WorldWideScience

Sample records for early activated pathways

  1. Inhibition of the adrenomedullin/nitric oxide signaling pathway in early diabetic retinopathy.

    Science.gov (United States)

    Blom, Jan J; Giove, Thomas J; Favazza, Tara L; Akula, James D; Eldred, William D

    2011-06-01

    The nitric oxide (NO) signaling pathway is integrally involved in visual processing and changes in the NO pathway are measurable in eyes of diabetic patients. The small peptide adrenomedullin (ADM) can activate a signaling pathway to increase the enzyme activity of neuronal nitric oxide synthase (nNOS). ADM levels are elevated in eyes of diabetic patients and therefore, ADM may play a role in the pathology of diabetic retinopathy. The goal of this research was to test the effects of inhibiting the ADM/NO signaling pathway in early diabetic retinopathy. Inhibition of this pathway decreased NO production in high-glucose retinal cultures. Treating diabetic mice with the PKC β inhibitor ruboxistaurin for 5 weeks lowered ADM mRNA levels and ADM-like immunoreactivity and preserved retinal function as assessed by electroretinography. The results of this study indicate that inhibiting the ADM/NO signaling pathway prevents neuronal pathology and functional losses in early diabetic retinopathy.

  2. Triple DMARD treatment in early rheumatoid arthritis modulates synovial T cell activation and plasmablast/plasma cell differentiation pathways.

    Science.gov (United States)

    Walsh, Alice M; Wechalekar, Mihir D; Guo, Yanxia; Yin, Xuefeng; Weedon, Helen; Proudman, Susanna M; Smith, Malcolm D; Nagpal, Sunil

    2017-01-01

    This study sought to investigate the genome-wide transcriptional effects of a combination of disease modifying anti-rheumatic drugs (tDMARD; methotrexate, sulfasalazine and hydroxychloroquine) in synovial tissues obtained from early rheumatoid arthritis (RA) patients. While combination DMARD strategies have been investigated for clinical efficacy, very little data exists on the potential molecular mechanism of action. We hypothesized that tDMARD would impact multiple biological pathways, but the specific pathways were unknown. Paired synovial biopsy samples from early RA patients before and after 6 months of tDMARD therapy were collected by arthroscopy (n = 19). These biopsies as well as those from subjects with normal synovium (n = 28) were profiled by total RNA sequencing. Large differences in gene expression between RA and control biopsies (over 5000 genes) were identified. Despite clinical efficacy, the expression of a restricted set of less than 300 genes was reversed after 6 months of treatment. Many genes remained elevated, even in patients who achieved low disease activity. Interestingly, tDMARD downregulated genes included those involved in T cell activation and signaling and plasmablast/plasma cell differentiation and function. We have identified transcriptomic signatures that characterize synovial tissue from RA patients with early disease. Analysis after 6 months of tDMARD treatment highlight consistent alterations in expression of genes related to T cell activation and plasmablast/plasma cell differentiation. These results provide novel insight into the biology of early RA and the mechanism of tDMARD action and may help identify novel drug targets to improve rates of treatment-induced disease remission.

  3. AKT delays the early-activated apoptotic pathway in UVB-irradiated keratinocytes via BAD translocation.

    Science.gov (United States)

    Claerhout, Sofie; Decraene, David; Van Laethem, An; Van Kelst, Sofie; Agostinis, Patrizia; Garmyn, Marjan

    2007-02-01

    Upon irradiation with a high dose of UVB, keratinocytes undergo apoptosis as a protective mechanism. In previous work, we demonstrated the existence of an early-activated UVB-induced apoptotic pathway in growth factor-depleted human keratinocytes, which can be substantially delayed by the exclusive supplementation of IGF-1. We now show that in human keratinocytes, IGF-1 inhibits the onset of UVB-triggered apoptosis through a transcriptional independent, AKT-mediated mechanism, involving BAD serine 136 phosphorylation. Our results show that the early UVB-induced apoptosis in growth factor-depleted human keratinocytes is exclusively triggered through the mitochondrial pathway. It is accompanied by BAX translocation, cytochrome c release, and procaspase-9 cleavage, but not by procaspase-8 or BID cleavage. In human keratinocytes, IGF-1 supplementation inhibits these events in a transcription-independent manner. Both IGF-1 supplementation and the transduction of a membrane-targeted form of AKT result in a shift of the BH3-only protein BAD from the mitochondria to the cytoplasm, paralleled by an increase of AKT-specific Ser136 phospho-BAD bound to 14-3-3zeta protein. These data indicate that AKT-induced BAD phosphorylation and its subsequent cytoplasmic sequestration by 14-3-3zeta is a major mechanism responsible for the postponement of UVB-induced apoptosis in human keratinocytes.

  4. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway.

    Science.gov (United States)

    Kambe, Taiho; Matsunaga, Mayu; Takeda, Taka-Aki

    2017-10-19

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.

  5. Neurotensin receptor 1 gene activation by the Tcf/beta-catenin pathway is an early event in human colonic adenomas.

    Science.gov (United States)

    Souazé, Frédérique; Viardot-Foucault, Véronique; Roullet, Nicolas; Toy-Miou-Leong, Mireille; Gompel, Anne; Bruyneel, Erik; Comperat, Eva; Faux, Maree C; Mareel, Marc; Rostène, William; Fléjou, Jean-François; Gespach, Christian; Forgez, Patricia

    2006-04-01

    Alterations in the Wnt/APC (adenomatous polyposis coli) signalling pathway, resulting in beta-catenin/T cell factor (Tcf)-dependent transcriptional gene activation, are frequently detected in familial and sporadic colon cancers. The neuropeptide neurotensin (NT) is widely distributed in the gastrointestinal tract. Its proliferative and survival effects are mediated by a G-protein coupled receptor, the NT1 receptor. NT1 receptor is not expressed in normal colon epithelial cells, but is over expressed in a number of cancer cells and tissues suggesting a link to the outgrowth of human colon cancer. Our results demonstrate that the upregulation of NT1 receptor occurring in colon cancer is the result of Wnt/APC signalling pathway activation. We first established the functionality of the Tcf response element within the NT1 receptor promoter. Consequently, we observed the activation of NT1 receptor gene by agents causing beta-catenin cytosolic accumulation, as well as a strong decline of endogenous receptor when wt-APC was restored. At the cellular level, the re-establishment of wt-APC phenotype resulted in the impaired functionality of NT1 receptor, like the breakdown in NT-induced intracellular calcium mobilization and the loss of NT pro-invasive effect. We corroborated the Wnt/APC signalling pathway on the NT1 receptor promoter activation with human colon carcinogenesis, and showed that NT1 receptor gene activation was perfectly correlated with nuclear or cytoplasmic beta-catenin localization while NT1 receptor was absent when beta-catenin was localized at the cell-cell junction in early adenomas of patients with familial adenomatous polyposis, hereditary non-polyposis colorectal cancer and loss of heterozygosity tumours. In this report we establish a novel link in vitro between the Tcf/beta-catenin pathway and NT1 receptor promoter activation.

  6. Heritable temperament pathways to early callous–unemotional behaviour

    Science.gov (United States)

    Waller, Rebecca; Trentacosta, Christopher J.; Shaw, Daniel S.; Neiderhiser, Jenae M.; Ganiban, Jody M.; Reiss, David; Leve, Leslie D.; Hyde, Luke W.

    2016-01-01

    Background Early callous–unemotional behaviours identify children at risk for antisocial behaviour. Recent work suggests that the high heritability of callous–unemotional behaviours is qualified by interactions with positive parenting. Aims To examine whether heritable temperament dimensions of fearlessness and low affiliative behaviour are associated with early callous–unemotional behaviours and whether parenting moderates these associations. Method Using an adoption sample (n = 561), we examined pathways from biological mother self-reported fearlessness and affiliative behaviour to child callous–unemotional behaviours via observed child fearlessness and affiliative behaviour, and whether adoptive parent observed positive parenting moderated pathways. Results Biological mother fearlessness predicted child callous–unemotional behaviours via earlier child fearlessness. Biological mother low affiliative behaviour predicted child callous–unemotional behaviours, although not via child affiliative behaviours. Adoptive mother positive parenting moderated the fearlessness to callous–unemotional behaviour pathway. Conclusions Heritable fearlessness and low interpersonal affiliation traits contribute to the development of callous–unemotional behaviours. Positive parenting can buffer these risky pathways. PMID:27765772

  7. Blocking TGF-β Signaling Pathway Preserves Mitochondrial Proteostasis and Reduces Early Activation of PDGFRβ+ Pericytes in Aristolochic Acid Induced Acute Kidney Injury in Wistar Male Rats.

    Directory of Open Access Journals (Sweden)

    Agnieszka A Pozdzik

    Full Text Available The platelet-derived growth factor receptor β (PDGFRβ+ perivascular cell activation becomes increasingly recognized as a main source of scar-associated kidney myofibroblasts and recently emerged as a new cellular therapeutic target.In this regard, we first confirmed the presence of PDGFRβ+ perivascular cells in a human case of end-stage aristolochic acid nephropathy (AAN and thereafter we focused on the early fibrosis events of transforming growth factor β (TGFβ inhibition in a rat model of AAN.Neutralizing anti-TGFβ antibody (1D11 and its control isotype (13C4 were administered (5 mg/kg, i.p. at Days -1, 0, 2 and 4; AA (15 mg/kg, sc was injected daily.At Day 5, 1D11 significantly suppressed p-Smad2/3 signaling pathway improving renal function impairment, reduced the score of acute tubular necrosis, peritubular capillaritis, interstitial inflammation and neoangiogenesis. 1D11 markedly decreased interstitial edema, disruption of tubular basement membrane loss of brush border, cytoplasmic edema and organelle ultrastructure alterations (mitochondrial disruption and endoplasmic reticulum edema in proximal tubular epithelial cells. Moreover, 1D11 significantly inhibited p-PERK activation and attenuated dysregulation of unfolded protein response (UPR pathways, endoplasmic reticulum and mitochondrial proteostasis in vivo and in vitro.The early inhibition of p-Smad2/3 signaling pathway improved acute renal function impairment, partially prevented epithelial-endothelial axis activation by maintaining PTEC proteostasis and reduced early PDGFRβ+ pericytes-derived myofibroblasts accumulation.

  8. Heritable and Nonheritable Pathways to Early Callous-Unemotional Behaviors.

    Science.gov (United States)

    Hyde, Luke W; Waller, Rebecca; Trentacosta, Christopher J; Shaw, Daniel S; Neiderhiser, Jenae M; Ganiban, Jody M; Reiss, David; Leve, Leslie D

    2016-09-01

    Callous-unemotional behaviors in early childhood signal higher risk for trajectories of antisocial behavior and callous-unemotional traits that culminate in later diagnoses of conduct disorder, antisocial personality disorder, and psychopathy. Studies demonstrate high heritability of callous-unemotional traits, but little research has examined specific heritable pathways to early callous-unemotional behaviors. Studies also indicate that positive parenting protects against the development of callous-unemotional traits, but genetically informed designs have not been used to confirm that these relationships are not the product of gene-environment correlations. In a sample of adopted children and their biological and adoptive mothers, the authors tested novel heritable and nonheritable pathways to preschool callous-unemotional behaviors. In an adoption cohort of 561 families, history of severe antisocial behavior assessed in biological mothers and observations of adoptive mother positive reinforcement at 18 months were examined as predictors of callous-unemotional behaviors at 27 months. Despite limited or no contact with offspring, biological mother antisocial behavior predicted early callous-unemotional behaviors. Adoptive mother positive reinforcement protected against early callous-unemotional behaviors. High levels of adoptive mother positive reinforcement buffered the effects of heritable risk for callous-unemotional behaviors posed by biological mother antisocial behavior. The findings elucidate heritable and nonheritable pathways to early callous-unemotional behaviors. The results provide a specific heritable pathway to callous-unemotional behaviors and compelling evidence that parenting is an important nonheritable factor in the development of callous-unemotional behaviors. The finding that positive reinforcement buffered heritable risk for callous-unemotional behaviors has important translational implications for the prevention of trajectories to serious

  9. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    Science.gov (United States)

    Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung

    2016-01-01

    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032

  10. Overexpression of the transcription factor Sp1 activates the OAS-RNAse L-RIG-I pathway.

    Directory of Open Access Journals (Sweden)

    Valéryane Dupuis-Maurin

    Full Text Available Deregulated expression of oncogenes or transcription factors such as specificity protein 1 (Sp1 is observed in many human cancers and plays a role in tumor maintenance. Paradoxically in untransformed cells, Sp1 overexpression induces late apoptosis but the early intrinsic response is poorly characterized. In the present work, we studied increased Sp1 level consequences in untransformed cells and showed that it turns on an early innate immune transcriptome. Sp1 overexpression does not activate known cellular stress pathways such as DNA damage response or endoplasmic reticulum stress, but induces the activation of the OAS-RNase L pathway and the generation of small self-RNAs, leading to the upregulation of genes of the antiviral RIG-I pathway at the transcriptional and translational levels. Finally, Sp1-induced intrinsic innate immune response leads to the production of the chemokine CXCL4 and to the recruitment of inflammatory cells in vitro and in vivo. Altogether our results showed that increased Sp1 level in untransformed cells constitutes a novel danger signal sensed by the OAS-RNase L axis leading to the activation of the RIG-I pathway. These results suggested that the OAS-RNase L-RIG-I pathway may be activated in sterile condition in absence of pathogen.

  11. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.

    Science.gov (United States)

    Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D

    2017-04-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Raquel Rodrigues-Diez

    2014-01-01

    Full Text Available Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β. Epithelial mesenchymal transition (EMT is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2 with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription. The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.

  13. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathways activated by microorg...anisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  14. Pathways of early fatherhood, marriage, and employment: a latent class growth analysis.

    Science.gov (United States)

    Dariotis, Jacinda K; Pleck, Joseph H; Astone, Nan M; Sonenstein, Freya L

    2011-05-01

    In the National Longitudinal Survey of Youth 1979 (NLSY79), young fathers include heterogeneous subgroups with varying early life pathways in terms of fatherhood timing, the timing of first marriage, and holding full-time employment. Using latent class growth analysis with 10 observations between ages 18 and 37, we derived five latent classes with median ages of first fatherhood below the cohort median (26.4), constituting distinct early fatherhood pathways representing 32.4% of NLSY men: (A) Young Married Fathers, (B) Teen Married Fathers, (C) Young Underemployed Married Fathers, (D) Young Underemployed Single Fathers, and (E) Young Later-Marrying Fathers. A sixth latent class of men who become fathers around the cohort median, following full-time employment and marriage (On-Time On-Sequence Fathers), is the comparison group. With sociodemographic background controlled, all early fatherhood pathways show disadvantage in at least some later-life circumstances (earnings, educational attainment, marital status, and incarceration). The extent of disadvantage is greater when early fatherhood occurs at relatively younger ages (before age 20), occurs outside marriage, or occurs outside full-time employment. The relative disadvantage associated with early fatherhood, unlike early motherhood, increases over the life course.

  15. Ethnic variations in pathways into early intervention services for psychosis.

    Science.gov (United States)

    Ghali, Sharif; Fisher, Helen L; Joyce, John; Major, Barnaby; Hobbs, Lorna; Soni, Sujata; Chisholm, Brock; Rahaman, Nikola; Papada, Peggy; Lawrence, Jo; Bloy, Sally; Marlowe, Karl; Aitchison, Katherine J; Power, Paddy; Johnson, Sonia

    2013-04-01

    Ethnic variations have previously been identified in the duration of untreated psychosis (DUP) and pathways into psychiatric services. These have not been examined in the context of early intervention services, which may alter these trajectories. To explore ethnic differences in the nature and duration of pathways into early intervention services. In a naturalistic cohort study, data were collected for 1024 individuals with psychotic disorders accepted for case management by eight London early intervention services. Duration of untreated psychosis was prolonged in the White British group compared with most other ethnic groups. White British individuals were more likely to make contact with their general practitioner and less likely to be seen within emergency medical services. All Black patient groups were more likely than their White British counterparts to experience involvement of criminal justice agencies. Variations continue to exist in how and when individuals from different ethnic groups access early intervention services. These may account for disparities in DUP.

  16. T-cell activation and early gene response in dogs.

    Directory of Open Access Journals (Sweden)

    Sally-Anne Mortlock

    Full Text Available T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR, and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA (5μg/ml, including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2, early growth response 1 (EGR1, growth arrest and DNA damage-inducible gene (GADD45B, phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS, early growth response 2 (EGR2, hemogen (HEMGN, polo-like kinase 2 (PLK2 and polo-like kinase 3 (PLK3. Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in

  17. Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice.

    Science.gov (United States)

    Shen, Zhenyu; Wang, Yu; Su, Zhenhui; Kou, Ruirui; Xie, Keqin; Song, Fuyong

    2018-02-25

    Acetaminophen (APAP) overdose can cause severe liver failure even death. Nearly half of drug-induced liver injury is attributed to APAP in the US and many European countries. Oxidative stress has been validated as a critical event involved in APAP-induced liver failure. p62/SQSTM1, a selective autophagy adaptor protein, is reported to regulate Nrf2-ARE antioxidant pathway in response to oxidative stress. However, the exact role of p62-keap1-Nrf2 antioxidant pathway in APAP-induced hepatotoxicity remains unknown. In the present study, the dose-response and time-course model in C57/BL6 mice were established by intraperitoneal injection of APAP. The results of serum alanine/aspartate aminotransferases (ALT/AST) and histological examination demonstrated that APAP overdose resulted in the severe liver injury. In the meantime, the levels of p62, phospho-p62 and nuclear Nrf2 were significantly increased by APAP in mice liver, suggesting an activation of p62-keap1-Nrf2 pathway. In addition, the expression of GSTA1 mRNA was increased in a dose-dependent manner, while the mRNA levels of HO-1 and GCLC were decreased with the increase of APAP dose. Our further investigation found that expression of HO-1 and GCLC peaked at 3 h∼6 h, and then were decreased gradually. Taken together, these results indicated that p62-keap1-Nrf2 antioxidant pathway was primarily activated in the early stage of APAP hepatotoxicity, which might play a protective role in the process of APAP-induced acute liver injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Pathways of Association from Stress to Obesity in Early Childhood.

    Science.gov (United States)

    Miller, Alison L; Lumeng, Julie C

    2018-04-14

    The objective of this study is to critically review the literature on early life stress in relation to obesity in humans, including the multiple biological and behavioral mechanisms through which early life stress exposure (birth to the age of 5 years) may associate with obesity risk during childhood. A review of the literature was conducted to identify studies on associations between early childhood stress and risk for obesity and the mechanisms of association. Multiple databases (PubMed, PsycInfo, Google Scholar) were used in the search as well as a "snowball" search strategy. All study designs were included. Early life stress and adverse childhood experiences are associated with obesity and overweight in adults. Evidence is less consistent in children. Studies vary in the nature of the stress examined (e.g., chronic vs. acute), sample characteristics, and study designs. Longitudinal studies are needed, as the effects of early life stress exposure may not emerge until later in the life-span. Early life stress exposure is associated with biological and behavioral pathways that may increase risk for childhood obesity. There is evidence that early life stress is associated with multiple biological and behavioral pathways in children that may increase risk for later obesity. Little work has detailed the interconnections among these mechanisms across development or identified potential moderators of the association. Mapping the mechanisms connecting early life stress exposure to obesity risk in young children longitudinally should be a priority for obesity researchers. Recommendations for developmentally sensitive approaches to research that can inform obesity prevention strategies are presented. © 2018 The Obesity Society.

  19. Heritable and non-heritable pathways to early callous-unemotional behaviors

    Science.gov (United States)

    Hyde, Luke W.; Waller, Rebecca; Trentacosta, Christopher J.; Shaw, Daniel S.; Neiderhiser, Jenae M.; Ganiban, Jody M.; Reiss, David; Leve, Leslie D.

    2016-01-01

    Objective Callous-unemotional behaviors in early childhood identify children at high risk for severe trajectories of antisocial behavior and callous-unemotional traits that culminate in later diagnoses of conduct disorder, antisocial personality disorder, and psychopathy. Studies have demonstrated high heritability of callous-unemotional traits, but little research has examined specific heritable pathways to earlier callous-unemotional behaviors. Additionally, studies indicate that positive parenting protects against the development of callous-unemotional traits, but genetically informed designs have not been used to confirm that these relationships are not the product of gene-environment correlations. Method Using an adoption cohort of 561 families, biological mothers reported their history of severe antisocial behavior. Observations of adoptive mother positive reinforcement at 18 months were examined as predictors of callous-unemotional behaviors when children were 27 months old. Results Biological mother antisocial behavior predicted early callous-unemotional behaviors despite having no or limited contact with offspring. Adoptive mother positive reinforcement protected against early callous-unemotional behaviors in children not genetically related to the parent. High levels of adoptive mother positive reinforcement buffered the effects of heritable risk for callous-unemotional behaviors posed by biological mother antisocial behavior. Conclusions The findings elucidate heritable and non-heritable pathways to early callous-unemotional behaviors. The results provide a specific heritable pathway to callous-unemotional behaviors and compelling evidence that parenting is an important non-heritable factor in the development of callous-unemotional behaviors. As positive reinforcement buffered heritable risk for callous-unemotional behaviors, these findings have important translational implications for the prevention of trajectories to serious antisocial behavior. PMID

  20. Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo.

    Science.gov (United States)

    Tanegashima, Kosuke; Zhao, Hui; Rebbert, Martha L; Dawid, Igor B

    2009-11-01

    We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation.

  1. Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Navare, Arti T.; Sova, Pavel; Purdy, David E.; Weiss, Jeffrey M. [Department of Microbiology, University of Washington, Seattle, WA (United States); Wolf-Yadlin, Alejandro [Department of Genome Sciences, University of Washington, Seattle, WA (United States); Korth, Marcus J.; Chang, Stewart T.; Proll, Sean C. [Department of Microbiology, University of Washington, Seattle, WA (United States); Jahan, Tahmina A. [Proteomics Resource, UW Medicine at South Lake Union, Seattle, WA (United States); Krasnoselsky, Alexei L.; Palermo, Robert E. [Department of Microbiology, University of Washington, Seattle, WA (United States); Katze, Michael G., E-mail: honey@uw.edu [Department of Microbiology, University of Washington, Seattle, WA (United States); Washington National Primate Research Center, University of Washington, Seattle, WA (United States)

    2012-07-20

    Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value{<=}0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before.

  2. Maternal and fetal alternative complement pathway activation in early severe preeclampsia.

    Science.gov (United States)

    Hoffman, M Camille; Rumer, Kristen K; Kramer, Anita; Lynch, Anne M; Winn, Virginia D

    2014-01-01

    We sought to determine whether alternative complement activation fragment Bb (Bb) levels are elevated in the maternal, fetal, and placental blood in cases of severe preeclampsia (PE) compared with normotensive controls. This was a cross-sectional study of women admitted at ≥24 weeks gestation with or without severe PE. Maternal plasma was collected at the time of enrollment. Umbilical venous cord and intervillous space blood were collected at delivery. Plasma Bb levels were assessed using ELISA. Bb levels were compared between cases and controls. Median Bb levels were higher in the maternal plasma of severe PE subjects (n = 24) than in controls (n = 20), 1.45 ± 1.03 versus 0.65 ± 0.23 μg/mL, P < 0.001. In umbilical venous plasma, Bb levels were higher in severe PE subjects (n = 15) compared with controls (n = 15), 2.48 ± 1.40 versus 1.01 ± 0.57 μg/mL, P = 0.01. Activation fragment Bb is increased in the maternal and umbilical venous blood of cases of severe PE when compared with normotensive controls. These data provide support for alternative complement pathway involvement in the pathogenesis of severe PE and demonstrate that alternative complement activation occurs not only in the maternal but also in the fetal compartment. © 2013 John Wiley & Sons Ltd.

  3. Vasopressin up-regulates the expression of growth-related immediate-early genes via two distinct EGF receptor transactivation pathways

    Science.gov (United States)

    Fuentes, Lida Q.; Reyes, Carlos E.; Sarmiento, José M.; Villanueva, Carolina I.; Figueroa, Carlos D.; Navarro, Javier; González, Carlos B.

    2008-01-01

    Activation of V1a receptor triggers the expression of growth-related immediate-early genes (IEGs), including c-Fos and Egr-1. Here we found that pre-treatment of rat vascular smooth muscle A-10 cell line with the EGF receptor inhibitor AG1478 or the over-expression of an EGFR dominant negative mutant (HEBCD533) blocked the vasopressin-induced expression of IEGs, suggesting that activation of these early genes mediated by V1a receptor is via transactivation of the EGF receptor. Importantly, the inhibition of the metalloproteinases, which catalyzed the shedding of the EGF receptor agonist HB-EGF, selectively blocked the vasopressin-induced expression c-Fos. On the other hand, the inhibition of c-Src selectively blocked the vasopressin-induced expression of Egr-1. Interestingly, in contrast to the expression of c-Fos, the expression of Egr-1 was mediated via the Ras/MEK/MAPK-dependent signalling pathway. Vasopressin-triggered expression of both genes required the release of intracellular calcium, activation of PKC and β-arrestin 2. These findings demonstrated that vasopressin up-regulated the expression of c-Fos and Erg-1 via transactivation of two distinct EGF receptor-dependent signalling pathways. PMID:18571897

  4. Dataset of transcriptional landscape of B cell early activation

    Directory of Open Access Journals (Sweden)

    Alexander S. Garruss

    2015-09-01

    Full Text Available Signaling via B cell receptors (BCR and Toll-like receptors (TLRs result in activation of B cells with distinct physiological outcomes, but transcriptional regulatory mechanisms that drive activation and distinguish these pathways remain unknown. At early time points after BCR and TLR ligand exposure, 0.5 and 2 h, RNA-seq was performed allowing observations on rapid transcriptional changes. At 2 h, ChIP-seq was performed to allow observations on important regulatory mechanisms potentially driving transcriptional change. The dataset includes RNA-seq, ChIP-seq of control (Input, RNA Pol II, H3K4me3, H3K27me3, and a separate RNA-seq for miRNA expression, which can be found at Gene Expression Omnibus Dataset GSE61608. Here, we provide details on the experimental and analysis methods used to obtain and analyze this dataset and to examine the transcriptional landscape of B cell early activation.

  5. Administration of Tauroursodeoxycholic Acid Attenuates Early Brain Injury via Akt Pathway Activation

    Directory of Open Access Journals (Sweden)

    Dongdong Sun

    2017-07-01

    Full Text Available Traumatic brain injury (TBI is one of the leading causes of trauma-induced mortality and disability, and emerging studies have shown that endoplasmic reticulum (ER stress plays an important role in the pathophysiology of TBI. Tauroursodeoxycholic acid (TUDCA, a hydrophilic bile acid, has been reported to act as an ER stress inhibitor and chemical chaperone and to have the potential to attenuate apoptosis and inflammation. To study the effects of TUDCA on brain injury, we subjected mice to TBI with a controlled cortical impact (CCI device. Using western blotting, we first examined TBI-induced changes in the expression levels of GRP78, an ER stress marker, p-PERK, PERK, p-eIF2a, eIF2a, ATF4, p-Akt, Akt, Pten, Bax, Bcl-2, Caspase-12 and CHOP, as well as changes in the mRNA levels of Akt, GRP78, Caspase-12 and CHOP using RT-PCR. Neuronal cell death was assessed by a terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick end-labeling (TUNEL assay, and CHOP expression in neuronal cells was detected by double-immunofluorescence staining. Neurological and motor deficits were assessed by modified neurological severity scores (mNSS and beam balance and beam walking tests, and brain water content was also assessed. Our results indicated that ER stress peaked at 72 h after TBI and that TUDCA abolished ER stress and inhibited p-PERK, p-eIF2a, ATF4, Pten, Caspase-12 and CHOP expression levels. Moreover, our results show that TUDCA also improved neurological function and alleviated brain oedema. Additionally, TUDCA increased p-Akt expression and the Bcl-2/Bax ratio. However, the administration of the Akt inhibitor MK2206 or siRNA targeting of Akt abolished the beneficial effects of TUDCA. Taken together, our results indicate that TUDCA may attenuate early brain injury via Akt pathway activation.

  6. Feasibility of a Clinical Pathway with Early Oral Intake and Discharge for Laparoscopic Gastrectomy.

    Science.gov (United States)

    Nakagawa, M; Tomii, C; Inokuchi, M; Otsuki, S; Kojima, K

    2017-12-01

    Although some studies have reported the safety of early oral intake after gastrectomy, it still remains controversial. This study focused on the feasibility of a clinical pathway with early oral intake and discharge setting for exclusively laparoscopic distal gastrectomy. A clinical pathway was applied to 403 patients until December 2014. In the protocol, patients are allowed to take a sip of water and a soft diet on the first and second days after the operation, respectively, and the discharge day is set as the fifth to seventh day after the operation. Clinicopathological variables were prospectively collected, and risk factors for discharge variances were analyzed. The completion rate of the clinical pathway was 76.9%. There were five re-admissions (1.2%). The overall morbidity rate was 18% ( n = 72), and major complications (Clavien-Dindo IIIa or greater) occurred in 13 patients (3%). Complications were the causes for discharge variances in 68 cases (73%), while the attending surgeons' judgment was the cause in 25 cases (27%). On multivariate analysis, age (odds ratio = 2.23, 95% confidence interval = 1.38-3.60, p = 0.001) and operative time (odds ratio = 2.38, 95% confidence interval = 1.45-3.98, p = 0.001) were independent risk factors for discharge variances. A high completion rate of a clinical pathway with early oral intake and discharge setting for laparoscopic distal gastrectomy was achievable with an acceptably low re-admission rate. Laparoscopic distal gastrectomy is recommended as a first step for a clinical pathway with an early oral intake and discharge protocol.

  7. Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data.

    Science.gov (United States)

    Lee, Hyeonjeong; Shin, Miyoung

    2017-01-01

    The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into

  8. Analyses of the pathways involved in early- and late-phase induction of IFN-beta during C. muridarum infection of oviduct epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sishun Hu

    Full Text Available We previously reported that the IFN-β secreted by Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells was mostly dependent on the TLR3 signaling pathway. To further characterize the mechanisms of IFN-β synthesis during Chlamydia infection of OE cells in vitro, we utilized specific inhibitory drugs to clarify the roles of IRF3 and NF-κB on both early- and late-phase C. muridarum infections. Our results showed that the pathways involved in the early-phase of IFN-β production were distinct from that in the late-phase of IFN-β production. Disruption of IRF3 activation using an inhibitor of TBK-1 at early-phase Chlamydia infection had a significant impact on the overall synthesis of IFN-β; however, disruption of IRF3 activation at late times during infection had no effect. Interestingly, inhibition of NF-κB early during Chlamydia infection also had a negative effect on IFN-β production; however, its impact was not significant. Our data show that the transcription factor IRF7 was induced late during Chlamydia infection, which is indicative of a positive feedback mechanism of IFN-β synthesis late during infection. In contrast, IRF7 appears to play little or no role in the early synthesis of IFN-β during Chlamydia infection. Finally, we demonstrate that antibiotics that target chlamydial DNA replication are much more effective at reducing IFN-β synthesis during infection versus antibiotics that target chlamydial transcription. These results provide evidence that early- and late-phase IFN-β production have distinct signaling pathways in Chlamydia-infected OE cells, and suggest that Chlamydia DNA replication might provide a link to the currently unknown chlamydial PAMP for TLR3.

  9. Co-ordinate but disproportionate activation of apoptotic, regenerative and inflammatory pathways characterizes the liver response to acute amebic infection.

    Science.gov (United States)

    Pelosof, Lorraine C; Davis, Paul H; Zhang, Zhi; Zhang, Xiaochun; Stanley, Samuel L

    2006-03-01

    The liver has the remarkable ability to respond to injury with repair and regeneration. The protozoan parasite Entamoeba histolytica is the major cause of liver abscess worldwide. We report a transcriptional analysis of the response of mouse liver to E. histolytica infection, the first study looking at acute liver infection by a non-viral pathogen. Focusing on early time points, we identified 764 genes with altered transcriptional levels in amebic liver abscess. The response to infection is rapid and complex, with concurrent increased expression of genes linked to host defence through IL-1, TLR2, or interferon-induced pathways, liver regeneration via activation of IL-6 pathways, and genes associated with programmed cell death possibly through TNFalpha or Fas pathways. A comparison of amebic liver infection with the liver response to partial hepatectomy or toxins reveals striking similarities between amebic liver abscess and non-infectious injury in key components of the liver regeneration pathways. However, the response in amebic liver abscess is biased towards apoptosis when compared with acute liver injury from hepatectomy, toxins, or other forms of liver infection. E. histolytica infection of the liver simultaneously activates inflammatory, regenerative and apoptotic pathways, but the sum of these early responses is biased towards programmed cell death.

  10. EARLY CHILDHOOD PREDICTORS OF LOW-INCOME BOYS' PATHWAYS TO ANTISOCIAL BEHAVIOR IN CHILDHOOD, ADOLESCENCE, AND EARLY ADULTHOOD.

    Science.gov (United States)

    Shaw, Daniel S; Gilliam, Mary

    2017-01-01

    Guided by a bridging model of pathways leading to low-income boys' early starting and persistent trajectories of antisocial behavior, the current article reviews evidence supporting the model from early childhood through early adulthood. Using primarily a cohort of 310 low-income boys of families recruited from Women, Infants, and Children Nutrition Supplement centers in a large metropolitan area followed from infancy to early adulthood and a smaller cohort of boys and girls followed through early childhood, we provide evidence supporting the critical role of parenting, maternal depression, and other proximal family risk factors in early childhood that are prospectively linked to trajectories of parent-reported conduct problems in early and middle childhood, youth-reported antisocial behavior during adolescence and early adulthood, and court-reported violent offending in adolescence. The findings are discussed in terms of the need to identify at-risk boys in early childhood and methods and platforms for engaging families in healthcare settings not previously used to implement preventive mental health services. © 2016 Michigan Association for Infant Mental Health.

  11. Early development of the circumferential axonal pathway in mouse and chick spinal cord.

    Science.gov (United States)

    Holley, J A

    1982-03-10

    The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.

  12. Spaceflight Activates Lipotoxic Pathways in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Karen R Jonscher

    Full Text Available Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease.

  13. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    Science.gov (United States)

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  14. DMPD: Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12213596 Multiple signaling pathways leading to the activation of interferon regula...(.html) (.csml) Show Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3.... PubmedID 12213596 Title Multiple signaling pathways leading to the activation of

  15. Complementary Gli activity mediates early patterning of the mouse visual system.

    Science.gov (United States)

    Furimsky, Marosh; Wallace, Valerie A

    2006-03-01

    The Sonic hedgehog (Shh) signaling pathway plays a key role in the development of the vertebrate central nervous system, including the eye. This pathway is mediated by the Gli transcription factors (Gli1, Gli2, and Gli3) that differentially activate and repress the expression of specific downstream target genes. In this study, we investigated the roles of the three vertebrate Glis in mediating midline Shh signaling in early ocular development. We examined the ocular phenotypes of Shh and Gli combination mutant mouse embryos and monitored proximodistal and dorsoventral patterning by the expression of specific eye development regulatory genes using in situ hybridization. We show that midline Shh signaling relieves the repressor activity of Gli3 adjacent to the midline and then promotes eye pattern formation through the nonredundant activities of all three Gli proteins. Gli3, in particular, is required to specify the dorsal optic stalk and to define the boundary between the optic stalk and the optic cup.

  16. Biphasic activation of PI3K/Akt and MAPK/Erk1/2 signaling pathways in bovine herpesvirus type 1 infection of MDBK cells

    Directory of Open Access Journals (Sweden)

    Zhu Liqian

    2011-04-01

    Full Text Available Abstract Many viruses have been known to control key cellular signaling pathways to facilitate the virus infection. The possible involvement of signaling pathways in bovine herpesvirus type 1 (BoHV-1 infection is unknown. This study indicated that infection of MDBK cells with BoHV-1 induced an early-stage transient and a late-stage sustained activation of both phosphatidylinositol 3-kinase (PI3K/Akt and mitogen activated protein kinases/extracellular signal-regulated kinase 1/2 (MAPK/Erk1/2 signaling pathways. Analysis with the stimulation of UV-irradiated virus indicated that the virus binding and/or entry process was enough to trigger the early phase activations, while the late phase activations were viral protein expression dependent. Biphasic activation of both pathways was suppressed by the selective inhibitor, Ly294002 for PI3K and U0126 for MAPK kinase (MEK1/2, respectively. Furthermore, treatment of MDBK cells with Ly294002 caused a 1.5-log reduction in virus titer, while U0126 had little effect on the virus production. In addition, the inhibition effect of Ly294002 mainly occurred at the post-entry stage of the virus replication cycle. This revealed for the first time that BoHV-1 actively induced both PI3K/Akt and MAPK/Erk1/2 signaling pathways, and the activation of PI3K was important for fully efficient replication, especially for the post-entry stage.

  17. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia

    Directory of Open Access Journals (Sweden)

    Ketan K. Marballi

    2018-02-01

    Full Text Available While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD. Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3, early growth response 1 (EGR1 and NGFI-A Binding Protein 2 (NAB2; each of which contains the “Index single nucleotide polymorphism (SNP” (most SNP at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may

  18. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia

    Science.gov (United States)

    Marballi, Ketan K.; Gallitano, Amelia L.

    2018-01-01

    While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR) hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD). Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3), early growth response 1 (EGR1) and NGFI-A Binding Protein 2 (NAB2); each of which contains the “Index single nucleotide polymorphism (SNP)” (most SNP) at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may result in

  19. Genetic moderation of multiple pathways linking early cumulative socioeconomic adversity and young adults' cardiometabolic disease risk.

    Science.gov (United States)

    Wickrama, Kandauda A S; Lee, Tae Kyoung; O'Neal, Catherine Walker

    2018-02-01

    Recent research suggests that psychosocial resources and life stressors are mediating pathways explaining socioeconomic variation in young adults' health risks. However, less research has examined both these pathways simultaneously and their genetic moderation. A nationally representative sample of 11,030 respondents with prospective data collected over 13 years from the National Study of Adolescent to Adult Health was examined. First, the association between early cumulative socioeconomic adversity and young adults' (ages 25-34) cardiometabolic disease risk, as measured by 10 biomarkers, through psychosocial resources (educational attainment) and life stressors (accelerated transition to adulthood) was examined. Second, moderation of these pathways by the serotonin transporter linked polymorphic region gene (5-HTTLPR) was examined. There was evidence for the association between early socioeconomic adversity and young adults' cardiometabolic disease risk directly and indirectly through educational attainment and accelerated transitions. These direct and mediating pathways were amplified by the 5-HTTLPR polymorphism. These findings elucidate how early adversity can have an enduring influence on young adults' cardiometabolic disease risk directly and indirectly through psychosocial resources and life stressors and their genetic moderation. This information suggests that effective intervention and prevention programs should focus on early adversity, youth educational attainment, and their transition to young adulthood.

  20. Group B streptococcus activates transcriptomic pathways related to premature birth in human extraplacental membranes in vitro.

    Science.gov (United States)

    Park, Hae-Ryung; Harris, Sean M; Boldenow, Erica; McEachin, Richard C; Sartor, Maureen; Chames, Mark; Loch-Caruso, Rita

    2018-03-01

    Streptococcus agalactiae (group B streptococcus [GBS]) infection in pregnant women is the leading cause of infectious neonatal morbidity and mortality in the United States. Although inflammation during infection has been associated with preterm birth, the contribution of GBS to preterm birth is less certain. Moreover, the early mechanisms by which GBS interacts with the gestational tissue to affect adverse pregnancy outcomes are poorly understood. We hypothesized that short-term GBS inoculation activates pathways related to inflammation and premature birth in human extraplacental membranes. We tested this hypothesis using GBS-inoculated human extraplacental membranes in vitro. In agreement with our hypothesis, a microarray-based transcriptomics analysis of gene expression changes in GBS-inoculated membranes revealed that GBS activated pathways related to inflammation and preterm birth with significant gene expression changes occurring as early as 4 h postinoculation. In addition, pathways related to DNA replication and repair were downregulated with GBS treatment. Conclusions based on our transcriptomics data were further supported by responses of prostaglandin E2 (PGE2), and matrix metalloproteinases 1 (MMP1) and 3 (MMP3), all of which are known to be involved in parturition and premature rupture of membranes. These results support our initial hypothesis and provide new information on molecular targets of GBS infection in human extraplacental membranes.

  1. Transcriptomic profiling of bovine IVF embryos revealed candidate genes and pathways involved in early embryonic development

    Directory of Open Access Journals (Sweden)

    Yandell Brian S

    2010-01-01

    Full Text Available Abstract Background Early embryonic loss is a large contributor to infertility in cattle. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. The objective of this study was to identify genes differentially expressed between blastocysts and degenerative embryos at early stages of development. Results Using microarrays, genome-wide RNA expression was profiled and compared for in vitro fertilization (IVF - derived blastocysts and embryos undergoing degenerative development up to the same time point. Surprisingly similar transcriptomic profiles were found in degenerative embryos and blastocysts. Nonetheless, we identified 67 transcripts that significantly differed between these two groups of embryos at a 15% false discovery rate, including 33 transcripts showing at least a two-fold difference. Several signaling and metabolic pathways were found to be associated with the developmental status of embryos, among which were previously known important steroid biosynthesis and cell communication pathways in early embryonic development. Conclusions This study presents the first direct and comprehensive comparison of transcriptomes between IVF blastocysts and degenerative embryos, providing important information for potential genes and pathways associated with early embryonic development.

  2. The Activation Pathway of Human Rhodopsin in Comparison to Bovine Rhodopsin*

    Science.gov (United States)

    Kazmin, Roman; Rose, Alexander; Szczepek, Michal; Elgeti, Matthias; Ritter, Eglof; Piechnick, Ronny; Hofmann, Klaus Peter; Scheerer, Patrick; Hildebrand, Peter W.; Bartl, Franz J.

    2015-01-01

    Rhodopsin, the photoreceptor of rod cells, absorbs light to mediate the first step of vision by activating the G protein transducin (Gt). Several human diseases, such as retinitis pigmentosa or congenital night blindness, are linked to rhodopsin malfunctions. Most of the corresponding in vivo studies and structure-function analyses (e.g. based on protein x-ray crystallography or spectroscopy) have been carried out on murine or bovine rhodopsin. Because these rhodopsins differ at several amino acid positions from human rhodopsin, we conducted a comprehensive spectroscopic characterization of human rhodopsin in combination with molecular dynamics simulations. We show by FTIR and UV-visible difference spectroscopy that the light-induced transformations of the early photointermediates are very similar. Significant differences between the pigments appear with formation of the still inactive Meta I state and the transition to active Meta II. However, the conformation of Meta II and its activity toward the G protein are essentially the same, presumably reflecting the evolutionary pressure under which the active state has developed. Altogether, our results show that although the basic activation pathways of human and bovine rhodopsin are similar, structural deviations exist in the inactive conformation and during receptor activation, even between closely related rhodopsins. These differences between the well studied bovine or murine rhodopsins and human rhodopsin have to be taken into account when the influence of point mutations on the activation pathway of human rhodopsin are investigated using the bovine or murine rhodopsin template sequences. PMID:26105054

  3. Activated ovarian endothelial cells promote early follicular development and survival.

    Science.gov (United States)

    Kedem, Alon; Aelion-Brauer, Anate; Guo, Peipei; Wen, Duancheng; Ding, Bi-Sen; Lis, Raphael; Cheng, Du; Sandler, Vladislav M; Rafii, Shahin; Rosenwaks, Zev

    2017-09-19

    New data suggests that endothelial cells (ECs) elaborate essential "angiocrine factors". The aim of this study is to investigate the role of activated ovarian endothelial cells in early in-vitro follicular development. Mouse ovarian ECs were isolated using magnetic cell sorting or by FACS and cultured in serum free media. After a constitutive activation of the Akt pathway was initiated, early follicles (50-150 um) were mechanically isolated from 8-day-old mice and co-cultured with these activated ovarian endothelial cells (AOEC) (n = 32), gel (n = 24) or within matrigel (n = 27) in serum free media for 14 days. Follicular growth, survival and function were assessed. After 6 passages, flow cytometry showed 93% of cells grown in serum-free culture were VE-cadherin positive, CD-31 positive and CD 45 negative, matching the known EC profile. Beginning on day 4 of culture, we observed significantly higher follicular and oocyte growth rates in follicles co-cultured with AOECs compared with follicles on gel or matrigel. After 14 days of culture, 73% of primary follicles and 83% of secondary follicles co-cultured with AOEC survived, whereas the majority of follicles cultured on gel or matrigel underwent atresia. This is the first report of successful isolation and culture of ovarian ECs. We suggest that co-culture with activated ovarian ECs promotes early follicular development and survival. This model is a novel platform for the in vitro maturation of early follicles and for the future exploration of endothelial-follicular communication. In vitro development of early follicles necessitates a complex interplay of growth factors and signals required for development. Endothelial cells (ECs) may elaborate essential "angiocrine factors" involved in organ regeneration. We demonstrate that co-culture with ovarian ECs enables culture of primary and early secondary mouse ovarian follicles.

  4. The ATM and Rad3-Related (ATR) Protein Kinase Pathway Is Activated by Herpes Simplex Virus 1 and Required for Efficient Viral Replication.

    Science.gov (United States)

    Edwards, Terri G; Bloom, David C; Fisher, Chris

    2018-03-15

    The ATM and Rad3-related (ATR) protein kinase and its downstream effector Chk1 are key sensors and organizers of the DNA damage response (DDR) to a variety of insults. Previous studies of herpes simplex virus 1 (HSV-1) showed no evidence for activation of the ATR pathway. Here we demonstrate that both Chk1 and ATR were phosphorylated by 3 h postinfection (h.p.i.). Activation of ATR and Chk1 was observed using 4 different HSV-1 strains in multiple cell types, while a specific ATR inhibitor blocked activation. Mechanistic studies point to early viral gene expression as a key trigger for ATR activation. Both pATR and pChk1 localized to the nucleus within viral replication centers, or associated with their periphery, by 3 h.p.i. Significant levels of pATR and pChk1 were also detected in the cytoplasm, where they colocalized with ICP4 and ICP0. Proximity ligation assays confirmed that pATR and pChk1 were closely and specifically associated with ICP4 and ICP0 in both the nucleus and cytoplasm by 3 h.p.i., but not with ICP8 or ICP27, presumably in a multiprotein complex. Chemically distinct ATR and Chk1 inhibitors blocked HSV-1 replication and infectious virion production, while inhibitors of ATM, Chk2, and DNA-dependent protein kinase (DNA-PK) did not. Together our data show that HSV-1 activates the ATR pathway at early stages of infection and that ATR and Chk1 kinase activities play important roles in HSV-1 replication fitness. These findings indicate that the ATR pathway may provide insight for therapeutic approaches. IMPORTANCE Viruses have evolved complex associations with cellular DNA damage response (DDR) pathways, which sense troublesome DNA structures formed during infection. The first evidence for activation of the ATR pathway by HSV-1 is presented. ATR is activated, and its downstream target Chk1 is robustly phosphorylated, during early stages of infection. Both activated proteins are found in the nucleus associated with viral replication compartments and in

  5. The down-stream effects of mannan-induced lectin complement pathway activation depend quantitatively on alternative pathway amplification

    DEFF Research Database (Denmark)

    Harboe, Morten; Garred, Peter; Karlstrøm, Ellen

    2009-01-01

    Complement activation plays an important role in human pathophysiology. The effect of classical pathway activation is largely dependent on alternative pathway (AP) amplification, whereas the role of AP for the down-stream effect of mannan-induced lectin pathway (LP) activation is poorly understood...... that AP amplification is quantitatively responsible for the final effect of initial specific LP activation. TCC generation on the solid phase was distinctly but less inhibited by anti-fD. C2 bypass of the LP pathway could be demonstrated, and AP amplification was also essential during C2 bypass in LP...... as shown by complete inhibition of TCC generation in C2-deficient serum by anti-fD and anti-properdin antibodies. In conclusion, the down-stream effect of LP activation depends strongly on AP amplification in normal human serum and in the C2 bypass pathway....

  6. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-01-01

    Full Text Available Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF signaling pathway in early embryoid bodies (EBs. Gcn5−/− EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.

  7. Developmental pathways from childhood conduct problems to early adult depression: findings from the ALSPAC cohort

    Science.gov (United States)

    Stringaris, Argyris; Lewis, Glyn; Maughan, Barbara

    2014-01-01

    Background Pathways from early-life conduct problems to young adult depression remain poorly understood. Aims To test developmental pathways from early-life conduct problems to depression at age 18. Method Data (n = 3542) came from the Avon Longitudinal Study of Parents and Children (ALSPAC). Previously derived conduct problem trajectories (ages 4-13 years) were used to examine associations with depression from ages 10 to 18 years, and the role of early childhood factors as potential confounders. Results Over 43% of young adults with depression in the ALSPAC cohort had a history of child or adolescent conduct problems, yielding a population attributable fraction of 0.15 (95% CI 0.08-0.22). The association between conduct problems and depression at age 18 was considerable even after adjusting for prior depression (odds ratio 1.55, 95% CI 1.24-1.94). Early-onset persistent conduct problems carried the highest risk for later depression. Irritability characterised depression for those with a history of conduct problems. Conclusions Early-life conduct problems are robustly associated with later depressive disorder and may be useful targets for early intervention. PMID:24764545

  8. Stress and resource pathways connecting early socioeconomic adversity to young adults' physical health risk.

    Science.gov (United States)

    Wickrama, Kandauda K A S; Lee, Tae Kyoung; O'Neal, Catherine Walker; Kwon, Josephine A

    2015-05-01

    Although research has established the impact of early stress, including stressful life contexts, and early resources, such as educational attainment, on various adolescent health outcomes, previous research has not adequately investigated "integrative models" incorporating both stress and resource mediational pathways to explain how early socioeconomic adversity impacts physical health outcomes, particularly in early life stages. Data on early childhood/adolescent stress and socioeconomic resources as well as biomarkers indicating physical health status in young adulthood were collected from 11,798 respondents (54 % female) over a 13-year period from youth participating in the National Study of Adolescent Health (Add Health). Physical health risk in young adulthood was measured using a composite index of nine regulatory biomarkers of cardiovascular and metabolic systems. Heterogeneity in stress and socioeconomic resource pathways was assessed using latent class analysis to identify clusters, or classes, of stress and socioeconomic resource trajectories. The influence of early socioeconomic adversity on young adults' physical health risk, as measured by biomarkers, was estimated, and the role of stress and socioeconomic resource trajectory classes as linking mechanisms was assessed. There was evidence for the influence of early socioeconomic adversity on young adults' physical health risk directly and indirectly through stress and socioeconomic resource trajectory classes over the early life course. These findings suggest that health models should be broadened to incorporate both stress and resource experiences simultaneously. Furthermore, these findings have prevention and intervention implications, including the importance of early socioeconomic adversity and key intervention points for "turning" the trajectories of at-risk youth.

  9. Activation of the canonical Wnt/β-catenin pathway enhances monocyte adhesion to endothelial cells

    International Nuclear Information System (INIS)

    Lee, Dong Kun; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-01-01

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/β-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3β or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/β-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/β-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules

  10. Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway.

    Directory of Open Access Journals (Sweden)

    José Peña

    Full Text Available The rearrangement of intracellular membranes has been long reported to be a common feature in diseased cells. In this study, we used dengue virus (DENV to study the role of the unfolded protein response (UPR and sterol-regulatory-element-binding-protein-2 (SREBP-2 pathway in the rearrangement and expansion of the endoplasmic reticulum (ER early after infection. Using laser scanning confocal and differential interference contrast microscopy, we demonstrate that rearrangement and expansion of the ER occurs early after DENV-2 infection. Through the use of mouse embryonic fibroblast cells deficient in XBP1 and ATF6, we show that ER rearrangement early after DENV infection is independent of the UPR. We then demonstrate that enlargement of the ER is independent of the SREBP-2 activation and upregulation of 3-hydroxy-3-methylglutaryl-Coenzyme-A reductase, the rate-limiting enzyme in the cholesterol biosynthesis pathway. We further show that this ER rearrangement is not inhibited by the treatment of DENV-infected cells with the cholesterol-inhibiting drug lovastatin. Using the transcription inhibitor actinomycin D and the translation elongation inhibitor cycloheximide, we show that de novo viral protein synthesis but not host transcription is necessary for expansion and rearrangement of the ER. Lastly, we demonstrate that viral infection induces the reabsorption of lipid droplets into the ER. Together, these results demonstrate that modulation of intracellular membrane architecture of the cell early after DENV-2 infection is driven by viral protein expression and does not require the induction of the UPR and SREBP-2 pathways. This work paves the way for further study of virally-induced membrane rearrangements and formation of cubic membranes.

  11. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  12. Semantic Wavelet-Induced Frequency-Tagging (SWIFT Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas.

    Directory of Open Access Journals (Sweden)

    Roger Koenig-Robert

    Full Text Available Primate visual systems process natural images in a hierarchical manner: at the early stage, neurons are tuned to local image features, while neurons in high-level areas are tuned to abstract object categories. Standard models of visual processing assume that the transition of tuning from image features to object categories emerges gradually along the visual hierarchy. Direct tests of such models remain difficult due to confounding alteration in low-level image properties when contrasting distinct object categories. When such contrast is performed in a classic functional localizer method, the desired activation in high-level visual areas is typically accompanied with activation in early visual areas. Here we used a novel image-modulation method called SWIFT (semantic wavelet-induced frequency-tagging, a variant of frequency-tagging techniques. Natural images modulated by SWIFT reveal object semantics periodically while keeping low-level properties constant. Using functional magnetic resonance imaging (fMRI, we indeed found that faces and scenes modulated with SWIFT periodically activated the prototypical category-selective areas while they elicited sustained and constant responses in early visual areas. SWIFT and the localizer were selective and specific to a similar extent in activating category-selective areas. Only SWIFT progressively activated the visual pathway from low- to high-level areas, consistent with predictions from standard hierarchical models. We confirmed these results with criterion-free methods, generalizing the validity of our approach and show that it is possible to dissociate neural activation in early and category-selective areas. Our results provide direct evidence for the hierarchical nature of the representation of visual objects along the visual stream and open up future applications of frequency-tagging methods in fMRI.

  13. Activation of the Wnt/β-catenin pathway in pancreatic beta cells during the compensatory islet hyperplasia in prediabetic mice

    International Nuclear Information System (INIS)

    Maschio, D.A.; Oliveira, R.B.; Santos, M.R.; Carvalho, C.P.F.; Barbosa-Sampaio, H.C.L.; Collares-Buzato, C.B.

    2016-01-01

    The Wnt/β-catenin signaling pathway, also known as the canonical Wnt pathway, plays a role in cell proliferation and differentiation in several tissues/organs. It has been recently described in humans a relationship between type 2 diabetes (T2DM) and mutation in the gene encoding the transcription factor TCF7L2 associated to the Wnt/β-catenin pathway. In the present study, we demonstrated that hyperplastic pancreatic islets from prediabetic mice fed a high-fat diet (HFD) for 60 d displayed nuclear translocation of active β-catenin associated with significant increases in protein content and gene expression of β-catenin as well as of cyclins D1, D2 and c-Myc (target genes of the Wnt pathway) but not of Tcf7l2 (the transcription factor). Meanwhile, these alterations were not observed in pancreatic islets from 30 d HFD-fed mice, that do not display significant beta cell hyperplasia. These data suggest that the Wnt/β-catenin pathway is activated in pancreatic islets during prediabetes and may play a role in the induction of the compensatory beta cell hyperplasia observed at early phase of T2DM. - Highlights: • Exposure to high-fat diet for 60 days induced prediabetes and beta cell mass expansion. • Hyperplastic pancreatic islets displayed nuclear translocation of active β-catenin. • Hyperplastic islets showed increased expression of target genes of the Wnt/β-catenin pathway. • Wnt/β-catenin pathway is activated during compensatory beta cell hyperplasia in mice.

  14. Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways.

    Science.gov (United States)

    Chong, Zhao Zhong; Maiese, Kenneth

    2008-08-01

    Focus upon therapeutic strategies that intersect between pathways that govern cellular metabolism and cellular survival may offer the greatest impact for the treatment of a number of neurodegenerative and metabolic disorders, such as diabetes mellitus. In this regard, we investigated the role of a Drosophila nicotinamidase (DN) in mammalian SH-SY5Y neuronal cells during oxidative stress. We demonstrate that during free radical exposure to nitric oxide generators DN neuronal expression significantly increased cell survival and blocked cellular membrane injury. Furthermore, DN neuronal expression prevented both apoptotic late DNA degradation and early phosphatidylserine exposure that may serve to modulate inflammatory cell activation in vivo. Nicotinamidase activity that limited nicotinamide cellular concentrations appeared to be necessary for DN neuroprotection, since application of progressive nicotinamide concentrations could abrogate the benefits of DN expression during oxidative stress. Pathways that involved sirtuin activation and SIRT1 were suggested to be vital, at least in part, for DN to confer protection through a series of studies. First, application of resveratrol increased cell survival during oxidative stress either alone or in conjunction with the expression of DN to a similar degree, suggesting that DN may rely upon SIRT1 activation to foster neuronal protection. Second, the overexpression of either SIRT1 or DN in neurons prevented apoptotic injury specifically in neurons expressing these proteins during oxidative stress, advancing the premise that DN and SIRT1 may employ similar pathways for neuronal protection. Third, inhibition of sirtuin activity with sirtinol was detrimental to neuronal survival during oxidative stress and prevented neuronal protection during overexpression of DN or SIRT1, further supporting that SIRT1 activity may be necessary for DN neuroprotection during oxidative stress. Implementation of further work to elucidate the

  15. Retinoic acid activates two pathways required for meiosis in mice.

    Directory of Open Access Journals (Sweden)

    Jana Koubova

    2014-08-01

    Full Text Available In all sexually reproducing organisms, cells of the germ line must transition from mitosis to meiosis. In mice, retinoic acid (RA, the extrinsic signal for meiotic initiation, activates transcription of Stra8, which is required for meiotic DNA replication and the subsequent processes of meiotic prophase. Here we report that RA also activates transcription of Rec8, which encodes a component of the cohesin complex that accumulates during meiotic S phase, and which is essential for chromosome synapsis and segregation. This RA induction of Rec8 occurs in parallel with the induction of Stra8, and independently of Stra8 function, and it is conserved between the sexes. Further, RA induction of Rec8, like that of Stra8, requires the germ-cell-intrinsic competence factor Dazl. Our findings strengthen the importance of RA and Dazl in the meiotic transition, provide important details about the Stra8 pathway, and open avenues to investigate early meiosis through analysis of Rec8 induction and function.

  16. Endolysosomal pathway activity protects cells from neurotoxic TDP-43

    Directory of Open Access Journals (Sweden)

    Christine Leibiger

    2018-03-01

    Full Text Available The accumulation of protein aggregates in neurons is a typical pathological hallmark of the motor neuron disease amyotrophic lateral sclerosis (ALS and of frontotemporal dementia (FTD. In many cases, these aggregates are composed of the 43 kDa TAR DNA-binding protein (TDP‑43. Using a yeast model for TDP‑43 proteinopathies, we observed that the vacuole (the yeast equivalent of lysosomes markedly contributed to the degradation of TDP‑43. This clearance occurred via TDP‑43-containing vesicles fusing with the vacuole through the concerted action of the endosomal-vacuolar (or endolysosomal pathway and autophagy. In line with its dominant role in the clearance of TDP‑43, endosomal-vacuolar pathway activity protected cells from the detrimental effects of TDP‑43. In contrast, enhanced autophagy contributed to TDP‑43 cytotoxicity, despite being involved in TDP‑43 degradation. TDP‑43’s interference with endosomal-vacuolar pathway activity may have two deleterious consequences. First, it interferes with its own degradation via this pathway, resulting in TDP‑43 accumulation. Second, it affects vacuolar proteolytic activity, which requires endosomal-vacuolar trafficking. We speculate that the latter contributes to aberrant autophagy. In sum, we propose that ameliorating endolysosomal pathway activity enhances cell survival in TDP‑43-associated diseases.

  17. Fine-tuning of the flavonoid and monolignol pathways during apple early fruit development.

    Science.gov (United States)

    Baldi, Paolo; Moser, Mirko; Brilli, Matteo; Vrhovsek, Urska; Pindo, Massimo; Si-Ammour, Azeddine

    2017-05-01

    A coordinated regulation of different branches of the flavonoid pathway was highlighted that may contribute to elucidate the role of this important class of compounds during the early stages of apple fruit development. Apple (Malus × domestica Borkh.) is an economically important fruit appreciated for its organoleptic characteristics and its benefits for human health. The first stages after fruit set represent a very important and still poorly characterized developmental process. To enable the profiling of genes involved in apple early fruit development, we combined the suppression subtractive hybridization (SSH) protocol to next-generation sequencing. We identified and characterized genes induced and repressed during fruit development in the apple cultivar 'Golden Delicious'. Our results showed an opposite regulation of genes coding for enzymes belonging to flavonoid and monolignol pathways, with a strong induction of the former and a simultaneous repression of the latter. Two isoforms of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase, key enzymes located at the branching point between flavonoid and monolignol pathways, showed opposite expression patterns during the period in analysis, suggesting a possible regulation mechanism. A targeted metabolomic analysis supported the SSH results and revealed an accumulation of the monomers catechin and epicatechin as well as several forms of procyanidin oligomers in apple fruitlets starting early after anthesis, together with a decreased production of other classes of flavonoids such as some flavonols and the dihydrochalcone phlorizin. Moreover, gene expression and metabolites accumulation of 'Golden Delicious' were compared to a wild apple genotype of Manchurian crabapple (Malus mandshurica (Maxim.) Kom.). Significant differences in both gene expression and metabolites accumulation were found between the two genotypes.

  18. The long-term effects of maternal depression: early childhood physical health as a pathway to offspring depression.

    Science.gov (United States)

    Raposa, Elizabeth; Hammen, Constance; Brennan, Patricia; Najman, Jake

    2014-01-01

    Cross-sectional and retrospective studies have highlighted the long-term negative effects of maternal depression on offspring physical, social, and emotional development, but longitudinal research is needed to clarify the pathways by which maternal depression during pregnancy and early childhood affects offspring outcomes. The current study tested one developmental pathway by which maternal depression during pregnancy might negatively impact offspring mental health in young adulthood, via poor physical health in early childhood. The sample consisted of 815 Australian youth and their mothers who were followed for 20 years. Mothers reported on their own depressive symptoms during pregnancy and offspring early childhood. Youth completed interviews about health-related stress and social functioning at age 20 years, and completed a questionnaire about their own depressive symptoms 2 to 5 years later. Path analysis indicated that prenatal maternal depressive symptoms predicted worse physical health during early childhood for offspring, and this effect was partially explained by ongoing maternal depression in early childhood. Offspring poor physical health during childhood predicted increased health-related stress and poor social functioning at age 20. Finally, increased health-related stress and poor social functioning predicted increased levels of depressive symptoms later in young adulthood. Maternal depression had a significant total indirect effect on youth depression via early childhood health and its psychosocial consequences. Poor physical health in early childhood and its effects on young adults' social functioning and levels of health related stress is one important pathway by which maternal depression has long-term consequences for offspring mental health. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  19. The autophagy induced by curcumin via MEK/ERK pathway plays an early anti-leukemia role in human Philadelphia chromosome-positive acute lymphoblastic leukemia SUP-B15 cells

    Directory of Open Access Journals (Sweden)

    Yong Guo

    2018-01-01

    Conclusions: Curcumin induce autophagic cell death in SUP-B15 cells via activating RAF/MEK/ERK pathway. These findings suggest that autophagic mechanism contribute to the curcumin-induced early SUP-B15 cell death, and autophagy is another anti-leukemia mechanism of curcumin.

  20. Early risk pathways to physical versus relational peer aggression: The interplay of externalizing behavior and corporal punishment varies by child sex.

    Science.gov (United States)

    Zulauf, Courtney A; Sokolovsky, Alexander W; Grabell, Adam S; Olson, Sheryl L

    2018-03-01

    Children who aggress against their peers may use physical or relational forms, yet little research has looked at early childhood risk factors and characteristics that uniquely predict high levels of relational versus physical aggression in preadolescence. Accordingly, the main aim of our study was to link early corporal punishment and externalizing behavior to children's physical and relational peer aggression during preadolescence and to examine how these pathways differed by sex. Participants were 193, 3-year-old boys (39%) and girls who were reassessed following the transition to kindergarten (5.5 years) and preadolescence (10.5 years). A series of autoregressive, cross-lagged path analyses were conducted to examine the relationships between child externalizing problems and corporal punishment at ages 3 and 5.5 years, and their association with physical and relational aggression at age 10.5. Multiple group analysis was used to determine whether pathways differed by sex. Three developmental pathways were identified: (i) direct associations between stable childhood externalizing problems and later physical aggression; (ii) a direct pathway from early corporal punishment to preadolescent relational and physical peer aggression; and (iii) an indirect pathway from early corporal punishment to later physical aggression via continuing externalizing problems in middle childhood. Child sex moderated the nature of these pathways, as well as the direction of association between risk and outcome variables. These data advance our understanding of the etiology of distinct forms of peer aggression and highlight the potential for more efficacious prevention and intervention efforts in the early childhood years. © 2018 Wiley Periodicals, Inc.

  1. The role of APC in WNT pathway activation in serrated neoplasia.

    Science.gov (United States)

    Borowsky, Jennifer; Dumenil, Troy; Bettington, Mark; Pearson, Sally-Ann; Bond, Catherine; Fennell, Lochlan; Liu, Cheng; McKeone, Diane; Rosty, Christophe; Brown, Ian; Walker, Neal; Leggett, Barbara; Whitehall, Vicki

    2018-03-01

    Conventional adenomas are initiated by APC gene mutation that activates the WNT signal. Serrated neoplasia is commonly initiated by BRAF or KRAS mutation. WNT pathway activation may also occur, however, to what extent this is owing to APC mutation is unknown. We examined aberrant nuclear β-catenin immunolocalization as a surrogate for WNT pathway activation and analyzed the entire APC gene coding sequence in serrated and conventional pathway polyps and cancers. WNT pathway activation was a common event in conventional pathway lesions with aberrant nuclear immunolocalization of β-catenin and truncating APC mutations in 90% and 89% of conventional adenomas and 82% and 70% of BRAF wild-type cancers, respectively. WNT pathway activation was seen to a lesser extent in serrated pathway lesions. It occurred at the transition to dysplasia in serrated polyps with a significant increase in nuclear β-catenin labeling from sessile serrated adenomas (10%) to sessile serrated adenomas with dysplasia (55%) and traditional serrated adenomas (9%) to traditional serrated adenomas with dysplasia (39%) (P=0.0001). However, unlike the conventional pathway, truncating APC mutations were rare in the serrated pathway lesions especially sessile serrated adenomas even when dysplastic (15%) and in the BRAF mutant cancers with microsatellite instability that arise from them (8%). In contrast, APC missense mutations that were rare in conventional pathway adenomas and cancers (3% in BRAF wild-type cancers) were more frequent in BRAF mutant cancers with microsatellite instability (32%). We conclude that increased WNT signaling is important in the transition to malignancy in the serrated pathway but that APC mutation is less common and the spectrum of mutations is different than in conventional colorectal carcinogenesis. Moderate impact APC mutations and non-APC-related causes of increased WNT signaling may have a more important role in serrated neoplasia than the truncating APC mutations

  2. Ubiquitylation and the Fanconi Anemia Pathway

    Science.gov (United States)

    Garner, Elizabeth; Smogorzewska, Agata

    2012-01-01

    The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability. PMID:21605559

  3. Pathways of Prion Spread during Early Chronic Wasting Disease in Deer.

    Science.gov (United States)

    Hoover, Clare E; Davenport, Kristen A; Henderson, Davin M; Denkers, Nathaniel D; Mathiason, Candace K; Soto, Claudio; Zabel, Mark D; Hoover, Edward A

    2017-05-15

    Among prion infections, two scenarios of prion spread are generally observed: (i) early lymphoid tissue replication or (ii) direct neuroinvasion without substantial antecedent lymphoid amplification. In nature, cervids are infected with chronic wasting disease (CWD) prions by oral and nasal mucosal exposure, and studies of early CWD pathogenesis have implicated pharyngeal lymphoid tissue as the earliest sites of prion accumulation. However, knowledge of chronological events in prion spread during early infection remains incomplete. To investigate this knowledge gap in early CWD pathogenesis, we exposed white-tailed deer to CWD prions by mucosal routes and performed serial necropsies to assess PrP CWD tissue distribution by real-time quaking-induced conversion (RT-QuIC) and tyramide signal amplification immunohistochemistry (TSA-IHC). Although PrP CWD was not detected by either method in the initial days (1 and 3) postexposure, we observed PrP CWD seeding activity and follicular immunoreactivity in oropharyngeal lymphoid tissues at 1 and 2 months postexposure (MPE). At 3 MPE, PrP CWD replication had expanded to all systemic lymphoid tissues. By 4 MPE, the PrP CWD burden in all lymphoid tissues had increased and approached levels observed in terminal disease, yet there was no evidence of nervous system invasion. These results indicate the first site of CWD prion entry is in the oropharynx, and the initial phase of prion amplification occurs in the oropharyngeal lymphoid tissues followed by rapid dissemination to systemic lymphoid tissues. This lymphoid replication phase appears to precede neuroinvasion. IMPORTANCE Chronic wasting disease (CWD) is a universally fatal transmissible spongiform encephalopathy affecting cervids, and natural infection occurs through oral and nasal mucosal exposure to infectious prions. Terminal disease is characterized by PrP CWD accumulation in the brain and lymphoid tissues of affected animals. However, the initial sites of prion

  4. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development

    Science.gov (United States)

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; Nakayama, Takuya; Shah, Anoop; Grainger, Robert M.; White, Judith M.; DeSimone, Douglas W.

    2012-01-01

    Pericellular proteolysis by ADAM family metalloproteinases has been widely implicated in cell signaling and development. We recently found that Xenopus ADAM13, an ADAM metalloproteinase, is required for activation of canonical Wnt signaling during cranial neural crest (CNC) induction by regulating a novel crosstalk between Wnt and ephrin B (EfnB) signaling pathways (Wei et al., 2010b). In the present study we show that the metalloproteinase activity of ADAM13 also plays important roles in eye development in X. tropicalis. Knockdown of ADAM13 results in reduced expression of eye field markers pax6 and rx1, as well as that of the pan-neural marker sox2. Activation of canonical Wnt signaling or inhibition of forward EfnB signaling rescues the eye defects caused by loss of ADAM13, suggesting that ADAM13 functions through regulation of the EfnB-Wnt pathway interaction. Downstream of Wnt, the head inducer Cerberus was identified as an effector that mediates ADAM13 function in early eye field formation. Furthermore, ectopic expression of the Wnt target gene snail2 restores cerberus expression and rescues the eye defects caused by ADAM13 knockdown. Together these data suggest an important role of ADAM13-regulated Wnt activity in eye development in Xenopus. PMID:22227340

  5. Src kinase conformational activation: thermodynamics, pathways, and mechanisms.

    Directory of Open Access Journals (Sweden)

    Sichun Yang

    2008-03-01

    Full Text Available Tyrosine kinases of the Src-family are large allosteric enzymes that play a key role in cellular signaling. Conversion of the kinase from an inactive to an active state is accompanied by substantial structural changes. Here, we construct a coarse-grained model of the catalytic domain incorporating experimental structures for the two stable states, and simulate the dynamics of conformational transitions in kinase activation. We explore the transition energy landscapes by constructing a structural network among clusters of conformations from the simulations. From the structural network, two major ensembles of pathways for the activation are identified. In the first transition pathway, we find a coordinated switching mechanism of interactions among the alphaC helix, the activation-loop, and the beta strands in the N-lobe of the catalytic domain. In a second pathway, the conformational change is coupled to a partial unfolding of the N-lobe region of the catalytic domain. We also characterize the switching mechanism for the alphaC helix and the activation-loop in detail. Finally, we test the performance of a Markov model and its ability to account for the structural kinetics in the context of Src conformational changes. Taken together, these results provide a broad framework for understanding the main features of the conformational transition taking place upon Src activation.

  6. Pathogen-secreted proteases activate a novel plant immune pathway.

    Science.gov (United States)

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J; Sheen, Jen; Ausubel, Frederick M

    2015-05-14

    Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gβ, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.

  7. Androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway: Insights into enzyme activities and steroid fluxes in healthy infants during the first year of life from the urinary steroid metabolome.

    Science.gov (United States)

    Dhayat, Nasser A; Dick, Bernhard; Frey, Brigitte M; d'Uscio, Claudia H; Vogt, Bruno; Flück, Christa E

    2017-01-01

    The steroid profile changes dramatically from prenatal to postnatal life. Recently, a novel backdoor pathway for androgen biosynthesis has been discovered. However, its role remains elusive. Therefore, we investigated androgen production from birth to one year of life with a focus on minipuberty and on production of androgens through the backdoor pathway. Additionally, we assessed the development of the specific steroid enzyme activities in early life. To do so, we collected urine specimens from diapers in 43 healthy newborns (22 females) at 13 time points from birth to one year of age in an ambulatory setting, and performed in house GC-MS steroid profiling for 67 steroid metabolites. Data were analyzed for androgen production through the classic and backdoor pathway and calculations of diagnostic ratios for steroid enzyme activities were performed. Analysis revealed that during minipuberty androgen production is much higher in boys than in girls (e.g. androsterone (An)), originates largely from the testis (An boys -An girls ), and uses predominantly the alternative backdoor pathway (An/Et; Δ5metabolome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. An assay for the mannan-binding lectin pathway of complement activation

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Thiel, S; Jensen, L

    2001-01-01

    activation. Therefore, in a generally applicable complement activation assay specific for the MBL pathway, the activity of the classical pathway must be inhibited. This can be accomplished by exploiting the finding that high ionic strength buffers inhibit the binding of C1q to immune complexes and disrupt...

  9. Activation of the TOR Signalling Pathway by Glutamine Regulates Insect Fecundity.

    Science.gov (United States)

    Zhai, Yifan; Sun, Zhongxiang; Zhang, Jianqing; Kang, Kui; Chen, Jie; Zhang, Wenqing

    2015-05-29

    The target of rapamycin (TOR) positively controls cell growth in response to nutrients such as amino acids. However, research on the specific nutrients sensed by TOR is limited. Glutamine (Gln), a particularly important amino acid involved in metabolism in organisms, is synthesised and catalysed exclusively by glutamine synthetase (GS), and our previous studies have shown that Gln may regulate fecundity in vivo levels of the brown planthopper (BPH) Nilaparvata lugens. Until now, it has remained unclear whether Gln activates or inhibits the TOR signalling pathway. Here, we performed the combined analyses of iTRAQ (isobaric tags for relative and absolute quantification) and DGE (tag-based digital gene expression) data in N. lugens at the protein and transcript levels after GS RNAi, and we found that 52 pathways overlap, including the TOR pathway. We further experimentally demonstrate that Gln activates the TOR pathway by promoting the serine/threonine protein kinase AKT and inhibiting the 5'AMP-activated protein kinase AMPK phosphorylation activity in the pest. Furthermore, TOR regulates the fecundity of N. lugens probably by mediating vitellogenin (Vg) expression. This work is the first report that Gln activates the TOR pathway in vivo.

  10. Mediated Pathways from Maternal Depression and Early Parenting to Children's Executive Function and Externalizing Behaviour Problems

    Science.gov (United States)

    Baker, Claire; Kuhn, Laura

    2018-01-01

    Structural equation models were used to examine pathways from maternal depression and early parenting to children's executive function (EF) and externalizing behaviours in the first nationally representative study to obtain direct assessments of children's kindergarten EF skills (i.e., the Early Childhood Longitudinal Study Kindergarten Class of…

  11. Cardiac extrinsic apoptotic pathway is silent in young but activated in elder mice overexpressing bovine GH: interplay with the intrinsic pathway.

    Science.gov (United States)

    Bogazzi, Fausto; Russo, Dania; Raggi, Francesco; Bohlooly-Y, Mohammad; Tornell, Jan; Sardella, Chiara; Lombardi, Martina; Urbani, Claudio; Manetti, Luca; Brogioni, Sandra; Martino, Enio

    2011-08-01

    Apoptosis may occur through the mitochondrial (intrinsic) pathway and activation of death receptors (extrinsic pathway). Young acromegalic mice have reduced cardiac apoptosis whereas elder animals have increased cardiac apoptosis. Multiple intrinsic apoptotic pathways have been shown to be modulated by GH and other stimuli in the heart of acromegalic mice. However, the role of the extrinsic apoptotic pathways in acromegalic hearts is currently unknown. In young (3-month-old) acromegalic mice, expression of proteins of the extrinsic apoptotic pathway did not differ from that of wild-type animals, suggesting that this mechanism did not participate in the lower cardiac apoptosis levels observed at this age. On the contrary, the extrinsic pathway was active in elder (9-month-old) animals (as shown by increased expression of TRAIL, FADD, TRADD and increased activation of death inducing signaling complex) leading to increased levels of active caspase 8. It is worth noting that changes of some pro-apoptotic proteins were induced by GH, which seemed to have, in this context, pro-apoptotic effects. The extrinsic pathway influenced the intrinsic pathway by modulating t-Bid, the cellular levels of which were reduced in young and increased in elder animals. However, in young animals this effect was due to reduced levels of Bid regulated by the extrinsic pathway, whereas in elder animals the increased levels of t-Bid were due to the increased levels of active caspase 8. In conclusion, the extrinsic pathway participates in the cardiac pro-apoptotic phenotype of elder acromegalic animals either directly, enhancing caspase 8 levels or indirectly, increasing t-Bid levels and conveying death signals to the intrinsic pathway.

  12. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Yue; Li, Hongbo; Hao, Jun; Zhou, Yi; Liu, Wei

    2014-01-01

    Podocytes are highly specialized and terminally differentiated glomerular cells that play a vital role in the development and progression of diabetic nephropathy (DN). Cyclin-dependent kinase 5 (Cdk5), who is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases, has been shown as a key regulator of podocyte differentiation, proliferation and morphology. Our previous studies demonstrated that the expression of Cdk5 was significantly increased in podocytes of diabetic rats, and was closely related with podocyte injury of DN. However, the mechanisms of how expression and activity of Cdk5 are regulated under the high glucose environment have not yet been fully elucidated. In this study, we showed that high glucose up-regulated the expression of Cdk5 and its co-activator p35 with a concomitant increase in Cdk5 kinase activity in conditionally immortalized mouse podocytes in vitro. When exposed to 30 mM glucose, transforming growth factor-β1 (TGF-β1) was activated. Most importantly, we found that SB431542, the Tgfbr1 inhibitor, significantly decreased the expression of Cdk5 and p35 and Cdk5 kinase activity in high glucose-treated podocytes. Moreover, high glucose increased the expression of early growth response-1 (Egr-1) via TGF-β1-ERK1/2 pathway in podocytes and inhibition of Egr-1 by siRNA decreased p35 expression and Cdk5 kinase activity. Furthermore, inhibition of Cdk5 kinase activity effectively alleviated podocyte apoptosis induced by high glucose or TGF-β1. Thus, the TGF-β1-ERK1/2-Egr-1 signaling pathway may regulate the p35 expression and Cdk5 kinase activity in high glucose-treated podocytes, which contributes to podocyte injury of DN. - Highlights: • HG up-regulated the expression of Cdk5 and p35, and Cdk5 activity in podocytes. • HG activated TGF-β1 pathway and SB431542 inhibited Cdk5 expression and activity. • HG increased the expression of Egr-1 via TGF-β1-ERK1/2 pathway. • Inhibition of Egr-1

  13. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors.

    Science.gov (United States)

    Loboda, Andrey; Nebozhyn, Michael; Klinghoffer, Rich; Frazier, Jason; Chastain, Michael; Arthur, William; Roberts, Brian; Zhang, Theresa; Chenard, Melissa; Haines, Brian; Andersen, Jannik; Nagashima, Kumiko; Paweletz, Cloud; Lynch, Bethany; Feldman, Igor; Dai, Hongyue; Huang, Pearl; Watters, James

    2010-06-30

    Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.

  14. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

    Directory of Open Access Journals (Sweden)

    Paweletz Cloud

    2010-06-01

    Full Text Available Abstract Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90% sensitivity but relatively low (50% specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical

  15. Phyllosilicate weathering pathways in chlorite-talc bearing soil parent materials, D.R. Congo: early findings.

    Science.gov (United States)

    Dumon, Mathijs; Oostermeyer, Fran; Timmermans, Els; De Meulemeester, Aschwin; Mees, Florias; Van Driessche, Isabel; Erens, Hans; Bazirake Mujinya, Basile; Van Ranst, Eric

    2015-04-01

    The study of the formation and transformation of clay minerals is of the upmost importance to understand soil formation and to adjust land-use management to the land surface conditions. These clay minerals determine to a large extent the soil physical and chemical properties. It is commonly observed that over time the mineralogy of any parent material is transformed to a simple assemblage composed mostly of Al and Fe oxides and low-activity clays, e.g. kaolinite. This is especially obvious in the humid tropics, which have been protected from glacial erosion, allowing deep, highly weathered soils to form. Despite the abundant presence of kaolinite in these soils, its formation pathways are still under debate: either neoformation by dissolution-crystallisation reactions or solid-state transformation of 2:1 phyllosilicates. To elucidate this, weathering sequences in a unique 40 m core taken below a termite mound, reaching a talc-chlorite bearing substrate in the Lubumbashi area, Katanga, DR Congo are being investigated in detail using a.o. quantitative X-ray diffraction analysis, chemical characterization, micromorphology and µXRF-scanning with the main objective to improve the understanding of the formation pathways of kaolinite subgroup minerals in humid tropical environments. Based on an initial characterization of the core, two zones of interest were selected for more detailed analysis, for which the early findings will be presented. The first zone extends from ca. 9 m to 11 m below the surface is dominated by kaolinite but shows early traces of primary talc and micas. The second zone extends from 34 to 36 m below the surface and contains large amounts of chlorite, with smaller amounts of talc, micas and kaolinite.

  16. Ca2+/nuclear factor of activated T cells signaling is enriched in early-onset rectal tumors devoid of canonical Wnt activation.

    Science.gov (United States)

    Kumar, Raju; Raman, Ratheesh; Kotapalli, Viswakalyan; Gowrishankar, Swarnalata; Pyne, Saumyadipta; Pollack, Jonathan R; Bashyam, Murali D

    2018-02-01

    Our previous extensive analysis revealed a significant proportion of early-onset colorectal tumors from India to be localized to the rectum in younger individuals and devoid of deregulated Wnt/β-catenin signaling. In the current study, we performed a comprehensive genome-wide analysis of clinically well-annotated microsatellite stable early-onset sporadic rectal cancer (EOSRC) samples. Results revealed extensive DNA copy number alterations in rectal tumors in the absence of deregulated Wnt/β-catenin signaling. More importantly, transcriptome profiling revealed a (non-Wnt/β-catenin, non-MSI) genetic signature that could efficiently and specifically identify Wnt- rectal cancer. The genetic signature included a significant representation of genes belonging to Ca 2+ /NFAT signaling pathways that were validated in additional samples. The validated NFAT target genes exhibited significantly higher expression levels than canonical Wnt/β-catenin targets in Wnt- samples, an observation confirmed in other CRC expression data sets as well. We confirmed the validated genes to be transcriptionally regulated by NFATc1 by (a) evaluating their respective transcript levels and (b) performing promoter-luciferase and chromatin immunoprecipitation assays following ectopic expression as well as knockdown of NFATc1 in CRC cells. NFATc1 and its targets RUNX2 and GSN could drive increased migration in CRC cells. Finally, the validated genes were associated with poor survival in the cancer genome atlas CRC expression data set. This study is the first comprehensive molecular characterization of EOSRC that appears to be driven by noncanonical tumorigenesis pathways. Early-onset sporadic rectal cancer exhibits DNA gain and loss without Wnt activation. Ca 2+ /NFAT signaling appears to be activated in the absence of Wnt activation. An eight-gene genetic signature distinguishes Wnt+ and Wnt- rectal tumors. NFAT and its target genes regulate tumorigenic properties in CRC cells.

  17. The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation.

    Science.gov (United States)

    Romine, Jennifer; Gao, Xiang; Xu, Xiao-Ming; So, Kwok Fai; Chen, Jinhui

    2015-04-01

    A decrease in neurogenesis in the aged brain has been correlated with cognitive decline. The molecular signaling that regulates age-related decline in neurogenesis is still not fully understood. We found that different subtypes of neural stem cells (NSCs) in the hippocampus were differentially impaired by aging. The quiescent NSCs decreased slowly, although the active NSCs exhibited a sharp and dramatic decline from the ages of 6-9 months and became more quiescent at an early stage during the aging process. The activity of the mammalian target of rapamycin (mTOR) signal pathway is compromised in the NSCs of the aged brain. Activating the mTOR signaling pathway increased NSC proliferation and promoted neurogenesis in aged mice. In contrast, inhibiting the mTOR signaling pathway decreased NSCs proliferation. These results indicate that an age-associated decline in neurogenesis is mainly because of the reduction in proliferation of active NSCs, at least partially because of the compromise in the mTOR signaling activity. Stimulating the mTOR signaling revitalizes the NSCs, restores their proliferation, and enhances neurogenesis in the hippocampus of the aged brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Activation of DNA damage repair pathways by murine polyomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert L., E-mail: Robert.Garcea@Colorado.edu

    2016-10-15

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling. ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. -- Highlights: •Murine polyomavirus activates and recruits DNA damage repair (DDR) proteins to replication centers. •Large T-antigen mediates recruitment of DDR proteins to viral replication centers. •Inhibition or knockout of CHK1, CHK2, DNA-PK or H2AX do not affect viral titers. •Inhibition of ATR activity reduces viral titers, but not viral DNA accumulation.

  19. EDF-1 downregulates the CaM/Cn/NFAT signaling pathway during adipogenesis

    International Nuclear Information System (INIS)

    López-Victorio, Carlos J.; Velez-delValle, Cristina; Beltrán-Langarica, Alicia; Kuri-Harcuch, Walid

    2013-01-01

    Highlights: ► EDF-1 participates early adipogenesis in 3T3F442A cells induced with Staurosporine/Dexamethasone. ► EDF-1 associates with CaM and Cn, most likely inactivating Cn. ► EDF-1/CaM complex seems to prevent NFATc1 activation by Cn. ► EDF-1 regulates the Cn/CaM/NFATc1 pathway during adipogenesis. ► EDF-1 may regulate the activation of Cn through a complex formation with CaM. - Abstract: The endothelial differentiation factor-1 (EDF-1) is a calmodulin binding protein that regulates calmodulin-dependent enzymes. In endothelial cells, this factor can form a protein complex with calmodulin. We analyzed the relationship between this factor and the members of calmodulin/calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway during adipogenesis of 3T3-F442A cells. We found that the expression of edf1 is upregulated during early adipogenesis, whereas that of calcineurin gene is lowered, suggesting that this pathway should be downregulated to allow for adipogenesis to occur. We also found that EDF-1 associates with calmodulin and calcineurin, most likely inactivating calcineurin. Our results showed that EDF-1 inactivates the calmodulin/calcineurin/NFAT pathway via sequestration of calmodulin, during early adipogenesis, and we propose a mechanism that negatively regulates the activation of calcineurin through a complex formation between EDF-1 and calmodulin. This finding raises the possibility that modulating this pathway might offer some alternatives to regulate adipose biology

  20. EDF-1 downregulates the CaM/Cn/NFAT signaling pathway during adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    López-Victorio, Carlos J.; Velez-delValle, Cristina; Beltrán-Langarica, Alicia [Department of Cell Biology, Center for Research and Advanced Studies-IPN, Apdo. Postal 14-740, México City 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Center for Research and Advanced Studies-IPN, Apdo. Postal 14-740, México City 07000 (Mexico)

    2013-03-01

    Highlights: ► EDF-1 participates early adipogenesis in 3T3F442A cells induced with Staurosporine/Dexamethasone. ► EDF-1 associates with CaM and Cn, most likely inactivating Cn. ► EDF-1/CaM complex seems to prevent NFATc1 activation by Cn. ► EDF-1 regulates the Cn/CaM/NFATc1 pathway during adipogenesis. ► EDF-1 may regulate the activation of Cn through a complex formation with CaM. - Abstract: The endothelial differentiation factor-1 (EDF-1) is a calmodulin binding protein that regulates calmodulin-dependent enzymes. In endothelial cells, this factor can form a protein complex with calmodulin. We analyzed the relationship between this factor and the members of calmodulin/calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway during adipogenesis of 3T3-F442A cells. We found that the expression of edf1 is upregulated during early adipogenesis, whereas that of calcineurin gene is lowered, suggesting that this pathway should be downregulated to allow for adipogenesis to occur. We also found that EDF-1 associates with calmodulin and calcineurin, most likely inactivating calcineurin. Our results showed that EDF-1 inactivates the calmodulin/calcineurin/NFAT pathway via sequestration of calmodulin, during early adipogenesis, and we propose a mechanism that negatively regulates the activation of calcineurin through a complex formation between EDF-1 and calmodulin. This finding raises the possibility that modulating this pathway might offer some alternatives to regulate adipose biology.

  1. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    International Nuclear Information System (INIS)

    Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.; Gaido, Kevin W.; Ierapetritou, Marianthi G.; Androulakis, Ioannis P.

    2013-01-01

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data

  2. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    Energy Technology Data Exchange (ETDEWEB)

    Ovacik, Meric A. [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Sen, Banalata [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709 (United States); Euling, Susan Y. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Gaido, Kevin W. [U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Division of Human Food Safety, Rockville, MD 20855 (United States); Ierapetritou, Marianthi G. [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Androulakis, Ioannis P., E-mail: yannis@rci.rutgers.edu [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Biomedical Engineering Department, Rutgers University, NJ 08854 (United States)

    2013-09-15

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.

  3. Early biotic stress detection in tomato (Solanum lycopersicum) by BVOC emissions.

    Science.gov (United States)

    Kasal-Slavik, Tina; Eschweiler, Julia; Kleist, Einhard; Mumm, Roland; Goldbach, Heiner E; Schouten, Alexander; Wildt, Jürgen

    2017-12-01

    We investigated impacts of early and mild biotic stress on Biogenic Volatile Organic Compounds (BVOC) emissions from tomato in order to test their potential for early (biotic) stress detection. Tomato plants were exposed to two common fungal pathogens, Botrytis cinerea and Oidium neolycopesici and the sap-sucking aphid Myzus persicae. Furthermore, plants were exposed to methyl jasmonate (MeJA) in order to identify BVOC emissions related to activation of jasmonic acid (JA) signalling pathway. These emissions where then used as a reference for identifying active JA signalling pathway in plants at early stages of biotic stress. After infection by the necrotrophic fungus B. cinerea, changes in BVOC emissions indicated that tomato plants had predominantly activated the jasmonic acid (JA) signalling pathway. The plants were able to modify their defence pathways in order to overcome fungal infection. When tomato plants were infected with the biotrophic fungus O. neolycopersici, only minor changes in BVOC emissions were observed with additional emissions of the sesquiterpene α-copaene. α-copaene emissions allowed the identification of general biotic stress in the plants, without pinpointing the actual triggered defence pathway. BVOC emissions during M. persicae attack had changed before the occurrence of visual symptoms. Despite low infestation rates, plants emitted methyl salicylate indicating activation of the SA-mediated defence pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Key Markers of mTORC1-Dependent and mTORC1-Independent Signaling Pathways Regulating Protein Synthesis in Rat Soleus Muscle During Early Stages of Hindlimb Unloading.

    Science.gov (United States)

    Mirzoev, Timur; Tyganov, Sergey; Vilchinskaya, Natalia; Lomonosova, Yulia; Shenkman, Boris

    2016-01-01

    The purpose of the study was to assess the amount of rRNA and phosphorylation status of the key markers of mTORC1-dependent (70s6k, 4E-BP1) and mTORC1-independent (GSK-3β, AMPK) signaling pathways controlling protein synthesis in rat soleus during early stages of mechanical unloading (hindlimb suspension (HS) for 1-, 3- and 7 days). The content of the key signaling molecules of various anabolic signaling pathways was determined by Western-blotting. The amount of 28S rRNA was evaluated by RT-PCR. The rate of protein synthesis was assessed using in-vivo SUnSET technique. HS for 3 and 7 days induced a significant (pprotein synthesis in soleus muscle in comparison with control. HS within 24 hours resulted in a significant (pprotein synthesis in rat soleus during early stages of simulated microgravity is associated with impaired ribosome biogenesis as well as reduced activity of mTORC1-independent signaling pathways. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Association of Lectin Pathway Protein Levels and Genetic Variants Early after Injury with Outcomes after Severe Traumatic Brain Injury: A Prospective Cohort Study.

    Science.gov (United States)

    Osthoff, Michael; Walder, Bernhard; Delhumeau, Cécile; Trendelenburg, Marten; Turck, Natacha

    2017-09-01

    The lectin pathway of the complement system has been implicated in secondary ischemic/inflammatory injury after traumatic brain injury (TBI). However, previous experimental studies have yielded conflicting results, and human studies are scarce. In this exploratory study, we investigated associations of several lectin pathway proteins early after injury and single-nucleotide polymorphisms (SNP) with outcomes after severe TBI (mortality at 14 days [primary outcome] and consciousness assessed with the Glasgow Coma Scale [GCS] at 14 days, disability assessed with the Glasgow Outcome Scale Extended [GOSE] at 90 days). Forty-four patients with severe TBI were included. Plasma levels of lectin pathway proteins were sampled at 6, 12, 24, and 48 h after injury and eight mannose-binding lectin (MBL) and ficolin (FCN)2 SNPs were analyzed by enzyme-linked immunosorbent assay (ELISA) and genotyping, respectively. Plasma protein levels were stable with only a slight increase in mannose-binding protein-associated serine protease (MASP)-2 and FCN2 levels after 48 h (p GOSE 1-4) at 90 days (p GOSE score < 4 at 90 days after adjustment (odds ratio 3.46 [95% confidence interval 1.12-10.68] per 100 ng/mL increase, p = 0.03). No association was observed between the lectin pathway of the complement system and 14 day mortality or 14 day consciousness. However, higher plasma FCN2, FCN3, and, in particular, MASP-2 levels early after injury were associated with an unfavorable outcome at 90 days (death, vegetative state, and severe disability) which may be related to an increased activation of the lectin pathway.

  6. CNS germinomas are characterized by global demethylation, chromosomal instability and mutational activation of the Kit-, Ras/Raf/Erk- and Akt-pathways

    Science.gov (United States)

    Schulte, Simone Laura; Waha, Andreas; Steiger, Barbara; Denkhaus, Dorota; Dörner, Evelyn; Calaminus, Gabriele; Leuschner, Ivo; Pietsch, Torsten

    2016-01-01

    CNS germinomas represent a unique germ cell tumor entity characterized by undifferentiated tumor cells and a high response rate to current treatment protocols. Limited information is available on their underlying genomic, epigenetic and biological alterations. We performed a genome-wide analysis of genomic copy number alterations in 49 CNS germinomas by molecular inversion profiling. In addition, CpG dinucleotide methylation was studied by immunohistochemistry for methylated cytosine residues. Mutational analysis was performed by resequencing of candidate genes including KIT and RAS family members. Ras/Erk and Akt pathway activation was analyzed by immunostaining with antibodies against phospho-Erk, phosho-Akt, phospho-mTOR and phospho-S6. All germinomas coexpressed Oct4 and Kit but showed an extensive global DNA demethylation compared to other tumors and normal tissues. Molecular inversion profiling showed predominant genomic instability in all tumors with a high frequency of regional gains and losses including high level gene amplifications. Activating mutations of KIT exons 11, 13, and 17 as well as a case with genomic KIT amplification and activating mutations or amplifications of RAS gene family members including KRAS, NRAS and RRAS2 indicated mutational activation of crucial signaling pathways. Co-activation of Ras/Erk and Akt pathways was present in 83% of germinomas. These data suggest that CNS germinoma cells display a demethylated nuclear DNA similar to primordial germ cells in early development. This finding has a striking coincidence with extensive genomic instability. In addition, mutational activation of Kit-, Ras/Raf/Erk- and Akt- pathways indicate the biological importance of these pathways and their components as potential targets for therapy. PMID:27391150

  7. Herpes simplex virus triggers activation of calcium-signaling pathways

    Science.gov (United States)

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  8. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    Science.gov (United States)

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi

    Science.gov (United States)

    2013-01-01

    Background Ceramide accumulation is considered a contributing factor to neuronal dysfunction and damage. However, the underlying mechanisms that occur following ischemic insult are still unclear. Methods In the present study, we established cerebral ischemia models using four-vessel occlusion and oxygen-glucose deprivation methods. The hippocampus neural cells were subjected to immunohistochemistry and immunofluorescence staining for ceramide and neutral sphingomyelinase 2 (nSMase2) levels; immunoprecipitation and immunoblot analysis for nSMase2, receptor for activated C kinase 1 (RACK1), embryonic ectoderm development (EED), p38 mitogen-activated protein kinase (p38MAPK) and phosphorylated p38MAPK expression; SMase assay for nSMase and acid sphingomyelinase (aSMase) activity; real-time reverse transcription polymerase chain reaction for cytokine expression; and Nissl, microtubule-associated protein 2 and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining. Results We found considerable production of ceramide in astrocytes, but not in neurons, during early cerebral ischemia. This was accompanied by the induction of nSMase (but not aSMase) activity in the rat hippocampi. The inhibition of nSMase2 activity effectively reduced ceramide accumulation in astrocytes and alleviated neuronal damage to some extent. Meanwhile, the expression levels of proinflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6, were found to be upregulated, which may have played an import role in neuronal damage mediated by the nSMase2/ceramide pathway. Although enhanced binding of nSMase2 with RACK1 and EED were also observed after cerebral ischemia, nSMase2 activity was not blocked by the TNF-α receptor inhibitor through RACK1/EED signaling. p38MAPK, but not protein kinase Cζ or protein phosphatase 2B, was able to induce nSMase2 activation after ischemia. p38MAPK can be induced by A2B adenosine

  10. Early adverse experience and substance addiction: dopamine, oxytocin, and glucocorticoid pathways

    Science.gov (United States)

    Kim, Sohye; Kwok, Stephanie; Mayes, Linda C.; Potenza, Marc N.; Rutherford, Helena J. V.; Strathearn, Lane

    2016-01-01

    Substance addiction may follow a chronic, relapsing course and critically undermine the physical and psychological well-being of the affected individual and the social units of which the individual is a member. Despite the public health burden associated with substance addiction, treatment options remain suboptimal, with relapses often seen. The present review synthesizes growing insights from animal and human research to shed light upon developmental and neurobiological pathways that may increase susceptibility to addiction. We examine the dopamine system, the oxytocin system, and the glucocorticoid system, as they are particularly relevant to substance addiction. Our aim is to delineate how early adverse experience may induce long-lasting alterations in each of these systems at molecular, neuroendocrine, and behavioral levels and ultimately lead to heightened vulnerability to substance addiction. We further discuss how substance addiction in adulthood may increase the risk of suboptimal caregiving for the next generation, perpetuating the intergenerational cycle of early adverse experiences and addiction. PMID:27508337

  11. Very early onset inflammatory bowel disease: Investigation of the IL-10 signaling pathway in Iranian children

    NARCIS (Netherlands)

    Nemati, Shahram; Teimourian, Shahram; Tabrizi, Mina; Najafi, Mehri; Dara, Naghi; Imanzadeh, Farid; Ahmadi, Mitra; Aghdam, Maryam Kazemi; Tavassoli, Mohmoud; Rohani, Pejman; Madani, Seyyed Ramin; de Boer, Martin; Kuijpers, T. W.; Roos, Dirk

    2017-01-01

    Background & aim: Comparing to adult inflammatory bowel disease (IBD), those with early onset manifestations have different features in terms of the underlying molecular pathology, the course of disease and the response to therapy. We investigated the IL-10 signaling pathway previously reported as

  12. Important first encounter: Service user experience of pathways to care and early detection in first-episode psychosis.

    Science.gov (United States)

    Jansen, Jens Einar; Pedersen, Marlene Buch; Hastrup, Lene Halling; Haahr, Ulrik Helt; Simonsen, Erik

    2018-04-01

    Long duration of untreated psychosis is associated with poor clinical and functional outcomes. However, few systematic attempts have been made to reduce this delay and little is known of service users' experience of early detection efforts. We explored service users' experience of an early detection service and transition to specialized treatment service, including pathway to care, understanding of illness and barriers to adequate assessment and treatment. In-depth interviews were conducted with 10 service users (median age 21, range 18-27, five males and five females) who were diagnosed with a first-episode non-affective psychosis and who were seen by an early detection team (TOP) and currently enrolled in a specialized early intervention service for this disorder (OPUS). Stigma and fear of the 'psychiatric system' were reported as significant barriers to help seeking, while family members were seen as a crucial support. Moreover, the impact of traumatic events on the experience and development of psychosis was highlighted. Finally, participants were relieved by the prospect of receiving help and the early detection team seemed to create a trusting relationship by offering a friendly, 'anti-stigmatized' space, where long-term symptomatology could be disclosed through accurate and validating questioning. Early detection services have two important functions. One is to make accurate assessments and referrals. The other is to instil hope and trust, and to facilitate further treatment by forming an early therapeutic alliance. The findings in this study provide important insights into the way in which early detection efforts and pathways to care are experienced by service users, with direct implications for improving psychiatric services. © 2015 Wiley Publishing Asia Pty Ltd.

  13. BLM promotes the activation of Fanconi Anemia signaling pathway.

    Science.gov (United States)

    Panneerselvam, Jayabal; Wang, Hong; Zhang, Jun; Che, Raymond; Yu, Herbert; Fei, Peiwen

    2016-05-31

    Mutations in the human RecQ helicase, BLM, causes Bloom Syndrome, which is a rare autosomal recessive disorder and characterized by genomic instability and an increased risk of cancer. Fanconi Anemia (FA), resulting from mutations in any of the 19 known FA genes and those yet to be known, is also characterized by chromosomal instability and a high incidence of cancer. BLM helicase and FA proteins, therefore, may work in a common tumor-suppressor signaling pathway. To date, it remains largely unclear as to how BLM and FA proteins work concurrently in the maintenance of genome stability. Here we report that BLM is involved in the early activation of FA group D2 protein (FANCD2). We found that FANCD2 activation is substantially delayed and attenuated in crosslinking agent-treated cells harboring deficient Blm compared to similarly treated control cells with sufficient BLM. We also identified that the domain VI of BLM plays an essential role in promoting FANCD2 activation in cells treated with DNA crosslinking agents, especially ultraviolet B. The similar biological effects performed by ΔVI-BLM and inactivated FANCD2 further confirm the relationship between BLM and FANCD2. Mutations within the domain VI of BLM detected in human cancer samples demonstrate the functional importance of this domain, suggesting human tumorigenicity resulting from mtBLM may be at least partly attributed to mitigated FANCD2 activation. Collectively, our data show a previously unknown regulatory liaison in advancing our understanding of how the cancer susceptibility gene products act in concert to maintain genome stability.

  14. DMPD: Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways inmacrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502339 Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways inmacrophage...May 14. (.png) (.svg) (.html) (.csml) Show Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways inmacrophage...T, Toll-like receptor, and ITAM-dependent pathways inmacrophage activation. Authors Hu X, Chen J, Wang L, Iv

  15. The NRF2-KEAP1 Pathway Is an Early Responsive Gene Network in Arsenic Exposed Lymphoblastoid Cells

    Science.gov (United States)

    Córdova, Emilio J.; Martínez-Hernández, Angélica; Uribe-Figueroa, Laura; Centeno, Federico; Morales-Marín, Mirna; Koneru, Harsha; Coleman, Matthew A.; Orozco, Lorena

    2014-01-01

    Inorganic arsenic (iAs), a major environmental contaminant, has risen as an important health problem worldwide. More detailed identification of the molecular mechanisms associated with iAs exposure would help to establish better strategies for prevention and treatment. Although chronic iAs exposures have been previously studied there is little to no information regarding the early events of exposure to iAs. To better characterize the early mechanisms of iAs exposure we conducted gene expression studies using sublethal doses of iAs at two different time-points. The major transcripts differentially regulated at 2 hrs of iAs exposure included antioxidants, detoxificants and chaperones. Moreover, after 12 hrs of exposure many of the down-regulated genes were associated with DNA replication and S phase cell cycle progression. Interestingly, the most affected biological pathway by both 2 or 12 hrs of iAs exposure were the Nrf2-Keap1 pathway, represented by the highly up-regulated HMOX1 transcript, which is transcriptionally regulated by the transcription factor Nrf2. Additional Nrf2 targets included SQSTM1 and ABCB6, which were not previously associated with acute iAs exposure. Signalling pathways such as interferon, B cell receptor and AhR route were also responsive to acute iAs exposure. Since HMOX1 expression increased early (20 min) and was responsive to low iAs concentrations (0.1 µM), this gene could be a suitable early biomarker for iAs exposure. In addition, the novel Nrf2 targets SQSTM1 and ABCB6 could play an important and previously unrecognized role in cellular protection against iAs. PMID:24516582

  16. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis.

    Science.gov (United States)

    Durfee, Tim; Roe, Judith L; Sessions, R Allen; Inouye, Carla; Serikawa, Kyle; Feldmann, Kenneth A; Weigel, Detlef; Zambryski, Patricia C

    2003-07-08

    The UNUSUAL FLORAL ORGANS (UFO) gene is required for multiple processes in the developing Arabidopsis flower, including the proper patterning and identity of both petals and stamens. The gene encodes an F-box-containing protein, UFO, which interacts physically and genetically with the Skp1 homolog, ASK1. In this report, we describe four ufo alleles characterized by the absence of petals, which uncover another role for UFO in promoting second whorl development. This UFO-dependent pathway is required regardless of the second whorl organ to be formed, arguing that it affects a basic process acting in parallel with those establishing organ identity. However, the pathway is dispensable in the absence of AGAMOUS (AG), a known inhibitor of petal development. In situ hybridization results argue that AG is not transcribed in the petal region, suggesting that it acts non-cell-autonomously to inhibit second whorl development in ufo mutants. These results are combined into a genetic model explaining early second whorl initiation/proliferation, in which UFO functions to inhibit an AG-dependent activity.

  17. Repeated allergen exposure reduce early phase airway response and leukotriene release despite upregulation of 5-lipoxygenase pathways

    Directory of Open Access Journals (Sweden)

    Cui Zhi-Hua

    2012-03-01

    Full Text Available Abstract Background Allergen induced early phase airway response and airway plasma exudation are predominantly mediated by inflammatory mast cell mediators including histamine, cysteinyl leukotrienes (cysLTs and thromboxane A2 (TXA2. The aim of the present study was to evaluate whether repeated allergen exposure affects early phase airway response to allergen challenge. Methods A trimellitic anhydride (TMA sensitized guinea pig model was used to investigate the effects of low dose repeated allergen exposure on cholinergic airway responsiveness, early phase airway response and plasma exudation, as well as local airway production of mast cell derived cysteinyl leukotrienes and thromboxane B2 (TXB2 after allergen challenge. Results Repeated low dose allergen exposure increased cholinergic airway responsiveness. In contrast, early phase airway response and plasma exudation in response to a high-dose allergen challenge were strongly attenuated after repeated low dose allergen exposure. Inhibition of the airway response was unspecific to exposed allergen and independent of histamine receptor blocking. Furthermore, a significant reduction of cysteinyl leukotrienes and TXB2 was found in the airways of animals repeatedly exposed to a low dose allergen. However, in vitro stimulation of airway tissue from animals repeatedly exposed to a low dose allergen with arachidonic acid and calcium ionophore (A23187 induced production of cysteinyl leukotrienes and TXB2, suggesting enhanced activity of 5-lipoxygenase and cyclooxygenase pathways. Conclusions The inhibition of the early phase airway response, cysteinyl leukotriene and TXB2 production after repeated allergen exposure may result from unresponsive effector cells.

  18. Alterations in leukocyte transcriptional control pathway activity associated with major depressive disorder and antidepressant treatment.

    Science.gov (United States)

    Mellon, S H; Wolkowitz, O M; Schonemann, M D; Epel, E S; Rosser, R; Burke, H B; Mahan, L; Reus, V I; Stamatiou, D; Liew, C-C; Cole, S W

    2016-05-24

    Major depressive disorder (MDD) is associated with a significantly elevated risk of developing serious medical illnesses such as cardiovascular disease, immune impairments, infection, dementia and premature death. Previous work has demonstrated immune dysregulation in subjects with MDD. Using genome-wide transcriptional profiling and promoter-based bioinformatic strategies, we assessed leukocyte transcription factor (TF) activity in leukocytes from 20 unmedicated MDD subjects versus 20 age-, sex- and ethnicity-matched healthy controls, before initiation of antidepressant therapy, and in 17 of the MDD subjects after 8 weeks of sertraline treatment. In leukocytes from unmedicated MDD subjects, bioinformatic analysis of transcription control pathway activity indicated an increased transcriptional activity of cAMP response element-binding/activating TF (CREB/ATF) and increased activity of TFs associated with cellular responses to oxidative stress (nuclear factor erythroid-derived 2-like 2, NFE2l2 or NRF2). Eight weeks of antidepressant therapy was associated with significant reductions in Hamilton Depression Rating Scale scores and reduced activity of NRF2, but not in CREB/ATF activity. Several other transcriptional regulation pathways, including the glucocorticoid receptor (GR), nuclear factor kappa-B cells (NF-κB), early growth response proteins 1-4 (EGR1-4) and interferon-responsive TFs, showed either no significant differences as a function of disease or treatment, or activities that were opposite to those previously hypothesized to be involved in the etiology of MDD or effective treatment. Our results suggest that CREB/ATF and NRF2 signaling may contribute to MDD by activating immune cell transcriptome dynamics that ultimately influence central nervous system (CNS) motivational and affective processes via circulating mediators.

  19. Active Early: one-year policy intervention to increase physical activity among early care and education programs in Wisconsin

    Directory of Open Access Journals (Sweden)

    Tara L. LaRowe

    2016-07-01

    Full Text Available Abstract Background Early childcare and education (ECE is a prime setting for obesity prevention and the establishment of healthy behaviors. The objective of this quasi-experimental study was to examine the efficacy of the Active Early guide, which includes evidenced-based approaches, provider resources, and training, to improve physical activity opportunities through structured (i.e. teacher-led activity and environmental changes thereby increasing physical activity among children, ages 2–5 years, in the ECE setting. Methods Twenty ECE programs in Wisconsin, 7 family and 13 group, were included. An 80-page guide, Active Early, was developed by experts and statewide partners in the fields of ECE, public health, and physical activity and was revised by ECE providers prior to implementation. Over 12 months, ECE programs received on-site training and technical assistance to implement the strategies and resources provided in the Active Early guide. Main outcome measures included observed minutes of teacher-led physical activity, physical activity environment measured by the Environment and Policy Assessment and Observation (EPAO instrument, and child physical activity levels via accelerometry. All measures were collected at baseline, 6 months, and 12 months and were analyzed for changes over time. Results Observed teacher-led physical activity significantly increased from 30.9 ± 22.7 min at baseline to 82.3 ± 41.3 min at 12 months. The change in percent time children spent in sedentary activity decreased significantly after 12 months (−4.4 ± 14.2 % time, −29.2 ± 2.6 min, p < 0.02. Additionally, as teacher led-activity increased, percent time children were sedentary decreased (r = −0.37, p < 0.05 and percent time spent in light physical activity increased (r = 0.35, p < 0.05. Among all ECE programs, the physical activity environment improved significantly as indicated by multiple sub-scales of

  20. Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging.

    Science.gov (United States)

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2009-03-01

    Intervertebral discs at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the signaling pathways active in the postnatal intervertebral disc (IVD). The postnatal IVD is a complex structure, consisting of 3 histologically distinct components, the nucleus pulposus, fibrous anulus fibrosus, and endplate. These differentiate and grow during the first 9 weeks of age in the mouse. Identification of the major signaling pathways active during and after the growth and differentiation period will allow functional analysis using mouse genetics and identify targets for therapy for individual components of the disc. Antibodies specific for individual cell signaling pathways were used on cryostat sections of IVD at different postnatal ages to identify which components of the IVD were responding to major classes of intercellular signal, including sonic hedgehog, Wnt, TGFbeta, FGF, and BMPs. We present a spatial/temporal map of these signaling pathways during growth, differentiation, and aging of the disc. During growth and differentiation of the disc, its different components respond at different times to different intercellular signaling ligands. Most of these are dramatically downregulated at the end of disc growth.

  1. Regional imbalanced activation of the calcineurin/BAD apoptotic pathway and the PI3K/Akt survival pathway after myocardial infarction.

    Science.gov (United States)

    Li, Tieluo; Kilic, Ahmet; Wei, Xufeng; Wu, Changfu; Schwartzbauer, Gary; Yankey, G Kwame; DeFilippi, Christopher; Bond, Meredith; Wu, Zhongjun J; Griffith, Bartley P

    2013-06-05

    The underlying molecular mechanisms of the remodeling after myocardial infarction (MI) remain unclear. The purpose of this study was to investigate the role of a survival pathway (PI3K/Akt) and an apoptosis pathway (calcineurin/BAD) in the remodeling after MI in a large animal model. Ten Dorset hybrid sheep underwent 25% MI in the left ventricle (LV, n=10). Five sheep were used as sham control. The regional strain was calculated from sonomicrometry. Apoptosis and the activation of the PI3K/Akt and calcineurin/BAD pathways were evaluated in the non-ischemic adjacent zone and the remote zone relative to infarct by immunoblotting, immunoprecipitation, and immunofluorescence staining. Dilation and dysfunction of LV were present at 12 weeks after MI. The regional strain in the adjacent zone was significantly higher than in the remote zone at 12 weeks (36.6 ± 4.0% vs 9.5 ± 3.6%, pBAD pathways were activated in the adjacent zone. Dephosphorylation and translocation of BAD were evident in the adjacent zone. Regional correlation between the strain and the expression of calcineurin/BAD indicated that the activation was strain-related (R(2)=0.46, 0.48, 0.39 for calcineurin, BAD, mitochondrial BAD, respectively, pBAD apoptotic pathways were concomitantly activated in the non-ischemic adjacent zone after MI. The calcineurin/BAD pathway is strain related and its imbalanced activation may be one of the causes of progressive remodeling after MI. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis

    DEFF Research Database (Denmark)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan

    2016-01-01

    diagnosis. We applied this method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification methods. Results: The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood samples, with average AUCs (Area Under.......993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. Conclusions: We have successfully developed a new type of pathway-based model to study...... metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease...

  3. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis

    Science.gov (United States)

    Takamura, Takeyuki; Harama, Daisuke; Fukumoto, Suguru; Nakamura, Yuki; Shimokawa, Naomi; Ishimaru, Kayoko; Ikegami, Shuji; Makino, Seiya; Kitamura, Masanori; Nakao, Atsuhito

    2011-01-01

    Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis. PMID:21321579

  4. Early nongenomic events in aldosterone action in renal collecting duct cells: PKCalpha activation, mineralocorticoid receptor phosphorylation, and cross-talk with the genomic response.

    Science.gov (United States)

    Le Moëllic, Cathy; Ouvrard-Pascaud, Antoine; Capurro, Claudia; Cluzeaud, Francoise; Fay, Michel; Jaisser, Frederic; Farman, Nicolette; Blot-Chabaud, Marcel

    2004-05-01

    Effects of aldosterone on its target cells have long been considered to be mediated exclusively through the genomic pathway; however, evidence has been provided for rapid effects of the hormone that may involve nongenomic mechanisms. Whether an interaction exists between these two signaling pathways is not yet established. In this study, the authors show that aldosterone triggers both early nongenomic and late genomic increase in sodium transport in the RCCD(2) rat cortical collecting duct cell line. In these cells, the early (up to 2.5 h) aldosterone-induced increase in short-circuit current (Isc) is not blocked by the mineralocorticoid receptor (MR) antagonist RU26752, it does not require mRNA or protein synthesis, and it involves the PKCalpha signaling pathway. In addition, this early response is reproduced by aldosterone-BSA, which acts at the cell surface and presumably does not enter the cells (aldo-BSA is unable to trigger the late response). The authors also show that MR is rapidly phosphorylated on serine and threonine residues by aldosterone or aldosterone-BSA. In contrast, the late (4 to 24 h) aldosterone-induced increase in ion transport occurs through activation of the MR and requires mRNA and protein synthesis. Interestingly, nongenomic and genomic aldosterone actions appear to be interdependent. Blocking the PKCalpha pathway results in the inhibition of the late genomic response to aldosterone, as demonstrated by the suppression of aldosterone-induced increase in MR transactivation activity, alpha1 Na(+)/K(+)/ATPase mRNA, and Isc. These data suggest cross-talk between the nongenomic and genomic responses to aldosterone in renal cells and suggest that the aldosterone-MR mediated increase in mRNA/protein synthesis and ion transport depends, at least in part, upon PKCalpha activation. E-mail: marcel.blot-chabaud@pharmacie.univ-mrs.fr

  5. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-12-01

    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  6. Visualization of odor-induced neuronal activity by immediate early gene expression

    Directory of Open Access Journals (Sweden)

    Bepari Asim K

    2012-11-01

    Full Text Available Abstract Background Sensitive detection of sensory-evoked neuronal activation is a key to mechanistic understanding of brain functions. Since immediate early genes (IEGs are readily induced in the brain by environmental changes, tracing IEG expression provides a convenient tool to identify brain activity. In this study we used in situ hybridization to detect odor-evoked induction of ten IEGs in the mouse olfactory system. We then analyzed IEG induction in the cyclic nucleotide-gated channel subunit A2 (Cnga2-null mice to visualize residual neuronal activity following odorant exposure since CNGA2 is a key component of the olfactory signal transduction pathway in the main olfactory system. Results We observed rapid induction of as many as ten IEGs in the mouse olfactory bulb (OB after olfactory stimulation by a non-biological odorant amyl acetate. A robust increase in expression of several IEGs like c-fos and Egr1 was evident in the glomerular layer, the mitral/tufted cell layer and the granule cell layer. Additionally, the neuronal IEG Npas4 showed steep induction from a very low basal expression level predominantly in the granule cell layer. In Cnga2-null mice, which are usually anosmic and sexually unresponsive, glomerular activation was insignificant in response to either ambient odorants or female stimuli. However, a subtle induction of c-fos took place in the OB of a few Cnga2-mutants which exhibited sexual arousal. Interestingly, very strong glomerular activation was observed in the OB of Cnga2-null male mice after stimulation with either the neutral odor amyl acetate or the predator odor 2, 3, 5-trimethyl-3-thiazoline (TMT. Conclusions This study shows for the first time that in vivo olfactory stimulation can robustly induce the neuronal IEG Npas4 in the mouse OB and confirms the odor-evoked induction of a number of IEGs. As shown in previous studies, our results indicate that a CNGA2-independent signaling pathway(s may activate the

  7. Discovering and annotating fish early life-stage (FELS) adverse outcome pathways: Putting the research strategy into practice

    Science.gov (United States)

    In May 2012, a HESI-sponsored expert workshop yielded a proposed research strategy for systematically discovering, characterizing, and annotating fish early life-stage (FELS) adverse outcome pathways (AOPs) as well as prioritizing AOP development in light of current restrictions ...

  8. Activation of the hedgehog pathway in advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    McCormick Frank

    2004-10-01

    Full Text Available Abstract Background The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Results Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP, are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu protein, a negative regulator of the hedgehog pathway. We find that Su(Fu protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu. Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27. High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3. We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. Conclusion Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have

  9. Selective phosphorylation during early macrophage differentiation

    KAUST Repository

    Zhang, Huoming; Qian, Pei-Yuan; Ravasi, Timothy

    2015-01-01

    -regulated phosphoproteins in the early stages of differentiation. Further analysis of the PMA-regulated phosphoproteins revealed that transcriptional suppression, cytoskeletal reorganization and cell adhesion were among the most significantly activated pathways. Some key

  10. Alpha-Synuclein Toxicity in the Early Secretory Pathway: How it Drives Neurodegeneration in Parkinsons Disease

    Directory of Open Access Journals (Sweden)

    Ting eWang

    2015-11-01

    Full Text Available Alpha-synuclein is a predominant player in the pathogenesis of Parkinson’s Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the disfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress and others. Here we examine recent developments in alpha-synuclein’s toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration.

  11. Evaluation of whole-mount in situ hybridization as a tool for pathway-based toxicological research with early-life stage fathead minnows

    Science.gov (United States)

    Early-life stage fish can be more sensitive to chemical exposure than adult fish. Therefore, determining possible adverse outcome pathways (AOPs) for early-life stages is crucial. To determine chemical effects and/or mechanisms of action in exposed fish embryos and larvae, whole-...

  12. Evaluation of whole mount in situ hybridization as a tool for pathway-based toxicological research in early-life stage fathead minnows

    Science.gov (United States)

    Early-life stage fish can be more sensitive to chemical exposure than mature, adult fish. Therefore, defining adverse outcome pathways (AOPs) relevant to early-life stages is critical for linking perturbations of key events during fish development to potential adverse outcomes of...

  13. BDE-47 induces oxidative stress, activates MAPK signaling pathway, and elevates de novo lipogenesis in the copepod Paracyclopina nana.

    Science.gov (United States)

    Lee, Min-Chul; Puthumana, Jayesh; Lee, Seung-Hwi; Kang, Hye-Min; Park, Jun Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Seo, Jung Soo; Park, Heum Gi; Om, Ae-Son; Lee, Jae-Seong

    2016-12-01

    Brominated flame retardant, 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), has received grave concerns as a persistent organic pollutant, which is toxic to marine organisms, and a suspected link to endocrine abnormalities. Despite the wide distribution in the marine ecosystem, very little is known about the toxic impairments on marine organisms, particularly on invertebrates. Thus, we examined the adverse effects of BDE-47 on life history trait (development), oxidative markers, fatty acid composition, and lipid accumulation in response to BDE-47-induced stress in the marine copepod Paracyclopina nana. Also, activation level of mitogen-activated protein kinase (MAPK) signaling pathways along with the gene expression profile of de novo lipogenesis (DNL) pathways were addressed. As a result, BDE-47 induced oxidative stress (e.g. reactive oxygen species, ROS) mediated activation of extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK) signaling cascades in MAPK pathways. Activated MAPK pathways, in turn, induced signal molecules that bind to the transcription factors (TFs) responsible for lipogenesis to EcR, SREBP, ChREBP promoters. Also, the stress stimulated the conversion of saturated fatty acids (SFAs) to polyunsaturated fatty acids (PUFAs), a preparedness of the organism to adapt the observed stress, which could be correlated with the elongase and desaturase gene (e.g. ELO3, Δ5-DES, Δ9-DES) expressions, and then extended to the delayed early post-embryonic development and increased accumulation of lipid droplets in P. nana. This study will provide a better understanding of how BDE-47 effects on marine invertebrates particularly on the copepods, an important link in the marine food chain. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules

    International Nuclear Information System (INIS)

    Teschendorff, Andrew E; Gomez, Sergio; Arenas, Alex; El-Ashry, Dorraya; Schmidt, Marcus; Gehrmann, Mathias; Caldas, Carlos

    2010-01-01

    Elucidating the activation pattern of molecular pathways across a given tumour type is a key challenge necessary for understanding the heterogeneity in clinical response and for developing novel more effective therapies. Gene expression signatures of molecular pathway activation derived from perturbation experiments in model systems as well as structural models of molecular interactions ('model signatures') constitute an important resource for estimating corresponding activation levels in tumours. However, relatively few strategies for estimating pathway activity from such model signatures exist and only few studies have used activation patterns of pathways to refine molecular classifications of cancer. Here we propose a novel network-based method for estimating pathway activation in tumours from model signatures. We find that although the pathway networks inferred from cancer expression data are highly consistent with the prior information contained in the model signatures, that they also exhibit a highly modular structure and that estimation of pathway activity is dependent on this modular structure. We apply our methodology to a panel of 438 estrogen receptor negative (ER-) and 785 estrogen receptor positive (ER+) breast cancers to infer activation patterns of important cancer related molecular pathways. We show that in ER negative basal and HER2+ breast cancer, gene expression modules reflecting T-cell helper-1 (Th1) and T-cell helper-2 (Th2) mediated immune responses play antagonistic roles as major risk factors for distant metastasis. Using Boolean interaction Cox-regression models to identify non-linear pathway combinations associated with clinical outcome, we show that simultaneous high activation of Th1 and low activation of a TGF-beta pathway module defines a subtype of particularly good prognosis and that this classification provides a better prognostic model than those based on the individual pathways. In ER+ breast cancer, we find that

  15. Constitutive activation of the ERK pathway in melanoma and skin melanocytes in Grey horses.

    Science.gov (United States)

    Jiang, Lin; Campagne, Cécile; Sundström, Elisabeth; Sousa, Pedro; Imran, Saima; Seltenhammer, Monika; Pielberg, Gerli; Olsson, Mats J; Egidy, Giorgia; Andersson, Leif; Golovko, Anna

    2014-11-21

    Constitutive activation of the ERK pathway, occurring in the vast majority of melanocytic neoplasms, has a pivotal role in melanoma development. Different mechanisms underlie this activation in different tumour settings. The Grey phenotype in horses, caused by a 4.6 kb duplication in intron 6 of Syntaxin 17 (STX17), is associated with a very high incidence of cutaneous melanoma, but the molecular mechanism behind the melanomagenesis remains unknown. Here, we investigated the involvement of the ERK pathway in melanoma development in Grey horses. Grey horse melanoma tumours, cell lines and normal skin melanocytes were analyzed with help of indirect immunofluorescence and immunoblotting for the expression of phospho-ERK1/2 in comparison to that in non-grey horse and human counterparts. The mutational status of BRAF, RAS, GNAQ, GNA11 and KIT genes in Grey horse melanomas was determined by direct sequencing. The effect of RAS, RAF and PI3K/AKT pathways on the activation of the ERK signaling in Grey horse melanoma cells was investigated with help of specific inhibitors and immunoblotting. Individual roles of RAF and RAS kinases on the ERK activation were examined using si-RNA based approach and immunoblotting. We found that the ERK pathway is constitutively activated in Grey horse melanoma tumours and cell lines in the absence of somatic activating mutations in BRAF, RAS, GNAQ, GNA11 and KIT genes or alterations in the expression of the main components of the pathway. The pathway is mitogenic and is mediated by BRAF, CRAF and KRAS kinases. Importantly, we found high activation of the ERK pathway also in epidermal melanocytes, suggesting a general predisposition to melanomagenesis in these horses. These findings demonstrate that the presence of the intronic 4.6 kb duplication in STX17 is strongly associated with constitutive activation of the ERK pathway in melanocytic cells in Grey horses in the absence of somatic mutations commonly linked to the activation of this

  16. Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and late-onset preeclampsia.

    Science.gov (United States)

    Liang, Mengmeng; Niu, Jianmin; Zhang, Liang; Deng, Hua; Ma, Jian; Zhou, Weiping; Duan, Dongmei; Zhou, Yuheng; Xu, Huikun; Chen, Longding

    2016-04-01

    Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; 36 weeks) preeclampsia and their controls who delivered preterm (n = 5; 36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early- and late-onset preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Aguado, Andrea [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Zhenyukh, Olha; Briones, Ana María [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Alonso, María Jesús [Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón (Spain); Vassallo, Dalton Valentim [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402 (Brazil); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain)

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  18. Pathway data concerning differentiation and activation of macrophage - DMPD | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us DMPD Pathway data concerning differentiation and activation of macrophage Data detail Data name Pathway data concern...scription of data contents Pathways concerning differentiation and activation of macrophage extracted from t...tory of This Database Site Policy | Contact Us Pathway data concerning differentiation and activation of macrophage - DMPD | LSDB Archive ...

  19. Characterization of early events involved in human dendritic cell maturation induced by sensitizers: Cross talk between MAPK signalling pathways

    International Nuclear Information System (INIS)

    Trompezinski, Sandra; Migdal, Camille; Tailhardat, Magalie; Le Varlet, Beatrice; Courtellemont, Pascal; Haftek, Marek; Serres, Mireille

    2008-01-01

    Dendritic cells (DCs), efficient-antigen presenting cells play an important role in initiating and regulating immune responses. DC maturation following exposure to nickel or DNCB induced an up-regulation of phenotypic markers and inflammatory cytokine secretion. Early intracellular mechanisms involved in DC maturation required to be precise. To address this purpose, DCs derived from human monocytes were treated with sensitizers (nickel, DNCB or thimerosal) in comparison with an irritant (SDS). Our data confirming the up-regulation of CD86, CD54 and cytokine secretion (IL-8 and TNFα) induced by sensitizers but not by SDS, signalling transduction involved in DC maturation was investigated using these chemicals. Kinase activity measurement was assessed using two new sensitive procedures (Face TM and CBA) requiring few cells. SDS did not induce changes in signalling pathways whereas NiSO 4 , DNCB and thimerosal markedly activated p38 MAPK and JNK, in contrast Erk1/2 phosphorylation was completely inhibited by DNCB or thimerosal and only activated by nickel. A pre-treatment with p38 MAPK inhibitor (SB203580) suppressed Erk1/2 inhibition induced by DNCB or thimerosal demonstrating a direct interaction between p38 MAPK and Erk1/2. A pre-treatment with an antioxidant, N-acetyl-L-cysteine (NAC) markedly reduced Erk1/2 inhibition and p38 MAPK phosphorylation induced by DNCB and thimerosal, suggesting a direct activation of p38 MAPK via an oxidative stress and a regulation of MAPK signalling pathways depending on chemicals. Because of a high sensitivity of kinase activity measurements, these procedures will be suitable for weak or moderate sensitizer screening

  20. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    Science.gov (United States)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  1. Knockdown of Heparanase Suppresses Invasion of Human Trophoblasts by Activating p38 MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Guanglu Che

    2018-01-01

    Full Text Available Preeclampsia is a pregnancy-related disease with increasing maternal and perinatal morbidity and mortality worldwide. Defective trophoblast invasion is considered to be a major factor in the pathophysiological mechanism of preeclampsia. Heparanase, the only endo-β-glucuronidase in mammalian cells, has been shown to be abnormally expressed in the placenta of preeclampsia patients in our previous study. The biological role and potential mechanism of heparanase in trophoblasts remain unclear. In the present study, stably transfected HTR8/SVneo cell lines with heparanase overexpression or knockdown were constructed. The effect of heparanase on cellular proliferation, apoptosis, invasion, tube formation, and potential pathways in trophoblasts was explored. Our results showed that overexpression of heparanase promoted proliferation and invasion. Knockdown of heparanase suppressed proliferation, invasion, and tube formation but induced apoptosis. These findings reveal that downregulation of heparanase may contribute to defective placentation and plays a crucial role in the pathogenesis of preeclampsia. Furthermore, increased activation of p38 MAPK in heparanase-knockdown HTR8/SVneo cell was shown by MAPK pathway phosphorylation array and Western blotting assay. After pretreatment with 3 specific p38 MAPK inhibitors (BMS582949, SB203580, or BIRB796, inadequate invasion in heparanase-knockdown HTR8/SVneo cell was rescued. That indicates that knockdown of heparanase decreases HTR8/SVneo cell invasion through excessive activation of the p38 MAPK signaling pathway. Our study suggests that heparanase can be a potential predictive biomarker for preeclampsia at an early stage of pregnancy and represents a promising therapeutic target for the treatment of preeclampsia.

  2. Increasing Maternal Body Mass Index Is Associated with Systemic Inflammation in the Mother and the Activation of Distinct Placental Inflammatory Pathways1

    Science.gov (United States)

    Aye, Irving L.M.H.; Lager, Susanne; Ramirez, Vanessa I.; Gaccioli, Francesca; Dudley, Donald J.; Jansson, Thomas; Powell, Theresa L.

    2014-01-01

    ABSTRACT Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated

  3. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China); Feng, Xudong, E-mail: xudong.feng@childrens.harvard.edu [Department of Medicine, Children' s Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (United States); Xia, Qing, E-mail: xqing@hsc.pku.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China)

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.

  4. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    International Nuclear Information System (INIS)

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin; Feng, Xudong; Xia, Qing

    2015-01-01

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress

  5. Angiogenic activity of sesamin through the activation of multiple signal pathways

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Lee, Jung Joon; Kim, Jong-Dai; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125 FAK -, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  6. A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages.

    Directory of Open Access Journals (Sweden)

    Ying Zheng

    2011-04-01

    Full Text Available A type III secretion system (T3SS in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJ(KIM has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJ(KIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJ(KIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJ(KIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJ(CO92, YopJ(KIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJ(KIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJ(CO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro

  7. Longitudinal Examination of the Bullying-Sexual Violence Pathway across Early to Late Adolescence: Implicating Homophobic Name-Calling.

    Science.gov (United States)

    Espelage, Dorothy L; Basile, Kathleen C; Leemis, Ruth W; Hipp, Tracy N; Davis, Jordan P

    2018-03-02

    The Bully-Sexual Violence Pathway theory has indicated that bullying perpetration predicts sexual violence perpetration among males and females over time in middle school, and that homophobic name-calling perpetration moderates that association among males. In this study, the Bully-Sexual Violence Pathway theory was tested across early to late adolescence. Participants included 3549 students from four Midwestern middle schools and six high schools. Surveys were administered across six time points from Spring 2008 to Spring 2013. At baseline, the sample was 32.2% White, 46.2% African American, 5.4% Hispanic, and 10.2% other. The sample was 50.2% female. The findings reveal that late middle school homophobic name-calling perpetration increased the odds of perpetrating sexual violence in high school among early middle school bullying male and female perpetrators, while homophobic name-calling victimization decreased the odds of high school sexual violence perpetration among females. The prevention of bullying and homophobic name-calling in middle school may prevent later sexual violence perpetration.

  8. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways.

    Science.gov (United States)

    Aye, Irving L M H; Lager, Susanne; Ramirez, Vanessa I; Gaccioli, Francesca; Dudley, Donald J; Jansson, Thomas; Powell, Theresa L

    2014-06-01

    Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal

  9. Evaluation of whole mount in situ hybridization as a tool for pathway-based toxicological research in early-life stage fathead minnows (poster)

    Science.gov (United States)

    Early-life stage fish can be more sensitive to chemical exposure than mature, adult fish. Therefore, defining adverse outcome pathways (AOPs) relevant to early-life stages is critical for linking perturbations of key events during fish development to potential adverse outcomes of...

  10. Long term effect of curcumin in regulation of glycolytic pathway and angiogenesis via modulation of stress activated genes in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Oxidative stress, an important factor in modulation of glycolytic pathway and induction of stress activated genes, is further augmented due to reduced antioxidant defense system, which promotes cancer progression via inducing angiogenesis. Curcumin, a naturally occurring chemopreventive phytochemical, is reported to inhibit carcinogenesis in various experimental animal models. However, the underlying mechanism involved in anticarcinogenic action of curcumin due to its long term effect is still to be reported because of its rapid metabolism, although metabolites are accumulated in tissues and remain for a longer time. Therefore, the long term effect of curcumin needs thorough investigation. The present study aimed to analyze the anticarcinogenic action of curcumin in liver, even after withdrawal of treatment in Dalton's lymphoma bearing mice. Oxidative stress observed during lymphoma progression reduced antioxidant enzyme activities, and induced angiogenesis as well as activation of early stress activated genes and glycolytic pathway. Curcumin treatment resulted in activation of antioxidant enzyme super oxide dismutase and down regulation of ROS level as well as activity of ROS producing enzyme NADPH:oxidase, expression of stress activated genes HIF-1α, cMyc and LDH activity towards normal level. Further, it lead to significant inhibition of angiogenesis, observed via MMPs activity, PKCα and VEGF level, as well as by matrigel plug assay. Thus findings of this study conclude that the long term effect of curcumin shows anticarcinogenic potential via induction of antioxidant defense system and inhibition of angiogenesis via down regulation of stress activated genes and glycolytic pathway in liver of lymphoma bearing mice.

  11. Selective phosphorylation during early macrophage differentiation

    KAUST Repository

    Zhang, Huoming

    2015-08-26

    The differentiation of macrophages from monocytes is a tightly controlled and complex biological process. Although numerous studies have been conducted using biochemical approaches or global gene/gene profiling, the mechanisms of the early stages of differentiation remain unclear. Here we used SILAC-based quantitative proteomics approach to perform temporal phosphoproteome profiling of early macrophage differentiation. We identified a large set of phosphoproteins and grouped them as PMA-regulated and non-regulated phosphoproteins in the early stages of differentiation. Further analysis of the PMA-regulated phosphoproteins revealed that transcriptional suppression, cytoskeletal reorganization and cell adhesion were among the most significantly activated pathways. Some key involved regulators of these pathways are mTOR, MYB, STAT1 and CTNNB. Moreover, we were able to classify the roles and activities of several transcriptional factors during different differentiation stages and found that E2F is likely to be an important regulator during the relatively late stages of differentiation. This study provides the first comprehensive picture of the dynamic phosphoproteome during myeloid cells differentiation, and identifies potential molecular targets in leukemic cells.

  12. Sympathetic activation during early pregnancy in humans

    Science.gov (United States)

    Jarvis, Sara S; Shibata, Shigeki; Bivens, Tiffany B; Okada, Yoshiyuki; Casey, Brian M; Levine, Benjamin D; Fu, Qi

    2012-01-01

    Sympathetic activity has been reported to increase in normotensive pregnant women, and to be even greater in women with gestational hypertension and preeclampsia at term. Whether sympathetic overactivity develops early during pregnancy, remaining high throughout gestation, or whether it only occurs at term providing the substrate for hypertensive disorders is unknown. We tested the hypothesis that sympathetic activation occurs early during pregnancy in humans. Eleven healthy women (29 ± 3 (SD) years) without prior hypertensive pregnancies were tested during the mid-luteal phase (PRE) and early pregnancy (EARLY; 6.2 ± 1.2 weeks of gestation). Muscle sympathetic nerve activity (MSNA) and haemodynamics were measured supine, at 30 deg and 60 deg upright tilt for 5 min each. Blood samples were drawn for catecholamines, direct renin, and aldosterone. MSNA was significantly greater during EARLY than PRE (supine: 25 ± 8 vs. 14 ± 8 bursts min−1, 60 deg tilt: 49 ± 14 vs. 40 ± 10 bursts min−1; main effect, P < 0.05). Resting diastolic pressure trended lower (P = 0.09), heart rate was similar, total peripheral resistance decreased (2172 ± 364 vs. 2543 ± 352 dyne s cm−5; P < 0.05), sympathetic vascular transduction was blunted (0.10 ± 0.05 vs. 0.36 ± 0.47 units a.u.−1 min−1; P < 0.01), and both renin (supine: 27.9 ± 6.2 vs. 14.2 ± 8.7 pg ml−1, P < 0.01) and aldosterone (supine: 16.7 ± 14.1 vs. 7.7 ± 6.8 ng ml−1, P = 0.05) were higher during EARLY than PRE. These results suggest that sympathetic activation is a common characteristic of early pregnancy in humans despite reduced diastolic pressure and total peripheral resistance. These observations challenge conventional thinking about blood pressure regulation during pregnancy, showing marked sympathetic activation occurring within the first few weeks of conception, and may provide the substrate for pregnancy induced cardiovascular complications. PMID:22687610

  13. XEDAR activates the non-canonical NF-κB pathway

    International Nuclear Information System (INIS)

    Verhelst, Kelly; Gardam, Sandra; Borghi, Alice; Kreike, Marja; Carpentier, Isabelle; Beyaert, Rudi

    2015-01-01

    Members of the tumor necrosis factor receptor (TNFR) superfamily are involved in a number of physiological and pathological responses by activating a wide variety of intracellular signaling pathways. The X-linked ectodermal dysplasia receptor (XEDAR; also known as EDA2R or TNFRSF27) is a member of the TNFR superfamily that is highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2), a member of the TNF family that is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Although XEDAR was first described in the year 2000, its function and molecular mechanism of action is still largely unclear. XEDAR has been reported to activate canonical nuclear factor κB (NF-κB) signaling and mitogen-activated protein (MAP) kinases. Here we report that XEDAR is also able to trigger the non-canonical NF-κB pathway, characterized by the processing of p100 (NF-κB2) into p52, followed by nuclear translocation of p52 and RelB. We provide evidence that XEDAR-induced p100 processing relies on the binding of XEDAR to TRAF3 and TRAF6, and requires the kinase activity of NIK and IKKα. We also show that XEDAR stimulation results in NIK accumulation and that p100 processing is negatively regulated by TRAF3, cIAP1 and A20. - Highlights: • XEDAR activates the non-canonical NF-κB pathway. • XEDAR-induced processing of p100 depends on XEDAR interaction with TRAF3 and TRAF6. • XEDAR-induced processing of p100 depends on NIK and IKKα activity. • Overexpression of XEDAR leads to NIK accumulation. • XEDAR-induced processing of p100 is negatively regulated by TRAF3 cIAP1 and A20

  14. XEDAR activates the non-canonical NF-κB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Verhelst, Kelly, E-mail: Kelly.Verhelst@irc.VIB-UGent.be [Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent (Belgium); Department of Biomedical Molecular Biology, Ghent University, Ghent (Belgium); Gardam, Sandra, E-mail: s.gardam@garvan.org.au [Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent (Belgium); Department of Biomedical Molecular Biology, Ghent University, Ghent (Belgium); Borghi, Alice, E-mail: Alice.Borghi@irc.VIB-UGent.be [Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent (Belgium); Department of Biomedical Molecular Biology, Ghent University, Ghent (Belgium); Kreike, Marja, E-mail: Marja.Kreike@irc.VIB-UGent.be [Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent (Belgium); Department of Biomedical Molecular Biology, Ghent University, Ghent (Belgium); Carpentier, Isabelle, E-mail: Isabelle.Carpentier@irc.VIB-UGent.be [Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent (Belgium); Department of Biomedical Molecular Biology, Ghent University, Ghent (Belgium); Beyaert, Rudi, E-mail: Rudi.Beyaert@irc.VIB-UGent.be [Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent (Belgium); Department of Biomedical Molecular Biology, Ghent University, Ghent (Belgium)

    2015-09-18

    Members of the tumor necrosis factor receptor (TNFR) superfamily are involved in a number of physiological and pathological responses by activating a wide variety of intracellular signaling pathways. The X-linked ectodermal dysplasia receptor (XEDAR; also known as EDA2R or TNFRSF27) is a member of the TNFR superfamily that is highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2), a member of the TNF family that is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Although XEDAR was first described in the year 2000, its function and molecular mechanism of action is still largely unclear. XEDAR has been reported to activate canonical nuclear factor κB (NF-κB) signaling and mitogen-activated protein (MAP) kinases. Here we report that XEDAR is also able to trigger the non-canonical NF-κB pathway, characterized by the processing of p100 (NF-κB2) into p52, followed by nuclear translocation of p52 and RelB. We provide evidence that XEDAR-induced p100 processing relies on the binding of XEDAR to TRAF3 and TRAF6, and requires the kinase activity of NIK and IKKα. We also show that XEDAR stimulation results in NIK accumulation and that p100 processing is negatively regulated by TRAF3, cIAP1 and A20. - Highlights: • XEDAR activates the non-canonical NF-κB pathway. • XEDAR-induced processing of p100 depends on XEDAR interaction with TRAF3 and TRAF6. • XEDAR-induced processing of p100 depends on NIK and IKKα activity. • Overexpression of XEDAR leads to NIK accumulation. • XEDAR-induced processing of p100 is negatively regulated by TRAF3 cIAP1 and A20.

  15. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    Science.gov (United States)

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  16. Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways

    Directory of Open Access Journals (Sweden)

    Chi H.J. Kao

    2013-02-01

    Full Text Available ABSTRACTGanoderma lucidum, commonly referred to as Lingzhi, has been used in Asia for health promotion for centuries. The anti-cancer effects of G. lucidum have been demonstrated in both in vitro and in vivo studies. In addition, the observed anti-cancer activities of Ganoderma have prompted its usage by cancer patients alongside chemotherapy.The main two bioactive components of G. lucidum can be broadly grouped into triterpenes and polysaccharides. Despite triterpenes and polysaccharides being widely known as the major active ingredients, the different biological pathways by which they exert their anti-cancer effect remain poorly defined. Therefore, understanding the mechanisms of action may lead to more widespread use of Ganoderma as an anti-cancer agent.The aim of this paper is to summarise the various bioactive mechanisms that have been proposed for the anti-cancer properties of triterpenes and polysaccharides extracted from G. lucidum. A literature search of published papers on NCBI with keywords “Ganoderma” and “cancer” was performed. Among those, studies which specifically examined the anti-cancer activities of Ganoderma triterpenes and polysaccharides were selected to be included in this paper.We have found five potential mechanisms which are associated with the anti-cancer activities of Ganoderma triterpenes and three potential mechanisms for Ganoderma polysaccharides. In addition, G. lucidum has been used in combination with known anti-cancer agents to improve the anti-cancer efficacies. This suggests Ganoderma’s bioactive pathways may compliment that of anti-cancer agents. In this paper we present several potential anti-cancer mechanisms of Ganoderma triterpenes and polysaccharides which can be used for the development of Ganoderma as an anti-cancer agent.

  17. Increased activity of the mannan-binding lectin complement activation pathway in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Ytting, H; Jensenius, Jens Christian; Christensen, I J

    2004-01-01

    BACKGROUND: Postoperative bacterial infectious complications are frequent in patients with colorectal cancer (CRC), with subsequent increased recurrence rates and poor prognosis. Deficiency of the mannan-binding lectin (MBL) complement activation pathway may cause increased risk of infection......: Serum MBL concentrations and MBL/MASP activity were determined using immunofluorometric assays. The levels are presented as the median, inter-quartile range and range. RESULTS: Serum MBL levels were significantly (P cancer (1384 (400-2188) ng/mL) (median...... in the colon or rectum, and disease stages according to Dukes' classification. No statistical difference (P=0.20) in frequency of MBL deficiency was found between the patients (20%) and the donors (27%). CONCLUSIONS: Overall, the MBL complement activation pathway is significantly increased in patients...

  18. Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals.

    Science.gov (United States)

    Bonino, D; Ricciardi, E; Sani, L; Gentili, C; Vanello, N; Guazzelli, M; Vecchi, T; Pietrini, P

    2008-09-01

    In sighted individuals, both the visual and tactile version of the same spatial working memory task elicited neural responses in the dorsal "where" cortical pathway (Ricciardi et al., 2006). Whether the neural response during the tactile working memory task is due to visually-based spatial imagery or rather reflects a more abstract, supramodal organization of the dorsal cortical pathway remains to be determined. To understand the role of visual experience on the functional organization of the dorsal cortical stream, using functional magnetic resonance imaging (fMRI) here we examined brain response in four individuals with congenital or early blindness and no visual recollection, while they performed the same tactile spatial working memory task, a one-back recognition of 2D and 3D matrices. The blind subjects showed a significant activation in bilateral posterior parietal cortex, dorsolateral and inferior prefrontal areas, precuneus, lateral occipital cortex, and cerebellum. Thus, dorsal occipito-parietal areas are involved in mental imagery dealing with spatial components in subjects without prior visual experience and in response to a non-visual task. These data indicate that recruitment of the dorsal cortical pathway in response to the tactile spatial working memory task is not mediated by visually-based imagery and that visual experience is not a prerequisite for the development of a more abstract functional organization of the dorsal stream. These findings, along with previous data indicating a similar supramodal functional organization within the ventral cortical pathway and the motion processing brain regions, may contribute to explain how individuals who are born deprived of sight are able to interact effectively with the surrounding world.

  19. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway.

    Science.gov (United States)

    Jang, Seok-Won; Jung, Jin Ki; Kim, Jung Min

    2016-09-01

    The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.

  20. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  1. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    Science.gov (United States)

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  2. Impact of the Smoothened inhibitor, IPI-926, on smoothened ciliary localization and Hedgehog pathway activity.

    Directory of Open Access Journals (Sweden)

    Marisa O Peluso

    Full Text Available A requisite step for canonical Hedgehog (Hh pathway activation by Sonic Hedgehog (Shh ligand is accumulation of Smoothened (Smo to the primary cilium (PC. Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and "primes" cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for "priming" activity to occur. This "priming" appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses

  3. Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass

    Directory of Open Access Journals (Sweden)

    Vivas Yurena

    2011-12-01

    Full Text Available Abstract Background The progression towards type 2 diabetes depends on the allostatic response of pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physiological and pathophysiological states associated to insulin resistance such as pregnancy, obesity or ageing, but the mechanisms mediating beta cell mass expansion in these scenarios are not well defined. We have recently shown that ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse failed to expand its beta cell mass. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Thus, comparison of these models islets particularly at early ages could provide some new insights on early PPARγ dependent transcriptional responses involved in the process of beta cell mass expansion Results Here we have investigated PPARγ dependent transcriptional responses occurring during the early stages of beta cell adaptation to insulin resistance in wild type, ob/ob, PPARγ2 KO and POKO mice. We have identified genes known to regulate both the rate of proliferation and the survival signals of beta cells. Moreover we have also identified new pathways induced in ob/ob islets that remained unchanged in POKO islets, suggesting an important role for PPARγ in maintenance/activation of mechanisms essential for the continued function of the beta cell. Conclusions Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with the activation of an immune response that fails to occur in POKO islets. We have also indentified other PPARγ dependent differentially regulated pathways including cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation.

  4. Signaling pathways activation profiles make better markers of cancer than expression of individual genes

    OpenAIRE

    Borisov, Nikolay M.; Terekhanova, Nadezhda V.; Aliper, Alexander M.; Venkova, Larisa S.; Smirnov, Philip Yu; Roumiantsev, Sergey; Korzinkin, Mikhail B.; Zhavoronkov, Alex A.; Buzdin, Anton A.

    2014-01-01

    Identification of reliable and accurate molecular markers remains one of the major challenges of contemporary biomedicine. We developed a new bioinformatic technique termed OncoFinder that for the first time enables to quantatively measure activation of intracellular signaling pathways basing on transcriptomic data. Signaling pathways regulate all major cellular events in health and disease. Here, we showed that the Pathway Activation Strength (PAS) value itself may serve as the biomarker for...

  5. Different enzymatic antioxidative pathways operate within the sheep caruncular and intercaruncular endometrium throughout the estrous cycle and early pregnancy.

    Science.gov (United States)

    Al-Gubory, K H; Faure, P; Garrel, C

    2017-09-01

    There has been a growing interest in the role played by antioxidant enzymes in the regulation of endometrial function in mammals. However, little is known about enzymatic antioxidative pathways involved in conditioning the cyclic and early pregnant endometrium for conceptus attachment and implantation in domestic ruminants. We aimed to investigate changes in activities of superoxide dismutase 1 and 2 (SOD1, SOD2), glutathione peroxidase (GPX), glutathione reductase (GR) and catalase (CAT) in sheep caruncles (CAR) and intercaruncles (ICAR) endometrial tissues of cyclic and early pregnant ewes. Irrespective of day of cycle or pregnancy, CAR demonstrated higher activities of SOD1 and SOD2 than in ICAR. On day 12 of the estrous cycle, ICAR demonstrated higher activity of GPX and GR than in CAR tissues. On days 12 and 16 the estrous cycle, ICAR demonstrated higher activity of CAT than in CAR. CAR demonstrated higher activity of GPX on day 18 than on days 4, 8, 12 and 16 of the estrous cycle. CAR demonstrated higher activity of CAT on day 18 than on days 4, 8, 12 and 16 of the estrous cycle. ICAR demonstrated higher activity of CAT on day 18 than on days 4, 8, and 16 of the estrous cycle. The activity of CAT in ICAR increased from days 4 and 8 to day 12 of the estrous cycle. The activity of SOD2 in CAR increased from day 16 to day 18 of pregnancy. On day 12 of pregnancy, CAR demonstrated higher activity of GPX than in ICAR. On day 16 of pregnancy, ICAR demonstrated higher activity of GPX than in CAR. The activity of GPX in ICAR increased from day 12 to day 16 of pregnancy. The activity of GPX in CAR increased from day 16 to day 18 of pregnancy. The activity of GR in CAR and ICAR increased from days 12 and 16 to day 18 of pregnancy. On days 16 and 18 of pregnancy, ICAR demonstrated higher activity of CAT than in CAR. The activity of CAT in CAR decreased from day 12 to days 16 and 18 of pregnancy. The activity of CAT in ICAR decreased from day 12 to day 16 of pregnancy and

  6. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  7. Taurine promotes cognitive function in prenatally stressed juvenile rats via activating the Akt-CREB-PGC1α pathway.

    Science.gov (United States)

    Jia, Ning; Sun, Qinru; Su, Qian; Dang, Shaokang; Chen, Guomin

    2016-12-01

    Substantial evidence has shown that the oxidative damage to hippocampal neurons is associated with the cognitive impairment induced by adverse stimuli during gestation named prenatal stress (PS). Taurine, a conditionally essential amino acid, possesses multiple roles in the brain as a neuromodulator or antioxidant. In this study, to explore the roles of taurine in PS-induced learning and memory impairment, prenatal restraint stress was set up and Morris water maze (MWM) was employed for testing the cognitive function in the one-month-old rat offspring. The mitochondrial reactive oxygen species (ROS) level,mitochondrial membrane potential (MMP), ATP and cytochrome c oxidase (CcO) activity and apoptosis-related proteins in the hippocampus were detected. The activity of the Akt-cyclic AMP response element-binding protein (CREB)-peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) pathway in the hippocampus was measured. The results showed that high dosage of taurine administration in the early postnatal period attenuated impairment of spatial learning and memory induced by PS. Meanwhile, taurine administration diminished the increase in mitochondrial ROS, and recovered the reduction of MMP, ATP level and the activities of CcO, superoxide dismutase 2 (SOD2) and catalase induced by PS in the hippocampus. In addition, taurine administration recovered PS-suppressed SOD2 expression level. Taurine administration blocked PS-induced decrease in the ratio of Bcl-2/Bax and increase in the ratio of cleaved caspase-3/full-length caspase-3. Notably, taurine inhibited PS-decreased phosphorylation of Akt (pAkt) and phosphorylation of CREB (pCREB), which consequently enhanced the mRNA and protein levels of PGC1α. Taken together, these results suggest that high dosage of taurine administration during the early postnatal period can significantly improve the cognitive function in prenatally stressed juvenile rats via activating the Akt-CREB-PGC1α pathway. Therefore

  8. Taurine promotes cognitive function in prenatally stressed juvenile rats via activating the Akt-CREB-PGC1α pathway

    Directory of Open Access Journals (Sweden)

    Ning Jia

    2016-12-01

    Full Text Available Substantial evidence has shown that the oxidative damage to hippocampal neurons is associated with the cognitive impairment induced by adverse stimuli during gestation named prenatal stress (PS. Taurine, a conditionally essential amino acid, possesses multiple roles in the brain as a neuromodulator or antioxidant. In this study, to explore the roles of taurine in PS-induced learning and memory impairment, prenatal restraint stress was set up and Morris water maze (MWM was employed for testing the cognitive function in the one-month-old rat offspring. The mitochondrial reactive oxygen species (ROS level,mitochondrial membrane potential (MMP, ATP and cytochrome c oxidase (CcO activity and apoptosis-related proteins in the hippocampus were detected. The activity of the Akt-cyclic AMP response element-binding protein (CREB-peroxisome proliferator-activated receptor–γ coactivator-1α (PGC1α pathway in the hippocampus was measured. The results showed that high dosage of taurine administration in the early postnatal period attenuated impairment of spatial learning and memory induced by PS. Meanwhile, taurine administration diminished the increase in mitochondrial ROS, and recovered the reduction of MMP, ATP level and the activities of CcO, superoxide dismutase 2 (SOD2 and catalase induced by PS in the hippocampus. In addition, taurine administration recovered PS-suppressed SOD2 expression level. Taurine administration blocked PS-induced decrease in the ratio of Bcl-2/Bax and increase in the ratio of cleaved caspase-3/full-length caspase-3. Notably, taurine inhibited PS-decreased phosphorylation of Akt (pAkt and phosphorylation of CREB (pCREB, which consequently enhanced the mRNA and protein levels of PGC1α. Taken together, these results suggest that high dosage of taurine administration during the early postnatal period can significantly improve the cognitive function in prenatally stressed juvenile rats via activating the Akt-CREB-PGC1

  9. Alternative pathways of thromboplastin-dependent activation of human factor X in plasma

    International Nuclear Information System (INIS)

    Marlar, R.A.; Griffin, J.H.

    1981-01-01

    To determine the interrelationships of the major coagulation pathways, the activation of 3H-labeled factor X in normal and various deficient human plasmas was evaluated when clotting was triggered by dilute rabbit or human thromboplastin. Various dilutions of thromboplastin and calcium were added to plasma samples containing 3H-factor X, and the time course of factor X activation was determined. At a 1/250 dilution of rabbit brain thromboplastin, the rate of factor X activation in plasmas deficient in factor VIII or factor IX was 10% of the activation rate of normal plasma or of factor XI deficient plasma. Reconstitution of the deficient plasmas with factors VIII or IX, respectively, reconstituted normal factor X activation. Similar results were obtained when various dilutions of human thromboplastin replaced the rabbit thromboplastin. From these plasma experiments, it is inferred that the dilute thromboplastin-dependent activation of factor X requires factors VII, IX, and VIII. An alternative extrinsic pathway that involves factors IX and VIII may be the physiologic extrinsic pathway and hence help to explain the consistent clinical observations of bleeding diatheses in patients deficient in factors IX or VIII

  10. Increased activity of the mannan-binding lectin complement activation pathway in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Ytting, H; Jensenius, Jens Christian; Christensen, I J

    2004-01-01

    in certain patient groups. It is hypothesized that a deficient MBL pathway might be more frequent among patients with CRC than in healthy individuals. The MBL pathway was therefore evaluated in serum obtained preoperatively from 193 patients with primary CRC and in serum from 150 healthy volunteers. METHODS......: Serum MBL concentrations and MBL/MASP activity were determined using immunofluorometric assays. The levels are presented as the median, inter-quartile range and range. RESULTS: Serum MBL levels were significantly (P ..., inter-quartile range) compared with levels in healthy blood donors (924 (230-1476) ng/mL). Similarly, the MBL/MASP activity was significantly (P age, gender, tumour location...

  11. Heat-shock stress activates a novel nuclear import pathway mediated by Hikeshi

    OpenAIRE

    Imamoto, Naoko; Kose, Shingo

    2012-01-01

    Cellular stresses significantly affect nuclear transport systems. Nuclear transport pathways mediated by importin β-family members, which are active under normal conditions, are downregulated. During thermal stress, a nuclear import pathway mediated by a novel carrier, which we named Hikeshi, becomes active. Hikeshi is not a member of the importin β family and mediates the nuclear import of Hsp70s. Unlike importin β family-mediated nuclear transport, the Hikeshi-mediated nuclear import of Hsp...

  12. Potential fluid mechanic pathways of platelet activation.

    Science.gov (United States)

    Shadden, Shawn C; Hendabadi, Sahar

    2013-06-01

    Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here, we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport.

  13. IL-17/Th17 Pathway Is Activated in Acne Lesions

    Science.gov (United States)

    Kelhälä, Hanna-Leena; Palatsi, Riitta; Fyhrquist, Nanna; Lehtimäki, Sari; Väyrynen, Juha P.; Kallioinen, Matti; Kubin, Minna E.; Greco, Dario; Tasanen, Kaisa; Alenius, Harri; Bertino, Beatrice; Carlavan, Isabelle; Mehul, Bruno; Déret, Sophie; Reiniche, Pascale; Martel, Philippe; Marty, Carine; Blume-Peytavi, Ulrike; Voegel, Johannes J.; Lauerma, Antti

    2014-01-01

    The mechanisms of inflammation in acne are currently subject of intense investigation. This study focused on the activation of adaptive and innate immunity in clinically early visible inflamed acne lesions and was performed in two independent patient populations. Biopsies were collected from lesional and non-lesional skin of acne patients. Using Affymetrix Genechips, we observed significant elevation of the signature cytokines of the Th17 lineage in acne lesions compared to non-lesional skin. The increased expression of IL-17 was confirmed at the RNA and also protein level with real-time PCR (RT-PCR) and Luminex technology. Cytokines involved in Th17 lineage differentiation (IL-1β, IL-6, TGF-β, IL23p19) were remarkably induced at the RNA level. In addition, proinflammatory cytokines and chemokines (TNF-α, IL-8, CSF2 and CCL20), Th1 markers (IL12p40, CXCR3, T-bet, IFN-γ), T regulatory cell markers (Foxp3, IL-10, TGF-β) and IL-17 related antimicrobial peptides (S100A7, S100A9, lipocalin, hBD2, hBD3, hCAP18) were induced. Importantly, immunohistochemistry revealed significantly increased numbers of IL-17A positive T cells and CD83 dendritic cells in the acne lesions. In summary our results demonstrate the presence of IL-17A positive T cells and the activation of Th17-related cytokines in acne lesions, indicating that the Th17 pathway is activated and may play a pivotal role in the disease process, possibly offering new targets of therapy. PMID:25153527

  14. EG-1 interacts with c-Src and activates its signaling pathway.

    Science.gov (United States)

    Lu, Ming; Zhang, Liping; Sartippour, Maryam R; Norris, Andrew J; Brooks, Mai N

    2006-10-01

    EG-1 is significantly elevated in breast, colorectal, and prostate cancers. Overexpression of EG-1 stimulates cellular proliferation, and targeted inhibition blocks mouse xenograft tumor growth. To further clarify the function of EG-1, we investigated its role in c-Src activation. We observed that EG-1 overexpression results in activation of c-Src, but found no evidence that EG-1 is a direct Src substrate. EG-1 also binds to other members of the Src family. Furthermore, EG-1 shows interaction with multiple other SH3- and WW-containing molecules involved in various signaling pathways. These observations suggest that EG-1 may be involved in signaling pathways including c-Src activation.

  15. Involvement of HDAC1 and the PI3K/PKC signaling pathways in NF-κB activation by the HDAC inhibitor apicidin

    International Nuclear Information System (INIS)

    Kim, Yong Kee; Seo, Dong-Wan; Kang, Dong-Won; Lee, Hoi Young; Han, Jeung-Whan; Kim, Su-Nam

    2006-01-01

    Histone deacetylase (HDAC) inhibitors are appreciated as one of promising anticancer drugs, but they exert differential responses depending on the cell type. We recently reported the critical role of NF-κB as a modulator in determining cell fate for apoptosis in response to an HDAC inhibitor. In this study, we investigate a possible signaling pathway required for NF-κB activation in response to the HDAC inhibitor apicidin. Treatment of HeLa cells with apicidin leads to an increase in transcriptional activity of NF-κB and the expression of its target genes, IL-8 and TNF-α. TNF-α expression by apicidin is induced at earlier time points than NF-κB activation or IL-8 expression. In addition, our data show that the early expression of TNF-α does not lead to activation of NF-κB, because disruption of TNF-α activity by a neutralizing antibody does not affect nuclear translocation of NF-κB, IκBα degradation or reporter gene activation by apicidin. However, this activation of NF-κB requires the PI3K and PKC signaling pathways, but not ERK or JNK. Furthermore, apicidin activation of NF-κB seems to result from HDAC1 inhibition, as evidenced by the observation that overexpression of HDAC1, but not HDAC2, 3 or 4, dramatically inhibits NF-κB reporter gene activity. Collectively, our results suggest that activation of NF-κB signaling by apicidin requires both the PI3K/PKC signaling pathways and HDAC1, and functions as a critical modulator in determining the cellular effect of apicidin

  16. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Energy Technology Data Exchange (ETDEWEB)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: camandolasi@mail.nih.gov [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  17. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    International Nuclear Information System (INIS)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-01-01

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity

  18. An early colonisation pathway into northwest Australia 70-60,000 years ago

    Science.gov (United States)

    Norman, Kasih; Inglis, Josha; Clarkson, Chris; Faith, J. Tyler; Shulmeister, James; Harris, Daniel

    2018-01-01

    Colonisation of Sahul 70-60 thousand years ago (kya) represents the first great maritime migration undertaken by anatomically modern humans in one of the final phases of the Out of Africa dispersal. Visual connectivity network analyses, agent-based simulations and ocean current modelling reveal that modern humans could follow numerous northern and southern migration pathways into Sahul. Our results support a southern route out of Africa through South Asia with entry into ISEA through the Banda Arc, culminating in an early colonisation of Sahul on the northwest shelf. Our results show multiple colonisation events through other entry points were also probable, and raise interesting possibilities for complex regional migration and population histories.

  19. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    Science.gov (United States)

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  20. Alzheimer disease: functional abnormalities in the dorsal visual pathway.

    LENUS (Irish Health Repository)

    Bokde, Arun L W

    2012-02-01

    PURPOSE: To evaluate whether patients with Alzheimer disease (AD) have altered activation compared with age-matched healthy control (HC) subjects during a task that typically recruits the dorsal visual pathway. MATERIALS AND METHODS: The study was performed in accordance with the Declaration of Helsinki, with institutional ethics committee approval, and all subjects provided written informed consent. Two tasks were performed to investigate neural function: face matching and location matching. Twelve patients with mild AD and 14 age-matched HC subjects were included. Brain activation was measured by using functional magnetic resonance imaging. Group statistical analyses were based on a mixed-effects model corrected for multiple comparisons. RESULTS: Task performance was not statistically different between the two groups, and within groups there were no differences in task performance. In the HC group, the visual perception tasks selectively activated the visual pathways. Conversely in the AD group, there was no selective activation during performance of these same tasks. Along the dorsal visual pathway, the AD group recruited additional regions, primarily in the parietal and frontal lobes, for the location-matching task. There were no differences in activation between groups during the face-matching task. CONCLUSION: The increased activation in the AD group may represent a compensatory mechanism for decreased processing effectiveness in early visual areas of patients with AD. The findings support the idea that the dorsal visual pathway is more susceptible to putative AD-related neuropathologic changes than is the ventral visual pathway.

  1. NRF2 Pathway Activation and Adjuvant Chemotherapy Benefit in Lung Squamous Cell Carcinoma.

    Science.gov (United States)

    Cescon, David W; She, Desmond; Sakashita, Shingo; Zhu, Chang-Qi; Pintilie, Melania; Shepherd, Frances A; Tsao, Ming-Sound

    2015-06-01

    Genomic profiling of lung squamous cell carcinomas (SCC) has identified NRF2 pathway alterations, which activate oxidative response pathways, in one third of tumors. Preclinical data suggest these tumors may be resistant to platinum-based chemotherapy. We evaluated the clinical relevance of these findings and assessed whether NRF2 activation predicts benefit from adjuvant chemotherapy in SCC. Logistic regression (LR) and significance analysis of microarrays (SAM) were applied to all 104 TCGA (The Cancer Genome Atlas) SCC cases that had microarray gene expression and mutation data to identify genes associated with somatic NRF2 pathway alterations. The resulting signature (NRF2(ACT)) was tested in 3 independent SCC datasets to evaluate its prognostic and predictive effects. IHC and sequencing for NRF2 and KEAP1 were evaluated in one cohort (n = 43) to assess the relationship between gene expression, mutational status, and protein expression. Twenty-eight genes were identified by overlap between LR (291 genes) and SAM (30 genes), and these consistently separated SCC into 2 groups in all datasets, corresponding to putatively NRF pathway-activated and wild-type (WT) tumors. NRF2(ACT) was not prognostic. However, improved survival with adjuvant chemotherapy in the JBR.10-randomized trial appears limited to patients with the WT signature (HR 0.32, P = 0.16; NRF2(ACT) HR 2.28, P = 0.48; interaction P = 0.15). NRF2(ACT) was highly correlated with mutations in NRF2 and KEAP1, and with high NRF2 protein expression. A gene expression signature of NRF2 pathway activation is associated with benefit from adjuvant cisplatin/vinorelbine in SCC. Patients with NRF2 pathway-activating somatic alterations may have reduced benefit from this therapy. ©2015 American Association for Cancer Research.

  2. Telmisartan prevents weight gain and obesity through activation of peroxisome proliferator-activated receptor-delta-dependent pathways

    DEFF Research Database (Denmark)

    He, Hongbo; Yang, Dachun; Ma, Liqun

    2010-01-01

    Telmisartan shows antihypertensive and several pleiotropic effects that interact with metabolic pathways. In the present study we tested the hypothesis that telmisartan prevents adipogenesis in vitro and weight gain in vivo through activation of peroxisome proliferator-activated receptor (PPAR)-d...

  3. The Rest-Activity Rhythm and Physical Activity in Early-Onset Dementia

    NARCIS (Netherlands)

    Hooghiemstra, A.M.; Eggermont, L.H.P.; Scheltens, P.; van der Flier, W.M.; Scherder, E.J.A.

    2015-01-01

    Background: A substantial part of elderly persons with dementia show rest-activity rhythm disturbances. The rest-activity rhythm is important to study in people with early-onset dementia (EOD) for rest-activity rhythm disturbances are predictive of institutionalization, and caregivers of young

  4. Cholesterol Crystals Activate the Lectin Complement Pathway via Ficolin-2 and Mannose-Binding Lectin

    DEFF Research Database (Denmark)

    Pilely, Katrine; Rosbjerg, Anne; Genster, Ninette

    2016-01-01

    Cholesterol crystals (CC) play an essential role in the formation of atherosclerotic plaques. CC activate the classical and the alternative complement pathways, but the role of the lectin pathway is unknown. We hypothesized that the pattern recognition molecules (PRMs) from the lectin pathway bind...... CC and function as an upstream innate inflammatory signal in the pathophysiology of atherosclerosis. We investigated the binding of the PRMs mannose-binding lectin (MBL), ficolin-1, ficolin-2, and ficolin-3, the associated serine proteases, and complement activation products to CC in vitro using...... recognize CC and provides evidence for an important role for this pathway in the inflammatory response induced by CC in the pathophysiology of atherosclerosis....

  5. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2018-04-01

    Full Text Available Background: Human cytomegalovirus (HCMV establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods: The infectivity of primary human mammary epithelial cells (HMECs was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3 was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9 gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results: We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs. CTH cells when injected in NOD/SCID Gamma (NSG mice

  6. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    Science.gov (United States)

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    Science.gov (United States)

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C

    2017-01-01

    Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  8. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    Directory of Open Access Journals (Sweden)

    Kabilar Gunalan

    Full Text Available Deep brain stimulation (DBS is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports.Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM and predict the response of the hyperdirect pathway to clinical stimulation.Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD. This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution.Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings.Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  9. Defocused low-energy shock wave activates adipose tissue-derived stem cells in vitro via multiple signaling pathways.

    Science.gov (United States)

    Xu, Lina; Zhao, Yong; Wang, Muwen; Song, Wei; Li, Bo; Liu, Wei; Jin, Xunbo; Zhang, Haiyang

    2016-12-01

    We found defocused low-energy shock wave (DLSW) could be applied in regenerative medicine by activating mesenchymal stromal cells. However, the possible signaling pathways that participated in this process remain unknown. In the present study, DLSW was applied in cultured rat adipose tissue-derived stem cells (ADSCs) to explore its effect on ADSCs and the activated signaling pathways. After treating with DLSW, the cellular morphology and cytoskeleton of ADSCs were observed. The secretions of ADSCs were detected. The expressions of ADSC surface antigens were analyzed using flow cytometry. The expressions of proliferating cell nuclear antigen and Ki67 were analyzed using western blot. The expression of CXCR2 and the migrations of ADSCs in vitro and in vivo were detected. The phosphorylation of selected signaling pathways with or without inhibitors was also detected. DLSW did not change the morphology and phenotype of ADSCs, and could promote the secretion, proliferation and migration of ADSCs. The phosphorylation levels were significantly higher in mitogen-activated protein kinases (MAPK) pathway, phosphoinositide 3-kinase (PI-3K)/AKT pathway and nuclear factor-kappa B (NF-κB) signaling pathway but not in Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Furthermore, ADSCs were not activated by DLSW after adding the inhibitors of these pathways simultaneously. Our results demonstrated for the first time that DLSW could activate ADSCs through MAPK, PI-3K/AKT and NF-κB signaling pathways. Combination of DLSW and agonists targeting these pathways might improve the efficacy of ADSCs in regenerative medicine in the future. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Usp7 promotes medulloblastoma cell survival and metastasis by activating Shh pathway

    International Nuclear Information System (INIS)

    Zhan, Meixiao; Sun, Xiaohan; Liu, Jinxiao; Li, Yan; Li, Yong; He, Xu; Zhou, Zizhang; Lu, Ligong

    2017-01-01

    The ubiquitin-specific protease Usp7 plays roles in multiple cellular processes through deubiquitinating and stabilizing numerous substrates, including P53, Pten and Gli. Aberrant Usp7 activity has been implicated in many disorders and tumorigenesis, making it as a potential target for therapeutic intervention. Although it is clear that Usp7 is involved in many types of cancer, its role in regulating medulloblastoma (MB) is still unknown. In this study, we show that knockdown of Usp7 inhibits the proliferation and migration of MB cells, while Usp7 overexpression exerts an opposite effect. Furthermore, we establish Usp7 knockout MB cell line using the CRISPR/Cas9 system and further confirm that Usp7 knockout also blocks MB cell proliferation and metastasis. In addition, we reveal that knockdown of Usp7 compromises Shh pathway activity and decrease Gli protein levels, while P53 level and P53 target gene expression have no obvious changes. Finally, we find that Usp7 inhibitors apparently inhibit MB cell viability and migration. Taken together, our findings suggest that Usp7 is important for MB cell proliferation and metastasis by activating Shh pathway, and is a putative therapeutic target for MBs. - Highlights: • Loss of usp7 blocks the proliferation and metastasis of MB cells. • Usp7 regulates MB cell growth and migration through stimulating Shh pathway. • Usp7 inhibitors hamper MB cell proliferation and migration. • Usp7 inhibitors could attenuate Shh pathway activity.

  11. Active Components with Inhibitory Activities on IFN-γ/STAT1 and IL-6/STAT3 Signaling Pathways from Caulis Trachelospermi

    Directory of Open Access Journals (Sweden)

    Xiao-Ting Liu

    2014-08-01

    Full Text Available Initial investigation for new active herbal extract with inhibiting activity on JAK/STAT signaling pathway revealed that the extract of Caulis Trachelospermi, which was separated by 80% alcohol extraction and subsequent HP-20 macroporous resin column chromatography, was founded to strongly inhibit IFN-γ-induced STAT1-responsive luciferase activity (IFN-γ/STAT1 with IC50 value of 2.43 μg/mL as well as inhibiting IL-6-induced STAT3-responsive luciferase activity (IL-6/STAT3 with IC50 value of 1.38 μg/mL. Subsequent study on its active components led to the isolation and identification of two new dibenzylbutyrolactone lignans named 4-demethyltraxillaside (1 and nortrachelogenin 4-O-β-d-glucopyranoside (2, together with six known compounds. The lignan compounds 1–4 together with other lignan compounds isolated in previous study were tested the activities on IFN-γ/STAT1 and IL-6/STAT3 pathways. The following result showed that the main components trachelogenin and arctigenin had corresponding activities on IFN-γ/STAT1 pathway with IC50 values of 3.14 μM and 9.46 μM as well as trachelogenin, arctigenin and matairesinol strongly inhibiting IL-6/STAT3 pathway with IC50 values of 3.63 μM, 6.47 μM and 2.92 μM, respectively.

  12. The interaction between early life epilepsy and autistic-like behavioral consequences: a role for the mammalian target of rapamycin (mTOR pathway.

    Directory of Open Access Journals (Sweden)

    Delia M Talos

    Full Text Available Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1 signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46, phospho-p70S6K (Thr389 and phospho-S6 (Ser235/236, as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308 and phospho-ERK (Thr202/Tyr204. Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures.

  13. Early life physical activity and cognition at old age

    NARCIS (Netherlands)

    Dik, Miranda; Deeg, Dorly J H; Visser, Marjolein; Jonker, Cees

    Physical activity has shown to be inversely associated with cognitive decline in older people. Whether this association is already present in early life has not been investigated previously. The association between early life physical activity and cognition was studied in 1,241 subjects aged 62-85

  14. Activation of factor VII bound to tissue factor: A key early step in the tissue factor pathway of blood coagulation

    International Nuclear Information System (INIS)

    Rao, L.V.M.; Rapaport, S.I.

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. The earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were made with purified factor VII, X, and tissue factor; in some experiments antithrombin III and heparin were added to prevent back-activation of factor VII. Factor X was activated at similar rates in reaction mixtures containing either VII or factor VIIa after an initial 30-sec lag with factor VII. In reaction mixtures with factor VII a linear activation of factor X was established several minutes before cleavage of 125 I-labeled factor VII to the two-chain activated molecule was demonstrable on gel profiles. These data suggest that factor VII/tissue factor cannot activate measurable amounts of factor X over several minutes. Overall, the results support the hypothesis that a rapid preferential activation of factor VII bound to tissue factor by trace amounts of factor Xa is a key early step in tissue factor-dependent blood coagulation

  15. Hedgehog signaling pathway in neuroblastoma differentiation.

    Science.gov (United States)

    Souzaki, Ryota; Tajiri, Tatsuro; Souzaki, Masae; Kinoshita, Yoshiaki; Tanaka, Sakura; Kohashi, Kenichi; Oda, Yoshinao; Katano, Mitsuo; Taguchi, Tomoaki

    2010-12-01

    The hedgehog (Hh) signaling pathway is activated in some adult cancers. On the other hand, the Hh signaling pathway plays an important role in the development of the neural crest in embryos. The aim of this study is to show the activation of Hh signaling pathway in neuroblastoma (NB), a pediatric malignancy arising from neural crest cells, and to reveal the meaning of the Hh signaling pathway in NB development. This study analyzed the expression of Sonic hedgehog (Shh), GLI1, and Patched 1 (Ptch1), transactivators of Hh signaling pathway, by immunohistochemistry in 82 NB and 10 ganglioneuroblastoma cases. All 92 cases were evaluated for the status of MYCN amplification. Of the 92 cases, 67 (73%) were positive for Shh, 62 cases (67%) were positive for GLI1, and 73 cases (79%) were positive for Ptch1. Only 2 (10%) of the 20 cases with MYCN amplification were positive for Shh and GLI1, and 4 cases (20%) were positive for Ptch1 (MYCN amplification vs no MYCN amplification, P ≦ .01). The percentage of GLI1-positive cells in the cases with INSS stage 1 without MYCN amplification was significantly higher than that with INSS stage 4. Of 72 cases without MYCN amplification, 60 were GLI1-positive. Twelve cases were GLI1-negative, and the prognosis of the GLI1-positive cases was significantly better than that of the GLI1-negative cases (P = .015). Most of NBs without MYCN amplification were positive for Shh, GLI1, and Ptch1. In the cases without MYCN amplification, the high expression of GLI1 was significantly associated with early clinical stage and a good prognosis of the patients. In contrast to adult cancers, the activation of the Hh signaling pathway in NB may be associated with the differentiation of the NB. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    Science.gov (United States)

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  17. The pathway to earthquake early warning in the US

    Science.gov (United States)

    Allen, R. M.; Given, D. D.; Heaton, T. H.; Vidale, J. E.; West Coast Earthquake Early Warning Development Team

    2013-05-01

    The development of earthquake early warning capabilities in the United States is now accelerating and expanding as the technical capability to provide warning is demonstrated and additional funding resources are making it possible to expand the current testing region to the entire west coast (California, Oregon and Washington). Over the course of the next two years we plan to build a prototype system that will provide a blueprint for a full public system in the US. California currently has a demonstrations warning system, ShakeAlert, that provides alerts to a group of test users from the public and private sector. These include biotech companies, technology companies, the entertainment industry, the transportation sector, and the emergency planning and response community. Most groups are currently in an evaluation mode, receiving the alerts and developing protocols for future response. The Bay Area Rapid Transit (BART) system is the one group who has now implemented an automated response to the warning system. BART now stops trains when an earthquake of sufficient size is detected. Research and development also continues to develop improved early warning algorithms to better predict the distribution of shaking in large earthquakes when the finiteness of the source becomes important. The algorithms under development include the use of both seismic and GPS instrumentation and integration with existing point source algorithms. At the same time, initial testing and development of algorithms in and for the Pacific Northwest is underway. In this presentation we will review the current status of the systems, highlight the new research developments, and lay out a pathway to a full public system for the US west coast. The research and development described is ongoing at Caltech, UC Berkeley, University of Washington, ETH Zurich, Southern California Earthquake Center, and the US Geological Survey, and is funded by the Gordon and Betty Moore Foundation and the US Geological

  18. Activation of the lectin complement pathway on human renal ...

    African Journals Online (AJOL)

    This study aimed to investigate the roles of high glucose and mannose-binding lectin (MBL) on the activation of the lectin complement pathway (LCP) on human renal glomerular endothelial cells (HRGECs) in vitro. Flow cytometry analysis, immunofluorescence staining and Western blot were used to detect the cell surface ...

  19. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Seo, Dong-Wan [College of Pharmacy, Dankook University, Cheonan 330-714 (Korea, Republic of); Kang, Jong-Sun [Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746 (Korea, Republic of); Bae, Gyu-Un, E-mail: gbae@sookmyung.ac.kr [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2016-01-29

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.

  20. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    International Nuclear Information System (INIS)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee; Seo, Dong-Wan; Kang, Jong-Sun; Bae, Gyu-Un

    2016-01-01

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.

  1. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory.

    Science.gov (United States)

    Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi

    2015-12-01

    Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β'1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts.

  2. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway.

    Science.gov (United States)

    Son, Tae Gen; Kawamoto, Elisa M; Yu, Qian-Sheng; Greig, Nigel H; Mattson, Mark P; Camandola, Simonetta

    2013-04-19

    Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity. Published by Elsevier Inc.

  3. miRNA targeted signaling pathway in the early stage of denervated fast and slow muscle atrophy

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-01-01

    Full Text Available Denervation often results in skeletal muscle atrophy. Different mechanisms seem to be involved in the determination between denervated slow and fast skeletal muscle atrophy. At the epigenetic level, miRNAs are thought to be highly involved in the pathophysiological progress of denervated muscles. We used miRNA microarrays to determine miRNA expression profiles from a typical slow muscle (soleus muscle and a typical fast muscle (tibialis anterior muscle at an early denervation stage in a rat model. Results showed that miR-206, miR-195, miR-23a, and miR-30e might be key factors in the transformation process from slow to fast muscle in denervated slow muscles. Additionally, certain miRNA molecules (miR-214, miR-221, miR-222, miR-152, miR-320, and Let-7e could be key regulatory factors in the denervated atrophy process involved in fast muscle. Analysis of signaling pathway networks revealed the miRNA molecules that were responsible for regulating certain signaling pathways, which were the final targets (e.g., p38 MAPK pathway; Pax3/Pax7 regulates Utrophin and follistatin by HDAC4; IGF1/PI3K/Akt/mTOR pathway regulates atrogin-1 and MuRF1 expression via FoxO phosphorylation. Our results provide a better understanding of the mechanisms of denervated skeletal muscle pathophysiology.

  4. Women's Work Pathways Across the Life Course.

    Science.gov (United States)

    Damaske, Sarah; Frech, Adrianne

    2016-04-01

    Despite numerous changes in women's employment in the latter half of the twentieth century, women's employment continues to be uneven and stalled. Drawing from data on women's weekly work hours in the National Longitudinal Survey of Youth (NLSY79), we identify significant inequality in women's labor force experiences across adulthood. We find two pathways of stable full-time work for women, three pathways of part-time employment, and a pathway of unpaid labor. A majority of women follow one of the two full-time work pathways, while fewer than 10% follow a pathway of unpaid labor. Our findings provide evidence of the lasting influence of work-family conflict and early socioeconomic advantages and disadvantages on women's work pathways. Indeed, race, poverty, educational attainment, and early family characteristics significantly shaped women's work careers. Work-family opportunities and constraints also were related to women's work hours, as were a woman's gendered beliefs and expectations. We conclude that women's employment pathways are a product of both their resources and changing social environment as well as individual agency. Significantly, we point to social stratification, gender ideologies, and work-family constraints, all working in concert, as key explanations for how women are "tracked" onto work pathways from an early age.

  5. Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein.

    Science.gov (United States)

    Mast, Alan E

    2016-01-01

    Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits early phases of the procoagulant response. Alternatively spliced isoforms of TFPI are differentially expressed by endothelial cells and human platelets and plasma. The TFPIβ isoform localizes to the endothelium surface where it is a potent inhibitor of TF-factor VIIa complexes that initiate blood coagulation. The TFPIα isoform is present in platelets. TFPIα contains a stretch of 9 amino acids nearly identical to those found in the B-domain of factor V that are well conserved in mammals. These amino acids provide exosite binding to activated factor V, which allows for TFPIα to inhibit prothrombinase during the initiation phase of blood coagulation. Endogenous inhibition at this point in the coagulation cascade was only recently recognized and has provided a biochemical rationale to explain the pathophysiological mechanisms underlying several clinical disorders. These include the east Texas bleeding disorder that is caused by production of an altered form of factor V with high affinity for TFPI and a paradoxical procoagulant effect of heparins. In addition, these findings have led to ideas for pharmacological targeting of TFPI that may reduce bleeding in hemophilia patients. © 2015 American Heart Association, Inc.

  6. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells

    International Nuclear Information System (INIS)

    Friesen, Claudia; Lubatschofski, Annelie; Debatin, Klaus-Michael; Kotzerke, Joerg; Buchmann, Inga; Reske, Sven N.

    2003-01-01

    Beta-irradiation used for systemic radioimmunotherapy (RIT) is a promising treatment approach for high-risk leukaemia and lymphoma. In bone marrow-selective radioimmunotherapy, beta-irradiation is applied using iodine-131, yttrium-90 or rhenium-188 labelled radioimmunoconjugates. However, the mechanisms by which beta-irradiation induces cell death are not understood at the molecular level. Here, we report that beta-irradiation induced apoptosis and activated apoptosis pathways in leukaemia cells depending on doses, time points and dose rates. After beta-irradiation, upregulation of CD95 ligand and CD95 receptor was detected and activation of caspases resulting in apoptosis was found. These effects were completely blocked by the broad-range caspase inhibitor zVAD-fmk. In addition, irradiation-mediated mitochondrial damage resulted in perturbation of mitochondrial membrane potential, caspase-9 activation and cytochrome c release. Bax, a death-promoting protein, was upregulated and Bcl-x L , a death-inhibiting protein, was downregulated. We also found higher apoptosis rates and earlier activation of apoptosis pathways after gamma-irradiation in comparison to beta-irradiation at the same dose rate. Furthermore, irradiation-resistant cells were cross-resistant to CD95 and CD95-resistant cells were cross-resistant to irradiation, indicating that CD95 and irradiation used, at least in part, identical effector pathways. These findings demonstrate that beta-irradiation induces apoptosis and activates apoptosis pathways in leukaemia cells using both mitochondrial and death receptor pathways. Understanding the timing, sequence and molecular pathways of beta-irradiation-mediated apoptosis may allow rational adjustment of chemo- and radiotherapeutic strategies. (orig.)

  7. Identifying early pathways of risk and resilience: The co-development of internalizing and externalizing symptoms and the role of harsh parenting

    OpenAIRE

    Wiggins, Jillian Lee; Mitchell, Colter; Hyde, Luke W.; Monk, Christopher S.

    2015-01-01

    Psychological disorders co-occur often in children, but little has been done to document the types of conjoint pathways internalizing and externalizing symptoms may take from the crucial early period of toddlerhood or how harsh parenting may overlap with early symptom co-development. To examine symptom co-development trajectories, we identified latent classes of individuals based on internalizing and externalizing symptoms across ages 3–9 and found three symptom co-development classes: normat...

  8. Marine Natural Product Honaucin A Attenuates Inflammation by Activating the Nrf2-ARE Pathway.

    Science.gov (United States)

    Mascuch, Samantha J; Boudreau, Paul D; Carland, Tristan M; Pierce, N Tessa; Olson, Joshua; Hensler, Mary E; Choi, Hyukjae; Campanale, Joseph; Hamdoun, Amro; Nizet, Victor; Gerwick, William H; Gaasterland, Teresa; Gerwick, Lena

    2018-03-23

    The cyanobacterial marine natural product honaucin A inhibits mammalian innate inflammation in vitro and in vivo. To decipher its mechanism of action, RNA sequencing was used to evaluate differences in gene expression of cultured macrophages following honaucin A treatment. This analysis led to the hypothesis that honaucin A exerts its anti-inflammatory activity through activation of the cytoprotective nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile response element (ARE/EpRE) signaling pathway. Activation of this pathway by honaucin A in cultured human MCF7 cells was confirmed using an Nrf2 luciferase reporter assay. In vitro alkylation experiments with the natural product and N-acetyl-l-cysteine suggest that honaucin A activates this pathway through covalent interaction with the sulfhydryl residues of the cytosolic repressor protein Keap1. Honaucin A presents a potential therapeutic lead for diseases with an inflammatory component modulated by Nrf2-ARE.

  9. BFV activates the NF-κB pathway through its transactivator (BTas) to enhance viral transcription

    International Nuclear Information System (INIS)

    Wang Jian; Tan Juan; Zhang Xihui; Guo Hongyan; Zhang Qicheng; Guo Tingting; Geng Yunqi; Qiao Wentao

    2010-01-01

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-κB (NF-κB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-κB pathway through the action of its transactivator, BTas. Both cellular IKKβ and IκBα also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-κB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKα and IKKβ), which may be responsible for regulation of IKK kinase activity and persistent NF-κB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-κB. Together, this study suggests that BFV activates the NF-κB pathway through BTas to enhance viral transcription.

  10. DMPD: A pervasive role of ubiquitin conjugation in activation and termination ofIkappaB kinase pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15809659 A pervasive role of ubiquitin conjugation in activation and termination of...csml) Show A pervasive role of ubiquitin conjugation in activation and termination ofIkappaB kinase pathways.... PubmedID 15809659 Title A pervasive role of ubiquitin conjugation in activation and termina

  11. NKT cell activation by Leishmania mexicana LPG: Description of a novel pathway.

    Science.gov (United States)

    Zamora-Chimal, Jaime; Fernández-Figueroa, Edith A; Ruiz-Remigio, Adriana; Wilkins-Rodríguez, Arturo A; Delgado-Domínguez, José; Salaiza-Suazo, Norma; Gutiérrez-Kobeh, Laila; Becker, Ingeborg

    2017-02-01

    NKT cells have been associated with protection against Leishmania donovani, yet their role in infections with Leishmania mexicana has not been addressed, nor has the activation pathway been defined after stimulation with Leishmania mexicana lipophosphoglycan (LPG). We analyzed the activation of NKT cells and their cytokine production in response to Leishmania mexicana LPG. Additionally we compared NKT-cell numbers and cytokine profile in lymph nodes of skin lesions induced by Leishmania mexicana in BALB/c and C57BL/6 mice. We show that LPG activates NKT cells primarily through the indirect pathway, initiating with TLR2 stimulation of dendritic cells (DC), thereby enhancing TLR2, MHC II, and CD86 expressions and IL-12p70 production. This leads to IFN-γ production by NKT cells. C57BL/6 mice showed enhanced DC activation, which correlated with augmented IFN-γ production by NKT cells. Additionally, infected C57BL/6 mice showed elevated percentages of NKT cells with higher IFN-γ and IL-4 production in lymph nodes. We conclude that the response of NKT cells towards Leishmania mexicana LPG initiates with the indirect activation, after binding of LPG to TLR2 in DC. This indirect activation pathway enables NKT cells to produce IFN-γ during the innate phase of Leishmania infection, the magnitude of which differs between mouse strains. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  12. Mechanism of Notch Pathway Activation and Its Role in the Regulation of Olfactory Plasticity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    Full Text Available The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs, but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity.

  13. In vivo imaging of Hedgehog pathway activation with a nuclear fluorescent reporter.

    Directory of Open Access Journals (Sweden)

    John K Mich

    Full Text Available The Hedgehog (Hh pathway is essential for embryonic development and tissue regeneration, and its dysregulation can lead to birth defects and tumorigenesis. Understanding how this signaling mechanism contributes to these processes would benefit from an ability to visualize Hedgehog pathway activity in live organisms, in real time, and with single-cell resolution. We report here the generation of transgenic zebrafish lines that express nuclear-localized mCherry fluorescent protein in a Gli transcription factor-dependent manner. As demonstrated by chemical and genetic perturbations, these lines faithfully report Hedgehog pathway state in individual cells and with high detection sensitivity. They will be valuable tools for studying dynamic Gli-dependent processes in vertebrates and for identifying new chemical and genetic regulators of the Hh pathway.

  14. Autophagy Stimulus Promotes Early HuR Protein Activation and p62/SQSTM1 Protein Synthesis in ARPE-19 Cells by Triggering Erk1/2, p38MAPK, and JNK Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Nicoletta Marchesi

    2018-01-01

    Full Text Available RNA-binding protein dysregulation and altered expression of proteins involved in the autophagy/proteasome pathway play a role in many neurodegenerative disease onset/progression, including age-related macular degeneration (AMD. HuR/ELAVL1 is a master regulator of gene expression in human physiopathology. In ARPE-19 cells exposed to the proteasomal inhibitor MG132, HuR positively affects at posttranscriptional level p62 expression, a stress response gene involved in protein aggregate clearance with a role in AMD. Here, we studied the early effects of the proautophagy AICAR + MG132 cotreatment on the HuR-p62 pathway. We treated ARPE-19 cells with Erk1/2, AMPK, p38MAPK, PKC, and JNK kinase inhibitors in the presence of AICAR + MG132 and evaluated HuR localization/phosphorylation and p62 expression. Two-hour AICAR + MG132 induces both HuR cytoplasmic translocation and threonine phosphorylation via the Erk1/2 pathway. In these conditions, p62 mRNA is loaded on polysomes and its translation in de novo protein is favored. Additionally, for the first time, we report that JNK can phosphorylate HuR, however, without modulating its localization. Our study supports HuR’s role as an upstream regulator of p62 expression in ARPE-19 cells, helps to understand better the early events in response to a proautophagy stimulus, and suggests that modulation of the autophagy-regulating kinases as potential therapeutic targets for AMD may be relevant.

  15. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages.

    Directory of Open Access Journals (Sweden)

    Antje Bast

    2014-03-01

    Full Text Available The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1

  16. Apoptotic pathways of epothilone BMS 310705.

    Science.gov (United States)

    Uyar, Denise; Takigawa, Nagio; Mekhail, Tarek; Grabowski, Dale; Markman, Maurie; Lee, Francis; Canetta, Renzo; Peck, Ron; Bukowski, Ronald; Ganapathi, Ram

    2003-10-01

    BMS 310705 is a novel water-soluble analog of epothilone B currently in phase I clinical evaluation in the treatment of malignancies such as ovarian, renal, bladder, and lung carcinoma. Using an early passage cell culture model derived from the ascites of a patient clinically refractory to platinum/paclitaxel therapy, we evaluated the pathway of caspase-mediated apoptosis. Cells were treated for 1 h and subsequently evaluated for apoptosis, survival, and caspase activity. Apoptosis was determined by fluorescent microscopy. Caspase-3, -8, and -9 activities were determined by fluorometry using target tetrapeptide substrates. Mitochondrial release of cytochrome c was determined by immunoblot analysis. After treatment with BMS 310705, apoptosis was confirmed in >25% of cells at 24 h. Survival was significantly lower (P < 0.02) in cells treated with 0.05 micro M BMS 310705 vs paclitaxel. Analysis revealed an increase of caspase-9 and -3 activity; no caspase -8 activity was observed. Release of cytochrome c was detected at 12 h following treatment. SN-38 and topotecan failed to induce apoptosis. BMS 310705 induces significant apoptosis, decreases survival, and utilizes the mitochondrial-mediated pathway for apoptosis in this model.

  17. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    Energy Technology Data Exchange (ETDEWEB)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States); Boyer, Arthur [Department of Radiology, Scott and White Hospital, Temple, Texas (United States); Liu, Fei, E-mail: fliu@medicine.tamhsc.edu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States)

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  18. Concurrent Transient Activation of Wnt/β-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    International Nuclear Information System (INIS)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-01-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/β-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/β-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/β-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/β-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  19. The activation of the kynurenine pathway in a rat model with renovascular hypertension.

    Science.gov (United States)

    Bartosiewicz, Jacek; Kaminski, Tomasz; Pawlak, Krystyna; Karbowska, Malgorzata; Tankiewicz-Kwedlo, Anna; Pawlak, Dariusz

    2017-04-01

    Hypertension is a serious condition that can lead to many health problems. The mechanisms underlying this process are still not fully understood. The kynurenine pathway may be involved in the occurrence and progression of hypertension. The purpose of this study was to examine the activity of peripheral kynurenine pathway in rats with renovascular hypertension in Goldblatt 2K1C model. Hypertension was induced in the experimental groups by constricting the renal artery of the left kidney of the rats. Determination of tryptophan (Trp) and kynurenine pathway metabolites was assessed by high-performance liquid chromatography in plasma and tissues obtained at 4, 8, and 16 weeks after the surgical intervention or sham surgery. Levels of Ang II were evaluated using commercial immuno-enzymatic ELISA kits. Surgical treatment led to increased values of mean blood pressure and systolic blood pressure, whereas Trp concentrations were decreased in experimental animals compared to appropriate controls. Simultaneously, the considerable increment of kynurenine pathway components and a significant increase in the activity of tryptophan 2,3-dioxygenase were observed in rats with developed hypertension in comparison with controls. There were no differences between Ang II levels in controls and experimental groups. The inverse relationship was between plasma Trp and both SBP and Ang II values, and Trp independently affected Ang II concentrations in hypertensive rats. In contrast, tryptophan 2,3-dioxygenase activity and plasma kynurenine metabolites positively correlated with blood pressure values as well as with Ang II levels in these animals. Moreover, kynurenine was independently connected with MBP. Renovascular hypertension influences kynurenine pathway and leads to an imbalance in Trp and its metabolite levels. Tryptophan 2,3-dioxygenase and part of the kynurenine metabolites in plasma and tissues positively correlated with blood pressure values and Ang II levels. Although the

  20. Iro/IRX transcription factors negatively regulate Dpp/TGF-β pathway activity during intestinal tumorigenesis.

    Science.gov (United States)

    Martorell, Òscar; Barriga, Francisco M; Merlos-Suárez, Anna; Stephan-Otto Attolini, Camille; Casanova, Jordi; Batlle, Eduard; Sancho, Elena; Casali, Andreu

    2014-11-01

    Activating mutations in Wnt and EGFR/Ras signaling pathways are common in colorectal cancer (CRC). Remarkably, clonal co-activation of these pathways in the adult Drosophila midgut induces "tumor-like" overgrowths. Here, we show that, in these clones and in CRC cell lines, Dpp/TGF-β acts as a tumor suppressor. Moreover, we discover that the Iroquois/IRX-family-protein Mirror downregulates the transcription of core components of the Dpp pathway, reducing its tumor suppressor activity. We also show that this genetic interaction is conserved in human CRC cells, where the Iro/IRX proteins IRX3 and IRX5 diminish the response to TGF-β. IRX3 and IRX5 are upregulated in human adenomas, and their levels correlate inversely with the gene expression signature of response to TGF-β. In addition, Irx5 expression confers a growth advantage in the presence of TGF-β, but is selected against in its absence. Together, our results identify a set of Iro/IRX proteins as conserved negative regulators of Dpp/TGF-β activity. We propose that during the characteristic adenoma-to-carcinoma transition of human CRC, the activity of IRX proteins could reduce the sensitivity to the cytostatic effect of TGF-β, conferring a growth advantage to tumor cells prior to the acquisition of mutations in TGF-β pathway components. © 2014 The Authors.

  1. Hypothalamic-pituitary-adrenal axis activity and early onset of cannabis use

    NARCIS (Netherlands)

    Huizink, Anja C.; Ferdinand, Robert F.; Ormel, Johan; Verhulst, Frank C.

    Aims To identify early onset cannabis users by measuring basal hypothalamic-pituitary-adrenal (HPA) axis activity, which may be a risk factor for early onset substance use when showing low activity. Design In a prospective cohort study, adolescents who initiated cannabis use at an early age (9-12

  2. Hypothalamic-pituitary-adrenal axis activity and early onset of cannabis use

    NARCIS (Netherlands)

    Huizink, Anja C.; Ferdinand, Robert F.; Ormel, Johan; Verhulst, Frank C.

    2006-01-01

    Aims To identify early onset cannabis users by measuring basal hypothalamic-pituitary-adrenal (HPA) axis activity, which may be a risk factor for early onset substance use when showing low activity. Design In a prospective cohort study, adolescents who initiated cannabis use at an early age (9-12

  3. Pathways from maternal distress and child problem behavior to adolescent depressive symptoms: a prospective examination from early childhood to adolescence.

    Science.gov (United States)

    Nilsen, Wendy; Gustavson, Kristin; Røysamb, Espen; Kjeldsen, Anne; Karevold, Evalill

    2013-06-01

    The main aim of this study was to identify the pathways from maternal distress and child problem behaviors (i.e., internalizing and externalizing problems) across childhood and their impact on depressive symptoms during adolescence among girls and boys. Data from families of 921 Norwegian children in a 15-year longitudinal community sample were used. Using structural equation modeling, the authors explored the interplay between maternal-reported distress and child problem behaviors measured at 5 time points from early (ages 1.5, 2.5, and 4.5 years) and middle (age 8.5 years) childhood to early adolescence (age 12.5 years), and their prediction of self-reported depressive symptoms during adolescence (ages 14.5 and 16.5 years). The findings revealed paths from internalizing and externalizing problems throughout the development for corresponding problems (homotypic paths) and paths from early externalizing to subsequent internalizing problems (heterotypic paths). The findings suggest 2 pathways linking maternal-rated risk factors to self-reported adolescent depressive symptoms. There was a direct path from early externalizing problems to depressive symptoms. There was an indirect path from early maternal distress going through child problem behavior to depressive symptoms. In general, girls and boys were similar, but some gender-specific effects appeared. Problem behaviors in middle childhood had heterotypic paths to subsequent problems only for girls. The findings highlight the developmental importance of child externalizing problems, as well as the impact of maternal distress as early as age 1.5 years for the development of adolescent depressive symptoms. Findings also indicate a certain vulnerable period in middle childhood for girls. NOTE: See Supplemental Digital Content 1, at http://links.lww.com/JDBP/A45, for a video introduction to this article.

  4. Drug Modulators of B Cell Signaling Pathways and Epstein-Barr Virus Lytic Activation.

    Science.gov (United States)

    Kosowicz, John G; Lee, Jaeyeun; Peiffer, Brandon; Guo, Zufeng; Chen, Jianmeng; Liao, Gangling; Hayward, S Diane; Liu, Jun O; Ambinder, Richard F

    2017-08-15

    Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib. IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors. Copyright © 2017 American Society for Microbiology.

  5. EarthConnections: Integrating Community Science and Geoscience Education Pathways for More Resilient Communities.

    Science.gov (United States)

    Manduca, C. A.

    2017-12-01

    To develop a diverse geoscience workforce, the EarthConnections collective impact alliance is developing regionally focused, Earth education pathways. These pathways support and guide students from engagement in relevant, Earth-related science at an early age through the many steps and transitions to geoscience-related careers. Rooted in existing regional activities, pathways are developed using a process that engages regional stakeholders and community members with EarthConnections partners. Together they connect, sequence, and create multiple learning opportunities that link geoscience education and community service to address one or more local geoscience issues. Three initial pilots are demonstrating different starting points and strategies for creating pathways that serve community needs while supporting geoscience education. The San Bernardino pilot is leveraging existing academic relationships and programs; the Atlanta pilot is building into existing community activities; and the Oklahoma Tribal Nations pilot is co-constructing a pathway focus and approach. The project is using pathway mapping and a collective impact framework to support and monitor progress. The goal is to develop processes and activities that can help other communities develop similar community-based geoscience pathways. By intertwining Earth education with local community service we aspire to increase the resilience of communities in the face of environmental hazards and limited Earth resources.

  6. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection

    DEFF Research Database (Denmark)

    Ali, Youssif M; Lynch, Nicholas J; Haleem, Kashif S

    2012-01-01

    The complement system plays a key role in host defense against pneumococcal infection. Three different pathways, the classical, alternative and lectin pathways, mediate complement activation. While there is limited information available on the roles of the classical and the alternative activation...... to pneumococcal infection and fail to opsonize Streptococcus pneumoniae in the none-immune host. This defect in complement opsonisation severely compromises pathogen clearance in the lectin pathway deficient host. Using sera from mice and humans with defined complement deficiencies, we demonstrate that mouse...... of C4. This study corroborates the essential function of MASP-2 in the lectin pathway and highlights the importance of MBL-independent lectin pathway activation in the host defense against pneumococci....

  7. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  8. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  9. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Matsuda, Satoru; Kitagishi, Yasuko

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  10. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    Science.gov (United States)

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  11. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Liu

    Full Text Available The allene oxide synthase (AOS and hydroperoxide lyase (HPL branches of the oxylipin pathway, which underlie the production of jasmonates and aldehydes, respectively, function in plant responses to a range of stresses. Regulatory crosstalk has been proposed to exist between these two signaling branches; however, there is no direct evidence of this. Here, we identified and characterized a jasmonic acid (JA overproduction mutant, cea62, by screening a rice T-DNA insertion mutant library for lineages that constitutively express the AOS gene. Map-based cloning was used to identify the underlying gene as hydroperoxide lyase OsHPL3. HPL3 expression and the enzyme activity of its product, (E-2-hexenal, were depleted in the cea62 mutant, which resulted in the dramatic overproduction of JA, the activation of JA signaling, and the emergence of the lesion mimic phenotype. A time-course analysis of lesion formation and of the induction of defense responsive genes in the cea62 mutant revealed that the activation of JA biosynthesis and signaling in cea62 was regulated in a developmental manner, as was OsHPL3 activity in the wild-type plant. Microarray analysis showed that the JA-governed defense response was greatly activated in cea62 and this plant exhibited enhanced resistance to the T1 strain of the bacterial blight pathogen Xanthomonasoryzaepvoryzae (Xoo. The wounding response was attenuated in cea62 plants during the early stages of development, but partially recovered when JA levels were elevated during the later stages. In contrast, the wounding response was not altered during the different developmental stages of wild-type plants. These findings suggest that these two branches of the oxylipin pathway exhibit crosstalk with regards to biosynthesis and signaling and cooperate with each other to function in diverse stress responses.

  12. 1,25-Dihydroxyvitamin D3 Inhibits the RANKL Pathway and Impacts on the Production of Pathway-Associated Cytokines in Early Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Jing Luo

    2013-01-01

    Full Text Available Objectives. To study effects of 1,25-dihydroxyvitamin D3 (1,25(OH2D3 on RANKL signaling pathway and pathway-associated cytokines in patients with rheumatoid arthritis (RA. Methods. Receptor activator of nuclear factor-kappa B ligand (RANKL, osteoprotegerin (OPG, IFN-γ, IL-6, TNF-α, IL-17, and IL-4 were examined in 54 patients with incipient RA using a cytometric bead array (CBA or an enzyme-linked immunosorbent assay (ELISA. Results. After 72 hours of incubation of peripheral blood mononuclear cells (PBMCs with 1,25(OH2D3 in RA patients, the levels of RANKL, TNF-α, IL-17 and IL-6 significantly decreased compared to those of the control. 1,25(OH2D3 had no significantly impact on the levels of OPG, RANKL/OPG, and IL-4. Conclusions. The present study demonstrated that 1,25(OH2D3 reduced the production of RANKL and the secretion of TNF-α, IL-17, and IL-6 in PBMCs of RA patients, which indicated that 1,25(OH2D3 might be able to decrease damage of cartilage and bone in RA patients by regulating the expression of RANKL signaling pathway and pathway-associated cytokines.

  13. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    Science.gov (United States)

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  14. Loss of catalase increases malignant mouse keratinocyte cell growth through activation of the stress activated JNK pathway.

    Science.gov (United States)

    Hanke, Neale T; Finch, Joanne S; Bowden, G Timothy

    2008-05-01

    A cell line that produces mouse squamous cell carcinoma (6M90) was modified to develop a cell line with an introduced Tet-responsive catalase transgene (MTOC2). We have previously reported that the overexpressed catalase in the MTOC2 cells reverses the malignant phenotype in part by decreasing epidermal growth factor receptor (EGFR) signaling. With this work we expanded the investigation into the differences between these two cell lines. We found that the decreased EGFR pathway activity of the MTOC2 cells is not because of reduced autocrine secretion of an epidermal growth factor (EGF) ligand but rather because of lower basal receptor activity. Phosphorylated levels of the mitogen-activated protein kinase (MAPK) members JNK and p38 were both higher in the 6M90 cells with low catalase when compared with the MTOC2 cell line. Although treatment with an EGFR inhibitor, AG1478, blocked the increased activity of JNK in the 6M90 cells, a similar effect was not observed for p38. Basal levels of downstream c-jun transcription were also found to be higher in the 6M90 cells versus MTOC2 cells. Activated p38 was found to down-regulate the JNK MAPK pathway in the 6M90 cells. However, the 6M90 cells contain constitutively high levels of phosphorylated JNK, generating higher levels of phosphorylated c-jun and total c-jun than those in the MTOC2 cells. Inhibition of JNK activity in the 6M90 cells reduced AP-1 transcription and cell proliferation. The data confirm the inhibitory effects of catalase on tumor cell growth, specifically through a ligand-independent decrease in the stress activated JNK pathway. (c) 2007 Wiley-Liss, Inc.

  15. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation

    Science.gov (United States)

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander

    2016-01-01

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894

  16. Can Co-Activation of Nrf2 and Neurotrophic Signaling Pathway Slow Alzheimer’s Disease?

    Directory of Open Access Journals (Sweden)

    Kelsey E. Murphy

    2017-05-01

    Full Text Available Alzheimer’s disease (AD is a multifaceted disease that is hard to treat by single-modal treatment. AD starts with amyloid peptides, mitochondrial dysfunction, and oxidative stress and later is accompanied with chronic endoplasmic reticulum (ER stress and autophagy dysfunction, resulting in more complicated pathogenesis. Currently, few treatments can modify the complicated pathogenic progress of AD. Compared to the treatment with exogenous antioxidants, the activation of global antioxidant defense system via Nrf2 looks more promising in attenuating oxidative stress in AD brains. Accompanying the activation of the Nrf2-mediated antioxidant defense system that reduce the AD-causative factor, oxidative stress, it is also necessary to activate the neurotrophic signaling pathway that replaces damaged organelles and molecules with new ones. Thus, the dual actions to activate both the Nrf2 antioxidant system and neurotrophic signaling pathway are expected to provide a better strategy to modify AD pathogenesis. Here, we review the current understanding of AD pathogenesis and neuronal defense systems and discuss a possible way to co-activate the Nrf2 antioxidant system and neurotrophic signaling pathway with the hope of helping to find a better strategy to slow AD.

  17. Inhibition of MHC-I by Brucella abortus is an early event during infection and involves EGFR pathway.

    Science.gov (United States)

    Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Mercogliano, M Florencia; Pozner, Roberto G; Schillaci, Roxana; Elizalde, Patricia V; Giambartolomei, Guillermo H; Barrionuevo, Paula

    2017-04-01

    Brucella abortus is able to persist inside the host despite the development of potent CD8 + T-cell responses. We have recently reported the ability of B. abortus to inhibit the interferon-γ-induced major histocompatibility complex (MHC)-I cell surface expression on human monocytes. This phenomenon was due to the B. abortus-mediated retention of MHC-I molecules within the Golgi apparatus and was dependent on bacterial viability. However, the implications of bacterial virulence or replicative capacity and the signaling pathways remained unknown. Here we demonstrated that the B. abortus mutant strains RB51 and virB10 - are able to inhibit MHC-I expression in the same manner as wild-type B. abortus, even though they are unable to persist inside human monocytes for a long period of time. Consistent with this, the phenomenon was triggered early in time and could be observed at 8 h postinfection. At 24 and 48 h, it was even stronger. Regarding the signaling pathway, targeting epidermal growth factor (EGF) receptor (EGFR), ErbB2 (HER2) or inhibition of tumor necrosis factor-α-converting enzyme, one of the enzymes which generates soluble EGF-like ligands, resulted in partial recovery of MHC-I surface expression. Moreover, recombinant EGF and transforming growth factor-α as well as the combination of both were also able to reproduce the B. abortus-induced MHC-I downmodulation. Finally, when infection was performed in the presence of an extracellular signal-regulated kinase 1/2 (Erk1/2) inhibitor, MHC-I surface expression was significantly recovered. Overall, these results describe how B. abortus evades CD8 + T-cell responses early during infection and exploits the EGFR-ERK signaling pathway to escape from the immune system and favor chronicity.

  18. Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Qingqiao [Renal Department of Internal Medicine, The Third Hospital of Wuhan (China); Xia, Yuanyu, E-mail: xiayuanyu.wh@gmail.com [Renal Department of Internal Medicine, The Third Hospital of Wuhan (China); Wang, Guan [Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University (China)

    2016-09-02

    As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression in HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders.

  19. Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway.

    Science.gov (United States)

    Yin, Qingqiao; Xia, Yuanyu; Wang, Guan

    2016-09-02

    As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression in HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Haijun Xu

    2010-09-01

    Full Text Available Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ(54-σ(S sigma factor cascade, plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P, the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis.

  1. Activation of the PI3K/AKT pathway in Merkel cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Christian Hafner

    Full Text Available Merkel cell carcinoma (MCC is a highly aggressive skin cancer with an increasing incidence. The understanding of the molecular carcinogenesis of MCC is limited. Here, we scrutinized the PI3K/AKT pathway, one of the major pathways activated in human cancer, in MCC. Immunohistochemical analysis of 41 tumor tissues and 9 MCC cell lines revealed high levels of AKT phosphorylation at threonine 308 in 88% of samples. Notably, the AKT phosphorylation was not correlated with the presence or absence of the Merkel cell polyoma virus (MCV. Accordingly, knock-down of the large and small T antigen by shRNA in MCV positive MCC cells did not affect phosphorylation of AKT. We also analyzed 46 MCC samples for activating PIK3CA and AKT1 mutations. Oncogenic PIK3CA mutations were found in 2/46 (4% MCCs whereas mutations in exon 4 of AKT1 were absent. MCC cell lines demonstrated a high sensitivity towards the PI3K inhibitor LY-294002. This finding together with our observation that the PI3K/AKT pathway is activated in the majority of human MCCs identifies PI3K/AKT as a potential new therapeutic target for MCC patients.

  2. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Directory of Open Access Journals (Sweden)

    Maraziotis Theodore

    2007-10-01

    Full Text Available Abstract Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were used. The labeling index (LI, defined as the percentage of positive (labeled cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1% in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were

  3. Active PI3K pathway causes an invasive phenotype which can be reversed or promoted by blocking the pathway at divergent nodes.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Wallin

    Full Text Available The PTEN/PI3K pathway is commonly mutated in cancer and therefore represents an attractive target for therapeutic intervention. To investigate the primary phenotypes mediated by increased pathway signaling in a clean, patient-relevant context, an activating PIK3CA mutation (H1047R was knocked-in to an endogenous allele of the MCF10A non-tumorigenic human breast epithelial cell line. Introduction of an endogenously mutated PIK3CA allele resulted in a marked epithelial-mesenchymal transition (EMT and invasive phenotype, compared to isogenic wild-type cells. The invasive phenotype was linked to enhanced PIP(3 production via a S6K-IRS positive feedback mechanism. Moreover, potent and selective inhibitors of PI3K were highly effective in reversing this phenotype, which is optimally revealed in 3-dimensional cell culture. In contrast, inhibition of Akt or mTOR exacerbated the invasive phenotype. Our results suggest that invasion is a core phenotype mediated by increased PTEN/PI3K pathway activity and that therapeutic agents targeting different nodes of the PI3K pathway may have dramatic differences in their ability to reverse or promote cancer metastasis.

  4. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Gregory P. Way

    2018-04-01

    Full Text Available Summary: Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these “hidden responders” may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders. : Way et al. develop a machine-learning approach using PanCanAtlas data to detect Ras activation in cancer. Integrating mutation, copy number, and expression data, the authors show that their method detects Ras-activating variants in tumors and sensitivity to MEK inhibitors in cell lines. Keywords: Gene expression, machine learning, Ras, NF1, KRAS, NRAS, HRAS, pan-cancer, TCGA, drug sensitivity

  5. Dorsolateral Striatum Engagement Interferes with Early Discrimination Learning

    Directory of Open Access Journals (Sweden)

    Hadley C. Bergstrom

    2018-05-01

    Full Text Available Summary: In current models, learning the relationship between environmental stimuli and the outcomes of actions involves both stimulus-driven and goal-directed systems, mediated in part by the DLS and DMS, respectively. However, though these models emphasize the importance of the DLS in governing actions after extensive experience has accumulated, there is growing evidence of DLS engagement from the onset of training. Here, we used in vivo photosilencing to reveal that DLS recruitment interferes with early touchscreen discrimination learning. We also show that the direct output pathway of the DLS is preferentially recruited and causally involved in early learning and find that silencing the normal contribution of the DLS produces plasticity-related alterations in a PL-DMS circuit. These data provide further evidence suggesting that the DLS is recruited in the construction of stimulus-elicited actions that ultimately automate behavior and liberate cognitive resources for other demands, but with a cost to performance at the outset of learning. : What is the contribution of the DLS in early discrimination learning? Bergstrom et al. show using in vivo optogenetics, fluorescence in situ hybridization, and brain-wide activity mapping that silencing the DLS facilitates early discrimination learning, drives activity in a parallel PL-DMS circuit, and preferentially recruits the DLS “direct” output pathway. Keywords: striatum, reward, goal-directed, habit, optogenetics, plasticity, cognition, Arc

  6. Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network.

    Science.gov (United States)

    Song, Xian-Dong; Song, Xian-Xu; Liu, Gui-Bo; Ren, Chun-Hui; Sun, Yuan-Bo; Liu, Ke-Xin; Liu, Bo; Liang, Shuang; Zhu, Zhu

    2018-03-01

    The traditional methods of identifying biomarkers in rheumatoid arthritis (RA) have focussed on the differentially expressed pathways or individual pathways, which however, neglect the interactions between pathways. To better understand the pathogenesis of RA, we aimed to identify dysregulated pathway sets using a pathway interaction network (PIN), which considered interactions among pathways. Firstly, RA-related gene expression profile data, protein-protein interactions (PPI) data and pathway data were taken up from the corresponding databases. Secondly, principal component analysis method was used to calculate the pathway activity of each of the pathway, and then a seed pathway was identified using data gleaned from the pathway activity. A PIN was then constructed based on the gene expression profile, pathway data, and PPI information. Finally, the dysregulated pathways were extracted from the PIN based on the seed pathway using the method of support vector machines and an area under the curve (AUC) index. The PIN comprised of a total of 854 pathways and 1064 pathway interactions. The greatest change in the activity score between RA and control samples was observed in the pathway of epigenetic regulation of gene expression, which was extracted and regarded as the seed pathway. Starting with this seed pathway, one maximum pathway set containing 10 dysregulated pathways was extracted from the PIN, having an AUC of 0.8249, and the result indicated that this pathway set could distinguish RA from the controls. These 10 dysregulated pathways might be potential biomarkers for RA diagnosis and treatment in the future.

  7. Fluocinolone acetonide partially restores the mineralization of LPS-stimulated dental pulp cells through inhibition of NF-κB pathway and activation of AP-1 pathway

    Science.gov (United States)

    Liu, Zhongning; Jiang, Ting; Wang, Xinzhi; Wang, Yixiang

    2013-01-01

    BACKGROUND AND PURPOSE Fluocinolone acetonide (FA) is commonly used as a steroidal anti-inflammatory drug. We recently found that in dental pulp cells (DPCs) FA has osteo-/odonto-inductive as well as anti-inflammatory effects. However, the mechanism by which FA induces these effects in DPCs is poorly understood. EXPERIMENTAL APPROACH The effect of FA on the mineralization of DPCs during inflammatory conditions and the underlying mechanism were investigated by real-time PCR, Western blot, EMSA, histochemical staining, immunostaining and pathway blockade assays. KEY RESULTS FA significantly inhibited the inflammatory response in LPS-treated DPCs not only by down-regulating the expression of pro–inflammation-related genes, but also by up-regulating the expression of the anti-inflammatory gene PPAR-γ and mineralization-related genes. Moreover, histochemical staining and immunostaining showed that FA could partially restore the expressions of alkaline phosphatase, osteocalcin and dentin sialophosphoprotein (DSPP) and mineralization in LPS-stimulated DPCs. Real-time PCR and Western blot analysis revealed that FA up-regulated DSPP and runt-related transcription factor 2 expression by inhibiting the expression of phosphorylated-NF-κB P65 and activating activator protein-1 (AP-1) (p-c-Jun and Fra-1). These results were further confirmed through EMSA, by detection of NF-κB DNA-binding activity and pathway blockade assays using a NF-κB pathway inhibitor, AP-1 pathway inhibitor and glucocorticoid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Inflammation induced by LPS suppresses the mineralization process in DPCs. FA partially restored this osteo-/odonto-genesis process in LPS-treated DPCs and had an anti-inflammatory effect through inhibition of the NF-κB pathway and activation of the AP-1 pathway. Hence, FA is a potential new treatment for inflammation-associated bone/teeth diseases. PMID:24024985

  8. Pathway of /sup 14/Co/sub 2/ fixation in marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, G V; Karekar, M D [Shivaji Univ., Kolhapur (India). Dept. of Botany

    1973-08-01

    Marine plants have a different metabolic environment which is likely to affect pathways of CO/sub 2/ fixation. It has been observed that in marine alga, Ulva lactuca, during short term light fixation of /sup 14/CO/sub 2/, besides PGA, an appreciable amount of activity was located in aspartate. This curious observation can now be explained on the basis of Hatch, Slack and Kortschak pathway of CO/sub 2/ fixation. In order to trace pathways of /sup 14/CO/sub 2/ in marine algae, a wide variety of algal specimens were exposed to NaH/sup 14/CO/sub 3/ in light and the products were analyzed. The algae selected were Ulva lactuca, Sargassum ilicifolium, Sphacelaria sp., Padina tetrastromatica, Chaetomorpha media and Enteromorpha tubulosa. It has been found that the pathways of CO/sub 2/ in the above marine algae differ from the conventional pattern recorded in Chlorella. The early labelling of aspartate and its subsequent utilization indicates that HSK pathway is operative in the marine algae. Malate synthesis is inhibited due to the effect of saline environment on the activity of malic dehydrogenase. Appreciable label in PGA is suggestive of the fact that Calvin and Bassham pathway as well as the HSK route are simultaneously operating. (auth)

  9. PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib

    International Nuclear Information System (INIS)

    Wang, Leiping; Hu, Xichun; Zhang, Qunling; Zhang, Jian; Sun, Si; Guo, Haiyi; Jia, Zhen; Wang, Biyun; Shao, Zhimin; Wang, Zhonghua

    2011-01-01

    Human epidermal growth factor receptor 2 (HER2) is the most crucial ErbB receptor tyrosine kinase (RTK) family member in HER2-positive (refered to HER2-overexpressing) breast cancer which are dependent on or 'addictive' to the Phosphatidylinositol-3-kinase (PI3K) pathway. HER2-related target drugs trastuzumab and lapatinib have been the foundation of treatment of HER2--positive breast cancer. This study was designed to explore the relationship between PI3K pathway activation and the sensitivity to lapatinib in HER2--positive metastatic breast cancer patients pretreated with anthracyclins, taxanes and trastuzumab. Sixty-seven HER2-positive metastatic breast cancer patients were recruited into a global lapatinib Expanded Access Program and 57 patients have primary tumor specimens available for determination of PI3K pathway status. PTEN status was determined by immunohistochemical staining and PIK3CA mutations were detected via PCR sequencing. All patients were treated with lapatinib 1250 mg/day continuously and capecitabine 1000 mg/m 2 twice daily on a 2-week-on and 1-week-off schedule until disease progression, death, withdrawal of informed consent, or intolerable toxicity. PIK3CA mutations and PTEN loss were detected in 12.3% (7/57) and 31.6% (18/57) of the patients, respectively. Twenty-two patients with PI3K pathway activation (defined as PIK3CA mutation and/or PTEN expression loss) had a lower clinical benefit rate (36.4% versus 68.6%, P = 0.017) and a lower overall response rate (9.1% versus 31.4%, P = 0.05), when compared with the 35 patients with no activation. A retrospective analysis of first trastuzumab-containing regimen treatment data showed that PI3K pathway activation correlated with a shorter median progression-free survival (4.5 versus 9.0 months, P = 0.013). PIK3CA mutations occur more frequently in elder patients for HER2-positive breast cancer. PIK3CA mutations and PTEN loss are not mutually exclusive. PI3K pathway activation resulting

  10. TGF-β/Smad2/3 signaling directly regulates several miRNAs in mouse ES cells and early embryos.

    Directory of Open Access Journals (Sweden)

    Nicholas Redshaw

    Full Text Available The Transforming Growth Factor-β (TGF-β signaling pathway is one of the major pathways essential for normal embryonic development and tissue homeostasis, with anti-tumor but also pro-metastatic properties in cancer. This pathway directly regulates several target genes that mediate its downstream functions, however very few microRNAs (miRNAs have been identified as targets. miRNAs are modulators of gene expression with essential roles in development and a clear association with diseases including cancer. Little is known about the transcriptional regulation of the primary transcripts (pri-miRNA, pri-miR from which several mature miRNAs are often derived. Here we present the identification of miRNAs regulated by TGF-β signaling in mouse embryonic stem (ES cells and early embryos. We used an inducible ES cell system to maintain high levels of the TGF-β activated/phosphorylated Smad2/3 effectors, which are the transcription factors of the pathway, and a specific inhibitor that blocks their activation. By performing short RNA deep-sequencing after 12 hours Smad2/3 activation and after 16 hours inhibition, we generated a database of responsive miRNAs. Promoter/enhancer analysis of a subset of these miRNAs revealed that the transcription of pri-miR-181c/d and the pri-miR-341∼3072 cluster were found to depend on activated Smad2/3. Several of these miRNAs are expressed in early mouse embryos, when the pathway is known to play an essential role. Treatment of embryos with TGF-β inhibitor caused a reduction of their levels confirming that they are targets of this pathway in vivo. Furthermore, we showed that pri-miR-341∼3072 transcription also depends on FoxH1, a known Smad2/3 transcription partner during early development. Together, our data show that miRNAs are regulated directly by the TGF-β/Smad2/3 pathway in ES cells and early embryos. As somatic abnormalities in functions known to be regulated by the TGF-β/Smad2/3 pathway underlie tumor

  11. Downregulation of PI3-K/Akt/PTEN pathway and activation of mitochondrial intrinsic apoptosis by Diclofenac and Curcumin in colon cancer.

    Science.gov (United States)

    Rana, Chandan; Piplani, Honit; Vaish, Vivek; Nehru, Bimla; Sanyal, S N

    2015-04-01

    Phosphatidylinositol 3-kinase (PI3-K)/PTEN/Akt signaling is over activated in various tumors including colon cancer. Activation of this pathway regulates multiple biological processes such as apoptosis, metabolism, cell proliferation, and cell growth that underlie the biology of a cancer cell. In the present study, the chemopreventive effects have been observed of Diclofenac, a preferential COX-2 inhibitory non-steroidal anti-inflammatory drugs, and Curcumin, a natural anti-inflammatory agent, in the early stage of colorectal carcinogenesis induced by 1,2-dimethylhydrazine dihydrochloride in rats. The tumor-promoting role of PI3-K/Akt/PTEN signal transduction pathway and its association with anti-apoptotic family of proteins are also observed. Both Diclofenac and Curcumin downregulated the PI3-K and Akt expression while promoting the apoptotic mechanism. Diclofenac and Curcumin administration significantly increased the expression of pro-apoptotic Bcl-2 family members (Bad and Bax) while decreasing the anti-apoptotic Bcl-2 protein. An up-regulation of cysteine protease family apoptosis executioner, such as caspase-3 and -9, is seen. Diclofenac and Curcumin inhibited the Bcl-2 protein by directly interacting at the active site by multiple hydrogen bonding, as also evident by negative glide score of Bcl-2. These drugs stimulated apoptosis by increasing reactive oxygen species (ROS) generation and simultaneously decreasing the mitochondrial membrane potential (ΔΨ M). Diclofenac and Curcumin showed anti-neoplastic effects by downregulating PI3-K/Akt/PTEN pathway, inducing apoptosis, increasing ROS generation, and decreasing ΔΨ M. The anti-neoplastic and apoptotic effects were found enhanced when both Diclofenac and Curcumin were administered together, rather than individually.

  12. Vibrio Phage KVP40 Encodes a Functional NAD+ Salvage Pathway.

    Science.gov (United States)

    Lee, Jae Yun; Li, Zhiqun; Miller, Eric S

    2017-05-01

    The genome of T4-type Vibrio bacteriophage KVP40 has five genes predicted to encode proteins of pyridine nucleotide metabolism, of which two, nadV and natV , would suffice for an NAD + salvage pathway. NadV is an apparent nicotinamide phosphoribosyltransferase (NAmPRTase), and NatV is an apparent bifunctional nicotinamide mononucleotide adenylyltransferase (NMNATase) and nicotinamide-adenine dinucleotide pyrophosphatase (Nudix hydrolase). Genes encoding the predicted salvage pathway were cloned and expressed in Escherichia coli , the proteins were purified, and their enzymatic properties were examined. KVP40 NadV NAmPRTase is active in vitro , and a clone complements a Salmonella mutant defective in both the bacterial de novo and salvage pathways. Similar to other NAmPRTases, the KVP40 enzyme displayed ATPase activity indicative of energy coupling in the reaction mechanism. The NatV NMNATase activity was measured in a coupled reaction system demonstrating NAD + biosynthesis from nicotinamide, phosphoribosyl pyrophosphate, and ATP. The NatV Nudix hydrolase domain was also shown to be active, with preferred substrates of ADP-ribose, NAD + , and NADH. Expression analysis using reverse transcription-quantitative PCR (qRT-PCR) and enzyme assays of infected Vibrio parahaemolyticus cells demonstrated nadV and natV transcription during the early and delayed-early periods of infection when other KVP40 genes of nucleotide precursor metabolism are expressed. The distribution and phylogeny of NadV and NatV proteins among several large double-stranded DNA (dsDNA) myophages, and also those from some very large siphophages, suggest broad relevance of pyridine nucleotide scavenging in virus-infected cells. NAD + biosynthesis presents another important metabolic resource control point by large, rapidly replicating dsDNA bacteriophages. IMPORTANCE T4-type bacteriophages enhance DNA precursor synthesis through reductive reactions that use NADH/NADPH as the electron donor and NAD

  13. Control of the classical and the MBL pathway of complement activation

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Thiel, S; Jensen, L

    2000-01-01

    and the influence of high ionic strength on the complexes indicate that the activation and control of the MBL pathway differ from that of the classical pathway. MBL deficiency is linked to various clinical manifestations such as recurrent infections, severe diarrhoea, and recurrent miscarriage. On the other hand...... incubation at 37 degrees C in physiological buffer, the associated inhibitors as well as MASP-1, MASP-2, and MAp19 dissociated from MBL, whereas only little dissociation of the complex occurred in buffer with high ionic strength (1 M NaCl). The difference in sensitivity to various inhibitors...

  14. Early development of synchrony in cortical activations in the human.

    Science.gov (United States)

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Signaling Pathways in Leiomyoma: Understanding Pathobiology and Implications for Therapy

    Science.gov (United States)

    Borahay, Mostafa A; Al-Hendy, Ayman; Kilic, Gokhan S; Boehning, Darren

    2015-01-01

    Uterine leiomyomas are the most common tumors of the female genital tract, affecting 50% to 70% of females by the age of 50. Despite their prevalence and enormous medical and economic impact, no effective medical treatment is currently available. This is, in part, due to the poor understanding of their underlying pathobiology. Although they are thought to start as a clonal proliferation of a single myometrial smooth muscle cell, these early cytogenetic alterations are considered insufficient for tumor development and additional complex signaling pathway alterations are crucial. These include steroids, growth factors, transforming growth factor-beta (TGF-β)/Smad; wingless-type (Wnt)/β-catenin, retinoic acid, vitamin D, and peroxisome proliferator-activated receptor γ (PPARγ). An important finding is that several of these pathways converge in a summative way. For example, mitogen-activated protein kinase (MAPK) and Akt pathways seem to act as signal integrators, incorporating input from several signaling pathways, including growth factors, estrogen and vitamin D. This underlines the multifactorial origin and complex nature of these tumors. In this review, we aim to dissect these pathways and discuss their interconnections, aberrations and role in leiomyoma pathobiology. We also aim to identify potential targets for development of novel therapeutics. PMID:25879625

  16. Heterogeneous Effects of Direct Hypoxia Pathway Activation in Kidney Cancer.

    Directory of Open Access Journals (Sweden)

    Rafik Salama

    Full Text Available General activation of hypoxia-inducible factor (HIF pathways is classically associated with adverse prognosis in cancer and has been proposed to contribute to oncogenic drive. In clear cell renal carcinoma (CCRC HIF pathways are upregulated by inactivation of the von-Hippel-Lindau tumor suppressor. However HIF-1α and HIF-2α have contrasting effects on experimental tumor progression. To better understand this paradox we examined pan-genomic patterns of HIF DNA binding and associated gene expression in response to manipulation of HIF-1α and HIF-2α and related the findings to CCRC prognosis. Our findings reveal distinct pan-genomic organization of canonical and non-canonical HIF isoform-specific DNA binding at thousands of sites. Overall associations were observed between HIF-1α-specific binding, and genes associated with favorable prognosis and between HIF-2α-specific binding and adverse prognosis. However within each isoform-specific set, individual gene associations were heterogeneous in sign and magnitude, suggesting that activation of each HIF-α isoform contributes a highly complex mix of pro- and anti-tumorigenic effects.

  17. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation.

    Science.gov (United States)

    Fu, Peter P

    2017-01-17

    Pyrrolizidine alkaloids (PAs) and PA N-oxides are a class of phytochemical carcinogens contained in over 6000 plant species spread around the world. It has been estimated that approximately half of the 660 PAs and PA N-oxides that have been characterized are cytotoxic, genotoxic, and tumorigenic. It was recently determined that a genotoxic mechanism of liver tumor initiation mediated by PA-derived DNA adducts is a common metabolic activation pathway of a number of PAs. We proposed this set of PA-derived DNA adducts could be a common biological biomarker of PA exposure and a potential biomarker of PA-induced liver tumor formation. We have also found that several reactive secondary pyrrolic metabolites can dissociate and interconvert to other secondary pyrrolic metabolites, resulting in the formation of the same exogenous DNA adducts. This present perspective reports the current progress on these new findings and proposes future research needed for obtaining a greater understanding of the role of this activation pathway and validating the use of this set of PA-derived DNA adducts as a biological biomarker of PA-induced liver tumor initiation.

  18. New Insights into Glomerular Parietal Epithelial Cell Activation and Its Signaling Pathways in Glomerular Diseases

    Directory of Open Access Journals (Sweden)

    Hua Su

    2015-01-01

    Full Text Available The glomerular parietal epithelial cells (PECs have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation.

  19. Clinical Pathways: A Catalyst for the Adoption of Hypofractionation for Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Bhavana V.; Rajagopalan, Malolan S.; Heron, Dwight E.; Flickinger, John C.; Beriwal, Sushil, E-mail: beriwals@upmc.edu

    2015-11-15

    consistent with national rates, the clinical pathway approach dramatically increased adoption rate to >75%. In contrast to passive guidelines, clinical pathways serve as active tools to promote current best practices.

  20. Clinical Pathways: A Catalyst for the Adoption of Hypofractionation for Early-Stage Breast Cancer

    International Nuclear Information System (INIS)

    Chapman, Bhavana V.; Rajagopalan, Malolan S.; Heron, Dwight E.; Flickinger, John C.; Beriwal, Sushil

    2015-01-01

    consistent with national rates, the clinical pathway approach dramatically increased adoption rate to >75%. In contrast to passive guidelines, clinical pathways serve as active tools to promote current best practices.

  1. Secreted phospholipase A2 of Clonorchis sinensis activates hepatic stellate cells through a pathway involving JNK signalling.

    Science.gov (United States)

    Wu, Yinjuan; Li, Ye; Shang, Mei; Jian, Yu; Wang, Caiqin; Bardeesi, Adham Sameer A; Li, Zhaolei; Chen, Tingjin; Zhao, Lu; Zhou, Lina; He, Ai; Huang, Yan; Lv, Zhiyue; Yu, Xinbing; Li, Xuerong

    2017-03-16

    Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products (CsESPs). Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is involved in hepatic stellate cells (HSCs) activation. Blocking JNK activity with SP600125 inhibits HSCs activation. In a previous study, the protein CssPLA2 was expressed in insoluble inclusion bodies. Therefore, it's necessary to express CssPLA2 in water-soluble form and determine whether the enzymatic activity of CssPLA2 or cell signalling pathways is involved in liver fibrosis caused by clonorchiasis. Balb/C mice were given an abdominal injection of MBP-CssPLA2. Liver sections with HE and Masson staining were observed to detect accumulation of collagen. Western blot of mouse liver was done to detect the activation of JNK signalling pathway. In vitro, HSCs were incubated with MBP-CssPLA2 to detect the activation of HSCs as well as the activation of JNK signalling pathway. The mutant of MBP-CssPLA2 without enzymatic activity was constructed and was also incubated with HSCs to check whether activation of the HSCs was related to the enzymatic activity of MBP-CssPLA2. The recombinant protein MBP-CssPLA2 was expressed soluble and of good enzymatic activity. A mutant of CssPLA2, without enzymatic activity, was also constructed. In vivo liver sections of Balb/C mice that were given an abdominal injection of 50 μg/ml MBP-CssPLA2 showed an obvious accumulation of collagen and a clear band of P-JNK1 could be seen by western blot of the liver tissue. In vitro, MBP-CssPLA2, as well as the mutant, was incubated with HSCs and it was proved that activation of HSCs was related to activation of the JNK signalling pathway instead of the enzymatic activity of MBP-CssPLA2. Activation of HSCs by CssPLA2 is related to the activation of the JNK signalling pathway instead of the enzymatic activity of CssPLA2. This finding

  2. Regulation of autophagy by AMP-activated protein kinase/sirtuin 1 pathway reduces spinal cord neurons damage.

    Science.gov (United States)

    Yan, Peng; Bai, Liangjie; Lu, Wei; Gao, Yuzhong; Bi, Yunlong; Lv, Gang

    2017-09-01

    AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). The SCI model was established in rats in vivo and the primary spinal cord neurons were subjected to mechanical injury (MI) in vitro . The apoptosis in spinal cord tissue and neurons was assessed by TUNEL staining and Hoechst 33342 staining, respectively. The autophagy-related proteins levels were detected by Western blot. The activation of AMPK/SIRT1 pathway was determined by Western blot and immunohistochemical staining. We found that the apoptosis of spinal cord tissue and cell damage of spinal cord neurons was obvious after the trauma. The ratio of LC3II/LC3I and level of p62 were first increased significantly and then decreased after the trauma in vivo and in vitro , indicating the defect in autophagy. The levels of p-AMPK and SIRT1 were increased obviously after the trauma in vivo and in vitro . Further activation of the AMPK/SIRT1 pathway by pretreatment with resveratrol, a confirmed activator of the AMPK/SIRT1 pathway, alleviated the cell damage and promoted the autophagy flux via downregulation of p62 in spinal cord neurons at 24 hr after MI. Our results demonstrate that regulation of autophagy by AMPK/SIRT1 pathway can restrain spinal cord neurons damage, which may be a potential intervention of SCI.

  3. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  4. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Cossu-Rocca

    Full Text Available Triple Negative Breast Cancer (TNBC accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  5. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  6. Involvement of the iNKT Cell Pathway Is Associated With Early-Onset Eosinophilic Esophagitis and Response to Allergen Avoidance Therapy

    Science.gov (United States)

    Lexmond, Willem S.; Neves, Joana F.; Nurko, Samuel; Olszak, Torsten; Exley, Mark A.; Blumberg, Richard S.; Fiebiger, Edda

    2014-01-01

    OBJECTIVES Recent experimental evidence suggests that environmental microbial factors early in life determine susceptibility to allergic diseases through inappropriate chemotaxis and local activation of CD1d-restricted, invariant chain natural killer T (iNKT) cells. In this study, we analyzed the involvement of these pathways in pediatric patients with eosinophilic esophagitis (EoE) before and after dietary allergen elimination. METHODS mRNA expression levels of components of the C-X-C motif chemokine ligand 16 (CXCL16)–iNKT–CD1d axis were compared in esophageal biopsies from EoE patients vs. normal or inflammatory controls and before and after treatment. RESULTS CXCL16, iNKT cell–associated cell marker Vα24, and CD1d were significantly upregulated in esophageal biopsies from EoE patients and correlated with the expression of inflammatory mediators associated with allergy. Upregulation of each of these factors was significantly more pronounced in patients aged < 6 years at diagnosis, and this early-onset EoE subpopulation was characterized by a more prominent food allergic disease phenotype in a cohort-wide analysis. Successful, but not unsuccessful, treatment of early-onset EoE patients with dietary elimination of instigating allergens led to reduction in infiltrating iNKT cells and complete normalization of mRNA expression levels of CXCL16 and CD1d. CONCLUSIONS Our observations place iNKT cells at the center of allergic inflammation associated with EoE, which could have profound implications for our understanding, treatment and prevention of this and other human allergic diseases. PMID:24513807

  7. Amitriptyline induces early growth response-1 gene expression via ERK and JNK mitogen-activated protein kinase pathways in rat C6 glial cells.

    Science.gov (United States)

    Chung, Eun Young; Shin, Soon Young; Lee, Young Han

    2007-07-05

    Astrocytes play important roles in guiding the construction of the nervous system, controlling extracellular ions and neurotransmitters, and regulating CNS synaptogenesis. Egr-1 is a transcription factor involved in neuronal differentiation and astrocyte cell proliferation. In this study, we investigated whether the tricyclic antidepressant (TCA) amitriptyline induces Egr-1 expression in astrocytes using rat C6 glioma cells as a model. We found that amitriptyline increased the expression of Egr-1 in a dose- and time-dependent manner. The amitriptyline-induced Egr-1 expression was mediated through serum response elements (SREs) in the Egr-1 promoter. SREs were activated by the Ets-domain transcription factor Elk-1 through the ERK and JNK mitogen-activated protein (MAP) kinase pathways. The inhibition of the ERK and JNK MAP kinase signals attenuated amitriptyline-induced transactivation of Gal4-Elk-1 and Egr-1 promoter activity. Our findings suggest that the induction of Egr-1 expression in astrocytes may be required to attain the therapeutic effects of antidepressant drugs.

  8. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Fu, Meili; Wan, Fuqiang; Li, Zhengling; Zhang, Fenghua

    2016-01-01

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D, a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.

  9. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Meili, E-mail: fumeilidrlinyi@tom.com [Department of Infectious Disease, Linyi People' s Hospital, Linyi 276000 (China); Wan, Fuqiang [Department of Head and Neck Surgery, Linyi Tumor Hospital, Linyi 276000 (China); Li, Zhengling [Department of Nursing, Tengzhou Central People' s Hospital, Tengzhou 277500 (China); Zhang, Fenghua [Department of Operating Room, Linyi People' s Hospital, Linyi 276000 (China)

    2016-03-04

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D, a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.

  10. Early capillary flux homogenization in response to neural activation.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Boas, David A

    2016-02-01

    This Brief Communication reports early homogenization of capillary network flow during somatosensory activation in the rat cerebral cortex. We used optical coherence tomography and statistical intensity variation analysis for tracing changes in the red blood cell flux over hundreds of capillaries nearly at the same time with 1-s resolution. We observed that while the mean capillary flux exhibited a typical increase during activation, the standard deviation of the capillary flux exhibited an early decrease that happened before the mean flux increase. This network-level data is consistent with the theoretical hypothesis that capillary flow homogenizes during activation to improve oxygen delivery. © The Author(s) 2015.

  11. Two zebrafish G2A homologs activate multiple intracellular signaling pathways in acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ichijo, Yuta; Mochimaru, Yuta [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Azuma, Morio [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Satou, Kazuhiro; Negishi, Jun [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Itabashi-Ku, Tokyo 173-8605 (Japan); Oshima, Natsuki [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Mogi, Chihiro; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Matsuda, Kouhei [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tomura, Hideaki, E-mail: tomurah@meiji.ac.jp [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan)

    2016-01-01

    Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the G{sub s}-protein/cAMP/CRE, G{sub 12/13}-protein/Rho/SRE, and G{sub q}-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174{sup th} position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A. - Highlights: • Zebrafish two G2A homologs are proton

  12. Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila

    Science.gov (United States)

    Hampel, Stefanie; McKellar, Claire E

    2017-01-01

    A central model that describes how behavioral sequences are produced features a neural architecture that readies different movements simultaneously, and a mechanism where prioritized suppression between the movements determines their sequential performance. We previously described a model whereby suppression drives a Drosophila grooming sequence that is induced by simultaneous activation of different sensory pathways that each elicit a distinct movement (Seeds et al., 2014). Here, we confirm this model using transgenic expression to identify and optogenetically activate sensory neurons that elicit specific grooming movements. Simultaneous activation of different sensory pathways elicits a grooming sequence that resembles the naturally induced sequence. Moreover, the sequence proceeds after the sensory excitation is terminated, indicating that a persistent trace of this excitation induces the next grooming movement once the previous one is performed. This reveals a mechanism whereby parallel sensory inputs can be integrated and stored to elicit a delayed and sequential grooming response. PMID:28887878

  13. USP21 regulates Hippo pathway activity by mediating MARK protein turnover

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Loya, Anand Chainsukh

    2017-01-01

    observed in cancer and often correlates with worse survival. The activity and stability of Hippo pathway components, including YAP/TAZ, AMOT and LATS1/2, are regulated by ubiquitin-mediated protein degradation. Aberrant expression of ubiquitin ligase complexes that regulate the turnover of Hippo components...

  14. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  15. Identification of Key Pathways and Genes in the Dynamic Progression of HCC Based on WGCNA.

    Science.gov (United States)

    Yin, Li; Cai, Zhihui; Zhu, Baoan; Xu, Cunshuan

    2018-02-14

    Hepatocellular carcinoma (HCC) is a devastating disease worldwide. Though many efforts have been made to elucidate the process of HCC, its molecular mechanisms of development remain elusive due to its complexity. To explore the stepwise carcinogenic process from pre-neoplastic lesions to the end stage of HCC, we employed weighted gene co-expression network analysis (WGCNA) which has been proved to be an effective method in many diseases to detect co-expressed modules and hub genes using eight pathological stages including normal, cirrhosis without HCC, cirrhosis, low-grade dysplastic, high-grade dysplastic, very early and early, advanced HCC and very advanced HCC. Among the eight consecutive pathological stages, five representative modules are selected to perform canonical pathway enrichment and upstream regulator analysis by using ingenuity pathway analysis (IPA) software. We found that cell cycle related biological processes were activated at four neoplastic stages, and the degree of activation of the cell cycle corresponded to the deterioration degree of HCC. The orange and yellow modules enriched in energy metabolism, especially oxidative metabolism, and the expression value of the genes decreased only at four neoplastic stages. The brown module, enriched in protein ubiquitination and ephrin receptor signaling pathways, correlated mainly with the very early stage of HCC. The darkred module, enriched in hepatic fibrosis/hepatic stellate cell activation, correlated with the cirrhotic stage only. The high degree hub genes were identified based on the protein-protein interaction (PPI) network and were verified by Kaplan-Meier survival analysis. The novel five high degree hub genes signature that was identified in our study may shed light on future prognostic and therapeutic approaches. Our study brings a new perspective to the understanding of the key pathways and genes in the dynamic changes of HCC progression. These findings shed light on further investigations.

  16. Early rising children are more active than late risers

    Directory of Open Access Journals (Sweden)

    Jun Kohyama

    2007-01-01

    Full Text Available Jun KohyamaDepartment of Pediatrics, Tokyo Kita Shakai Hoken Hospital, Tokyo, JapanBackground: A low level of physical activity impacts mental as well as physical health. This study investigated the daily lifestyle habits that affect physical activity in young children.Methods: The relationship between physical activity, assessed by means of a Mini-Mitter Actiwatch device, and observed daily lifestyle habits was analyzed for 204 children, aged 12 to 40 months (average: 22.6 months, for whom 6-consecutive-day data from both the Actiwatch and sleep log were obtained.Results: An older age, male gender, and early waking time showed significant positive correlations with physical activity level. Multiple regression analysis revealed that these three variables were significant predictors of physical activity.Conclusion: Promoting an early rising time is suggested to be an important element of cultivating good health in young children.Keywords: physical activity, children, actigraphy, morning light

  17. Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos.

    Science.gov (United States)

    El Husseini, Nazem; Schlisser, Ava E; Hales, Barbara F

    2016-08-01

    Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    International Nuclear Information System (INIS)

    Assimakopoulou, Martha; Kondyli, Maria; Gatzounis, George; Maraziotis, Theodore; Varakis, John

    2007-01-01

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75 NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75 NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75 NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75 NTR , and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75 NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75 NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor

  19. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    Science.gov (United States)

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  20. Pharmacological targeting of HSP90 with 17-AAG induces apoptosis of myogenic cells through activation of the intrinsic pathway.

    Science.gov (United States)

    Wagatsuma, Akira; Takayama, Yuzo; Hoshino, Takayuki; Shiozuka, Masataka; Yamada, Shigeru; Matsuda, Ryoichi; Mabuchi, Kunihiko

    2017-12-16

    We have shown that pharmacological inhibition of HSP90 ATPase activity induces apoptosis of myoblasts during their differentiation. However, the signaling pathways remain not fully characterized. We report that pharmacological targeting of HSP90 with 17-AAG activates the intrinsic pathway including caspase-dependent and caspase-independent pathways. 17-AAG induces the typical apoptotic phenotypes including PARP cleavage, chromatin condensation, and nuclear fragmentation with mitochondrial release of cytochrome c, Smac/DIABLO, procaspase-9 processing, and caspase-3 activation. AIF and EndoG redistribute from the mitochondria into the cytosol and are partially translocated to the nucleus in 17-AAG-treated cells. These results suggest that caspase-dependent and caspase-independent pathways should be considered in apoptosis of myogenic cells induced by inhibition of HSP90 ATPase activity.

  1. [Curcumin alleviates early brain injury following subarachnoid hemorrhage in rats by inhibiting JNK/c-Jun signal pathway].

    Science.gov (United States)

    Li, Xia; Zhu, Ji

    2018-03-01

    Objective To investigate the inhibitory effect of curcumin on early brain injury following subarachnoid hemorrhage (SAH) by inhibiting JNK/ c-Jun signal pathway. Methods Sixty adult male SD rats were randomly divided into four groups: sham operation group (sham group), SAH group, SAH group treated with 100 mg/(kg.d) curcumin and SAH group treated with 200 mg/(kg.d) curcumin, with 15 rats in each group. Endovascular puncture was used to induce SAH model. Nissl staining was used to test whether neurons were broken. TUNEL staining was used to detect apoptosis. Immunohistochemistry was used to investigate the expression of caspase-3. Western blot analysis was used to detect the expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3. Results Nissl staining indicated the decrease of Nissl bodies in SAH group, but increase of Nissl bodies in SAH group treated with curcumin. TUNEL staining showed that there were more apoptotic neurons in SAH group compared with sham group, while apoptotic neurons decreased after the treatment with curcumin, more obviously in the group treated with 200 mg/(kg.d) curcumin. The expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3 were up-regulated in SAH group compared with sham group. However, the expressions of those proteins were down-regulated after the treatment with curcumin, especially by higher-dose curcumin treatment. Conclusion Curcumin might suppress early brain injury after SAH by inhibiting JNK/c-Jun signal pathway and neuron apoptosis.

  2. Medical students' preparedness for professional activities in early clerkships.

    Science.gov (United States)

    Bosch, Josefin; Maaz, Asja; Hitzblech, Tanja; Holzhausen, Ylva; Peters, Harm

    2017-08-22

    Sufficient preparedness is important for transitions to workplace participation and learning in clinical settings. This study aims to analyse medical students' preparedness for early clerkships using a three-dimensional, socio-cognitive, theory-based model of preparedness anchored in specific professional activities and their supervision level. Medical students from a competency-based undergraduate curriculum were surveyed about preparedness for 21 professional activities and level of perceived supervision during their early clerkships via an online questionnaire. Preparedness was operationalized by the three dimensions of confidence to carry out clerkship activities, being prepared through university teaching and coping with failure by seeking support. Factors influencing preparedness and perceived stress as outcomes were analysed through step-wise regression. Professional activities carried out by the students (n = 147; 19.0%) and their supervision levels varied. While most students reported high confidence to perform the tasks, the activity-specific analysis revealed important gaps in preparation through university teaching. Students regularly searched for support in case of difficulty. One quarter of the variance of each preparedness dimension was explained by self-efficacy, supervision quality, amount of prior clerkship experience and nature of professional activities. Preparedness contributed to predicting perceived stress. The applied three-dimensional concept of preparedness and the task-specific approach provided a detailed and meaningful view on medical students' workplace participation and experiences in early clerkships.

  3. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway--the fifth lectin pathway initiation complex

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Skjoedt, Mikkel-Ole; Garred, Peter

    2013-01-01

    Collectins and ficolins are important in the clearance of endogenous and exogenous danger materials. A new human collectin-11 was recently identified in low concentration in serum in complex with mannose-binding lectin (MBL)/ficolin-associated serine proteases. Collectin-11 binds to carbohydrate...... complement complex on C. albicans. Moreover, spiking collectin-11-depleted serum, which did not mediate complement activation, with recombinant collectin-11 restored the complement activation capability. These results define collectin-11 as the fifth recognition molecule in the lectin complement pathway...

  4. The serrated neoplasia pathway of colorectal tumors: Identification of MUC5AC hypomethylation as an early marker of polyps with malignant potential.

    Science.gov (United States)

    Renaud, Florence; Mariette, Christophe; Vincent, Audrey; Wacrenier, Agnès; Maunoury, Vincent; Leclerc, Julie; Coppin, Lucie; Crépin, Michel; Van Seuningen, Isabelle; Leteurtre, Emmanuelle; Buisine, Marie-Pierre

    2016-03-15

    The serrated neoplasia pathway accounts for 20-30% of colorectal cancers (CRC), which are characterized by extensive methylation (CpG island methylation phenotype, CIMP), frequent BRAF mutation and high microsatellite instability (MSI). We recently identified MUC5AC mucin gene hypomethylation as a specific marker of MSI CRC. The early identification of preneoplastic lesions among serrated polyps is currently challenging. Here, we performed a detailed pathological and molecular analysis of a large series of colorectal serrated polyps and evaluated the usefulness of mucin genes MUC2 and MUC5AC to differentiate serrated polyps and to identify lesions with malignant potential. A series of 330 colorectal polyps including 218 serrated polyps [42 goblet cell-rich hyperplastic polyps (GCHP), 68 microvesicular hyperplastic polyps (MVHP), 100 sessile serrated adenoma (SSA) and eight traditional serrated adenoma (TSA)] and 112 conventional adenomas was analyzed for BRAF/KRAS mutations, MSI, CIMP, MLH1 and MGMT methylation, and MUC2 and MUC5AC expression and methylation. We show that MUC5AC hypomethylation is an early event in the serrated neoplasia pathway, and specifically detects MVHP and SSA, arguing for a filiation between MVHP, SSA and CIMP-H/MSI CRC, whereas GCHP and TSA arise from a distinct pathway. Moreover, MUC5AC hypomethylation specifically identified serrated lesions with BRAF mutation, CIMP-H or MSI, suggesting that it may be useful to identify serrated neoplasia pathway-related precursor lesions. Our data suggest that MVHP should be recognized among HP and require particular attention. © 2015 UICC.

  5. Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

    Directory of Open Access Journals (Sweden)

    Peng Yan

    2017-09-01

    Full Text Available Objective(s: AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1 signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI. Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subjected to mechanical injury (MI in vitro. The apoptosis in spinal cord tissue and neurons was assessed by TUNEL staining and Hoechst 33342 staining, respectively. The autophagy-related proteins levels were detected by Western blot. The activation of AMPK/SIRT1 pathway was determined by Western blot and immunohistochemical staining. Results: We found that the apoptosis of spinal cord tissue and cell damage of spinal cord neurons was obvious after the trauma. The ratio of LC3II/LC3I and level of p62 were first increased significantly and then decreased after the trauma in vivo and in vitro, indicating the defect in autophagy. The levels of p-AMPK and SIRT1 were increased obviously after the trauma in vivo and in vitro. Further activation of the AMPK/SIRT1 pathway by pretreatment with resveratrol, a confirmed activator of the AMPK/SIRT1 pathway, alleviated the cell damage and promoted the autophagy flux via downregulation of p62 in spinal cord neurons at 24 hr after MI. Conclusion: Our results demonstrate that regulation of autophagy by AMPK/SIRT1 pathway can restrain spinal cord neurons damage, which may be a potential intervention of SCI.

  6. CHARACTERISTICS OF SIGNALING PATHWAYS MEDIATING A CYTOTOXIC EFFECT OF DENDRITIC CELLS UPON ACTIVATED Т LYMPHOCYTES AND NK CELLS

    Directory of Open Access Journals (Sweden)

    T. V. Tyrinova

    2012-01-01

    Full Text Available Abstract. Cytotoxic/pro-apoptogenic effects of IFNα-induced dendritic cells (IFN-DCs directed against Т-lymphocytes and NK cells were investigated in healthy donors. Using an allogenic MLC system, it was revealed that IFN-DCs induce apoptosis of both activated CD4+ and CD8+ T-lymphocytes, and NK cells. Apoptosis of CD4+ and CD8+ T-lymphocytes induced by their interaction with IFN-DCs was mediated by various signaling pathways. In particular, activated CD4+Т-lymphocytes were most sensitive to TRAIL- и Fas/ FasL-transduction pathways, whereas activated CD8+ T-lymphocytes were induced to apoptosis via TNFα-mediated pathway. PD-1/B7-H1-signaling pathway also played a distinct role in cytotoxic activity of IFNDCs towards both types of T lymphocytes and activated NK cells. The pro-apoptogenic/cytotoxic activity of IFN-DC against activated lymphocytes may be regarded as a mechanism of a feedback regulation aimed at restriction of immune response and maintenance of immune homeostasis. Moreover, upregulation of proapoptogenic molecules on DCs under pathological conditions may lead to suppression of antigen-specific response, thus contributing to the disease progression.

  7. Pathways to URM Retention: IBP's Professional Development and Mentoring Activities

    Science.gov (United States)

    Johnson, A.; Williamson Whitney, V.; Ricciardi, L.; Detrick, L.; Siegfried, D.; Fauver, A.; Ithier-Guzman, W.; Thomas, S. H.; Valaitis, S.

    2013-05-01

    As a not for profit organization, the Institute for Broadening Participation (IBP) hosts a variety of initiatives designed to increase the retention of underrepresented minority (URM) students pursuing pathways in STEM. IBP also assists with formative program evaluation design and implementation to help strengthen URM recruitment and retention elements. Successful initiatives include virtual and face-to-face components that bring together URM students with established URM and other scientists in academia, government and industry. These connections provide URMs with mentoring, networking opportunities, and professional skill development contributing to an improved retention rate of URM students. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science and Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Earth System Science (ESS) Professional Development Program. The NASA OSSI recruits and facilitates student engagement in NASA education and employment opportunities. Pathways to Ocean Science connects and supports URM students with Ocean Science REU programs and serves as a resource for REU program directors. Pathways to Engineering has synthesized mentoring resources into an online mentoring manual for URM students that has been extensively vetted by mentoring experts throughout the country. The mentoring manual, which is organized by roles, provides undergraduates, graduates, postdocs, faculty and project directors with valuable resources. MS PHD'S, one of IBP's longest running and most successful initiatives, focuses on increasing the retention rate of URM students receiving advanced degrees in ESS. The program addresses barriers to retention in ESS including isolation, lack of preparation and professional development, and lack of mentoring. Program activities center on peer-to-peer community building, professional development exercises, networking experiences, one

  8. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chun Li

    2015-10-01

    Full Text Available The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  9. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    Science.gov (United States)

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  10. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Directory of Open Access Journals (Sweden)

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  11. Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways

    Directory of Open Access Journals (Sweden)

    Q. Wang

    Full Text Available Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC based on the functional dependency among pathways. Protein-protein interaction (PPI information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN, where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.

  12. Galangin suppresses HepG2 cell proliferation by activating the TGF-β receptor/Smad pathway

    International Nuclear Information System (INIS)

    Wang, Yajun; Wu, Jun; Lin, Biyun; Li, Xv; Zhang, Haitao; Ding, Hang; Chen, Xiaoyi; Lan, Liubo; Luo, Hui

    2014-01-01

    Galangin can suppress hepatocellular carcinoma (HCC) cell proliferation. In this study, we demonstrated that galangin induced autophagy by activating the transforming growth factor (TGF)-β receptor/Smad pathway and increased TGF-β receptor I (RI), TGF-βRII, Smad1, Smad2, Smad3 and Smad4 levels but decreased Smad6 and Smad7 levels. Autophagy induced by galangin appears to depend on the TGF-β receptor/Smad signalling pathway because the down-regulation of Smad4 by siRNA or inhibition of TGF-β receptor activation by LY2109761 blocked galangin-induced autophagy. The down-regulation of Beclin1, autophagy-related gene (ATG) 16L, ATG12 and ATG3 restored HepG2 cell proliferation and prevented galangin-induced apoptosis. Our findings indicate a novel mechanism for galangin-induced autophagy via activation of the TGF-β receptor/Smad pathway. The induction of autophagy thus reflects the anti-proliferation effect of galangin on HCC cells

  13. Progranulin Reduced Neuronal Cell Death by Activation of Sortilin 1 Signaling Pathways After Subarachnoid Hemorrhage in Rats.

    Science.gov (United States)

    Li, Bo; He, Yue; Xu, Liang; Hu, Qin; Tang, Junjia; Chen, Yujie; Tang, Jiping; Feng, Hua; Zhang, John H

    2015-08-01

    Progranulin has been reported to have neuroprotective actions in cultured neurons. This study investigated the effect of recombinant rat progranulin on early brain injury after subarachnoid hemorrhage. Controlled in vivo laboratory study. Animal research laboratory. Two hundred thirty adult male Sprague-Dawley rats weighing 280-320 g. Subarachnoid hemorrhage was induced in rats by endovascular perforation. Rat recombinant progranulin (1 and 3 ng) was administrated intracerebroventricularly at 1.5 hours after subarachnoid hemorrhage. Progranulin small interfering RNA was administrated by intracerebroventricularly at 1 day before subarachnoid hemorrhage induction. Subarachnoid hemorrhage grade, neurologic score, and brain water content were measured at 24 and 72 hours after subarachnoid hemorrhage. Neural apoptosis was evaluated by double immunofluorescence staining using terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick-end labeling and neuronal nuclei. For mechanistic study, the expression of progranulin, phosphorylated Akt, Akt, p-Erk, Erk, Bcl-2, and cleaved caspase-3 were analyzed by Western blot at 24 hours after subarachnoid hemorrhage. siRNA for sortilin 1 (a progranulin receptor) was used to intervene the downstream pathway. The expression of progranulin decreased and reached the lowest point at 24 hours after subarachnoid hemorrhage. Administration of rat recombinant progranulin decreased brain water content and improved neurologic functions at both 24 and 72 hours after subarachnoid hemorrhage, while knockdown of endogenous progranulin aggravated neurologic deficits after subarachnoid hemorrhage. Rat recombinant progranulin treatment reduced neuronal apoptosis, while progranulin deficiency promoted neuronal apoptosis at 24 hours after subarachnoid hemorrhage. Rat recombinant progranulin promoted Akt activation, increased Bcl-2 level, but reduced caspase-3 level. Knockdown of progranulin binding factor sortilin 1

  14. The spore differentiation pathway in the enteric pathogen Clostridium difficile.

    Directory of Open Access Journals (Sweden)

    Fátima C Pereira

    Full Text Available Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F in the forespore, and σ(E in the mother cell control early stages of development and are replaced, at later stages, by σ(G and σ(K, respectively. Starting with σ(F, the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E is partially independent of σ(F, that σ(G activity is not dependent on σ(E, and that the activity of σ(K does not require σ(G. We also show that σ(K is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F-to-σ(E, σ(E-to-σ(G, and σ(G-to-σ(K cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.

  15. 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-κB factors

    International Nuclear Information System (INIS)

    Tobón-Velasco, Julio C.; Limón-Pacheco, Jorge H.; Orozco-Ibarra, Marisol; Macías-Silva, Marina; Vázquez-Victorio, Genaro; Cuevas, Elvis; Ali, Syed F.

    2013-01-01

    6-Hydroxydopamine (6-OHDA) is a neurotoxin that generates an experimental model of Parkinson's disease in rodents and is commonly employed to induce a lesion in dopaminergic pathways. The characterization of those molecular mechanisms linked to 6-OHDA-induced early toxicity is needed to better understand the cellular events further leading to neurodegeneration. The present work explored how 6-OHDA triggers early downstream signaling pathways that activate neurotoxicity in the rat striatum. Mitochondrial function, caspases-dependent apoptosis, kinases signaling (Akt, ERK 1/2, SAP/JNK and p38) and crosstalk between nuclear factor kappa B (NF-κB) and nuclear factor-erythroid-2-related factor 2 (Nrf2) were evaluated at early times post-lesion. We found that 6-OHDA initiates cell damage via mitochondrial complex I inhibition, cytochrome c and apoptosis-inducing factor (AIF) release, as well as activation of caspases 9 and 3 to induce apoptosis, kinase signaling modulation and NF-κB-mediated inflammatory responses, accompanied by inhibition of antioxidant systems regulated by the Nrf2 pathway. Our results suggest that kinases SAP/JNK and p38 up-regulation may play a role in the early stages of 6-OHDA toxicity to trigger intrinsic pathways for apoptosis and enhanced NF-κB activation. In turn, these cellular events inhibit the activation of cytoprotective mechanisms, thereby leading to a condition of general damage

  16. An alternative mode of CD43 signal transduction activates pro-survival pathways of T lymphocytes.

    Science.gov (United States)

    Bravo-Adame, Maria Elena; Vera-Estrella, Rosario; Barkla, Bronwyn J; Martínez-Campos, Cecilia; Flores-Alcantar, Angel; Ocelotl-Oviedo, Jose Pablo; Pedraza-Alva, Gustavo; Rosenstein, Yvonne

    2017-01-01

    CD43 is one of the most abundant co-stimulatory molecules on a T-cell surface; it transduces activation signals through its cytoplasmic domain, contributing to modulation of the outcome of T-cell responses. The aim of this study was to uncover new signalling pathways regulated by this sialomucin. Analysis of changes in protein abundance allowed us to identify pyruvate kinase isozyme M2 (PKM2), an enzyme of the glycolytic pathway, as an element potentially participating in the signalling cascade resulting from the engagement of CD43 and the T-cell receptor (TCR). We found that the glycolytic activity of this enzyme was not significantly increased in response to TCR+CD43 co-stimulation, but that PKM2 was tyrosine phosphorylated, suggesting that it was performing moonlight functions. We report that phosphorylation of both Y 105 of PKM2 and of Y 705 of signal transducer and activator of transcription 3 was induced in response to TCR+CD43 co-stimulation, resulting in activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway. ERK5 and the cAMP response element binding protein (CREB) were activated, and c-Myc and nuclear factor-κB (p65) nuclear localization, as well as Bad phosphorylation, were augmented. Consistent with this, expression of human CD43 in a murine T-cell hybridoma favoured cell survival. Altogether, our data highlight novel signalling pathways for the CD43 molecule in T lymphocytes, and underscore a role for CD43 in promoting cell survival through non-glycolytic functions of metabolic enzymes. © 2016 John Wiley & Sons Ltd.

  17. In Vivo Characterization of Intracellular Signaling Pathways Activated by the Nerve Agent Sarin

    National Research Council Canada - National Science Library

    Shih, Tsung-Ming A; Snyder, Gretchen L; Hendrick, Joseph P; Fienberg, Allen A; McDonough, John H

    2004-01-01

    ..., an excessive stimulation of nicotinic and muscarinic receptors. Preliminary evidence using diverse OPs indicates that the DARPP-32/PP-1 signaling pathway is activated by nicotinic receptor stimulation...

  18. Women’s Work Pathways Across the Life Course1

    Science.gov (United States)

    Damaske, Sarah; Frech, Adrianne

    2016-01-01

    Despite numerous changes in women’s employment in the latter half of the 20th century, women’s employment continues to be uneven and stalled. Drawing from data on women’s weekly work hours in the National Longitudinal Survey of Youth (NLSY79), we identify significant inequality in women’s labor force experiences across adulthood. We find two pathways of stable fulltime work for women, three pathways of part-time employment, and a pathway of unpaid labor. A majority of women follow one of the two fulltime work pathways, while fewer than 10 percent follow a pathway of unpaid labor. Our findings provide evidence of the lasting influence of work-family conflict and early socio-economic advantages and disadvantages on women’s work pathways. Indeed, race, poverty, educational attainment, and early family characteristics significantly shaped women’s work careers. Work-family opportunities and constraints also were related to women’s work hours, as were a woman’s gendered beliefs and expectations. We conclude that women’s employment pathways are a product of both their resources and changing social environment as well as individual agency. Significantly, we point to social stratification, gender ideologies, and work-family constraints, working in concert, as key explanations for how women are “tracked” onto work pathways from an early age. PMID:27001314

  19. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    International Nuclear Information System (INIS)

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin; Yang Kai; Pang Yi

    2009-01-01

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  20. Activation of the lectin pathway of complement in experimental human keratitis with Pseudomonas aeruginosa.

    Science.gov (United States)

    Osthoff, Michael; Brown, Karl D; Kong, David C M; Daniell, Mark; Eisen, Damon P

    2014-01-01

    Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT-PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed.

  1. Inhibition of plasmin activity by tranexamic acid does not influence inflammatory pathways during human endotoxemia

    NARCIS (Netherlands)

    Renckens, Rosemarijn; Weijer, Sebastiaan; de Vos, Alex F.; Pater, Jennie M.; Meijers, Joost C.; Hack, C. Erik; Levi, Marcel; van der Poll, Tom

    2004-01-01

    Objective - Plasmin activates several proinflammatory pathways at the cellular level in vitro. Lipopolysaccharide (LPS) administration to healthy humans results in a rapid generation of plasmin activity, accompanied by activation of a number of inflammatory systems. Methods and Results - To

  2. Metabolic Disruption Early in Life is Associated With Latent Carcinogenic Activity of Dichloroacetic Acid in Mice

    Science.gov (United States)

    Early-life environmental factors can influence later-life susceptibility to cancer. Recent evidence suggests that metabolic pathways may mediate this type of latency effect. Previously, we reported that short-term exposure to dichloroacetic acid (DCA) increased liver cancer in mi...

  3. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Christmas DM

    2011-07-01

    Full Text Available David M Christmas, JP Potokar, Simon JC DaviesAcademic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK A presentation relating to this manuscript was made by Dr David Christmas at the 9th International Meeting on Clinical Pharmacology in Psychiatry (9th IMCPP in Copenhagen, Denmark in September 2010Abstract: This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.Keywords: depression, inflammation, indoleamine 2,3-dioxygenase, kynurenine, serotonin, tryptophan

  4. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Science.gov (United States)

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  5. Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway.

    Science.gov (United States)

    Takeda, Kosuke; Shao, Danying; Adler, Micha; Charest, Pascale G; Loomis, William F; Levine, Herbert; Groisman, Alex; Rappel, Wouter-Jan; Firtel, Richard A

    2012-01-03

    Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.

  6. Activation of Wnt/β-Catenin Pathway in Monocytes Derived from Chronic Kidney Disease Patients

    Science.gov (United States)

    Al-Chaqmaqchi, Heevy Abdulkareem Musa; Moshfegh, Ali; Dadfar, Elham; Paulsson, Josefin; Hassan, Moustapha; Jacobson, Stefan H.; Lundahl, Joachim

    2013-01-01

    Patients with chronic kidney disease (CKD) have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m2) and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients. PMID:23935909

  7. Activation of Wnt/β-catenin pathway in monocytes derived from chronic kidney disease patients.

    Directory of Open Access Journals (Sweden)

    Heevy Abdulkareem Musa Al-Chaqmaqchi

    Full Text Available Patients with chronic kidney disease (CKD have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m(2 and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients.

  8. Low-dose radiation induces drosophila innate immunity through toll pathway activation

    International Nuclear Information System (INIS)

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Jin, Young-Woo; Park, Joong-Jean; Min, Kyung-Jin

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and N-terminal kinase (JNK). These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila. (author)

  9. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Science.gov (United States)

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  10. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Jesús Cosín-Roger

    Full Text Available Macrophages, which exhibit great plasticity, are important components of the inflamed tissue and constitute an essential element of regenerative responses. Epithelial Wnt signalling is involved in mechanisms of proliferation and differentiation and expression of Wnt ligands by macrophages has been reported. We aim to determine whether the macrophage phenotype determines the expression of Wnt ligands, the influence of the macrophage phenotype in epithelial activation of Wnt signalling and the relevance of this pathway in ulcerative colitis. Human monocyte-derived macrophages and U937-derived macrophages were polarized towards M1 or M2 phenotypes and the expression of Wnt1 and Wnt3a was analyzed by qPCR. The effects of macrophages and the role of Wnt1 were analyzed on the expression of β-catenin, Tcf-4, c-Myc and markers of cell differentiation in a co-culture system with Caco-2 cells. Immunohistochemical staining of CD68, CD206, CD86, Wnt1, β-catenin and c-Myc were evaluated in the damaged and non-damaged mucosa of patients with UC. We also determined the mRNA expression of Lgr5 and c-Myc by qPCR and protein levels of β-catenin by western blot. Results show that M2, and no M1, activated the Wnt signaling pathway in co-culture epithelial cells through Wnt1 which impaired enterocyte differentiation. A significant increase in the number of CD206+ macrophages was observed in the damaged mucosa of chronic vs newly diagnosed patients. CD206 immunostaining co-localized with Wnt1 in the mucosa and these cells were associated with activation of canonical Wnt signalling pathway in epithelial cells and diminution of alkaline phosphatase activity. Our results show that M2 macrophages, and not M1, activate Wnt signalling pathways and decrease enterocyte differentiation in co-cultured epithelial cells. In the mucosa of UC patients, M2 macrophages increase with chronicity and are associated with activation of epithelial Wnt signalling and diminution in

  11. Data on quantification of signaling pathways activated by KIT and PDGFRA mutants

    Directory of Open Access Journals (Sweden)

    Christelle Bahlawane

    2016-12-01

    Full Text Available The present data are related to the article entitled “Insights into ligand stimulation effects on gastro-intestinal stromal tumors signaling” (C. Bahlawane, M. Schmitz, E. Letellier, K. Arumugam, N. Nicot, P.V. Nazarov, S. Haan, 2016 [1]. Constitutive and ligand-derived signaling pathways mediated by KIT and PDGFRA mutated proteins found in gastrointestinal stromal tumors (GIST were compared. Expression of mutant proteins was induced by doxycycline in an isogenic background (Hek293 cells. Kit was identified by FACS at the cell surface and found to be quickly degraded or internalized upon SCF stimulation for both Kit Wild type and Kit mutant counterparts. Investigation of the main activated pathways in GIST unraveled a new feature specific for oncogenic KIT mutants, namely their ability to be further activated by Kit ligand, the stem cell factor (scf. We were also able to identify the MAPK pathway as the most prominent target for a common inhibition of PDGFRA and KIT oncogenic signaling. Western blotting and micro-array analysis were applied to analyze the capacities of the mutant to induce an effective STATs response. Among all Kit mutants, only Kit Ex11 deletion mutant was able to elicit an effective STATs response whereas all PDGFRA were able to do so.

  12. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ginkel, Paul R. van; Yan, Michael B. [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Bhattacharya, Saswati [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Department of Pediatrics, University of Wisconsin, Madison, WI 53792 (United States); Polans, Arthur S., E-mail: aspolans@wisc.edu [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Kenealey, Jason D. [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602 (United States)

    2015-11-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP{sub 3} pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca{sup 2+}-dependent pro-apoptotic pathways inhibit cancer cell growth.

  13. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    International Nuclear Information System (INIS)

    Ginkel, Paul R. van; Yan, Michael B.; Bhattacharya, Saswati; Polans, Arthur S.; Kenealey, Jason D.

    2015-01-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP 3 pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca 2+ -dependent pro-apoptotic pathways inhibit cancer cell growth.

  14. Activation of the cell wall integrity pathway promotes escape from G2 in the fungus Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Natalia Carbó

    2010-07-01

    Full Text Available It is widely accepted that MAPK activation in budding and fission yeasts is often associated with negative effects on cell cycle progression, resulting in delay or arrest at a specific stage in the cell cycle, thereby enabling cells to adapt to changing environmental conditions. For instance, activation of the Cell Wall Integrity (CWI pathway in the budding yeast Saccharomyces cerevisiae signals an increase in CDK inhibitory phosphorylation, which leads cells to remain in the G2 phase. Here we characterized the CWI pathway of Ustilago maydis, a fungus evolutionarily distant from budding and fission yeasts, and show that activation of the CWI pathway forces cells to escape from G2 phase. In spite of these disparate cell cycle responses in S. cerevisiae and U. maydis, the CWI pathway in both organisms appears to respond to the same class cell wall stressors. To understand the basis of such a difference, we studied the mechanism behind the U. maydis response. We found that activation of CWI pathway in U. maydis results in a decrease in CDK inhibitory phosphorylation, which depends on the mitotic phosphatase Cdc25. Moreover, in response to activation of the CWI pathway, Cdc25 accumulates in the nucleus, providing a likely explanation for the increase in the unphosphorylated form of CDK. We also found that the extended N-terminal domain of Cdc25, which is dispensable under normal growth conditions, is required for this G2 escape as well as for resistance to cell wall stressors. We propose that the process of cell cycle adaptation to cell stress evolved differently in these two divergent organisms so that each can move towards a cell cycle phase most appropriate for responding to the environmental signals encountered.

  15. Early Activation of Cardiosurgical Patients: History and Terminology (a review of literature

    Directory of Open Access Journals (Sweden)

    I. A. Kozlov

    2010-01-01

    Full Text Available In foreign countries, the anesthesiological and resuscitative tactics that ensure the maximally rapid discontinuation of mechanical ventilation are regarded as a fundamental therapeutic component of the so-called fast-track cardiac surgery that provides a shorter length of hospital stay, an intensified therapeutic process, and lower-cost treatment. In the Russian literature, this methodic approach is customarily designated early activation, by bearing in mind that discontinuation of mechanical ventilation is a key point of postoperative recovery of the patients’ physical activity. The main Russian and foreign publications on the specific features of therapeutic tactics in early periods after cardiac surgery are historically analyzed. The paper covers the polemic between the supporters and opponents of the earliest activation of patients operated on under extracorporeal circulation, the change of views on a need for obligatory postoperative mechanical ventilation, and the impact of the rate of activation and physical activity on the quality of rehabilitation. Terminology and clinicians’ points of views on the optimum activation periods are analyzed. Key words: early activation, operations under extracorporeal circulation, tracheal extubation in an operating room, early tracheal extubation, postoperative rehabilitation of cardiosurgical patients.

  16. How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD.

    Science.gov (United States)

    Needham, Patrick G; Brodsky, Jeffrey L

    2013-11-01

    All newly synthesized proteins are subject to quality control check-points, which prevent aberrant polypeptides from harming the cell. For proteins that ultimately reside in the cytoplasm, components that also reside in the cytoplasm were known for many years to mediate quality control. Early biochemical and genetic data indicated that misfolded proteins were selected by molecular chaperones and then targeted to the proteasome (in eukaryotes) or to proteasome-like particles (in bacteria) for degradation. What was less clear was how secreted and integral membrane proteins, which in eukaryotes enter the endoplasmic reticulum (ER), were subject to quality control decisions. In this review, we highlight early studies that ultimately led to the discovery that secreted and integral membrane proteins also utilize several components that constitute the cytoplasmic quality control machinery. This component of the cellular quality control pathway is known as ER associated degradation, or ERAD. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Lectin Pathway of Complement Activation Is Associated with Vulnerability of Atherosclerotic Plaques

    DEFF Research Database (Denmark)

    Fumagalli, Stefano; Perego, Carlo; Zangari, Rosalia

    2017-01-01

    Inflammatory mechanisms may be involved in atherosclerotic plaque rupture. By using a novel histology-based method to quantify plaque instability here, we assess whether lectin pathway (LP) of complement activation, a major inflammation arm, could represent an index of plaque instability. Plaques...

  18. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages.

    Science.gov (United States)

    Fu, Shu-Ling; Hsu, Ya-Hui; Lee, Pei-Yeh; Hou, Wen-Chi; Hung, Ling-Chien; Lin, Chao-Hsiung; Chen, Chiu-Ming; Huang, Yu-Jing

    2006-01-06

    The Toll-like receptor 4 (TLR4)-signaling pathway is crucial for activating both innate and adaptive immunity. TLR4 is a promising molecular target for immune-modulating drugs, and TLR4 agonists are of therapeutic potential for treating immune diseases and cancers. Several medicinal herb-derived components have recently been reported to act via TLR4-dependent pathways, suggesting that medicinal plants are potential resources for identifying TLR4 activators. We have applied a screening procedure to systematically identify herbal constituents that activate TLR4. To exclude possible LPS contamination in these plant-derived components, a LPS inhibitor, polymyxin B, was added during screening. One of the plant components we identified from the screening was dioscorin, the glycoprotein isolated from Dioscorea alata. It induced TLR4-downstream cytokine expression in bone marrow cells isolated from TLR4-functional C3H/HeN mice but not from TLR4-defective C3H/HeJ mice. Dioscorin also stimulated multiple signaling molecules (NF-kappaB, ERK, JNK, and p38) and induced the expression of cytokines (TNF-alpha, IL-1beta, and IL-6) in murine RAW 264.7 macrophages. Furthermore, the ERK, p38, JNK, and NF-kappaB-mediated pathways are all involved in dioscorin-mediated TNF-alpha production. In summary, our results demonstrate that dioscorin is a novel TLR4 activator and induces macrophage activation via typical TLR4-signaling pathways.

  19. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens.

    Science.gov (United States)

    Ellis, C; Turner, J G

    2001-05-01

    Jasmonates (JAs) inhibit plant growth and induce plant defense responses. To define genes in the Arabidopsis JA signal pathway, we screened for mutants with constitutive expression of a luciferase reporter for the JA-responsive promoter from the vegetative storage protein gene VSP1. One mutant, named constitutive expression of VSP1 (cev1), produced plants that were smaller than wild type, had stunted roots with long root hairs, accumulated anthocyanin, had constitutive expression of the defense-related genes VSP1, VSP2, Thi2.1, PDF1.2, and CHI-B, and had enhanced resistance to powdery mildew diseases. Genetic evidence indicated that the cev1 phenotype required both COI1, an essential component of the JA signal pathway, and ETR1, which encodes the ethylene receptor. We conclude that cev1 stimulates both the JA and the ethylene signal pathways and that CEV1 regulates an early step in an Arabidopsis defense pathway.

  20. Asymmetric distribution of hypoxia-inducible factor α regulates dorsoventral axis establishment in the early sea urchin embryo.

    Science.gov (United States)

    Chang, Wei-Lun; Chang, Yi-Cheng; Lin, Kuan-Ting; Li, Han-Ru; Pai, Chih-Yu; Chen, Jen-Hao; Su, Yi-Hsien

    2017-08-15

    Hypoxia signaling is an ancient pathway by which animals can respond to low oxygen. Malfunction of this pathway disturbs hypoxic acclimation and can result in various diseases, including cancers. The role of hypoxia signaling in early embryogenesis remains unclear. Here, we show that in the blastula of the sea urchin Strongylocentrotus purpuratus , hypoxia-inducible factor α (HIFα), the downstream transcription factor of the hypoxia pathway, is localized and transcriptionally active on the future dorsal side. This asymmetric distribution is attributable to its oxygen-sensing ability. Manipulations of the HIFα level entrained the dorsoventral axis, as the side with the higher level of HIFα tends to develop into the dorsal side. Gene expression analyses revealed that HIFα restricts the expression of nodal to the ventral side and activates several genes encoding transcription factors on the dorsal side. We also observed that intrinsic hypoxic signals in the early embryos formed a gradient, which was disrupted under hypoxic conditions. Our results reveal an unprecedented role of the hypoxia pathway in animal development. © 2017. Published by The Company of Biologists Ltd.

  1. Cisplatin Induces Cytotoxicity through the Mitogen-Activated Protein Kinase Pathways ana Activating Transcription Factor 3

    Directory of Open Access Journals (Sweden)

    Carly St. Germain

    2010-07-01

    Full Text Available The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3 as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogenactivated protein kinase (MAPK pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellularsignal-regulated kinase, and p38 resulted in decreasedATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-ylF2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/murine embryonic fibroblasts (MEFs were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin’s cytotoxic effects.

  2. Control of neuropeptide expression by parallel activity-dependent pathways in caenorhabditis elegans

    DEFF Research Database (Denmark)

    Rojo Romanos, Teresa; Petersen, Jakob Gramstrup; Pocock, Roger

    2017-01-01

    Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. Elegans, CO 2 sensing...... is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO 2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. Elegans to avoid high CO 2. Here we show that c...... that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability...

  3. EARLY LIFE RISKS, ANTISOCIAL TENDENCIES, AND PRETEEN DELINQUENCY*

    Science.gov (United States)

    Staff, Jeremy; Whichard, Corey; Siennick, Sonja; Maggs, Jennifer

    2015-01-01

    Early age-of-onset delinquency and substance use confer a major risk for continued criminality, alcohol and drug abuse, and other serious difficulties throughout the life course. Our objective is to examine the developmental roots of preteen delinquency and substance use. Using nationally representative longitudinal data from the UK Millennium Cohort Study (n = 13,221), we examine the influence of early childhood developmental and family risks on latent pathways of antisocial tendencies from ages 3 to 7, and the influence of those pathways on property crime and substance use by age 11. We identified a normative, non-antisocial pathway; a pathway marked by oppositional behavior and fighting; a pathway marked by impulsivity and inattention; and a rare pathway characterized by a wide range of antisocial tendencies. Children with developmental and family risks that emerged by age 3—specifically difficult infant temperament, low cognitive ability, weak parental closeness, and disadvantaged family background—face increased odds of antisocial tendencies. There is minimal overlap between the risk factors for early antisocial tendencies and those for preteen delinquency. Children on an antisocial pathway are more likely to engage in preteen delinquency and substance use by age 11, even after accounting for early life risk factors. PMID:26900167

  4. Love hurts (in more ways than one): specificity of psychological symptoms as predictors and consequences of romantic activity among early adolescent girls.

    Science.gov (United States)

    Starr, Lisa R; Davila, Joanne; Stroud, Catherine B; Clara Li, Po Ching; Yoneda, Athena; Hershenberg, Rachel; Ramsay Miller, Melissa

    2012-04-01

    Research has linked adolescent romantic and sexual activities to depressive symptoms. The current study examines whether such activities are uniquely linked to depressive symptoms versus symptoms of other disorders (including anxiety, externalizing, and eating disorders), and whether co-occurring symptoms more precisely account for the association between depressive symptoms and romantic involvement. Early adolescent girls (N = 83; mean age = 13.45) participated in baseline and 1-year follow up data collection. Romantic (i.e., dating and sexual) activities were longitudinally related to numerous types of symptoms. The association between depressive symptoms and romantic variables remained when considering co-occurring symptoms. Girls with more comorbid disorders reported more romantic activities. Results suggest that the maladaptive consequences and precipitants of adolescent romantic activities extend beyond depression, but also imply that this association is not secondary to comorbid symptoms. Future work should clarify causal pathways. © 2012 Wiley Periodicals, Inc.

  5. AMP-activated protein kinase is involved in the activation of the Fanconi anemia/BRCA pathway in response to DNA interstrand crosslinks.

    Science.gov (United States)

    Chun, Min Jeong; Kim, Sunshin; Hwang, Soo Kyung; Kim, Bong Sub; Kim, Hyoun Geun; Choi, Hae In; Kim, Jong Heon; Goh, Sung Ho; Lee, Chang-Hun

    2016-08-16

    Fanconi anemia complementation group (FANC) proteins constitute the Fanconi Anemia (FA)/BRCA pathway that is activated in response to DNA interstrand crosslinks (ICLs). We previously performed yeast two-hybrid screening to identify novel FANC-interacting proteins and discovered that the alpha subunit of AMP-activated protein kinase (AMPKα1) was a candidate binding partner of the FANCG protein, which is a component of the FA nuclear core complex. We confirmed the interaction between AMPKα and both FANCG using co-immunoprecipitation experiments. Additionally, we showed that AMPKα interacted with FANCA, another component of the FA nuclear core complex. AMPKα knockdown in U2OS cells decreased FANCD2 monoubiquitination and nuclear foci formation upon mitomycin C-induced ICLs. Furthermore, AMPKα knockdown enhanced cellular sensitivity to MMC. MMC treatment resulted in an increase in AMPKα phosphorylation/activation, indicating AMPK is involved in the cellular response to ICLs. FANCA was phosphorylated by AMPK at S347 and phosphorylation increased with MMC treatment. MMC-induced FANCD2 monoubiquitination and nuclear foci formation were compromised in a U2OS cell line that stably overexpressed the S347A mutant form of FANCA compared to wild-type FANCA-overexpressing cells, indicating a requirement for FANCA phosphorylation at S347 for proper activation of the FA/BRCA pathway. Our data suggest AMPK is involved in the activation of the FA/BRCA pathway.

  6. THE LONG REACH OF EDUCATION: EARLY RETIREMENT.

    Science.gov (United States)

    Venti, Steven; Wise, David A

    2015-12-01

    The goal of this paper is to draw attention to the long lasting effect of education on economic outcomes. We use the relationship between education and two routes to early retirement - the receipt of Social Security Disability Insurance (DI) and the early claiming of Social Security retirement benefits - to illustrate the long-lasting influence of education. We find that for both men and women with less than a high school degree the median DI participation rate is 6.6 times the participation rate for those with a college degree or more. Similarly, men and women with less than a high school education are over 25 percentage points more likely to claim Social Security benefits early than those with a college degree or more. We focus on four critical "pathways" through which education may indirectly influence early retirement - health, employment, earnings, and the accumulation of assets. We find that for women health is the dominant pathway through which education influences DI participation. For men, the health, earnings, and wealth pathways are of roughly equal magnitude. For both men and women the principal channel through which education influences early Social Security claiming decisions is the earnings pathway. We also consider the direct effect of education that does not operate through these pathways. The direct effect of education is much greater for early claiming of Social Security benefits than for DI participation, accounting for 72 percent of the effect of education for men and 67 percent for women. For women the direct effect of education on DI participation is not statistically significant, suggesting that the total effect may be through the four pathways.

  7. Tofacitinib Represses the Janus Kinase-Signal Transducer and Activators of Transcription Signalling Pathway in Keratinocytes.

    Science.gov (United States)

    Srivastava, Ankit; Ståhle, Mona; Pivarcsi, Andor; Sonkoly, Enikö

    2018-05-08

    Tofacitinib is a Janus kinase (JAK) inhibitor, which has shown efficacy in treating psoriasis. The mode of action of tofacitinib is not completely understood but it has been thought to be mediated by the inhibition of CD4+ T-cell activation. Here, we investigated whether the molecular targets of tofacitinib are expressed in keratinocytes, and whether tofacitinib can modulate the activity of the JAK/Signal Transducer and Activators of Transcription (STAT)-pathway in keratinocytes. Transcriptomic profiling of human keratinocytes treated with IL-22 in combination with tofacitinib revealed that tofacitinib could prevent the majority of IL-22-mediated gene expression changes. Pathway analysis of tofacitinib-regulated genes in keratinocytes revealed enrichment of genes involved in the JAK/STAT signalling pathway. Quantitative real-time-PCR confirmed the upregulation of S100A7 and downregulation of EGR1 expression by IL-22, which was prevented by tofacitinib pre-treatment. These results indicate a direct effect of tofacinitib on keratinocytes, which can have relevance for systemic as well as for topical treatment of psoriasis with tofacitinib.

  8. Activation of the CREB/c-Fos Pathway during Long-Term Synaptic Plasticity in the Cerebellum Granular Layer

    Directory of Open Access Journals (Sweden)

    Daniela Gandolfi

    2017-06-01

    Full Text Available The induction of long-term potentiation and depression (LTP and LTD is thought to trigger gene expression and protein synthesis, leading to consolidation of synaptic and neuronal changes. However, while LTP and LTD have been proposed to play important roles for sensori-motor learning in the cerebellum granular layer, their association with these mechanisms remained unclear. Here, we have investigated phosphorylation of the cAMP-responsive element binding protein (CREB and activation of the immediate early gene c-Fos pathway following the induction of synaptic plasticity by theta-burst stimulation (TBS in acute cerebellar slices. LTP and LTD were localized using voltage-sensitive dye imaging (VSDi. At two time points following TBS (15 min and 120 min, corresponding to the early and late phases of plasticity, slices were fixed and processed to evaluate CREB phosphorylation (P-CREB and c-FOS protein levels, as well as Creb and c-Fos mRNA expression. High levels of P-CREB and Creb/c-Fos were detected before those of c-FOS, as expected if CREB phosphorylation triggered gene expression followed by protein synthesis. No differences between control slices and slices stimulated with TBS were observed in the presence of an N-methyl-D-aspartate receptor (NMDAR antagonist. Interestingly, activation of the CREB/c-Fos system showed a relevant degree of colocalization with long-term synaptic plasticity. These results show that NMDAR-dependent plasticity at the cerebellum input stage bears about transcriptional and post-transcriptional processes potentially contributing to cerebellar learning and memory consolidation.

  9. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway.

    Science.gov (United States)

    Kim, Chae E; Lee, Seung J; Seo, Kyo W; Park, Hye M; Yun, Jung W; Bae, Jin U; Bae, Sun S; Kim, Chi D

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B(4) (LTB(4)) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB(4) production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB(4). Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB(4), subsequent MMP-9 production and plaque rupture.

  10. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    International Nuclear Information System (INIS)

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-01-01

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B 4 (LTB 4 ) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB 4 production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB 4 . Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB 4 , subsequent MMP-9 production and plaque rupture.

  11. Changes in spontaneous brain activity in early Parkinson's disease.

    Science.gov (United States)

    Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue

    2013-08-09

    Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of pbrain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0.69). These results indicate that the abnormal resting state spontaneous brain activity associated with patients with early PD can be revealed by Reho analysis. Copyright

  12. Spironolactone lowers portal hypertension by inhibiting liver fibrosis, ROCK-2 activity and activating NO/PKG pathway in the bile-duct-ligated rat.

    Directory of Open Access Journals (Sweden)

    Wei Luo

    Full Text Available OBJECTIVE: Aldosterone, one of the main peptides in renin angiotensin aldosterone system (RAAS, has been suggested to mediate liver fibrosis and portal hypertension. Spironolactone, an aldosterone antagonist, has beneficial effect on hyperdynamic circulation in clinical practice. However, the mechanisms remain unclear. The present study aimed to investigate the role of spionolactone on liver cirrhosis and portal hypertension. METHODS: Liver cirrhosis was induced by bile duct ligation (BDL. Spironolactone was administered orally (20 mg/kg/d after bile duct ligation was performed. Liver fibrosis was assessed by histology, Masson's trichrome staining, and the measurement of hydroxyproline and type I collagen content. The activation of HSC was determined by analysis of alpha smooth muscle actin (α-SMA expression. Protein expressions and protein phosphorylation were determined by immunohistochemical staining and Western blot analysis, Messenger RNA levels by quantitative real time polymerase chain reaction (Q-PCR. Portal pressure and intrahepatic resistance were examined in vivo. RESULTS: Treatment with spironolactone significantly lowered portal pressure. This was associated with attenuation of liver fibrosis, intrahepatic resistance and inhibition of HSC activation. In BDL rat liver, spironolactone suppressed up-regulation of proinflammatory cytokines (TNFα and IL-6. Additionally, spironolactone significantly decreased ROCK-2 activity without affecting expression of RhoA and Ras. Moreover, spironolactone markedly increased the levels of endothelial nitric oxide synthase (eNOS, phosphorylated eNOS and the activity of NO effector-protein kinase G (PKG in the liver. CONCLUSION: Spironolactone lowers portal hypertension by improvement of liver fibrosis and inhibition of intrahepatic vasoconstriction via down-regulating ROCK-2 activity and activating NO/PKG pathway. Thus, early spironolactone therapy might be the optional therapy in cirrhosis and

  13. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers.

    Science.gov (United States)

    Roach, Michael

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.

  14. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers

    Science.gov (United States)

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals’ pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers. PMID:28178270

  15. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways.

    Science.gov (United States)

    Laarman, Alexander J; Bardoel, Bart W; Ruyken, Maartje; Fernie, Job; Milder, Fin J; van Strijp, Jos A G; Rooijakkers, Suzan H M

    2012-01-01

    The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2.

  16. Early-Life Effects on Adult Physical Activity: Concepts, Relevance, and Experimental Approaches.

    Science.gov (United States)

    Garland, Theodore; Cadney, Marcell D; Waterland, Robert A

    Locomotion is a defining characteristic of animal life and plays a crucial role in most behaviors. Locomotion involves physical activity, which can have far-reaching effects on physiology and neurobiology, both acutely and chronically. In human populations and in laboratory rodents, higher levels of physical activity are generally associated with positive health outcomes, although excessive exercise can have adverse consequences. Whether and how such relationships occur in wild animals is unknown. Behavioral variation among individuals arises from genetic and environmental factors and their interactions as well as from developmental programming (persistent effects of early-life environment). Although tremendous progress has been made in identifying genetic and environmental influences on individual differences in behavior, early-life effects are not well understood. Early-life effects can in some cases persist across multiple generations following a single exposure and, in principle, may constrain or facilitate the rate of evolution at multiple levels of biological organization. Understanding the mechanisms of such transgenerational effects (e.g., exposure to stress hormones in utero, inherited epigenetic alterations) may prove crucial to explaining unexpected and/or sex-specific responses to selection as well as limits to adaptation. One area receiving increased attention is early-life effects on adult physical activity. Correlational data from epidemiological studies suggest that early-life nutritional stress can (adversely) affect adult human activity levels and associated physiological traits (e.g., body composition, metabolic health). The few existing studies of laboratory rodents demonstrate that both maternal and early-life exercise can affect adult levels of physical activity and related phenotypes. Going forward, rodents offer many opportunities for experimental studies of (multigenerational) early-life effects, including studies that use maternal

  17. Depressed activation of the lectin pathway of complement in hereditary angioedema

    DEFF Research Database (Denmark)

    Varga, L; Széplaki, G; Laki, J

    2008-01-01

    ) in three complement activation pathways. Functional activity of the CP, LP and AP were measured in the sera of 68 adult patients with hereditary angioedema (HAE) and 64 healthy controls. In addition, the level of C1q, MBL, MBL-associated serine protease-2 (MASP-2), C4-, C3- and C1INH was measured...... by standard laboratory methods. MBL-2 genotypes were determined by polymerase chain reaction. Besides the complement alterations (low CP and C1INH activity, low C4-, C1INH concentrations), which characterize HAE, the level of MASP-2 was also lower (P = 0.0001) in patients compared with controls. Depressed LP...

  18. Non-Smad signaling pathways.

    Science.gov (United States)

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  19. Molecular pathways undergoing dramatic transcriptomic changes during tumor development in the human colon

    Directory of Open Access Journals (Sweden)

    Maglietta Rosalia

    2012-12-01

    Full Text Available Abstract Background The malignant transformation of precancerous colorectal lesions involves progressive alterations at both the molecular and morphologic levels, the latter consisting of increases in size and in the degree of cellular atypia. Analyzing preinvasive tumors of different sizes can therefore shed light on the sequence of these alterations. Methods We used a molecular pathway-based approach to analyze transcriptomic profiles of 59 colorectal tumors representing early and late preinvasive stages and the invasive stage of tumorigenesis. Random set analysis was used to identify biological pathways enriched for genes differentially regulated in tumors (compared with 59 samples of normal mucosa. Results Of the 880 canonical pathways we investigated, 112 displayed significant tumor-related upregulation or downregulation at one or more stages of tumorigenesis. This allowed us to distinguish between pathways whose dysregulation is probably necessary throughout tumorigenesis and those whose involvement specifically drives progression from one stage to the next. We were also able to pinpoint specific changes within each gene set that seem to play key roles at each transition. The early preinvasive stage was characterized by cell-cycle checkpoint activation triggered by DNA replication stress and dramatic downregulation of basic transmembrane signaling processes that maintain epithelial/stromal homeostasis in the normal mucosa. In late preinvasive lesions, there was also downregulation of signal transduction pathways (e.g., those mediated by G proteins and nuclear hormone receptors involved in cell differentiation and upregulation of pathways governing nuclear envelope dynamics and the G2>M transition in the cell cycle. The main features of the invasive stage were activation of the G1>S transition in the cell cycle, upregulated expression of tumor-promoting microenvironmental factors, and profound dysregulation of metabolic pathways (e

  20. Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage: role of Keap1/Nrf2/ARE pathway.

    Directory of Open Access Journals (Sweden)

    Zhong Wang

    Full Text Available Tert-butylhydroquinone (tBHQ, an Nrf2 activator, has demonstrated neuroprotection against brain trauma and ischemic stroke in vivo. However, little work has been done with respect to its effect on early brain injury (EBI after subarachnoid hemorrhage (SAH. At the same time, as an oral medication, it may have extensive clinical applications for the treatment of SAH-induced cognitive dysfunction. This study was undertaken to evaluate the influence of tBHQ on EBI, secondary deficits of learning and memory, and the Keap1/Nrf2/ARE pathway in a rat SAH model. SD rats were divided into four groups: (1 Control group (n=40; (2 SAH group (n=40; (3 SAH+vehicle group (n=40; and (4 SAH+tBHQ group (n=40. All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once in 20 s. In SAH+tBHQ group, tBHQ was administered via oral gavage at a dose of 12.5 mg/kg at 2 h, 12 h, 24 h, and 36 h after SAH. In the first set of experiments, brain samples were extracted and evaluated 48 h after SAH. In the second set of experiments, changes in cognition and memory were investigated in a Morris water maze. Results shows that administration of tBHQ after SAH significantly ameliorated EBI-related problems, such as brain edema, blood-brain barrier (BBB impairment, clinical behavior deficits, cortical apoptosis, and neurodegeneration. Learning deficits induced by SAH was markedly alleviated after tBHQ therapy. Treatment with tBHQ markedly up-regulated the expression of Keap1, Nrf2, HO-1, NQO1, and GSTα1 after SAH. In conclusion, the administration of tBHQ abated the development of EBI and cognitive dysfunction in this SAH model. Its action was probably mediated by activation of the Keap1/Nrf2/ARE pathway.

  1. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway.

    Science.gov (United States)

    Xu, Xiang; Huang, Enping; Luo, Baoying; Cai, Dunpeng; Zhao, Xu; Luo, Qin; Jin, Yili; Chen, Ling; Wang, Qi; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2018-06-25

    Methamphetamine (Meth) is a widely abused psychoactive drug that primarily damages the nervous system, notably causing dopaminergic neuronal apoptosis. CCAAT-enhancer binding protein (C/EBPβ) is a transcription factor and an important regulator of cell apoptosis and autophagy. Insulin-like growth factor binding protein (IGFBP5) is a proapoptotic factor that mediates Meth-induced neuronal apoptosis, and Trib3 (tribbles pseudokinase 3) is an endoplasmic reticulum (ER) stress-inducible gene involved in autophagic cell death through the mammalian target of rapamycin (mTOR) signaling pathway. To test the hypothesis that C/EBPβ is involved in Meth-induced IGFBP5-mediated neuronal apoptosis and Trib3-mediated neuronal autophagy, we measured the protein expression of C/EBPβ after Meth exposure and evaluated the effects of silencing C/EBPβ, IGFBP5, or Trib3 on Meth-induced apoptosis and autophagy in neuronal cells and in the rat striatum after intrastriatal Meth injection. We found that, at relatively high doses, Meth exposure increased C/EBPβ protein expression, which was accompanied by increased neuronal apoptosis and autophagy; triggered the IGFBP5-mediated, p53-up-regulated modulator of apoptosis (PUMA)-related mitochondrial apoptotic signaling pathway; and stimulated the Trib3-mediated ER stress signaling pathway through the Akt-mTOR signaling axis. We also found that autophagy is an early response to Meth-induced stress upstream of apoptosis and plays a detrimental role in Meth-induced neuronal cell death. These results suggest that Meth exposure induces C/EBPβ expression, which plays an essential role in the neuronal apoptosis and autophagy induced by relatively high doses of Meth; however, relatively low concentrations of Meth did not change the expression of C/EBPβ in vitro. Further studies are needed to elucidate the role of C/EBPβ in low-dose Meth-induced neurotoxicity.-Xu, X., Huang, E., Luo, B., Cai, D., Zhao, X., Luo, Q., Jin, Y., Chen, L., Wang, Q

  2. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Directory of Open Access Journals (Sweden)

    Stephanie M Rainey

    2016-04-01

    Full Text Available The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus. Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to

  3. Psychological preconditions of game activity development in the early childhood

    OpenAIRE

    Valeriya Spitsyna; Ekaterina Saraykina

    2013-01-01

    The article is devoted for detection the psychological preconditions of game activity development at early age and interrelation of game formation with the development of subject actions, informative activity and procedural game.

  4. The mTOR signalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals.

    Science.gov (United States)

    Tan, Heng Kean; Moad, Ahmed Ismail Hassan; Tan, Mei Lan

    2014-01-01

    The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.

  5. ApoSOD1 lacking dismutase activity neuroprotects motor neurons exposed to beta-methylamino-L-alanine through the Ca2+/Akt/ERK1/2 prosurvival pathway

    Science.gov (United States)

    Petrozziello, Tiziana; Secondo, Agnese; Tedeschi, Valentina; Esposito, Alba; Sisalli, MariaJosè; Scorziello, Antonella; Di Renzo, Gianfranco; Annunziato, Lucio

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe human adult-onset neurodegenerative disease affecting lower and upper motor neurons. In >20% of cases, the familial form of ALS is caused by mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1). Interestingly, administration of wild-type SOD1 to SOD1G93A transgenic rats ameliorates motor symptoms through an unknown mechanism. Here we investigated whether the neuroprotective effects of SOD1 are due to the Ca2+-dependent activation of such prosurvival signaling pathway and not to its catalytic activity. To this aim, we also examined the mechanism of neuroprotective action of ApoSOD1, the metal-depleted state of SOD1 that lacks dismutase activity, in differentiated motor neuron-like NSC-34 cells and in primary motor neurons exposed to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA). Preincubation of ApoSOD1 and SOD1, but not of human recombinant SOD1G93A, prevented cell death in motor neurons exposed to L-BMAA. Moreover, ApoSOD1 elicited ERK1/2 and Akt phosphorylation in motor neurons through an early increase of intracellular Ca2+ concentration ([Ca2+]i). Accordingly, inhibition of ERK1/2 by siMEK1 and PD98059 counteracted ApoSOD1- and SOD1-induced neuroprotection. Similarly, transfection of the dominant-negative form of Akt in NSC-34 motor neurons and treatment with the selective PI3K inhibitor LY294002 prevented ApoSOD1- and SOD1-mediated neuroprotective effects in L-BMAA-treated motor neurons. Furthermore, ApoSOD1 and SOD1 prevented the expression of the two markers of L-BMAA-induced ER stress GRP78 and caspase-12. Collectively, our data indicate that ApoSOD1, which is devoid of any catalytic dismutase activity, exerts a neuroprotective effect through an early activation of Ca2+/Akt/ERK1/2 pro-survival pathway that, in turn, prevents ER stress in a neurotoxic model of ALS. PMID:28085149

  6. Physical Activity Opportunities Within the Schedule of Early Care and Education Centers.

    Science.gov (United States)

    Mazzucca, Stephanie; Hales, Derek; Evenson, Kelly R; Ammerman, Alice; Tate, Deborah F; Berry, Diane C; Ward, Dianne S

    2018-02-01

    Physical activity has many benefits for young children's health and overall development, but few studies have investigated how early care and education centers allot time for physical activity, along with measured individual physical activity levels for indoor/outdoor activities during a typical day. Fifty early care and education centers in central North Carolina participated in 4 full-day observations, and 559 children aged 3-5 years within centers wore accelerometers assessing physical activity during observation days. Observation and physical activity data were linked and analyzed for associations between child activity and type of classroom activity. Children averaged 51 (13) minutes per day of moderate to vigorous physical activity and 99 (18) minutes per day of light physical activity while in child care. Children averaged 6 (10) and 10 (13) minutes per day of observed outdoor and indoor daily teacher-led physical activity, respectively. Outdoor time averaged 67 (49) minutes per day, and physical activity levels were higher during outdoor time than during common indoor activities (center time, circle time, and TV time). Physical activity levels varied between indoor and outdoor class activities. Policy and program-related efforts to increase physical activity in preschoolers should consider these patterns to leverage opportunities to optimize physical activity within early care and education centers.

  7. Community Structure Analysis of Transcriptional Networks Reveals Distinct Molecular Pathways for Early- and Late-Onset Temporal Lobe Epilepsy with Childhood Febrile Seizures

    Science.gov (United States)

    Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Iamashita, Priscila; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Silva, Alexandre Valotta; Castro, Luiz Henrique Martins; Wen, Hung-Tzu

    2015-01-01

    Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system’s constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to

  8. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization.

    Science.gov (United States)

    Mukwaya, Anthony; Lennikov, Anton; Xeroudaki, Maria; Mirabelli, Pierfrancesco; Lachota, Mieszko; Jensen, Lasse; Peebo, Beatrice; Lagali, Neil

    2018-05-01

    Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.

  9. Drosophila insulin and target of rapamycin (TOR pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo

    Directory of Open Access Journals (Sweden)

    Parisi Federica

    2011-09-01

    Full Text Available Abstract Background Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Results Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Conclusions Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At

  10. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo.

    Science.gov (United States)

    Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola

    2011-09-27

    Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways

  11. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  12. The mitogen-activated protein kinase (MAPK pathway: role in immune evasion by trypanosomatids

    Directory of Open Access Journals (Sweden)

    Mercedes Carolina Soares-Silva

    2016-02-01

    Full Text Available Leishmania spp and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas' disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae and are both obligate intracellular parasites that manipulate host signaling pathways to establish the infection, and also subvert the host innate immune system. Mitogen-activated protein kinases (MAPKs are serine and threonine protein kinases, highly conserved in eukaryotes, and are involved in signal transduction pathways that are related to modulation of physiological and pathophysiological cell responses. This mini-review highlights the current knowledge about the mechanisms that Leishmania spp and T. cruzi have evolved to target host MAPK signaling pathway, highjack immune response, and in this manner, promote parasite maintenance in the host.

  13. DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis.

    Science.gov (United States)

    Tan, Cong; Qiao, Fan; Wei, Ping; Chi, Yayun; Wang, Weige; Ni, Shujuan; Wang, Qifeng; Chen, Tongzhen; Sheng, Weiqi; Du, Xiang; Wang, Lei

    2016-04-01

    DIXDC1 (Dishevelled-Axin domain containing 1) is a DIX (Dishevelled-Axin) domain-possessing protein that promotes colon cancer cell proliferation and increases the invasion and migration ability of non-small-cell lung cancer via the PI3K pathway. As a positive regulator of the Wnt/β-catenin pathway, the biological role of DIXDC1 in human gastric cancer and the relationship between DIXDC1 and the Wnt pathway are unclear. In the current study, the upregulation of DIXDC1 was detected in gastric cancer and was associated with advanced TNM stage cancer, lymph node metastasis, and poor prognosis. We also found that the overexpression of DIXDC1 could promote the invasion and migration of gastric cancer cells. The upregulation of MMPs and the downregulation of E-cadherin were found to be involved in the process. DIXDC1 enhanced β-catenin nuclear accumulation, which activated the Wnt pathway. Additionally, the inhibition of β-catenin in DIXDC1-overexpressing cells reversed the metastasis promotion effects of DIXDC1. These results demonstrate that the expression of DIXDC1 is associated with poor prognosis of gastric cancer patients and that DIXDC1 promotes gastric cancer invasion and metastasis through the activation of the Wnt pathway; E-cadherin and MMPs are also involved in this process. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Glucose pathways adaptation supports acquisition of activated microglia phenotype.

    Science.gov (United States)

    Gimeno-Bayón, J; López-López, A; Rodríguez, M J; Mahy, N

    2014-06-01

    With its capacity to survey the environment and phagocyte debris, microglia assume a diversity of phenotypes to respond specifically through neurotrophic and toxic effects. Although these roles are well accepted, the underlying energetic mechanisms associated with microglial activation remain largely unclear. This study investigates microglia metabolic adaptation to ATP, NADPH, H(+) , and reactive oxygen species production. To this end, in vitro studies were performed with BV-2 cells before and after activation with lipopolysaccharide + interferon-γ. Nitric oxide (NO) was measured as a marker of cell activation. Our results show that microglial activation triggers a metabolic reprogramming based on an increased glucose uptake and a strengthening of anaerobic glycolysis, as well as of the pentose pathway oxidative branch, while retaining the mitochondrial activity. Based on this energy commitment, microglial defense capacity increases rapidly as well as ribose-5-phosphate and nucleic acid formation for gene transcription, essential to ensure the newly acquired functions demanded by central nervous system signaling. We also review the role of NO in this microglial energy commitment that positions cytotoxic microglia within the energetics of the astrocyte-neuron lactate shuttle. Copyright © 2014 Wiley Periodicals, Inc.

  15. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp.

    Directory of Open Access Journals (Sweden)

    Sandra Fresquet-Corrales

    Full Text Available Proanthocyanidins (PAs, or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (- catechin/g FW and 228.5 nmol (- epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass are discussed.

  16. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    Science.gov (United States)

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Understanding trade pathways to target biosecurity surveillance

    Directory of Open Access Journals (Sweden)

    Manuel Colunga-Garcia

    2013-09-01

    Full Text Available Increasing trends in global trade make it extremely difficult to prevent the entry of all potential invasive species (IS. Establishing early detection strategies thus becomes an important part of the continuum used to reduce the introduction of invasive species. One part necessary to ensure the success of these strategies is the determination of priority survey areas based on invasion pressure. We used a pathway-centred conceptual model of pest invasion to address these questions: what role does global trade play in invasion pressure of plant ecosystems and how could an understanding of this role be used to enhance early detection strategies? We concluded that the relative level of invasion pressure for destination ecosystems can be influenced by the intensity of pathway usage (import volume and frequency, the number and type of pathways with a similar destination, and the number of different ecological regions that serve as the source for imports to the same destination. As these factors increase, pressure typically intensifies because of increasing a propagule pressure, b likelihood of transporting pests with higher intrinsic invasion potential, and c likelihood of transporting pests into ecosystems with higher invasibility. We used maritime containerized imports of live plants into the contiguous U.S. as a case study to illustrate the practical implications of the model to determine hotspot areas of relative invasion pressure for agricultural and forest ecosystems (two ecosystems with high potential invasibility. Our results illustrated the importance of how a pathway-centred model could be used to highlight potential target areas for early detection strategies for IS. Many of the hotspots in agricultural and forest ecosystems were within major U.S. metropolitan areas. Invasion ecologists can utilize pathway-centred conceptual models to a better understand the role of human-mediated pathways in pest establishment, b enhance current

  18. Early Activation of Patients after Surgery for Coronary Heart Disease under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    I. A. Kozlov

    2008-01-01

    Full Text Available Objective: to analyze the safety and clinical efficiency of early activation of patients operated on for coronary heart disease under extracorporeal circulation. Subjects and methods. The data available in the case histories of 673 patients aged 29—76 years, operated on in 1995, 2004, and 2006, were analyzed. The study excluded patients with severe intraoperative complications (acute myocardial infarction, a need for extracorporeal circulation, and surgical bleeding. Early activation was made on an operating table if there were no contraindications. Some sections of the study were performed in the matched patient groups. Results. With early activation, the dosages of fentanyl were reduced by 2.5-3 times as compared with the 1995 data; the use of ketamine and diazepam was stopped. Instead of the latter, the currently available inhalational agents are coming into use: midazolam has been introduced and the rate of propofol use has increased. The higher activation rate required the use of flumazenil, naloxone, and proserin. The goal-oriented study of central hemodynamics with emphasis on early activation has indicated that lower dosages of fentanyl have no negative impact on cardiac pump function or myocardial oxygen balance. When the trachea was extubated on the operating table, there was appropriate central hemodynamic stabilization. It was found that the incidence of postoperative myocardial infarctions did not depend on the rate of activation. The frequency of cardiovascular complications was 38.8±5.9% and 22.9±5.0% in the prolonged artificial ventilation (AV and early activation groups, respectively (p<0.05; that of pulmonary complications was 16.4±4.5% and 5.7±2.8%, respectively (p<0.05. Early activation halved the length of stay at an intensive care unit (p<0.05 and reduced postoperative hospitalization at surgery units by 5 days (p< 0.05. Introduction of early activation caused a decrease in the duration of postoperative AV in the

  19. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  20. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B

    Science.gov (United States)

    Zhang, Hongqiao; Forman, Henry Jay

    2015-01-01

    Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921

  1. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Cohen, Stephen Michael

    2017-01-01

    /TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family...... deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor...

  2. Intercellular signaling pathways active during and after growth and differentiation of the lumbar vertebral growth plate.

    Science.gov (United States)

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2011-06-15

    Vertebral growth plates at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the major signaling pathways active in the postnatal mouse lumbar vertebral growth plate. The growth of all long bones is known to occur by cartilaginous growth plates. The growth plate is composed of layers of chondrocyets that actively proliferate, differentiate, die and, are replaced by bone. The role of major cell signaling pathways has been suggested for regulation of the fetal long bones. But not much is known about the molecular or cellular signals that control the postnatal vertebral growth plate and hence postnatal vertebral bone growth. Understanding such molecular mechanisms will help design therapeutic treatments for vertebral growth disorders such as scoliosis. Antibodies against activated downstream intermediates were used to identify cells in the growth plate responding to BMP, TGFβ, and FGF in cryosections of lumbar vertebrae from different postnatal age mice to identify the zones that were responding to these signals. Reporter mice were used to identify the chondrocytes responding to hedgehog (Ihh), and Wnt signaling. We present a spatial/temporal map of these signaling pathways during growth, and differentiation of the mouse lumbar vertebral growth plate. During growth and differentiation of the vertebral growth plate, its different components respond at different times to different intercellular signaling ligands. Response to most of these signals is dramatically downregulated at the end of vertebral growth.

  3. Estrogen induction of telomerase activity through regulation of the mitogen-activated protein kinase (MAPK dependent pathway in human endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhou

    Full Text Available Given that prolonged exposure to estrogen and increased telomerase activity are associated with endometrial carcinogenesis, our objective was to evaluate the interaction between the MAPK pathway and estrogen induction of telomerase activity in endometrial cancer cells. Estradiol (E2 induced telomerase activity and hTERT mRNA expression in the estrogen receptor (ER-α positive, Ishikawa endometrial cancer cell line. UO126, a highly selective inhibitor of MEK1/MEK2, inhibited telomerase activity and hTERT mRNA expression induced by E2. Similar results were also found after transfection with ERK 1/2-specific siRNA. Treatment with E2 resulted in rapid phosphorylation of p44/42 MAPK and increased MAPK activity which was abolished by UO126. The hTERT promoter contains two estrogen response elements (EREs, and luciferase assays demonstrate that these EREs are activated by E2. Exposure to UO126 or ERK 1/2-specific siRNA in combination with E2 counteracted the stimulatory effect of E2 on luciferase activity from these EREs. These findings suggest that E2-induction of telomerase activity is mediated via the MAPK pathway in human endometrial cancer cells.

  4. Aurora kinase A revives dormant laryngeal squamous cell carcinoma cells via FAK/PI3K/Akt pathway activation

    Science.gov (United States)

    Yang, Li-yun; He, Chang-yu; Chen, Xue-hua; Su, Li-ping; Liu, Bing-ya; Zhang, Hao

    2016-01-01

    Revival of dormant tumor cells may be an important tumor metastasis mechanism. We hypothesized that aurora kinase A (AURKA), a cell cycle control kinase, promotes the transition of laryngeal squamous cell carcinoma (LSCC) cells from G0 phase to active division. We therefore investigated whether AURKA could revive dormant tumor cells to promote metastasis. Western blotting revealed that AURKA expression was persistently low in dormant laryngeal cancer Hep2 (D-Hep2) cells and high in non-dormant (T-Hep2) cells. Decreasing AURKA expression in T-Hep2 cells induced dormancy and reduced FAK/PI3K/Akt pathway activity. Increasing AURKA expression in D-Hep2 cells increased FAK/PI3K/Akt pathway activity and enhanced cellular proliferation, migration, invasion and metastasis. In addition, FAK/PI3K/Akt pathway inhibition caused dormancy-like behavior and reduced cellular mobility, migration and invasion. We conclude that AURKA may revive dormant tumor cells via FAK/PI3K/Akt pathway activation, thereby promoting migration and invasion in laryngeal cancer. AURKA/FAK/PI3K/Akt inhibitors may thus represent potential targets for clinical LSCC treatment. PMID:27356739

  5. SIGNALING TO THE P53 TUMOR SUPPRESSOR THROUGH PATHWAYS ACTIVATED BY GENOTOXIC AND NON-GENOTOXIC STRESSES.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2002-07-01

    The p53 tumor suppressor is a tetrameric transcription factor that is post-translational modified at {approx}18 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review the posttranslational modifications to p53 and the pathways that produce them in response to both genotoxic and non-genotoxic stresses.

  6. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    Science.gov (United States)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  7. Prebiotic Chemistry and Atmospheric Warming of Early Earth by an Active Young Sun

    Science.gov (United States)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hebrard, E.; Danchi, W.

    2016-01-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed Into the Earth's early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun -- so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, C02 and CH, suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  8. Predicting pathway cross-talks in ankylosing spondylitis through investigating the interactions among pathways.

    Science.gov (United States)

    Gu, Xiang; Liu, Cong-Jian; Wei, Jian-Jie

    2017-11-13

    Given that the pathogenesis of ankylosing spondylitis (AS) remains unclear, the aim of this study was to detect the potentially functional pathway cross-talk in AS to further reveal the pathogenesis of this disease. Using microarray profile of AS and biological pathways as study objects, Monte Carlo cross-validation method was used to identify the significant pathway cross-talks. In the process of Monte Carlo cross-validation, all steps were iterated 50 times. For each run, detection of differentially expressed genes (DEGs) between two groups was conducted. The extraction of the potential disrupted pathways enriched by DEGs was then implemented. Subsequently, we established a discriminating score (DS) for each pathway pair according to the distribution of gene expression levels. After that, we utilized random forest (RF) classification model to screen out the top 10 paired pathways with the highest area under the curve (AUCs), which was computed using 10-fold cross-validation approach. After 50 bootstrap, the best pairs of pathways were identified. According to their AUC values, the pair of pathways, antigen presentation pathway and fMLP signaling in neutrophils, achieved the best AUC value of 1.000, which indicated that this pathway cross-talk could distinguish AS patients from normal subjects. Moreover, the paired pathways of SAPK/JNK signaling and mitochondrial dysfunction were involved in 5 bootstraps. Two paired pathways (antigen presentation pathway and fMLP signaling in neutrophil, as well as SAPK/JNK signaling and mitochondrial dysfunction) can accurately distinguish AS and control samples. These paired pathways may be helpful to identify patients with AS for early intervention.

  9. The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNF-induced activation of ERK

    International Nuclear Information System (INIS)

    Lueschen, Silke; Falk, Markus; Scherer, Gudrun; Ussat, Sandra; Paulsen, Maren; Adam-Klages, Sabine

    2005-01-01

    The cytokine TNF activates multiple signaling pathways leading to cellular responses ranging from proliferation and survival to apoptosis. While most of these pathways have been elucidated in detail over the past few years, the molecular mechanism leading to the activation of the MAP kinases ERK remains ill defined and is controversially discussed. Therefore, we have analyzed TNF-induced ERK activation in various human and murine cell lines and show that it occurs in a cell-type-specific manner. In addition, we provide evidence for the involvement of the signaling components Fas-associated death domain protein (FADD), caspase-8, and c-FLIP in the pathway activating ERK in response to TNF. This conclusion is based on the following observations: (I) Overexpression of FADD, caspase-8, or a c-FLIP protein containing the death effector domains only leads to enhanced and prolonged ERK activation after TNF treatment. (II) TNF-induced ERK activation is strongly diminished in the absence of FADD. Interestingly, the enzymatic function of caspase-8 is not required for TNF-induced ERK activation. Additional evidence suggests a role for this pathway in the proliferative response of murine fibroblasts to TNF

  10. Ouabain, a cardiac glycoside, inhibits the Fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents.

    Directory of Open Access Journals (Sweden)

    Dong Wha Jun

    Full Text Available Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs, one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC, activates the Fanconi anemia (FA/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. To find FA/BRCA pathway inhibitory small molecules, we established a cell-based high-content screening method for quantitating the activation of the FA/BRCA pathway by measuring FANCD2 foci on DNA lesions and then applied our method to chemical screening. Using commercial LOPAC1280 chemical library screening, ouabain was identified as a competent FA/BRCA pathway inhibitory compound. Ouabain, a member of the cardiac glycoside family, binds to and inhibits Na(+/K(+-ATPase and has been used to treat heart disease for many years. We observed that ouabain, as well as other cardiac glycoside family members--digitoxin and digoxin--down-regulated FANCD2 and FANCI mRNA levels, reduced monoubiquitination of FANCD2, inhibited FANCD2 foci formation on DNA lesions, and abrogated cell cycle arrest induced by MMC treatment. These inhibitory activities of ouabain required p38 MAPK and were independent of cellular Ca(2+ ion increase or the drug uptake-inhibition effect of ouabain. Furthermore, we found that ouabain potentiated the cytotoxic effects of MMC in tumor cells. Taken together, we identified an additional effect of ouabain as a FA/BRCA pathway-inhibiting chemosensitization compound. The results of this study suggest that ouabain may serve as a chemosensitizer to ICL-inducing anticancer drugs.

  11. KRASness and PIK3CAness in patients with advanced colorectal cancer: outcome after treatment with early-phase trials with targeted pathway inhibitors.

    Directory of Open Access Journals (Sweden)

    Ignacio Garrido-Laguna

    Full Text Available To evaluate clinicopathologic and molecular features of patients with metastatic colorectal cancer (mCRC and their outcomes in early-phase trials using pathway-targeting agents.We analyzed characteristics of 238 patients with mCRC referred to the phase 1 trials unit at MD Anderson Cancer Center. KRAS, PIK3CA and BRAF status were tested using PCR-based DNA sequencing.Fifty-one percent of patients harbored KRAS mutations; 15% had PIK3CA mutations. In the multivariate regression model for clinical characteristics KRAS mutations were associated with an increased incidence of lung and bone metastases and decreased incidence of adrenal metastases; PIK3CA mutations were marginally correlated with mucinous tumors (p = 0.05. In the univariate analysis, KRAS and PIK3CA mutations were strongly associated. Advanced Duke's stage (p<0.0001 and KRAS mutations (p = 0.01 were the only significant independent predictors of poor survival (Cox proportional hazards model. Patients with PIK3CA mutations had a trend toward shorter progression-free survival when treated with anti-EGFR therapies (p = 0.07. Eighteen of 78 assessable patients (23% treated with PI3K/Akt/mTOR axis inhibitors achieved stable disease [SD] ≥6 months or complete response/partial response (CR/PR, only one of whom were in the subgroup (N = 15 with PIK3CA mutations, perhaps because 10 of these 15 patients (67% had coexisting KRAS mutations. No SD ≥6 months/CR/PR was observed in the 10 patients treated with mitogen-activating protein kinase (MAPK pathway targeting drugs.KRAS and PIK3CA mutations frequently coexist in patients with colorectal cancer, and are associated with clinical characteristics and outcome. Overcoming resistance may require targeting both pathways.

  12. Effect of resistance exercise under conditions of reduced blood insulin on AMPKα Ser485/491 inhibitory phosphorylation and AMPK pathway activation.

    Science.gov (United States)

    Kido, Kohei; Yokokawa, Takumi; Ato, Satoru; Sato, Koji; Fujita, Satoshi

    2017-08-01

    Insulin stimulates skeletal muscle glucose uptake via activation of the protein kinase B/Akt (Akt) pathway. Recent studies suggest that insulin downregulates AMP-activated protein kinase (AMPK) activity via Ser485/491 phosphorylation of the AMPK α-subunit. Thus lower blood insulin concentrations may induce AMPK signal activation. Acute exercise is one method to stimulate AMPK activation; however, no study has examined the relationship between blood insulin levels and acute resistance exercise-induced AMPK pathway activation. Based on previous findings, we hypothesized that the acute resistance exercise-induced AMPK pathway activation would be augmented by disruptions in insulin secretion through a decrease in AMPKα Ser485/491 inhibitory phosphorylation. To test the hypothesis, 10-wk-old male Sprague-Dawley rats were administered the toxin streptozotocin (STZ; 55 mg/kg) to destroy the insulin secreting β-cells. Three days postinjection, the right gastrocnemius muscle from STZ and control rats was subjected to resistance exercise by percutaneous electrical stimulation. Animals were killed 0, 1, or 3 h later; activation of the Akt/AMPK and downstream pathways in the muscle tissue was analyzed by Western blotting and real-time PCR. Notably, STZ rats showed a significant decrease in basal Akt and AMPKα Ser485/491 phosphorylation, but substantial exercise-induced increases in both AMPKα Thr172 and acetyl-CoA carboxylase (ACC) Ser79 phosphorylation were observed. Although no significant impact on resistance exercise-induced Akt pathway activation or glucose uptake was found, resistance exercise-induced peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 α (PGC-1α) gene expression was augmented by STZ treatment. Collectively, these data suggest that circulating insulin levels may regulate acute resistance exercise-induced AMPK pathway activation and AMPK-dependent gene expression relating to basal AMPKα Ser485/491 phosphorylation. Copyright © 2017

  13. Immunomodulatory Activity of Ganoderma atrum Polysaccharide on Purified T Lymphocytes through Ca2+/CaN and Mitogen-Activated Protein Kinase Pathway Based on RNA Sequencing.

    Science.gov (United States)

    Xiang, Quan-Dan; Yu, Qiang; Wang, Hui; Zhao, Ming-Ming; Liu, Shi-Yu; Nie, Shao-Ping; Xie, Ming-Yong

    2017-07-05

    Our previous study has demonstrated that Ganoderma atrum polysaccharide (PSG-1) has immunomodulatory activity on spleen lymphocytes. However, how PSG-1 exerts its effect on purified lymphocytes is still obscure. Thus, this study aimed to investigate the immunomodulatory activity of PSG-1 on purified T lymphocytes and further elucidate the underlying mechanism based on RNA sequencing (RNA-seq). Our results showed that PSG-1 promoted T lymphocytes proliferation and increased the production of IL-2, IFN-γ, and IL-12. Meanwhile, RNA-seq analysis found 394 differentially expressed genes. KEGG pathway analysis identified 20 significant canonical pathways and seven biological functions. Furthermore, PSG-1 elevated intracellular Ca 2+ concentration and calcineurin (CaN) activity and raised the p-ERK, p-JNK, and p-p38 expression levels. T lymphocytes proliferation and the production of IL-2, IFN-γ, and IL-12 were decreased by the inhibitors of calcium channel and mitogen-activated protein kinases (MAPKs). These results indicated that PSG-1 possesses immunomodulatory activity on purified T lymphocytes, in which Ca 2+ /CaN and MAPK pathways play essential roles.

  14. Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2013-12-01

    Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.

  15. Direct molecular interactions between Beclin 1 and the canonical NFκB activation pathway.

    Science.gov (United States)

    Niso-Santano, Mireia; Criollo, Alfredo; Malik, Shoaib Ahmad; Michaud, Michael; Morselli, Eugenia; Mariño, Guillermo; Lachkar, Sylvie; Galluzzi, Lorenzo; Maiuri, Maria Chaira; Kroemer, Guido

    2012-02-01

    General (macro)autophagy and the activation of NFκB constitute prominent responses to a large array of intracellular and extracellular stress conditions. The depletion of any of the three subunits of the inhibitor of NFκB (IκB) kinase (IKKα, IKKβ, IKKγ/NEMO), each of which is essential for the canonical NFκB activation pathway, limits autophagy induction by physiological or pharmacological triggers, while constitutive active IKK subunits suffice to stimulate autophagy. The activation of IKK usually relies on TGFβ-activated kinase 1 (TAK1), which is also necessary for the optimal induction of autophagy in multiple settings. TAK1 interacts with two structurally similar co-activators, TAK1-binding proteins 2 and 3 (TAB2 and TAB3). Importantly, in resting conditions both TAB2 and TAB3 bind the essential autophagic factor Beclin 1, but not TAK1. In response to pro-autophagic stimuli, TAB2 and TAB3 dissociate from Beclin 1 and engage in stimulatory interactions with TAK1. The inhibitory interaction between TABs and Beclin 1 is mediated by their coiled-coil domains (CCDs). Accordingly, the overexpression of either TAB2 or TAB3 CCD stimulates Beclin 1- and TAK1-dependent autophagy. These results point to the existence of a direct molecular crosstalk between the canonical NFκB activation pathway and the autophagic core machinery that guarantees the coordinated induction of these processes in response to stress.

  16. Insulin resistance enhances the mitogen-activated protein kinase signaling pathway in ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Linghui Kong

    Full Text Available The ovary is the main regulator of female fertility. Granulosa cell dysfunction may be involved in various reproductive endocrine disorders. Here we investigated the effect of insulin resistance on the metabolism and function of ovarian granulosa cells, and dissected the functional status of the mitogen-activated protein kinase signaling pathway in these cells. Our data showed that dexamethasone-induced insulin resistance in mouse granulosa cells reduced insulin sensitivity, accompanied with an increase in phosphorylation of p44/42 mitogen-activated protein kinase. Furthermore, up-regulation of cytochrome P450 subfamily 17 and testosterone and down-regulation of progesterone were observed in insulin-resistant mouse granulosa cells. Inhibition of p44/42 mitogen-activated protein kinase after induction of insulin resistance in mouse granulosa cells decreased phosphorylation of p44/42 mitogen-activated protein kinase, downregulated cytochrome P450 subfamily 17 and lowered progesterone production. This insulin resistance cell model can successfully demonstrate certain mechanisms such as hyperandrogenism, which may inspire a new strategy for treating reproductive endocrine disorders by regulating cell signaling pathways.

  17. Impact of MAPK Pathway Activation in BRAFV600 Melanoma on T Cell and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Patrick A. Ott

    2013-10-01

    Full Text Available Constitutive upregulation of the MAPK pathway by a BRAFV600 mutation occurs in about half of melanomas. This leads to increased oncogenic properties such as tumor cell invasion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with highly specific kinase inhibitors induces unprecedented tumor response rates in patients with advanced BRAFV600 mutant melanoma. Immune checkpoint blockade with monoclonal antibodies targeting cytotoxic T-lymphocyte antigen 4 and programed death-1/PD-L1 has also demonstrated striking anti-tumor activity in patients with advanced melanoma. Tumor responses are likely limited by multiple additional layers of immune suppression in the tumor microenvironment. There is emerging preclinical and clinical evidence suggesting that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvironment, providing a strong rationale for combined immunotherapy and MAPK pathway inhibition in melanoma. The T cell response has been the main focus in the studies reported to date. Since dendritic cells (DCs are important in the induction of tumor-specific T cell responses, the impact of MAPK pathway activation in melanoma on DC function is critical for the melanoma directed immune response. BRAFV600E melanoma cells modulate DCs through the MAPK pathway because its blockade in melanoma cells can reverse suppression of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have recently taken center stage in the treatment of melanoma, a deeper understanding of how MAPK pathway inhibition affects the tumor immune response is needed.

  18. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis of sensory hair cells in the mouse inner ear

    Directory of Open Access Journals (Sweden)

    Neil eSegil

    2015-05-01

    Full Text Available Aminoglycoside antibiotics are the drug of choice for treating many bacterial infections, but their administration results in hearing loss in nearly one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 hours of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-κB pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternative pathway regulating gentamicin-induced hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contribute to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside

  19. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

    Science.gov (United States)

    Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin

    2014-05-01

    Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

  20. Atrial activation during atrioventricular nodal reentrant tachycardia: studies on retrograde fast pathway conduction

    NARCIS (Netherlands)

    Katritsis, Demosthenes G.; Ellenbogen, Kenneth A.; Becker, Anton E.

    2006-01-01

    Detailed right and left septal mapping of retrograde atrial activation during typical atrioventricular nodal reentrant tachycardia (AVNRT) has not been undertaken and may provide insight into the complex physiology of AVNRT, especially the anatomic localization of the fast and slow pathways. The

  1. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Bo [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Song, Youngwoo; Kim, Changhee [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-03-07

    Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.

  2. Pathways Intern Report

    Science.gov (United States)

    Huggett, Daniel James

    2017-01-01

    The National Aeronautics and Space Administration (NASA) provides a formal training program for prospective employees titled, Pathways Intern Employment. The Pathways program targets graduate and undergraduate students who strive to become an active contributor to NASA's goal of space exploration. The report herein provides an account of Daniel Huggett's Pathways experience for the Spring and Summer 2017 semesters.

  3. Carvedilol, a third-generation β-blocker prevents oxidative stress-induced neuronal death and activates Nrf2/ARE pathway in HT22 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ying [Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Ziwei [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Tan, Min [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Department of Traditional Chinese Medicine Chemistry, College of Chinese Materia Madica, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Liu, Anmin [Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Meihui [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Liu, Jun [Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Pi, Rongbiao, E-mail: pirb@mail.sysu.edu.cn [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Fang, Jianpei, E-mail: jpf2005@163.com [Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China)

    2013-11-29

    Highlights: •Carvedilol significantly prevented oxidative stress-induced cell death. •Carvedilol significantly decreased the production of ROS. •Carvedilol activated Nrf2/ARE pathway. •Carvedilol increased the protein levels of HO-1 and NQO-1. -- Abstract: Carvedilol, a nonselective β-adrenoreceptor blocker with pleiotropic activities has been shown to exert neuroprotective effect due to its antioxidant property. However, the neuroprotective mechanism of carvedilol is still not fully uncovered. Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. Here we investigated the effect of carvedilol on oxidative stress-induced cell death (glutamate 2 mM and H{sub 2}O{sub 2} 600 μM) and the activity of Nrf2/ARE pathway in HT22 hippocampal cells. Carvedilol significantly increased cell viability and decreased ROS in HT22 cells exposed to glutamate or H{sub 2}O{sub 2}. Furthermore, carvedilol activated the Nrf2/ARE pathway in a concentration-dependent manner, and increased the protein levels of heme oxygenase-1(HO-1) and NAD(P)H quinone oxidoreductase-1(NQO-1), two downstream factors of the Nrf2/ARE pathway. Collectively, our results indicate that carvedilol protects neuronal cell against glutamate- and H{sub 2}O{sub 2}-induced neurotoxicity possibly through activating the Nrf2/ARE signaling pathway.

  4. Classical Complement Pathway Activation in the Kidneys of Women With Preeclampsia.

    Science.gov (United States)

    Penning, Marlies; Chua, Jamie S; van Kooten, Cees; Zandbergen, Malu; Buurma, Aletta; Schutte, Joke; Bruijn, Jan Anthonie; Khankin, Eliyahu V; Bloemenkamp, Kitty; Karumanchi, S Ananth; Baelde, Hans

    2015-07-01

    A growing body of evidence suggests that complement dysregulation plays a role in the pathogenesis of preeclampsia. The kidney is one of the major organs affected in preeclampsia. Because the kidney is highly susceptible to complement activation, we hypothesized that preeclampsia is associated with renal complement activation. We performed a nationwide search for renal autopsy material in the Netherlands using a computerized database (PALGA). Renal tissue was obtained from 11 women with preeclampsia, 25 pregnant controls, and 14 nonpregnant controls with hypertension. The samples were immunostained for C4d, C1q, mannose-binding lectin, properdin, C3d, C5b-9, IgA, IgG, and IgM. Preeclampsia was significantly associated with renal C4d-a stable marker of complement activation-and the classical pathway marker C1q. In addition, the prevalence of IgM was significantly higher in the kidneys of the preeclamptic women. No other complement markers studied differed between the groups. Our findings in human samples were validated using a soluble fms-like tyrosine kinase 1 mouse model of preeclampsia. The kidneys in the soluble fms-like tyrosine kinase 1-injected mice had significantly more C4 deposits than the control mice. The association between preeclampsia and renal C4d, C1q, and IgM levels suggests that the classical complement pathway is involved in the renal injury in preeclampsia. Moreover, our finding that soluble fms-like tyrosine kinase 1-injected mice develop excess C4 deposits indicates that angiogenic dysregulation may play a role in complement activation within the kidney. We suggest that inhibiting complement activation may be beneficial for preventing the renal manifestations of preeclampsia. © 2015 American Heart Association, Inc.

  5. Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9

    Directory of Open Access Journals (Sweden)

    Song Xin

    2009-04-01

    Full Text Available Abstract Background Abberant aryl hydrocarbon receptor (AhR expression and AhR pathway activation are involved in gastric carcinogenesis. However, the relationship between AhR pathway activation and gastric cancer progression is still unclear. In present study, we used 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD, a classic and most potent ligand of AhR, to activate AhR pathway and investigated the effect of AhR pathway activation on human gastric cancer AGS cell invasion and explored the corresponding mechanism. Results To determine whether AhR pathway can be activated in AGS cells, we examined the expression of CYP1A1, a classic target gene of AhR pathway, following TCDD exposure. RT-PCR and western blot analysis showed that both CYP1A1 mRNA and protein expression were increased in a dose-dependent manner following TCDD treatment and AhR antagonist resveratrol (RSV could reverse this TCDD-induced CYP1A1 expression. To determine whether TCDD treatment of AGS cells results in an induction of MMP-9 expression, we detected MMP-9 mRNA using RT-PCR and detected MMP-9 enzymatic activity using gelatin zymography. The results showed that both MMP-9 mRNA expression and enzymatic activity were gradually increased with the concentration increase of TCDD in media and these changes could be reversed by RSV treatment in a dose-dependent manner. To examine whether AhR activation-induced MMP-9 expression and activity in AGS cells results in increased migration and invasion, we performed wound healing migration assay and transwell migration and invasion assay. After TCDD treatment, the migration distance and the migration and invasion abilities of AGS cells were increased with a dose-dependent manner. To demonstrate AhR activation-induced MMP-9 expression is mediated by c-Jun, siRNA transfection was performed to silence c-Jun mRNA in AGS cells. The results showed that MMP-9 mRNA expression and activity in untreated control AGS cells were very weak; After TCDD

  6. Activation of mPTP-dependent mitochondrial apoptosis pathway by a novel pan HDAC inhibitor resminostat in hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Meili [Department of Infectious Disease, Linyi People’s Hospital, Linyi (China); Shi, Wenhong [Department of Radiotherapy, Linyi Tumor Hospital, Linyi (China); Li, Zhengling [Department of Nursing, Tengzhou Central People’s Hospital, Tengzhou (China); Liu, Haiyan, E-mail: liuhaiyanlinyi5@sina.com [Department of Nursing, Linyi People’s Hospital, No. 27 Jiefang Road, Linyi 276000, Shandong (China)

    2016-09-02

    Over-expression and aberrant activation of histone deacetylases (HDACs) are often associated with poor prognosis of hepatocellular carcinoma (HCC). Here, we evaluated the potential anti-hepatocellular carcinoma (HCC) cell activity by resminostat, a novel pan HDAC inhibitor (HDACi). We demonstrated that resminostat induced potent cytotoxic and anti-proliferative activity against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, resminostat treatment in HCC cells activated mitochondrial permeability transition pore (mPTP)-dependent apoptosis pathway, which was evidenced by physical association of cyclophilin-D and adenine nucleotide translocator 1 (ANT-1), mitochondrial depolarization, cytochrome C release and caspase-9 activation. Intriguingly, the mPTP blockers (sanglifehrin A and cyclosporine A), shRNA knockdown of cyclophilin-D or the caspase-9 inhibitor dramatically attenuated resminostat-induced HCC cell apoptosis and cytotoxicity. Reversely, HCC cells with exogenous cyclophilin-D over-expression were hyper-sensitive to resminostat. Intriguingly, a low concentration of resminostat remarkably potentiated sorafenib-induced mitochondrial apoptosis pathway activation, leading to a profound cytotoxicity in HCC cells. The results of this preclinical study indicate that resminostat (or plus sorafenib) could be further investigated as a valuable anti-HCC strategy. - Highlights: • Resminostat inhibits human HCC cell survival and proliferation. • Resminostat activates mPTP-dependent mitochondrial apoptosis pathway in HCC cells. • Resminostat potentiates sorafenib-induced mitochondrial apoptosis pathway activation. • mPTP or caspase-9 inhibition attenuates apoptosis by resminostat or plus sorafenib.

  7. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers.

    Directory of Open Access Journals (Sweden)

    Michael Roach

    Full Text Available This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.

  8. Longitudinal pathways from early maternal depression to children's dysregulated representations: a moderated mediation analysis of harsh parenting and gender.

    Science.gov (United States)

    Martoccio, Tiffany L; Brophy-Herb, Holly E; Maupin, Angela N; Robinson, Joann L

    2016-01-01

    There is some evidence linking maternal depression, harsh parenting, and children's internal representations of attachment, yet, longitudinal examinations of these relationships and differences in the developmental pathways between boys and girls are lacking. Moderated mediation growth curves were employed to examine harsh parenting as a mechanism underlying the link between maternal depression and children's dysregulated representations using a nationally-representative, economically-vulnerable sample of mothers and their children (n = 575; 49% boys, 51% girls). Dysregulation representations were measured using the MacArthur Story Stem Battery at five years of age (M = 5.14, SD = 0.29). Harsh parenting mediated the association between early maternal depression and dysregulated representations for girls. Though initial harsh parenting was a significant mediator for boys, a stronger direct effect of maternal depression to dysregulated representations emerged over time. Results are discussed in terms of their implications for intervention efforts aimed at promoting early supportive parenting.

  9. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    International Nuclear Information System (INIS)

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G.

    2013-01-01

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease

  10. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    Energy Technology Data Exchange (ETDEWEB)

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G., E-mail: deborah.murdock@vanderbilt.edu

    2013-11-15

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  11. FOXQ1, a novel target of the Wnt pathway and a new marker for activation of Wnt signaling in solid tumors.

    Directory of Open Access Journals (Sweden)

    Jon Christensen

    Full Text Available BACKGROUND: The forkhead box transcription factor FOXQ1 has been shown to be upregulated in colorectal cancer (CRC and metastatic breast cancer and involved in tumor development, epithelial-mesenchymal transition and chemoresistance. Yet, its transcriptional regulation is still unknown. METHODS: FOXQ1 mRNA and protein expression were analysed in a panel of CRC cell lines, and laser micro-dissected human biopsy samples by qRT-PCR, microarray GeneChip® U133 Plus 2.0 and western blots. FOXQ1 regulation was assayed by chromatin immunoprecipitation and luciferase reporter assays. RESULTS: FOXQ1 was robustly induced in CRC compared to other tumors, but had no predictive value with regards to grade, metastasis and survival in CRC. Prototype-based gene coexpression and gene set enrichment analysis showed a significant association between FOXQ1 and the Wnt pathway in tumors and cancer cell lines from different tissues. In vitro experiments confirmed, on a molecular level, FOXQ1 as a direct Wnt target. Analysis of known Wnt targets identified FOXQ1 as the most suitable marker for canonical Wnt activation across a wide panel of cell lines derived from different tissues. CONCLUSIONS: Our data show that FOXQ1 is one of the most over-expressed genes in CRC and a direct target of the canonical Wnt pathway. It is a potential new marker for detection of early CRC and Wnt activation in tumors of different origins.

  12. Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation.

    Science.gov (United States)

    Woo, Jongmin; Han, Dohyun; Wang, Joseph Injae; Park, Joonho; Kim, Hyunsoo; Kim, Youngsoo

    2017-09-01

    The development of systematic proteomic quantification techniques in systems biology research has enabled one to perform an in-depth analysis of cellular systems. We have developed a systematic proteomic approach that encompasses the spectrum from global to targeted analysis on a single platform. We have applied this technique to an activated microglia cell system to examine changes in the intracellular and extracellular proteomes. Microglia become activated when their homeostatic microenvironment is disrupted. There are varying degrees of microglial activation, and we chose to focus on the proinflammatory reactive state that is induced by exposure to such stimuli as lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Using an improved shotgun proteomics approach, we identified 5497 proteins in the whole-cell proteome and 4938 proteins in the secretome that were associated with the activation of BV2 mouse microglia by LPS or IFN-γ. Of the differentially expressed proteins in stimulated microglia, we classified pathways that were related to immune-inflammatory responses and metabolism. Our label-free parallel reaction monitoring (PRM) approach made it possible to comprehensively measure the hyper-multiplex quantitative value of each protein by high-resolution mass spectrometry. Over 450 peptides that corresponded to pathway proteins and direct or indirect interactors via the STRING database were quantified by label-free PRM in a single run. Moreover, we performed a longitudinal quantification of secreted proteins during microglial activation, in which neurotoxic molecules that mediate neuronal cell loss in the brain are released. These data suggest that latent pathways that are associated with neurodegenerative diseases can be discovered by constructing and analyzing a pathway network model of proteins. Furthermore, this systematic quantification platform has tremendous potential for applications in large-scale targeted analyses. The proteomics data for

  13. Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice

    Directory of Open Access Journals (Sweden)

    Grau Georges E

    2007-12-01

    Full Text Available Abstract Background Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R and CM-susceptible (CM-S mice, upon infection by Plasmodium berghei ANKA (PbA. We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays. Results Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c, and in CM-S (CBA/J and C57BL/6 mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of β-amyloid proteins in brains of CM-S mice, but not of CM-R mice. Conclusion Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.

  14. Identification of the visceral pain pathway activated by noxious colorectal distension in mice

    Directory of Open Access Journals (Sweden)

    Melinda eKyloh

    2011-02-01

    Full Text Available In patients with irritable bowel syndrome (IBS, visceral pain is evoked more readily following distension of the colorectum. However, the identity of extrinsic afferent nerve pathway that detects and transmits visceral pain from the colorectum to the spinal cord is unclear. In this study, we identified which extrinsic nerve pathway(s underlies nociception from the colorectum to the spinal cord of rodents. Electromyogram (EMG recordings were made from the transverse oblique abdominal muscles in anesthetized wild type (C57BL/6 mice and acute noxious intraluminal distension (100-120 mmHg applied to the terminal 15mm of rectum to activate visceromotor responses (VMRs. Cutting the lumbar colonic nerves in vivo had no detectable effect on the VMRs evoked by colorectal distension. Lesioning right or left hypogastric nerves also failed to reduce VMRs. However, lesioning left and right branches of the rectal nerves completely abolished the VMRs, regardless of whether the lumbar colonic or hypogastric nerves were severed. Electrical stimulation applied to either the lumbar colonic or hypogastric nerves in vivo, failed to elicit a VMR. In contrast, electrical stimulation (2-5Hz, 0.4ms, 60V applied to the rectum reliably elicited VMRs, which were abolished by selective lesioning of the rectal nerves. DiI retrograde labelling from the colorectum labelled sensory neurons only in dorsal root ganglia (DRG of the lumbosacral region of the spinal cord. In contrast, injection of DiI into the mid to proximal colon labelled sensory neurons in DRG primarily of the lower thoracic level (T8-L4 of the spinal cord. The visceral pain pathway activated by acute noxious distension of the terminal 15 mm of mouse rectum is transmitted predominantly, if not solely, through rectal/pelvic afferent nerve fibres to the spinal cord. The sensory neurons of this spinal afferent pathway lie in the lumbosacral region of the spinal cord, primarily at the level of S2 and S3.

  15. The Wnt receptor Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of mutant huntingtin pathogenicity.

    Directory of Open Access Journals (Sweden)

    Cendrine Tourette

    2014-06-01

    Full Text Available The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD. Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT in several models of Huntington's disease (HD. Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.

  16. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    International Nuclear Information System (INIS)

    Piwkowska, Agnieszka; Rogacka, Dorota; Angielski, Stefan; Jankowski, Maciej

    2012-01-01

    Highlights: ► H 2 O 2 activates the insulin signaling pathway and glucose uptake in podocytes. ► H 2 O 2 induces time-dependent changes in AMPK phosphorylation. ► H 2 O 2 enhances insulin signaling pathways via AMPK activation. ► H 2 O 2 stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H 2 O 2 ) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H 2 O 2 -induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H 2 O 2 (100 μM) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min (Δ 183%, P 2 O 2 >. Furthermore, H 2 O 2 inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; Δ −32%, P 2 O 2 on IR phosphorylation by about 40% (from 2.07 ± 0.28 to 1.28 ± 0.12, P 2 O 2 increased glucose uptake in podocytes (from 0.88 ± 0.04 to 1.29 ± 0.12 nmol/min/mg protein, P 2 O 2 activated the insulin signaling pathway and glucose uptake via AMPK in cultured rat podocytes. This signaling may play a potential role in the prevention of insulin resistance under conditions associated with oxidative stress.

  17. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    Science.gov (United States)

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  18. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors

    International Nuclear Information System (INIS)

    Hindriksen, Sanne; Bijlsma, Maarten F.

    2012-01-01

    Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer

  19. Relationship between ADAMTS13 activity, von Willebrand factor antigen levels and platelet function in the early and late phases after TIA or ischaemic stroke.

    Science.gov (United States)

    McCabe, Dominick J H; Murphy, Stephen J X; Starke, Richard; Harrison, Paul; Brown, Martin M; Sidhu, Paul S; Mackie, Ian J; Scully, Marie; Machin, Samuel J

    2015-01-15

    Reduced ADAMTS13 activity is seen in thrombotic thrombocytopenic purpura (TTP), and may lead to accumulation of prothrombotic ultra-large von Willebrand factor (ULVWF) multimers in vivo. ADAMTS13 activity and its relationship with VWF antigen (VWF:Ag) levels and platelet function in 'non-TTP related' TIA or ischaemic stroke has not been comprehensively studied. In this prospective pilot observational analytical case-control study, ADAMTS13 activity and VWF:Ag levels were quantified in platelet poor plasma in 53 patients in the early phase (≤ 4 weeks) and 34 of these patients in the late phase (≥ 3 months) after TIA or ischaemic stroke on aspirin. Data were compared with those from 22 controls not on aspirin. The impact of ADAMTS13 on platelet function in whole blood was quantified by measuring Collagen-ADP (C-ADP) and Collagen-Epinephrine closure times on a platelet function analyser (PFA-100(®)). Median ADAMTS13 activity was significantly reduced in the early phase (71.96% vs. 95.5%, P TIA or stroke compared with controls (86.3% vs. 95.5%, P=0.19). There was a significant inverse relationship between ADAMTS13 activity and VWF:Ag levels in the early phase (r=-0.31; P=0.024), but not in the late phase after TIA or stroke (P=0.74). There was a positive correlation between ADAMTS13 activity and C-ADP closure times in early phase patients only, likely mediated via VWF:Ag levels. ADAMTS13 activity is reduced and VWF:Ag expression is increased within 4 weeks of TIA or ischaemic stroke onset, and can promote enhanced platelet adhesion and aggregation in response to stimulation with collagen and ADP via VWF-mediated pathways. These data improve our understanding of the dynamic haemostatic and thrombotic profiles of ischaemic cerebrovascular disease (CVD) patients, and are important in view of the potential future role that ADAMTS13 may have to play as an anti-thrombotic agent in CVD. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Partial activation of SA- and JA-defensive pathways in strawberry upon Colletotrichum acutatum interaction

    Directory of Open Access Journals (Sweden)

    FRANCISCO AMIL-RUIZ

    2016-07-01

    Full Text Available Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5 and FaPR10 were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.

  1. Genetic variants in two pathways influence serum urate levels and gout risk: a systematic pathway analysis.

    Science.gov (United States)

    Dong, Zheng; Zhou, Jingru; Xu, Xia; Jiang, Shuai; Li, Yuan; Zhao, Dongbao; Yang, Chengde; Ma, Yanyun; Wang, Yi; He, Hongjun; Ji, Hengdong; Zhang, Juan; Yuan, Ziyu; Yang, Yajun; Wang, Xiaofeng; Pang, Yafei; Jin, Li; Zou, Hejian; Wang, Jiucun

    2018-03-01

    The aims of this study were to identify candidate pathways associated with serum urate and to explore the genetic effect of those pathways on the risk of gout. Pathway analysis of the loci identified in genome-wide association studies (GWASs) showed that the ion transmembrane transporter activity pathway (GO: 0015075) and the secondary active transmembrane transporter activity pathway (GO: 0015291) were both associated with serum urate concentrations, with P FDR values of 0.004 and 0.007, respectively. In a Chinese population of 4,332 individuals, the two pathways were also found to be associated with serum urate (P FDR  = 1.88E-05 and 3.44E-04, separately). In addition, these two pathways were further associated with the pathogenesis of gout (P FDR  = 1.08E-08 and 2.66E-03, respectively) in the Chinese population and a novel gout-associated gene, SLC17A2, was identified (OR = 0.83, P FDR  = 0.017). The mRNA expression of candidate genes also showed significant differences among different groups at pathway level. The present study identified two transmembrane transporter activity pathways (GO: 0015075 and GO: 0015291) were associations with serum urate concentrations and the risk of gout. SLC17A2 was identified as a novel gene that influenced the risk of gout.

  2. Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona.

    Science.gov (United States)

    Coty, Jean-Baptiste; Eleamen Oliveira, Elquio; Vauthier, Christine

    2017-11-05

    The understanding of complement activation by nanomaterials is a key to a rational design of safe and efficient nanomedicines. This work proposed a systematic study investigating how molecular design of nanoparticle coronas made of dextran impacts on mechanisms that trigger complement activation. The nanoparticles used for this work consisted of dextran-coated poly(isobutylcyanoacrylate) (PIBCA) nanoparticles have already been thoroughly characterized. Their different capacity to trigger complement activation established on the cleavage of the protein C3 was also already described making these nanoparticles good models to investigate the relation between the molecular feature of their corona and the mechanism by which they triggered complement activation. Results of this new study show that complement activation pathways can be selected by distinct architectures formed by dextran chains composing the nanoparticle corona. Assumptions that explain the relation between complement activation mechanisms triggered by the nanoparticles and the nanoparticle corona molecular feature were proposed. These results are of interest to better understand how the design of dextran-coated nanomaterials will impact interactions with the complement system. It can open perspectives with regard to the selection of a preferential complement activation pathway or prevent the nanoparticles to activate the complement system, based on a rational choice of the corona configuration. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juanjuan, E-mail: jwu32@emory.edu [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States); Williams, Devin [Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310 (United States); Walter, Grant A. [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States); Thompson, Winston E. [Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310 (United States); Sidell, Neil [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States)

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  4. Working Together for Children: Strengthening Transition Pathways

    Science.gov (United States)

    Collie, Louise; Willis, Felicity; Paine, Crystal; Windsor, Corina

    2007-01-01

    The "Working Together for Children: Strengthening Transition Pathways" Team has identified that there is a gap between the Early Childhood settings and schools within the Dubbo area. Through meetings with early childhood professionals within Dubbo the authors have identified that the current landscape of care and education within their community…

  5. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis

    DEFF Research Database (Denmark)

    Tort, F.; Bartkova, J.; Sehested, M.

    2006-01-01

    culture models with differential defects of retinoblastoma pathway components, as overexpression of cyclin D1 or lack of p16(Ink4a), either alone or combined, did not elicit detectable DDR. In contrast, inactivation of pRb, the key component of the pathway, activated the DDR in cultured human or mouse...... with their hierarchical positions along the retinoblastoma pathway. Our data provide new insights into oncogene-evoked DDR in human tumorigenesis, with potential implications for individualized management of tumors with elevated cyclin D1 versus cyclin E, due to their distinct clinical variables and biological behavior....

  6. Building Adaptive Capacity of Pathways in Technology Early College High School Stakeholders: A Multiple-Case Study on the Influence of Performance, Leadership, and Organizational Learning

    Science.gov (United States)

    Michaud-Wells, Amy

    2016-01-01

    The purpose of this qualitative study was to explore the perceptions and beliefs of Pathways in Technology Early College High School (P-TECH) leaders and stakeholders regarding the personal and professional experiences that contributed to the development of adaptive capacity. This embedded multiple-case study was anchored by the interrelated…

  7. AMP-Activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Yen-Hsing Li

    2015-07-01

    Full Text Available The Hedgehog (Hh pathway regulates cell differentiation and proliferation during development by controlling the Gli transcription factors. Cell fate decisions and progression toward organ and tissue maturity must be coordinated, and how an energy sensor regulates the Hh pathway is not clear. AMP-activated protein kinase (AMPK is an important sensor of energy stores and controls protein synthesis and other energy-intensive processes. AMPK is directly responsive to intracellular AMP levels, inhibiting a wide range of cell activities if ATP is low and AMP is high. Thus, AMPK can affect development by influencing protein synthesis and other processes needed for growth and differentiation. Activation of AMPK reduces GLI1 protein levels and stability, thus blocking Sonic-hedgehog-induced transcriptional activity. AMPK phosphorylates GLI1 at serines 102 and 408 and threonine 1074. Mutation of these three sites into alanine prevents phosphorylation by AMPK. This leads to increased GLI1 protein stability, transcriptional activity, and oncogenic potency.

  8. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma

    International Nuclear Information System (INIS)

    Jin, Chun; Jin, Zhao; Chen, Nian-zhao; Lu, Min; Liu, Chang-bao; Hu, Wan-Le; Zheng, Chen-guo

    2016-01-01

    Cell proliferation and tumor metastasis are considered as the main reasons for death in colorectal carcinoma (CRC). IRE1α-XBP1 pathway is the most conserved UPR pathways, which are activated during ER stress caused by the accumulation of unfolded or misfolded protein in the lumen of ER. Here, we demonstrated the critical role of IRE1α-XBP1 pathway and underlying molecular mechanism in cell proliferation and tumor metastasis in CRC. By the use of tissue microarray analysis of samples from 119 patients with CRC, IRE1α was determined to be an independent predictor of overall survival as higher expression of IRE1α in CRC patients showed lower survival rates (p = 0.0041). RNA interference and ectopic expression of IRE1α were applied to determine the molecular effects of IRE1α in CRC cells. The silencing of IRE1α inhibited the proliferation and blocked the invasion of CRC cells in vitro, while ectopic expression of IRE1α in turn promoted cell proliferation and invasion. IRE1α-XBP1 pathway regulated the mitosis of CRC cells through the directly binding of XBP1s to Cyclin D1 promoter to activate Cyclin D1 expression. Our results reveal that IRE1α-XBP1 pathway plays an important role in tumor progression and epithelial-to-mesenchymal transition (EMT), and IRE1α could be employed as a novel prognostic marker and a promising therapeutic target for CRC. - Highlights: • IRE1 was determined to be an independent predictor of overall survival in CRC patient. • IRE1-XBP1 pathway promoted CRC cell proliferation through regulating Cyclin D1 expression. • IRE1-XBP1 pathway played important role in EMT of CRC cells.

  9. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chun [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China); Jin, Zhao [Department of Coloproctology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000 (China); Chen, Nian-zhao [Department of Medicine, The Chinese Medicine Hospital of Wenzhou, Wenzhou 325000 (China); Lu, Min; Liu, Chang-bao; Hu, Wan-Le [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China); Zheng, Chen-guo, E-mail: zhengchenguo80@163.com [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China)

    2016-01-29

    Cell proliferation and tumor metastasis are considered as the main reasons for death in colorectal carcinoma (CRC). IRE1α-XBP1 pathway is the most conserved UPR pathways, which are activated during ER stress caused by the accumulation of unfolded or misfolded protein in the lumen of ER. Here, we demonstrated the critical role of IRE1α-XBP1 pathway and underlying molecular mechanism in cell proliferation and tumor metastasis in CRC. By the use of tissue microarray analysis of samples from 119 patients with CRC, IRE1α was determined to be an independent predictor of overall survival as higher expression of IRE1α in CRC patients showed lower survival rates (p = 0.0041). RNA interference and ectopic expression of IRE1α were applied to determine the molecular effects of IRE1α in CRC cells. The silencing of IRE1α inhibited the proliferation and blocked the invasion of CRC cells in vitro, while ectopic expression of IRE1α in turn promoted cell proliferation and invasion. IRE1α-XBP1 pathway regulated the mitosis of CRC cells through the directly binding of XBP1s to Cyclin D1 promoter to activate Cyclin D1 expression. Our results reveal that IRE1α-XBP1 pathway plays an important role in tumor progression and epithelial-to-mesenchymal transition (EMT), and IRE1α could be employed as a novel prognostic marker and a promising therapeutic target for CRC. - Highlights: • IRE1 was determined to be an independent predictor of overall survival in CRC patient. • IRE1-XBP1 pathway promoted CRC cell proliferation through regulating Cyclin D1 expression. • IRE1-XBP1 pathway played important role in EMT of CRC cells.

  10. HPV: Molecular pathways and targets.

    Science.gov (United States)

    Gupta, Shilpi; Kumar, Prabhat; Das, Bhudev C

    2018-04-05

    Infection of high-risk human papillomaviruses (HPVs) is a prerequisite for the development of cervical carcinoma. HPV infections are also implicated in the development of other types of carcinomas. Chronic or persistent infection of HPV is essential but HPV alone is inadequate, additional endogenous or exogenous cues are needed along with HPV to induce cervical carcinogenesis. The strategies that high-risk HPVs have developed in differentiating epithelial cells to reach a DNA-synthesis competent state leading to tumorigenic transformation are basically due to overexpression of the E6 and E7 oncoproteins and the activation of diverse cellular regulatory or signaling pathways that are targeted by them. Moreover, the Wnt/β-catenin/Notch and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathways are deregulated in various cancers, and have also been implicated in HPV-induced cancers. These are basically related to the "cancer hallmarks," and include sustaining proliferative signals, the evasion of growth suppression and immune destruction, replicative immortality, inflammation, invasion, metastasis and angiogenesis, as well as genome instability, resisting cell death, and deregulation of cellular energetics. These information could eventually aid in identifying or developing new diagnostic, prognostic biomarkers, and may contribute to design more effective targeted therapeutics and treatment strategies. Although surgery, chemotherapy and radiotherapy can cure more than 90% of women with early stage cervical cancer, the recurrent and metastatic disease remains a major cause of cancer mortality. Numerous efforts have been made to design new drugs and develop gene therapies to treat cervical cancer. In recent years, research on treatment strategies has proposed several options, including the role of HPV E5, E6, and E7 oncogenes, which are retained and overexpressed in most of the cervical cancers and whose respective oncoproteins are critical to the induction

  11. Experimentally-derived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts.

    Directory of Open Access Journals (Sweden)

    Michael E Johnson

    Full Text Available Genome-wide expression profiling in systemic sclerosis (SSc has identified four 'intrinsic' subsets of disease (fibroproliferative, inflammatory, limited, and normal-like, each of which shows deregulation of distinct signaling pathways; however, the full set of pathways contributing to this differential gene expression has not been fully elucidated. Here we examine experimentally derived gene expression signatures in dermal fibroblasts for thirteen different signaling pathways implicated in SSc pathogenesis. These data show distinct and overlapping sets of genes induced by each pathway, allowing for a better understanding of the molecular relationship between profibrotic and immune signaling networks. Pathway-specific gene signatures were analyzed across a compendium of microarray datasets consisting of skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea, and 26 controls. IFNα signaling showed a strong association with early disease, while TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative subset was most strongly associated with PDGF signaling, while the inflammatory subset demonstrated strong activation of innate immune pathways including TLR signaling upstream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high expression of genes associated with lipid signaling, which was absent in the inflammatory and limited subsets. Together, these data suggest a model by which IFNα is involved in early disease pathology, and disease severity is associated with active TGFβ signaling.

  12. Catabolic signaling pathways, atrogenes, and ubiquitinated proteins are regulated by the nutritional status in the muscle of the fine flounder.

    Directory of Open Access Journals (Sweden)

    Eduardo N Fuentes

    Full Text Available A description of the intracellular mechanisms that modulate skeletal muscle atrophy in early vertebrates is still lacking. In this context, we used the fine flounder, a unique and intriguing fish model, which exhibits remarkably slow growth due to low production of muscle-derived IGF-I, a key growth factor that has been widely acknowledged to prevent and revert muscle atrophy. Key components of the atrophy system were examined in this species using a detailed time-course of sampling points, including two contrasting nutritional periods. Under basal conditions high amounts of the atrogenes MuRF-1 and Atrogin-1 were observed. During fasting, the activation of the P38/MAPK and Akt/FoxO signaling pathways decreased; whereas, the activation of the IκBα/NFκB pathway increased. These changes in signal transduction activation were concomitant with a strong increase in MuRF-1, Atrogin-1, and protein ubiquitination. During short-term refeeding, the P38/MAPK and Akt/FoxO signaling pathways were strongly activated, whereas the activation of the IκBα/NFκB pathway decreased significantly. The expression of both atrogenes, as well as the ubiquitination of proteins, dropped significantly during the first hour of refeeding, indicating a strong anti-atrophic condition during the onset of refeeding. During long-term refeeding, Akt remained activated at higher than basal levels until the end of refeeding, and Atrogin-1 expression remained significantly lower during this period. This study shows that the components of the atrophy system in skeletal muscle appeared early in the evolution of vertebrates and some mechanisms have been conserved, whereas others have not. These results represent an important achievement for the area of fish muscle physiology, showing an integrative view of the atrophy system in a non-mammalian species and contributing to novel insights on the molecular basis of muscle growth regulation in earlier vertebrates.

  13. Pharmacological activation of the EDA/EDAR signaling pathway restores salivary gland function following radiation-induced damage.

    Directory of Open Access Journals (Sweden)

    Grace Hill

    Full Text Available Radiotherapy of head and neck cancers often results in collateral damage to adjacent salivary glands associated with clinically significant hyposalivation and xerostomia. Due to the reduced capacity of salivary glands to regenerate, hyposalivation is treated by substitution with artificial saliva, rather than through functional restoration of the glands. During embryogenesis, the ectodysplasin/ectodysplasin receptor (EDA/EDAR signaling pathway is a critical element in the development and growth of salivary glands. We have assessed the effects of pharmacological activation of this pathway in a mouse model of radiation-induced salivary gland dysfunction. We report that post-irradiation administration of an EDAR-agonist monoclonal antibody (mAbEDAR1 normalizes function of radiation damaged adult salivary glands as determined by stimulated salivary flow rates. In addition, salivary gland structure and homeostasis is restored to pre-irradiation levels. These results suggest that transient activation of pathways involved in salivary gland development could facilitate regeneration and restoration of function following damage.

  14. The role of the stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Verheij, M.; Ruiter, G.A.; Zerp, S.F.; Bartelink, H.; Blitterswijk, W.J. van; Fuks, Z.; Haimovitz-Friedman, A.

    1998-01-01

    Ionizing radiation, like a variety of other cellular stress factors, initiates apoptosis, or programmed cell death, in many cell systems. This mode of radiation-induced cell kill should be distinguished from clonogenic cell death due to unrepaired DNA damage. Ionizing radiation not only exerts its effect on the nuclear DNA, but also at the plasma membrane level where it may activate multiple signal transduction pathways. One of these pathways is the stress-activated protein kinase (SAPK) cascade which transduces death signals from the cell membrane to the nucleus. This review discusses recent evidence on the critical role of this signaling system in radiation- and stress-induced apoptosis. An improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Age-related functional changes in domain-specific medial temporal lobe pathways.

    Science.gov (United States)

    Berron, David; Neumann, Katja; Maass, Anne; Schütze, Hartmut; Fliessbach, Klaus; Kiven, Verena; Jessen, Frank; Sauvage, Magdalena; Kumaran, Dharshan; Düzel, Emrah

    2018-05-01

    reduction was equivalent in both domains. However, this was accompanied by significantly reduced domain-specific activity in PrC in older adults compared to what was observed in the young. Furthermore, this reduced domain-specific activity was associated to worse performance in object mnemonic discrimination in older adults. Taken together, we show the fine-grained functional organization of the MTL into domain-specific pathways for objects and scenes and their mnemonic discrimination and further provide evidence that aging might affect these pathways in a differential fashion. Future experiments will elucidate whether the 2 pathways are differentially affected in early stages of Alzheimer's disease in relation to amyloid or tau pathology. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Genetic Validation of Cell Proliferation via Ras-Independent Activation of the Raf/Mek/Erk Pathway.

    Science.gov (United States)

    Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; Drosten, Matthias

    2017-01-01

    Signaling transmitted by the Ras family of small GTPases (H-, N-, and K-Ras) is essential for proliferation of mouse embryonic fibroblasts (MEFs). However, constitutive activation of the downstream Raf/Mek/Erk pathway can bypass the requirement for Ras proteins and allow cells to proliferate in the absence of the three Ras isoforms. Here we describe a protocol for a colony formation assay that permits evaluating the role of candidate proteins that are positive or negative regulators of cell proliferation mediated via Ras-independent Raf/Mek/Erk pathway activation. K-Ras lox (H-Ras -/- , N-Ras -/- , K-Ras lox/lox , RERT ert/ert ) MEFs are infected with retro- or lentiviral vectors expressing wild-type or constitutively activated candidate cDNAs, shRNAs, or sgRNAs in combination with Cas9 to ascertain the possibility of candidate proteins to function either as an activator or inhibitor of Ras-independent Raf/Mek/Erk activation. These cells are then seeded in the absence or presence of 4-Hydroxytamoxifen (4-OHT), which activates the resident CreERT2 alleles resulting in elimination of the conditional K-Ras alleles and ultimately generating Rasless cells. Colony formation in the presence of 4-OHT indicates cell proliferation via Ras-independent Raf/Mek/Erk activation.

  17. TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available p38 mitogen-activated protein kinase (MAPK is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.

  18. Adolescent physical activity and health: a systematic review.

    Science.gov (United States)

    Hallal, Pedro C; Victora, Cesar G; Azevedo, Mario R; Wells, Jonathan C K

    2006-01-01

    Physical activity in adolescence may contribute to the development of healthy adult lifestyles, helping reduce chronic disease incidence. However, definition of the optimal amount of physical activity in adolescence requires addressing a number of scientific challenges. This article reviews the evidence on short- and long-term health effects of adolescent physical activity. Systematic reviews of the literature were undertaken using a reference period between 2000 and 2004, based primarily on the MEDLINE/PubMed database. Relevant studies were identified by examination of titles, abstracts and full papers, according to inclusion criteria defined a priori. A conceptual framework is proposed to outline how adolescent physical activity may contribute to adult health, including the following pathways: (i) pathway A--tracking of physical activity from adolescence to adulthood; (ii) pathway B--direct influence of adolescent physical activity on adult morbidity; (iii) pathway C--role of physical activity in treating adolescent morbidity; and (iv) pathway D - short-term benefits of physical activity in adolescence on health. The literature reviews showed consistent evidence supporting pathway 'A', although the magnitude of the association appears to be moderate. Thus, there is an indirect effect on all health benefits resulting from adult physical activity. Regarding pathway 'B', adolescent physical activity seems to provide long-term benefits on bone health, breast cancer and sedentary behaviours. In terms of pathway 'C', water physical activities in adolescence are effective in the treatment of asthma, and exercise is recommended in the treatment of cystic fibrosis. Self-esteem is also positively affected by adolescent physical activity. Regarding pathway 'D', adolescent physical activity provides short-term benefits; the strongest evidence refers to bone and mental health. Appreciation of different mechanisms through which adolescent physical activity may influence adult

  19. SAVANNAH RIVER SITE CAPABILITIES FOR CONDUCTING INGESTION PATHWAY CONSEQUENCE ASSESSMENTS FOR EMERGENCY RESPONSE

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C

    2007-12-11

    Potential airborne releases of radioactivity from facilities operated for the U. S. Department of Energy at the Savannah River Site could pose significant consequences to the public through the ingestion pathway. The Savannah River National Laboratory has developed a suite of technologies needed to conduct assessments of ingestion dose during emergency response, enabling emergency manager at SRS to develop initial protective action recommendation for state agencies early in the response and to make informed decisions on activation of additional Federal assets that would be needed to support long-term monitoring and assessment activities.

  20. Bidirectional Expression of Metabolic, Structural, and Immune Pathways in Early Myopia and Hyperopia

    Directory of Open Access Journals (Sweden)

    Nina Riddell

    2016-08-01

    Full Text Available Myopia (short-sightedness affects 1.45 billion people worldwide, many of whom will develop sight-threatening secondary disorders. Myopic eyes are characterized by excessive size while hyperopic (long-sighted eyes are typically small. The biological and genetic mechanisms underpinning the retina’s local control of these growth patterns remain unclear. In the present study, we used RNA sequencing to examine gene expression in the retina/RPE/choroid across 3 days of optically-induced myopia and hyperopia induction in chick. Data were analysed for differential expression of single genes, and Gene Set Enrichment Analysis (GSEA was used to identify gene sets correlated with ocular axial length and refraction across lens groups. Like previous studies, we found few single genes that were differentially-expressed in a sign-of-defocus dependent manner (only BMP2 at 1 day. Using GSEA, however, we are the first to show that more subtle shifts in structural, metabolic, and immune pathway expression are correlated with the eye size and refractive changes induced by lens defocus. Our findings link gene expression with the morphological characteristics of refractive error, and suggest that physiological stress arising from metabolic and inflammatory pathway activation could increase the vulnerability of myopic eyes to secondary pathologies

  1. Physical Activity Measurements: Lessons Learned from the Pathways Study

    Science.gov (United States)

    Going, Scott B.

    2015-01-01

    High obesity rates in American Indian children led to Pathways, a randomized school and community-based childhood prevention study. Seven tribes, five universities, the NIH/NHLBI, and four elementary schools partnered. Increasing physical activity (PA) was an important intervention target. PA assessment was based on study objectives, feasibility, and tribal acceptance. A time-segmented analysis was also desired. Two methods were developed during pilot testing, a new PA questionnaire and accelerometry. Together, the methods provided qualitative and quantitative information and showed 3 of 4 sites were able to increase average daily PA, although overall the control versus intervention difference was not significant. The main limitation was inability to distinguish PA among individuals. Accelerometer size and some community concerns led to a protocol based on a single day of wearing time. Newer model triaxial accelerometers which are much smaller and allow sampling of multiple days of activity are recommended for future studies. PMID:20689391

  2. Activation of the Canonical Wnt/β-Catenin Signalling Pathway is Rare in Canine Malignant Melanoma Tissue and Cell Lines

    Science.gov (United States)

    Chon, E.; Thompson, V.; Schmid, S.; Stein, T. J.

    2012-01-01

    Summary Canine malignant melanoma is a highly aggressive tumour associated with a poor overall survival rate due to both local disease recurrence and its highly metastatic nature. Similar to advanced melanoma in man, canine oral melanoma is poorly responsive to conventional anti-cancer therapies. The lack of sustainable disease control warrants investigation of novel therapies, preferably targeting features specific to the tumour and different from normal cells. The Wnt signalling pathway is known to contribute to melanocytic lineage development in vertebrates and perturbation of the Wnt/β-catenin pathway has been implicated in numerous cancer types. Alterations of the Wnt/β-catenin pathway are suggested to occur in a subset of human melanomas, although the precise role of the Wnt/β-catenin pathway in melanoma is yet to be defined. This study investigates the activation status of the canonical Wnt/β-catenin pathway in canine malignant melanoma and its potential as a therapeutic target for treating this disease. The data indicate canonical Wnt/β-catenin pathway activation is a rare event in canine oral malignant melanoma tissue and canine malignant melanoma cell lines. PMID:22901430

  3. NIK is involved in constitutive activation of the alternative NF-κB pathway and proliferation of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Nishina, Takashi; Yamaguchi, Noritaka; Gohda, Jin; Semba, Kentaro; Inoue, Jun-ichiro

    2009-01-01

    Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-κB is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-κB activation. Here, we show that the alternative pathway is constitutively activated and NF-κB-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.

  4. NIK is involved in constitutive activation of the alternative NF-{kappa}B pathway and proliferation of pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Takashi [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Yamaguchi, Noritaka [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan); Gohda, Jin [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Semba, Kentaro [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 (Japan); Inoue, Jun-ichiro, E-mail: jun-i@ims.u-tokyo.ac.jp [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2009-10-09

    Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-{kappa}B is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-{kappa}B activation. Here, we show that the alternative pathway is constitutively activated and NF-{kappa}B-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.

  5. Pathways from problems in adolescent family relationships to midlife mental health via early adulthood disadvantages – a 26-year longitudinal study

    OpenAIRE

    Berg, Noora; Kiviruusu, Olli; Karvonen, Sakari; Rahkonen, Ossi; Huurre, Taina

    2017-01-01

    Poor childhood family conditions have a long-term effect on adult mental health, but the mechanisms behind this association are unclear. Our aim was to study the pathways from problematic family relationships in adolescence to midlife psychological distress via disadvantages in early adulthood. Participants of a Finnish cohort study at the age of 16 years old in 1983 were followed up at ages 22, 32 and 42 years old (N = 1334). Problems in family relationships were measured with poor relations...

  6. Robust de novo pathway enrichment with KeyPathwayMiner 5

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; List, Markus; Dissing-Hansen, Martin

    2016-01-01

    Identifying functional modules or novel active pathways, recently termed de novo pathway enrichment, is a computational systems biology challenge that has gained much attention during the last decade. Given a large biological interaction network, KeyPathwayMiner extracts connected subnetworks tha...

  7. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    Science.gov (United States)

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  8. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  9. Biomimetic Sonar for Electrical Activation of the Auditory Pathway

    Directory of Open Access Journals (Sweden)

    D. Menniti

    2017-01-01

    Full Text Available Relying on the mechanism of bat’s echolocation system, a bioinspired electronic device has been developed to investigate the cortical activity of mammals in response to auditory sensorial stimuli. By means of implanted electrodes, acoustical information about the external environment generated by a biomimetic system and converted in electrical signals was delivered to anatomically selected structures of the auditory pathway. Electrocorticographic recordings showed that cerebral activity response is highly dependent on the information carried out by ultrasounds and is frequency-locked with the signal repetition rate. Frequency analysis reveals that delta and beta rhythm content increases, suggesting that sensorial information is successfully transferred and integrated. In addition, principal component analysis highlights how all the stimuli generate patterns of neural activity which can be clearly classified. The results show that brain response is modulated by echo signal features suggesting that spatial information sent by biomimetic sonar is efficiently interpreted and encoded by the auditory system. Consequently, these results give new perspective in artificial environmental perception, which could be used for developing new techniques useful in treating pathological conditions or influencing our perception of the surroundings.

  10. Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS.

    Science.gov (United States)

    Zuidervaart, W; van Nieuwpoort, F; Stark, M; Dijkman, R; Packer, L; Borgstein, A-M; Pavey, S; van der Velden, P; Out, C; Jager, M J; Hayward, N K; Gruis, N A

    2005-06-06

    In contrast to cutaneous melanoma, there is no evidence that BRAF mutations are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in uveal melanoma, although there is increasing evidence that this pathway is activated frequently in the latter tumours. In this study, we performed mutation analysis of the RAS and BRAF genes in a panel of 11 uveal melanoma cell lines and 19 primary uveal melanoma tumours. In addition, Western blot and immunohistochemical analyses were performed on downstream members of the MAPK pathway in order to assess the contribution of each of these components. No mutations were found in any of the three RAS gene family members and only one cell line carried a BRAF mutation (V599E). Despite this, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), ERK and ELK were constitutively activated in all samples. These data suggest that activation of the MAPK pathway is commonly involved in the development of uveal melanoma, but occurs through a mechanism different to that of cutaneous melanoma.

  11. miR-322 stabilizes MEK1 expression to inhibit RAF/MEK/ERK pathway activation in cartilage.

    Science.gov (United States)

    Bluhm, Björn; Ehlen, Harald W A; Holzer, Tatjana; Georgieva, Veronika S; Heilig, Juliane; Pitzler, Lena; Etich, Julia; Bortecen, Toman; Frie, Christian; Probst, Kristina; Niehoff, Anja; Belluoccio, Daniele; Van den Bergen, Jocelyn; Brachvogel, Bent

    2017-10-01

    Cartilage originates from mesenchymal cell condensations that differentiate into chondrocytes of transient growth plate cartilage or permanent cartilage of the articular joint surface and trachea. MicroRNAs fine-tune the activation of entire signaling networks and thereby modulate complex cellular responses, but so far only limited data are available on miRNAs that regulate cartilage development. Here, we characterize a miRNA that promotes the biosynthesis of a key component in the RAF/MEK/ERK pathway in cartilage. Specifically, by transcriptome profiling we identified miR-322 to be upregulated during chondrocyte differentiation. Among the various miR-322 target genes in the RAF/MEK/ERK pathway, only Mek1 was identified as a regulated target in chondrocytes. Surprisingly, an increased concentration of miR-322 stabilizes Mek1 mRNA to raise protein levels and dampen ERK1/2 phosphorylation, while cartilage-specific inactivation of miR322 in mice linked the loss of miR-322 to decreased MEK1 levels and to increased RAF/MEK/ERK pathway activation. Such mice died perinatally due to tracheal growth restriction and respiratory failure. Hence, a single miRNA can stimulate the production of an inhibitory component of a central signaling pathway to impair cartilage development. © 2017. Published by The Company of Biologists Ltd.

  12. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.

    Science.gov (United States)

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui

    2015-09-01

    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger

  13. Lansoprazole halts contrast induced nephropathy through activation of Nrf2 pathway in rats.

    Science.gov (United States)

    Khaleel, Sahar A; Alzokaky, Amany A; Raslan, Nahed A; Alwakeel, Asmaa I; Abd El-Aziz, Heba G; Abd-Allah, Adel R

    2017-05-25

    Contrast-induced nephropathy (CIN) is an important cause of acute kidney injury characterized by significant mortality and morbidity. To date, there is no successful protective regimen for CIN especially in poor kidney function patients. Lansoprazole has been shown to exert antioxidant action through induction of nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. The aim of the present study is to investigate the potential of lansoprazole to activate Nrf2 pathway in the kidney and consequently to protect against oxidative stress induced by iodinated contrast media. Lansoprazole, at a dose of 100 mg/kg, showed a significant induction of Nrf2 mRNA after 3 h. Administration of contrast media induced significant increase in serum creatinine and blood urea nitrogen, histological deterioration, and reduction in total antioxidant capacity. Moreover, it instigated the defensive Nrf2 gene expression and immunoreactivity. In addition, there were overexpression of HO-1, caspase 3, p53 and IL6 genes and downregulation of Bcl2 gene. Pre-treatment with lansoprazole (100 mg/kg) ameliorated the nephrotoxicity parameters and oxidative stress, improved histological lesions, and hijacked apoptotic and inflammatory markers that were provoked by contrast media. In conclusion, lansoprazole attenuates experimental CIN which might be due to activation of Nrf2 antioxidant defence pathway. These findings highlight the potential benefit of incorporating lansoprazole in the protective regimen against CIN especially for susceptible patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1 in Human Macrophages

    Directory of Open Access Journals (Sweden)

    G. Chinetti-Gbaguidi

    2016-01-01

    Full Text Available Tissue factor (TF is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa. Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1. Peroxisome proliferator-activated receptor gamma (PPARγ is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway.

  15. MIDAS: Mining differentially activated subpaths of KEGG pathways from multi-class RNA-seq data.

    Science.gov (United States)

    Lee, Sangseon; Park, Youngjune; Kim, Sun

    2017-07-15

    Pathway based analysis of high throughput transcriptome data is a widely used approach to investigate biological mechanisms. Since a pathway consists of multiple functions, the recent approach is to determine condition specific sub-pathways or subpaths. However, there are several challenges. First, few existing methods utilize explicit gene expression information from RNA-seq. More importantly, subpath activity is usually an average of statistical scores, e.g., correlations, of edges in a candidate subpath, which fails to reflect gene expression quantity information. In addition, none of existing methods can handle multiple phenotypes. To address these technical problems, we designed and implemented an algorithm, MIDAS, that determines condition specific subpaths, each of which has different activities across multiple phenotypes. MIDAS utilizes gene expression quantity information fully and the network centrality information to determine condition specific subpaths. To test performance of our tool, we used TCGA breast cancer RNA-seq gene expression profiles with five molecular subtypes. 36 differentially activate subpaths were determined. The utility of our method, MIDAS, was demonstrated in four ways. All 36 subpaths are well supported by the literature information. Subsequently, we showed that these subpaths had a good discriminant power for five cancer subtype classification and also had a prognostic power in terms of survival analysis. Finally, in a performance comparison of MIDAS to a recent subpath prediction method, PATHOME, our method identified more subpaths and much more genes that are well supported by the literature information. http://biohealth.snu.ac.kr/software/MIDAS/. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway.

    Science.gov (United States)

    Nakada, Daisuke; Hirano, Yukinori; Sugimoto, Katsunori

    2004-11-01

    The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.

  17. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.

    Science.gov (United States)

    Cui, Qunli; Li, Xin; Zhu, Hongcan

    2016-02-01

    Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.

  18. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Hseu, You-Cheng [Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan (China); Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, TX 77030 (United States); Senthil Kumar, K.J. [Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan (China); Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun [Institute of Nutrition, China Medical University, Taichung 40402, Taiwan (China); Lin, Cheng-Wen [Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan (China); Lu, Fung-Jou [Institute of Medicine, Chun Shan Medical University, Taichung 40201, Taiwan (China); Yang, Hsin-Ling, E-mail: hlyang@mail.cmu.edu.tw [Institute of Nutrition, China Medical University, Taichung 40402, Taiwan (China); Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, TX 77030 (United States)

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE{sub 2} production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early

  19. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    International Nuclear Information System (INIS)

    Hseu, You-Cheng; Senthil Kumar, K.J.; Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun; Lin, Cheng-Wen; Lu, Fung-Jou; Yang, Hsin-Ling

    2014-01-01

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE 2 production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early atherogenesis

  20. Adult non-cystic fibrosis bronchiectasis is characterised by airway luminal Th17 pathway activation.

    Directory of Open Access Journals (Sweden)

    Alice C-H Chen

    Full Text Available Non-cystic fibrosis (CF bronchiectasis is characterised by chronic airway infection and neutrophilic inflammation, which we hypothesised would be associated with Th17 pathway activation.Th17 pathway cytokines were quantified in bronchoalveolar lavage fluid (BALF, and gene expression of IL-17A, IL-1β, IL-8 and IL-23 determined from endobronchial biopsies (EBx in 41 stable bronchiectasis subjects and 20 healthy controls. Relationships between IL-17A levels and infection status, important clinical measures and subsequent Pseudomonas aeruginosa infection were determined.BALF levels of all Th17 cytokines (median (IQR pg/mL were significantly higher in bronchiectasis than control subjects, including IL-17A (1.73 (1.19, 3.23 vs. 0.27 (0.24, 0.35, 95% CI 1.05 to 2.21, p<0.0001 and IL-23 (9.48 (4.79, 15.75 vs. 0.70 (0.43, 1.79, 95% CI 4.68 to 11.21, p<0.0001. However, BALF IL-17A levels were not associated with clinical measures or airway microbiology, nor predictive of subsequent P. aeruginosa infection. Furthermore, gene expression of IL-17A in bronchiectasis EBx did not differ from control. In contrast, gene expression (relative to medians of controls in bronchiectasis EBx was significantly higher than control for IL1β (4.12 (1.24, 8.05 vs 1 (0.13, 2.95, 95% CI 0.05 to 4.07, p = 0.04 and IL-8 (3.75 (1.64, 11.27 vs 1 (0.54, 3.89, 95% CI 0.32 to 4.87, p = 0.02 and BALF IL-8 and IL-1α levels showed significant relationships with clinical measures and airway microbiology. P. aeruginosa infection was associated with increased levels of IL-8 while Haemophilus influenzae was associated with increased IL-1α.Established adult non-CF bronchiectasis is characterised by luminal Th17 pathway activation, however this pathway may be relatively less important than activation of non-antigen-specific innate neutrophilic immunity.

  1. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution.

    Science.gov (United States)

    Zrinyi, Nick; Pham, Anh Le-Tuan

    2017-09-01

    Heat activates persulfate (S 2 O 8 2- ) into sulfate radical (SO 4 - ), a powerful oxidant capable of transforming a wide variety of contaminants. Previous studies have shown that an increase in temperature accelerates the rates of persulfate activation and contaminant transformation. However, few studies have considered the effect of temperature on contaminant transformation pathway. The objective of this study was to determine how temperature (T = 22-70 °C) influences the activation of persulfate, the transformation of benzoic acid (i.e., a model compound), and the distribution of benzoic acid oxidation products. The time-concentration profiles of the products suggest that benzoic acid was transformed via decarboxylation and hydroxylation mechanisms, with the former becoming increasingly important at elevated temperatures. The pathway through which the products were further oxidized was also influenced by the temperature of persulfate activation. Our findings suggest that the role of temperature in the persulfate-based treatment systems is not limited only to controlling the rates of sulfate and hydroxyl radical generation. The ability of sulfate radical to initiate decarboxylation reactions and, more broadly, fragmentation reactions, as well as the effect of temperature on these transformation pathways could be important to the transformation of a number of organic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Clinical prognostic significance and pro-metastatic activity of RANK/RANKL via the AKT pathway in endometrial cancer.

    Science.gov (United States)

    Wang, Jing; Liu, Yao; Wang, Lihua; Sun, Xiao; Wang, Yudong

    2016-02-02

    RANK/RANKL plays a key role in metastasis of certain malignant tumors, which makes it a promising target for developing novel therapeutic strategies for cancer. However, the prognostic value and pro-metastatic activity of RANK in endometrial cancer (EC) remain to be determined. Thus, the present study investigated the effect of RANK on the prognosis of EC patients, as well as the pro-metastatic activity of EC cells. The results indicated that those with high expression of RANK showed decreased overall survival and progression-free survival. Statistical analysis revealed the positive correlations between RANK/RANKL expression and metastasis-related factors. Additionally, RANK/RANKL significantly promoted cell migration/invasion via activating AKT/β-catenin/Snail pathway in vitro. However, RANK/RANKL-induced AKT activation could be suppressed after osteoprotegerin (OPG) treatment. Furthermore, the combination of medroxyprogesterone acetate (MPA) and RANKL could in turn attenuate the effect of RANKL alone. Similarly, MPA could partially inhibit the RANK-induced metastasis in an orthotopic mouse model via suppressing AKT/β-catenin/Snail pathway. Therefore, therapeutic inhibition of MPA in RANK/RANKL-induced metastasis was mediated by AKT/β-catenin/Snail pathway both in vitro and in vivo, suggesting a potential target of RANK for gene-based therapy for EC.

  3. Identification and characterization of monoclonal antibodies specific for macrophages at intermediate stages in the tumoricidal activation pathway

    International Nuclear Information System (INIS)

    Paulnock, D.M.; Lambert, L.E.

    1990-01-01

    Macrophage activation for tumor cell killing is a multistep pathway in which responsive macrophages interact sequentially with priming and triggering stimuli in the acquisition of full tumoricidal activity. A number of mediators have been identified which have activating capability, including in particular IFN-gamma and bacterial LPS. Although the synergistic functional response of normal macrophages to sequential incubation with these activation signals has been well-established, characterization of the intermediate stages in the activation pathway has been difficult. We have developed a model system for examination of various aspects of macrophage activation, through the use of the murine macrophage tumor cell line, RAW 264.7. These cells, like normal macrophages, exhibit a strict requirement for interaction with both IFN-gamma and LPS in the development of tumor cytolytic activity. In addition, these cells can be stably primed by the administration of gamma-radiation. In the studies reported here, we have used RAW 264.7 cells treated with IFN-gamma alone or with IFN-gamma plus LPS to stimulate the production of rat mAb probes recognizing cell surface changes occurring during the activation process. In this way we have identified three Ag associated with intermediate stages of the activation process. One Ag, TM-1, is expressed on RAW 264.7 cells primed by IFN-gamma or gamma-radiation. This surface Ag thus identifies cells at the primed cell intermediate stage of the tumoricidal activation pathway regardless of the mechanism of activation. A second Ag, TM-2, is expressed on IFN-treated RAW 264.7 cells but not on RAW 264.7 cells primed with gamma-radiation alone. Expression of this Ag can be induced by treatment of irradiated cells with IFN-gamma, but is not induced by IFN-gamma treatment of a noncytolytic cell line, WEHI-3

  4. Potential avenues for exercise to activate episodic memory-related pathways: a narrative review.

    Science.gov (United States)

    Loprinzi, Paul D; Edwards, Meghan K; Frith, Emily

    2017-09-01

    Memory function plays an important role in activities of daily living, and consequently, quality and quantity of life. In this narrative review, we discuss the anatomical components of episodic memory, including the structure of the hippocampus and the routes of communication to and from this structure. We also highlight cellular traces of memory, such as the engram cell and pathway. To provide etiological insight, the biological mechanisms of episodic memory are discussed, including factors subserving memory encoding (e.g., cognitive attention, neuroelectrical indices), consolidation (i.e., synaptic and brain systems level), and retrieval (e.g., availability of cues, context-dependent, state-dependent, and cognitive processing). Central to this manuscript, we highlight how exercise may influence each of these aforementioned parameters (e.g., exercise-induced hippocampal growth, synaptic plasticity, and cue retrieval) and then discuss the implications of these findings to enhance and preserve memory function. Collectively, this narrative review briefly summarizes potential mechanisms of episodic memory, and how exercise may activate these mechanistic pathways. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li [Department of Pharmacy, Urumchi General Hospital of Lanzhou Military Region, Urumchi, Xinjiang 830000 (China); Liu, Lianyong [Medical College of Soochow University, Suzhou, Jiangsu 215123 (China); Department of Endocrinology, Shanghai Punan Hospital, Shanghai 200125 (China); He, Xiaohua; Shen, Yunling; Liu, Xuerong; Wei, Jing; Yu, Fang [Department of Endocrinology, Urumchi General Hospital of Lanzhou Military Region, Urumchi, Xinjiang 830000 (China); Tian, Jianqing, E-mail: jianqing0991@163.com [Department of Endocrinology, Urumchi General Hospital of Lanzhou Military Region, Urumchi, Xinjiang 830000 (China)

    2016-08-26

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Our findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. - Highlights: • CHIP is significantly upregulated in thyroid cancer cells. • Overexpression of CHIP facilitates proliferation and tumorigenesis of thyroid cancer cells. • Silencing of CHIP inhibits the proliferation and tumorigenesis of thyroid cancer cells. • CHIP promotes thyroid cancer cell proliferation via activating the MAPK and AKT pathways.

  6. Parathyroid Hormone Activates Phospholipase C (PLC)-Independent Protein Kinase C Signaling Pathway via Protein Kinase A (PKA)-Dependent Mechanism: A New Defined Signaling Route Would Induce Alternative Consideration to Previous Conceptions.

    Science.gov (United States)

    Tong, Guojun; Meng, Yue; Hao, Song; Hu, Shaoyu; He, Youhua; Yan, Wenjuan; Yang, Dehong

    2017-04-20

    BACKGROUND Parathyroid hormone (PTH) is an effective anti-osteoporosis agent, after binding to its receptor PTHR1, several signaling pathways, including cAMP/protein kinase A (PKA) and phospholipase C (PLC)/protein kinase C (PKC), are initiated through G proteins; with the cAMP/PKA pathway as the major pathway. Earlier studies have reported that PTHR1 might also activate PKC via a PLC-independent mechanism, but this pathway remains unclear. MATERIAL AND METHODS In HEK293 cells, cAMP accumulation was measured with ELISA and PKC was measured with fluorescence resonance energy transfer (FRET) analysis using CKAR plasmid. In MC3T3-E1 cells, real-time PCR was performed to examine gene expressions. Then assays for cell apoptosis, cell differentiation, alkaline phosphatase activity, and mineralization were performed. RESULTS The FRET analysis found that PTH(1-34), [G1,R19]PTH(1-34) (GR(1-34), and [G1,R19]PTH(1-28) (GR(1-28) were all activated by PKC. The PKC activation ability of GR(1-28) was blocked by cAMP inhibitor (Rp-cAMP) and rescued with the addition of active PKA-α and PKA-β. The PKC activation ability of GR(1-34) was partially inhibited by Rp-cAMP. In MC3T3-E1 cells, gene expressions of ALP, CITED1, NR4a2, and OSX that was regulated by GR(1-28) were significantly changed by the pan-PKC inhibitor Go6983. After pretreatment with Rp-cAMP, the gene expressions of ALP, CITED1, and OPG were differentially regulated by GR(1-28) or GR(1-34), and the difference was blunted by Go6983. PTH(1-34), GR(1-28), and GR(1-34) significantly decreased early apoptosis and augmented osteoblastic differentiation in accordance with the activities of PKA and PKC. CONCLUSIONS PLC-independent PKC activation induced by PTH could be divided into two potential mechanisms: one was PKA-dependent and associated with PTH(1-28); the other was PKA-independent and associated with PTH(29-34). We also found that PTH could activate PLC-independent PKC via PKA-dependent mechanisms.

  7. High-frequency deregulated expression of Wnt signaling pathway members in breast carcinomas.

    Science.gov (United States)

    Khan, Zahid; Arafah, Maha; Shaik, Jilani Purusottapatnam; Mahale, Alka; Alanazi, Mohammad Saud

    2018-01-01

    Breast carcinoma is the most common malignancy and leading cause of cancer-related deaths in women worldwide including Saudi Arabia. Breast cancer in Saudi women develops at a much early age with median age of onset of 49 years compared to 62 years observed in patients from USA. Aberrations in wingless and integration site growth factor (Wnt) signaling pathway have been pathologically implicated in development of breast cancers and hence its role was examined in Saudi patients. We immunohistochemically examined various components of Wnt signaling pathway including β-catenin, tumor suppressor proteins, adenomatous polyposis coli (APC), and Axin, expression of naturally occurring pathway antagonists such as Dickkopf Wnt signaling pathway inhibitor 3 (DKK3), FRP2, and WIF1, as well as Wnt target cyclin D1 and c-Myc to establish if the pathway is constitutively activated in breast cancers arising in Saudi women. Cytoplasmic β-catenin, indicative of activation of the pathway, was observed in 24% of cases. Expression of APC and Axin, which are components of β-catenin destruction complex, was lost in 5% and 10% of tumors, respectively. Additionally, Wnt signaling inhibitors DKK3, FRP2, and Wnt inhibitory factor 1 (WIF1) were not expressed in 8%, 14%, and 5% breast tumors, respectively. Overall, accumulation of cytoplasmic β-catenin and downregulation of other Wnt pathway proteins (APC/Axin/DKK3/FRP2/WIF1) were found in approximately half of the breast cancers (47%) in our cohort. Consistent with this, analysis of Wnt target genes demonstrated moderate-to-strong expression of c-Myc in 58% and cyclin D1 in 50% of breast cancers. Deregulation of Wnt pathway was not associated with age of onset of the disease, tumor grade, and triple-negative status of breast cancers. High level of deregulated expression of Wnt pathway proteins suggests its important role in pathogenesis of breast cancers arising in Saudi women who may benefit from development of therapeutic drugs

  8. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP with reverse transcriptase (RT and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns.

  9. Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation

    Science.gov (United States)

    Lu, Gong-biao; Niu, Fu-wen; Zhang, Ying-chun; Du, Lin; Liang, Zhi-yuan; Gao, Yuan; Yan, Ting-zhen; Nie, Zhi-kui; Gao, Kai

    2016-01-01

    Some studies have indicated that the Wnt/β-catenin signaling pathway is activated following spinal cord injury, and expression levels of specific proteins, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β, are significantly altered. We hypothesized that methylprednisolone treatment contributes to functional recovery after spinal cord injury by inhibiting apoptosis and activating the Wnt/β-catenin signaling pathway. In the current study, 30 mg/kg methylprednisolone was injected into rats with spinal cord injury immediately post-injury and at 1 and 2 days post-injury. Basso, Beattie, and Bresnahan scores showed that methylprednisolone treatment significantly promoted locomotor functional recovery between 2 and 6 weeks post-injury. The number of surviving motor neurons increased, whereas the lesion size significantly decreased following methylprednisolone treatment at 7 days post-injury. Additionally, caspase-3, caspase-9, and Bax protein expression levels and the number of apoptotic cells were reduced at 3 and 7 days post-injury, while Bcl-2 levels at 7 days post-injury were higher in methylprednisolone-treated rats compared with saline-treated rats. At 3 and 7 days post-injury, methylprednisolone up-regulated expression and activation of the Wnt/β-catenin signaling pathway, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β phosphorylation. These results indicate that methylprednisolone-induced neuroprotection may correlate with activation of the Wnt/β-catenin signaling pathway. PMID:28123427

  10. Identifying early pathways of risk and resilience: The codevelopment of internalizing and externalizing symptoms and the role of harsh parenting.

    Science.gov (United States)

    Wiggins, Jillian Lee; Mitchell, Colter; Hyde, Luke W; Monk, Christopher S

    2015-11-01

    Psychological disorders co-occur often in children, but little has been done to document the types of conjoint pathways internalizing and externalizing symptoms may take from the crucial early period of toddlerhood or how harsh parenting may overlap with early symptom codevelopment. To examine symptom codevelopment trajectories, we identified latent classes of individuals based on internalizing and externalizing symptoms across ages 3-9 and found three symptom codevelopment classes: normative symptoms (low), severe-decreasing symptoms (initially high but rapidly declining), and severe symptoms (high) trajectories. Next, joint models examined how parenting trajectories overlapped with internalizing and externalizing symptom trajectories. These trajectory classes demonstrated that, normatively, harsh parenting increased after toddlerhood, but the severe symptoms class was characterized by a higher level and a steeper increase in harsh parenting and the severe-decreasing class by high, stable harsh parenting. In addition, a transactional model examined the bidirectional relationships among internalizing and externalizing symptoms and harsh parenting because they may cascade over time in this early period. Harsh parenting uniquely contributed to externalizing symptoms, controlling for internalizing symptoms, but not vice versa. In addition, internalizing symptoms appeared to be a mechanism by which externalizing symptoms increase. Results highlight the importance of accounting for both internalizing and externalizing symptoms from an early age to understand risk for developing psychopathology and the role harsh parenting plays in influencing these trajectories.

  11. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats.

    Science.gov (United States)

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%-20% of these rats develop cataracts spontaneously as they reach 12-15 months of age. We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings.

  12. MGAT1 is a novel transcriptional target of Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Akiva, Izzet; Birgül Iyison, Necla

    2018-01-08

    The Wnt/β-catenin signaling pathway is an evolutionary conserved pathway, which has important functions in vertebrate early development, axis formation, cellular proliferation and morphogenesis. Additionally, Wnt/β-catenin signaling pathway is one of the most important intracellular pathways that controls cancer progression. To date most of the identified targets of this pathway are shown to harbor tumorigenic properties. We previously showed that Mannosyl glycoprotein acetylglucosaminyl-transferase (MGAT1) enzyme is among the Wnt/β-catenin signaling putative target genes in hepatocellular carcinoma cell lines (Huh7). MGAT1 protein levels were determined by Western Blotting from Huh7 cell lines in which Wnt/β-catenin pathway was activated by means of different approaches such as LiCl treatment and mutant β-catenin overexpression. Luciferase reporter assay was used to analyze the promoter activity of MGAT1. The mRNA levels of MGAT1 were determined by quantitative real-time PCR from Huh7 cells that were treated with either Wnt agonist or GSK-3β inhibitor. Wound healing and XTT cell proliferation assays were performed in order to determine the proliferation and migration capacities of MGAT1 overexpressing stable Huh7 cells. Finally, xenograft experiments were carried out to measure the tumor formation capacities in vivo. In this study we showed that the activation of Wnt/β-catenin pathway culminates in the upregulation of MGAT1 enzyme both at transcriptional and post-transcriptional levels. We also showed that overexpression of the β-catenin gene (CTNNB1) increased the promoter activity of MGAT1. We applied a set of complementary approaches to elucidate the functional importance of MGAT1 as a vital target of Wnt/β-catenin signaling in Huh7 cells. Our analyses related to cell proliferation and migration assays showed that in comparison to the control cells, MGAT1 expressing Huh7 cells have greater proliferative and invasive capabilities. Furthermore, the

  13. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    Science.gov (United States)

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William

    2013-01-01

    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  14. Bilobalide induces neuronal differentiation of P19 embryonic carcinoma cells via activating Wnt/β-catenin pathway.

    Science.gov (United States)

    Liu, Mei; Guo, Jingjing; Wang, Juan; Zhang, Luyong; Pang, Tao; Liao, Hong

    2014-08-01

    Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.

  15. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover

    DEFF Research Database (Denmark)

    Hong, Xin; Nguyen, Thanh Hung; Chen, Qingfeng

    2014-01-01

    Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor...

  16. Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yaowen [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China); Li, Yixi; Yao, Linyu; Li, Simiao; Liu, Jin [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China)

    2017-05-05

    Highlights: • Persulfate could decolorize Rhodamine B (RhB) directly via non-radical reactions. • LED lamps emitting white light were utilized as the visible light source. • Dyes could activate peroxides through photoexcitation pathway. • Decolorization of dyes and production of radicals were achieved simultaneously. • The catalyst-free peroxide/dye/Vis process was effective in a broad pH range. - Abstract: Catalysts are known to activate peroxides to generate active radicals (i.e., hydroxyl radical (·OH) and sulfate radical (SO{sub 4}·{sup −})) under certain conditions, but the activation of peroxides in the absence of catalysts under visible light irradiation has been rarely reported. This work demonstrates a catalyst-free activation of peroxides for the generation of ·OH and/or SO{sub 4}·{sup −} through photoexcited electron transfer from organic dyes to peroxides under visible LED light irradiation, where Rhodamine B (RhB) and Eosin Y (EY) were selected as model dyes. The formation of ·OH and/or SO{sub 4}·{sup −} in the reactions and the electron transfer from the excited dyes to peroxides were validated via electron paramagnetic resonance (EPR), photoluminescence (PL) spectra and cyclic voltammetry (CV). The performance of the peroxide/dye/Vis process was demonstrated to be altered depending on the target substrate. Meanwhile, the peroxide/dye/Vis process was effective for simultaneous decolorization of dyes and production of active radicals under neutral even or basic conditions. The findings of this study clarified a novel photoexcitation pathway for catalyst-free activation of peroxides under visible light irradiation, which could avoid the secondary metal ion (dissolved or leached) pollution from the metal-based catalysts and expand the application range of the peroxide-based catalytic process.

  17. mTOR pathway is activated in endothelial cells from patients with Takayasu arteritis and is modulated by serum immunoglobulin G.

    Science.gov (United States)

    Hadjadj, Jérôme; Canaud, Guillaume; Mirault, Tristan; Samson, Maxime; Bruneval, Patrick; Régent, Alexis; Goulvestre, Claire; Witko-Sarsat, Véronique; Costedoat-Chalumeau, Nathalie; Guillevin, Loïc; Mouthon, Luc; Terrier, Benjamin

    2018-06-01

    Takayasu arteritis (TA) and GCA are large-vessel vasculitides characterized by vascular remodelling involving endothelial cells (ECs) and vascular smooth muscle cells. Mammalian target of rapamycin (mTOR) pathway has been involved in vascular remodelling. We hypothesized that the mTOR pathway was involved in the pathogenesis of large-vessel vasculitis. We used IF analysis on aortic and temporal artery biopsies from patients with TA and GCA to assess the involvement of the mTOR pathway and searched for antibodies targeting ECs in serum by IIF and cellular ELISA. We evaluated in vitro the effect of purified IgG from patients on mTOR pathway activation and cell proliferation. IF analyses on tissues revealed that both mTORC1 and mTORC2 are activated specifically in ECs from TA patients but not in ECs from GCA patients and healthy controls (HCs). Using IIF and ELISA, we observed higher levels of antibodies binding to ECs in TA patients compared with GCA patients and HCs. Using western blot, we demonstrated that purified IgG from TA patients caused mTORC1 activation in ECs, whereas this effect was not observed with purified IgG from GCA patients or HCs. Purified IgG from TA patients induced a significant EC proliferation compared with to GCA and HC IgG, and this effect was decreased after EC exposure with sirolimus, a specific mTOR inhibitor and PI3K inhibitor. Our results suggest that antibodies targeting ECs drive endothelial remodelling in TA through activation of the mTOR pathway, but not in GCA. Inhibition of the mTOR pathway could represent a therapeutic option in TA.

  18. β2-Adrenergic receptor activation mobilizes intracellular calcium via a non-canonical cAMP-independent signaling pathway.

    Science.gov (United States)

    Galaz-Montoya, Monica; Wright, Sara J; Rodriguez, Gustavo J; Lichtarge, Olivier; Wensel, Theodore G

    2017-06-16

    Beta adrenergic receptors (βARs) are G-protein-coupled receptors essential for physiological responses to the hormones/neurotransmitters epinephrine and norepinephrine which are found in the nervous system and throughout the body. They are the targets of numerous widely used drugs, especially in the case of the most extensively studied βAR, β 2 AR, whose ligands are used for asthma and cardiovascular disease. βARs signal through Gα s G-proteins and via activation of adenylyl cyclase and cAMP-dependent protein kinase, but some alternative downstream pathways have also been proposed that could be important for understanding normal physiological functioning of βAR signaling and its disruption in disease. Using fluorescence-based Ca 2+ flux assays combined with pharmacology and gene knock-out methods, we discovered a previously unrecognized endogenous pathway in HEK-293 cells whereby β 2 AR activation leads to robust Ca 2+ mobilization from intracellular stores via activation of phospholipase C and opening of inositol trisphosphate (InsP 3 ) receptors. This pathway did not involve cAMP, Gα s , or Gα i or the participation of the other members of the canonical β 2 AR signaling cascade and, therefore, constitutes a novel signaling mechanism for this receptor. This newly uncovered mechanism for Ca 2+ mobilization by β 2 AR has broad implications for adrenergic signaling, cross-talk with other signaling pathways, and the effects of βAR-directed drugs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Intrinsic Xenobiotic Metabolizing Enzyme Activities in Early Life Stages of Zebrafish (Danio rerio).

    Science.gov (United States)

    Otte, Jens C; Schultz, Bernadette; Fruth, Daniela; Fabian, Eric; van Ravenzwaay, Bennard; Hidding, Björn; Salinas, Edward R

    2017-09-01

    Early life stages of zebrafish (Danio rerio, zf) are gaining attention as an alternative invivo test system for drug discovery, early developmental toxicity screenings and chemical testing in ecotoxicological and toxicological testing strategies. Previous studies have demonstrated transcriptional evidence for xenobiotic metabolizing enzymes (XME) during early zf development. However, elaborate experiments on XME activities during development are incomplete. In this work, the intrinsic activities of representative phase I and II XME were monitored by transformation of putative zf model substrates analyzed using photometry and high pressure liquid chromatography techniques. Six different defined stages of zf development (between 2.5 h postfertilization (hpf) to 120 hpf) were investigated by preparing a subcellular fraction from whole organism homogenates. We demonstrated that zf embryos as early as 2.5 hpf possess intrinsic metabolic activities for esterase, Aldh, Gst, and Cyp1a above the methodological detection limit. The activities of the enzymes Cyp3a and Nat were measurable during later stages in development. Activities represent dynamic patterns during development. The role of XME activities revealed in this work is relevant for the assessing toxicity in this test system and therefore contributes to a valuable characterization of zf embryos as an alternative testing organism in toxicology. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.

    Science.gov (United States)

    Yang, Ke-Ke; Sui, Yi; Zhou, Hui-Rong; Zhao, Hai-Lu

    2017-05-01

    Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and

  1. Eggs early in complementary feeding increase choline pathway biomarkers and DHA: a randomized controlled trial in Ecuador.

    Science.gov (United States)

    Iannotti, Lora L; Lutter, Chessa K; Waters, William F; Gallegos Riofrío, Carlos Andres; Malo, Carla; Reinhart, Gregory; Palacios, Ana; Karp, Celia; Chapnick, Melissa; Cox, Katherine; Aguirre, Santiago; Narvaez, Luis; López, Fernando; Sidhu, Rohini; Kell, Pamela; Jiang, Xuntian; Fujiwara, Hideji; Ory, Daniel S; Young, Rebecca; Stewart, Christine P

    2017-12-01

    Background: Choline status has been associated with stunting among young children. Findings from this study showed that an egg intervention improved linear growth by a length-for-age z score of 0.63. Objective: We aimed to test the efficacy of eggs introduced early in complementary feeding on plasma concentrations of biomarkers in choline pathways, vitamins B-12 and A, and essential fatty acids. Design: A randomized controlled trial, the Lulun ("egg" in Kichwa) Project, was conducted in a rural indigenous population of Ecuador. Infants aged 6-9 mo were randomly assigned to treatment (1 egg/d for 6 mo; n = 80) and control (no intervention; n = 83) groups. Socioeconomic data, anthropometric measures, and blood samples were collected at baseline and endline. Household visits were made weekly for morbidity surveillance. We tested vitamin B-12 plasma concentrations by using chemiluminescent competitive immunoassay and plasma concentrations of choline, betaine, dimethylglycine, retinol, essential fatty acids, methionine, dimethylamine (DMA), trimethylamine, and trimethylamine- N -oxide (TMAO) with the use of liquid chromatography-tandem mass spectrometry. Results: Socioeconomic factors and biomarker concentrations were comparable at baseline. Of infants, 11.4% were vitamin B-12 deficient and 31.7% marginally deficient at baseline. In adjusted generalized linear regression modeling, the egg intervention increased plasma concentrations compared with control by the following effect sizes: choline, 0.35 (95% CI: 0.12, 0.57); betaine, 0.29 (95% CI: 0.01, 0.58); methionine, 0.31 (95% CI: 0.03, 0.60); docosahexaenoic acid, 0.43 (95% CI: 0.13, 0.73); DMA, 0.37 (95% CI: 0.37, 0.69); and TMAO, 0.33 (95% CI: 0.08, 0.58). No significant group differences were found for vitamin B-12, retinol, linoleic acid (LA), α-linolenic acid (ALA), or ratios of betaine to choline and LA to ALA. Conclusion: The findings supported our hypothesis that early introduction of eggs significantly

  2. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.

    Science.gov (United States)

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria

    2005-01-25

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

  3. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors.

    Science.gov (United States)

    Naujok, Ortwin; Lentes, Jana; Diekmann, Ulf; Davenport, Claudia; Lenzen, Sigurd

    2014-04-29

    Small membrane-permeable molecules are now widely used during maintenance and differentiation of embryonic stem cells of different species. In particular the glycogen synthase kinase 3 (GSK3) is an interesting target, since its chemical inhibition activates the Wnt/beta-catenin pathway. In the present comparative study four GSK3 inhibitors were characterized. Cytotoxicity and potential to activate the Wnt/beta-catenin pathway were tested using the commonly used GSK3 inhibitors BIO, SB-216763, CHIR-99021, and CHIR-98014. Wnt/beta-catenin-dependent target genes were measured by quantitative PCR to confirm the Wnt-reporter assay and finally EC50-values were calculated. CHIR-99021 and SB-216763 had the lowest toxicities in mouse embryonic stem cells and CHIR-98014 and BIO the highest toxicities. Only CHIR-99021 and CHIR-98014 lead to a strong induction of the Wnt/beta-catenin pathway, whereas BIO and SB-216763 showed a minor or no increase in activation of the Wnt/beta-catenin pathway over the natural ligand Wnt3a. The data from the Wnt-reporter assay were confirmed by gene expression analysis of the TCF/LEF regulated gene T. Out of the four tested GSK3 inhibitors, only CHIR-99021 and CHIR-98014 proved to be potent pharmacological activators of the Wnt/beta-catenin signaling pathway. But only in the case of CHIR-99021 high potency was combined with very low toxicity.

  4. Activation of the classical pathway of complement by tobacco glycoprotein (TGP).

    Science.gov (United States)

    Koethe, S M; Nelson, K E; Becker, C G

    1995-07-15

    Tobacco glycoprotein (TGP), a polyphenol-rich glycoprotein isolated from tobacco leaves, activates the classical complement pathway through a mechanism that appears to involve direct interaction with C1q. A binding site on C1q for TGP can be localized by competitive inhibition with DNA to a region located in the junction between the collagen-like and globular regions of the molecule. A protein with activity similar to TGP has also been isolated from cigarette smoke condensate (TGP-S); it shares a binding site on C1q with TGP and has similar functional activity, with the exception that complement activation does not proceed to formation of a C3 cleaving enzyme. The ability of TGP and TGP-S to activate complement can be partially duplicated using polyphenols associated with tobacco leaf and smoke, i.e., chlorogenic acid and rutin. These polyphenols also compete with TGP for a binding site on immobilized C1q, suggesting that the polyphenol portion of TGP is critical for activation of complement. These results provide an additional mechanism for complement activation by cigarette products that, in vivo, could result in a localized complement depletion, generation of biologically active complement cleavage products, and initiation of an inflammatory response.

  5. Several nuclear events during apoptosis depend on caspase-3 activation but do not constitute a common pathway.

    Directory of Open Access Journals (Sweden)

    Lisa Trisciuoglio

    Full Text Available A number of nuclear events occur during apoptosis, including DNA laddering, nuclear lamina breakdown, phosphorylation of histones H2B and histone H2AX, and the tight binding to chromatin of HMGB1 and CAD, the nuclease responsible for DNA laddering. We have performed an epistasis analysis to investigate whether these events cluster together in pathways. We find that all depend directly or indirectly on caspase-3 activation. CAD activation, H2AX phosphorylation and DNA laddering cluster together into a pathway, but all other events appear to be independent of each other downstream of caspase-3, and likely evolved subject to different functional pressures.

  6. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  7. Effects of the isoflavone genistein in early life stages of the Senegalese sole, Solea senegalensis: role of the Survivin and proliferation versus apoptosis pathways.

    Science.gov (United States)

    Sarasquete, Carmen; Úbeda-Manzanaro, María; Ortiz-Delgado, Juan B

    2018-01-17

    Phytochemical flavonoids are widely distributed in the environment and are derived from many anthropogenic activities. The isoflavone genistein is a naturally occurring compound found in soya products that are habitual constituents of the aquafeeds. This isoflavone possesses oestrogenic biological activity and also apoptotic properties. The present study has been performed to determine the effects of the genistein in the early life stages of the flatfish Senegalese sole during the first month of larval life, and it is focused especially at the metamorphosis, analysing the expression transcript levels and the immunohistochemical protein patterns implicated in the cell proliferation and apoptosis pathways (proliferation cellular/PCNA, anti-apoptosis Survivin/BIRC-5, death receptors/Fas, and Caspases). The isoflavone genistein induced some temporal disrupting effects in several pro-apoptotic signalling pathways (Fas, CASP-6) at both genistein doses (3 mg/L and 10 mg/L), with increased Fas transcripts and also decreasing CASP-6 mRNA expression levels during metamorphic and post-metamorphic stages of the Senegalese sole. On the other hand, the anti-apoptotic BIRC-5 expression levels were weakly down-regulated with both the highest and lowest doses, but all of these imbalances were stabilised to the baseline levels. In early life stages of the controls, the constitutive basal transcript levels were temporarily and differentially expressed, reaching the highest levels at the pre-metamorphosis phase, as especially in endotrophic larvae (i.e. BIRC-5 mRNA), as well as in the metamorphic (i.e. CASP-6 mRNA) and post-metamorphic stages (i.e. Fas mRNA). In general, through development, continuous and progressive increases in the protein patterns of cell proliferation-PCNA (e.g. mitotic nuclei), anti-apoptotic Survivin (e.g. haematopoietic system, brain, digestive system, gills) and CASP-2 and -6 (e.g. brain, gills, kidney, digestive system, vascular systems, among others

  8. Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs.

    Directory of Open Access Journals (Sweden)

    Jesús Villar

    Full Text Available BACKGROUND: Mechanical ventilation (MV with high tidal volumes (V(T can cause or aggravate lung damage, so-called ventilator induced lung injury (VILI. The relationship between specific mechanical events in the lung and the cellular responses that result in VILI remains incomplete. Since activation of Wnt/β-catenin signaling has been suggested to be central to mechanisms of lung healing and fibrosis, we hypothesized that the Wnt/β-catenin signaling plays a role during VILI. METHODOLOGY/PRINCIPAL FINDINGS: Prospective, randomized, controlled animal study using adult, healthy, male Sprague-Dawley rats. Animals (n = 6/group were randomized to spontaneous breathing or two strategies of MV for 4 hours: low tidal volume (V(T (6 mL/kg or high V(T (20 mL/kg. Histological evaluation of lung tissue, measurements of WNT5A, total β-catenin, non-phospho (Ser33/37/Thr41 β-catenin, matrix metalloproteinase-7 (MMP-7, cyclin D1, vascular endothelial growth factor (VEGF, and axis inhibition protein 2 (AXIN2 protein levels by Western blot, and WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, and AXIN2 immunohistochemical localization in the lungs were analyzed. High-V(T MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 in the lungs were increased in all ventilated animals although high-V(T MV was associated with significantly higher levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 levels. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.

  9. It's all connected: Pathways in visual object recognition and early noun learning.

    Science.gov (United States)

    Smith, Linda B

    2013-11-01

    A developmental pathway may be defined as the route, or chain of events, through which a new structure or function forms. For many human behaviors, including object name learning and visual object recognition, these pathways are often complex and multicausal and include unexpected dependencies. This article presents three principles of development that suggest the value of a developmental psychology that explicitly seeks to trace these pathways and uses empirical evidence on developmental dependencies among motor development, action on objects, visual object recognition, and object name learning in 12- to 24-month-old infants to make the case. The article concludes with a consideration of the theoretical implications of this approach. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  10. Fisetin Ameliorated Photodamage by Suppressing the Mitogen-Activated Protein Kinase/Matrix Metalloproteinase Pathway and Nuclear Factor-κB Pathways.

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chan, Shih-Yun; Chu, Yin; Wen, Kuo-Ching

    2015-05-13

    Ultraviolet (UV) irradiation is one of the most important extrinsic factors contributing to skin photodamage. After UV irradiation, a series of signal transductions in the skin will be activated, leading to inflammatory response and photoaged skin. In this study, fisetin, a flavonol that exists in fruits and vegetables, was investigated for its photoprotective effects. The results revealed that 5-25 μM fisetin inhibits cyclooxygenase-2 (COX-2) and matrix metalloproteinase (MMP)-1, MMP-3, MMP-9 expression induced by ultraviolet B (UVB) irradiation in human skin fibroblasts. In addition, fisetin suppressed UVB-induced collagen degradation. With regard to its effect on upper-stream signal transduction, we found that fisetin reduced the expression of ultraviolet (UV)-induced ERK, JNK, and p38 phosphorylation in the mitogen-activated protein kinase (MAP kinase) pathway. Furthermore, fisetin reduced inhibitor κB (IκB) degradation and increased the amount of p65, which is a major subunit of nuclear factor-κB (NF-κB), in cytoplasm. It also suppressed NF-κB translocated to the nucleus and inhibited cAMP response element-binding protein (CREB) Ser-133 phosphorylation level in the phosphoinositide 3-kinase/protein kinase B/CREB (PI3K/AKT/CREB) pathway. Finally, fisetin inhibited UV-induced intracellular reactive oxygen species (ROS), prostaglandin E2 (PGE2), and nitric oxide (NO) generation. The mentioned effects and mechanisms suggest that fisetin can be used in the development of photoprotective agents.

  11. Care pathways for dementia: current perspectives

    Directory of Open Access Journals (Sweden)

    Samsi K

    2014-11-01

    Full Text Available Kritika Samsi, Jill ManthorpeSocial Care Workforce Research Unit, King’s College London, London, UKAbstract: Uncertainty appears to typify the experience of living with dementia. With an uncertain illness trajectory and unpredictable levels of deterioration and stability in symptoms, people with a diagnosis of dementia may live with uncertainty and anxiety and find it hard to make plans or decisions for their future. People with memory problems and caregivers seeking a diagnosis of dementia may also potentially find themselves navigating a labyrinth-like maze of services, practitioners, assessments, and memory tests, with limited understanding of test scores and little information about what support is available. In this context of uncertainty, the apparent clarity and certainty of a “dementia care pathway” may be attractive. However, the term “dementia care pathway” has multiple and overlapping meanings, which can potentially give rise to further confusion if these are ill-defined or a false consensus is presumed. This review distinguishes four meanings: 1 a mechanism for the management and containment of uncertainty and confusion, useful for the professional as well as the person with dementia; 2 a manual for sequencing care activities; 3 a guide to consumers, indicating eligibility for care activities, or a guide to self-management for dementia dyads, indicating the appropriateness of care activities; and 4 a manual for “walking with” the person. Examples of these approaches are presented from UK dementia services with illustrations of existing care pathways and associated time points, specifically focusing on: 1 early symptom identification and first service encounters, 2 assessment process, 3 diagnostic disclosure, 4 postdiagnostic support, and 5 appropriate interventions. We review the evidence around these themes, as well as discuss service pathways and referral routes used by some services in England and internationally. We

  12. Sleep-Active Neurons: Conserved Motors of Sleep

    Science.gov (United States)

    Bringmann, Henrik

    2018-01-01

    Sleep is crucial for survival and well-being. This behavioral and physiological state has been studied in all major genetically accessible model animals, including rodents, fish, flies, and worms. Genetic and optogenetic studies have identified several neurons that control sleep, making it now possible to compare circuit mechanisms across species. The “motor” of sleep across animal species is formed by neurons that depolarize at the onset of sleep to actively induce this state by directly inhibiting wakefulness. These sleep-inducing neurons are themselves controlled by inhibitory or activating upstream pathways, which act as the “drivers” of the sleep motor: arousal inhibits “sleep-active” neurons whereas various sleep-promoting “tiredness” pathways converge onto sleep-active neurons to depolarize them. This review provides the first overview of sleep-active neurons across the major model animals. The occurrence of sleep-active neurons and their regulation by upstream pathways in both vertebrate and invertebrate species suggests that these neurons are general and ancient components that evolved early in the history of nervous systems. PMID:29618588

  13. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway

    Science.gov (United States)

    Pavlov, Valentin A.; Parrish, William R.; Rosas-Ballina, Mauricio; Ochani, Mahendar; Puerta, Margot; Ochani, Kanta; Chavan, Sangeeta; Al-Abed, Yousef; Tracey, Kevin J.

    2015-01-01

    The excessive release of cytokines by the immune system contributes importantly to the pathogenesis of inflammatory diseases. Recent advances in understanding the biology of cytokine toxicity led to the discovery of the “cholinergic anti-inflammatory pathway,” defined as neural signals transmitted via the vagus nerve that inhibit cytokine release through a mechanism that requires the alpha7 subunit-containing nicotinic acetylcholine receptor (α7nAChR). Vagus nerve regulation of peripheral functions is controlled by brain nuclei and neural networks, but despite considerable importance, little is known about the molecular basis for central regulation of the vagus nerve-based cholinergic anti-inflammatory pathway. Here we report that brain acetylcholinesterase activity controls systemic and organ specific TNF production during endotoxemia. Peripheral administration of the acetylcholinesterase inhibitor galantamine significantly reduced serum TNF levels through vagus nerve signaling, and protected against lethality during murine endotoxemia. Administration of a centrally-acting muscarinic receptor antagonist abolished the suppression of TNF by galantamine, indicating that suppressing acetylcholinesterase activity, coupled with central muscarinic receptors, controls peripheral cytokine responses. Administration of galantamine to α7nAChR knockout mice failed to suppress TNF levels, indicating that the α7nAChR-mediated cholinergic anti-inflammatory pathway is required for the anti-inflammatory effect of galantamine. These findings show that inhibition of brain acetylcholinesterase suppresses systemic inflammation through a central muscarinic receptor-mediated and vagal- and α7nAChR-dependent mechanism. Our data also indicate that a clinically used centrally-acting acetylcholinesterase inhibitor can be utilized to suppress abnormal inflammation to therapeutic advantage. PMID:18639629

  14. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    International Nuclear Information System (INIS)

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki

    2007-01-01

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway

  15. Free Fatty Acids Activate Renin-Angiotensin System in 3T3-L1 Adipocytes through Nuclear Factor-kappa B Pathway

    Directory of Open Access Journals (Sweden)

    Jia Sun

    2016-01-01

    Full Text Available The activity of a local renin-angiotensin system (RAS in the adipose tissue is closely associated with obesity-related diseases. However, the mechanism of RAS activation in adipose tissue is still unknown. In the current study, we found that palmitic acid (PA, one kind of free fatty acid, induced the activity of RAS in 3T3-L1 adipocytes. In the presence of fetuin A (Fet A, PA upregulated the expression of angiotensinogen (AGT and angiotensin type 1 receptor (AT1R and stimulated the secretion of angiotensin II (ANG II in 3T3-L1 adipocytes. Moreover, the activation of RAS in 3T3-L1 adipocytes was blocked when we blocked Toll-like receptor 4 (TLR4 signaling pathway using TAK242 or NF-κB signaling pathway using BAY117082. Together, our results have identified critical molecular mechanisms linking PA/TLR4/NF-κB signaling pathway to the activity of the local renin-angiotensin system in adipose tissue.

  16. Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways.

    Science.gov (United States)

    Jiang, Rulan; Lönnerdal, Bo

    2017-02-01

    Lactoferrin (Lf) is an iron-binding glycoprotein that is present at high concentrations in milk. Bovine lactoferricin (LfcinB) is a peptide fragment generated by pepsin proteolysis of bovine lactoferrin (bLf). LfcinB consists of amino acid residues 17-41 proximal to the N-terminus of bLf and a disulfide bond between residues 19 and 36, forming a loop. Both bLf and LfcinB have been demonstrated to have antitumor activities. Colorectal cancer is the second most common cause of cancer death in developed countries. We hypothesized that bLf and LfcinB exert antitumor activities on colon cancer cells (HT-29) by triggering various signaling pathways. bLf and LfcinB significantly induced apoptosis in HT-29 cells but not in normal human intestinal epithelial cells, as revealed by the ApoTox-Glo Triplex Assay. The LIVE/DEAD cell viability assay showed that both bLf and LfcinB reduced the viability of HT-29 cells. Transcriptome analysis indicated that bLf, cyclic LfcinB, and linear LfcinB exerted antitumor activities by differentially activating diverse signaling pathways, including p53, apoptosis, and angiopoietin signaling. Immunoblotting results confirmed that both bLf and LfcinBs increased expression of caspase-8, p53, and p21, critical proteins in tumor suppression. These results provide valuable information regarding bLf and LfcinB for potential clinical applications in colon cancer therapy.

  17. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development.

    Directory of Open Access Journals (Sweden)

    Clifford Liongue

    Full Text Available BACKGROUND: Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK-Signal transducer and activator of transcription (STAT pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP, Protein inhibitors against Stats (PIAS, and Suppressor of cytokine signaling (SOCS proteins across a diverse range of organisms. RESULTS: Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. CONCLUSION: Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.

  18. Paraoxon induces apoptosis in EL4 cells via activation of mitochondrial pathways.

    Science.gov (United States)

    Saleh, A M; Vijayasarathy, C; Masoud, L; Kumar, L; Shahin, A; Kambal, A

    2003-07-01

    The toxicity of organophosphorus compounds, such as paraoxon (POX), is due to their anticholinesterase action. Recently, we have shown that, at noncholinergic doses (1 to 10 nM), POX (the bioactive metabolite of parathion) causes apoptotic cell death in murine EL4 T-lymphocytic leukemia cell line through activation of caspase-3. In this study, by employing caspase-specific inhibitors, we extend our observations to elucidate the sequence of events involved in POX-stimulated apoptosis. Pretreatment of EL4 cells with the caspase-9-specific inhibitor zLEHD-fmk attenuated POX-induced apoptosis in a dose-dependent manner, whereas the caspase-8 inhibitor zIETD-fmk had no effect. Furthermore, the activation of caspase-9, -8, and -3 in response to POX treatment was completely inhibited in the presence of zLEHD-fmk, implicating the involvement of caspase 9-dependent mitochondrial pathways in POX-stimulated apoptosis. Indeed, under both in vitro and in vivo conditions, POX triggered a dose- and time-dependent translocation of cytochrome c from mitochondria into the cytosol, as assessed by Western blot analysis. Investigation of the mechanism of cytochrome c release revealed that POX disrupted mitochondrial transmembrane potential. Neither this effect nor cytchrome c release was dependent on caspase activation, since the general inhibitor of the caspase family zVAD-fmk did not influence both processes. Finally, POX treatment also resulted in a time-dependent up-regulation and translocation of the proapoptotic molecule Bax to mitochondria. Inhibition of this event by zVAD-fmk suggests that the activation and translocation of Bax to mitochondria is subsequent to activation of the caspase cascades. The results indicate that POX induces apoptosis in EL4 cells through a direct effect on mitochondria by disrupting its transmembrane potential, causing the release of cytochrome c into the cytosol and subsequent activation of caspase-9. Inhibition of this specific pathway might provide

  19. Influence of early pH decline on calpain activity in porcine muscle

    DEFF Research Database (Denmark)

    Pomponio, Luigi; Ertbjerg, Per; Karlsson, Anders H

    2010-01-01

    myofibril fragmentation at 24 h post-mortem was observed, which was no longer evident in the later phase of the tenderization process. In conclusion, the rate of early pH decline influenced l-calpain activity and the rate but not the extent of myofibrillar degradation, suggesting an early effect......This study investigated the influence of post-mortem pH decline on calpain activity and myofibrillar degradation.From 80 pigs, 30 Longissimus dorsi (LD) muscles were selected on the basis of pH values at 3 h post-mortem and classified into groups of 10 as fast, intermediate and slow pH decline...... measured. A faster decrease in pH resulted in reduced level of l-calpain activity and increased autolysis of the enzyme, and hence an earlier loss of activity due to activation of l-calpain in muscles with a fast pH decline. Paralleling the l-calpain activation in muscles with a fast pH decline a higher...

  20. Gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice

    Science.gov (United States)

    Fang, Yu; Chen, Hao; Hu, Yuhui; Djukic, Zorka; Tevebaugh, Whitney; Shaheen, Nicholas J.; Orlando, Roy C.; Hu, Jianguo

    2013-01-01

    The barrier function of the esophageal epithelium is a major defense against gastroesophageal reflux disease. Previous studies have shown that reflux damage is reflected in a decrease in transepithelial electrical resistance associated with tight junction alterations in the esophageal epithelium. To develop novel therapies, it is critical to understand the molecular mechanisms whereby contact with a refluxate impairs esophageal barrier function. In this study, surgical models of duodenal and mixed reflux were developed in mice. Mouse esophageal epithelium was analyzed by gene microarray. Gene set enrichment analysis showed upregulation of inflammation-related gene sets and the NF-κB pathway due to reflux. Significance analysis of microarrays revealed upregulation of NF-κB target genes. Overexpression of NF-κB subunits (p50 and p65) and NF-κB target genes (matrix metalloproteinases-3 and -9, IL-1β, IL-6, and IL-8) confirmed activation of the NF-κB pathway in the esophageal epithelium. In addition, real-time PCR, Western blotting, and immunohistochemical staining also showed downregulation and mislocalization of claudins-1 and -4. In a second animal experiment, treatment with an NF-κB inhibitor, BAY 11-7085 (20 mg·kg−1·day−1 ip for 10 days), counteracted the effects of duodenal and mixed reflux on epithelial resistance and NF-κB-regulated cytokines. We conclude that gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice and that targeting the NF-κB pathway may strengthen esophageal barrier function against reflux. PMID:23639809

  1. Physical Activity, Self-Regulation, and Early Academic Achievement in Preschool Children

    Science.gov (United States)

    Becker, Derek R.; McClelland, Megan M.; Loprinzi, Paul; Trost, Stewart G.

    2014-01-01

    Research Findings: The present study investigated whether active play during recess was associated with self-regulation and academic achievement in a prekindergarten sample. A total of 51 children in classes containing approximately half Head Start children were assessed on self-regulation, active play, and early academic achievement. Path…

  2. Mitochondrial targeting increases specific activity of a heterologous valine assimilation pathway in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kevin V. Solomon

    2016-12-01

    Full Text Available Bio-based isobutantol is a sustainable ‘drop in’ substitute for petroleum-based fuels. However, well-studied production routes, such as the Ehrlich pathway, have yet to be commercialized despite more than a century of research. The more versatile bacterial valine catabolism may be a competitive alternate route producing not only an isobutanol precursor but several carboxylic acids with applications as biomonomers, and building blocks for other advanced biofuels. Here, we transfer the first two committed steps of the pathway from pathogenic Pseudomonas aeruginosa PAO1 to yeast to evaluate their activity in a safer model organism. Genes encoding the heteroligomeric branched chain keto-acid dehydrogenase (BCKAD; bkdA1, bkdA2, bkdB, lpdV, and the homooligomeric acyl-CoA dehydrogenase (ACD; acd1 were tagged with fluorescence epitopes and targeted for expression in either the mitochondria or cytoplasm of S. cerevisiae. We verified the localization of our constructs with confocal fluorescence microscopy before measuring the activity of tag-free constructs. Despite reduced heterologous expression of mitochondria-targeted enzymes, their specific activities were significantly improved with total enzyme activities up to 138% greater than those of enzymes expressed in the cytoplasm. In total, our results demonstrate that the choice of protein localization in yeast has significant impact on heterologous activity, and suggests a new path forward for isobutanol production. Keywords: Pseudomonas, Isobutanol, Dehydrogenase, Mitochondria, Saccharomyces cerevisiae, Metabolic engineering

  3. A Longitudinal Empirical Investigation of the Pathways Model of Problem Gambling.

    Science.gov (United States)

    Allami, Youssef; Vitaro, Frank; Brendgen, Mara; Carbonneau, René; Lacourse, Éric; Tremblay, Richard E

    2017-12-01

    The pathways model of problem gambling suggests the existence of three developmental pathways to problem gambling, each differentiated by a set of predisposing biopsychosocial characteristics: behaviorally conditioned (BC), emotionally vulnerable (EV), and biologically vulnerable (BV) gamblers. This study examined the empirical validity of the Pathways Model among adolescents followed up to early adulthood. A prospective-longitudinal design was used, thus overcoming limitations of past studies that used concurrent or retrospective designs. Two samples were used: (1) a population sample of French-speaking adolescents (N = 1033) living in low socio-economic status (SES) neighborhoods from the Greater Region of Montreal (Quebec, Canada), and (2) a population sample of adolescents (N = 3017), representative of French-speaking students in Quebec. Only participants with at-risk or problem gambling by mid-adolescence or early adulthood were included in the main analysis (n = 180). Latent Profile Analyses were conducted to identify the optimal number of profiles, in accordance with participants' scores on a set of variables prescribed by the Pathways Model and measured during early adolescence: depression, anxiety, impulsivity, hyperactivity, antisocial/aggressive behavior, and drug problems. A four-profile model fit the data best. Three profiles differed from each other in ways consistent with the Pathways Model (i.e., BC, EV, and BV gamblers). A fourth profile emerged, resembling a combination of EV and BV gamblers. Four profiles of at-risk and problem gamblers were identified. Three of these profiles closely resemble those suggested by the Pathways Model.

  4. Ficolin-3-mediated lectin complement pathway activation in patients with subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Zanier, Elisa R; Zangari, Rosalia; Munthe-Fog, Lea

    2014-01-01

    OBJECTIVES: To assess the involvement of ficolin-3, the main initiator of the lectin complement pathway (LCP), in subarachnoid hemorrhage (SAH) pathology and outcome. METHODS: In this preliminary exploratory study, plasma concentration of ficolin-3 and of ficolin-3-mediated functional LCP activity...... the World Federation of Neurosurgical Societies grading scale; vasospasm, defined as neuro-worsening with angiographic confirmation of vessel narrowing; cerebral ischemia, defined as hypodense lesion on CT scan performed before discharge; and 6-month outcome, assessed using the Glasgow Outcome Scale....... RESULTS: In patients, no changes were detected for ficolin-3 compared with controls. Notably, however, ficolin-3-mediated functional LCP activity was reduced. Low levels of plasma ficolin-3 and ficolin-3-mediated functional LCP activity were related to SAH severity, vasospasm, and cerebral ischemia...

  5. Rapid effects of hearing song on catecholaminergic activity in the songbird auditory pathway.

    Directory of Open Access Journals (Sweden)

    Lisa L Matragrano

    Full Text Available Catecholaminergic (CA neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH, a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses.

  6. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong; Sun, Ying; Li, Shentao; Dou, Yunpeng [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Li, Zhanguo [Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People' s Hospital, No. 11 Xizhimen South Street, Beijing 100044 (China); Yuan, Huihui, E-mail: huihui_yuan@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Zhao, Wenming, E-mail: zhao-wenming@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China)

    2014-11-01

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.

  7. Communicating and Thinking through Drawing Activity in Early Childhood

    Science.gov (United States)

    Papandreou, Maria

    2014-01-01

    This article considers drawing as a meaning-making activity that takes place in certain sociocultural contexts to find evidence for its communicative potentials as well as the relationship between thought and drawing in early childhood. The researcher challenges traditional views about young children's drawing that focus on the result of the…

  8. Antibody constant region peptides can display immunomodulatory activity through activation of the Dectin-1 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Elena Gabrielli

    Full Text Available We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc of human IgG(1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules.

  9. Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development

    Directory of Open Access Journals (Sweden)

    Taylor Jennifer M

    2009-10-01

    Full Text Available Abstract Background Smad4 mutant embryos arrest shortly after implantation and display a characteristic shortened proximodistal axis, a significantly reduced epiblast, as well as a thickened visceral endoderm layer. Conditional rescue experiments demonstrate that bypassing the primary requirement for Smad4 in the extra-embryonic endoderm allows the epiblast to gastrulate. Smad4-independent TGF-β signals are thus sufficient to promote mesoderm formation and patterning. To further analyse essential Smad4 activities contributed by the extra-embryonic tissues, and characterise Smad4 dependent pathways in the early embryo, here we performed transcriptional profiling of Smad4 null embryonic stem (ES cells and day 4 embryoid bodies (EBs. Results Transcripts from wild-type versus Smad4 null ES cells and day 4 EBs were analysed using Illumina arrays. In addition to several known TGF-β/BMP target genes, we identified numerous Smad4-dependent transcripts that are mis-expressed in the mutants. As expected, mesodermal cell markers were dramatically down-regulated. We also observed an increase in non-canonical potency markers (Pramel7, Tbx3, Zscan4, germ cell markers (Aire, Tuba3a, Dnmt3l as well as early endoderm markers (Dpp4, H19, Dcn. Additionally, expression of the extracellular matrix (ECM remodelling enzymes Mmp14 and Mmp9 was decreased in Smad4 mutant ES and EB populations. These changes, in combination with increased levels of laminin alpha1, cause excessive basement membrane deposition. Similarly, in the context of the Smad4 null E6.5 embryos we observed an expanded basement membrane (BM associated with the thickened endoderm layer. Conclusion Smad4 functional loss results in a dramatic shift in gene expression patterns and in the endodermal cell lineage causes an excess deposition of, or an inability to breakdown and remodel, the underlying BM layer. These structural abnormalities probably disrupt reciprocal signalling between the epiblast and

  10. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation

    Directory of Open Access Journals (Sweden)

    Britta Muster

    2017-02-01

    Full Text Available Laser micro-irradiation can be used to induce DNA damage with high spatial and temporal resolution, representing a powerful tool to analyze DNA repair in vivo in the context of chromatin. However, most lasers induce a mixture of DNA damage leading to the activation of multiple DNA repair pathways and making it impossible to study individual repair processes. Hence, we aimed to establish and validate micro-irradiation conditions together with inhibition of several key proteins to discriminate different types of DNA damage and repair pathways using lasers commonly available in confocal microscopes. Using time-lapse analysis of cells expressing fluorescently tagged repair proteins and also validation of the DNA damage generated by micro-irradiation using several key damage markers, we show that irradiation with a 405 nm continuous wave laser lead to the activation of all repair pathways even in the absence of exogenous sensitization. In contrast, we found that irradiation with 488 nm laser lead to the selective activation of non-processive short-patch base excision and single strand break repair, which were further validated by PARP inhibition and metoxyamine treatment. We conclude that these low energy conditions discriminated against processive long-patch base excision repair, nucleotide excision repair as well as double strand break repair pathways.

  11. CR2-mediated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, C H; Marquart, H V; Prodinger, W M

    2001-01-01

    the alternative pathway. Blockade of the CR2 ligand-binding site with the monoclonal antibody FE8 resulted in 56 +/- 13% and 71 +/- 9% inhibition of the C3-fragment and MAC deposition, respectively, whereas the monoclonal antibody HB135, directed against an irrelevant CR2 epitope, had no effect. Blockade......Normal human B lymphocytes activate the alternative pathway of complement via complement receptor type 2 (CR2, CD21), that binds hydrolysed C3 (iC3) and thereby promotes the formation of a membrane-bound C3 convertase. We have investigated whether this might lead to the generation of a C5...... processes on CR2, indicate that MAC formation is a consequence of alternative pathway activation....

  12. Rainstorm Activities for Early Childhood Music Lessons Inspired by Teachable Moments

    Science.gov (United States)

    Poole, Harrison Grant

    2016-01-01

    Activities that focus on already familiar concepts are good starting points when designing early childhood music lessons. The author uses teachable moments, a spider in the classroom and a rainstorm, to design interdisciplinary preschool group activities that teach music, math, and science concepts. Dynamics and tempo are the music concepts that…

  13. The extrinsic cell death pathway and the élan mortel.

    Science.gov (United States)

    Wallach, D; Kang, T-B; Kovalenko, A

    2008-10-01

    Early in the exploration of the chemical nature of life, it was widely believed that the molecules of living organisms, by their very nature, differ from those of inorganic material molecules and possess a vital force ('élan vital'). Similarly, early scientific thinking on the subject of cell death and its induction by cytotoxic cells of the immune system was pervaded by a sense that the molecules mediating these functions possess intrinsic deadly activity and are dedicated exclusively to death-related tasks. This impression was also reflected in the initial notions of the mode of action of intracellular proteins that signal for death. It is now gradually becoming clear, however, that proteins participating in death induction also have functions unrelated to death. Nevertheless, as exemplified by studies of the function of caspase-8 (an enzyme that signals both for activation of the extrinsic cell-death pathway and for non-death-related effects), analysis of the mechanistic basis for such heterogeneity might allow identification of distinct structural determinants in the proteins participating in death induction that do bear death specificity.

  14. The low-dose combination preparation Vertigoheel activates cyclic nucleotide pathways and stimulates vasorelaxation.

    Science.gov (United States)

    Heinle, H; Tober, C; Zhang, D; Jäggi, R; Kuebler, W M

    2010-01-01

    Vertigo of various and often unknown aetiologies has been associated with and attributed to impaired microvascular perfusion in the inner ear or the vertebrobasilar system. Vertigoheel is a low-dose combination preparation of proven value in the symptomatic treatment of vertigo. In the present study we tested the hypothesis that Vertigoheel's anti-vertiginous properties may in part be due to a vasodilatory effect exerted via stimulation of the adenylate and/or guanylate cyclase pathways. Thus, the influence of Vertigoheel or its single constituents on synthesis and degradation of cyclic nucleotides was measured. Furthermore, vessel myography was used to observe the effect of Vertigoheel on the vasoreactivity of rat carotid arteries. Vertigoheel and one of its constituents, Anamirta cocculus, stimulated adenylate cyclase activity, while another constituent, Conium maculatum, inhibited phosphodiesterase 5, suggesting that the individual constituents of Vertigoheel contribute differentially to a synergistic stimulation of cyclic nucleotide signalling pathways. In rat carotid artery rings, Vertigoheel counteracted phenylephrine-induced tonic vasoconstriction. The present data demonstrate a vasorelaxant effect of Vertigoheel that goes along with a synergistic stimulation of cyclic nucleotide pathways and may provide a mechanistic basis for the documented anti-vertiginous effects of this combination preparation.

  15. Bioactive lysophospholipids generated by hepatic lipase degradation of lipoproteins lead to complement activation via the classical pathway.

    Science.gov (United States)

    Ma, Wanchao; Paik, David C; Barile, Gaetano R

    2014-09-09

    We determined bioactivity of lysophospholipids generated by degradation of the low-density (LDL), very low-density (VLDL), and high-density (HDL) lipoproteins with hepatic lipase (HL), cholesterol esterase (CE), and lipoprotein-associated phospholipase A2 (Lp-PLA2). The LDL, VLDL, and HDL were treated with HL, CE, and Lp-PLA2 after immobilization on plates, and complement activation studies were performed with diluted human serum. Complement component 3 (C3) fixation, a marker for complement activation, was determined with a monoclonal anti-human C3d antibody. Enzymatic properties of HL and CE were assayed with triglyceride and phosphatidylcholine substrates for triglyceride hydrolase and phospholipase A activities. The ARPE-19 cells were used for viability studies. The HL degradation of human lipoproteins LDL, VLDL, or HDL results in the formation of modified lipoproteins that can activate the complement pathway. Complement activation is dose- and time-dependent upon HL and occurs via the classical pathway. Enzymatic studies suggest that the phospholipase A1 activity of HL generates complement-activating lysophospholipids. C-reactive protein (CRP), known to simultaneously interact with complement C1 and complement factor H (CFH), further enhances HL-induced complement activation. The lysophospholipids, 1-Palmitoyl-sn-glycero-3-phosphocholine and 1-Oleoyl-sn-glycero-3-phosphocholine, can be directly cytotoxic to ARPE-19 cells. The HL degradation of lipoproteins, known to accumulate in the outer retina and in drusen, can lead to the formation of bioactive lysophospholipids that can trigger complement activation and induce RPE cellular dysfunction. Given the known risk associations for age-related macular degeneration (AMD) with HL, CRP, and CFH, this study elucidates a possible damage pathway for age-related macular degeneration (AMD) in genetically predisposed individuals, that HL activity may lead to accumulation of lysophospholipids to initiate complement

  16. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway.

    Science.gov (United States)

    Huang, Juan; Huang, Kaipeng; Lan, Tian; Xie, Xi; Shen, Xiaoyan; Liu, Peiqing; Huang, Heqing

    2013-01-30

    Curcumin, a major polyphenol from the golden spice Curcuma longa commonly known as turmeric, has been recently discovered to have renoprotective effects on diabetic nephropathy (DN). However, the mechanisms underlying these effects remain unclear. We previously demonstrated that the sphingosine kinase 1-sphingosine 1-phosphate (SphK1-S1P) signaling pathway plays a pivotal role in the pathogenesis of DN. This study aims to investigate whether the renoprotective effects of curcumin on DN are associated with its inhibitory effects on the SphK1-S1P signaling pathway. Our results demonstrated that the expression and activity of SphK1 and the production of S1P were significantly down-regulated by curcumin in diabetic rat kidneys and glomerular mesangial cells (GMCs) exposed to high glucose (HG). Simultaneously, SphK1-S1P-mediated fibronectin (FN) and transforming growth factor-beta 1 (TGF-β1) overproduction were inhibited. In addition, curcumin dose dependently reduced SphK1 expression and activity in GMCs transfected with SphK(WT) and significantly suppressed the increase in SphK1-mediated FN levels. Furthermore, curcumin inhibited the DNA-binding activity of activator protein 1 (AP-1), and c-Jun small interference RNA (c-Jun-siRNA) reversed the HG-induced up-regulation of SphK1. These findings suggested that down-regulation of the SphK1-S1P pathway is probably a novel mechanism by which curcumin improves the progression of DN. Inhibiting AP-1 activation is one of the therapeutic targets of curcumin to modulate the SphK1-S1P signaling pathway, thereby preventing diabetic renal fibrosis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Proteomic Insights into the Protective Mechanisms of an In Vitro Oxidative Stress Model of Early Stage Parkinson’s Disease

    OpenAIRE

    Bauereis, Brian; Haskins, William E.; LeBaron, Richard G.; Renthal, Robert

    2010-01-01

    Previous studies in Parkinson's disease (PD) models suggest that early events along the path to neurodegeneration involve activation of the ubiquitin-proteasome system (UPS), endoplasmic reticulum-associated degradation (ERAD), and the unfolded protein response (UPR) pathways, in both the sporadic and familial forms of the disease, and thus ER stress may be a common feature. Furthermore, impairments in protein degradation have been linked to oxidative stress as well as pathways associated wit...

  18. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome. © 2015. Published by The Company of Biologists Ltd.

  19. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    Science.gov (United States)

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  20. A new analysis approach of epidermal growth factor receptor pathway activation patterns provides insights into cetuximab resistance mechanisms in head and neck cancer

    Directory of Open Access Journals (Sweden)

    von der Heyde Silvia

    2012-05-01

    Full Text Available Abstract The pathways downstream of the epidermal growth factor receptor (EGFR have often been implicated to play crucial roles in the development and progression of various cancer types. Different authors have proposed models in cell lines in which they study the modes of pathway activities after perturbation experiments. It is prudent to believe that a better understanding of these pathway activation patterns might lead to novel treatment concepts for cancer patients or at least allow a better stratification of patient collectives into different risk groups or into groups that might respond to different treatments. Traditionally, such analyses focused on the individual players of the pathways. More recently in the field of systems biology, a plethora of approaches that take a more holistic view on the signaling pathways and their downstream transcriptional targets has been developed. Fertig et al. have recently developed a new method to identify patterns and biological process activity from transcriptomics data, and they demonstrate the utility of this methodology to analyze gene expression activity downstream of the EGFR in head and neck squamous cell carcinoma to study cetuximab resistance. Please see related article: http://www.biomedcentral.com/1471-2164/13/160

  1. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    Science.gov (United States)

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  2. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production

    Directory of Open Access Journals (Sweden)

    Rusu Anca

    2010-12-01

    Full Text Available Abstract Background The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine and amino acids (e.g. arginine and ornithine are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied. Results Following inoculation of susceptible wheat heads by F. graminearum, DON accumulation was detected at two days after inoculation. The accumulation of putrescine was detected as early as one day following inoculation while arginine and cadaverine were also produced at three and four days post-inoculation. Transcripts of ornithine decarboxylase (ODC and arginine decarboxylase (ADC, two key biosynthetic enzymes for putrescine biosynthesis, were also strongly induced in heads at two days after inoculation. These results indicated that elicitation of the polyamine biosynthetic pathway is an early response to FHB. Transcripts for genes encoding enzymes acting upstream in the polyamine biosynthetic pathway as well as those of ODC and ADC, and putrescine levels were also induced in the rachis, a flower organ supporting DON production and an important route for pathogen colonisation during FHB. A survey of 24 wheat genotypes with varying responses to FHB showed putrescine induction is a general response to inoculation and no correlation was observed between the accumulation of putrescine and infection or DON accumulation. Conclusions The activation of the polyamine biosynthetic

  3. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway.

    OpenAIRE

    Puil, L; Liu, J; Gish, G; Mbamalu, G; Bowtell, D; Pelicci, P G; Arlinghaus, R; Pawson, T

    1994-01-01

    The cytosolic 185 and 210 kDa Bcr-Abl protein tyrosine kinases play important roles in the development of Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (Ph+ ALL). p185 and p210 Bcr-Abl contain identical abl-encoded sequences juxtaposed to a variable number of bcr-derived amino acids. As the mitogenic and transforming activities of tyrosine kinases involve stimulation of the Ras pathway, we analyzed Bcr-Abl oncoproteins for interacti...

  4. Activation of the interleukin-6/Janus kinase/STAT3 pathway in pleomorphic adenoma of the parotid gland

    DEFF Research Database (Denmark)

    Andreasen, Simon; Therkildsen, Marianne Hamilton; Grauslund, Morten

    2015-01-01

    The interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway is of crucial importance in promoting tumorigenesis in several malignant tumors but may also be active in benign tumors, e.g., of pleomorphic adenoma (PA). In this study we characterize ...

  5. Identifying early pathways of risk and resilience: The co-development of internalizing and externalizing symptoms and the role of harsh parenting

    Science.gov (United States)

    Wiggins, Jillian Lee; Mitchell, Colter; Hyde, Luke W.; Monk, Christopher S.

    2016-01-01

    Psychological disorders co-occur often in children, but little has been done to document the types of conjoint pathways internalizing and externalizing symptoms may take from the crucial early period of toddlerhood or how harsh parenting may overlap with early symptom co-development. To examine symptom co-development trajectories, we identified latent classes of individuals based on internalizing and externalizing symptoms across ages 3–9 and found three symptom co-development classes: normative symptoms (low), severe-decreasing symptoms (initially high but rapidly declining) and severe symptoms (high) trajectories. Next, joint models examined how parenting trajectories overlapped with internalizing and externalizing symptom trajectories. These trajectory classes demonstrated that, normatively, harsh parenting increased after toddlerhood, but the severe symptoms class was characterized by a higher level and steeper increase in harsh parenting and the severe-decreasing class by high, stable harsh parenting. Additionally, a transactional model examined the bi-directional relationships among internalizing and externalizing symptoms and harsh parenting as they may cascade over time in this early period. Harsh parenting uniquely contributed to externalizing symptoms, controlling for internalizing symptoms, but not vice versa. Also, internalizing symptoms appeared to be a mechanism by which externalizing symptoms increase. Results highlight the importance accounting for both internalizing and externalizing symptoms from an early age to understand risk for developing psychopathology and the role harsh parenting plays in influencing these trajectories. PMID:26439075

  6. Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-κB/c-Fos/NFATc1 Pathways.

    Directory of Open Access Journals (Sweden)

    Zhi-Feng Wei

    Full Text Available Norisoboldine (NOR is the main alkaloid constituent in the dry root of Lindera aggregata (Sims Kosterm. (L. strychnifolia Vill.. As reported previously, orally administered NOR displayed a robust inhibition of joint bone destruction present in both mouse collagen-induced arthritis and rat adjuvant-induced arthritis with lower efficacious doses than that required for ameliorating systemic inflammation. This attracted us to assess the effects of NOR on differentiation and function of osteoclasts, primary effector cells for inflammatory bone destruction, to get insight into its anti-rheumatoid arthritis mechanisms. Both RAW264.7 cells and mouse bone marrow-derived macrophages (BMMs were stimulated with RANKL (100 ng/mL to establish osteoclast differentiation models. ELISA, RT-PCR, gelatin zymography, western blotting, immunoprecipitation and EMSA were used to reveal related signalling pathways. NOR (10 and 30 µM, without significant cytotoxicity, showed significant reduction of the number of osteoclasts and the resorption pit areas, and it targeted osteoclast differentiation at the early stage. In conjunction with the anti-resorption effect of NOR, mRNA levels of cathepsin K and MMP-9 were decreased, and the activity of MMP-9 was attenuated. Furthermore, our mechanistic studies indicated that NOR obviously suppressed the ubiquitination of TRAF6, the accumulation of TRAF6-TAK1 complexes and the activation of ERK and p38 MAPK, and reduced the nuclear translocation of NF-κB-p65 and DNA-binding activity of NF-κB. However, NOR had little effect on expressions of TRAF6 or the phosphorylation and degradation of IκBα. Moreover, NOR markedly inhibited expressions of transcription factor NFATc1, but not c-Fos. Intriguingly, the subsequent nuclear translocations of c-Fos and NFATc1 were substantially down-regulated. Hence, we demonstrated for the first time that preventing the differentiation and function of osteoclasts at the early stage was an

  7. Reduced butyrylcholinesterase activity is an early indicator of trauma-induced acute systemic inflammatory response

    Directory of Open Access Journals (Sweden)

    Zivkovic AR

    2016-11-01

    Full Text Available Aleksandar R Zivkovic, Jochen Bender, Thorsten Brenner, Stefan Hofer,* Karsten Schmidt* Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany *These authors contributed equally to this work Purpose: Early diagnosis of systemic inflammatory response syndrome is fundamentally important for an effective and a goal-directed therapy. Various inflammation biomarkers have been used in clinical and experimental practice. However, a definitive diagnostic tool for an early detection of systemic inflammation remains to be identified. Acetylcholine (Ach has been shown to play an important role in the inflammatory response. Serum cholinesterase (butyrylcholinesterase [BChE] is the major Ach hydrolyzing enzyme in blood. The role of this enzyme during inflammation has not yet been fully understood. This study tests whether a reduction in the BChE activity could indicate the onset of the systemic inflammatory response upon traumatic injury. Patients and methods: This observational study measured BChE activity in patients with traumatic injury admitted to the emergency room by using point-of-care-test system (POCT. In addition, the levels of routine inflammation biomarkers during the initial treatment period were measured. Injury Severity Score was used to assess the trauma severity. Results: Altered BChE activity was correlated with trauma severity, resulting in systemic inflammation. Reduction in the BChE activity was detected significantly earlier compared to those of routinely measured inflammatory biomarkers. Conclusion: This study suggests that the BChE activity reduction might serve as an early indicator of acute systemic inflammation. Furthermore, BChE activity, measured using a POCT system, might play an important role in the early diagnosis of the trauma-induced systemic inflammation. Keywords: trauma, injury, early diagnostics, cholinergic, pseudocholinesterase, SIRS

  8. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development

    OpenAIRE

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; Nakayama, Takuya; Shah, Anoop; Grainger, Robert M.; White, Judith M.; DeSimone, Douglas W.

    2011-01-01

    Pericellular proteolysis by ADAM family metalloproteinases has been widely implicated in cell signaling and development. We recently found that Xenopus ADAM13, an ADAM metalloproteinase, is required for activation of canonical Wnt signaling during cranial neural crest (CNC) induction by regulating a novel crosstalk between Wnt and ephrin B (EfnB) signaling pathways (Wei et al., 2010b). In the present study we show that the metalloproteinase activity of ADAM13 also plays important roles in eye...

  9. Linker for activation of T cells is displaced from lipid rafts and decreases in lupus T cells after activation via the TCR/CD3 pathway.

    Science.gov (United States)

    Abdoel, Nursamaa; Brun, Susana; Bracho, Carmen; Rodríguez, Martín A; Blasini, Ana M

    2012-03-01

    Systemic lupus erythematosus (SLE) is characterized by abnormal signal transduction mechanisms in T lymphocytes. Linker for activation of T cells (LAT) couples TCR/CD3 activation with downstream signaling pathways. We reported diminished ERK 1/2 kinase activity in TCR/CD3 stimulated lupus T cells. In this study we evaluated the expression, phosphorylation, lipid raft and immunological synapse (IS) localization and colocalization of LAT with key signalosome molecules. We observed a diminished expression and an abnormal localization of LAT in lipid rafts and at the IS in activated lupus T cells. LAT phosphorylation, capture by GST-Grb2 fusion protein, and coupling to Grb2 and PLCγ1, was similar in healthy control and lupus T cells. Our results suggest that an abnormal localization of LAT within lipid rafts and its accelerated degradation after TCR/CD3 activation may compromise the assembly of the LAT signalosome and downstream signaling pathways required for full MAPK activation in lupus T cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.

    Science.gov (United States)

    Zhang, B; Zhang, B; Chen, X; Bae, S; Singh, K; Washington, M K; Datta, P K

    2014-02-18

    Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown. We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed. Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays. Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU.

  11. Reconstruction of the gene regulatory network involved in the sonic hedgehog pathway with a potential role in early development of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Jinhua Liu

    2014-10-01

    Full Text Available The Sonic hedgehog (Shh signaling pathway is crucial for pattern formation in early central nervous system development. By systematically analyzing high-throughput in situ hybridization data of E11.5 mouse brain, we found that Shh and its receptor Ptch1 define two adjacent mutually exclusive gene expression domains: Shh+Ptch1- and Shh-Ptch1+. These two domains are associated respectively with Foxa2 and Gata3, two transcription factors that play key roles in specifying them. Gata3 ChIP-seq experiments and RNA-seq assays on Gata3-knockdown cells revealed that Gata3 up-regulates the genes that are enriched in the Shh-Ptch1+ domain. Important Gata3 targets include Slit2 and Slit3, which are involved in the process of axon guidance, as well as Slc18a1, Th and Qdpr, which are associated with neurotransmitter synthesis and release. By contrast, Foxa2 both up-regulates the genes expressed in the Shh+Ptch1- domain and down-regulates the genes characteristic of the Shh-Ptch1+ domain. From these and other data, we were able to reconstruct a gene regulatory network governing both domains. Our work provides the first genome-wide characterization of the gene regulatory network involved in the Shh pathway that underlies pattern formation in the early mouse brain.

  12. Niacin activates the PI3K/Akt cascade via PKC- and EGFR-transactivation-dependent pathways through hydroxyl-carboxylic acid receptor 2.

    Directory of Open Access Journals (Sweden)

    Huawang Sun

    Full Text Available Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.

  13. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways

    Science.gov (United States)

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, DL; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-01-01

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm2) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  14. Liver X receptor activation inhibits PC-3 prostate cancer cells via the beta-catenin pathway.

    Science.gov (United States)

    Youlin, Kuang; Li, Zhang; Weiyang, He; Jian, Kang; Siming, Liang; Xin, Gou

    2017-03-01

    Liver X receptors (LXRs) are nuclear receptors family of ligand-dependent transcription factors that play a crucial role in regulating cholesterol metabolism and inflammation. Recent studies show that LXR agonists exhibit anti-cancer activities in a variety of cancer cell lines including prostate. To further identify the potential mechanisms of LXRα activation on prostate cancer, we investigated the effect of LXR agonist T0901317 on PC3 prostate cancer cell and in which activity of beta-catenin pathway involved. Prostate cancer PC3 cells were transfected with LXR-a siRNA and treated with LXR activator T0901317. qRT-PCR and western blot were used to detect the LXR-a expression. beta-catenin, cyclin D1 and c-MYC were analyzed by western blot. Cell apoptosis was examined by flow cytometry and Cell proliferation was assessed by Cell Counting Kit-8 assay. Cell migration was detected by Transwell chambers. Data showed that T0901317 significantly inhibited PC3 cell proliferation as well as invasion and increased apoptosis in vitro. Furthermore, we found that LXRα activation induced the reduction of beta-catenin expression in PC3 cells, and this inhibitory effect could be totally abolished when cells were treated with LXRα. Meanwhile, the expression of beta-catenin target gene cyclin D1 and c-MYC were also decreased. This study provided additional evidence that LXR activation inhibited PC-3 prostate cancer cells via suppressing beta-catenin pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line.

    Science.gov (United States)

    Vassbotn, F S; Ostman, A; Langeland, N; Holmsen, H; Westermark, B; Heldin, C H; Nistér, M

    1994-02-01

    Human glioblastoma cells (A172) were found to concomitantly express PDGF-BB and PDGF beta-receptors. The receptors were constitutively autophosphorylated in the absence of exogenous ligand, suggesting the presence of an autocrine PDGF pathway. Neutralizing PDGF antibodies as well as suramin inhibited the autonomous PDGF receptor tyrosine kinase activity and resulted in up-regulation of receptor protein. The interruption of the autocrine loop by the PDGF antibodies reversed the transformed phenotype of the glioblastoma cell, as determined by (1) diminished DNA synthesis, (2) inhibition of tumor colony growth, and (3) reversion of the transformed morphology of the tumor cells. The PDGF antibodies showed no effect on the DNA synthesis of another glioblastoma cells line (U-343MGa 31L) or on Ki-ras-transformed fibroblasts. The present study demonstrates an endogenously activated PDGF pathway in a spontaneous human glioblastoma cell line. Furthermore, we provide evidence that the autocrine PDGF pathway drives the transformed phenotype of the tumor cells, a process that can be blocked by extracellular antagonists.

  16. Activated platelet-derived growth factor β receptor and Ras-mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas.

    Science.gov (United States)

    Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe

    2012-03-01

    Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Estrogen deficiency inhibits the odonto/osteogenic differentiation of dental pulp stem cells via activation of the NF-κB pathway.

    Science.gov (United States)

    Wang, Yanping; Yan, Ming; Yu, Yan; Wu, Jintao; Yu, Jinhua; Fan, Zhipeng

    2013-06-01

    Various factors can affect the functions of dental pulp stem cells (DPSCs). However, little knowledge is available about the effects of estrogen deficiency on the differentiation of DPSCs. In this study, an estrogen-deficient rat model was constructed and multi-colony-derived DPSCs were obtained from the incisors of ovariectomized (OVX) or sham-operated rats. Odonto/osteogenic differentiation and the possible involvement of the nuclear factor kappa B (NF-κB) pathway in the OVX-DPSCs/Sham-DPSCs of these rats were then investigated. OVX-DPSCs presented decreased odonto/osteogenic capacity and an activated NF-κB pathway, as compared with Sham-DPSCs. When the cellular NF-κB pathway was specifically inhibited by BMS345541, the odonto/osteogenic potential in OVX-DPSCs was significantly upregulated. Thus, estrogen deficiency down-regulated the odonto/osteogenic differentiation of DPSCs by activating NF-κB signaling and inhibition of the NF-κB pathway effectively rescued the decreased differentiation potential of DPSCs.

  18. Views of adolescent female youth on physical activity during early adolescence.

    Science.gov (United States)

    Yungblut, Hope E; Schinke, Robert J; McGannon, Kerry R

    2012-01-01

    Early adolescence is a time when a transition away from sport and physical activity participation is at its highest level among female youth (Hedstrom & Gould, 2004). This has led to the identification of barriers and facilitators of physical activity participation for adolescent females. Consequently there have been calls to overcome barriers and augment facilitators via the creation of gender-relevant programming. Despite these calls and efforts, a gender disparity remains, and a detailed understanding of how girls experience and interpret physical activity within the context of their lives is still lacking. The current project aimed to gain further insight into the foregoing using tenets of Interpretive Phenomenology to further understand the lived physical activity experiences of females during early adolescence, delineating their barriers to participation and the factors enabling participation. Five themes were identified and made into vignettes to facilitate understanding from adolescent females' perspectives: friends or don't know anyone, good or not good enough, fun or not fun; good feeling or gross; and peer support or peer pressure. The physical activity promotion implications for female youth are discussed within the context of these themes.

  19. VIEWS OF ADOLESCENT FEMALE YOUTH ON PHYSICAL ACTIVITY DURING EARLY ADOLESCENCE

    Directory of Open Access Journals (Sweden)

    Hope E. Yungblut

    2012-03-01

    Full Text Available Early adolescence is a time when a transition away from sport and physical activity participation is at its highest level among female youth (Hedstrom & Gould, 2004. This has led to the identification of barriers and facilitators of physical activity participation for adolescent females. Consequently there have been calls to overcome barriers and augment facilitators via the creation of gender-relevant programming. Despite these calls and efforts, a gender disparity remains, and a detailed understanding of how girls experience and interpret physical activity within the context of their lives is still lacking. The current project aimed to gain further insight into the foregoing using tenets of Interpretive Phenomenology to further understand the lived physical activity experiences of females during early adolescence, delineating their barriers to participation and the factors enabling participation. Five themes were identified and made into vignettes to facilitate understanding from adolescent females' perspectives: friends or don't know anyone, good or not good enough, fun or not fun; good feeling or gross; and peer support or peer pressure. The physical activity promotion implications for female youth are discussed within the context of these themes.

  20. Tissue factor pathway inhibitor for prediction of placenta-mediated adverse pregnancy outcomes in high-risk women: AngioPred study.

    Directory of Open Access Journals (Sweden)

    Aurélie Di Bartolomeo

    Full Text Available The study aimed to evaluate if the rate of tissue factor pathway inhibitor during pregnancy and following delivery could be a predictive factor for placenta-mediated adverse pregnancy outcomes in high-risk women.This was a prospective multicentre cohort study of 200 patients at a high risk of occurrence or recurrence of placenta-mediated adverse pregnancy outcomes conducted between June 2008 and October 2010. Measurements of tissue factor pathway inhibitor resistance (normalized ratio and tissue factor pathway inhibitor activity were performed for the last 72 patients at 20, 24, 28, 32, and 36 weeks of gestation and during the postpartum period.Overall, 15 patients presented a placenta-mediated adverse pregnancy outcome. There was no difference in normalized tissue factor pathway inhibitor ratios between patients with and without placenta-mediated adverse pregnancy outcomes during pregnancy and in the post-partum period. Patients with placenta-mediated adverse pregnancy outcomes had tissue factor pathway inhibitor activity rates that were significantly higher than those in patients without at as early as 24 weeks of gestation. The same results were observed following delivery.Among high-risk women, the tissue factor pathway inhibitor activity of patients with gestational vascular complications is higher than that in other patients. Hence, these markers could augment a screening strategy that includes an analysis of angiogenic factors as well as clinical and ultrasound imaging with Doppler measurement of the uterine arteries.