 studies, of which 42 studies were included in the final analysis. Over time, the definition of early gastric cancer has broadened and the indications for endoscopic treatment have widened. The mean frequency of lymph node metastases increased on the basis of depth of infiltration (mucosa 6% vs. submucosa 28%), presence of lymphovascular invasion (absence 9% vs. presence 53%), tumour differentiation (differentiated 13% vs. undifferentiated 34%) and macroscopic type (elevated 13% vs. flat 26%) and tumour diameter (≤2 cm 8% vs. >2 cm 25%). There is a need to re-examine the diagnosis and staging of early gastric cancer to ensure that patients with one or more identifiable risk factor for lymph node metastases are not denied appropriate chemotherapy and surgical resection.

  18. Early Dementia Screening

    Directory of Open Access Journals (Sweden)

    Peter K. Panegyres

    2016-01-01

    Full Text Available As the population of the world increases, there will be larger numbers of people with dementia and an emerging need for prompt diagnosis and treatment. Early dementia screening is the process by which a patient who might be in the prodromal phases of a dementing illness is determined as having, or not having, the hallmarks of a neurodegenerative condition. The concepts of mild cognitive impairment, or mild neurocognitive disorder, are useful in analyzing the patient in the prodromal phase of a dementing disease; however, the transformation to dementia may be as low as 10% per annum. The search for early dementia requires a comprehensive clinical evaluation, cognitive assessment, determination of functional status, corroborative history and imaging (including MRI, FDG-PET and maybe amyloid PET, cerebrospinal fluid (CSF examination assaying Aβ1–42, T-τ and P-τ might also be helpful. Primary care physicians are fundamental in the screening process and are vital in initiating specialist investigation and treatment. Early dementia screening is especially important in an age where there is a search for disease modifying therapies, where there is mounting evidence that treatment, if given early, might influence the natural history—hence the need for cost-effective screening measures for early dementia.

  19. Early cosmology constrained

    Energy Technology Data Exchange (ETDEWEB)

    Verde, Licia; Jimenez, Raul [Institute of Cosmos Sciences, University of Barcelona, IEEC-UB, Martí Franquès, 1, E08028 Barcelona (Spain); Bellini, Emilio [University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Pigozzo, Cassio [Instituto de Física, Universidade Federal da Bahia, Salvador, BA (Brazil); Heavens, Alan F., E-mail: liciaverde@icc.ub.edu, E-mail: emilio.bellini@physics.ox.ac.uk, E-mail: cpigozzo@ufba.br, E-mail: a.heavens@imperial.ac.uk, E-mail: raul.jimenez@icc.ub.edu [Imperial Centre for Inference and Cosmology (ICIC), Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2017-04-01

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter Ω{sub MR} < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < N {sub eff} < 3.2 when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is r {sub s} = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to r {sub s} = 150 ± 5 Mpc.

  20. Revealing conceptual understanding of international business

    NARCIS (Netherlands)

    Sue Ashley; Dr. Harmen Schaap; Prof.Dr. Elly de Bruijn

    2017-01-01

    This study aims to identify an adequate approach for revealing conceptual understanding in higher professional education. Revealing students’ conceptual understanding is an important step towards developing effective curricula, assessment and aligned teaching strategies to enhance conceptual

  1. Puerto Rico Revealed Preference Survey Data 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Revealed preference models provide insights into recreational angler behavior and the economic value of recreational fishing trips. Revealed preference data is...

  2. Obscure pulmonary masses: bronchial impaction revealed by CT

    International Nuclear Information System (INIS)

    Pugatch, R.D.; Gale, M.E.

    1983-01-01

    Dilated bronchi impacted with mucus or tumor are recognized on standard chest radiographs because they are surrounded by aerated pulmonary parenchyma. When imaged in different projections, these lesions produce a variety of appearances that are generally familiar. This report characterizes less familiar computed tomographic (CT) findings in eight patients with pathologic bronchial distension of congenital, neoplastic, or infectious etiologies and correlates them with chest films. In seven patients, CT readily revealed dilated bronchi and/or regional lung hypodensity. In four of these cases, CT led to the initial suspicion of dilated bronchi. CT should be used early in the evaluation of atypical pulmonary mass lesions or to confirm suspected bronchial impaction because of the high probability it will reveal diagnostic features

  3. Looking and touching: what extant approaches reveal about the structure of early word knowledge.

    Science.gov (United States)

    Hendrickson, Kristi; Mitsven, Samantha; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret

    2015-09-01

    The goal of the current study is to assess the temporal dynamics of vision and action to evaluate the underlying word representations that guide infants' responses. Sixteen-month-old infants participated in a two-alternative forced-choice word-picture matching task. We conducted a moment-by-moment analysis of looking and reaching behaviors as they occurred in tandem to assess the speed with which a prompted word was processed (visual reaction time) as a function of the type of haptic response: Target, Distractor, or No Touch. Visual reaction times (visual RTs) were significantly slower during No Touches compared to Distractor and Target Touches, which were statistically indistinguishable. The finding that visual RTs were significantly faster during Distractor Touches compared to No Touches suggests that incorrect and absent haptic responses appear to index distinct knowledge states: incorrect responses are associated with partial knowledge whereas absent responses appear to reflect a true failure to map lexical items to their target referents. Further, we found that those children who were faster at processing words were also those children who exhibited better haptic performance. This research provides a methodological clarification on knowledge measured by the visual and haptic modalities and new evidence for a continuum of word knowledge in the second year of life. © 2014 The Authors Developmental Science Published by John Wiley & Sons Ltd.

  4. Phylogenetic analysis of the Neks reveals early diversification of ciliary-cell cycle kinases.

    Directory of Open Access Journals (Sweden)

    Jeremy D K Parker

    2007-10-01

    Full Text Available NIMA-related kinases (Neks have been studied in diverse eukaryotes, including the fungus Aspergillus and the ciliate Tetrahymena. In the former, a single Nek plays an essential role in cell cycle regulation; in the latter, which has more than 30 Neks in its genome, multiple Neks regulate ciliary length. Mammalian genomes encode an intermediate number of Neks, several of which are reported to play roles in cell cycle regulation and/or localize to centrosomes. Previously, we reported that organisms with cilia typically have more Neks than organisms without cilia, but were unable to establish the evolutionary history of the gene family.We have performed a large-scale analysis of the Nek family using Bayesian techniques, including tests of alternate topologies. We find that the Nek family had already expanded in the last common ancestor of eukaryotes, a ciliated cell which likely expressed at least five Neks. We suggest that Neks played an important role in the common ancestor in regulating cilia, centrioles, and centrosomes with respect to mitotic entry, and that this role continues today in organisms with cilia. Organisms that lack cilia generally show a reduction in the number of Nek clades represented, sometimes associated with lineage specific expansion of a single clade, as has occurred in the plants.This is the first rigorous phylogenetic analysis of a kinase family across a broad array of phyla. Our findings provide a coherent framework for the study of Neks and their roles in coordinating cilia and cell cycle progression.

  5. Helium-3 in Milky Way Reveals Abundance of Matter in Early Universe

    Science.gov (United States)

    2002-01-01

    Astronomers using the National Science Foundation's 140 Foot Radio Telescope in Green Bank, West Virginia, were able to infer the amount of matter created by the Big Bang, and confirmed that it accounts for only a small portion of the effects of gravity observed in the Universe. The scientists were able to make these conclusions by determining the abundance of the rare element helium-3 (helium with only one neutron and two protons in its nucleus) in the Milky Way Galaxy. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "Moments after the Big Bang, protons and neutrons began to combine to form helium-3 and other basic elements," said Robert Rood of the University of Virginia. "By accurately measuring the abundance of this primordial element in our Galaxy today, we were able infer just how much matter was created when the Universe was only a few minutes old." Rood and his colleagues, Thomas Bania from Boston University and Dana Balser from the National Radio Astronomy Observatory (NRAO), report their findings in the January 3 edition of the scientific journal Nature. Rood began searching for helium-3 in the Milky Way Galaxy in 1978. At that time, scientists believed that stars like our Sun synthesized helium-3 in their nuclear furnaces. Surprisingly, Rood's observations indicated that there was far less of this element in the Galaxy than the current models predicted. "If stars were indeed producing helium-3, as scientists believed, then we should have detected this element in much greater concentrations," he said. This unexpected discovery prompted Rood and his colleagues to broaden their search, and to look throughout the Milky Way for signs of stellar production of helium-3. Over the course of two decades, the researchers discovered that regardless of where they looked -- whether in the areas of sparse star formation like the outer edges of the Galaxy, or in areas of intense star formation near center of the Galaxy -- the relative abundance of helium-3 remained constant. By concurrently measuring the amount of hydrogen (also created by the Big Bang) in the same areas, the scientists were able to determine the relative abundance of helium-3. "Since stellar processes appear to have little or no impact on the amount of helium-3 in the Galaxy, we were able to deduce two very important things," said Bania. "First, since our current models predict stellar production of helium-3, then we will need to rethink our understanding of the internal workings of stars like our Sun. Second, since helium-3 has not been created or destroyed in our Galaxy in any appreciable amounts, then what we detected is most likely equal to the abundance of primordial helium-3 created by the Big Bang." The scientists were able to use this discovery to calculate how much "normal" matter was created during the Big Bang. (Normal matter is anything made of baryons, subatomic particles that include neutrons and protons.) The researchers made these calculations by taking what they know of the composition of the Universe today, and essentially running time in reverse. In this case, the ratio of helium-3 to hydrogen gives the ratio of baryons to photons (the density of radiation) just after the Big Bang. By using the rate of expansion of the Universe, given by the Hubble Constant, the scientists could then infer just how much normal matter was produced during the Big Bang. "Our findings for helium-3 in fact support other studies that also constrain the amount of matter in the Universe," said Balser. "Taken together, these studies show that the matter that makes up stars, planets, and the visible Universe can only account for a small fraction of what we observe as the effects of gravity in the Universe." Dark matter, which can be both baryonic (dead stars, rocks, etc.) and non-baryonic, and other as-yet-unidentified forces appear to be the primary sources of the gravity that holds galaxies, and the larger structures of the Universe, together. "The fact that most of the matter in the Universe is non-baryonic, that is to say not made of any particle we've ever seen on Earth, is a very exciting concept," commented Rood. The astronomers conducted their research using measurements at a frequency of 8.665 GHz (3.46 cm), which is emitted naturally by ionized helium-3. The 140 Foot Radio Telescope at the NRAO in Green Bank now is decommissioned after a long and highly productive career. "Though the 140 Foot Telescope enabled us to make remarkable observations," commented Rood, "we anticipate that the new Robert C. Byrd Green Bank Telescope will greatly increase our ability to continue this research." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  6. Early history of European domestic cattle as revealed by ancient DNA.

    Science.gov (United States)

    Bollongino, R; Edwards, C J; Alt, K W; Burger, J; Bradley, D G

    2006-03-22

    We present an extensive ancient DNA analysis of mainly Neolithic cattle bones sampled from archaeological sites along the route of Neolithic expansion, from Turkey to North-Central Europe and Britain. We place this first reasonable population sample of Neolithic cattle mitochondrial DNA sequence diversity in context to illustrate the continuity of haplotype variation patterns from the first European domestic cattle to the present. Interestingly, the dominant Central European pattern, a starburst phylogeny around the modal sequence, T3, has a Neolithic origin, and the reduced diversity within this cluster in the ancient samples accords with their shorter history of post-domestic accumulation of mutation.

  7. Event-related potentials reveal early attention bias for negative, unexpected behavior

    OpenAIRE

    Jerónimo, R.; Volpert, H. I.; Bartholow, B. D.

    2017-01-01

    WOS:000395098000012 (Nº de Acesso Web of Science) Numerous studies have documented that expectancy-violating (EV) behavior (i.e., behavior that violates existing person impressions) elicits more effortful cognitive processing compared to expectancy-consistent (EC) behavior. Some studies also have shown that this effect is modulated by the valence of behavior, though this finding is inconsistent with some extant models of expectancy processes. The current research investigated whether the v...

  8. A Window to the Past: What an Essay Contest Reveals about Early American Education

    Science.gov (United States)

    Justice, Benjamin

    2015-01-01

    In 1795 America's premier scholarly association, the American Philosophical Society (APS), posed the following question: [Write] an essay on a system of liberal education, and literary instruction, adapted to the genius of the government, and best calculated to promote the general welfare of the United States; comprehending, also, a plan for…

  9. Combining tract- and atlas-based analysis reveals microstructural abnormalities in early Tourette syndrome children.

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Rekik, Islem; Zhang, Jishui; Zhang, Yue; Tian, Hongwei; Peng, Yun; He, Huiguang

    2016-05-01

    Tourette syndrome (TS) is a neurological disorder that causes uncontrolled repetitive motor and vocal tics in children. Examining the neural basis of TS churned out different research studies that advanced our understanding of the brain pathways involved in its development. Particularly, growing evidence points to abnormalities within the fronto-striato-thalamic pathways. In this study, we combined Tract-Based Spatial Statistics (TBSS) and Atlas-based regions of interest (ROI) analysis approach, to investigate the microstructural diffusion changes in both deep and superficial white matter (SWM) in TS children. We then characterized the altered microstructure of white matter in 27 TS children in comparison with 27 age- and gender-matched healthy controls. We found that fractional anisotropy (FA) decreases and radial diffusivity (RD) increases in deep white matter (DWM) tracts in cortico-striato-thalamo-cortical (CSTC) circuit as well as SWM. Furthermore, we found that lower FA values and higher RD values in white matter regions are correlated with more severe tics, but not tics duration. Besides, we also found both axial diffusivity and mean diffusivity increase using Atlas-based ROI analysis. Our work may suggest that microstructural diffusion changes in white matter is not only restricted to the gray matter of CSTC circuit but also affects SWM within the primary motor and somatosensory cortex, commissural and association fibers. Hum Brain Mapp 37:1903-1919, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.