WorldWideScience

Sample records for earliest silver extraction

  1. Extraction of Silver by Glucose.

    Science.gov (United States)

    Baksi, Ananya; Gandi, Mounika; Chaudhari, Swathi; Bag, Soumabha; Gupta, Soujit Sen; Pradeep, Thalappil

    2016-06-27

    Unprecedented silver ion leaching, in the range of 0.7 ppm was seen when metallic silver was heated in water at 70 °C in presence of simple carbohydrates, such as glucose, making it a green method of silver extraction. Extraction was facilitated by the presence of anions, such as carbonate and phosphate. Studies confirm a two-step mechanism of silver release, first forming silver ions at the metal surface and later complexation of ionic silver with glucose; such complexes have been detected by mass spectrometry. Extraction leads to microscopic roughening of the surface making it Raman active with an enhancement factor of 5×10(8) .

  2. Technique: imaging earliest tooth development in 3D using a silver-based tissue contrast agent.

    Science.gov (United States)

    Raj, Muhammad T; Prusinkiewicz, Martin; Cooper, David M L; George, Belev; Webb, M Adam; Boughner, Julia C

    2014-02-01

    Looking in microscopic detail at the 3D organization of initiating teeth within the embryonic jaw has long-proved technologically challenging because of the radio-translucency of these tiny un-mineralized oral tissues. Yet 3D image data showing changes in the physical relationships among developing tooth and jaw tissues are vital to understand the coordinated morphogenesis of vertebrate teeth and jaws as an animal grows and as species evolve. Here, we present a new synchrotron-based scanning solution to image odontogenesis in 3D and in histological detail using a silver-based contrast agent. We stained fixed, intact wild-type mice aged embryonic (E) day 10 to birth with 1% Protargol-S at 37°C for 12-32 hr. Specimens were scanned at 4-10 µm pixel size at 28 keV, just above the silver K-edge, using micro-computed tomography (µCT) at the Canadian Light Source synchrotron. Synchrotron µCT scans of silver-stained embryos showed even the earliest visible stages of tooth initiation, as well as many other tissue types and structures, in histological detail. Silver stain penetration was optimal for imaging structures in intact embryos E15 and younger. This silver stain method offers a powerful yet straightforward approach to visualize at high-resolution and in 3D the earliest stages of odontogenesis in situ, and demonstrates the important of studying the tooth organ in all three planes of view. Copyright © 2013 Wiley Periodicals, Inc.

  3. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  4. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  5. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    Science.gov (United States)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  6. Biosynthesis of silver nanoparticles by plants crude extracts and ...

    African Journals Online (AJOL)

    Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX. ... African Journal of Biotechnology ... Plant extracts are very cost effective and eco-friendly, thus, can be an economic and ...

  7. Synthesis of silver nanoparticle using Portulaca oleracea L. extracts

    Directory of Open Access Journals (Sweden)

    Shahbazi Nafeseh

    2013-09-01

    Full Text Available   Objective(s: To evaluate the influences of aqueous extracts of plant parts (stem, leaves, and root of Portulaca oleracea L. on bioformation of silver nanoparticles (AgNPs.   Materials and Methods: Synthesis of silver nanoparticles by different plant part extracts of Portulaca oleracea L. was carried out and formation of nanoparticles were confirmed and evaluated using UV-Visible spectroscopy and AFM. Results: The plant extracts exposed with silver nitrate showed gradual change in color of the extract from yellow to dark brown. Different silver nanoperticles were formed using extracts of different plant parts. Conclusion: It seems that the plant parts differ in their ability to act as a reducing and capping agent.

  8. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  9. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract.

    Science.gov (United States)

    Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H

    2013-01-01

    The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs' surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines.

  10. Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract

    Directory of Open Access Journals (Sweden)

    Gregory Von White

    2012-01-01

    Full Text Available This paper details a facile approach for the synthesis of stable and monodisperse silver nanoparticles performed at ambient/low temperature, where Allium sativum (garlic extract functions as the silver salt reducing agent during nanoparticle synthesis as well as the postsynthesis stabilizing ligands. Varying the synthesis conditions provides control of particle size, size-distribution, and kinetics of particle formation. Infrared spectroscopy, energy dispersive X-ray chemical analysis, and high-performance liquid chromatography indicated that allicin and other carbohydrates in the garlic extract are the primary nanoparticle stabilizing moieties. The synthesized silver nanoparticles also demonstrate potential for biomedical applications, owing to (1 enhanced stability in biological media, (2 resistance to oxidation by the addition of H2O2, (3 ease and scalability of synthesis, and (4 lack of harsh chemicals required for synthesis. Cytotoxicity assays indicated no decrease in cellular proliferation for vascular smooth muscle cells and 3T3 fibroblasts at a concentration of 25 μg/mL, confirming that silver nanoparticles synthesized with garlic extract are potential candidates for future experimentation and implementation in the biomedical field.

  11. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract

    Directory of Open Access Journals (Sweden)

    Khan M

    2013-04-01

    Full Text Available Mujeeb Khan,1 Merajuddin Khan,1 Syed Farooq Adil,1 Muhammad Nawaz Tahir,2 Wolfgang Tremel,2 Hamad Z Alkhathlan,1 Abdulrahman Al-Warthan,1 Mohammed Rafiq H Siddiqui1 1Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany Abstract: The green synthesis of metallic nanoparticles (NPs has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract and precursor solution (silver nitrate, the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs' surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines. Keywords: surface plasmon resonance, metallic nanoparticles, eco-friendly, capping ligand

  12. Malva parviflora extract assisted green synthesis of silver nanoparticles

    Science.gov (United States)

    Zayed, Mervat F.; Eisa, Wael H.; Shabaka, A. A.

    2012-12-01

    Five plant leaf extracts (Malva parviflora, Beta vulgaris subsp. Vulgaris, Anethum graveolens, Allium kurrat and Capsicum frutescens) were screened for their bioreduction behavior for synthesis of silver nanoparticles. M. parviflora (Malvaceae) was found to exhibit the best reducing and protecting action in terms of synthesis rate and monodispersity of the prepared silver nanoparticles. Our measurements indicate that biosynthesis of Ag nanoparticles by M. parviflora produces Ag nanoparticles with the diameters in the range of 19-25 nm. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles of face-centered cubic structure. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process is an excellent candidate for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  13. The Hydrometallurgical Extraction and Recovery of High-Purity Silver

    Science.gov (United States)

    Hoffmann, James E.

    2012-06-01

    With the continuous reduction in the availability of extractive metallurgical curricula in colleges and universities, the concern has in part been from where will the next generation of extractive metallurgists come? One objective of this article is to emphasize the fact that extractive metallurgy is, in fact, one of many areas of chemical engineering technology. Thus, although the extractive metallurgist may have disappeared in name, its activity is alive and well, subsumed in the field of chemical engineering. One goal of this lecture is to demonstrate the applicability of chemical engineering principles to what is typically considered "the field of extractive metallurgy." Two processes will be described that have supplanted typical pyrometallurgical fire refining of precious metals, particularly silver. The origins of fire refining can be traced back to biblical times. There are numerous references to it in the old testament: Ezekiel 22:20, "As men gather silver and bronze and iron and lead and tin into a furnace to blow the fire upon it in order melt it"; Jeremiah 6:29, "The bellows blow fiercely; the lead is consumed by the fire; in vain the refining goes on"; and Malachi 3:2 (The Oxford Annotated Bible with the Apocrypha), "For he is like a refiners fire." Many references to it will also be found in "De Re Metallurgica" and as well in Lazarus Ercker's 1574 Manual "Treatise on Ores and Refining." Today, fire refining has been improved greatly by innovative furnace design, new fluxing technologies, and the improved use of oxygen. However, fundamentally, the process chemistry has not changed much in the last millennium. Illustrations of hydrometallurgical processing of silver-bearing inputs will be provided by the treatment of sulfated silver-bearing materials and chlorinated slimes. The first of these technologies will be described briefly as practiced by the Phelps Dodge Refining Corporation for several years. The second, the treatment of silver chloride

  14. Green Synthesis and Characterization of Silver Nanoparticles Using Citrullus lanatus Fruit Rind Extract

    National Research Council Canada - National Science Library

    Ndikau, Michael; Noah, Naumih M; Andala, Dickson M; Masika, Eric

    2017-01-01

    .... This work reports a green method where silver nanoparticles (AgNPs) were synthesized using silver nitrate and the aqueous extract of Citrullus lanatus fruit rind as the reductant and the capping agent...

  15. Development of Biogenic Silver Nanoparticle Using Rosa Chinensis Flower Extract and Its Antibacterial Property.

    Science.gov (United States)

    Meng, Yongde; Sun, Yanjie

    2016-04-01

    In the present study, biosynthesis of silver nanoparticles was carried out using Rosa chinensis flower extract as reducing agent. The characterization of silver nanoparticles was done by UV-VIS spectrum. The morphology and size of silver nanoparticles were determined by transmission electron microscope (TEM) image. The crystallization of silver nanoparticles was confirmed by X-ray diffraction (XRD) measurements. The Fourier transform infrared (FT-IR) analysis was used to confirm the possible involvement in the formation and stabilization of synthesized silver nanoparticles by the extract of Rosa chinensis flower. Antibacterial activity of silver nanoparticles was studied against Gram positive Staphycoccus aureus and Gram negative Escherichia coil.

  16. New paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts.

    Science.gov (United States)

    Park, Youmie

    2014-09-01

    This review covers general information regarding the green synthesis of antibacterial silver nanoparticles. Owing to their antibacterial properties, silver nanoparticles are widely used in many areas, especially biomedical applications. In green synthesis practices, the chemical reducing agents are eliminated, and biological entities are utilized to convert silver ions to silver nanoparticles. Among the various biological entities, natural plant extracts have emerged as green reducing agents, providing eco-friendly routes for the preparation of silver nanomaterials. The most obvious merits of green synthesis are the increased biocompatibility of the resulting silver nanoparticles and the ease with which the reaction can be carried out. This review summarizes some of the plant extracts that are used to produce antibacterial silver nanoparticles. Additionally, background information regarding the green synthesis and antibacterial activity of silver nanoparticles is provided. Finally, the toxicological aspects of silver nanoparticles are briefly mentioned.

  17. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    Science.gov (United States)

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract.

  18. Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity

    Science.gov (United States)

    Kathiravan, V.; Ravi, S.; Ashokkumar, S.

    2014-09-01

    Silver nanoparticles have a significant role in the pharmaceutical science. Especially, silver nanoparticles synthesized by the plant extracts lead a significant role in biological activities such as antimicrobial, antioxidant and anticancer. Keeping this in mind, the present work investigation has been taken up with the synthesized silver nanoparticles using the plant extract of Melia dubia and it characterizes by using UV-visible, XRD and SEM-EDS. The effect of the silver nanoparticles on human breast cancer (KB) cell line has been tested. Silver nanoparticles showed remarkable cytotoxicity activity against KB cell line with evidence of high therapeutic index value are the results are discussed.

  19. Lantana camara leaf extract mediated silver nanoparticles: Antibacterial, green catalyst.

    Science.gov (United States)

    Ajitha, B; Ashok Kumar Reddy, Y; Shameer, Syed; Rajesh, K M; Suneetha, Y; Sreedhara Reddy, P

    2015-08-01

    Silver nanoparticles (AgNPs) have been synthesized by Lantana camara leaf extract through simple green route and evaluated their antibacterial and catalytic activities. The leaf extract (LE) itself acts as both reducing and stabilizing agent at once for desired nanoparticle synthesis. The colorless reaction mixture turns to yellowish brown attesting the AgNPs formation and displayed UV-Vis absorption spectra. Structural analysis confirms the crystalline nature and formation of fcc structured metallic silver with majority (111) facets. Morphological studies elicit the formation of almost spherical shaped nanoparticles and as AgNO3 concentration is increased, there is an increment in the particle size. The FTIR analysis evidences the presence of various functional groups of biomolecules of LE is responsible for stabilization of AgNPs. Zeta potential measurement attests the higher stability of synthesized AgNPs. The synthesized AgNPs exhibited good antibacterial activity when tested against Escherichia coli, Pseudomonas spp., Bacillus spp. and Staphylococcus spp. using standard Kirby-Bauer disc diffusion assay. Furthermore, they showed good catalytic activity on the reduction of methylene blue by L. camara extract which is monitored and confirmed by the UV-Vis spectrophotometer.

  20. Green Synthesis of Silver Nanoparticles Using Pimpinella anisum L. Seed Aqueous Extract and Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Hashem Akhlaghi

    2015-09-01

    Full Text Available An aqueous extract of Pimpinella anisum was used for green synthesis of silver nanoparticles by bio reduction of an aqueous solution of silver nitrate. Silver nanoparticles were characterized by UV–Vis spectrometry, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD analysis, scanning electron microscopy (SEM and energy-dispersive X-ray analysis (EDAX. The increase in absorption at 420 nm was used for recording the formation of a colloidal suspension of silver nanoparticles. The binding properties of the capped Ag nanoparticles synthesized from aqueous extract of P. anisum were analyzed by FTIR. XRD studies revealed that most of the nanoparticles were cubic and face centered cubic in shape. SEM analysis showed the size and shape of silver nanoparticles and EDAX confirmed the presence of silver. The synthesized silver nanoparticles showed DPPH free radical scavenging activity.

  1. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles.

    Science.gov (United States)

    Qu, Haiou; Mudalige, Thilak K; Linder, Sean W

    2016-01-15

    Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the background electrolyte was used to facilitate the chromatographic separation of ionic silver and maintain the oxidation state of silver. The obtained limits of detection were 0.05 μg kg(-1) of silver nanoparticles and 0.03 μg kg(-1) of ionic silver. Nanoparticles of varied sizes (10-110 nm) with different surface coating, including citrate acid, lipoic acid, polyvinylpyrrolidone and bovine serum albumin (BSA) were successfully analyzed. Particularly good recoveries (>93%) were obtained for both ionic silver and silver nanoparticle in the presence of excess amount of BSA. The method was further tested with six commercially available dietary supplements which varied in concentration and matrix components. The summed values of silver ions and silver nanoparticles correlated well with the total silver concentration determined by ICPMS after acid digestion. This method can serve as an alternative to cloud point extraction technique when the extraction efficiency for protein coated nanoparticles is low.

  2. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; El-Agamy Farh, Mohamed; Yang, Deok Chun

    2016-05-01

    In the present study, we report a green methodology for the synthesis of silver and gold nanoparticles, using the root extract of the herbal medicinal plant Korean red ginseng. The silver and gold nanoparticles were synthesized within 1 h and 10 min respectively. The nanoparticles generated were not aggregated, and remained stable for a long time, which suggests the nature of nanoparticles. The phytochemicals and ginsenosides present in the root extract assist in reducing and stabilizing the synthesized nanoparticles. The red ginseng root extract-generated silver nanoparticles exhibit antimicrobial activity against pathogenic microorganisms including Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Candida albicans. In addition, the silver nanoparticles exhibit biofilm degrading activity against S. aureus and Pseudomonas aeruginosa. Thus, the present study opens up a new possibility of synthesizing silver and gold nanoparticles in a green and rapid manner using Korean red ginseng root extract, and explores their biomedical applications.

  3. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity

    Directory of Open Access Journals (Sweden)

    RAKSHA PANDIT

    2015-05-01

    Full Text Available Pandit R. 2015. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusantara Bioscience 7: 15-19. We report the green synthesis of silver nanoparticles using seed extract of Brassica nigra. UV-visible spectroscopic analysis showed the absorbance peak at 432 nm which indicated the synthesis of silver nanoparticles. Nanoparticles Tracking and Analysis (NTA was used to determine the size of synthesized silver nanoparticles. Zeta potential analysis was carried out to study the stability of nanoparticles while FTIR analysis confirmed the presence of proteins as capping agents that provided stability to nanoparticles in colloid. Antibacterial activity of silver nanoparticles was evaluated against Propionibacterium acnes, Pseudomonas aeruginosa and Klebsiella pneumoniae. The activity of Vancomycin was significantly increased in combination with silver nanoparticles showing synergistic activity against all bacteria while the maximum activity was noted against P. acnes.

  4. Lead and silver extraction from waste cake from hydrometallurgical zinc production

    OpenAIRE

    DUSAN D. STANOJEVIC; Rajkovic, Milos B.; DRAGAN V. TOSKOVIC; MILANA A. TOMIC

    2008-01-01

    This paper presents the experimental results of the extraction of lead and silver from a lead–silver waste cake obtained in the process of hydrometallurgical zinc production. While controlling the pH value, the lead–silver cake was leached at a temperature close to boiling point in different concentrations of aqueous calcium chloride solutions. The experiments were performed applying different ratios between the mass of cake and the volume of the leaching agent under different durations of th...

  5. Green Synthesis of Gold and Silver Nanoparticles Using Averrhoa bilimbi Fruit Extract

    OpenAIRE

    Rimal Isaac, R. S.; G Sakthivel; Ch. Murthy

    2013-01-01

    We report on rapid one-step green synthesis of gold and silver nanoparticles using fruit extract of Averrhoa bilimbi Linn. UV-Vis absorption spectroscopy was used to monitor the quantitative formation of gold and silver nanoparticles. The characteristics of the obtained gold and silver nanoparticles were studied using UV-Vis absorption spectroscopy (UV/Vis), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy-dispersive spectroscopy (EDX). UV/Vis spe...

  6. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Bandita [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Kuriakose, Sini [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India)

    2015-07-15

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO{sub 3} concentration. • Increase in AgNO{sub 3} concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO{sub 3} solution. The effects of AgNO{sub 3} concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO{sub 3} concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO{sub 3} concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods.

  7. Determination of colloidal and dissolved silver in water samples using colorimetric solid-phase extraction.

    Science.gov (United States)

    Hill, April A; Lipert, Robert J; Porter, Marc D

    2010-03-15

    The increase in bacterial resistance to antibiotics has led to resurgence in the use of silver as a biocidal agent in applications ranging from washing machine additives to the drinking water treatment system on the International Space Station (ISS). However, growing concerns about the possible toxicity of colloidal silver to bacteria, aquatic organisms and humans have led to recently issued regulations by the US EPA and FDA regarding the usage of silver. As part of an ongoing project, we have developed a rapid, simple method for determining total silver, both ionic (silver(I)) and colloidal, in 0.1-1mg/L aqueous samples, which spans the ISS potable water target of 0.3-0.5mg/L (total silver) and meets the US EPA limit of 0.1mg/L in drinking water. The method is based on colorimetric solid-phase extraction (C-SPE) and involves the extraction of silver(I) from water samples by passage through a solid-phase membrane impregnated with the colorimetric reagent DMABR (5-[4-(dimethylamino)benzylidene]rhodanine). Silver(I) exhaustively reacts with impregnated DMABR to form a colored compound, which is quantified using a handheld diffuse reflectance spectrophotometer. Total silver is determined by first passing the sample through a cartridge containing Oxone, which exhaustively oxidizes colloidal silver to dissolved silver(I). The method, which takes less than 2 min to complete and requires only approximately 1 mL of sample, has been validated through a series of tests, including a comparison with the ICP-MS analysis of a water sample from ISS that contained both silver(I) and colloidal silver. Potential earth-bound applications are also briefly discussed.

  8. Optimization of Parameters for Biosynthesis of Silver Nanoparticles Using Leaf Extract of Aegle marmelos

    Directory of Open Access Journals (Sweden)

    JohnSamuel Godwin Christopher

    2015-10-01

    Full Text Available ABSTRACTThe aim of this study was to optimize the biosynthesis of silver nanoparticles using leaves ofAegle marmelos as the primary source. The optimal reaction medium comprised 2:1 concentration of leaf extract and 6mM concentration of silver nitrate solution (pH 7. The biosynthesized silver nanoparticles were confirmed by UV-Vis spectroscopy at 420 nm, XRD and FTIR analysis. The antimicrobial properties of silver nanoparticles were confirmed withBacillus subtilis andPseudomonas aeruginosa.

  9. Determination of silver in soils, sediments, and rocks by organic-chelate extraction and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Ball, J.W.; Nakagawa, H.M.

    1971-01-01

    A useful method for the determination of silver in soil, sediment, and rock samples in geochemical exploration has been developed. The sample is digested with concentrated nitric acid, and the silver extracted with triisooctyl thiophosphate (TOTP) in methyl isobutyl ketone (MIBK) after dilution of the acid digest to approximately 6 M. The extraction of silver into the organic extractant is quantitative and not affected by the nitric acid concentration from 4 M to 8 M, or by different volumes of TOTP-MIBK. The extracted silver is stable and remains in the organic phase up to several days. The silver concentration is determined by atomic absorption spectrophotometry. ?? 1971.

  10. Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules.

    Science.gov (United States)

    Dias, Pablo; Javimczik, Selene; Benevit, Mariana; Veit, Hugo; Bernardes, Andréa Moura

    2016-11-01

    Photovoltaic modules (or panels) are important power generators with limited lifespans. The modules contain known pollutants and valuable materials such as silicon, silver, copper, aluminum and glass. Thus, recycling such waste is of great importance. To date, there have been few published studies on recycling silver from silicon photovoltaic panels, even though silicon technology represents the majority of the photovoltaic market. In this study, the extraction of silver from waste modules is justified and evaluated. It is shown that the silver content in crystalline silicon photovoltaic modules reaches 600g/t. Moreover, two methods to concentrate silver from waste modules were studied, and the use of pyrolysis was evaluated. In the first method, the modules were milled, sieved and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 94%. In the second method, photovoltaic modules were milled, sieved, subjected to pyrolysis at 500°C and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 92%. The first method is preferred as it consumes less energy and presents a higher yield of silver. This study shows that the use of pyrolysis does not assist in the extraction of silver, as the yield was similar for both methods with and without pyrolysis.

  11. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities

    Science.gov (United States)

    Oluwaniyi, Omolara O.; Adegoke, Haleemat I.; Adesuji, Elijah T.; Alabi, Aderemi B.; Bodede, Sunday O.; Labulo, Ayomide H.; Oseghale, Charles O.

    2016-08-01

    Biosynthesizing of silver nanoparticles using microorganisms or various plant parts have proven more environmental friendly, cost-effective, energy saving and reproducible when compared to chemical and physical methods. This investigation demonstrated the plant-mediated synthesis of silver nanoparticles using the aqueous leaf extract of Thevetia peruviana. UV-Visible spectrophotometer was used to measure the surface plasmon resonance of the nanoparticles at 460 nm. Fourier Transform Infrared showed that the glycosidic -OH and carbonyl functional group present in extract were responsible for the reduction and stabilization of the silver nanoparticles. X ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Selected Area Electron Diffraction analyses were used to confirm the nature, morphology and shape of the nanoparticles. The silver nanoparticles are spherical in shape with average size of 18.1 nm. The synthesized silver nanoparticles showed activity against fungal pathogens and bacteria. The zone of inhibition observed in the antimicrobial study ranged between 10 and 20 mm.

  12. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    Science.gov (United States)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-07-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  13. Biosynthesis, Characterization, and Antidermatophytic Activity of Silver Nanoparticles Using Raamphal Plant (Annona reticulata Aqueous Leaves Extract

    Directory of Open Access Journals (Sweden)

    P. Shivakumar Singh

    2014-01-01

    Full Text Available The present work investigated the biosynthesis of silver nanoparticles using Annona reticulata leaf aqueous extract. The biosynthesised silver nanoparticles were confirmed by visual observation and UV-Vis spectroscopy. Appearance of dark brown colour indicated the synthesis of silver in the reaction mixture. The silver nanoparticles were found to be spherical, rod, and triangular in shape with variable size ranging from 23.84 to 50.54 nm, as evident by X-ray diffraction studies, TEM. The X-ray diffraction studies, energy dispersive X-ray analysis, and TEM analysis indicate that the particles are crystalline in nature. The nanoparticles appeared to be associated with some chemical compounds which possess hydroxyl and carbonyl groups, confirmed by FTIR. This is the first and novel report of silver nanoparticles synthesised from Annona reticulata leaves extract and their antidermatophytic activity.

  14. Green Synthesis of Silver Nanoparticles by Using Ziziphus nummularia Leaves Aqueous Extract and Their Biological Activities

    Directory of Open Access Journals (Sweden)

    Farhat Ali Khan

    2016-01-01

    Full Text Available Silver nanoparticles of Ziziphus nummularia leaves extract were synthesized and were characterized by UV-Visible spectrophotometry, particle size analyzer, X-ray diffraction (XRD, differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FT-IR, SEM, TGA, and EDX. The XRD pattern reveals the FCC structure of Ag nanoparticles. FTIR spectra confirmed the presence of Ag-O bonding. UV-Visible spectroscopy results confirmed the existence of Ag because of the particular peak in the region of 400–430. The SEM analysis confirmed spherical and uniform Ag nanoparticles with diameter ranging from 30 nm to 85 nm. The EDX analysis revealed strong signals in the silver region and confirmed the formation of silver nanoparticles. The antioxidant potential and antifungal and antimicrobial potential of the leaf extract and silver nanoparticles were also determined. The antioxidant property was determined using DPPH assay. The antibacterial, antifungal, and antioxidant properties were better for the silver nanoparticles than the aqueous leaf extract. The minimum inhibitory concentration (MIC, minimum bactericidal (MBC, and minimum fungicidal concentration (MFC of plant extract and prepared silver nanoparticles were also tested. The hair growth properties of plant extracts and their respective nanoparticles were observed and good results were noted for nanoparticles as compared to the leaf extract.

  15. ANTIOXIDANT AND ANTIMICROBIAL PROPERTIES OF STEVIA LEAVES EXTRACTS AND SILVER NANOPARTICLES COLLOIDS

    Directory of Open Access Journals (Sweden)

    Iryna Laguta

    2016-12-01

    Full Text Available Three extracts of Stevia rebaudiana (Bertoni were prepared using various types of raw materials: leaves of plants grown ex situ, leaves of plants grown in vitro, callus culture formed on damaged leaves. Composition of the extracts, their activity in the synthesis of silver nanoparticles colloids, as well as antioxidant and antimicrobial properties of the extracts and the colloids were investigated.

  16. Biosynthesis of silver nanoparticles by using Ganoderma-mushroom extract

    Science.gov (United States)

    Ekar, S. U.; Khollam, Y. B.; Koinkar, P. M.; Mirji, S. A.; Mane, R. S.; Naushad, M.; Jadhav, S. S.

    2015-03-01

    Present study reports the biochemical synthesis of silver nanoparticles (Ag-NPs) from aqueous medium by using the extract of medicinal mushroom Ganoderma, as a reducing and stabilizing agents. The Ag-NPs are prepared at room temperature by the reduction of Ag+ to Ag in aqueous solution of AgNO3. The resultant particles are characterized by using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) measurement techniques. The formation of Ag-NPs is confirmed by recording the UV-visible absorption spectra for surface plasmon resonance (SPR) where peak around 427 nm. The prominent changes observed in FTIR spectra supported the reduction of Ag+ to Ag. The morphological features of Ag-NPs are evaluated from HRTEM. The spherical Ag-NPs are observed in transmission electron microscopy (TEM) studies. The particle size distribution is found to be nearly uniform with average particle size of 2 nm. The Ag-NPs aged for 15, 30, 60 and 120 days showed no profound effect on the position of SPR peak in UV-visible studies, indicating the protecting/capping ability of medicinal mushroom Ganoderma in the synthesis of Ag-NPs.

  17. Synthesis of gold and silver nanoparticles using leaf extract of Perilla frutescens--a biogenic approach.

    Science.gov (United States)

    Basavegowda, Nagaraj; Lee, Yong Rok

    2014-06-01

    The present investigation demonstrates a rapid biogenic approach for the synthesis of gold and silver nanoparticles using biologically active and medicinal important Perilla frutescens leaf extract as a reducing and stabilizing agent under ambient conditions. Gold and silver nanoparticles were first synthesized from Perilla frutescens leaf extract which was used as a vegetable and in traditional medicines for a long time in Korea, Japan, and China. The nanoparticles obtained were characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Surface plasmon resonance spectra of gold and silver nanoparticles were obtained at 540 and 430 nm and triangular and spherical shape respectively. TEM studies showed that the particle sizes of gold and silver nanoparticles ranges -50 nm and -40 nm respectively. X-ray diffraction studies confirm that the biosynthesized nanoparticles were crystalline gold and silver. Fourier transform infra-red spectroscopy revealed that biomolecules were involved in the synthesis and capping of the nanoparticles produced. XRD and EDX confirmed the formation of gold and silver nanoparticles. This is a simple, efficient and rapid method to synthesize gold and silver nanoparticles at room temperature without use of toxic chemicals. Obtained gold and silver nanoparticles can be used in various biomedical and biotechnological applications.

  18. Roles of Biomolecules in the Biosynthesis of Silver Nanoparticles:Case of Gardenia jasminoides Extract

    Institute of Scientific and Technical Information of China (English)

    吕芬芬; 高艺; 黄加乐; 孙道华; 李清彪

    2014-01-01

    Rapid development of biosynthesis of metal nanoparticles using plants has attracted extensive interests to further investigate this novel and eco-friendly method. In the biosynthesis process, the plant may act as reducing agent, capping agent or shape directing agent. However, identifying specific roles of various components in the plant is challenging. In this study, we use biosynthesis of silver nanoparticles with Gardenia jasminoides Ellis ex-tract to address this issue. The formation process of silver nanoparticles is investigated and the nanoparticles are characterized with the ultraviolet-visible spectroscopy, Fourier transform infrared spectra and scanning electron mi-croscopy. The results indicate that the Gardenia jasminoides Ellis extract can reduce silver ions to form silver nanoparticles, stabilize the nanoparticles, and affect the growth of silver nanocrystal to form silver nanowires. Only geniposide in the extract exhibits good shape-directing ability for silver nanowires. It is found that bovine albumin is a potential capping agent, whereas rutin, gallic acid and chlorogenic acid possess reducing and capping ability.

  19. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    Science.gov (United States)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  20. Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant.

    Science.gov (United States)

    Khan, Mujeeb; Khan, Shams Tabrez; Khan, Merajuddin; Adil, Syed Farooq; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Alkhathlan, Hamad Z

    2014-01-01

    The antibacterial properties of nanoparticles (NPs) can be significantly enhanced by increasing the wettability or solubility of NPs in aqueous medium. In this study, we investigated the effects of the stabilizing agent on the solubility of silver NPs and its subsequent effect on their antimicrobial activities. Silver NPs were prepared using an aqueous solution of Pulicaria glutinosa plant extract as bioreductant. The solution also acts as a capping ligand. During this study, the antimicrobial activities of silver NPs, as well as the plant extract alone, were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus. Silver NPs were prepared with various concentrations of the plant extract to study its effect on antimicrobial activity. Interestingly, various concentrations of P. glutinosa extract did not show any effect on the growth of tested bacteria; however, a significant effect on the antimicrobial property of plant extract capped silver NPs (Ag-NPs-PE) was observed. For instance, the half maximal inhibitory concentration values were found to decrease (from 4% to 21%) with the increasing concentrations of plant extract used for the synthesis of Ag-NPs-PE. These results clearly indicate that the addition of P. glutinosa extracts enhances the solubility of Ag-NPs-PE and, hence, increases their toxicity against the tested microorganisms.

  1. Antibacterial Activity of Silver Nanoparticles Synthesized by Bark Extract of Syzygium cumini

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2013-01-01

    Full Text Available The unique property of the silver nanoparticles having the antimicrobial activity drags the major attention towards the present nanotechnology. The environmentally nontoxic, ecofriendly, and cost-effective method that has been developed for the synthesis of silver nanoparticles using plant extracts creates the major research interest in the field of nanobiotechnology. The synthesized silver nanoparticles have been characterized by the UV-visible spectroscopy, atomic force microscopy (AFM, and scanning electron microscopy (SEM. Further, the antibacterial activity of silver nanoparticles was evaluated by well diffusion method, and it was found that the biogenic silver nanoparticles have antibacterial activity against Escherichia coli (ATCC 25922, Staphylococcus aureus (ATCC 29213, Pseudomonas aeruginosa (ATCC 27853, Azotobacter chroococcum WR 9, and Bacillus licheniformis (MTCC 9555.

  2. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    Science.gov (United States)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  3. Biosynthesis of silver nanoparticles by plants crude extracts and ...

    African Journals Online (AJOL)

    Aghomotsegin

    reduction of silver ions with Emblica officinalis, Terminalia catappa and Eucalyptus ... energy to maintain high pressure and temperature. ..... electrostatic attraction between negative charge on cell .... Bacterial heavy metal resistance: new.

  4. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property

    Directory of Open Access Journals (Sweden)

    Peter Logeswari

    2015-05-01

    Full Text Available Plants extract from Ocimum tenuiflorum, Solanum tricobatum, Syzygium cumini, Centella asiatica and Citrus sinensis was used for the synthesis of silver nanoparticles (Ag NPs from silver nitrate solution. Ag NPs were characterized by UV–vis spectrophotometer, X-ray diffractometer (XRD, atomic force microscope (AFM and scanning electron microscope (SEM. The formation and stability of the reduced silver nanoparticles in the colloidal solution were monitored by UV–vis spectrophotometer analysis. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern according to the line width of the plane, refraction peak using the Scherrer’s equation. AFM showed the formation of silver nanoparticle with an average size of 28 nm, 26.5 nm, 65 nm, 22.3 nm and 28.4 nm corresponding to O. tenuiflorum, S. cumini, C. sinensis, S. tricobatum and C. asiatica, respectively. SEM determination of the brown color stable samples showed the formation of silver nanoparticles and well dispersed nanoparticles could be seen in the samples treated with silver nitrate. Antimicrobial activity of the silver bio-nanoparticles was performed by well diffusion method against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. The highest antimicrobial activity of silver nanoparticles synthesized by S. tricobatum, O. tenuiflorum extracts was found against S. aureus (30 mm and E. coli (30 mm respectively. The Ag NPs synthesized in this process has the efficient antimicrobial activity against pathogenic bacteria. Of these, silver nanoparticles are playing a major role in the field of nanotechnology and nanomedicine.

  5. Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects.

    Science.gov (United States)

    Rajagopal, Thangavel; Jemimah, Irudayaraj Anto Amal; Ponmanickam, Ponnirul; Ayyanar, Muniappan

    2015-11-01

    Phytosynthesis of silver nanoparticles has attracted considerable attention due to their biocompatibility, low toxicity, cost-effectiveness and being a novel method has an eco-friendly approach. Biological activity of root extracts as well as synthesized silver nanoparticles of Catharanthus roseus were evaluated against larvae of Aedes aegyptiand Culex quinquefasciatus. The structure and proportion of the synthesized nanoparticles was defined by exploitation ultraviolet spectrophotometry, X-ray diffraction, fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy and scanning electron microscopy methods. Reduction of silver ions occurred when silver nitrate solution was treated with aqueous root extract at 60°C. Synthesized silver nanoparticles (AgNPs) were confirmed by analyzing the excitation of surface plasmon resonance (SPR) using UV-vis spectrophotometer at 423 nm. FTIR showed aliphatic amines and alkanes corresponding peaks to be presence of responsible compounds to produced nanoparticles in the reaction mixture. Spherical shaped and crystalline nature of particles was recorded under XRD analysis. Presence of silver metal and 35-55nm sized particles were recorded using EDAX and SEM respectively. Larvicidal activitywas observed after24 hrs of exposure to root extracts and synthesized silver nanoparticles. The highest larval mortality was observed in synthesized silver nanopartiucles against Aedes aegypti (LC50= 2.01 ± 0.34; LC90= 5.29 ± 0.07 at 5.0 mg(-1) concentration) and Culex quinquefasciatus (LC50= 1.18 ± 0.15; LC90= 2.55 ± 0.76 at 3.5 to 5.0 mgl(-1) concentration) respectively. The present study provides evidence that synthesized silver nanoparticles of Catharanthus roseus offer potential source for larvicidal activity againstthe larvae of both dengue and filariasis vectors.

  6. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract

    OpenAIRE

    Upendra Nagaich; Neha Gulati; Swati Chauhan

    2016-01-01

    The advancement of the biological production of nanoparticles using herbal extracts performs a significant role in nanotechnology discipline as it is green and does not engage harsh chemicals. The objective of the present investigation was to extract flavonoids in the mode of apple extract and synthesize its silver nanoparticles and ultimately nanoparticles loading into hydrogels. The presence of flavonoids in apple extract was characterized by preliminary testing like dil. ammonia test and c...

  7. Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from Megaphrynium macrostachyum leaf extract

    Directory of Open Access Journals (Sweden)

    François Eya'ane Meva

    Full Text Available ABSTRACT Nanobiotechnology is one of the most promising areas in modern nanoscience and technology. Metallic nanoparticles have found uses in many applications in different fields, such as catalysis, photonics, electronics, medicine and agriculture. Synthesized nanoparticles through chemical and physical methods are expensive and have low biocompatibility. In the present study, silver nanoparticles have been synthesized from Megaphrynium macrostachyum (Benth. & Hook. f. Milne-Redh., Marantaceae, leaf extract. Megaphrynium macrostachyum is a plant with large leaves found in the rainforest of West and Central Africa. Synthetic optimizations following factors such as incubation time, temperature, pH, extract and silver ion concentration during silver formation are discussed. UV–visible spectra gave surface plasmon resonance for synthesized silver nanoparticles based Megaphrynium macrostachyum peaks at 400–450 nm. X-ray diffraction revealed the average size of pure crystallites composed from Ag and AgCl.

  8. Green Synthesis of Gold and Silver Nanoparticles Using Averrhoa bilimbi Fruit Extract

    Directory of Open Access Journals (Sweden)

    R. S. Rimal Isaac

    2013-01-01

    Full Text Available We report on rapid one-step green synthesis of gold and silver nanoparticles using fruit extract of Averrhoa bilimbi Linn. UV-Vis absorption spectroscopy was used to monitor the quantitative formation of gold and silver nanoparticles. The characteristics of the obtained gold and silver nanoparticles were studied using UV-Vis absorption spectroscopy (UV/Vis, Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy (SEM, and Energy-dispersive spectroscopy (EDX. UV/Vis spectrum showed Surface Plasmon Resonance (SPR for both gold and silver nanoparticles at 540 and 420 nm. The EDX spectrum of the solution containing gold and silver nanoparticles confirmed the presence of elemental gold and silver signals. The average diameter of the prepared nanoparticles in solution was about 50–150 nm. Synthesized particles were either hexagonal or rhomboidal in shape. This synthesis approach of gold and silver nanoparticles is cost effective and can be widely used in biological systems. The effect of fruit extract and metal ion concentration was also studied.

  9. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    Science.gov (United States)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  10. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric

    Science.gov (United States)

    Vankar, Padma S.; Shukla, Dhara

    2012-06-01

    Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.

  11. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity

    Science.gov (United States)

    Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K.

    2011-08-01

    Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25 °C) and 60 °C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.

  12. A novel 'green' synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract.

    Science.gov (United States)

    Singh, Susmita; Saikia, Jyoti P; Buragohain, Alak K

    2013-02-01

    In the present research we have defined a novel green method of silver nanoparticles synthesis using Dillenia indica fruit extract. D. indica is an edible fruit widely distributed in the foothills of Himalayas and known for its antioxidant and further predicted for cancer preventive potency. The maximum absorbance of the colloidal silver nanoparticle solution was observed at 421 nm when examined with UV-vis spectrophotometer.

  13. Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant

    Directory of Open Access Journals (Sweden)

    Khan M

    2014-07-01

    Full Text Available Mujeeb Khan,1 Shams Tabrez Khan,2 Merajuddin Khan,1 Syed Farooq Adil,1 Javed Musarrat,2 Abdulaziz A Al-Khedhairy,2 Abdulrahman Al-Warthan,1 Mohammed Rafiq H Siddiqui,1 Hamad Z Alkhathlan1 1Department of Chemistry, 2Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia Abstract: The antibacterial properties of nanoparticles (NPs can be significantly enhanced by increasing the wettability or solubility of NPs in aqueous medium. In this study, we investigated the effects of the stabilizing agent on the solubility of silver NPs and its subsequent effect on their antimicrobial activities. Silver NPs were prepared using an aqueous solution of Pulicaria glutinosa plant extract as bioreductant. The solution also acts as a capping ligand. During this study, the antimicrobial activities of silver NPs, as well as the plant extract alone, were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus. Silver NPs were prepared with various concentrations of the plant extract to study its effect on antimicrobial activity. Interestingly, various concentrations of P. glutinosa extract did not show any effect on the growth of tested bacteria; however, a significant effect on the antimicrobial property of plant extract capped silver NPs (Ag-NPs-PE was observed. For instance, the half maximal inhibitory concentration values were found to decrease (from 4% to 21% with the increasing concentrations of plant extract used for the synthesis of Ag-NPs-PE. These results clearly indicate that the addition of P. glutinosa extracts enhances the solubility of Ag-NPs-PE and, hence, increases their toxicity against the tested microorganisms. Keywords: antibacterial activity, silver nanoparticles, plant extract, Pulicaria glutinosa

  14. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.Hanumanta [Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003 (India); Lakshmidevi, N. [Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam 530003 (India); Pammi, S.V.N. [Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003 (India); Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejeon (Korea, Republic of); Kollu, Pratap [DST-INSPIRE Faculty, Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Ganapaty, S. [GITAM Institute of Pharmacy, GITAM University, Visakhapatnam (India); Lakshmi, P., E-mail: lmkandregula@gmail.com [Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam 530003 (India)

    2016-05-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV–Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (−) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. - Highlights: • Biosynthesis of silver nanoparticles (Ag NPs) using root extracts of Diospyros paniculata. • Average diameter of Ag NPs is about 17 nm from TEM analysis which is in good agreement with XRD analysis. • Antimicrobial activities of root extract mediated synthesis of silver Ag NPs were discussed in detail.

  15. Crystallization of silver through reduction process using Elaeis guineensis biosolid extract.

    Science.gov (United States)

    Velmurugan, Palanivel; Shim, Jaehong; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Oh, Byung-Taek; Balachandar, Vellingiri; Oh, Byung-Taek

    2011-01-01

    This study presents a special, economically valuable, unprecedented eco-friendly green process for the synthesis of silver nanoparticles. The silver nanoparticles were obtained from a waste material with oil palm biosolid extract as the reducing agent. The use of the oil palm biosolid extract for the nanoparticle synthesis offers the benefit of amenability for large-scale production. An aqueous solution of silver (Ag(+) ) ions was treated with the oil palm biosolid extract for the formation of Ag nanoparticles. The nanometallic dispersion was characterized by surface plasmon absorbance measuring 428 nm. Transmission electron microscopy showed the formation of silver nanoparticles in the range of 5-50 nm. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction analysis of the freeze-dried powder confirmed the formation of metallic silver nanoparticles. Moreover, Fourier Transform Infrared Spectroscopy provided evidence of phenolics or proteins as the biomolecules that were likely responsible for the reduction and capping agent, which helps to increase the stability of the synthesized silver nanoparticles. In addition, we have optimized the production with various parameters. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  16. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    Science.gov (United States)

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  17. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Elavazhagan T

    2011-06-01

    Full Text Available Tamizhamudu Elavazhagan, Kantha D ArunachalamCentre for Interdisciplinary Research, Directorate of Research, SRM University, Kattankulathur-603203, Tamilnadu, IndiaAbstract: We used an aqueous leaf extract of Memecylon edule (Melastomataceae to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray analysis (EDAX and Fourier transform infra-red spectroscopy (FTIR. The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.Keywords: Memecylon edule, nanoparticles, bioreduction, electron microscopy, FTIR

  18. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    Science.gov (United States)

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  19. Chrysopogon zizanioides aqueous extract mediated synthesis characterization of crystalline silver and gold nanoparticles for biomedical applications

    Directory of Open Access Journals (Sweden)

    Arunachalam KD

    2013-07-01

    Full Text Available Kantha D Arunachalam, Sathesh Kumar Annamalai Center for Environmental Nuclear Research, Directorate of Research, SRM University, Chennai, Tamil Nadu, India Abstract: The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3 and chloroauric acid (HAuCl4 respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV-visible spectroscopy, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDAX, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications. Keywords: nanoparticles, bioreduction, SEM, silver, gold

  20. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  1. Invertebrate water extracts as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles.

    Science.gov (United States)

    Han, Lina; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2013-08-01

    We report the use of water extracts of two invertebrates, snail body and earthworm, as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles. The reaction conditions were optimized by varying the extract concentration, gold ion or silver ion concentration, reaction time, and reaction temperature. The gold and silver nanoparticles exhibited their characteristic surface plasmon resonance bands. Mostly spherical and amorphous shapes of the nanoparticles were synthesized. The average diameters of the gold and silver nanoparticles were 4.56 +/- 1.81 nm and 11.12 +/- 5.25 nm, respectively, when the extract of snail body was used as the reducing agent. The earthworm extracts produced gold and silver nanoparticles with average diameters of 6.70 +/- 2.69 nm and 12.19 +/- 4.28 nm, respectively. This report suggests that the invertebrate natural products have potential as biocompatible reducing agents for the green synthesis of metallic nanoparticles. This utility would open up novel applications of invertebrate natural products as nanocomposites and in nanomedicine.

  2. Green synthesis of silver nanoparticle and silver based chitosan bionanocomposite using stem extract of Saccharum officinarum and assessment of its antibacterial activity

    Science.gov (United States)

    Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Pavunraj, Manickam; Annadurai, Gurusamy

    2017-09-01

    Synthesis of nanoparticles and nanocomposites using green route is a major focus of modern nanotechnology. Herein we demonstrate the synthesis of silver nanoparticle and silver based chitosan bionanocomposite using the stem extract of Saccharum officinarum. The absorbance peak at 460 nm in the UV-Vis spectrum reveals the synthesis of silver nanoparticles using the stem extract of Saccharum officinarum. The size of the synthesized silver nanoparticle was in the range of 10-60 nm obtained from transmission electron microscope (TEM) analysis. The presence of silver nanoparticles on the chitosan suspension was identified by scanning electron microscope (SEM) and energy dispersive x-ray spectroscopy (EDS). The presence of possible functional group involved in the reduction of silver metal ions into silver nanoparticles was identified by Fourier transform infrared spectroscopy (FTIR) analysis. The antibacterial activity of the synthesized silver based chitosan bionanocomposite was evaluated against Bacillus subtilis (MTCC 3053), Klebsiella planticola (MTCC 2277), Streptococcus faecalis (ATCC 8043), Pseudomonas aeruginosa (ATCC 9027) and Escherichia coli (ATCC 8739). The antibacterial activity of silver based chitosan bionanocomposite has remarkable scope in medicine, food packaging, textile and pharmaceuticals.

  3. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    Science.gov (United States)

    Amaladhas, T. Peter; Sivagami, S.; Akkini Devi, T.; Ananthi, N.; Priya Velammal, S.

    2012-12-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV-Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9-31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was -36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus.

  4. Lead and silver extraction from waste cake from hydrometallurgical zinc production

    Directory of Open Access Journals (Sweden)

    DUSAN D. STANOJEVIC

    2008-05-01

    Full Text Available This paper presents the experimental results of the extraction of lead and silver from a lead–silver waste cake obtained in the process of hydrometallurgical zinc production. While controlling the pH value, the lead–silver cake was leached at a temperature close to boiling point in different concentrations of aqueous calcium chloride solutions. The experiments were performed applying different ratios between the mass of cake and the volume of the leaching agent under different durations of the process. It was concluded that at the optimal process parameters (pH 2.0–2.5; CaCl2 concentration, 3.6 mol dm-3; temperature, 95 °C; solid/liquid ratio, 1:5, the leaching efficiency of lead and silver could reach the approximate value of 94 %. Applying the same optimal process parameters, the method was applied to the leaching of a lead–silver cake in a magnesium chloride solution, but with significantly lower efficiencies. The results show that leaching of lead and silver in a calcium chloride solution could be a prospective method for increasing the recovery of lead and silver during hydrometallurgical zinc production.

  5. Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property.

    Science.gov (United States)

    Balakrishnan, Srinivasan; Srinivasan, Muthukumarasamy; Mohanraj, Jeyaraj

    2016-09-01

    To identify the larvicidal activities of silver nanoparticles synthesised with Avicennia marina leaf extract against the larvae of Aedes aegypti and Anopheleus stephensi, in vitro larvicidal activities such as LC50 and LC90 were assessed. Further, characterisation such as UV and FTIR analysis were carried out for the synthesised silver nanoparticles. The LC50 value of the synthesised silver nanoparticles was identified as 4.374 and 7.406 mg/L for An. stephensi and Ae. aegypti larvae respectively. Further, the LC90 values are also identified as 4.928 and 9.865 mg/L for An. stephensi and Ae. aegypti species respectively. The synthesised silver nanoparticles have maximum absorption at 420 nm with the average size of 60-95 nm. The FTIR data showed prominent peaks in (3940.57, 3929.00, 3803.63, 3712.97, 2918.30, 2231.64, 1610.50, 1377.17, 1257.59, 1041.59, 1041.56, 775.38, 667.37 and 503.21) different ranges. The biosynthesis of silver nanoparticles with leaf aqueous extract of A. marina provides potential source for the larvicidal activity against mosquito borne diseases. The present study proved the mosquitocidal properties of silver nanoparticles synthesised from mangroves of Vellar estuary. This is an ideal eco-friendly approach for the vector control programs.

  6. Biosynthesis of silver nanoparticle from leaf extract of Desmodium gangeticum (L.) DC. and its biomedical potential

    Science.gov (United States)

    Thirunavoukkarasu, M.; Balaji, U.; Behera, S.; Panda, P. K.; Mishra, B. K.

    2013-12-01

    An aqueous leaf extract of Desmodium gangeticum was employed to synthesize silver nano particles. Rapid formation of stable silver nanoparticles were observed on exposure of the aqueous leaf extract with solution of silver nitrate. The silver nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM), and Fourier Transform Infra-Red spectroscopy (FTIR) UV-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), and Fourier Transform Infra-Red spectroscopy (FTIR). UV-visible spectrum of the aqueous medium peaked at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. SEM analysis revealed the spherical shape of the particles with sizes ranging from 18 to 39 nm and the EDAX spectrum confirmed the presence of silver along with other elements in the plant metabolite. Further, these biologically synthesized nanoparticles were found to be highly toxic against pathogenic bacteria Escherichia coli, thus implying significance of the present study in production of biomedical products.

  7. Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting.

    Science.gov (United States)

    Sathyavathi, R; Krishna, M Bala Murali; Rao, D Narayana

    2011-03-01

    The Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. The work presented here with the biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics. The aqueous silver ions when exposed to Moringa oleifera leaf extract are reduced resulting in silver nanoparticles demonstrating the biosynthesis. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. TEM analysis shows a dispersion of the nanoparticles in a range of 5-80 nm with the average around 46 nm and are crystallized in face centred cubic symmetry. To show that these biosynthesized silver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route, we carried out the Z-scan studies with a 6 ns, 532 nm pulsed laser. We estimated the nonlinear absorption coefficient and compare it with the literature values of the nanoparticles synthesized through chemical route. The silver nanoparticles suspended in solution exhibited reverse saturable absorption with optical limiting threshold of 100 mJ/cm2.

  8. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity.

    Science.gov (United States)

    Dhand, Vivek; Soumya, L; Bharadwaj, S; Chakra, Shilpa; Bhatt, Deepika; Sreedhar, B

    2016-01-01

    A novel green source was opted to synthesize silver nanoparticles using dried roasted Coffea arabica seed extract. Bio-reduction of silver was complete when the mixture (AgNO3+extract) changed its color from light to dark brown. UV-vis spectroscopy result showed maximum adsorption at 459 nm, which represents the characteristic surface plasmon resonance of nanosilver. X-ray crystal analysis showed that the silver nanoparticles are highly crystalline and exhibit a cubic, face centered lattice with characteristic (111), (200), (220) and (311) orientations. Particles exhibit spherical and ellipsoidal shaped structures as observed from TEM. Composition analysis obtained from SEM-EDXA confirmed the presence of elemental signature of silver. FTIR results recorded a downward shift of absorption bands between 800-1500 cm(-1) indicting the formation of silver nanoparticles. The mean particle size investigated using DLS was found to be in between 20-30 nm respectively. Anti-bacterial activity of silver nanoparticles on E. coli and S. aureus demonstrated diminished bacterial growth with the development of well-defined inhibition zones.

  9. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications.

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications.

  10. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity

    Science.gov (United States)

    Kumar, Deenadayalan Ashok; Palanichamy, V.; Roopan, Selvaraj Mohana

    2014-06-01

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10 min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis.

  11. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity.

    Science.gov (United States)

    Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-06-05

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A sunlight-induced method for rapid biosynthesis of silver nanoparticles using an Andrachnea chordifolia ethanol extract

    Science.gov (United States)

    Karimi Zarchi, A. A.; Mokhtari, N.; Arfan, M.; Rehman, T.; Ali, M.; Amini, M.; Faridi Majidi, R.; Shahverdi, A. R.

    2011-05-01

    In this study a sunlight-induced method for rapid synthesis of silver nanoparticles using an ethanol extract of Andrachnea chordifolia is described. The silver nitrate solutions (1 mM) containing the ethanol extract of Andrachnea chordifolia were irradiated by both sunlight radiation and by sunlight radiation passed through different colored filters (red, yellow or green). The smallest size of silver nanoparticles was obtained when a silver ion solution was irradiated for 5 minutes by direct sunlight radiation. Further examination of the shape and size and of the surface chemistry of these biogenic silver nanoparticles, which were prepared under sunlight radiation, was carried out using transmission electron microscopy and infrared spectroscopy, respectively. Transmission electron microscopy images show spherical particles with an average size of 3.4 nm. Hydroxyl residues were also detected on the surface of these biogenic silver nanoparticles fabricated using plant extract of Andrachnea chordifolia under sunlight radiation. Our study on the reduction of silver ions by this plant extract in darkness shows that the synthesis process can take place under dark conditions at much longer incubations (48 hours). Larger silver polydispersed nanoparticles ranging in size from 3 to 30 nm were obtained when the silver ions were treated with the ethanol extract of Andrachnea chordifolia under dark conditions for 48 hours.

  13. A sunlight-induced method for rapid biosynthesis of silver nanoparticles using an Andrachnea chordifolia ethanol extract

    Energy Technology Data Exchange (ETDEWEB)

    Karimi Zarchi, A.A.; Faridi Majidi, R. [Tehran University of Medical Sciences, Department of Nanomedicine, School of Advanced Medical Technologies, Tehran (Iran, Islamic Republic of); Mokhtari, N.; Shahverdi, A.R. [Tehran University of Medical Sciences, Department of Pharmaceutical Biotechnology and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran (Iran, Islamic Republic of); Arfan, M.; Rehman, T.; Ali, M. [University of Peshawar, Institute of Chemical Sciences, Peshawar, Khyber Pakhtoonkhwa (Pakistan); Amini, M. [Tehran University of Medical Sciences, Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran (Iran, Islamic Republic of)

    2011-05-15

    In this study a sunlight-induced method for rapid synthesis of silver nanoparticles using an ethanol extract of Andrachnea chordifolia is described. The silver nitrate solutions (1 mM) containing the ethanol extract of Andrachnea chordifolia were irradiated by both sunlight radiation and by sunlight radiation passed through different colored filters (red, yellow or green). The smallest size of silver nanoparticles was obtained when a silver ion solution was irradiated for 5 minutes by direct sunlight radiation. Further examination of the shape and size and of the surface chemistry of these biogenic silver nanoparticles, which were prepared under sunlight radiation, was carried out using transmission electron microscopy and infrared spectroscopy, respectively. Transmission electron microscopy images show spherical particles with an average size of 3.4 nm. Hydroxyl residues were also detected on the surface of these biogenic silver nanoparticles fabricated using plant extract of Andrachnea chordifolia under sunlight radiation. Our study on the reduction of silver ions by this plant extract in darkness shows that the synthesis process can take place under dark conditions at much longer incubations (48 hours). Larger silver polydispersed nanoparticles ranging in size from 3 to 30 nm were obtained when the silver ions were treated with the ethanol extract of Andrachnea chordifolia under dark conditions for 48 hours. (orig.)

  14. Biosythesis of Silver Nanoparticles using Putri Malu (Mimosa pudica Leaves Extract and Microwave Irradiation Method

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2016-11-01

    Full Text Available In this paper, the biosynthesis of silver nanoparticles (AgNPs using Mimosa pudica extract is discussed. Mimosa pudica leaves extract using water as solvent was used as bio-reductor to an aqueous solution of silver nitrate (AgNO3 and in order to accelerate the reduction, microwave irradiation method was applied. The AgNPs obtained were characterized using UV-Vis spectrophotometry, FTIR spectrophotometry, XRD, SEM-EDX, and particle size analysis based on dynamic scattering method. Effect of preparation method to the formation of AgNPs is also evaluated in antibacterial activity towards E.coli and P. aeruginosa. Rapid and ecofriendly biosynthesis of stable silver nanoparticles was observed in this study. The characterization results and antibacterial assay indicated the uniform and smaller particle size of AgNPs obtained by using microwave method and positively enhance the antibacterial activity against tested bacteria.

  15. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract — A comprehensive study

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mohammad [Mid-Florida Research and Education Center and Department of Plant Pathology, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd., Apopka, FL 32703 (United States); Kim, Bosung [Department of Chemistry, University of Central Florida, Orlando, FL 32816 (United States); Belfield, Kevin D. [Department of Chemistry, University of Central Florida, Orlando, FL 32816 (United States); College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Norman, David; Brennan, Mary [Mid-Florida Research and Education Center and Department of Plant Pathology, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd., Apopka, FL 32703 (United States); Ali, Gul Shad, E-mail: gsali@ufl.edu [Mid-Florida Research and Education Center and Department of Plant Pathology, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd., Apopka, FL 32703 (United States)

    2016-01-01

    Unlike chemical synthesis, biological synthesis of nanoparticles is gaining tremendous interest, and plant extracts are preferred over other biological sources due to their ample availability and wide array of reducing metabolites. In this project, we investigated the reducing potential of aqueous extract of Artemisia absinthium L. for synthesizing silver nanoparticles (AgNPs). Optimal synthesis of AgNPs with desirable physical and biological properties was investigated using ultra violet–visible spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). To determine their appropriate concentrations for AgNP synthesis, two-fold dilutions of silver nitrate (20 to 0.62 mM) and aqueous plant extract (100 to 0.79 mg ml{sup −1}) were reacted. The results showed that silver nitrate (2 mM) and plant extract (10 mg ml{sup −1}) mixed in different ratios significantly affected size, stability and yield of AgNPs. Extract to AgNO{sub 3} ratio of 6:4 v/v resulted in the highest conversion efficiency of AgNO{sub 3} to AgNPs, with the particles in average size range of less than 100 nm. Furthermore, the direct imaging of synthesized AgNPs by TEM revealed polydispersed particles in the size range of 5 to 20 nm. Similarly, nanoparticles with the characteristic peak of silver were observed with EDX. This study presents a comprehensive investigation of the differential behavior of plant extract and AgNO{sub 3} to synthesize biologically stable AgNPs. - Graphical abstract: Aqueous extract from Artemisia absinthium when used in appropriate ratio (shown in Eppendorf tubes and microtiter plate) is highly active in reducing elemental silver to colloidal silver nanoparticles in the 5–20 nm size range (shown in TEM image, bottom left panel; DLS histogram, upper left panel; EDX analysis, bottom right panel). - Highlights: • Artemisia absinthium extract provides excellent reducing potential for

  16. GREEN SYNTHESIS OF SILVER AND PALLADIUM NANOPARTICLES AT ROOM TEMPERATURE USING COFFEE AND TEA EXTRACT

    Science.gov (United States)

    An extremely simple green approach that generates bulk quantities of nanocrystals of noble metals such as silver (Ag) and palladium (Pd) using coffee and tea extract at room temperature is described. The single-pot method uses no surfactant, capping agent, and/or template. The ob...

  17. Sterilization of African Violet in the in Vitro Culture Using Synthesized Silver Nanoparticles by Two Plant Extracts

    Directory of Open Access Journals (Sweden)

    M. Solgi

    2015-12-01

    Full Text Available One of the major advantages of in vitro culture of African violet (Saintpaulha ionantha is production of new cultivars and propagation of their chimera which might not be propagated by the other methods. In this study, we tested the effects of silver nanoparticles on the sterilization rate (antifungal and antibacterial activity, regeneration and shoot formation of African violet "Pink Amiss" explants. These nanoparticles were synthesized from pomegranate peels and Damask rose petals extracts. We used a completely randomized design test with factorial arrangement to investigate various volumetric ratios of plant extracts to silver nitrate (1:20, 1:10, 1:5 and 1:1 on the culture contaminations. Using silver nanoparticles synthesized by the plant extracts, especially Damask rose petals extract resulted in no fungal and bacterial contamination in the African violet explants after 1 and 3 weeks as compared to the control, and silver nitrate (1mM. All tested concentrations of the silver nanoparticles significantly (P &le 0.05 controlled both bacterial and fungal contaminations. The 1:20 ratio of plant extracts to silver nitrate showed the best control. In addition, the highest regeneration (%52 and shoot regeneration (%38 was observed in this treatment. In conclusion, we suggest using silver nanoparticles synthesized by plant extracts for sterilization of in Vitro Culture for African Violet rather than using other chemicals such as silver nitrate.

  18. Relation between Silver Nanoparticle Formation Rate and Antioxidant Capacity of Aqueous Plant Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Azat Akbal

    2016-01-01

    Full Text Available Correlation between the antioxidant capacity and silver nanoparticle formation rates of pomegranate (Punica granatum, quince (Cydonia oblonga, chestnut (Castanea sativa, fig (Ficus carica, walnut (Juglans cinerea, black mulberry (Morus nigra, and white mulberry (Morus alba leaf extracts is investigated at a fixed illumination. Silver nanoparticles formed in all plant leaf extracts possess round shapes with average particle size of 15 to 25 nm, whereas corresponding surface plasmon resonance peak wavelengths vary between 422 nm and 451 nm. Cupric reducing antioxidant capacity technique is used as a reference method to determine total antioxidant capacity of the plant leaf extracts. Integrated absorbance over the plasmon resonance peaks exhibits better linear relation with antioxidant capacities of various plant leaf extracts compared to peak absorbance values, with correlation coefficient values of 0.9333 and 0.7221, respectively.

  19. Synthesis of gold and silver nanoparticles using Mukia maderaspatna plant extract and its anticancer activity.

    Science.gov (United States)

    Devi, Guruviah Karthiga; Sathishkumar, Kannaiyan

    2017-03-01

    The present investigation reveals the in vitro cytotoxic effect of the biosynthesised metal nanoparticles on the MCF 7 breast cancer cell lines. The gold and silver nanoparticles were synthesised through an environmentally admissible route using the Mukia Maderaspatna plant extract. Initially, the biomolecules present in the plant extract were analysed using phytochemical analysis. Further, these biomolecules reduce the metal ion solution resulting from the formation of metal nanoparticles. The reaction parameters were optimised to control the size of nanoparticles which were confirmed by UV visible spectroscopy. Various instrumental techniques such as Fourier transform-infrared spectroscopy, high resolution transmission electron microscopy, energy dispersive X-ray and scanning electron microscopy were employed to characterise the synthesised gold and silver nanoparticles. The synthesised gold and silver nanoparticles were found to be 20-50 nm and were of different shapes including spherical, triangle and hexagonal. MTT and dual staining assays were carried out with different concentrations (1, 10, 25, 50 and 100 µg/ml) of gold and silver nanoparticles. The results show that the nanoparticles exhibited significant cytotoxic effects with IC 50 value of 44.8 µg/g for gold nanoparticles and 51.3 µg/g for silver nanoparticles. The observations in this study show that this can be developed as a promising nanomaterial in pharmaceutical and healthcare sector.

  20. Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Vasaka (Justicia adhatoda L.) Leaf Extract.

    Science.gov (United States)

    Bose, Debadin; Chatterjee, Someswar

    2015-06-01

    There is an increasing demand for silver nanoparticles due to its wide applicability in various area of biological science such as in field of antimicrobial and therapeutics, biosensing, drug delivery etc. To use in bioprocess the silver nanoparticles should be biocompatible and free from toxic chemicals. In the present study we report a cost effective and environment friendly route for green synthesis of silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract as reducing as well as capping agent. This plant has been opted for the present study for its known medicinal properties and it is easily available. The biosynthesized silver nanoparticles are characterized by UV-Vis spectroscopy and TEM analysis. It is observed the nanoparticles are well shaped and the average particle size is 20 nm in the range of 5-50 nm. The antibacterial activity of these nanoparticles against Pseudomonas aeruginosa MTCC 741 has been measured by disc diffusion method, agar cup assay and serial dilution turbidity measurement assay. The results show green synthesized silver nanoparticles, using Vasaka leaf extract, have a potential to inhibit the growth of bacteria.

  1. Nelumbo nucifera leaf extract mediated synthesis of silver nanoparticles and their antimicrobial properties against some human pathogens

    Science.gov (United States)

    Premanand, G.; Shanmugam, N.; Kannadasan, N.; Sathishkumar, K.; Viruthagiri, G.

    2016-03-01

    In the present report, bio-reduction of silver nitrate into silver nanoparticles using the leaf extract of Nelumbo nucifera is explained. The synthesized nanoparticles exhibited surface Plasmon resonance at 410 nm. The crystalline nature of the biosynthesized silver nanoparticles was confirmed from the X-ray diffraction pattern. The functional groups responsible for bio-reduction of silver nitrate into silver were analyzed by Fourier transform infrared spectroscopy and confirmed by X-ray photoelectron spectrum. Field emission transmission electron microscope micrographs showed the formation of well-separated silver nanoparticles of size in the range of 30-40 nm. The result of dynamic light scattering also confirms the mono-dispersed silver nanoparticles with average size of 35 nm. The synthesized nanoparticles exhibited excellent antibacterial activity against the Gram-positive bacteria B. subtilis.

  2. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract.

    Science.gov (United States)

    Nagaich, Upendra; Gulati, Neha; Chauhan, Swati

    2016-01-01

    The advancement of the biological production of nanoparticles using herbal extracts performs a significant role in nanotechnology discipline as it is green and does not engage harsh chemicals. The objective of the present investigation was to extract flavonoids in the mode of apple extract and synthesize its silver nanoparticles and ultimately nanoparticles loading into hydrogels. The presence of flavonoids in apple extract was characterized by preliminary testing like dil. ammonia test and confirmatory test by magnesium ribbon test. The synthesized silver nanoparticles were characterized using UV spectroscopy, particle size and surface morphology, and zeta potential. Silver nanoparticles loaded hydrogels were evaluated for physical appearance, pH, viscosity, spreadability, porosity, in vitro release, ex vivo permeation, and antibacterial (E. coli and S. aureus) and antioxidant studies (DPPH radical scavenging assay). Well dispersed silver nanoparticles below were observed in scanning electron microscope image. Hydrogels displayed in vitro release of 98.01%  ±  0.37% up to 24 h and ex vivo permeation of 98.81  ±  0.24% up to 24 h. Hydrogel effectively inhibited the growth of both microorganism indicating good antibacterial properties. The value of percent radical inhibition was 75.16%  ±  0.04 revealing its high antioxidant properties. As an outcome, it can be concluded that antioxidant and antiageing traits of flavonoids in apple extract plus biocidal feature of silver nanoparticles can be synergistically and successfully utilized in the form of hydrogel.

  3. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract

    Directory of Open Access Journals (Sweden)

    Upendra Nagaich

    2016-01-01

    Full Text Available The advancement of the biological production of nanoparticles using herbal extracts performs a significant role in nanotechnology discipline as it is green and does not engage harsh chemicals. The objective of the present investigation was to extract flavonoids in the mode of apple extract and synthesize its silver nanoparticles and ultimately nanoparticles loading into hydrogels. The presence of flavonoids in apple extract was characterized by preliminary testing like dil. ammonia test and confirmatory test by magnesium ribbon test. The synthesized silver nanoparticles were characterized using UV spectroscopy, particle size and surface morphology, and zeta potential. Silver nanoparticles loaded hydrogels were evaluated for physical appearance, pH, viscosity, spreadability, porosity, in vitro release, ex vivo permeation, and antibacterial (E. coli and S. aureus and antioxidant studies (DPPH radical scavenging assay. Well dispersed silver nanoparticles below were observed in scanning electron microscope image. Hydrogels displayed in vitro release of 98.01%  ±  0.37% up to 24 h and ex vivo permeation of 98.81  ±  0.24% up to 24 h. Hydrogel effectively inhibited the growth of both microorganism indicating good antibacterial properties. The value of percent radical inhibition was 75.16%  ±  0.04 revealing its high antioxidant properties. As an outcome, it can be concluded that antioxidant and antiageing traits of flavonoids in apple extract plus biocidal feature of silver nanoparticles can be synergistically and successfully utilized in the form of hydrogel.

  4. Enhanced Antimicrobial and Anticancer Activity of Silver and Gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts.

    Science.gov (United States)

    Mmola, Mokone; Roes-Hill, Marilize Le; Durrell, Kim; Bolton, John J; Sibuyi, Nicole; Meyer, Mervin E; Beukes, Denzil R; Antunes, Edith

    2016-12-02

    A detailed, methodical approach was used to synthesise silver and gold nanoparticles using two differently prepared aqueous extracts of the brown algae Sargassum incisifolium. The efficiency of the extracts in producing nanoparticles were compared to commercially available brown algal fucoidans, a major constituent of brown algal aqueous extracts. The nanoparticles were characterised using TEM, XRD and UV/Vis spectroscopy and zeta potential measurements. The rate of nanoparticle formation was assessed using UV/Vis spectroscopy and related to the size, shape and morphology of the nanoparticles as revealed by TEM. The antioxidant, reducing power and total polyphenolic contents of the aqueous extracts and fucoidans were determined, revealing that the aqueous extracts with the highest contents produced smaller, spherical, more monodisperse nanoparticles at a faster rate. The nanoparticles were assessed against two gram-negative bacteria, two gram-positive bacteria and one yeast strain. In contrast to the literature, the silver nanoparticles produced using the aqueous extracts were particularly toxic to Gram-negative bacteria, while the gold nanoparticles lacked activity. The cytotoxic activity of the nanoparticles was also evaluated against cancerous (HT-29, MCF-7) and non-cancerous (MCF-12a) cell lines. The silver nanoparticles displayed selectivity, since the MCF-12a cell line was found to be resistant to the nanoparticles, while the cancerous HT-29 cell line was found to be sensitive (10% viability). The gold nanoparticles displayed negligible toxicity.

  5. Biosynthesis and Characterization of Gold and Silver Nanoparticles Using Milk Thistle (Silybum marianum Seed Extract

    Directory of Open Access Journals (Sweden)

    R. Gopalakrishnan

    2014-01-01

    Full Text Available Biogenic synthesis of gold and silver nanoparticles from aqueous solutions using milk thistle (Silybum marianum seed extract as reducing and stabilizing agent has been reported. Formation and stabilization of nanoparticles were monitored using surface plasmon resonance (SPR bands of UV-Vis spectroscopy. Morphology of gold and silver nanoparticles was investigated using X-ray diffraction, high-resolution transmission electron microscopy with selected area electron diffraction analysis, and dynamic light scattering. Fourier transform-infrared spectroscopy was employed to identify the possible biomolecules responsible for the reduction and stabilization of nanoparticles.

  6. Synthesis and characterization of Gold and Silver nano-particles using different leaf extracts namely Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method

    OpenAIRE

    Sarbjeet Singh Gujral

    2014-01-01

    Objective: synthesis of gold and silver nano-particles using leaf extracts of Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method. Method: Green approach has been utilized for the synthesis of gold and silver nano-particles. Different aqueous plant extracts has been prepared which was then utilized for the biosynthesis of gold and silver nano-particles. Estimation for the synthesis of nano-parti...

  7. Green Synthesis of silver nanoparticles using Coleus forskohlii roots extract and its antimicrobial activity against Bacteria and Fungus

    OpenAIRE

    C. Baskaran; V.Ratha bai

    2013-01-01

    Biosynthesis of nanoparticles is under exploration is due to wide biomedical applications and research interest in nanotechnology. Bioreduction of silver nitrate (AgNO3) used for the synthesis of silver nanoparticles respectively with the plant extract; Coleus forskohlii roots extract (Lamiaceae). The plant extract is mixed withAgNO3, incubated and studied synthesis of nanoparticles using UV–Vis spectroscopy. The nanoparticles were characterized by X-ray diffraction (XRD), FTIR, SEM equipped ...

  8. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  9. "Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract".

    Science.gov (United States)

    Kharat, Sopan N; Mendhulkar, Vijay D

    2016-05-01

    The simple, eco-friendly and cost effective method of green synthesis of silver nanoparticle in the leaf extract of medicinal plant Elephantopus scaber L. is illustrated in the present work. The synthesized silver nanoparticles (AgNPs) were characterized with UV-Vis-spectroscopy, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The UV-spectra show maximum absorbance at 435 nm, NTA analysis shows 78 nm average sizes of nanoparticles, TEM analysis indicates spherical shape of the nanoparticles with the average diameter of 50 nm. The XRD peaks at 2θ range of 30-80° correspond to (111), (200), (220), (311) reflection planes that indicate the structure of metallic silver. FTIR analysis reveals surface capping of phenolic groups. Existence of peaks in the range of 1611 to 1400 cm(-1) indicates the presence of aromatic rings in the leaf extract. The peak at 1109 cm(-1) is due to the presence of OH groups. The antioxidant activity of synthesized nanoparticles was evaluated performing DPPH assay and it is observed that the photosynthesized nanoparticle also possesses antioxidant potentials. Thus, it can be used as potential free radical scavenger. Silver particles have tremendous applications in the field of diagnostics and therapeutics. To this context, the surface coating of plant metabolite constituents has great potentials. Therefore, the present work has been undertaken to synthesize the AgNPs using leaf extract of medicinal plant, E. scaber, to characterize and access their antioxidant properties.

  10. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract.

    Science.gov (United States)

    Mamun Or Rashida, Md; Shafiul Islam, Md; Azizul Haque, Md; Arifur Rahman, Md; Tanvir Hossain, Md; Abdul Hamid, Md

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV-Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can't be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program.

  11. Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract

    Science.gov (United States)

    Zia, Faria; Ghafoor, Nida; Iqbal, Mudassir; Mehboob, Saliha

    2016-10-01

    The green synthesis of nanoparticles has emerged as a cost-effective and environmentally benign technique. The present study describes the synthesis of silver nanoparticles (Ag-NPs) using a seed extract of Cydonia oblonga. The conditions were optimized by adjusting pH, temperature, time and amount of seed extract. The nanoparticles produced were characterized by different techniques, namely UV-visible spectroscopy, Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy. The formation of Ag-NPs was confirmed by UV-visible spectroscopic analysis. FTIR analysis was performed to identify the biomolecules, which played a key role in the reduction of Ag+ ions. XRD confirmed that the silver nanoparticles possessed face-centered cubic structure. The green chemistry approach has proven that Ag-NPs can be synthesized by using plant extract in which biomolecules effectively act as capping and reducing agent.

  12. Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study

    Science.gov (United States)

    Ojha, Sunita; Sett, Arghya; Bora, Utpal

    2017-09-01

    In this study, we report synthesis of silver nanoparticles (RcAgNPs) from silver nitrate solution using methanolic leaf extract of Ricinus communis var. carmencita. The polyphenols present in the leaves reduce Ag++ ions to Ag0 followed by a color change. Silver nanoparticle formation was ensured by surface plasmon resonance between 400 nm to 500 nm. Crystallinity of the synthesized nanoparticles was confirmed by UHRTEM, SAED and XRD analysis. The capping of phytochemicals and thermal stability of RcAgNPs were assessed by FTIR spectra and TGA analysis, respectively. It also showed antibacterial activity against both gram positive and gram negative strains. RcAgNPs were non-toxic against normal cell line (mouse fibroblast cell line L929) at lower concentrations (80 µg ml-1).

  13. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast ( Saccharomyces cerevisiae) extract

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical route is quiet common but biological synthesis procedures are gaining momentum due to their simplicity, cost-effectivity and eco-friendliness. Here, we report green synthesis of silver nanoparticles from aqueous solution of silver salts using yeast ( Saccharomyces cerevisiae) extract. The nanoparticles formation was gradually investigated by UV-Vis spectrometer. X-ray diffraction analysis was done to identify different phases of biosynthesized Ag nanoparticles. Transmission electron microscopy was performed to study the particle size and morphology of silver nanoparticles. Fourier transform infrared spectroscopy of the nanoparticles was performed to study the role of biomolecules capped on the surface of Ag nanoparticles during interaction. Photocatalytic activity of these biosynthesized nanoparticles was studied using an organic dye, methylene blue under solar irradiation and these nanoparticles showed efficacy in degrading the dye within a few hours of exposure.

  14. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Jagajjanani Rao, K. [Department of Chemical Engineering, National Institute of Technology, Rourkela 769 008, Orissa (India); Paria, Santanu, E-mail: santanuparia@yahoo.com [Department of Chemical Engineering, National Institute of Technology, Rourkela 769 008, Orissa (India)

    2013-02-15

    Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60 nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.

  15. Mechanistic Study of Silver Nanoparticle's Synthesis by Dragon's Blood Resin Ethanol Extract and Antiradiation Activity.

    Science.gov (United States)

    Hasan, Murtaza; Iqbal, Javed; Awan, Umer; Saeed, Yasmeen; Ranran, Yuan; Liang, Yanli; Dai, Rongji; Deng, Yulin

    2015-02-01

    Biological synthesis of nanoparticles is best way to avoid exposure of hazardous materials as compared to chemical manufacturing process which is a severe threat not only to biodiversity but also to environment. In present study, we reported a novel method of finding antiradiation compounds by bioreducing mechanism of silver nanoparticles formation using 50% ethanol extract of Dragons blood, a famous Chinese herbal plant. Color change during silver nanoparticles synthesis was observed and it was confirmed by ultra violet (UV) visible spectroscopy at wave length at 430 nm after 30 min of reaction at 60 °C. Well dispersed round shaped silver nanoparticles with approximate size (4 nm to 50 nm) were measured by TEM and particle size analyser. Capping of biomolecules on Ag nanoparticles was characterized by FTIR spectra. HPLC analysis was carried out to find active compounds in the extract. Furthermore, antiradiation activity of this extract was tested by MTT assay in vitro after incubating the SH-SY5Y cells for 24 h at 37 °C. The results indicate that presence of active compounds in plant extract not only involves in bioreduction process but also shows response against radiation. The dual role of plant extract as green synthesis of nanoparticles and exhibit activity against radiation which gives a new way of fishing out active compounds from complex herbal plants.

  16. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects.

    Science.gov (United States)

    Mashwani, Zia-ur-Rehman; Khan, Tariq; Khan, Mubarak Ali; Nadhman, Akhtar

    2015-12-01

    Synthesis of silver nanoparticles by plants and plant extracts (green synthesis) has been developed into an important innovative biotechnology, especially in the application of such particles in the control of pathogenic bacteria. This is a safer technology, biologically and environmentally, than synthesis of silver nanoparticles by chemical or physical methods. Plants are preferable to microbes as agents for the synthesis of silver nanoparticles because plants do not need to be maintained in cell culture. The antibacterial activity of bionanoparticles has been extensively explored during the past decade. This review examines studies published in the last decade that deal with the synthesis of silver nanoparticles in plants and their antibacterial activity.

  17. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract

    Science.gov (United States)

    Sulaiman, Ghassan Mohammad; Mohammed, Wasnaa Hatif; Marzoog, Thorria Radam; Al-Amiery, Ahmed Abdul Amir; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2013-01-01

    Objective To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Methods Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). Results UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. Conclusions It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles. PMID:23570018

  18. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract

    Institute of Scientific and Technical Information of China (English)

    Ghassan Mohammad Sulaiman; Wasnaa Hatif Mohammed; Thorria Radam Marzoog; Ahmed Abdul Amir Al-Amiery; Abdul Amir H Kadhum; Abu Bakar Mohamad

    2013-01-01

    Objective: To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line.Methods:Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). Results: UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50 ° and 44.76 °. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. Conclusions: It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.

  19. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Sutanuka Pattanayak

    2017-09-01

    Full Text Available The work deals with an environmentally benign process for the synthesis of silver nanoparticle using Butea monosperma bark extract which is used both as a reducing as well as capping agent at room temperature. The reaction mixture turned brownish yellow after about 24 h and an intense surface plasmon resonance (SPR band at around 424 nm clearly indicates the formation of silver nanoparticles. Fourier transform-Infrared (FT-IR spectroscopy showed that the nanoparticles were capped with compounds present in the plant extract. Formation of crystalline fcc silver nanoparticles is analysed by XRD data and the SAED pattern obtained also confirms the crystalline behaviour of the Ag nanoparticles. The size and morphology of these nanoparticles were studied using High Resolution Transmission Electron Microscopy (HRTEM which showed that the nanoparticles had an average dimension of ∼35 nm. A larger DLS data of ∼98 nm shows the presence of the stabilizer on the nanoparticles surface. The bio-synthesized silver nanoparticles revealed potent antibacterial activity against human bacteria of both Gram types. In addition these biologically synthesized nanoparticles also proved to exhibit excellent cytotoxic effect on human myeloid leukemia cell line, KG-1A with IC50 value of 11.47 μg/mL.

  20. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract

    Science.gov (United States)

    Rao, Bo; Tang, Ren-Cheng

    2017-03-01

    An eco-friendly approach for the preparation of silver nanoparticles (AgNPs) from silver nitrate solution using aqueous Eriobotrya japonica leaf extract was investigated. The reduction of silver ions in solution was monitored using UV-visible absorption spectroscopy, and the surface plasmon resonance of AgNPs at 435 nm was observed. The proper condition to biosynthesize AgNPs using E. japonica leaf extract was optimized by UV-visible absorption spectroscopy and dynamic light scattering measurement (DLS). The biosynthesised nanoparticles were characterised using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), DLS, x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD and EDX analyses confirmed the crystalline character of AgNPs and the presence of elemental silver. The prepared AgNPs were spherical in shape, and their average particle size determined by TEM was about 20 nm. Furthermore the AgNPs were found to exhibit effective antibacterial activities against Escherichia coli and Staphylococcus aureus.

  1. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies.

    Science.gov (United States)

    Pasupuleti, Visweswara Rao; Prasad, T N V; Shiekh, Rayees Ahmad; Balam, Satheesh Krishna; Narasimhulu, Ganapathi; Reddy, Cirandur Suresh; Ab Rahman, Ismail; Gan, Siew Hua

    2013-01-01

    Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries.

  2. Biosynthesis of Silver Nanoparticles Using Carum carvi Extract and its Inhibitory Effect on Growth of Candida albicans

    Directory of Open Access Journals (Sweden)

    Nasiri

    2016-08-01

    Full Text Available Background Biological synthesis of nanoparticles has emerged as a promising field of biotechnology. Various biological systems including fungi, yeasts, bacteria, and plants have been used for biosynthesis of nanoparticles. Silver nanoparticles have unique properties that make them ideal for various medical and industrial applications. Owing to high levels of organic reducing agents and ease of manipulation, plant extracts are widely used for biological generation of various types of metal nanoparticles. Objectives The objective of the present study was to evaluate efficacy of Carum carvi extract in biosynthesis of silver nanoparticles and to investigate antifungal effects of the biosynthesized nanoparticles. Methods Silver nanoparticles were synthesized by addition of silver nitrate solution into fresh extract of C. carvi. Characterization of the synthesized silver nanoparticles was performed by transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive spectrometry (EDS, and X-ray diffraction analysis (XRD. Inhibitory effect of silver nanoparticles on Candida albicans growth was evaluated by serial microdilution method. Results The results revealed the formation of spherical silver nanoparticles with an average size of 10 nm. Moreover, concentration of SNPs in a 25 mL sample containing both SNPs and plant extract biomass was 2.934 mg/L on average. Serial microdilution test showed that SNPs at the concentration of 50 μg/mL can inhibit growth of the pathogen. Conclusions The present study extends the existing literature about green synthesis of nanoparticles using plant tissues and extracts.

  3. Silver Nanoparticles Mediated by Costus afer Leaf Extract: Synthesis, Antibacterial, Antioxidant and Electrochemical Properties.

    Science.gov (United States)

    Elemike, Elias E; Fayemi, Omolola E; Ekennia, Anthony C; Onwudiwe, Damian C; Ebenso, Eno E

    2017-04-29

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical routes has been extensively reported. However, green synthesized metal nanoparticles are currently in the limelight due to the simplicity, cost-effectiveness and eco-friendliness of their synthesis. This study explored the use of aqueous leaf extract of Costus afer in the synthesis of silver nanoparticles (CA-AgNPs). The optical and structural properties of the resulting silver nanoparticles were studied using UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-red spectrophotometer (FTIR). TEM images of the silver nanoparticles confirmed the existence of monodispersed spherical nanoparticles with a mean size of 20 nm. The FTIR spectra affirmed the presence of phytochemicals from the Costus afer leaf extract on the surface of the silver nanoparticles. The electrochemical characterization of a CA-AgNPs/multiwalled carbon nanotubes (MWCNT)-modified electrode was carried out to confirm the charge transfer properties of the nanocomposites. The comparative study showed that the CA-AgNPs/MWCNT-modified electrode demonstrated faster charge transport behaviour. The anodic current density of the electrodes in Fe(CN)₆](4-)/[Fe(CN)₆](3-) redox probe follows the order: GCE/CA-Ag/MWCNT (550 mA/cm²) > GCE/MWCNT (270 mA/cm²) > GCE (80 mA/cm²) > GCE/CA-Ag (7.93 mA/cm²). The silver nanoparticles were evaluated for their antibacterial properties against Gram negative (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa) and Gram positive (Bacillus subtilis and Staphylococcus aureus) pathogens. The nanoparticles exhibited better inhibition of the bacterial strains compared to the precursors (leaf extract of Costus afer and silver nitrate). Furthermore, the ability of the nanoparticles to scavenge DPPH radicals at different concentrations was studied using the DPPH radical scavenging assay and compared to

  4. Silver Nanoparticles Mediated by Costus afer Leaf Extract: Synthesis, Antibacterial, Antioxidant and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Elias E. Elemike

    2017-04-01

    Full Text Available Synthesis of metallic and semiconductor nanoparticles through physical and chemical routes has been extensively reported. However, green synthesized metal nanoparticles are currently in the limelight due to the simplicity, cost-effectiveness and eco-friendliness of their synthesis. This study explored the use of aqueous leaf extract of Costus afer in the synthesis of silver nanoparticles (CA-AgNPs. The optical and structural properties of the resulting silver nanoparticles were studied using UV-visible spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM and Fourier transform infra–red spectrophotometer (FTIR. TEM images of the silver nanoparticles confirmed the existence of monodispersed spherical nanoparticles with a mean size of 20 nm. The FTIR spectra affirmed the presence of phytochemicals from the Costus afer leaf extract on the surface of the silver nanoparticles. The electrochemical characterization of a CA-AgNPs/multiwalled carbon nanotubes (MWCNT-modified electrode was carried out to confirm the charge transfer properties of the nanocomposites. The comparative study showed that the CA-AgNPs/MWCNT-modified electrode demonstrated faster charge transport behaviour. The anodic current density of the electrodes in Fe(CN6]4−/[Fe(CN6]3− redox probe follows the order: GCE/CA-Ag/MWCNT (550 mA/cm2 > GCE/MWCNT (270 mA/cm2 > GCE (80 mA/cm2 > GCE/CA-Ag (7.93 mA/cm2. The silver nanoparticles were evaluated for their antibacterial properties against Gram negative (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and Gram positive (Bacillus subtilis and Staphylococcus aureus pathogens. The nanoparticles exhibited better inhibition of the bacterial strains compared to the precursors (leaf extract of Costus afer and silver nitrate. Furthermore, the ability of the nanoparticles to scavenge DPPH radicals at different concentrations was studied using the DPPH radical scavenging assay and compared to

  5. Green synthesis of Silver nanoparticles through Calotropis gigantea leaf extracts and evaluation of antibacterial activity against Vibrio alginolyticus

    Directory of Open Access Journals (Sweden)

    Vaseeharan Baskaralingam

    2012-01-01

    Full Text Available Green synthesized silver nanoparticles by Calotropis gigantea leaf extract were used to study the inhibitory activity against pathogenic Vibrio alginolyticus, isolated from wild Artemia franciscana cysts. Silver nanoparticle synthesis was observed using UV-visible spectroscopy and the morphological characteristics were analyzed by atomic force microscope (AFM. In the present study, increasing concentrations of silver nanoparticles synthesized on LB agar plates effectively reduced the number of colonies of V. alginolyticus. A decrease in colonies (CFUs was observed at 5 mg/mL of silver nanoparticle concentration and the complete inhibition of V. alginolyticus was observed at 20 mg/mL of silver nanoparticle concentration on LB agar plates. In vivo controlling efficiency of silver nanoparticles was tested in an A. franciscana hatching system. Effective control of V. alginolyticus in brine shrimp A. franciscana hatching units was achieved by experimental infection and treatment with silver nanoparticles. Experimental infection studies showed that V. alginolyticus infected Artemia nauplii treated with silver nanoparticles (10 mg/mL had greater survival (>40% than silver nanoparticles not treated with nauplii. Based on the findings of this study, it is recommended that low concentrations of green synthesized silver nanoparticles should be further investigated for other potential experimental models to control potential medical pathogens.

  6. Biogenic synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa

    Science.gov (United States)

    Bose, Debadin; Chatterjee, Someswar

    2016-08-01

    Among the various inorganic nanoparticles, silver nanoparticles have received substantial attention in the field of antimicrobial research. For safe and biocompatible use of silver nanoparticles in antimicrobial research, the different biogenic routes are developed to synthesize silver nanoparticles that do not use toxic chemicals. Among those, to synthesize silver nanoparticles, the use of plant part extract becomes an emerging field because plant part acts as reducing as well as capping agent. For large-scale production of antibacterial silver nanoparticles using plant part, the synthesis route should be very simple, rapid, cost-effective and environment friendly based on easy availability and non-toxic nature of plant, stability and antibacterial potential of biosynthesized nanoparticles. In the present study, we report a very simple, rapid, cost-effective and environment friendly route for green synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract as reducing as well as capping agent. This plant has been opted for the present study for its known medicinal properties, and it is easily available in all seasons and everywhere. The biosynthesized silver nanoparticles are characterized by UV-Vis and TEM analysis. The average particle size is 40 nm in the range of 10-90 nm. The antibacterial activity of these nanoparticles against Pseudomonas aeruginosa MTCC 741 has been measured by disc diffusion method, agar cup assay and serial dilution turbidity measurement assay. The results show that green synthesized silver nanoparticles, using guava ( Psidium guajava) leaf extract, have a potential to inhibit the growth of bacteria.

  7. Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens

    Science.gov (United States)

    Das, J.; Paul Das, M.; Velusamy, P.

    2013-03-01

    Simple, effective and rapid approach for the green synthesis of silver nanoparticles (AgNPs) using leaf extract of Sesbania grandiflora and their in vitro antibacterial activity against selected human pathogens has been demonstrated in the study. Various instrumental techniques were adopted to characterize the synthesized AgNPs viz. UV-Vis, FTIR, XRD, TEM, EDX and AFM. Surface Plasmon spectra for AgNPs are centered at 422 nm with dark brown color. The synthesized AgNPs were found to be spherical in shape with size in the range of 10-25 nm. The presence of water soluble proteins in the leaf extract was identified by FTIR which were found to be responsible for the reduction of silver ions (Ag+) to AgNPs. Moreover, the synthesized AgNPs showed potent antibacterial activity against multi-drug resistant (MDR) bacteria such as Salmonella enterica and Staphylococcus aureus.

  8. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  9. Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction.

    Science.gov (United States)

    Shameli, Kamyar; Bin Ahmad, Mansor; Jaffar Al-Mulla, Emad A; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Rustaiyan, Abdolhossein; Abdollahi, Yadollah; Bagheri, Samira; Abdolmohammadi, Sanaz; Usman, Muhammad Sani; Zidan, Mohammed

    2012-07-16

    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.

  10. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities.

    Science.gov (United States)

    Rao, N Hanumanta; N, Lakshmidevi; Pammi, S V N; Kollu, Pratap; S, Ganapaty; P, Lakshmi

    2016-05-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV-Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (-) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Green Biosynthesis of Silver Nanoparticles Using Callicarpa maingayi Stem Bark Extraction

    Directory of Open Access Journals (Sweden)

    Mohammed Zidan

    2012-07-01

    Full Text Available Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis, powder X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray fluorescence (EDXF spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.

  12. Hepatic Histopathological Characteristics and Antioxidant Response of Phytoplanktivorous Silver Carp Intraperitoneally Injected with Extracted Microcystins

    Institute of Scientific and Technical Information of China (English)

    LI LI; PING XIE

    2009-01-01

    Objectives To investigate the hispathological characteristics and antioxidant responses in liver of silver carp after intraperitoneal administration of microcystins (MCs) for further understanding hepatic intoxication and antioxidation mechanism in fish. Methods Phytoplanktivorous silver carp was injected intraperitoneally (i.p.) with extracted hepatotoxic microcystins (mainly MC-RR and-LR) at a dose of 1000μg MC-LReq./kg body weight, and liver histopathological changes and antioxidant responses were studied at 1, 3, 12, 24, and 48 h, respectively, after injection. Results The damage to liver structure and the activities of hepatic antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and ghitathione peroxide (GPX) were increased in a time-dependent manner. Conclusion In terms of clinical and histological signs of intoxication and LD50 (i.p.) dose of MC-LR, silver carp appears rather resistant to MCs exposure than other fishes. Also, the significantly increased SOD activity in the liver of silver carp suggests a higher degree of response to MCs exposure than CAT and GPX.

  13. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability

    Directory of Open Access Journals (Sweden)

    Selvaraj Raja

    2017-02-01

    Full Text Available In recent times, plant-mediated synthesis of nanoparticles has garnered wide interest owing to its inherent features such as rapidity, simplicity, eco-friendliness and cheaper costs. For the first time, silver nanoparticles were successfully synthesized using Calliandra haematocephala leaf extract in the current investigation. The as-formed silver nanoparticles were characterized by UV–Vis spectrophotometer and the characteristic surface plasmon resonance peak was identified to be 414 nm. The morphology of the silver nanoparticles was characterized by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS was used to detect the presence of elemental silver. X-ray diffraction (XRD was employed to ascertain the crystalline nature and purity of the silver nanoparticles which implied the presence of (111 and (220 lattice planes of the face centered cubic (fcc structure of metallic silver. Fourier transform infrared spectroscopy (FTIR was used to key out the specific functional groups responsible for the reduction of silver nitrate to form silver nanoparticles and the capping agents present in the leaf extract. The stability of the silver nanoparticles was analyzed by zeta potential measurements. A negative zeta potential value of −17.2 mV proved the stability of the silver nanoparticles. The antibacterial activity against Escherichia coli – pathogenic bacteria – and the capacity to detect hydrogen peroxide by the silver nanoparticles were demonstrated which would find applications in the development of new antibacterial drugs and new biosensors to detect the presence of hydrogen peroxide in various samples respectively.

  14. RAPID AND GREEN SYNTHESIS OF SILVER NANOPARTICLES USING THE LEAF EXTRACTS OF PARTHENIUM HYSTEROPHORUS: A NOVEL BIOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    D.Ashok kumar

    2012-02-01

    Full Text Available The current research evaluated the effect of extracts of the Parthenium Hysterophorus plant on synthesis of antimicrobial silver nanoparticles using silver nitrate as a substrate. The UV-Visible analysis against the reduction reaction mixture time confirms the reduction of silver nanoparticles indicating that the formation nanoparticles and the aggregation of nanoparticles take place shortly time. The synthesized nano crystals were characterized using Scanning electron microscopy (SEM, X-ray diffraction (XRD and Fourier transform infrared (FTIR spectroscopy. The silver nanoparticles synthesis was confirmed with X-ray diffraction spectrum which exhibited intense peaks corresponding to the (111, (200, (220 (311, and sets of lattice planes of silver. The FTIR spectrum analysis evaluated the presence of different functional groups in capping the silver nanoparticles. Water soluble organics present in the leaf are responsible for the reduction of silver ions. This green synthesis nanoparticles method provides faster synthesis comparable to chemical methods and can be used in areas such as cosmetics, foods, medicals and biotechnology. DP leaf demonstrated strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions. Biological methods are a good competent for the chemical procedures, which are environment friendly and convenient.

  15. Characterization of phytoconstituents and evaluation of antimicrobial activity of silver-extract nanoparticles synthesized from Momordica charantia fruit extract.

    Science.gov (United States)

    Rashid, Md Mamun Or; Akhter, Kazi Nahid; Chowdhury, Jakir Ahmed; Hossen, Foysal; Hussain, Md Saddam; Hossain, Md Tanvir

    2017-06-26

    Our present study was conducted to characterize the phytoconstituents present in the aqueous extract of Momordica charantia and evaluate the antimicrobial efficacy of silver-extract nanoparticles (Ag-Extract-NPs). Silver nanoparticles (AgNPs) were prepared by reducing AgNO3; and NaBH4 served as reducing agent. After screening of phytochemicals; AgNPs and aqueous extract were mixed thoroughly and then coated by polyaniline. These NPs were characterized by using Visual inspection, UV spectroscopy, FTIR, SEM and TEM techniques. Antimicrobial activities were assessed against Staphylococcus aureus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa. Aqueous extract of M. charantia fruits contain alkaloid, phenol, saponin etc. UV-Vis spectrum showed strong absorption peak around 408 nm. The presence of -CH, -NH, -COOH etc. stretching in FTIR spectrum of Ag-Extract-NPs endorsed that AgNPs were successfully capped by bio-compounds. SEM and TEM result revealed that synthesized NPs had particle size 78.5-220 nm. Ag-Extract-NPs showed 34.6 ± 0.8 mm zone of inhibition against E. coli compared to 25.6 ± 0.5 mm for ciprofloxacin. Maximum zone of inhibition for Ag-Extract-NPs were 24.8 ± 0.7 mm, 26.4 ± 0.4 mm, 7.4 ± 0.4 mm for S. aureus, P. aeruginosa and S. typhi. We found that Ag-Extract-NPs have much better antibacterial efficacy than AgNPs and M. charantia extract has individually. It is also noticed that gram negative bacteria (except S. typhi) are more susceptible to Ag-Extract-NPs than gram positive bacteria. Ag-Extract-NPs showed strong antibacterial activity. In order to make a reliable stand for mankind, further study is needed to consider determining the actual biochemical pathway by which AgNPs-extracts exert their antimicrobial effect.

  16. Synthesis of Silver Nanoparticles Using Buchu Plant Extracts and Their Analgesic Properties

    Directory of Open Access Journals (Sweden)

    Herbert Chiguvare

    2016-06-01

    Full Text Available We herein report for the first time the synthesis and analgesic properties of silver nanoparticles (Ag-NPs using buchu plant extract. The as-synthesised Ag-NPs at different temperatures were characterised by UV-Vis spectroscopy, Fourier transform infra-red spectroscopy (FTIR and transmission transform microscopy (TEM to confirm the formation of silver nanoparticles. Phytochemical screening of the ethanolic extract revealed the presence of glycosides, proteins, tannins, alkaloids, flavonoids and saponins. The absorption spectra showed that the synthesis is temperature and time dependent. The TEM analysis showed that the as-synthesised Ag-NPs are polydispersed and spherical in shape with average particle diameter of 19.95 ± 7.76 nm while the FTIR results confirmed the reduction and capping of the as-synthesised Ag-NPs by the phytochemicals present in the ethanolic extract. The analgesic study indicated that the combined effect of the plant extract and Ag-NPs is more effective in pain management than both the aspirin drug and the extract alone.

  17. Additive interaction of carbon dots extracted from soluble coffee and biogenic silver nanoparticles against bacteria

    Science.gov (United States)

    Andrade, Patricia F.; Nakazato, Gerson; Durán, Nelson

    2017-06-01

    It is known the presence of carbon dots (CDs) in carbohydrate based foods. CDs extracted from coffee grounds and instant coffee was also published. CDs from soluble coffee revealed an average size of 4.4 nm. CDs were well-dispersed in water, fluorescent and we have characterized by XPS, XRD analysis, fluorescence and by FTIR spectra. The MIC value by serial micro-dilution assays for CDs on S. aureus ATCC 25923 was 250 μg/mL and E. coli ATCC 25922 >1000 ug/mL. For silver nanoparticles biogenically synthesized was 6.7 μg/mL. Following the checkerboard assay with combining ½ MIC values of the MICs of 125 μg/mL of carbon dots and 3.4 μg/mL of silver nanoparticles, following the fractionated inhibitory concentration (FIC) index methodology, on S. aureus gave a fractionated inhibitory concentration (FIC) value of 1.0, meaning additive interaction. In general, the unfunctionalized CDs showed to be inefficient as antibacterial compounds, however the CDs extracted from Coffee powder and together silver nanoparticles appeared interesting as antibacterial association.

  18. Green synthesis, characterisation and bioactivity of plant-mediated silver nanoparticles using Decalepis hamiltonii root extract.

    Science.gov (United States)

    Rashmi, Venkatasubbaiah; Sanjay, Konasur R

    2017-04-01

    Consistent search of plants for green synthesis of silver nanoparticles (SNPs) is an important arena in Nanomedicine. This study focuses on synthesis of SNPs using bioreduction of silver nitrate (AgNO3) by aqueous root extract of Decalepis hamiltonii. The biosynthesis of SNPs was monitored by UV-vis analysis at absorbance maxima 432 nm. The fluorescence emission spectra of SNPs illustrated the broad emission peak 450-483 nm at different excitation wavelengths. The surface characteristics were studied by scanning electron microscope and atomic force microscopy, showed spherical shape of SNPs and dynamic light scattering analysis confirmed the average particle size 32.5 nm and the presence of metallic silver was confirmed by energy dispersive X-ray. Face centred cubic structure with crystal size 33.3 nm was revealed by powder X-ray diffraction. Fourier transform infrared spectroscopy indicated the biomolecules involved in the reduction mainly polyols and phenols present in root extracts were found to be responsible for the synthesis of SNPs. The stability and charge on SNPs were revealed by zeta potential analysis. In addition, on therapeutic forum, the synthesised SNPs elicit antioxidant and antimicrobial activity against Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.

  19. Biosynthesis of flat silver nanoflowers: from Flos Magnoliae Officinalis extract to simulation solution

    Science.gov (United States)

    Jing, Xiaolian; Huang, Jiale; Wu, Lingfeng; Sun, Daohua; Li, Qingbiao

    2014-03-01

    Flat Ag nanoflowers were directly synthesized from the bioreduction of AgNO3 using Flos Magnoliae Officinalis extract without any additional stabilizer or protective agent at room temperature. Effects of concentrations of the Flos Magnoliae Officinalis extract on the Ag nanostructures were investigated. The main components containing flavone, polyphenol, protein, and reducing sugar in the plant extract were thoroughly determined before and after the reaction, and the dialysis experiments were also conducted. The results of components analysis and dialysis showed that gallic acid representing polyphenols played an important role in the biosynthesis of silver nanoplates. Trisodium citrate combined gallic acid solution, instead of Flos Magnoliae Officinalis extract, was employed and successfully simulated the biosynthesis process of the flat Ag nanoflowers.

  20. Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities.

    Science.gov (United States)

    Suresh, Gopal; Gunasekar, Poosali Hariharan; Kokila, Dhanasegaran; Prabhu, Durai; Dinesh, Devadoss; Ravichandran, Nagaiya; Ramesh, Balasubramanian; Koodalingam, Arunagirinathan; Vijaiyan Siva, Ganesan

    2014-06-05

    Green synthesis of silver nanoparticles (AgNPs) using aqueous root extract of Delphinium denudatum (Dd) by reduction of Ag(+) ions from silver nitrate solution has been investigated. The synthesized DdAgNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). The prepared DdAgNPs showed maximum absorbance at 416nm and particles were polydispersed in nature, spherical in shape and the size of the particle obtained was⩽85nm. The DdAgNPs exhibited antibacterial activity against Staphylococcus aureus ATCC 6538, Bacillus cereus NCIM 2106, Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027. The DdAgNPs showed potent larvicidal activity against second instar larvae of dengue vector Aedes aegypti with a LC50 value of 9.6ppm.

  1. Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities

    Science.gov (United States)

    Suresh, Gopal; Gunasekar, Poosali Hariharan; Kokila, Dhanasegaran; Prabhu, Durai; Dinesh, Devadoss; Ravichandran, Nagaiya; Ramesh, Balasubramanian; Koodalingam, Arunagirinathan; Vijaiyan Siva, Ganesan

    2014-06-01

    Green synthesis of silver nanoparticles (AgNPs) using aqueous root extract of Delphinium denudatum (Dd) by reduction of Ag+ ions from silver nitrate solution has been investigated. The synthesized DdAgNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). The prepared DdAgNPs showed maximum absorbance at 416 nm and particles were polydispersed in nature, spherical in shape and the size of the particle obtained was ⩽85 nm. The DdAgNPs exhibited antibacterial activity against Staphylococcus aureus ATCC 6538, Bacillus cereus NCIM 2106, Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027. The DdAgNPs showed potent larvicidal activity against second instar larvae of dengue vector Aedes aegypti with a LC50 value of 9.6 ppm.

  2. Biocompatibility and antibacterial activity of the Adathoda vasica Linn extract mediated silver nanoparticles.

    Science.gov (United States)

    Latha, M; Priyanka, M; Rajasekar, P; Manikandan, R; Prabhu, N M

    2016-04-01

    The aim of this study is to investigate the biocompatibility and anti-Vibrio efficacy of green synthesized silver nanoparticles (AgNPs) using an aqueous leaf extract of Adathoda vasica (A. vasica). The green synthesized silver nanoparticles were characterized by UV-vis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). A. vasica AgNPs showed significant antibacterial activity against Vibrio parahaemolyticus in agar bioassay and well diffusion method. Further, nanoparticles interactions with bacteria and its antibacterial activity were confirmed by CLSM analysis. In vivo evaluation results confirmed that synthesized A. vasica AgNPs had good antibacterial efficacy and also nontoxic to the Artemia nauplii.

  3. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Ashour AA

    2015-12-01

    Full Text Available Asmaa A Ashour,1 Dina Raafat,2 Hanan M El-Gowelli,3 Amal H El-Kamel1 1Department of Pharmaceutics, 2Department of Pharmaceutical Microbiology, 3Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt Background: The growing threat of microbial resistance against traditional antibiotics has prompted the development of several antimicrobial nanoparticles (NPs, including silver NPs (AgNPs. In this article, a simple and eco-friendly method for the synthesis of AgNPs using the cranberry powder aqueous extract is reported.Materials and methods: Cranberry powder aqueous extracts (0.2%, 0.5%, and 0.8% w/v were allowed to interact for 24 hours with a silver nitrate solution (10 mM at 30°C at a ratio of 1:10. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy and their concentrations were determined using atomic absorption spectroscopy. The prepared NPs were evaluated by transmission electron microscopy, measurement of ζ-potential, and Fourier-transform infrared spectroscopy. The in vitro antimicrobial properties of AgNPs were then investigated against several microbial strains. Finally, in vivo appraisal of both wound-healing and antimicrobial properties of either plain AgNPs (prepared using 0.2% extract or AgNP-Pluronic F-127 gel was conducted in a rat model after induction of a Staphylococcus aureus ATCC 6538P wound infection.Results: The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy, where a surface-plasmon resonance absorption peak was observed between 432 and 438 nm. Both size and concentration of the formed AgNPs increased with increasing concentration of the extracts. The developed NPs were stable, almost spherical, and polydisperse, with a size range of 1.4–8.6 nm. The negative ζ-potential values, as well as Fourier-transform infrared spectroscopy analysis, indicated the presence of a capping agent adsorbed onto the surface of the particles. In

  4. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.

    Science.gov (United States)

    Sadeghi, Babak; Gholamhoseinpoor, F

    2015-01-05

    Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Mediated Synthesis by plant extracts is environmentally benign. The involved reducing agents include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) nanoparticles have the particular focus of plant-based syntheses. Extracts of a diverse range of Ziziphora tenuior (Zt) have been successfully used in making nanoparticles. The aim of this study was to investigate the antioxidant properties of this plant and its ability to synthesize silver nanoparticles. Z.tenuior leaves were used to prepare the aqueous extract for this study. Silver nanoparticles were characterized with different techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 8 to 40 nm. FT-IR spectroscopy revealed that silver nanoparticles were functionalized with biomolecules that have primary amine group (NH₂), carbonyl group, -OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of silver nanoparticles with size of 38 nm. In addition to plant extracts, live plants can be used for the synthesis. Here were view the methods of making nanoparticles using plant extracts. The scanning electron microscopy (SEM) implies the right of forming silver nanoparticles. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of Zt can synthesis silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights

  5. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors.

    Science.gov (United States)

    Santhoshkumar, Thirunavukkarasu; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Marimuthu, Sampath; Bagavan, Asokan; Jayaseelan, Chidambaram; Zahir, Abdul Abduz; Elango, Gandhi; Kamaraj, Chinnaperumal

    2011-03-01

    The aim of this study was to investigate the larvicidal potential of the hexane, chloroform, ethyl acetate, acetone, methanol, and aqueous leaf extracts of Nelumbo nucifera Gaertn. (Nymphaeaceae) and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. The results recorded from UV-vis spectrum, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared support the biosynthesis and characterization of silver nanoparticles. Larvae were exposed to varying concentrations of plant extracts and synthesized silver nanoparticles for 24 h. All extracts showed moderate larvicidal effects; however, the maximum efficacy was observed in crude methanol, aqueous, and synthesized silver nanoparticles against the larvae of A. subpictus (LC(50) = 8.89, 11.82, and 0.69 ppm; LC(90) = 28.65, 36.06, and 2.15 ppm) and against the larvae of C. quinquefasciatus (LC(50) = 9.51, 13.65, and 1.10 ppm; LC(90) = 28.13, 35.83, and 3.59 ppm), respectively. These results suggest that the leaf methanol, aqueous extracts of N. nucifera, and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.

  6. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature

    Science.gov (United States)

    Sadeghi, Babak; Gholamhoseinpoor, F.

    2015-01-01

    Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Mediated Synthesis by plant extracts is environmentally benign. The involved reducing agents include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) nanoparticles have the particular focus of plant-based syntheses. Extracts of a diverse range of Ziziphora tenuior (Zt) have been successfully used in making nanoparticles. The aim of this study was to investigate the antioxidant properties of this plant and its ability to synthesize silver nanoparticles. Z.tenuior leaves were used to prepare the aqueous extract for this study. Silver nanoparticles were characterized with different techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 8 to 40 nm. FT-IR spectroscopy revealed that silver nanoparticles were functionalized with biomolecules that have primary amine group (sbnd NH2), carbonyl group, sbnd OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of silver nanoparticles with size of 38 nm. In addition to plant extracts, live plants can be used for the synthesis. Here were view the methods of making nanoparticles using plant extracts. The scanning electron microscopy (SEM) implies the right of forming silver nanoparticles. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of Zt can synthesis silver nanoparticles.

  7. Synthesis of silver nanorods using Coscinium fenestratum extracts and its cytotoxic activity against Hep-2 cell line.

    Science.gov (United States)

    Jacob, S Justin Packia; Mohammed, Harish; Murali, K; Kamarudeen, M

    2012-10-01

    Silver nanorod has attracted considerable interest due to its potential applications in display technologies, thermoelectric and electronic devices, optoelectronic devices and biomedicine. In this study, crystalline silver nanorods were successfully prepared from AgNO(3) using Coscinium fenestratum extract as a reducing agent. The products were characterized by UV-visible spectroscopy, FTIR (Fourier-transform IR) spectroscopy and SEM (scanning electron microscopy) analysis. Bundle-like nanostructures were observed by SEM analysis and the diameters of the nanorods were found to be in the range of 28.5-68.0 nm. The MTT assay results revealed that silver nanorod exhibit significant cytotoxic effect on HEp-2 cells.

  8. Green synthesis of silver nanoparticles using leaf extract of medicinally potent plant Saraca indica: a novel study

    Science.gov (United States)

    Perugu, Shyam; Nagati, Veerababu; Bhanoori, Manjula

    2016-06-01

    Eco-friendly silver nanoparticles (AgNPs) have various applications in modern biotechnology for better outcomes and benefits to the society. In the present study, we report an eco-friendly synthesis of silver nanoparticles using Saraca indica leaf extract. Characterization of S. indica silver nanoparticles (SAgNPs) was carried out by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectrometry, Zeta potential, and transmission electron microscopy. SAgNPs showed antimicrobial activity against Gram-negative and Gram-positive bacteria.

  9. Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity

    OpenAIRE

    Logaranjan, Kaliyaperumal; Raiza, Anasdass Jaculin; Subash C B Gopinath; Chen, Yeng; Pandian, Kannaiyan

    2016-01-01

    Abstract Biogenic synthesis of silver nanoparticles (AgNP) was performed at room temperature using Aloe vera plant extract in the presence of ammoniacal silver nitrate as a metal salt precursor. The formation of AgNP was monitored by UV-visible spectroscopy at different time intervals. The shape and size of the synthesized particle were visualized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. These results were confirmed by X-ray powder diffrac...

  10. Synthesis of silver nano-materials from Grevillea robusta A Cunn (Silver-oak tree) leaves extract and shape directing role of cetyltrimethylammonium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rabia; Faisal, Qamer; Hussain, Sajjad [Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025 (India)

    2016-05-23

    Grevillea robusta (Silver-oak tree) tree is a medicinal tree. Conventional UV-visible spectrophotometric and transmission electron microscopic technique were used to determine the morphology of silver nanoplates (AgNP) using Grevillea robusta (Silver-oak tree) aqueous leaves extract for the first time. The visible spectra showed the presence of three well defined surface plasmon absorption (SPR) bands at 500, 550 and 675 nm which was attributed to the anisotropic growth of Ag-nanoplates. Transmission electron microscopic (TEM) analysis of AgNP showed formation of truncated triangular, polyhedral with some irregular shapes nanoplates in the size range 8-20 nm. Cetyltrimethylammonium bromide (CTAB) has no significant effect on the shape of the spectra, position of SPR bands, size and size distribution of AgNP.

  11. 从提金渣中回收金银%Extraction of Gold and Silver from Gold-extraction Residue

    Institute of Scientific and Technical Information of China (English)

    黄海辉; 王云; 袁朝新; 李云

    2011-01-01

    Study on extraction of gold and silver from gold-extraction residue with the process of high temperature chloridization was conducted. The results indicate that the volatilization rate of gold and silver is 95. 19% and 59.26%, respectively, under the conditions including adopt dry type mixing and powdered roasting, chloridization volatilization temperature of 1 000 ℃, chloridization time of 30 min, and the consumption of CaCl2 of 5%.%采用高温氯化工艺对新疆某提金渣进行提取金、银等有价元素的研究.结果表明:在干式混料,粉状焙烧,氯化挥发温度1 000℃,氯化时间30 min,CaCl2用量5%的条件下,金、银挥发率分别为95.19%和59.26%.

  12. Speciation of silver nanoparticles and Ag(I) species using cloud point extraction followed by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2014-11-01

    Silver nanoparticles in the presence of Triton-X114 were extracted into a micellar phase obtained after incubation at 40 °C for 10 min followed by centrifugation. After injection of an aliquot (30 μL) of the surfactant-rich phase into the electrothermal atomizer, the enrichment effect due to cloud point extraction allowed a detection limit of 2 ng L- 1 silver to be achieved. The preconcentration factor was 242, and the repeatability for ten measurements at a 50 ng L- 1 silver level was 4.6%. Ag(I) species were adsorbed onto the silver nanoparticles and were also extracted in the micellar phase. The incorporation of 0.01 mol L- 1 ammonium thiocyanate to the sample solution prevented the extraction of Ag(I) species. Speciation was carried out using two extractions, one in the absence and the other in the presence of thiocyanate, the concentration of Ag(I) species being obtained by difference. The procedure was applied to the determination of silver nanoparticles and Ag(I) species in waters and in lixiviates obtained from sticking plasters and cleaning cloths.

  13. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yan-yu [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Yang, Hui, E-mail: 549456369@qq.com [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Tao [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Chuang [Department of Highway & Bridge, Shaanxi Railway Institute, Weinan 714000 (China)

    2016-11-25

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag{sup +} (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO{sub 3}) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO{sub 3} concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH{sub 2}, −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  14. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application

    Science.gov (United States)

    Erjaee, Hoda; Rajaian, Hamid; Nazifi, Saeed

    2017-06-01

    The present study reports green synthesis of silver nanoparticles (AgNPs) at room temperature using aqueous Chamaemelum nobile extract for the first time. The effect of silver nitrate concentration, quantity of the plant extract and the reaction time on particle size was optimized and studied by UV-Vis spectroscopy and dynamic light scattering. The appearance of brownish color with λ max of 422 nm confirmed the formation of AgNPs. Synthesized nanoparticles were further characterized by Fourier transform infrared spectroscopy, x-ray diffraction and transmission electron microscopy. In addition, antimicrobial activity of the AgNPs against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Bacillus subtilis was evaluated based on the inhibition zone using the disc-diffusion assay and measurement of minimal inhibition concentration and minimal bactericidal concentration by standard microdilution method. In conclusion, synthesis of nanoparticle with aqueous Chamaemelum nobile extract is simple, rapid, environmentally benign and inexpensive. Moreover, these synthesized nanoparticles exhibit significant antibacterial activity.

  15. Comparative in-vitro Antioxidant Screening of Methanolic Extract of Costus pictus & Its Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ajithadas Aruna

    2014-10-01

    Full Text Available To compare in-vitro antioxidant activity of Methanolic extract of Costus pictus (MECP and its Silver nanoparticles (MECPAgNPs by various methods. Preliminary phytochemical screening of MECP was done by standard procedure. Synthesis of silver nanoparticles from MECP was done. In-vitro anti-oxidant activity of the MECP & MECPAgNPs were studied by DPPH assay, H2O2 scavenging activity, Phosphomolybdenum Method, FRAP and reducing power assay. The total Phenolic content, Flavonoid content & Vitamin C were estimated by using Gallic acid, Quercetin and standard Ascorbic acid calibration curve respectively. Preliminary phytochemical screening showed the presence of carbohydrates, triterpenoids, proteins, alkaloids, tannins, saponins, flavonoids, sterols and volatile oil. In-vitro antioxidant methods were resulted, the extract and the nanoparticles showed a dose dependent reducing ability. The nanoparticles at the same concentration offered much better activity than the extract alone. Phenolic content, Flavonoid content and Vitamin C amount of the MECPAgNPs was higher than MECP. These determination and quantification gives the information about the amount of secondary metabolites present in the MECPAgNPs was higher than the MECP which is responsible for the therapeutic or pharmacological activity of the plant. The MECPAgNPs showed very potent anti oxidant activity as compared to MECP.

  16. Green Synthesis and Characterization of Silver Nanoparticles Using Leaf Extract of Tridax Procumbens

    Directory of Open Access Journals (Sweden)

    Jyoti V. Vastrad

    2016-06-01

    Full Text Available An ecofriendly approach for green synthesis of nanoparticles using natural plant extracts is gaining a notable importance nowadays. In the present study, Tridax procumbens leaf has been used to produce the silver nanoparticles (AgNps from two solvent systems (distilled water and 50% alcohol. Biosynthesis of AgNps from the leaf extracts was carried out and the characterization of the synthesized AgNps was done using UV-Visible spectroscopy, Particle Size Analysis and Scanning Electron Microscope (SEM. Both the extracts exhibited significant results for the biosynthesis of AgNps by using silver nitrate as a reducing agent, the synthesis of AgNps was assertained by colour change from yellowish green to dark brown. The UV-Visible spectroscopy revealed the absorption maxima at 230nm and 235nm for distilled water and 50% alcohol AgNps respectively. The nanoparticle sizes were in the range from 20-154nm which was ascertained from Particle Size Analysis and Scanning Electron Microscope (SEM. The use of nanotechnology in the textile industry has increased rapidly due to its unique and valuable properties. Also, there is an considerable potential for profitable applications of nanotechnology in cotton and other textile industries.

  17. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise

    Science.gov (United States)

    Ahmed, Shakeel; Ahmad, Mudasir; Swami, Babu Lal; Ikram, Saiqa

    2015-01-01

    Metallic nanoparticles are being utilized in every phase of science along with engineering including medical fields and are still charming the scientists to explore new dimensions for their respective worth which is generally attributed to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. Among several noble metal nanoparticles, silver nanoparticles have attained a special focus. Conventionally silver nanoparticles are synthesized by chemical method using chemicals as reducing agents which later on become accountable for various biological risks due to their general toxicity; engendering the serious concern to develop environment friendly processes. Thus, to solve the objective; biological approaches are coming up to fill the void; for instance green syntheses using biological molecules derived from plant sources in the form of extracts exhibiting superiority over chemical and/or biological methods. These plant based biological molecules undergo highly controlled assembly for making them suitable for the metal nanoparticle syntheses. The present review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles. PMID:26843966

  18. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, A. [VIT University, School of Biotechnology, Chemical and Biomedical Engineering (India); Raichur, Ashok M. [Indian Institute of Science, Department of Materials Engineering (India); Chandrasekaran, N.; Prathna, T. C.; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.co [VIT University, School of Biotechnology, Chemical and Biomedical Engineering (India)

    2010-01-15

    Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.

  19. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmed

    2016-01-01

    Full Text Available Metallic nanoparticles are being utilized in every phase of science along with engineering including medical fields and are still charming the scientists to explore new dimensions for their respective worth which is generally attributed to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. Among several noble metal nanoparticles, silver nanoparticles have attained a special focus. Conventionally silver nanoparticles are synthesized by chemical method using chemicals as reducing agents which later on become accountable for various biological risks due to their general toxicity; engendering the serious concern to develop environment friendly processes. Thus, to solve the objective; biological approaches are coming up to fill the void; for instance green syntheses using biological molecules derived from plant sources in the form of extracts exhibiting superiority over chemical and/or biological methods. These plant based biological molecules undergo highly controlled assembly for making them suitable for the metal nanoparticle syntheses. The present review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles.

  20. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles using Cell Free-Extracts of Enterococcus species

    Directory of Open Access Journals (Sweden)

    Iyabo C. OLADIPO

    2017-06-01

    Full Text Available Cell-free extracts of six strains of Enterococcus species obtained from fermented foods were used for the green synthesis of silver nanoparticles (AgNPs, which was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM. The biosynthesized AgNPs were dark brown in colour having surface plasmon resonance in the range of 420-442 nm. The spherical shaped AgNPs had sizes of 4-55 nm, whose formations were facilitated by proteins as indicated by the presence of peaks 1,635-1,637 and 3,275-3,313 cm-1 in the FTIR spectra. The energy dispersive x-ray (EDX showed prominent presence of silver in the AgNPs colloidal solution, while the selected area electron diffraction was typified by the face-centred crystalline nature of silver. The particles inhibited the growth of multi-drug resistant clinical isolates of Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris, and also potentiated the activities of ampicillin, ciprofloxacin and cefuroxime in the AgNPs-antibiotic synergy studies. In addition, the prospective relevance of the particles as nanopreservative in paints was demonstrated with the inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and A. flavus in AgNPs-paint admixture. This report further demonstrates the green synthesis of AgNPs by strains of Enterococcus species.

  1. Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract

    Science.gov (United States)

    Mankamna Kumari, R.; Thapa, Nikita; Gupta, Nidhi; Kumar, Ajeet; Nimesh, Surendra

    2016-12-01

    The present study focuses on the biosynthesis of silver nanoparticles (AgNPs) along with its antibacterial and photocatalytic activity. The AgNPs were synthesized using Cordia dichotoma leaf extract and were characterized using UV-vis spectroscopy to determine the formation of AgNPs. FTIR was done to discern biomolecules responsible for reduction and capping of the synthesized nanoparticles. Further, DLS technique was performed to examine its hydrodynamic diameter, followed by SEM, TEM and XRD to determine its size, morphology and crystalline structure. Later, these AgNPs were studied for their potential role in antibacterial activity and photocatalytic degradation of azo dyes such as methylene blue and Congo red.

  2. Enhancement of antibacterial properties of silver nanoparticles-ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis.

    Science.gov (United States)

    Harshiny, Muthukumar; Matheswaran, Manickam; Arthanareeswaran, Gangasalam; Kumaran, Shanmugam; Rajasree, Shanmuganathan

    2015-11-01

    Green synthesis of nanoparticles with low range of toxicity and conjugation to antibiotics has become an attractive area of research for several biomedical applications. Nanoconjugates exhibited notable increase in biological activity compared to free antibiotic molecules. With this perception, we report the biosynthesis of silver nanoparticles using aqueous extract of leaves of Mukia maderaspatana and subsequent conjugation of the silver nanoparticles to antibiotic ceftriaxone. The leaves of this plant are known to be a rich source of phenolic compounds with high antioxidant activity that are used as reducing agents. The size, morphology, crystallinity, composition of the synthesized silver nanoparticles and conjugation of ceftriaxone to silver nanoparticles were studied using analytical techniques. The activity of the conjugates against Bacillus subtilis (MTCC 1790), Klebsiella pneumoniae (MTCC 3384), Staphylococcus aureus (ATCC 25923), and Salmonella typhi (MTCC 3224) was compared to ceftriaxone and unconjugated nanoparticles using disc diffusion method. The effect of silver nanoparticles on the reduction of biofilms of Pseudomonas fluorescens (MTCC 6732) was determined by micro plate assay method. The antioxidant activities of extract, silver nitrate, silver nanoparticles, ceftriaxone and conjugates of nanoparticles were evaluated by radical scavenging 1, 1- diphenyl-2-picrylhydrazyl test. Ultraviolet visible spectroscopy and Fourier transform infrared spectroscopy confirmed the formation of metallic silver nanoparticles and conjugation to ceftriaxone. Atomic force microscopy, transmission electron microscopy and particle size analysis showed that the formed particles were of spherical morphology with appreciable nanosize and the conjugation was confirmed by slight increase in surface roughness. The results thus showed that the conjugation of ceftriaxone with silver nanoparticles has better antioxidant and antimicrobial effects than ceftriaxone and unconjugated

  3. Speciation of silver nanoparticles and Ag(I) species using cloud point extraction followed by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel, E-mail: hcordoba@um.es

    2014-11-01

    Silver nanoparticles in the presence of Triton-X114 were extracted into a micellar phase obtained after incubation at 40 °C for 10 min followed by centrifugation. After injection of an aliquot (30 μL) of the surfactant-rich phase into the electrothermal atomizer, the enrichment effect due to cloud point extraction allowed a detection limit of 2 ng L{sup −1} silver to be achieved. The preconcentration factor was 242, and the repeatability for ten measurements at a 50 ng L{sup −1} silver level was 4.6%. Ag(I) species were adsorbed onto the silver nanoparticles and were also extracted in the micellar phase. The incorporation of 0.01 mol L{sup −1} ammonium thiocyanate to the sample solution prevented the extraction of Ag(I) species. Speciation was carried out using two extractions, one in the absence and the other in the presence of thiocyanate, the concentration of Ag(I) species being obtained by difference. The procedure was applied to the determination of silver nanoparticles and Ag(I) species in waters and in lixiviates obtained from sticking plasters and cleaning cloths. - Highlights: • Silver nanoparticles and Ag(I) species are separated into a surfactant-rich phase. • The Ag(I) species are not extracted in the presence of thiocyanate. • The cloud point extraction of two aliquots allows speciation to be carried out. • Extreme sensitivity (detection limit 2 ng L{sup −1}) is achieved.

  4. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Ghosh S

    2012-02-01

    Full Text Available Sougata Ghosh1, Sumersing Patil1, Mehul Ahire1, Rohini Kitture2, Sangeeta Kale3, Karishma Pardesi4, Swaranjit S Cameotra5, Jayesh Bellare6, Dilip D Dhavale7, Amit Jabgunde7, Balu A Chopade11Institute of Bioinformatics and Biotechnology, University of Pune, Pune, 2Department of Electronic Science, Fergusson College, Pune, 3Department of Applied Physics, Defense Institute of Advanced Technology, Girinagar, Pune, 4Department of Microbiology, University of Pune, Pune, 5Institute of Microbial Technology, Chandigarh, 6Department of Chemical Engineering, Indian Institute of Technology, Mumbai, 7Garware Research Centre, Department of Chemistry, University of Pune, Pune, IndiaBackground: Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag+ ions using D. bulbifera tuber extract.Methods and results: Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag+ ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO3 solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram

  5. Synthesis and in vitro antineoplastic evaluation of silver nanoparticles mediated by Agrimoniae herba extract

    Directory of Open Access Journals (Sweden)

    Qu D

    2014-04-01

    Full Text Available Ding Qu,1,* Wenjie Sun,1,2,* Yan Chen,1,2 Jing Zhou,1 Congyan Liu11Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 2Department of Pharmaceutics, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China*These authors contributed equally to this workAbstract: A rapid synthesis of silver nanoparticles (AgNPs using Agrimoniae herba extract as reducing agent and stabilizer (A. herba-conjugated AgNPs [AH-AgNPs] were designed, characterized, and evaluated for antitumor therapy feasibility. In this study, critical factors in the preparation of silver nanoparticles, including extraction time, reaction temperature, the concentration of AgNO3, and A. herba extract amount, were investigated using ultraviolet-visible spectroscopy. AH-AgNPs with well-defined spherical shape, homogeneous distributional small size (30.34 nm, narrow polydispersity index (0.142, and high negative zeta potential (−36.8 mV were observed by transmission electron microscopy and dynamic light scattering. Furthermore, the results of X-ray diffraction and Fourier-transform infrared spectroscopy further indicated successful preparation of AH-AgNPs. Acceptable long-term storage stability of AH-AgNPs was also confirmed. More importantly, AH-AgNPs displayed significantly higher antiproliferative effect against a human lung carcinoma cell line (A549 cells compared with A. herba extract and bare AgNPs prepared by sodium citrate. The half-maximal inhibitory concentrations of AH-AgNPs, bare AgNPs, and A. herba extract were 38.13 µg · mL-1, 184.87 µg · mL-1, and 1.147 × 104 µg · mL-1, respectively. It is suggested that AH-AgNPs exhibit a strong antineoplastic effect on A549 cells, pointing to feasibility of antitumor treatment in the future.Keywords: rapid synthesis, Agrimoniae herba extract, silver nanoparticles, A549 cells, antitumor

  6. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract

    Science.gov (United States)

    Ramesh, P. S.; Kokila, T.; Geetha, D.

    2015-05-01

    A green straight forward method of synthesizing silver nanoparticles (AgNPs) in an aqueous medium was designed using Emblica officinalis (EO) fruit extract as stabilizer and reducer. The formation of AgNPs depends on the effect of extract concentration and pH were studied. The AgNPs was synthesized using E.officinalis (fruit extract) and nanoparticles were characterized using UV-Vis spectrophotometer, the presence of biomolecules of E.officinalis capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and XRD. The XRD analysis respects the Bragg's law and confirmed the crystalline nature of silver nanoparticles. From XRD the average size of AgNPs was found to be around 15 nm. AFM has proved to be very helpful in the determination and verification of various morphological features and parameters. EO fruit extract mediated AgNPs was synthesized and confirmed through kinetic behavior of nanoparticles. The shape of the bio-synthesized AgNPs was spherical. Potent biomolecules of E.officinalis such as polyphenols, glucose, and fructose was capped with AgNPs which reduces the toxicity. The synthesized AgNPs were tested for its antibacterial activity against the isolates by disc diffusion method. The obtained results confirmed that the E.officinalis fruit extract is a very good bioreductant for the synthesis of AgNPs. It was investigated that the synthesized AgNPs showed inhibition and had significant antibacterial against both gram-positive and gram-negative bacterial strains.

  7. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity.

    Science.gov (United States)

    Murugan, Kasi; Senthilkumar, Balakrishnan; Senbagam, Duraisamy; Al-Sohaibani, Saleh

    2014-01-01

    The immense potential of nanobiotechnology makes it an intensely researched field in modern medicine. Green nanomaterial synthesis techniques for medicinal applications are desired because of their biocompatibility and lack of toxic byproducts. We report the toxic byproducts free phytosynthesis of stable silver nanoparticles (AgNPs) using the bark extract of the traditional medicinal plant Acacia leucophloea (Fabaceae). Visual observation, ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM) were used to characterize the synthesized AgNPs. The visible yellow-brown color formation and surface plasmon resonance at 440 nm indicates the biosynthesis of AgNP. The TEM images show polydisperse, mostly spherical AgNP particles of 17-29 nm. Fourier transform infrared spectroscopy revealed that primary amines, aldehyde/ketone, aromatic, azo, and nitro compounds of the A. leucophloea extract may participate in the bioreduction and capping of the formed AgNPs. X-ray diffraction confirmed the crystallinity of the AgNPs. The in vitro agar well diffusion method confirmed the potential antibacterial activity of the plant extract and synthesized AgNPs against the common bacterial pathogens Staphylococcus aureus (MTCC 737), Bacillus cereus (MTCC 1272), Listeria monocytogenes (MTCC 657), and Shigella flexneri (MTCC 1475). This research combines the inherent antimicrobial activity of silver metals with the A. leucophloea extract, yielding antibacterial activity-enhanced AgNPs. This new biomimetic approach using traditional medicinal plant (A. leucophloea) barks to synthesize biocompatible antibacterial AgNPs could easily be scaled up for additional biomedical applications. These polydisperse AgNPs green-synthesized via A. leucophloea bark extract can readily be used in many applications not requiring high uniformity in particle size or shape.

  8. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ajitha, B., E-mail: ajithabondu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ashok Kumar Reddy, Y. [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sreedhara Reddy, P. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2015-04-01

    In this work, we have investigated on Lantana camara mediated silver nanoparticles (AgNPs) with different leaf extract (LE) quantity for the evaluation of efficient bactericidal activity. The AgNPs were prepared by simple, capable, eco-friendly and biosynthesis method using L. camara LE. This method allowed the synthesis of crystalline nanoparticles, which was confirmed by X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of metallic silver and elucidates the surface state composition of AgNPs. UV–vis spectra of AgNPs and visual perception of brownish yellow color from colorless reaction mixture confirmed the AgNP formation. Involvement of functional groups of L. camara leaf extract in the reduction and capping process of nanoparticles was well displayed in Fourier transform infrared spectroscopy (FTIR). Decrement of particle size with an increment of leaf extract volume was evident in AFM, TEM images and also through a blue shift in the UV–vis spectra. The rate of formation and size of AgNPs were dependent on LE quantity. Meanwhile, these AgNPs exhibited effective antibacterial activity with the decrement of particle size against all tested bacterial cultures. - Highlights: • Monodispersed AgNPs are synthesized using L. camara leaf extract. • The higher the L. camara content, the smaller the particle size. • Green synthesized AgNPs are found to be photoluminescent. • Size dependence of antibacterial activity is reported. • The nanoparticle stability is improved by leaf extract quantity.

  9. Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus.

    Science.gov (United States)

    Kumar, K Ramesh; Nattuthurai, N; Gopinath, Ponraj; Mariappan, Tirupathi

    2015-02-01

    Mosquitoes are the major vector for the transmission of malaria, dengue fever, yellow fever, filariasis, chikungunya and Japanese encephalitis, and they accounted for global mortality and morbidity with increased resistance to common insecticides. The aim of this study was to investigate the larvicidal potential of the acetone leaf extracts of Morinda tinctoria and synthesized silver nanoparticles against third instar larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Synthesized AgNPs were characterized by ultraviolet-visible (UV-vis) spectroscopy, Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FT-IR) analysis. The synthesized silver nanoparticles have also been tested against the third instar larvae of C. quinquefasciatus. The leaf extract and the AgNPs high mortality values were 50 % lethal concentration (LC50) = 8.088 and 1.442 ppm against C. quinquefasciatus, respectively. The results recorded from ultraviolet-visible spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy support the biosynthesis and characterization of silver nanoparticles. These results suggest that the leaf extract of M. tinctoria and synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of C. quinquefasciatus. By this approach, it is suggestive that this rapid synthesis of nanoparticles would be proper for developing a biological process for mosquito control.

  10. Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae.

    Science.gov (United States)

    Khamhaengpol, Arunrat; Siri, Sineenat

    2016-10-01

    Alternative to crude plant extracts, a crude protein extract derived from animal cells is one of the potential sources of biomolecules for mediating a reduction of silver ions and a formation of silver nanoparticles (AgNPs) under a mild condition, which very few works have been reported. This work demonstrated a use of the protein extract of weaver ant larvae as a bio-facilitator for a simple, green synthesis of AgNPs under fluorescent light at room temperature. The protein extract of weaver ant larvae exhibited the reducing and antioxidant activities, which assisted a formation of AgNPs in the reaction containing only silver nitrate under light exposure. Transmission electron microscopy images revealed the dispersed, spherical AgNPs with an average size of 7.87±2.54nm. The maximum surface plasmon resonance (SPR) band of the synthesized AgNPs was at 435nm. The energy-dispersive X-ray analysis revealed that silver was a major element of the particles. The identity of AgNPs was confirmed by X-ray diffraction pattern, selected area electron diffraction and high resolution transmission electron microscopy analyses, which demonstrated the planes of face centered cubic silver. The synthesized AgNPs showed antibacterial activity against both Escherichia coli and Staphylococcus aureus with the minimum bactericidal concentration (MBC) values equally at 250μg/ml, suggesting their potential application as an effective antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Green Synthesis and Characterization of Silver Nanoparticles Using Citrullus lanatus Fruit Rind Extract.

    Science.gov (United States)

    Ndikau, Michael; Noah, Naumih M; Andala, Dickson M; Masika, Eric

    2017-01-01

    The wide-scale application of silver nanoparticles (AgNPs) in areas such as chemical sensing, nanomedicine, and electronics has led to their increased demand. Current methods of AgNPs synthesis involve the use of hazardous reagents and toxic solvents. There is a need for the development of new methods of synthesizing AgNPs that use environmentally safe reagents and solvents. This work reports a green method where silver nanoparticles (AgNPs) were synthesized using silver nitrate and the aqueous extract of Citrullus lanatus fruit rind as the reductant and the capping agent. The optimized conditions for the AgNPs synthesis were a temperature of 80°C, pH 10, 0.001 M AgNO3, 250 g/L watermelon rind extract (WMRE), and a reactant ratio of 4 : 5 (AgNO3 to WMRE). The AgNPs were characterized by Ultraviolet-Visible (UV-Vis) spectroscopy exhibiting a λmax at 404 nm which was consistent with the spectra of spherical AgNPs within the wavelength range of 380-450 nm, and Cyclic Voltammetry (CV) results showed a distinct oxidation peak at +291 mV while the standard reference AgNPs (20 nm diameter) oxidation peak occurred at +290 mV, and Transmission Electron Microscopy (TEM) revealed spherical shaped AgNPs. The AgNPs were found to have an average diameter of 17.96 ± 0.16 nm.

  12. Green Synthesis and Characterization of Silver Nanoparticles Using Citrullus lanatus Fruit Rind Extract

    Science.gov (United States)

    Ndikau, Michael; Andala, Dickson M.; Masika, Eric

    2017-01-01

    The wide-scale application of silver nanoparticles (AgNPs) in areas such as chemical sensing, nanomedicine, and electronics has led to their increased demand. Current methods of AgNPs synthesis involve the use of hazardous reagents and toxic solvents. There is a need for the development of new methods of synthesizing AgNPs that use environmentally safe reagents and solvents. This work reports a green method where silver nanoparticles (AgNPs) were synthesized using silver nitrate and the aqueous extract of Citrullus lanatus fruit rind as the reductant and the capping agent. The optimized conditions for the AgNPs synthesis were a temperature of 80°C, pH 10, 0.001 M AgNO3, 250 g/L watermelon rind extract (WMRE), and a reactant ratio of 4 : 5 (AgNO3 to WMRE). The AgNPs were characterized by Ultraviolet-Visible (UV-Vis) spectroscopy exhibiting a λmax at 404 nm which was consistent with the spectra of spherical AgNPs within the wavelength range of 380–450 nm, and Cyclic Voltammetry (CV) results showed a distinct oxidation peak at +291 mV while the standard reference AgNPs (20 nm diameter) oxidation peak occurred at +290 mV, and Transmission Electron Microscopy (TEM) revealed spherical shaped AgNPs. The AgNPs were found to have an average diameter of 17.96 ± 0.16 nm.

  13. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size.

    Science.gov (United States)

    Prathna, T C; Chandrasekaran, N; Raichur, Ashok M; Mukherjee, Amitava

    2011-01-01

    In the present study, silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract. The effect of various process parameters like the reductant concentration, mixing ratio of the reactants and the concentration of silver nitrate were studied in detail. In the standardized process, 10(-2)M silver nitrate solution was interacted for 4h with lemon juice (2% citric acid concentration and 0.5% ascorbic acid concentration) in the ratio of 1:4 (vol:vol). The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm. X-ray diffraction analysis revealed the distinctive facets (111, 200, 220, 222 and 311 planes) of silver nanoparticles. We found that citric acid was the principal reducing agent for the nanosynthesis process. FT-IR spectral studies demonstrated citric acid as the probable stabilizing agent. Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy. The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing "MiePlot v. 3.4". The theoretical particle size corresponding to 2% citric acid concentration was compared to those obtained by various experimental techniques like X-ray diffraction analysis, atomic force microscopy, and transmission electron microscopy.

  14. Biological Synthesis of Silver Nanoparticles by Cell-Free Extract of Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    2015-01-01

    Full Text Available The present study explores biological synthesis of silver nanoparticles (AgNPs using the cell-free extract of Spirulina platensis. Biosynthesised AgNPs were characterised by UV-Vis spectroscopy, SEM, TEM, and FTIR analysis and finally evaluated for antibacterial activity. Extracellular synthesis using aqueous extract of S. platensis showed the formation of well scattered, highly stable, spherical AgNPs with an average size of 30–50 nm. The size and morphology of the nanoparticles were confirmed by SEM and TEM analysis. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilisation of AgNPs. Furthermore, the synthesised nanoparticles exhibited high antibacterial activity against pathogenic Gram-negative, that is, Escherichia coli, MTCC-9721; Proteus vulgaris, MTCC-7299; Klebsiella pneumoniae, MTCC-9751, and Gram-positive, that is, Staphylococcus aureus, MTCC-9542; S. epidermidis, MTCC-2639; Bacillus cereus, MTCC-9017, bacteria. The AgNPs had shown maximum zone of inhibition (ZOI that is 31.3±1.11 in P. vulgaris. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials of silver in a large scale that could be of great use in biomedical applications.

  15. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Science.gov (United States)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-11-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.

  16. Acorus calamus rhizome extract mediated biosynthesis of silver nanoparticles and their bactericidal activity against human pathogens

    Directory of Open Access Journals (Sweden)

    Chinnappan Sudhakar

    2015-12-01

    Full Text Available Silver nanoparticle (AgNP synthesis and characterization is an area of vast interest due to their broader application in the fields of science and technology and medicine. Plants are an attractive source for AgNP synthesis because of its ability to produce a wide range of secondary metabolites with strong reducing potentials. Thus, the present study describes the synthesis of AgNPs using aqueous rhizome extract of Acorus calamus (sweet flag. The AgNP formation was evaluated at different temperatures, incubation time and concentrations of AgNO3 using Response surface methodology based Box–Behnken design (BBD. The synthesized AgNPs were characterized by UV–Visible spectroscopy, Fourier transform infra-red spectroscopy (FTIR, X-ray diffraction (XRD, and Scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS. The surface plasmon resonance found at 420 nm confirmed the formation of AgNPs. SEM images reveal that the particles are spherical in nature. The EDS analysis of the AgNPs, using an energy range of 2–4 keV, confirmed the presence of elemental silver without any contamination. The antibacterial activity of synthesized AgNPs was evaluated against the clinical isolates Staphylococcus aureus and Escherichia coli and it was found that bacterial growth was significantly inhibited in a dose dependent manner. The results suggest that the AgNPs from rhizome extract could be used as a potential antibacterial agent for commercial application.

  17. Pulicaria glutinosa extract: a toolbox to synthesize highly reduced graphene oxide-silver nanocomposites.

    Science.gov (United States)

    Al-Marri, Abdulhadi H; Khan, Mujeeb; Khan, Merajuddin; Adil, Syed F; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Tremel, Wolfgang; Labis, Joselito P; Siddiqui, Mohammed Rafiq H; Tahir, Muhammad N

    2015-01-05

    A green, one-step approach for the preparation of graphene/Ag nanocomposites (PE-HRG-Ag) via simultaneous reduction of both graphene oxide (GRO) and silver ions using Pulicaria glutinosa plant extract (PE) as reducing agent is reported. The plant extract functionalizes the surfaces of highly reduced graphene oxide (HRG) which helps in conjugating the Ag NPs to HRG. Increasing amounts of Ag precursor enhanced the density of Ag nanoparticles (NPs) on HRG. The preparation of PE-HRG-Ag nanocomposite is monitored by using ultraviolet-visible (UV-Vis) spectroscopy, powder X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The as-prepared PE-HRG-Ag nanocomposities display excellent surface-enhanced Raman scattering (SERS) activity, and significantly increased the intensities of the Raman signal of graphene.

  18. Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts

    Science.gov (United States)

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Debut, Alexis

    2014-01-01

    Silver nanoparticles (AgNPs) are fabricated using Sacha inchi (SI) or (Plukenetia volubilis L.) leaf extract as non-toxic reducing agent with particle size ranging from 4 to 25 nm. Optical, structural and morphological properties of the synthesized nanoparticles have been characterized by using Visual, UV–Vis spectrophotometer, transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. Infrared spectrum measurement was carried out to hypothesize the possible phytochemicals responsible for stabilization and capping of the AgNPs. It shows the significant antioxidant efficacy in comparison with SI leaf extracts against 1,1-diphenyl-2-picrylhydrazyl. From the results obtained it is suggested that green AgNPs could be used effectively in future engineering and medical concerns. PMID:25473370

  19. Pulicaria glutinosa Extract: A Toolbox to Synthesize Highly Reduced Graphene Oxide-Silver Nanocomposites

    Directory of Open Access Journals (Sweden)

    Abdulhadi H. Al-Marri

    2015-01-01

    Full Text Available A green, one-step approach for the preparation of graphene/Ag nanocomposites (PE-HRG-Ag via simultaneous reduction of both graphene oxide (GRO and silver ions using Pulicaria glutinosa plant extract (PE as reducing agent is reported. The plant extract functionalizes the surfaces of highly reduced graphene oxide (HRG which helps in conjugating the Ag NPs to HRG. Increasing amounts of Ag precursor enhanced the density of Ag nanoparticles (NPs on HRG. The preparation of PE-HRG-Ag nanocomposite is monitored by using ultraviolet–visible (UV-Vis spectroscopy, powder X-ray diffraction (XRD, and energy dispersive X-ray (EDX. The as-prepared PE-HRG-Ag nanocomposities display excellent surface-enhanced Raman scattering (SERS activity, and significantly increased the intensities of the Raman signal of graphene.

  20. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2016-11-01

    Full Text Available This paper reports an investigation of the microwave-assisted synthesis of silver nanoparticles (Ag NPs using extract of stinky bean (Parkia speciosa Hassk pods (BP. The formation of Ag NPs was identified by instrumental analysis consists of UV–vis spectrophotometry, Fourier-transform infrared (FTIR spectrophotometry, scanning electron microscopy (SEM, transmission electron microscopy (TEM and particle size analysis. Furthermore, Ag NPs were used as antibacterial agents against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results indicate rapid formation of Ag NPs during microwave irradiation with similar properties to those obtained through the aging method. In general, the use of microwave irradiation yields larger particles, and it is affected by volume ratio of the extract to the AgNO3 solution. The prepared materials demonstrated antibacterial activity.

  1. The earliest matches.

    Directory of Open Access Journals (Sweden)

    Naama Goren-Inbar

    Full Text Available Cylindrical objects made usually of fired clay but sometimes of stone were found at the Yarmukian Pottery Neolithic sites of Sha'ar HaGolan and Munhata (first half of the 8(th millennium BP in the Jordan Valley. Similar objects have been reported from other Near Eastern Pottery Neolithic sites. Most scholars have interpreted them as cultic objects in the shape of phalli, while others have referred to them in more general terms as "clay pestles," "clay rods," and "cylindrical clay objects." Re-examination of these artifacts leads us to present a new interpretation of their function and to suggest a reconstruction of their technology and mode of use. We suggest that these objects were components of fire drills and consider them the earliest evidence of a complex technology of fire ignition, which incorporates the cylindrical objects in the role of matches.

  2. The earliest matches.

    Science.gov (United States)

    Goren-Inbar, Naama; Freikman, Michael; Garfinkel, Yosef; Goring-Morris, A Nigel; Goring-Morris, Nigel A; Grosman, Leore

    2012-01-01

    Cylindrical objects made usually of fired clay but sometimes of stone were found at the Yarmukian Pottery Neolithic sites of Sha'ar HaGolan and Munhata (first half of the 8(th) millennium BP) in the Jordan Valley. Similar objects have been reported from other Near Eastern Pottery Neolithic sites. Most scholars have interpreted them as cultic objects in the shape of phalli, while others have referred to them in more general terms as "clay pestles," "clay rods," and "cylindrical clay objects." Re-examination of these artifacts leads us to present a new interpretation of their function and to suggest a reconstruction of their technology and mode of use. We suggest that these objects were components of fire drills and consider them the earliest evidence of a complex technology of fire ignition, which incorporates the cylindrical objects in the role of matches.

  3. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities.

    Science.gov (United States)

    Gogoi, Nayanmoni; Babu, Punuri Jayasekhar; Mahanta, Chandan; Bora, Utpal

    2015-01-01

    Here we report the synthesis of silver nanoparticles using ethanolic flower extract of Nyctanthes arbortristis, UVvisible spectra and TEM indicated the successful formation of silver nanoparticles. Crystalline nature of the silver nanoparticles was confirmed by X-ray diffraction. Fourier Transform Infra-Red Spectroscopy analysis established the capping of the synthesized silver nanoparticles with phytochemicals naturally occurring in the ethanolic flower extract of N. arbortristis. The synthesized silver nanoparticles showed antibacterial activity against the pathogenic strain of Escherichia coli MTCC 443. Furthermore, cytotoxicity of the silver nanoparticles was tested on mouse fibroblastic cell line (L929) and found to be non-toxic, which thus proved their biocompatibility. Antibacterial activity and cytotoxicity assay carried out in this study open up an important perspective of the synthesized silver nanoparticles.

  4. Direct extraction of palladium and silver from waste printed circuit boards powder by supercritical fluids oxidation-extraction process.

    Science.gov (United States)

    Liu, Kang; Zhang, Zhiyuan; Zhang, Fu-Shen

    2016-11-15

    The current study was carried out to develop an environmental benign process for direct recovery of palladium (Pd) and silver (Ag) from waste printed circuit boards (PCBs) powder. The process ingeniously combined supercritical water oxidation (SCWO) and supercritical carbon dioxide (Sc-CO2) extraction techniques. SCWO treatment could effectively enrich Pd and Ag by degrading non-metallic component, and a precious metal concentrate (PMC) could be obtained, in which the enrichment factors of Pd and Ag reached 5.3 and 4.8, respectively. In the second stage, more than 93.7% Pd and 96.4% Ag could be extracted from PMC by Sc-CO2 modified with acetone and KI-I2 under optimum conditions. Mechanism study indicated that Pd and Ag extraction by Sc-CO2 was a complicated physiochemical process, involving oxidation, complexation, anion exchange, mass transfer and migration approaches. Accordingly, this study established a benign and effective process for selective recovery of dispersal precious metals from waste materials.

  5. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents

    Science.gov (United States)

    Ghosh, Sougata; Patil, Sumersing; Ahire, Mehul; Kitture, Rohini; Kale, Sangeeta; Pardesi, Karishma; Cameotra, Swaranjit S; Bellare, Jayesh; Dhavale, Dilip D; Jabgunde, Amit; Chopade, Balu A

    2012-01-01

    Background Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag+ ions using D. bulbifera tuber extract. Methods and results Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag+ ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO3 solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles

  6. Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay

    Science.gov (United States)

    Parveen, Mehtab; Ahmad, Faheem; Malla, Ali Mohammed; Azaz, Shaista

    2016-02-01

    The biosynthesis of nanoparticles has been proposed as a cost effective and environmentally benevolent alternative to chemical and physical methods. In the present study, microwave assisted synthesis of silver nanoparticles (AgNPs) has been demonstrated using leaf extract of Fraxinus excelsior reducing aqueous AgNO3 solution. The synthesized nanoparticles have been characterized on the basis of fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis. The presence of a characteristic surface plasmon resonance (SPR) absorption band at 425 nm in UV-Vis reveals the reduction of silver metal ions into silver nanoparticles. FT-IR analysis was carried out to probe the possible functional group involved in the synthesis of AgNPs. Further leaf extracts and AgNPs were evaluated for antiradical scavenging activity by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay.

  7. Phyto-crystallization of silver and gold by Erigeron annuus (L. Pers flower extract and catalytic potential of synthesized and commercial nano silver immobilized on sodium alginate hydrogel

    Directory of Open Access Journals (Sweden)

    Palanivel Velmurugan

    2016-05-01

    Full Text Available A green, eco-friendly approach for the synthesis of silver and gold nanoparticles (AgNPs and AuNPs using Erigeron annuus (L. pers flower extract as both the reducing and capping agent is reported for the first time. Optimal nanoparticle production was achieved by adjusting various parameters including pH, extract concentration, metal ion concentration, and time. Initial verification of AgNP and AuNP production was done by visual observation and measuring surface plasmon spectra at 434 and 537 nm, respectively. The synthesized AgNPs and AuNPs were characterized by high resolution-transmission electron microscopy (HR-TEM, X-ray diffraction (XRD, energy dispersive spectrophotometry (EDS, Fourier transform infrared spectroscopy (FTIR and zeta potential. The catalytic potential of E. annuus flower extract, silver ions, synthesized AgNPs, commercial grade AgNPs, and a mixture of flower extract and AgNPs immobilized on sodium alginate hydrogel beads (Na/Al HB was analyzed. The ability of these immobilized materials to degrade methylene blue was investigated. Commercial grade AgNPs immobilized with Na/Al HB 1.5 g/20 mL were observed to have good catalytic activity followed by a mixture of synthesized AgNPs immobilized with Na/Al HB and E. annuus flower extract immobilized with Na/Al HB at 1.5 g/20 mL.

  8. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract

    Institute of Scientific and Technical Information of China (English)

    Afrah; Eltayeb; Mohammed

    2015-01-01

    Objective: To investigate the environmental-friendly extracellular biosynthetic technique for the production of the silver nanoparticles(AgN Ps) by using leaf extract of Eucalyptus camaldulensis(E. camaldulensis). Methods: The NP were characterized by colour changes and the UV-visible spectroscopy. The cytotoxic effects of prepared AgN Ps was detected against four types of pathogenic bacteria, including two Gram-negative bacteria(Pseudomonas aeruginosa and Escherichia coli) and two Gram-positive bacteria(Staphylococcus aureus and Bacillus subtilis) by using agar well diffusion method. Results: A peak absorption value between 400-450 nm for the extract and the colour change to dark brown were corresponding to the plasmon absorbance of AgN Ps. On the other hand, aqueous extract of E. camaldulensis leaves could be effective against tested microorganisms which showed inhibition zones of 9.0-14.0 mm. Furthermore, biologically synthesized AgN Ps had higher ability to suppress the growth of the tested microorganisms(12.0-19.0 mm). Conclusions: Our findings indicated that extracellular synthesis of Ag NPs mediated by E. camaldulensis leaf extract had an efficient bactericidal activity against the bacterial species tested. The exact mechanism of the extracellular biosynthesis of metal NP was not well understood. Further studies are needed to highlight the biosynthesis process of AgN Ps and also to characterize the toxicity effect of these particles.

  9. Green synthesis of silver nanoparticles as antibacterial agent using Rhodomyrtus tomentosa acetone extract

    Science.gov (United States)

    Voravuthikunchai, Supayang P.; Chorachoo, Julalak; Jaiswal, Lily; Shankar, Shiv

    2013-12-01

    The capability of Rhodomyrtus tomentosa acetone extract (RAE) for the production of silver nanoparticles (AgNPs) has been explored for the first time. Silver nanoparticles with a surface plasmon resonance band centered at 420-430 nm were synthesized by reacting RAE with AgNO3. Reaction time, temperature, concentration of AgNO3 and RAE could accelerate the reduction rate of Ag+ and affect AgNPs size. The nanoparticles were found to be 10-30 nm in size and spherical in shape. XRD data demonstrated crystalline nature of AgNPs dominated by (200) facets. FTIR results showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 indicating the involvement of O-H, carbonyl group and C=C stretching with the formation of AgNPs with RAE, respectively. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the nanoparticles. High negative zeta potential values confirmed the stability of AgNPs in water. In vitro antibacterial activity of AgNPs was tested against Staphylococcus aureus using broth microdilution method. AgNPs capped with RAE demonstrated profound antibacterial activity against the organisms with minimum inhibitory concentration and minimum bactericidal concentration in the range between 3.1-6.2 and 6.2-50 μgmL-1, respectively. The synthesized nanoparticles could be applied as an effective antimicrobial agent against staphylococcal infections.

  10. Gold/silver core-shell 20 nm nanoparticles extracted from citrate solution examined by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, Mark H.; Smith, Jordan N.; Baer, Donald R.

    2016-06-01

    Silver nanoparticles of many types are widely used in consumer and medical products. The surface chemistry of particles and the coatings that form during synthesis or use in many types of media can significantly impact the behaviors of particles including dissolution, transformation and biological or environmental impact. Consequently it is useful to be able to extract information about the thickness of surface coatings and other attributes of nanoparticles produced in a variety of ways. It has been demonstrated that X-ray Photoelectron Spectroscopy (XPS) can be reliably used to determine the thickness of organic and other nanoparticles coatings and shells. However, care is required to produce reliable and consistent information. Here we report the XPS spectra from gold/silver core-shell nanoparticles of nominal size 20 nm removed from a citrate saturated solution after one and two washing cycles. The Simulation of Electron Spectra for Surface Analysis (SESSA) program had been used to model peak amplitudes to obtain information on citrate coatings that remain after washing and demonstrate the presence of the gold core. This data is provided so that others can compare use of SESSA or other modeling approaches to quantify the nature of coatings to those already published and to explore the impacts particle non-uniformities on XPS signals from core-shell nanoparticles.

  11. Timber industry waste-teak ( Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles

    Science.gov (United States)

    Devadiga, Aishwarya; Shetty, K. Vidya; Saidutta, M. B.

    2015-08-01

    The current research article emphasizes efficacious use of teak leaves, an agro -biowaste from world's premier hardwood timber industry, for "green" synthesis of silver nanoparticles (AgNPs). Bioactive compounds of the leaves act as prolific reducing and stabilizing agents in AgNP synthesis. The characterization of the AgNPs synthesized using teak leaves revealed that the particles are spherical with an average size of 28 nm and the presence of bioactive compounds present in teak leaf extract as capping agents on the nanoparticles. A prominent decrease in the content of bioactive compounds such as polyphenols, antioxidants and flavonoids after the biosynthesis of AgNPs signifies that these class of compounds act as reductants and stabilizers during biosynthesis. The biosynthesized silver nanoparticles were also successfully evaluated for their antibacterial characteristics against waterborne pathogens, E. coli and S. aureus, with minimum inhibitory concentration of 25.6 μg/mL. Exploitation of agrowaste resources for synthesis of AgNPs curtails indiscriminate usage of food and commercial plant materials, rather contributing a sustainable way for effective plant waste biomass utilization and management. The biosynthesized AgNps have potential application in water purifiers, antibacterial fabrics, sports wear and in cosmetics as antibacterial agent and the process used for its synthesis being greener is highly beneficial from environmental, energy consumption and economic perspectives.

  12. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel.

    Science.gov (United States)

    He, Yan; Du, Zhiyun; Lv, Huibin; Jia, Qianfa; Tang, Zhikai; Zheng, Xi; Zhang, Kun; Zhao, Fenghua

    2013-01-01

    Eco-friendly green synthesis with plant extracts plays a very important role in nanotechnology, without any harmful chemicals. In this report, the synthesis of water-soluble silver nanoparticles was developed by treating silver ions with Chrysanthemum morifolium Ramat. extract at room temperature. The effect of the extract on the formation of silver nanoparticles was characterized by ultraviolet and visible absorption spectroscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The ultraviolet and visible absorption spectroscopy results show a strong resonance centered on the surface of silver nanoparticles (AgNP) at 430 nm. The Fourier transform infrared spectroscopy spectral study demonstrates Chrysanthemum morifolium Ramat. extract acted as the reducing and stabilizing agent during the synthesis. The X-ray diffraction analysis confirmed that the synthesized AgNP are single crystallines, corresponding with the result of transmission electron microscopy. Water-soluble AgNP, with an approximate size of 20 nm-50 nm were also observed in the transmission electron microscopy image. The bactericidal properties of the synthesized AgNP were investigated using the agar-dilution method and the growth-inhibition test. The results show the AgNP had potent bactericidal activity on Staphylococcus aureus and Escherichia coli, as well as a strong antibacterial activity against gram-negative bacteria, as compared to gram-positive bacteria with a dose-dependent effect, thus providing a clinical ultrasound gel with bactericidal property for prevention of cross infections.

  13. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma.

    Science.gov (United States)

    Nayak, Debasis; Pradhan, Sonali; Ashe, Sarbani; Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-11-01

    Biological synthesis of silver nanoparticles is a cost effective natural process where the phytochemicals specifically phenols, flavonoids and terpenoids present in the plant extracts act as capping and reducing agent. Due to their nano size regime the silver nanoparticles may directly bind to the DNA of the pathogenic bacterial strains leading to higher antimicrobial activity. In the current study silver nanoparticles were synthesised using plant extracts from different origin Cucurbita maxima (petals), Moringa oleifera (leaves) and Acorus calamus (rhizome). The synthesised nanoparticles were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), field emission scanning electron microscopy (Fe-SEM) and Fourier transform infrared spectroscopy (FTIR). Highly crystalline, roughly spherical and cuboidal silver nanoparticles of 30-70 nm in size were synthesised. The nanoparticles provided strong antimicrobial activity against pathogenic strains. The effect of the synthesised nanoparticles against A431 skin cancer cell line was tested for their toxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. The IC50 values of 82.39±3.1, 83.57±3.9 and 78.58±2.7 μg/ml were calculated for silver nanoparticles synthesised by C. maxima, M. oleifera and A. calamus respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum.

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production.

  15. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum

    Directory of Open Access Journals (Sweden)

    Arunachalam KD

    2013-03-01

    Full Text Available Kantha D Arunachalam, Sathesh Kumar Annamalai, Shanmugasundaram HariCenter for Environmental Nuclear Research, Directorate of Research, SRM University, Chennai, Tamil Nadu, IndiaAbstract: In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production.Keywords: green synthesis, phytochemicals, saponins, nanoparticles, transmission electron microscopy

  16. Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties

    Science.gov (United States)

    Miri, Abdolhossein; Sarani, Mina; Rezazade Bazaz, Mahere; Darroudi, Majid

    2015-04-01

    "Green" synthesis of metal nanoparticles has become a promising synthetic strategy in nanoscience and nanotechnology in recent years. In this work, silver nanoparticles (Ag-NPs) were synthesized from extract of Prosopis farcta at room temperature. Formation of Ag-NPs at 1 mM concentration of AgNO3 gave spherical shape nanoparticles with mean diameter about 10.8 nm. The formation of nanoparticle was confirmed by the surface Plasmon resonance (SPR) band illustrated in UV-vis spectrophotometer. The morphology and size of the Ag-NPs were determined using high magnification transmission electron microscopy (TEM). The crystalline structure of obtained nanoparticles was investigated using the powder X-ray diffraction (PXRD) pattern. In addition, these green synthesized Ag-NPs were found to show higher antibacterial activity against multi drug resistant clinical isolates.

  17. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics.

    Science.gov (United States)

    Ovais, Muhammad; Khalil, Ali Talha; Raza, Abida; Khan, Muhammad Adeeb; Ahmad, Irshad; Islam, Nazar Ul; Saravanan, Muthupandian; Ubaid, Muhammad Furqan; Ali, Muhammad; Shinwari, Zabta Khan

    2016-12-01

    With the development of the latest technologies, scientists are looking to design novel strategies for the treatment and diagnosis of cancer. Advances in medicinal plant research and nanotechnology have attracted many researchers to the green synthesis of metallic nanoparticles due to its several advantages over conventional synthesis (simple, fast, energy efficient, one pot processes, safer, economical and biocompatibility). Medicinally active plants have proven to be the best reservoirs of diverse phytochemicals for the synthesis of biogenic silver nanoparticles (AgNPs). In this review, we discuss mechanistic advances in the synthesis and optimization of AgNPs from plant extracts. Moreover, we have thoroughly discussed the recent developments and milestones achieved in the use of biogenic AgNPs as cancer theranostic agents and their proposed mechanism of action. Anticipating all of the challenges, we hope that biogenic AgNPs may become a potential cancer theranostic agent in the near future.

  18. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    Murugan K

    2014-05-01

    Full Text Available Kasi Murugan,1 Balakrishnan Senthilkumar,2,3 Duraisamy Senbagam,2 Saleh Al-Sohaibani11Department of Microbiology and Botany, College of Science, King Saud University, Riyadh, Saudi Arabia; 2Department of Biotechnology, Muthayammal College of Arts and Science, Rasipuram, Tamil Nadu, India; 3Department of Medical Microbiology, School of Medicine, Health and Medical Science College, Haramaya University, Harar, EthiopiaAbstract: The immense potential of nanobiotechnology makes it an intensely researched field in modern medicine. Green nanomaterial synthesis techniques for medicinal applications are desired because of their biocompatibility and lack of toxic byproducts. We report the toxic byproducts free phytosynthesis of stable silver nanoparticles (AgNPs using the bark extract of the traditional medicinal plant Acacia leucophloea (Fabaceae. Visual observation, ultraviolet–visible spectroscopy, and transmission electron microscopy (TEM were used to characterize the synthesized AgNPs. The visible yellow-brown color formation and surface plasmon resonance at 440 nm indicates the biosynthesis of AgNP. The TEM images show polydisperse, mostly spherical AgNP particles of 17–29 nm. Fourier transform infrared spectroscopy revealed that primary amines, aldehyde/ketone, aromatic, azo, and nitro compounds of the A. leucophloea extract may participate in the bioreduction and capping of the formed AgNPs. X-ray diffraction confirmed the crystallinity of the AgNPs. The in vitro agar well diffusion method confirmed the potential antibacterial activity of the plant extract and synthesized AgNPs against the common bacterial pathogens Staphylococcus aureus (MTCC 737, Bacillus cereus (MTCC 1272, Listeria monocytogenes (MTCC 657, and Shigella flexneri (MTCC 1475. This research combines the inherent antimicrobial activity of silver metals with the A. leucophloea extract, yielding antibacterial activity-enhanced AgNPs. This new biomimetic approach using

  19. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti.

    Science.gov (United States)

    Suganya, Ayyappan; Murugan, Kadarkarai; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy; Hwang, Jiang-Shiou

    2013-04-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, the activity of silver nanoparticles (AgNPs) synthesized using Murraya koenigii plant leaf extract against first to fourth instars larvae and pupae of Anopheles stephensi and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (5, 10, 20, 30, and 40 ppm) and ethanol leaf extract (50, 200, 350, 500, and 650 ppm) were tested against the larvae of A. stephensi and A. aegypti. The synthesized AgNPs from M. koenigii leaf were highly toxic than crude leaf ethanol extract in both mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 24 h. The maximum mortality was observed in synthesized AgNPs, and ethanol leaf extract of M. koenigii against A. stephensi had LC50 values of 10.82, 14.67, 19.13, 24.35, and 32.09 ppm and 279.33, 334.61, 406.95, 536.11, and 700.16 ppm and LC90 values of 32.38, 42.52, 53.65, 63.51, and 75.26 ppm and 737.37, 843.84, 907.67, 1,187.62, and 1,421.13 ppm. A. aegypti had LC50 values of 13.34, 17.19, 22.03, 27.57, and 34.84 ppm and 314.29, 374.95, 461.01, 606.50, and 774.01 ppm and LC90 values of 36.98, 47.67, 55.95, 67.36, and 77.72 ppm and 777.32, 891.16, 1,021.90, 1,273.06, and 1,509.18 ppm, respectively. These results suggest that the use of M. koenigii synthesized silver nanoparticles can be a rapid, environmentally safer biopesticide which can form a novel approach to develop effective biocides for controlling the target

  20. A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy

    Indian Academy of Sciences (India)

    V Vinmathi; S Justin Packia Jacob

    2015-06-01

    Silver nanoparticles possess a wide range of applications especially in the field of medicine and this has stimulated the need for synthesizing them. Conventionally, chemical methods are used, which are hazardous and energy consuming. Therefore an eco-friendly and facile means of synthesizing nanoparticles is needed to replace the chemical method of synthesis. In the present study, silver nanoparticles were synthesized in a cost-effective and environment-friendlymanner using aqueous leaf extract of Ailanthus excelsa—a medicinal tree used in the treatment of asthma, bronchitis, cold, abdominal pain, etc. The leaf extract helped in the bioreduction of silver ions yielding silver nanoparticles. The silver nanoparticles thus biosynthesized were characterized using UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR) analysis and scanning electron microscopy (SEM). These biologically synthesized silver nanoparticles were also found to exhibit excellent antibacterial effect against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and anticancer effect against MCF-7 cell line.

  1. Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles

    Science.gov (United States)

    Kiran Kumar, Hoskote Anand; Mandal, Badal Kumar; Mohan Kumar, Kesarla; Maddinedi, Sireesh babu; Sai Kumar, Tammina; Madhiyazhagan, Pavithra; Ghosh, Asit Ranjan

    2014-09-01

    The present study reports the use of Mimusops elengi (M. elengi) fruit extract for the synthesis of silver nanoparticles (Ag NPs). The synthesized Ag NPs was initially noticed through visual color change from yellow to reddish brown and further confirmed by surface plasmonic resonance (SPR) band at 429 nm using UV-Visible spectroscopy. Morphology and size of Ag NPs was determined by Transmission Electron Microscopy (TEM) analysis. X-ray Diffraction (XRD) study revealed crystalline nature of Ag NPs. The prolonged stability of Ag NPs was due to capping of oxidized polyphenols which was established by Fourier Transform Infrared Spectroscopy (FTIR) study. The polyphenols present in M. elengi fruit extract was analyzed by High Pressure Liquid Chromatography (HPLC) and the results revealed the presence of ascorbic acid, gallic acid, pyrogallol and resorcinol. In order to study the role of these polyphenols in reducing Ag+ ions to Ag NPs, analyses of extracts before reduction and after reduction were carried out. In addition, the synthesized Ag NPs were tested for antibacterial and antioxidant activities against Staphylococcus aureus (S. Aureus) and Escherichia coli (E. coli). Ag NPs showed good antimicrobial activity against both gram positive (S. aureus) and gram negative (E. coli) bacteria. It also showed good antioxidant activity as compared to ascorbic acid as standard antioxidant.

  2. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract

    Science.gov (United States)

    Gavade, N. L.; Kadam, A. N.; Suwarnkar, M. B.; Ghodake, V. P.; Garadkar, K. M.

    2015-02-01

    Herein, we are reporting for the first time one step biogenic synthesis of silver nanoparticles (AgNPs) at room temperature by using Ziziphus Jujuba leaf extract as a reducing and stabilizing agent. The process of nanoparticles preparation is green, rapid, environmentally benign and cost effective. The synthesized AgNPs were characterized by means of UV-Vis., XRD, FT-IR, TEM, DLS and Zeta potential. The absorption band centered at λmax 434 nm in UV-Vis. reflects surface plasmon resonance (SPR) of AgNPs. XRD analysis revealed, that biosynthesized AgNPs are crystalline in nature with the face centered cubic structure. FT-IR analysis indicates that nanoparticles were capped with the leaf extract. TEM images shows the synthesized nanoparticles are having different shapes with 20-30 nm size. The data obtained from DLS that support the hydrodynamic size of 28 nm. Zeta potential of -26.4 mV indicates that the nanoparticles were highly stable in colloidal state. The effect of pH, quantity of leaf extract and concentrations of AgNO3 were also studied to attend control over the particle size and stability. The synthesized AgNPs shows highly efficient catalytic activity towards the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) and Methylene Blue (MB) for environmental protection. Synthesized AgNPs also exhibited good antimicrobial activity against Escherichia coli.

  3. Silver or gold deposition onto magnetite nanoparticles by using plant extracts as reducing and stabilizing agents.

    Science.gov (United States)

    Norouz Dizaji, Araz; Yilmaz, Mehmet; Piskin, Erhan

    2016-06-01

    In this paper, we describe an environmentally friendly procedure to produce silver (Ag) or gold (Au)-deposited magnetite nanoparticles by using plant extracts (Ligustrum vulgare) as reducing and stabilizing agents. Firstly, magnetite nanoparticles (∼6 nm) with superparamagnetic properties - SPIONs - were synthesized by co-precipitation of Fe(+ 2) and Fe(+ 3) ions. Color changes indicated the differing amounts of Au and Ag ions reduced and deposited on to the SPIONs when the plant extracts were used. UV-vis and transmission electron microscope (TEM) with energy dispersive X-ray (EDX) apparatus confirmed the metallic deposition. Magnetic saturation decreased when the amount of the metallic deposition increased, which was measured by vibrating sample magnetometry (VSM). Due to the molecules coming into contact with - and even remaining on - the surface of the nanoparticles after aggressive washing procedures, the Ag/Au-deposited SPIONs were stable, and almost no agglomeration was observed for months. Fourier Transform Infrared (FTIR) spectra depicted that functional groups such as carboxylic and ketone groups, which are most probably responsible for the reduction and stabilization of Ag/Au- carrying magnetite nanoparticles, originated from the plant extract. The proposed route was facile, viable, and reproducible, and it should be stressed that nanoparticles do contain only safe biomolecules as stabilizing agents on their surfaces.

  4. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis

    Science.gov (United States)

    Basu, Shibani; Maji, Priyankar; Ganguly, Jhuma

    2016-01-01

    The present study explores that the aqueous extract of the seeds of Nyctanthes arbor-tristis (aka night jasmine) is very efficient for the synthesis of stable AgNPs from aqueous solution of AgNO3. The extract acts as both reducing (from Ag+ to Ag0) and capping agent in the aqueous phase. The constituents in extract are mainly biomolecules like carbohydrates and phenolic compounds, which are responsible for the preparation of stable AgNPs within 20 min of reaction time at 25 °C using without any severe conditions. The synthesized silver nanoparticles were characterized with UV-Visible spectroscopy, FT-IR, XRD and SEM. UV-Vis spectroscopy analysis showed peak at 420 nm, which corresponds to the surface plasmon resonance of AgNPs. XRD results showed peaks at (111), (200), (220), which confirmed the presence of AgNPs with face-centered cubic structure. The uniform spherical nature of the AgNPs and size (between 50 and 80 nm) were further confirmed by SEM analysis.

  5. Raspberry Extract as Both a Stabilizer and a Reducing Agent in Environmentally Friendly Process of Receiving Colloidal Silver

    Directory of Open Access Journals (Sweden)

    Jolanta Pulit

    2013-01-01

    Full Text Available An ecofriendly method of nanosilver obtaining has been studied. The process involves the chemical reduction method carried out in aqueous environment. Silver nitrate (V was applied as a silver ions source. Raspberry extract was used as a natural source of both reducing and stabilizing agents. The total amount of phenolic compounds was determined by the Folin-Ciocalteu method. Obtained nanoparticles were analyzed by the dynamic light scattering technique so as to determine the particles size and suspension stability which was characterized by an electrokinetic potential. The results confirmed that the size of some nanoparticles was under 100 nm.

  6. A Green Approach to Synthesize Silver Nanoparticles in Starch-co-Poly(acrylamide) Hydrogels by Tridax procumbens Leaf Extract and Their Antibacterial Activity

    OpenAIRE

    Siraj Shaik; Madhusudana Rao Kummara; Sudhakar Poluru; Chandrababu Allu; Jaffer Mohiddin Gooty; Chowdoji Rao Kashayi; Marata Chinna Subbarao Subha

    2013-01-01

    A series of starch-co-poly(acrylamide) (starch-co-PAAm) hydrogels were synthesized by employing free radical redox polymerization. A novel green approach, Tridax procumbens (TD) leaf extract, was used for reduction of silver ions (Ag+) into silver nanoparticles in the starch-co-PAAm hydrogel network. The formation of silver nanoparticles was confirmed by UV-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TE...

  7. Comparative study of synthesized silver and gold nanoparticles using leaves extract of Bauhinia tomentosa Linn and their anticancer efficacy

    Indian Academy of Sciences (India)

    D MUKUNDAN; R MOHANKUMAR; R VASANTHAKUMARI

    2017-04-01

    Nanotechnology is an emerging field in science and technology, which can be applied to synthesize new materials at the nanoscale level. The present investigation aimed at comparing the synthesis, characterization andin vitro anticancer efficacy of synthesized silver and gold nanoparticles using leaves extract of Bauhinia tomentosa Linn. Silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using aqueous extractof leaves with solution of silver nitrate (AgNO$_3$, 1 mM) and chloroauric acid (HAuCl$_4$·3H$_2$O, 1 mM), respectively. The synthesized nanoparticles were characterized using UV–visible spectrophotometry, Fourier transform infraredspectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive analysis of X-rays, X-ray diffraction, thermogravimetric analysis and cyclic voltammetry, which confirmed the reduction of Ag$^+$ ions to Ag$^0$ and Au$^{3+}$ ions to Au$^{0}$. The in vitro anticancer efficacy of AgNPs, AuNPs and aqueous extract of leaves confirmed by MTT assay exhibited IC50 concentrations of 28.125, 46.875 and 50 $\\mu$gml$^{−1}$ for lung A-549 cells, 103.125, 34.375 and 53.125 $\\mu$gml$^{−1}$ for HEp-2 cells and 62.5, 23.4 and 13.26 $\\mu$gml$^{−1}$ for MCF-7 cells, respectively. The concentrations indicate that both silver and gold nanoparticles as well as aqueous extract of leaves exhibited high anticancer efficacy.

  8. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens.

    Science.gov (United States)

    Velmurugan, Palanivel; Anbalagan, Krishnan; Manosathyadevan, Manoharan; Lee, Kui-Jae; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Oh, Sae-Gang; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    In the present study, we synthesized silver and gold nanoparticles with a particle size of 10-20 nm, using Zingiber officinale root extract as a reducing and capping agent. Chloroauric acid (HAuCl4) and silver nitrate (AgNO3) were mixed with Z. officinale root extract for the production of silver (AgNPs) and gold nanoparticles (AuNPs). The surface plasmon absorbance spectra of AgNPs and AuNPs were observed at 436-531 nm, respectively. Optimum nanoparticle production was achieved at pH 8 and 9, 1 mM metal ion, a reaction temperature 50 °C and reaction time of 150-180 min for AgNPs and AuNPs, respectively. An energy-dispersive X-ray spectroscopy (SEM-EDS) study provides proof for the purity of AgNPs and AuNPs. Transmission electron microscopy images show the diameter of well-dispersed AgNPs (10-20 nm) and AuNPs (5-20 nm). The nanocrystalline phase of Ag and Au with FCC crystal structures have been confirmed by X-ray diffraction analysis. Fourier transform infrared spectroscopy analysis shows the respective peaks for the potential biomolecules in the ginger rhizome extract, which are responsible for the reduction in metal ions and synthesized AgNPs and AuNPs. In addition, the synthesized AgNPs showed a moderate antibacterial activity against bacterial food pathogens.

  9. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens.

    Science.gov (United States)

    Krishnaraj, Chandran; Ji, Byoung-Jun; Harper, Stacey L; Yun, Soon-Il

    2016-05-01

    Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO₂NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO₂NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15-70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP-MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO₂NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO₂NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO₂NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria.

  10. BIOSYNTHESIS AND CHARACTERIZATION OF SILVER NANOPARTICLES FROM CASSIA AURICULATA LEAF EXTRACT AND IN VITRO EVALUATION OF ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Asra Parveen

    2012-05-01

    Full Text Available The synthesis of metals and nanoparticles is an expanding research area due to the potential applications for the development of novel technologies. Biosynthesis of silver nanoparticles was investigated by reducing sliver nitrate with Cassiaauriculataleaf extract at room temperature. The plant belongs to family Ceasalpiniaceae and the plant is having promising medicinal properties for a wide range of human diseases. The synthesized nanoparticles characterized by the UV-Vis spectroscopy, revealed the formation of silver nanoparticles by exhibiting the typical surface plasmon absorption maxima at 420-435 nm.The peaks in the X ray Diffraction pattern are in good agreement with the standard values of the face-centered-cubic form of metallic silver. Fourier transform infrared spectroscopy indicates that the compounds attached with silver nanoparticles could be polyphenols with aromatic ring and bound amide region and transmission electron microscope reveals that the particles are spherical and polydispersed.The antimicrobial activity of synthesized nanoparticles were evaluated against E.coli, Sarratiamarcascence, Bacillus subtilis ,Aspergillusniger and Aspergillusflavus. Fungi were most susceptible to silver nanoparticles followed by bacteria

  11. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity

    Science.gov (United States)

    Anandalakshmi, K.; Venugobal, J.; Ramasamy, V.

    2016-03-01

    In this paper, an aqueous extract of fresh leaves of Pedalium murex was used for the synthesis of silver (Ag) nanoparticles. Different biological methods are gaining recognition for the production of silver nanoparticles (AgNPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost-effective and eco-friendly approach. Characterization of nanoparticles was done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), powder X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray analysis (EDAX), fluorescence emission spectroscopy, transmission electron microscope (TEM), dynamic light scattering (DLS), zeta potential and antibacterial activity. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 430 nm. Fourier transform infrared spectra had shown that the biomolecule compounds were responsible for the reduction and capping material of silver nanoparticles. XRD study showed the particles to be crystalline in nature, with a face-centered cubic (fcc) structure. The size and stability were detected using DLS and zeta potential analysis. The antibacterial activity of AgNPs against generally found bacteria was assessed to find their potential use in silver-containing antibacterial product.

  12. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity

    Science.gov (United States)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Reddy, P. Sreedhara

    2014-03-01

    In this paper we report the green synthesis of silver nanoparticles (Ag NPs) using Tephrosia purpurea leaf extract. The biomolecules present in the leaf extract are responsible for the formation of Ag NPs and they found to play dual role of both reducing as well as capping agents. The high crystallinity of Ag NPs is evident from bright circular spot array of SAED pattern and diffraction peaks in XRD profile. The synthesized Ag NPs are found to be nearly spherical ones with size approximately ∼20 nm. FTIR spectrum evidences the presence of different functional groups of biomolecules participated in encapsulating Ag NPs and the possible mechanism of Ag NPs formation was also suggested. Appearance of yellow color and surface plasmon resonance (SPR) peak at 425 nm confirms the Ag NPs formation. PL spectra showed decrement in luminescence intensity at higher excitation wavelengths. Antimicrobial activity of Ag NPs showed better inhibitory activity towards Pseudomonas spp. and Penicillium spp. compared to other test pathogens using standard Kirby-Bauer disc diffusion assay.

  13. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity

    Science.gov (United States)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.

    2014-07-01

    This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.

  14. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors.

    Science.gov (United States)

    Rajakumar, G; Abdul Rahuman, A

    2011-06-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In this study, larvicidal activity of synthesized silver nanoparticles (AgNPs) utilizing aqueous extract from Eclipta prostrata, a member of the Asteraceae was investigated against fourth instar larvae of filariasis vector, Culex quinquefasciatus say and malaria vector, Anopheles subpictus Grassi (Diptera: Culicidae). The synthesized AgNPs characterized by UV-vis spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). SEM analyses of the synthesized AgNPs were clearly distinguishable measured 35-60 nm in size. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 24h. The maximum efficacy was observed in crude aqueous, and synthesized AgNPs against C. quinquefasciatus (LC(50)=27.49 and 4.56 mg/L; LC(90)=70.38 and 13.14 mg/L), and against A. subpictus (LC(50)=27.85 and 5.14 mg/L; LC(90)=71.45 and 25.68 mg/L) respectively. The chi-square value were significant at pmosquito larvicidal activity of synthesized AgNPs against vectors.

  15. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    Science.gov (United States)

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-05-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM

  16. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity.

    Science.gov (United States)

    Sathishkumar, M; Sneha, K; Won, S W; Cho, C-W; Kim, S; Yun, Y-S

    2009-10-15

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The present study reports the synthesis of silver (Ag) nanoparticles from silver precursor using the bark extract and powder of novel Cinnamon zeylanicum. Water-soluble organics present in the plant materials were mainly responsible for the reduction of silver ions to nano-sized Ag particles. TEM and XRD results confirmed the presence of nano-crystalline Ag particles. The pH played a major role in size control of the particles. Bark extract produced more Ag nanoparticles than the powder did, which was attributed to the large availability of the reducing agents in the extract. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The EC(50) value of the synthesized nanoparticles against Escherichia coli BL-21 strain was 11+/-1.72 mg/L. Thus C. zeylanicum bark extract and powder are a good bio-resource/biomaterial for the synthesis of Ag nanoparticles with antimicrobial activity.

  17. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.--potential for malaria vector control.

    Science.gov (United States)

    Arokiyaraj, Selvaraj; Dinesh Kumar, Vannam; Elakya, Vijay; Kamala, Tamilselvan; Park, Sung Kwon; Ragam, Muthiah; Saravanan, Muthupandian; Bououdina, Mohomad; Arasu, Mariadhas Valan; Kovendan, Kalimuthu; Vincent, Savariar

    2015-07-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides synthesized of natural products for vector control have been a priority in this area. In the present study, silver nanoparticles (Ag NPs) were green-synthesized using a floral extract of Chrysanthemum indicum screened for larvicidal and pupicidal activity against the first to fourth instar larvae and pupae of the malaria vector Anopheles stephensi mosquitoes. The synthesized Ag NPs were characterized by using UV-vis absorption, X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The textures of the yielded Ag NPs were found to be spherical and polydispersed with a mean size in the range of 25-59 nm. Larvae and pupae were exposed to various concentrations of aqueous extract of C. indicum and synthesized Ag NPs for 24 h, and the maximum mortality was observed from the synthesized Ag NPs against the vector A. stephensi (LC50 = 5.07, 10.35, 14.19, 22.81, and 35.05 ppm; LC90 = 29.18, 47.15, 65.53, 87.96, and 115.05 ppm). These results suggest that the synthesized Ag NPs have the potential to be used as an ideal eco-friendly approach for the control of A. stephensi. Additionally, this study provides the larvicidal and pupicidal properties of green-synthesized Ag NPs with the floral extract of C. indicum against vector mosquito species from the geographical location of India.

  18. Hydrothermal preparation of reduced graphene oxide-silver nanocomposite using Plectranthus amboinicus leaf extract and its electrochemical performance.

    Science.gov (United States)

    Zheng, Yuhong; Wang, Aiwu; Cai, Wen; Wang, Zhong; Peng, Feng; Liu, Zhong; Fu, Li

    2016-12-01

    Graphene based nanocomposites are receiving increasing attention in many fields such as material chemistry, environmental science and pharmaceutical science. In this study, a facial synthesis of a reduced graphene oxide-silver nanocomposite (RGO-Ag) was carried out from Plectranthus amboinicus leaf extract. The synthesized nanocomposite was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscope and UV-vis spectroscopy for structural confirmation. The reduction of graphene oxide and silver ions was achieved simultaneously due to the reducibility of the Plectranthus amboinicus leaf extract. We further investigated the electrochemical properties of the biosynthesized RGO-Ag nanocomposite. A nonenzymatic H2O2 electrochemical sensor was shown to be successfully fabricated by using biosynthesized RGO-Ag nanocomposite. Moreover, the fabricated electrochemical sensor also showed good selectivity.

  19. Effects of grape pomace extract on the quality and shelf life of silver carp (Hypophthalmicthys molitrix fillets during chill storage

    Directory of Open Access Journals (Sweden)

    Shirin Hasani

    2015-04-01

    Full Text Available The effects of grape pomace extract (0, 2 and 4% on quality and shelf life of silver carp (Hypophthalmicthys molitrix fillets during chill storage (4°C were investigated. The control and the treated fillets were analyzed periodically for microbiological (TVC and PTC, chemical (TVB-N, and sensory characteristics. The results showed that grape pomace-treated samples have lower TVB-N (24.2 and 21.2 mg N/100 g, respectively, TVC (7.33 and 7.09 log cfu/g, respectively and PTC (7.26 and 7.03 log cfu/g, respectively at the end of the storage period. The results revealed that the addition of grape pomace extract has a positive effect on the sensory quality of silver carp fillets by retaining proper quality characteristics for a longer time and extends their shelf life during chill storage.

  20. Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract

    Directory of Open Access Journals (Sweden)

    Susan Azizi

    2013-12-01

    Full Text Available Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum (S. muticum aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs. Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV–Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV–visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum.

  1. Rapid Biosynthesis of Silver Nanoparticles by Exploiting the Reducing Potential of Trapa bispinosa Peel Extract

    Directory of Open Access Journals (Sweden)

    Sunil Pandey

    2013-01-01

    Full Text Available Present work reports exceptionally high reducing capacity of Trapa bispinosa to synthesize monodispersed silver nanoparticles (SNPs within 120 seconds at 30°C which is the shortest tenure reported for SNP synthesis using plants. Moreover, we also instigated impact of different pH values on fabrication of SNPs using visible spectroscopy with respect to time. Percentage conversion of Ag+ ions into Ag° was calculated using ICP-AES analysis and was found to be 97% at pH = 7. To investigate the reduction of Ag+ ions to SNPs, cyclic voltammetry (CV and open circuit potential (OCP using 0.1 M KNO3 were performed. There was prompt reduction in cathodic and anodic currents after addition of the peel extract which indicates the reducing power of T. bispinosa peel. Stability of the SNPs was studied using flocculation parameter (FP which was found to be least at all the pH values. FP was found to be indirectly proportional to stability of the nanoparticles.

  2. Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction

    Science.gov (United States)

    Muthu, Karuppiah; Priya, Sethuraman

    2017-05-01

    Cassia auriculata L., the flower aqueous extract was fractionated by separating funnel using n-hexane (A1), chloroform (A2), ethyl acetate (A3) and triple distilled water (A4). The A4 fraction was concentrated and determined the presence of preliminary phytochemicals such as tannins, flavonoids, glycosides, carbohydrates and polyphenolic compounds. These phytochemical compounds acted as reducing as well as a stabilizing agent in the green synthesis of Ag NPs from aqueous silver ions. Initially, the colour change and UV-vis absorbance surface Plasmon resonance strong, wide band located at 435 nm has confirmed the synthesis of Ag NPs. The X-ray diffraction (XRD) pattern of Ag NPs shows a face-centered cubic crystal structure. The observed values were calculated by Debye-Scherrer equation to theoretical confirms the particle size of 18 nm. The surface morphology of Ag NPs was viewed by HRTEM, the particles are spherical and triangle shapes with sizes from 10 to 35 nm. Further, the Ag NPs was effective catalytic activity in the reduction of highly environmental polluted organic compounds of 4-nitrophenol and methyl orange. The green synthesis of Ag NPs seems to eco-friendly, cost-effective, conventional one spot synthesis and greater performance of catalytic degradation of environmentally polluted organic dyes.

  3. Coalescence of functional gold and monodisperse silver nanoparticles mediated by black Panax ginseng Meyer root extract

    Science.gov (United States)

    Wang, Dandan; Markus, Josua; Kim, Yeon-Ju; Wang, Chao; Jiménez Pérez, Zuly Elizabeth; Ahn, Sungeun; Aceituno, Verónica Castro; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-01-01

    A rapid biological synthesis of multifunctional gold nanoparticle (AuNp) and monodisperse silver nanoparticle (AgNp) was achieved by an aqueous extract of black Panax ginseng Meyer root. The physicochemical transformation into black ginseng (BG) greatly enhanced the pharmacological activities of white ginseng and its minor ginsenoside content. The optimal temperature conditions and kinetics of bioreduction were investigated. Formation of BG-AuNps and BG-AgNps was verified by ultraviolet–visible spectrophotometry at 548 and 412 nm, respectively. The biosynthesized BG-AgNps were spherical and monodisperse with narrow distribution, while BG-AuNps were icosahedral-shaped and moderately polydisperse. Synthesized nanoparticles exhibited long-term stability in buffers of pH 7.0–8.0 and biological media (5% bovine serum albumin) at an ambient temperature and at 37°C. BG-AgNps showed effective antibacterial activity against Escherichia coli and Staphylococcus aureus. BG-AuNps and BG-AgNps demonstrated increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals. In addition, BG-AuNps and BG-AgNps were nontoxic to HaCaT and MCF-7 cells; the latter showed no cytotoxicity at concentrations lower than 10 µg/mL. At higher concentrations, BG-AgNps exhibited apparent apoptotic activity in MCF-7 breast cancer cell line through reactive oxygen species generation and nuclear fragmentation. PMID:28008248

  4. Microwave-Mediated Green Synthesis of Silver Nanoparticles Using Ficus Elastica Leaf Extract and Application in Air Pollution Controlling Studies

    Directory of Open Access Journals (Sweden)

    N. Gandhi,

    2014-01-01

    Full Text Available Silver Nanoparticles are applied in various fields due to its anti bacterial properties. A conventional method for synthesis of AgNP requires dangerous chemical and large amount of energy is released in the process. Environmental friendly techniques are adopted for the synthesis of nanoparticles of silver. The present research work summarizes the green synthesis of silver nanoparticles by using leaf extract of Ficus Elastica and alternative energy sources micro wave irradiation. The synthesized Nanoparticles are characterized by uv- visible spectroscopy and by SEM. The synthesized nanoparticles are applied for controlling SO2 and NO2 from aqueous solution of SO2 and NO2. Batch adsorption studies are carried out. The effect of the temperature on adsorption of aqueous solution is studied at different temperature. A comparison of kinetic models applied to the adsorption of on silver Nanoparticles was evaluated for the pseudo first order, pseudo second order, Elovich and intraparticle diffusion models respectively. Results show that pseudo second order model was found to correlate the experimental data. Data fitted perfectly into and Freundlich adsorption isotherms.

  5. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract.

    Science.gov (United States)

    Suman, T Y; Radhika Rajasree, S R; Kanchana, A; Elizabeth, S Beena

    2013-06-01

    Silver has been used since time to control bodily infection, prevent food spoilage and heal wounds by preventing infection. The present study aims at an environmental friendly method of synthesizing silver nanoparticles, from the root of Morinda citrifolia; without involving chemical agents associated with environmental toxicity. The obtained nanoparticles were characterized by UV-vis absorption spectroscopy with an intense surface plasmon resonance band at 413 nm clearly reveals the formation of silver nanoparticles. Fourier transmission infra red spectroscopy (FTIR) showed nanopartilces were capped with plant compounds. Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM) showed that the spherical nature of the silver nanoparticles with a size of 30-55 nm. The X-ray diffraction spectrum XRD pattern clearly indicates that the silver nanoparticles formed in the present synthesis were crystalline in nature. In addition these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on HeLa cell.

  6. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity.

    Science.gov (United States)

    Mariselvam, R; Ranjitsingh, A J A; Usha Raja Nanthini, A; Kalirajan, K; Padmalatha, C; Mosae Selvakumar, P

    2014-08-14

    Green synthesis of nanoparticles using plant source has been given much importance. In the present study, silver nanoparticles (AgNPs) were synthesized using the ethyl acetate and methanol (EA: M 40:60) extracts of the inflorescence of the tree Cocous nucifera. The synthesized nanoparticles were characterized by UV-visible spectroscope, FTIR and TEM analysis. The particle size of the synthesized AgNPs was 22nm as confirmed by TEM. The qualitative assessment of reducing potential of the extracts of inflorescence indicated the presence of reducing agents. Synthesized AgNPs exhibited significant antimicrobial activity against human bacterial pathogens viz., Klebsiella pneumoniae, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella paratyphi.

  7. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity

    Science.gov (United States)

    Mariselvam, R.; Ranjitsingh, A. J. A.; Usha Raja Nanthini, A.; Kalirajan, K.; Padmalatha, C.; Mosae Selvakumar, P.

    2014-08-01

    Green synthesis of nanoparticles using plant source has been given much importance. In the present study, silver nanoparticles (AgNPs) were synthesized using the ethyl acetate and methanol (EA: M 40:60) extracts of the inflorescence of the tree Cocous nucifera. The synthesized nanoparticles were characterized by UV-visible spectroscope, FTIR and TEM analysis. The particle size of the synthesized AgNPs was 22 nm as confirmed by TEM. The qualitative assessment of reducing potential of the extracts of inflorescence indicated the presence of reducing agents. Synthesized AgNPs exhibited significant antimicrobial activity against human bacterial pathogens viz., Klebsiella pneumoniae, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella paratyphi.

  8. Cloud Point Extraction and Determination of Silver Ion in Real Sample using Bis((1H-benzo[d ]imidazol-2ylmethylsulfane

    Directory of Open Access Journals (Sweden)

    Farshid Ahmadi

    2011-01-01

    Full Text Available Bis((1H-benzo[d]imidazol-2ylmethylsulfane (BHIS was used as a complexing agent in cloud point extraction for the first time and applied for selective pre-concentration of trace amounts of silver. The method is based on the extraction of silver at pH 8.0 by using non-ionic surfactant T-X114 and bis((1H-benzo[d]imidazol-2ylmethylsulfane as a chelating agent. The adopted concentrations for BHIS, Triton X-114 and HNO3, bath temperature, centrifuge rate and time were optimized. Detection limits (3SDb/m of 1.7 along with enrichment factor of 39 for silver ion was achieved. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed method was successfully applied to the ultra-trace determination of silver in real samples.

  9. A biogenic approach for green synthesis of silver nanoparticles using extract of Foeniculum vulgare and its activity against Staphylococcus aureus and Escherichia coli

    Directory of Open Access Journals (Sweden)

    SHITAL BONDE

    2011-07-01

    Full Text Available Bonde S. 2011. A biogenic approach for green synthesis of silver nanoparticles using extract of Foeniculum vulgare and its activity against Staphylococcus aureus and Escherichia coli. Nusantara Bioscience 3: 59-63. We report green synthesis of silver nanoparticles from extract of Foeniculum vulgare (fennel, saunf. The synthesis of silver nanoparticles was detected by changing color from green to brown after treatment with AgNO3 (1mM and the UV-visible spectrophotometer analysis showed the absorbance peak at about 427 nm, which indicates the synthesis of silver nanoparticles. Nanoparticle Tracking and Analysis (NTA by LM-20 was used for multi-parameter analysis, allowing for characterization of particle size and particle distribution of silver nanoparticles synthesized from extract of F. vulgare. NTA revealed the polydispersed nanoparticles in the range of 18-83 nm. Phytosynthesized silver nanoparticles showed antibacterial activity against the Staphylococcus aureus (ATCC-25923 and Escherichia coli (ATCC-39403. The silver nanoparticles also demonstrated remarkable antibacterial activity against two human pathogenic bacteria when used in combination with commercially available antibiotics. The bactericidal activity of the standard antibiotics was significantly enhanced in presence of silver nanoparticles against pathogenic bacteria, viz. E. coli-JM-103 (ATCC-39403 and S. aureus (ATCC-25923. Silver nanoparticles in combination with vancomycin showed maximum activity against E. coli (increase in fold area 5.76. and followed by S. aureus (1.08 and Gentamicin showed the maximum activity S. aureus (2.6 while E. coli (0.96. The approach of phytosynthesized silver nanoparticles using F. vulgare appears to be cost efficient, eco-friendly and easy alternative to conventional methods of synthesis.

  10. Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod)

    Science.gov (United States)

    Kumar, Vemu Anil; Uchida, Takashi; Mizuki, Toru; Nakajima, Yoshikata; Katsube, Yoshihiro; Hanajiri, Tatsuro; Maekawa, Toru

    2016-03-01

    Phytosynthesis of nanomaterials is advantageous since it is economical, ecofriendly, and simple, and, what is more, in the synthetic protocols, nontoxic chemicals and biocompatible materials are used. Here, a green synthetic methodology of nanoparticles (NPs) composed of silver (Ag) and silver chloride (AgCl) NPs is developed using a leaf extract of Solidago altissima as a reducing agent for the first time. Utilization of a terrestrial weed for the synthesis of Ag and AgCl NPs is a novel environmentally friendly approach considering that no toxic chemicals, external halide source, or elaborate experimental procedures are included in the process. The optical properties and elemental compositions of as-synthesized Ag and AgCl NPs are well characterized, and the degradation of an organic dye, i.e., rhodamine B (RhB), is investigated using the Ag and AgCl NPs. We find that degradation of RhB is effectively achieved thanks to both surface plasmon resonance and semiconductor properties of Ag and AgCl NPs. The surface-enhanced Raman scattering and antibacterial activities are also examined. The present approach to the synthesis of NPs using a weed may encourage the utilization of hazardous plants for the creation of novel nanomaterials.

  11. [Determination of trace silver in water samples by solid phase extraction portable tungsten-coil electrothermal atomic absorption spectrometry].

    Science.gov (United States)

    Fan, Guang-yu; Jiang, Xiao-ming; Zheng, Cheng-bin; Hou, Xian-deng; Xu, Kai-lai

    2011-07-01

    A simple method has been developed for the determination of silver in environmental water samples using solid phase extraction with tungsten-coil electrothermal atomic absorption spectrometry. Silica gel was used as an adsorbent and packed into a syringe barrel for solid phase extraction of silver prior to its determination by using a portable tungsten-coil electrothermal atomic absorption spectrometer. Optimum conditions for adsorption and desorption of silver ion, as well as interferences from co-existing ions, were investigated. A sample pH value of 6.0, a sample loading flow rate of 4.0 mL x min(-1), and the mixture of 4% (m/v) thiourea and 2% (phi) nitrate acid with the eluent flow rate of 0.5 mL x min(-1) for desorption were selected for further studies. Under optimal conditions, a linear range of 0.20-4.00 ng x mL(-1), a limit of detection (3sigma) of 0.03 ng x mL(-1) and a preconcentration factor of 94 were achieved. The proposed method was validated by testing three environmental water samples with satisfactory results.

  12. Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities.

    Science.gov (United States)

    Khan, Mohammad Naved; Khan, Tabrez Alam; Khan, Zaheer; Al-Thabaiti, Shaeel Ahmed

    2015-12-01

    The present study explores the reducing and capping potentials of aqueous Raphanus sativus root extract for the synthesis of silver nanomaterials for the first time in the absence and presence of two stabilizers, namely, water-soluble starch and cetyltrimethylammonium bromide (CTAB). The surface properties of silver nanoparticles (AgNPs) were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy dispersion X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques. The mean size of AgNPs, ranging from 3.2 to 6.0 nm, could be facilely controlled by merely varying the initial [extract], [CTAB], [starch], and [Ag(+)] ions. The agglomeration number, average number of silver atoms per nanoparticle, and changes in the fermi potentials were calculated and discussed. The AgNPs were evaluated for their antimicrobial activities against different pathogenic organisms. The inhibition action was due to the structural changes in the protein cell wall.

  13. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel

    Directory of Open Access Journals (Sweden)

    He Y

    2013-05-01

    Full Text Available Yan He,1 Zhiyun Du,1,2 Huibin Lv,1 Qianfa Jia,1 Zhikai Tang,1 Xi Zheng,1,3 Kun Zhang,1 Fenghua Zhao11Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, People’s Republic of China; 2State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People’s Republic of China; 3Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USAAbstract: Eco-friendly green synthesis with plant extracts plays a very important role in nanotechnology, without any harmful chemicals. In this report, the synthesis of water-soluble silver nanoparticles was developed by treating silver ions with Chrysanthemum morifolium Ramat. extract at room temperature. The effect of the extract on the formation of silver nanoparticles was characterized by ultraviolet and visible absorption spectroscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The ultraviolet and visible absorption spectroscopy results show a strong resonance centered on the surface of silver nanoparticles (AgNP at 430 nm. The Fourier transform infrared spectroscopy spectral study demonstrates Chrysanthemum morifolium Ramat. extract acted as the reducing and stabilizing agent during the synthesis. The X-ray diffraction analysis confirmed that the synthesized AgNP are single crystallines, corresponding with the result of transmission electron microscopy. Water-soluble AgNP, with an approximate size of 20 nm–50 nm were also observed in the transmission electron microscopy image. The bactericidal properties of the synthesized AgNP were investigated using the agar-dilution method and the growth-inhibition test. The results show the AgNP had potent bactericidal activity on Staphylococcus aureus and Escherichia coli, as

  14. Manipulating age in earliest memories

    NARCIS (Netherlands)

    Wessel, Ineke; Schweig, Theresa; Huntjens, Rafaële J.C.

    2016-01-01

    We examined the malleability of the estimated age in undergraduates’ earliest memories. In study 1, vignettes containing examples about age 2 rendered earlier ages than examples referring to age 6. Study 2 showed that eliciting self-relevant or public event knowledge from participants’ preschool

  15. Taxanes content and cytotoxicity of hazel cells extract after elicitation with silver nanoparticles.

    Science.gov (United States)

    Jamshidi, Mitra; Ghanati, Faezeh

    2017-01-01

    The toxicity of silver nanoparticles (AgNPs) has been attributed to the generation of Ag(+) ions as well as production of ROS. The latter can elicit defensive response of plant cells in different ways e.g., enhancement of secondary metabolite productions. In the present study this hypothesis was evaluated by assessment of taxanes production by suspension-cultured hazel (Corylus avellana L.) cells after treatment with AgNPs. The cells were treated with different concentrations of AgNPs (0, 2.5, 5, and 10 ppm), in their logarithmic growth phase (d7) and were harvested after 1 weak. The growth of cells and their membrane integrity decreased but extracellular electro conductivity and total dissolved solids increase by AgNPs (probably due to loosening of cell membrane). Treatment of hazel cells with AgNPs (in particular of 5 ppm) rapidly and remarkably increased the yields of two major taxanes, i.e., Taxol and baccatin III; so that 24 h of the treatment their contents reached to 378% and 163% of the control, respectively. Increase of Taxanes was accompanied by the increase of total soluble phenols. The extracts of AgNPs-treated cells were able to inhibit the growth of cancerous HeLa cells and reduce their viability to 60% of the control. The results suggest the elicitation of suspension-cultured hazel cells with AgNPs as a procedure for rapid enhancement of anticancer taxanes biosynthesis by the cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Chitra, Govindaraj; Balasubramani, Govindasamy; Ramkumar, Rajendiran; Sowmiya, Rajamani; Perumal, Pachiappan

    2015-04-01

    Mosquitoes and mosquito-borne diseases are prone to raise health and economic impacts. Synthetic insecticide-based interventions are indeed in situations of epidemic outbreak and sudden increases of adult mosquitoes. Nanoparticles are being used in many commercial applications and were found that aqueous silver ions can be reduced by an aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Based on this, silver nanoparticles (SNPs) were synthesized using leaf aqueous extract (LAE) of Mukia maderaspatana. Further, the synthesized SNPs were characterized by UV-visible spectrum, which indicated a strong plasmon resonance at 427 nm. X-ray diffraction (XRD) analysis revealed the average crystalline size of the synthesized SNPs was approximately 64 nm by Debye-Scherrer formulae. Fourier transform infrared (FTIR) spectroscopy analysis revealed the presence of different functional groups like amines, halides, alkanes, alkynes, amides, and esters with respective stretches, which are responsible for the bio-reduction of silver ions. Field emission scanning electron microscopy (FESEM) depicted the spherical morphology of SNPs with size range of 13-34 nm. The larvicidal activity of LAE and SNPs exhibited an effective mortality to Aedes aegypti and Culex quinquefasciatus. The lethal concentration (LC50; LC90) of LAE and SNPs were found to be 0.506; 1.082, 0.392; 0.870 ppm and 0.211; 0.703, 0.094; 0.482 ppm, respectively on A. aegypti and C. quinquefasciatus. Thus, the synthesized SNPs have shown preponderant larvicidal activity, but further studies are needed to formulate the potential larvicidal agents.

  17. Electrical conductivity modification using silver nano particles of Jatropha Multifida L. and Pterocarpus Indicus w. extracts films

    Science.gov (United States)

    Diantoro, Markus; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin, Sujito, Hidayat, Arif

    2016-03-01

    Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C6-C3-C6 carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.

  18. Electrical conductivity modification using silver nano particles of Jatropha Multifida L. and Pterocarpus Indicus w. extracts films

    Energy Technology Data Exchange (ETDEWEB)

    Diantoro, Markus, E-mail: markus.diantoro.fmipa@um.ac.id; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin,; Sujito,; Hidayat, Arif [Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Jl. Semarang 5 Malang 65145 (Indonesia)

    2016-03-11

    Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C{sub 6}-C{sub 3}-C{sub 6} carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.

  19. EFFECT OF MATRICES ON PERCENT EXTRACTION OF SILVER (II FROM BLACK/WHITE PRINTING PHOTOGRAPHIC WASTE USING EMULSION LIQUID MEMBRANE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Imam Santoso

    2010-06-01

    Full Text Available Extraction of silver (I has been studied from black/white printing photographic waste by emulsion liquid membrane technique. Composition emulsion at the membrane phase was cerosene as solvent, sorbitan monooleat (span 80 as surfactant, dimethyldioctadesyl-ammonium bromide as carrier and as internal phase was HNO3. Optimum condition was obtained: ratio of internal phase volume and membrane phase volume was 1:1 : concentration of surfactant was 2% (v/v : time of making emulsion was 20 second : rate of stiring emulsion was 1100 rpm : rest time emulsion was 3 second : rate of emulsion volume and external phase volume was 1:5 : emulsion contact rate 500 rpm : emulsion contact time was 40 second : concentration of silver thiosulfate as external phase was 100 ppm : pH of external phase was 3 and pH of internal phase was 1. Optimum condition was applied in silver(I extraction from black/white printing photographic waste. It was obtained 77.33% average which 56.06% silver (I average of internal phase and 22.66% in the external phase. Effect of matrices ion decreased silver(I percent extraction from 96,37% average to 77.33% average. Keyword: photographics waste, silver extraction

  20. One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum.

    Science.gov (United States)

    Vijayaraghavan, K; Nalini, S P Kamala; Prakash, N Udaya; Madhankumar, D

    2012-06-01

    A novel biosynthesis route for silver nanoparticles (Ag-NPs) was attempted in this present investigation using aqueous extracts of Trachyspermum ammi and Papaver somniferum. The main constituents in T. ammi are thymol, p-cymene and γ-terpinene, while P. somniferum consists of morphine and codeine. The essential oil in T. ammi was found to be a good reducing agent than the alkaloids present in P. somniferum for the formation of biocompatible Ag-NPs. The effectiveness of both the extracts was investigated by using same dosage of extract in the synthesis of silver nanoparticle. The results showed that for the same dosage of extracts the T. ammi synthesized various size triangular shaped nanoparticles measuring from 87 nm, to a fewer nanoparticles having a size of 998 nm diagonally. P. somniferum resulted in almost spherical shaped particle ranging in size between 3.2 and 7.6 μm diagonally. Future research based on synthesis of size specific nanoparticle based on the optimization of reaction condition would be an interesting area.

  1. Green Route for Silver Nanoparticles Synthesis by Raphanus Sativus Extract in a Continuous Flow Tubular Microreactor

    Science.gov (United States)

    Jolhe, P. D.; Bhanvase, B. A.; Patil, V. S.; Sonawane, S. H.

    The present work deals with the investigation of the greener route for the production of silver nanoparticles using Raphanus sativus (R. sativus) bioextract in a continuous flow tubular microreactor. The parameters affecting the particle size and distribution were investigated. From the results obtained it can be inferred that the ascorbic acid (reducing agent) present in the R. sativus bioextract is responsible for the reduction of silver ions. At optimum condition, the particle size distribution of nanoparticles is found between 18nm and 39nm. The absorbance value was found to be decreased with an increase in the diameter of the microreactor. It indicates that a number of nuclei are formed in the micrometer sized (diameter) reactor because of the better solute transfer rate leading to the formation of large number of silver nanoparticles. The study of antibacterial activity of green synthesized silver nanoparticles shows effective inhibitory activity against waterborne pathogens, Shegella and Listeria bacteria.

  2. Bioactive compound loaded stable silver nanoparticle synthesis from microwave irradiated aqueous extracellular leaf extracts of Naringi crenulata and its wound healing activity in experimental rat model.

    Science.gov (United States)

    Bhuvaneswari, T; Thiyagarajan, M; Geetha, N; Venkatachalam, P

    2014-07-01

    An efficient and eco-friendly protocol for the synthesis of bioactive silver nanoparticles was developed using Naringi crenulata leaf extracts via microwave irradiation method. Silver nanoparticles were synthesized by treating N. crenulata leaf extracts with 1mM of aqueous silver nitrate solution. An effective bioactive compound such as alkaloids, phenols, saponins and quinines present in the N. crenulata reduces the Ag(+) into Ag(0). The synthesized silver nanoparticles were monitored by UV-vis spectrophotometer and further characterized by X-ray diffraction (XRD), Fourier Transform Infra Red (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and field emission scanning electron microscopy (FESEM). UV-vis spectroscopy showed maximum absorbance at 390nm due to surface plasmon resonance of AgNPs. From FESEM results, an average crystal size of the synthesized nanoparticle was 72-98nm. FT-IR results showed sharp absorption peaks and they were assigned to phosphine, alkyl halides and sulfonate groups. Silver nanoparticles synthesized were generally found to be spherical and cubic shape. Topical application of ointment prepared from silver nanoparticles of N. crenulata were formulated and evaluated in vivo using the excision wound healing model on Wistar albino rats. The measurement of the wound areas was performed on 3rd, 6th, 9th, 12th and 15th days and the percentage of wound closures was calculated accordingly. By the 15th day, the ointment base containing 5% (w/w) of silver nanoparticles showed 100% wound healing activity compared with that of the reference as well as control bases. The results strongly suggested that the batch C ointment containing silver nanaoparticles synthesized from the leaf extracts of N. crenulata was found to be very effective in wound repair and encourages harnessing the potentials of the plant biomolecules loaded silver nanoparticle in the treatment of tropical diseases including wound healing.

  3. Green Synthesis of Silver Nanoparticles using Bark Extract of Salix Alba and Its Antimicrobial Effect Against Bacteria Isolated from Dental Plaque

    Directory of Open Access Journals (Sweden)

    Shahnaz Majeed

    2016-06-01

    Full Text Available Now a days oral infections are major concern for the researchers due to chewing large amount of Tabacco, poor hygiene of mouth as well as smoking. These common life styles can enhance the oral infection as well as can play an important role in enhancing the bacterial resistance by the accumulation of antibiotics. Hence my present work was to focused on the biosynthesis of silver nanoparticles using Salix alba bark extract. The color of the plant extract changes in to dark brown upon addition of silver nitrate indicates the formation of silver nanoparticles which completes the reaction after 24 hours.. These nanoparticles were characterized by different microscopic techniques like UV- Vis spectrophotometry which showed the absorption peak at 440 nm specific for silver nanoparticles. HR-TEM showed average size was between 29-35 nm and the tiny particles were seemed to be spherical in morphology. Zeta potential showed silver nanoparticles were stable due to the electrostatic repulsion without adding a different physical or chemical capping agent. Atomic Force Microscopy (AFM showed nanoparticles size was 30-50 nm and were stable. . The dental caries forming bacteria were isolated from plaque samples like Lactobacillus sp, Streptococcus sp. and Staphylococcus sp. and compare with different reference strains. Antibacterial activity of these biologically synthesized silver nanoparticles was evaluated by disc diffusion. These synthesized silver nanoparticles showed a good antibacterial activity against the bacteria isolates. . Furthermore these nanoparticles showed quite significant activity along with different antibiotics like Amoxicillin, Tetracycline and Ciprofloxacin during the present study.

  4. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, Nayanmoni [Biotech Hub, Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Babu, Punuri Jayasekhar [Biotech Hub, Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Mahanta, Chandan [Biotech Hub, Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Bora, Utpal, E-mail: ubora@iitg.ernet.in [Biotech Hub, Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India)

    2015-01-01

    Here we report the synthesis of silver nanoparticles using ethanolic flower extract of Nyctanthes arbortristis, UVvisible spectra and TEM indicated the successful formation of silver nanoparticles. Crystalline nature of the silver nanoparticles was confirmed by X-ray diffraction. Fourier Transform Infra-Red Spectroscopy analysis established the capping of the synthesized silver nanoparticles with phytochemicals naturally occurring in the ethanolic flower extract of N. arbortristis. The synthesized silver nanoparticles showed antibacterial activity against the pathogenic strain of Escherichia coli MTCC 443. Furthermore, cytotoxicity of the silver nanoparticles was tested on mouse fibroblastic cell line (L929) and found to be non-toxic, which thus proved their biocompatibility. Antibacterial activity and cytotoxicity assay carried out in this study open up an important perspective of the synthesized silver nanoparticles. - Highlights: • The present study depicts the green synthesis of AgNPs using Nyctanthes arbortristis. • AuNPs found to be biocompatible and can be used for biomedical applications. • The FTIR, TGA and DTA results showed that AgNPs are bounded by organic coating. • The synthesized AgNPs showed antibacterial activity on E. Coli MTCC 443. • We investigated the antioxidant activity for both EFE and AgNPs.

  5. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Lori [National Center for Chemical Characterization of Materials, Bhabha Atomic Research Centre, ECIL-PO, Hyderabad 500 062 (India); Arunachalam, J., E-mail: aruncccm@rediffmail.com [National Center for Chemical Characterization of Materials, Bhabha Atomic Research Centre, ECIL-PO, Hyderabad 500 062 (India)

    2011-09-15

    Highlights: {yields} We report green synthetic route for the production crystalline silver nanoparticles using garlic as both reducing and stabilizing agent. {yields} Synthesis has been achieved by exposing the solution mixture of [Ag(NH{sub 3}){sub 2}]{sup +} and aqueous garlic extract under sunlight. {yields} Role of light in the synthesis process has been investigated and is discussed in detail. {yields} The antibacterial effect of the synthesized silver nanoparticles has been assessed against both Gram classes of bacteria. {yields} Synthesized silver colloidal solutions were found to be stable for a very long period and retained their bactericidal potential. - Abstract: A green synthetic route for the production of highly stable silver nanoparticles using aqueous garlic extract is being reported for the first time. The silver nanoparticles were synthesized by exposing a mixture of 0.1 M [Ag(NH{sub 3}){sub 2}]{sup +} and diluted aqueous garlic extract under bright sunlight for 15 min. The garlic extract components served as both reducing and capping agents in the synthesis of silver nanoparticles while the sunlight acted as catalyst in the synthesis process. The synthesized nanoparticles were characterized using UV-visible (UV-vis) spectrophotometer; transmission electron microscopy (TEM), glancing angle X-ray diffraction (GA-XRD) and Fourier transform infra red (FTIR) spectrometry. The nanoparticles were found to be poly-dispersed in nature, spherical in shape and of 7.3 {+-} 4.4 nm in size. The FTIR analysis was suggestive of proteins as capping agents around the nanoparticles. The yield of synthesized nanoparticles was calculated to be approximately 80% by dry weight and 85% ICP-AES method. The synthesized silver nanoparticles exhibited good antibacterial potential against both Gram positive and Gram negative bacterial strains, as measured using well diffusion assay. Most importantly, the silver colloidal solutions thus synthesized were found to be stable for

  6. In-vitro bio-fabrication of silver nanoparticle using Adhathoda vasica leaf extract and its anti-microbial activity

    Science.gov (United States)

    Nazeruddin, G. M.; Prasad, N. R.; Prasad, S. R.; Garadkar, K. M.; Nayak, Arpan Kumar

    2014-07-01

    It is well known that on treating the metallic salt solution with some plant extracts, a rapid reduction occurs leading to the formation of highly stable metal nanoparticles. Extracellular synthesis of metal nanoparticles using extracts of plants like Azadirachta indica (Neem), and Zingiber officinale (Ginger) has been reported to be successfully carried out. In this study we have developed a novel method to synthesize silver nanoparticles by mixing silver salt solution with leaf extract of Adhathoda vasica (Adulsa) without using any surfactant or external energy. By this method physiologically stable, bio-compatible Ag nanoparticles were formed which could be used for a variety of applications such as targeted drug delivery which ensures enhanced therapeutic efficacy and minimal side effects. With this method rapid synthesis of nanoparticles was observed to occur; i.e. reaction time was 1-2 h as compared to 2-4 days required by microorganisms. These nanoparticles were analyzed by various characterization techniques to reveal their morphology, chemical composition, and antimicrobial activity. TEM image of these NPs indicated the formation of spherical, non-uniform, poly-dispersed nanoparticles. A detailed study of anti-microbial activity of nanoparticles was carried out.

  7. Ancient silver extraction in the Montevecchio mine basin (Sardinia, Italy): micro-chemical study of pyrometallurgical materials

    Science.gov (United States)

    De Caro, Tilde; Riccucci, Cristina; Parisi, Erica I.; Faraldi, Federica; Caschera, D.

    2013-12-01

    Different pyrometallurgical materials such as slags, refractory materials and thermally treated lead ores likely related to smelting and extractive processes and chronologically related to Punic and Roman periods (IV-III BC) have been found at Bocche di Sciria and Conca e Mosu in the Montevecchio mine basin (south western Sardinia, Italy), where archaeological findings and classical authors locate extractive metallurgy activities since pre-Roman times. By means of the combined use of X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectrometry (EDS), selected-area X-ray photoelectron spectroscopy (XPS) and optical microscopy (OM), micro-chemical and micro-structural investigations have been carried out in order to identify the nature of the pyrometallurgical materials, to decipher the processes carried out there and their technological steps and to determine the technological level of competence reached by the ancient metallurgists. The results confirm that the findings can be associated with smelting and extractive processes carried out close to the metal ore deposits first for the argentiferous lead production and, then, for the silver recovery via a cupellation process. Finally, the results disclose the high level of technological competence of the ancient metallurgists able to carry out complex high-temperature processes to treat the argentiferous lead ores and to recover low amounts of silver via high-temperature lead-selective oxidation.

  8. Solvent bar micro-extraction with graphite atomic absorption spectrometry for the determination of silver in ocean water.

    Science.gov (United States)

    López-López, José A; Herce-Sesa, Belén; Moreno, Carlos

    2016-10-01

    Main drawbacks for silver determination in seawater are the effects of samples matrix and that Ag appears in the sub ng L(-1). Available methods for sample preparation in Ag analysis are based on solid and liquid extraction using tedious process that increase the cost of analysis and the risk of sample contamination, producing important waste amounts. Solvent bar micro-extraction (SBME) allows the pre-concentration of Ag in a micro-volume of the ionic liquid Aliquat 336® in kerosene solution. For this reason, it is considered as a green alternative to standard methods. The method has been optimized using synthetic seawater samples, offering the highest response for samples at pH=2, using 5% Aliquat 336® dissolved in kerosene containing 5% dodecan-1-ol as acceptor solution and after 1h stirring at 800rpm. The method exhibited linearity up to 50ngL(-1), with a limit of detection of 0.09ngL(-1), covering the concentration range of interest for environmental studies. Finally, it was applied for determination of Ag in real seawater samples, and the results were compared with the reference method of liquid-liquid extraction with 1-pyrrolidine-dithiocarbamate and diethylammonium-diethyldithiocarbamate, showing the applicability of ionic liquid based SBME using Aliquat 336(®) for the simple monitoring of silver ultra-traces in seawater analysis.

  9. A Light Scattering Layer for Internal Light Extraction of Organic Light-Emitting Diodes Based on Silver Nanowires.

    Science.gov (United States)

    Lee, Keunsoo; Shin, Jin-Wook; Park, Jun-Hwan; Lee, Jonghee; Joo, Chul Woong; Lee, Jeong-Ik; Cho, Doo-Hee; Lim, Jong Tae; Oh, Min-Cheol; Ju, Byeong-Kwon; Moon, Jaehyun

    2016-07-13

    We propose and fabricate a random light scattering layer for light extraction in organic light-emitting diodes (OLEDs) with silver nanodots, which were obtained by melting silver nanowires. The OLED with the light scattering layer as an internal light extraction structure was enhanced by 49.1% for the integrated external quantum efficiency (EQE). When a wrinkle structure is simultaneously used for an external light extraction structure, the total enhancement of the integrated EQE was 65.3%. The EQE is maximized to 65.3% at a current level of 2.0 mA/cm(2). By applying an internal light scattering layer and wrinkle structure to an OLED, the variance in the emission spectra was negligible over a broad viewing angle. Power mode analyses with finite difference time domain (FDTD) simulations revealed that the use of a scattering layer effectively reduced the waveguiding mode while introducing non-negligible absorption. Our method offers an effective yet simple approach to achieve both efficiency enhancement and spectral stability for a wide range of OLED applications.

  10. Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp.

    Science.gov (United States)

    Yugandhar, Pulicherla; Haribabu, Reddla; Savithramma, Nataru

    2015-12-01

    Today green synthesis of silver nanoparticles (SNPs) from plants is an utmost emerging filed in nanotechnology. In the present study, we have reported a green method for synthesis of SNPs from aqueous stem bark extract of Syzygium alternifolium, an endemic medicinal plant of South Eastern Ghats. These green-synthesised nanoparticles are characterised by colour change pattern, and the broad peak obtained at 448 nm with UV-Vis surface plasmon resonance studies confirm that the synthesised nanoparticles are SNPs. FT-IR spectroscopic studies confirm that phenols and proteins of stem bark extract is mainly responsible for capping and stabilisation of synthesised SNPs. Crystallographic studies from XRD indicates, the SNPs are crystalline in nature owing to 44 nm size. EDAX analysis shows 19.28 weight percentage of Ag metal in the sample indicates the purity of sample. AFM, SEM and TEM microscopic studies reveal that the nanoparticles are spherical in shape with sizes ranging from 4 to 48 nm. Antimicrobial studies of the synthesised SNPs on clinically isolated microbes showed very toxic effects. It indicates that stem bark extract of S. alternifolium is suitable for synthesising stable silver nanoparticles which act as excellent antimicrobial agents.

  11. Silver nanoparticles synthesized using aqueous leaf extract of Ziziphus oenoplia (L.) Mill: Characterization and assessment of antibacterial activity.

    Science.gov (United States)

    Soman, Soumya; Ray, J G

    2016-10-01

    Biological approach to synthesis of metal nanoparticles using aqueous leaf extract is a highly relevant and recent theme in nanotechnological research. Phytosynthesized AgNPs have better inhibitory and antimicrobial effects compared to aqueous leaf extract and silver nitrate. In the present investigation crystalline silver nanoparticles (AgNPs) with size of 10nm have been successfully synthesized using aqueous leaf extract (AQLE) of Ziziphus oenoplia (L.) Mill., which act as both reducing as well as capping agent. The particles were characterized using UV Visible spectroscopy, HRTEM-EDAX, XRD, FT-IR and DLS. An evaluation of the anti bacterial activity was carried out using Agar well diffusion method and MIC determination against four bacterial strains, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi; the AgNPs exhibited quite high antibacterial activity. Furthermore, bactericidal studies with TEM at different time intervals after AgNPs treatment showed the presence of AgNPs near cell membrane of bacteria at about 30min exposure and the bacterial-lysis was found completed at 24h. This gave an insight on the mechanism of bacterial-lysis by direct damage to the cell membrane.

  12. Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora

    Science.gov (United States)

    Johnson, I.; Prabu, H. Joy

    2015-01-01

    Biosynthesis of nanoparticles is a kind of bottom-up approach where the main reaction occurring is reduction. Since silver nanoparticles (AgNPs) have been used for infection prevention in medical field, it is more relevant to reduce their size using ancient Indian herbal plants. This method is good in anti-microbial efficiency against bacteria, viruses and other microorganisms and hence clearly enhances the medicinal usage of AgNPs. This type of green biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, cost-effective and environmental-friendly technologies for nano-materials synthesis. In the process of synthesizing AgNPs, we observed a rapid reduction of silver ions leading to the formation of stable crystalline AgNPs in the solution. Plant extracts from Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora were used for the synthesis of AgNPs from silver nitrate solution. AgNPs were characterized by different techniques.

  13. Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-Sorbitol: Study of Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    S. Kaviya

    2011-01-01

    Full Text Available Synthesis of silver nanoparticles (AgNPs using Polyalthia longifolia leaf extract as reducing and capping agent along with D-sorbitol used to increase the stability of the nanoparticles has been reported. The reaction is carried out at two different concentrations (10−3 M and 10−4 M of silver nitrate, and the effect of temperature on the synthesis of AgNPs is investigated by stirring at room temperature (25°C and at 60°C. The UV-visible spectra of NPs showed a blue shift with increasing temperature at both concentrations. FT-IR analysis shows that the biomoites played an important role in the reduction of Ag+ ions and the growth of AgNPs. TEM results were utilized for the determination of the size and morphology of nanoparticles. The synthesized silver nanoparticles are found to be highly toxic against Gram-positive bacteria than Gram-negative bacteria.

  14. Phytosynthesis of silver nanoparticles using the leaves extract of Ficus talboti king and evaluation of antioxidant and antibacterial activities.

    Science.gov (United States)

    Arunachalam, K; Shanmuganathan, B; Sreeja, P S; Parimelazhagan, T

    2015-11-01

    The present study, the synthesis of silver nanoparticles (AgNPs) at 90 °C temperature using an aqueous extract from Ficus talboti leaf and the antioxidant and antibacterial activities of the AgNPs obtained. The devised method is simple and cost-effective, and it produces spherical AgNPs of size 11.9 ± 2.3 nm. The synthesized AgNPs was characterized as UV-vis spectrum and obtain a peak at 438 nm. The phytochemical study result shows that the secondary metabolites such as alkaloids, saponins, phenolic compounds, tannin, flavonoids, phytosterol, and glycosides may be responsible for reducing as well as capping silver ions into AgNPs. Transmission electron microscopic (TEM) studies of the particles revealed a dominance of spherical particle AgNPs. The face centered cubic structure of the AgNPs was confirmed by X-ray diffraction (XRD) peaks at 111°, 200°, 220°, and 311°; SAED patterns confirms the plane of silver nanoparticle planes with clear circular spots on the selected area electron diffraction (SAED). Elemental analysis was done by energy dispersive X-ray analysis (EDX). In addition, this study evaluated the in vitro antioxidant and antibacterial properties of the biosynthesized AgNPs that were found to be significant.

  15. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Science.gov (United States)

    Markina, Natalia E.; Markin, Alexey V.; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu.

    2016-12-01

    Multifunctional silica gel with embedded silver nanoparticles (SiO2-AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO2-AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO2 bulk. Synthesis of AgNP directly to the SiO2 matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO3 concentration used during the SiO2-AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO2-AgNP with optimal composition was around 105. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  16. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities.

    Science.gov (United States)

    Gopinath, Kasi; Kumaraguru, Shanmugasundaram; Bhakyaraj, Kasi; Mohan, Subramanian; Venkatesh, Kunga Sukumaran; Esakkirajan, Masanam; Kaleeswarran, Periyannan; Alharbi, Naiyf S; Kadaikunnan, Shine; Govindarajan, Marimuthu; Benelli, Giovanni; Arumugam, Ayyakannu

    2016-12-01

    The green fabrication of metal nanoparticles using botanical extracts is gaining increasing research attention in nanotechnology, since it does not require high energy inputs or the production of highly toxic chemical byproducts. Here, silver (Ag), gold (Au) and their bimetallic (Ag/Au) nanoparticles (NPs) were green synthesized using the Gloriosa superba aqueous leaf extract. Metal NPs were studied by spectroscopic (UV-visible spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, XRD and EDX) and microscopic (AFM and TEM) analysis. AFM and TEM showed that Ag and Au NPs had triangular and spherical morphologies, with an average size of 20 nm. Bimetallic Ag/Au NPs showed spherical shapes with an average size of 10 nm. Ag and Ag/Au bimetallic NPs showed high antibacterial and antibiofilm activities towards Gram-positive and Gram-negative bacteria. Overall, the proposed synthesis route of Ag, Au and Ag/Au bimetallic NPs can be exploited by the pharmaceutical industry to develop drugs effective in the fight against microbic infections.

  17. Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae).

    Science.gov (United States)

    Roni, Mathath; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Hwang, Jiang-Shiou

    2013-03-01

    Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and ecofriendly reducing and capping agents. The present study was carried out to establish the larvicidal activity of synthesized silver nanoparticles (AgNPs) using leaf extract of Nerium oleander (Apocynaceae) against the first to fourth instar larvae and pupae of malaria vector, Anopheles stephensi (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by the aqueous extract of the plant parts to generate extremely stable silver nanoparticles in water. The results were recorded from UV-Vis spectrum, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy analysis. The production of the AgNPs synthesized using leaf extract of N. oleander was evaluated through a UV-Vis spectrophotometer in a wavelength range of 200 to 700 nm. This revealed a peak at 440 nm in N. oleander leaf extracts, indicating the production of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 509.12 cm(-1) (C-H bend alkenes), 1,077.05 cm(-1) (C-O stretch alcohols), 1,600.63 cm(-1) (N-H bend amines), 2,736.49 and 2,479.04 cm(-1) (O-H stretch carboxylic acids), and 3,415.31 cm(-1) (N-H stretching due to amines group). An SEM micrograph showed 20-35-nm-size aggregates of spherical- and cubic-shaped nanoparticles. EDX showed the complete chemical composition of the synthesized nanoparticles of silver. Larvicidal activity of aqueous leaf extract of N. oleander and synthesized AgNPs was carried out against Anopheles stephensi, and the results showed that the highest larval mortality was found in the synthesized AgNPs against the first to fourth instar larvae and pupae of Anopheles stephensi with the following values: LC(50) of instar larvae 20.60, 24.90, 28.22, and 33.99 ppm; LC(90) of instar larvae 41.62, 50.33, 57.78, and 68.41

  18. Process study on extracting gold and silver from one complex gold concentrate%某复杂金精矿的金银提取工艺研究

    Institute of Scientific and Technical Information of China (English)

    简椿林

    2014-01-01

    对菲律宾某复杂金精矿的金、银提取工艺进行了研究。其试验结果表明:两段焙烧-两段酸浸-添加碳酸氢铵氰化提取金、银工艺指标较好;在一定条件下,金、银浸出率可分别达到98.78%、97.57%。%Process study on extracting gold and silver from one complex gold concentrate from the Philippines with various processes is carried out .The results show that extraction rate of gold and silver were better in the process of two stages roasting-two stages acid leaching-adding ammonium bicarbonate cyanide .Under this condition , the extraction rate of gold and silver were respectively 98.78 %、97.57 %.

  19. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract

    Science.gov (United States)

    Kumara Swamy, M.; Sudipta, K. M.; Jayanta, K.; Balasubramanya, S.

    2015-01-01

    Biosynthesis of silver nanoparticles (Ag Nps) was carried out using methanol leaves extract of L. reticulata. Ag Nps were characterized based on the observations of UV-visible spectroscopy, transmission electron microscopy, and X-ray diffraction (XRD) analysis. These Ag Nps were tested for antimicrobial activity by agar well diffusion method against different pathogenic microorganisms and antioxidant activity was performed using DPPH assay. Further, the in vitro cytotoxic effects of Ag Nps were screened against HCT15 cancer cell line and viability of tumor cells was confirmed using MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) assay. The nuclear condensation was studied using the propidium iodide-staining method. The color change from green to dark brown and the absorbance peak at about 420 nm indicated the formation of nanoparticles. XRD pattern showed characteristic peaks indexed to the crystalline planes (111), (200) and (220) of face-centered cubic silver. The nanoparticles were of spherical shape with varying sizes ranging from 50 to 70 nm. Biosynthesized Ag Nps showed potent antibacterial activity and effective radical scavenging activity. MTT assay revealed a dose-dependent decrease in cell viability. Microscopic observations showed distinct cellular morphological changes indicating unhealthy cells, whereas the control appeared normal. Increase in the number of propidium iodide positive cells were observed in maximum concentration. Methanolic leaf extract of L. reticulata acts as an excellent capping agent for the formation of silver nanoparticles and demonstrates immense biological activities. Hence, these Ag NPs can be used as antibacterial, antioxidant as well as cytotoxic agent in treating many medical complications.

  20. Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity.

    Science.gov (United States)

    Singh, Garvita; Babele, Piyoosh K; Shahi, Shailesh K; Sinha, Rajeshwar P; Tyagi, Madhu B; Kumar, Ashok

    2014-10-01

    In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEMselected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag- CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.

  1. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-06-01

    The biosynthesis of nanoparticles has received attention because of the development of economic and environmentally friendly technology for the synthesis of nanoparticles. The study develops a convenient method for the green synthesis of silver and gold nanoparticles by utilizing fresh root extract of the four-year old Panax ginseng plant, and evaluated the antimicrobial applications of silver nanoparticles against pathogenic microorganisms. P. ginseng is a well-known herbal medicinal plant, and its active ingredients are mainly ginsenosides. The fresh root of the 4 year old P. ginseng plant has been explored for the synthesis of silver and gold nanoparticles without the use of any additional reducing and capping agents. The reduction of silver nitrate led to the formation of silver nanoparticles within 2 h of reaction at 80°C. The gold nanoparticles were also successfully synthesized by the reduction of auric acid at 80°C, within 5 min of reaction. The biosynthesized gold and silver nanoparticles were characterized by techniques using various instruments, viz. ultraviolet-visible spectroscopy (UV-Vis spectroscopy), field emission transmission electron microscopy (FE-TEM), energy dispersive X-ray analysis (EDX), elemental mapping, and X-ray diffraction (XRD). In addition, the silver nanoparticles have shown antimicrobial potential against Bacillus anthracis, Vibrio parahaemolyticus, Staphylococcus aureus, Escherichia coli, and Bacillus cereus.

  2. Green Synthesis of Silver Nanoparticles Using Extract of Oak Fruit Hull (Jaft: Synthesis and In Vitro Cytotoxic Effect on MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    Rouhollah Heydari

    2015-01-01

    Full Text Available A green synthetic approach by using oak fruit hull (Jaft extract for preparation of silver nanoparticles (AgNPs was developed and optimized. Parameters affecting the synthesis of AgNPs, such as temperature, extract pH, and concentration of extract (ratio of plant sample to extraction solvent, were investigated and optimized. Optimum conditions for the synthesis of silver nanoparticles are as follows: Ag+ concentration, 1 mM; extract concentration, 40 g/L (4% w/v; pH = 9 and temperature, 45°C. Biosynthesized silver nanoparticles were characterized using UV-visible absorption spectroscopy (UV-Vis, Fourier-transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, dynamic light scattering (DLS, transmission electron microscopy (TEM, and scanning electron microscopy (SEM. TEM and DLS analyses have shown the synthesized AgNPs were predominantly spherical in shape with an average size of 40 nm. The cytotoxic activity of the synthesized AgNPs and Jaft extract containing AgNPs against human breast cancer cell (MCF-7 was investigated and the half maximal inhibitory concentrations (IC50 were found to be 50 and 0.04 μg/mL at 24 h incubation, respectively. This eco-friendly and cost-effective synthesis method can be potentially used for large-scale production of silver nanoparticles.

  3. Green Synthesis of Silver Nanoparticles Using Extract of Oak Fruit Hull (Jaft): Synthesis and In Vitro Cytotoxic Effect on MCF-7 Cells

    Science.gov (United States)

    Rashidipour, Marzieh

    2015-01-01

    A green synthetic approach by using oak fruit hull (Jaft) extract for preparation of silver nanoparticles (AgNPs) was developed and optimized. Parameters affecting the synthesis of AgNPs, such as temperature, extract pH, and concentration of extract (ratio of plant sample to extraction solvent), were investigated and optimized. Optimum conditions for the synthesis of silver nanoparticles are as follows: Ag+ concentration, 1 mM; extract concentration, 40 g/L (4% w/v); pH = 9 and temperature, 45°C. Biosynthesized silver nanoparticles were characterized using UV-visible absorption spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). TEM and DLS analyses have shown the synthesized AgNPs were predominantly spherical in shape with an average size of 40 nm. The cytotoxic activity of the synthesized AgNPs and Jaft extract containing AgNPs against human breast cancer cell (MCF-7) was investigated and the half maximal inhibitory concentrations (IC50) were found to be 50 and 0.04 μg/mL at 24 h incubation, respectively. This eco-friendly and cost-effective synthesis method can be potentially used for large-scale production of silver nanoparticles. PMID:25685560

  4. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells.

    Science.gov (United States)

    Das, Sreemanti; Das, Jayeeta; Samadder, Asmita; Bhattacharyya, Soumya Sundar; Das, Durba; Khuda-Bukhsh, Anisur Rahman

    2013-01-01

    The capability of crude ethanolic extracts of certain medicinal plants like Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis used as homeopathic mother tinctures in precipitating silver nanoparticles from aqueous solution of silver nitrate has been explored. Nanoparticles thus precipitated were characterized by spectroscopic, dynamic light scattering, X-ray diffraction, atomic force and transmission electron microscopic analyses. The drug-DNA interactions of silver nanoparticles were analyzed from data of circular dichroism spectroscopy and melting temperature profiles using calf thymus DNA (CT-DNA) as target. Biological activities of silver nanoparticles of different origin were then tested to evaluate their effective anti-proliferative and anti-bacterial properties, if any, by exposing them to A375 skin melanoma cells and to Escherichia coli C, respectively. Silver nanoparticles showed differences in their level of anti-cancer and anti-bacterial potentials. The nanoparticles of different origin interacted differently with CT-DNA, showing differences in their binding capacities. Particle size differences of the nanoparticles could be attributed for causing differences in their cellular entry and biological action. The ethanolic extracts of these plants had not been tested earlier for their possible efficacies in synthesizing nanoparticles from silver nitrate solution that had beneficial biological action, opening up a possibility of having therapeutic values in the management of diseases including cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Modified Bentonite with Dithizone as Nano Clay Mineral Adsorbent for Solid Phase Extraction of Silver Ions

    Directory of Open Access Journals (Sweden)

    Farid Shakerian

    2016-09-01

    Full Text Available In this work, a simple flow injection system incorporating a microcolumn of immobilized dithizone on bentonite coated with cetyltrimethylammonium bromide was combined with flame atomic absorption spectrometry (FAAS for on-line separation/preconcentration and determination of trace amounts of silver in water. Dithizone was physically immobilized on the surfactant coated bentonite particles and was used as the adsorbent in the preparation of microcolumn. Silver ions were deposited by processing a standard or sample solution of analyte in the pH range of 3–9 through the microcolumn. Injection of 250 µL of thiourea (0.4 mol L−1, pH = 5.0 served to elute the retained species to the FAAS. The capacity of the adsorbent under working conditions was found to be 7.2 mg of silver per gram of adsorbent. Processing a water sample volume of 30 mL resulted in an enrichment factor of 116. The method was successfully applied to the determination of silver in different natural waters and a certified reference material. This work is licensed under a Creative Commons Attribution 4.0 International License.

  6. Asymmetric Flow Field-Flow Fractionation of Manufactured Silver Nanoparticles in Soil Water Extracts

    NARCIS (Netherlands)

    Koopmans, G.F.; Hiemstra, T.; Molleman, B.; Regelink, I.C.; Comans, R.N.J.

    2013-01-01

    Manufactured silver nanoparticles (AgNP) are among the most widely used nanoparticles in consumer products and their unintended release into the environment has become a serious concern. For a meaningful assessment of the risks of AgNP in soils, their concentration and particle-size-distribution in

  7. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study.

    Science.gov (United States)

    Rónavári, Andrea; Kovács, Dávid; Igaz, Nóra; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Pfeiffer, Ilona; Kiricsi, Mónika

    2017-01-01

    Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles.

  8. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study

    Science.gov (United States)

    Rónavári, Andrea; Kovács, Dávid; Igaz, Nóra; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Pfeiffer, Ilona; Kiricsi, Mónika

    2017-01-01

    Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles. PMID:28184158

  9. Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity

    Science.gov (United States)

    Logaranjan, Kaliyaperumal; Raiza, Anasdass Jaculin; Gopinath, Subash C. B.; Chen, Yeng; Pandian, Kannaiyan

    2016-11-01

    Biogenic synthesis of silver nanoparticles (AgNP) was performed at room temperature using Aloe vera plant extract in the presence of ammoniacal silver nitrate as a metal salt precursor. The formation of AgNP was monitored by UV-visible spectroscopy at different time intervals. The shape and size of the synthesized particle were visualized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. These results were confirmed by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses and further supported by surface-enhanced Raman spectroscopy/Raman scattering (SERS) study. UV-visible spectrum has shown a sharp peak at 420 nm and further evidenced by FTIR peak profile (at 1587.6, 1386.4, and 1076 cm-1 with corresponding compounds). The main band position with SERS was noticed at 1594 cm-1 (C-C stretching vibration). When samples were heated under microwave radiation, AgNP with octahedron shapes with 5-50 nm were found and this method can be one of the easier ways to synthesis anisotropic AgNP, in which the plant extract plays a vital role to regulate the size and shape of the nanoparticles. Enhanced antibacterial effects (two- to fourfold) were observed in the case of Aloe vera plant protected AgNP than the routinely synthesized antibiotic drugs.

  10. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves

    Directory of Open Access Journals (Sweden)

    Patil Shriniwas P.

    2017-07-01

    Full Text Available Several attempts have been made for green synthesis of silver nanoparticles (AgNPs using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii with LD50 value 514.50 µg/ml.

  11. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum.

    Science.gov (United States)

    Venugopal, K; Rather, H A; Rajagopal, K; Shanthi, M P; Sheriff, K; Illiyas, M; Rather, R A; Manikandan, E; Uvarajan, S; Bhaskar, M; Maaza, M

    2017-02-01

    In the present report, silver nanoparticles were synthesized using Piper nigrum extract for in vitro cytotoxicity efficacy against MCF-7 and HEP-2 cells. The silver nanoparticles (AgNPs) were formed within 20min and after preliminarily confirmation by UV-Visible spectroscopy (strong peak observed at ~441nm), they were characterized by using FT-IR and HR-TEM. The TEM images show spherical shape of biosynthesized AgNPs with particle size in the range 5-40nm while as compositional analysis were observed by EDAX. MTT assays were carried out for cytotoxicity of various concentrations of biosynthesized silver nanoparticles and Piper nigrum extract ranging from 10 to 100μg. The biosynthesized silver nanoparticles showed a significant anticancer activity against both MCF-7 and Hep-2 cells compared to Piper nigrum extract which was dose dependent. Our study thus revealed an excellent application of greenly synthesized silver nanoparticles using Piper nigrum. The study further suggested the potential therapeutic use of these nanoparticles in cancer study. Copyright © 2016. Published by Elsevier B.V.

  12. 芒果皮提取物合成纳米银及抑菌性研究%Mango Peel Extract Mediated Novel Route for Synthesis of Silver Nanoparticles and Antibacterial Application of Silver Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    杨宁; 郝林; 杨鹏

    2013-01-01

    以芒果皮提取物作为还原剂,采用生物法合成纳米银粒子.研究了合成过程中pH值、芒果皮提取物添加量和硝酸银浓度对合成粒径和形貌的影响,研究结果通过紫外可见分光光度法、X射线衍射和透射电镜进行了表征.通过表征,分析得到合成的纳米银的粒径介于7~27 nm之间,其结晶为立体对称晶体,pH值为11,芒果皮提取物的添加量为0.1 mL,硝酸银溶液浓度为0.5 mM,反应条件为80℃,水浴15 min时,合成的纳米银粒径最小.试验结果表明,生物合成的纳米银粒子的抗菌性良好.%Silver nanoparticles were successfully synthesized from aqueous silver nitrate through a simple green route using the extract of mango peel as a reducing as well as capping agent.The effects of various operational parameters,such as pH value,the amount of the mango peel extract and the content of silver nitrate on the synthesis of the particle size and morphology were investigated.The results from UV-vis spectrum,X-ray diffraction (XRD),and Transmission electron microscope (TEM) revealed that the biosynthesized silver nanoparticles are in the size range of 7-27 nm and are crystallized in the centered cubic symmetry.When the reaction conditions were at pH 11.0 with 0.1 mL of the extract,0.5 mM silver nitrate concentration and 80 ℃ incubation temperature for 15 min,silver nanoparticles were in minimum size.Further,the antibacterial activity of these biologically synthesized silver nanoparticles was studied and the results showed that biosynthesized silver nanoparticles displayed excellent antibacterial function.

  13. Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity.

    Science.gov (United States)

    Govarthanan, Muthusamy; Seo, Young-Seok; Lee, Kui-Jae; Jung, Ik-Boo; Ju, Ho-Jong; Kim, Jae Su; Cho, Min; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2016-12-01

    The present study reports the simple, inexpensive, eco-friendly synthesis of silver nanoparticles (AgNPs) using coconut oil cake extract. Scanning electron microscopy-energy dispersive spectroscopy peak at 3 keV confirmed the presence of silver. Transmission electron micrograph showed that nanoparticles are mostly circular with an average size of 10-70 nm. The results of the X-ray powder diffraction analysis (2θ = 46.2, 67.4 and 76.8) indicated the crystal nature of the AgNPs. Fourier transform infrared spectroscopy analysis indicates that proteins present in the oilcake extract could be responsible for the reduction of silver ions. The synthesized AgNPs (1-4 mm) reduced the growth rate of multi-antibiotic-resistant bacteria such as Aeromonas sp., Acinetobacter sp. and Citrobacter sp. isolated from livestock wastewater.

  14. Biological synthesis and characterization of silver nanoparticles using Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential

    Indian Academy of Sciences (India)

    Paramasivam Premasudha; Mudili Venkataramana; Marriappan Abirami; Periyasamy Vanathi; Kadirvelu Krishna; Ramasamy Rajendran

    2015-08-01

    With increasing global competitions there is a growing need to develop environmentally benevolent nanoparticles without the use of toxic chemicals. The biosynthesis of silver nanoparticles (AgNPs) using plant extracts became one of the potential areas of research. The bioreduction of metal ion is quite rapid, readily perform at room temperature and easily scale up. The present study describes a rapid and eco-friendly synthesis of AgNPs using Eclipta alba plant extract in a single pot process. The efficiency and the influence of various process variables in the biosynthesis of AgNPs analysed include redundant concentration, temperature and time. AgNPs were rapidly synthesized using aqueous leaf extract of E. alba and was observed when the medium turned to brown colour with the addition of silver ion. Biosynthesized AgNPs were characterized by the help of UV–visible spectroscopy for their stability and physicochemical parameters were studied by dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy. The obtained results confirmed that recorded UV spectra show the characteristic surface plasmon resonance band for AgNPs in the range of 400–440 nm and physiochemical structural analysis shown that obtained AgNPs were crystalline in nature. Further, cytotoxic and antimicrobial activities of biosynthesized AgNPs against RAW 254.7, MCF-7 and Caco-2 cells as well as Gram positive and Gram negative bacteria were assessed. In-vitro cytotoxicity activity of characterized AgNPs against tested cell lines showed significant anti-cell-proliferation effect in nanomolar concentrations. The antibacterial activity of synthesized AgNPs showed effective inhibitory activity against human pathogens, including, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Thus, the significant outcome of this study would help to formulate value added herbal-based nano-materials in biomedical and nanotechnology industries.

  15. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes.

    Science.gov (United States)

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L

    2015-05-01

    Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. The present study was carried out to establish the larvicidal potential of leaf extracts of Gmelina asiatica and synthesized silver nanoparticles using aqueous leaf extract against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of An. stephensi (lethal dose (LC₅₀) = 22.44 μg/mL; LC₉₀ 40.65 μg/mL), Ae. aegypti (LC₅₀ = 25.77 μg/mL; LC₉₀ 45.98 μg/mL), and C. quinquefasciatus (LC₅₀ = 27.83 μg/mL; LC₉₀ 48.92 μg/mL), respectively. No mortality was observed in the control. This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles. Thus, the use of G. asiatica to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents.

  16. In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract

    Energy Technology Data Exchange (ETDEWEB)

    Dauthal, Preeti; Mukhopadhyay, Mausumi, E-mail: mausumi_mukhopadhyay@yahoo.com [S.V. National Institute of Technology, Department of Chemical Engineering (India)

    2013-01-15

    In-vitro free radical scavenging activity of biosynthesized gold (Au-NPs) and silver (Ag-NPs) nanoparticles was investigated in the present study. Natural precursor Prunus armeniaca (apricot) fruit extract was used as a reducing agent for the nanoparticle synthesis. The free radical scavenging activity of the nanoparticles were observed by modified 1,1 Prime -diphynyl-2-picrylhydrazyl, DPPH and 2,2 Prime -azinobis (3-ethylbenzothiazoline-6-sulfonic acid), ABTS assay. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectroscopy, and fourier transform infrared spectroscopy (FTIR). Appearance of optical absorption peak at 537 nm (2.20 keV) and 435 nm (3 keV) within 0.08 and 0.5 h of reaction time was confirmed the presence of metallic Au and Ag nanoclusters, respectively. Nearly spherical nanoparticles with majority of particle below 20 nm (TEM) for both Au-NPs and Ag-NPs were synthesized. XRD pattern confirmed the existence of pure nanocrystalline Au-NPs while few additional peaks in the vicinity of fcc silver-speculated crystallization of metalloproteins of fruit extract on the surface of the Ag-NPs and vice versa. FTIR spectra was supported the role of amino acids of protein/enzymes of fruit extract for synthesis and stabilization of nanoparticles. Dose-dependent scavenging activity was observed for Au-NPs and Ag-NPs in both DPPH and ABTS in-vitro assay. 50 % scavenging activity for DPPH were 11.27 and 16.18 mg and for ABTS 3.40 and 7.12 mg with Au-NPs and Ag-NPs, respectively.

  17. In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract

    Science.gov (United States)

    Dauthal, Preeti; Mukhopadhyay, Mausumi

    2013-01-01

    In-vitro free radical scavenging activity of biosynthesized gold (Au-NPs) and silver (Ag-NPs) nanoparticles was investigated in the present study. Natural precursor Prunus armeniaca (apricot) fruit extract was used as a reducing agent for the nanoparticle synthesis. The free radical scavenging activity of the nanoparticles were observed by modified 1,1'-diphynyl-2-picrylhydrazyl, DPPH and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), ABTS assay. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectroscopy, and fourier transform infrared spectroscopy (FTIR). Appearance of optical absorption peak at 537 nm (2.20 keV) and 435 nm (3 keV) within 0.08 and 0.5 h of reaction time was confirmed the presence of metallic Au and Ag nanoclusters, respectively. Nearly spherical nanoparticles with majority of particle below 20 nm (TEM) for both Au-NPs and Ag-NPs were synthesized. XRD pattern confirmed the existence of pure nanocrystalline Au-NPs while few additional peaks in the vicinity of fcc silver-speculated crystallization of metalloproteins of fruit extract on the surface of the Ag-NPs and vice versa. FTIR spectra was supported the role of amino acids of protein/enzymes of fruit extract for synthesis and stabilization of nanoparticles. Dose-dependent scavenging activity was observed for Au-NPs and Ag-NPs in both DPPH and ABTS in-vitro assay. 50 % scavenging activity for DPPH were 11.27 and 16.18 mg and for ABTS 3.40 and 7.12 mg with Au-NPs and Ag-NPs, respectively.

  18. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier

    Energy Technology Data Exchange (ETDEWEB)

    Kanipandian, Nagarajan [Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Kannan, Soundarapandian [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Periyar University, Salem 636 011, Tamil Nadu (India); Ramesh, Ramar; Subramanian, Periyasamy [Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Thirumurugan, Ramasamy, E-mail: ramthiru72@gmail.com [Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India)

    2014-01-01

    Graphical abstract: The figure is the TEM image of green synthesized silver nanoparticles from Cleistanthus collinus. In this investigation we have used the poisonous plant as a reducing and capping agent. This is a first time data to synthesis the metal nanoparticles using poisonous plant. - Highlights: • A hitherto unreported venomous plant mediated AgNPs synthesis. • The particle size is observed in the range of 20–40 nm. • Surface morphology of the well-dispersed silver nanoparticles is studied using SEM and TEM. • Crystalline nature of AgNPs is confirmed by X-ray diffraction analysis. • Antioxidant activities of green synthesized AgNPs are tested in vitro. - Abstract: We report, here a simple green method for the preparation of silver nanoparticles (AgNPs) using the plant extract of Cleistanthus collinus as potential phyto reducer. The synthesized AgNPs were characterized by UV–vis spectra, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained results confirmed that the AgNPs were crystalline in nature and the morphological studies reveal the spherical shape of AgNPs with size ranging from 20 to 40 nm. The in vitro antioxidant activity of AgNPs showed a significant effect on scavenging of free radicals. The cytotoxicity study exhibited a dose-dependent effect against human lung cancer cells (A549) and normal cells (HBL-100), the inhibitory concentration (IC{sub 50}) were found to be 30 μg/mL and 60 μg/mL respectively. The in vivo histopathology of mouse organs proved that AgNPs does not possess toxic effect and can be extensively applied in biomedical sciences.

  19. Green synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract: study of antioxidant and anticancer activities

    Science.gov (United States)

    Nakkala, Jayachandra Reddy; Mata, Rani; Bhagat, Ekta; Sadras, Sudha Rani

    2015-03-01

    The present study reports the biological synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract and their in vitro free radical scavenging efficacy as well as antiproliferative effect in Hep2 cells. The formation of silver (GYAgNPs) and gold nanoparticles (GYAuNPs) was confirmed by UV-visible spectroscopy. The average size of synthesized GYAgNPs and GYAuNPs was found to be 33 and 26 nm, respectively, by DLS particle size analyzer. TEM analysis indicated spherical shape of GYAgNPs and GYAuNPs and in EDX analysis they produced strong signal for silver and gold, respectively. Both GYAgNPs and GYAuNPs exhibited strong in vitro free radical quenching ability and their activity was comparable to that of GYLE. The cytotoxic effect of GYAgNPs and GYAuNPs in Hep2 cells was examined by MTT assay in which GYAgNPs displayed an IC50 value of 121 µg ml-1, while GYAuNPs produced up to 38 % of inhibition at the maximum concentration of 250 µg ml-1 used in this study. Distinct morphological changes were observed in Hep2 cells following treatment with GYAgNPs and GYAuNPs at 24 h, and orange-colored apoptotic bodies were located by acridine orange and ethidium bromide double-staining technique. Also, there was increase in the levels of reactive oxygen species in treated cells as indicated by 2',7'-dichlorofluorescin diacetate staining. Further, nuclear changes like chromatin condensation/fragmentation were also observed by propidium iodide and 4',6-diamidino-2-phenylindole dilactate staining methods. These findings support that the antiproliferative effects of GYAgNPs and GYAuNPs in Hep2 cells are mediated through induction of apoptosis.

  20. Green synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract: study of antioxidant and anticancer activities

    Energy Technology Data Exchange (ETDEWEB)

    Nakkala, Jayachandra Reddy; Mata, Rani; Bhagat, Ekta; Sadras, Sudha Rani, E-mail: dr.ssrlab@gmail.com, E-mail: sadrassudha@gmail.com [Pondicherry University, Department of Biochemistry and Molecular Biology, School of Life Sciences (India)

    2015-03-15

    The present study reports the biological synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract and their in vitro free radical scavenging efficacy as well as antiproliferative effect in Hep2 cells. The formation of silver (GYAgNPs) and gold nanoparticles (GYAuNPs) was confirmed by UV–visible spectroscopy. The average size of synthesized GYAgNPs and GYAuNPs was found to be 33 and 26 nm, respectively, by DLS particle size analyzer. TEM analysis indicated spherical shape of GYAgNPs and GYAuNPs and in EDX analysis they produced strong signal for silver and gold, respectively. Both GYAgNPs and GYAuNPs exhibited strong in vitro free radical quenching ability and their activity was comparable to that of GYLE. The cytotoxic effect of GYAgNPs and GYAuNPs in Hep2 cells was examined by MTT assay in which GYAgNPs displayed an IC{sub 50} value of 121 µg ml{sup −1}, while GYAuNPs produced up to 38 % of inhibition at the maximum concentration of 250 µg ml{sup −1} used in this study. Distinct morphological changes were observed in Hep2 cells following treatment with GYAgNPs and GYAuNPs at 24 h, and orange-colored apoptotic bodies were located by acridine orange and ethidium bromide double-staining technique. Also, there was increase in the levels of reactive oxygen species in treated cells as indicated by 2′,7′-dichlorofluorescin diacetate staining. Further, nuclear changes like chromatin condensation/fragmentation were also observed by propidium iodide and 4′,6-diamidino-2-phenylindole dilactate staining methods. These findings support that the antiproliferative effects of GYAgNPs and GYAuNPs in Hep2 cells are mediated through induction of apoptosis.

  1. Larvicidal activity of green synthesized silver nanoparticles using Excoecaria agallocha L. (Euphorbiaceae) leaf extract against Aedes aegypti.

    Science.gov (United States)

    Anil Kumar, Vundru; Ammani, Kandru; Jobina, Rajkumari; Parasuraman, Paramanandham; Siddhardha, Busi

    2016-12-01

    Green synthesis of silver nanoparticles (AgNPs) using plant extracts has been achieved by eco-friendly reducing and capping agents. The present study was conducted to evaluate the larvicidal efficacies of AgNPs synthesized using aqueous leaf extracts of Excoecaria agallocha against dengue vector, Aedes aegypti. The 3(rd) and 4(th) instar larvae of A. aegypti were exposed to various concentrations of aqueous extracts of E. agallocha, synthesized AgNPs and also crude solvent extracts (methanol and chloroform) for 24 h. The formation of AgNPs using aqueous leaf extracts was observed after 30 min with a characteristic colour change. The results recorded from UV-Vis spectrum, XRD, FTIR, EDX, SEM and HR-TEM were used to characterize and confirm the biosynthesis of AgNPs. The highest larvicidal efficacy of synthesized AgNPs was observed against 3(rd) instar larvae at LC50 4.65 mg/L, LC90 14.17 mg/L and 4(th) instar larvae with a concentration of LC50 6.10 mg/L, LC90 15.64 mg/L. A significant larvicidal activity was also observed with crude methanolic extracts against 3(rd) instar larvae at a concentration LC50 41.74 mg/L, LC90 123.61 mg/L and 4(th) instar larvae at a concentration of LC50 52.06 mg/L, LC90 166.40 mg/L as compared to the chloroform extract.

  2. Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products.

    Science.gov (United States)

    Ruiz-Palomero, Celia; Soriano, M Laura; Valcárcel, Miguel

    2016-01-08

    This paper reports a simple approach to Analytical Nanoscience and Nanotechnology (AN&N) that integrates the nanotool, sulfonated nanocellulose (s-NC), and nanoanalyte, silver nanoparticles (AgNPs), in the same analytical process by using an efficient, environmentally friendly dispersive micro solid-phase extraction (D-μSPE) capillary electrophoresis (CE) method with s-NC as sorbent material. Introducing negatively charged sulfate groups onto the surface of cellulose enhances its surface chemistry and enables the extraction and preconcentration of AgNPs of variable diameter (10, 20 and 60nm) and shell composition (citrate and polyvinylpyrrolidone coatings) from complex matrices into a cationic surfactant. In this way, AgNPs of diverse nature were successfully extracted onto the s-NC sorbent and then desorbed into an aqueous solution containing thiotic acid (TA) prior to CE without the need for any labor-intensive cleanup. The ensuing eco-friendly D-μSPE method exhibited a linear response to AgNPs with a limit of detection (LOD) of 20μg/L. Its ability to specifically recognize AgNPs of different sizes was checked in orange juice and mussels, which afforded recoveries of 70.9-108.4%. The repeatability of the method at the limit of quantitation (LOQ) level was 5.6%. Based on the results, sulfonated nanocellulose provides an efficient, cost-effective analytical nanotool for the extraction of AgNPs from food products. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7

    Science.gov (United States)

    Ramar, Manikandan; Manikandan, Beulaja; Marimuthu, Prabhu Narayanan; Raman, Thiagarajan; Mahalingam, Anjugam; Subramanian, Palanisamy; Karthick, Saravanan; Munusamy, Arumugam

    2015-04-01

    In the present study, we have synthesized silver nanoparticles by a simple and eco-friendly method using unripe fruits of Solanum trilobatum. The aqueous silver ions when exposed to unripe fruits extract were reduced and stabilized over long time resulting in biosynthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). These biologically synthesized silver nanoparticles were tested for its antibacterial activity against few human pathogenic bacteria including Gram-positive (Streptococcus mutans, Enterococcus faecalis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) bacteria. In addition, we also demonstrated anticancer activity of these nanoparticles in vitro against human breast cancer cell line (MCF 7) using MTT, nuclear morphology assay, Western blot and RT-PCR expression. These results taken together show the potential applications of biosynthesized silver nanoparticles using S. trilobatum fruits.

  4. A Green Approach to Synthesize Silver Nanoparticles in Starch-co-Poly(acrylamide Hydrogels by Tridax procumbens Leaf Extract and Their Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Siraj Shaik

    2013-01-01

    Full Text Available A series of starch-co-poly(acrylamide (starch-co-PAAm hydrogels were synthesized by employing free radical redox polymerization. A novel green approach, Tridax procumbens (TD leaf extract, was used for reduction of silver ions (Ag+ into silver nanoparticles in the starch-co-PAAm hydrogel network. The formation of silver nanoparticles was confirmed by UV-visible spectroscopy (UV-Vis, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray diffraction (X-RD studies. 22% of weight loss difference between hydrogel and silver nanocomposite hydrogel (SNCH clearly indicates the formation of silver nanoparticles by TGA. TEM images indicate the successful incorporation of silver nanoparticles ranging from 5 to 10 nm in size and spherical in shape with a narrow size distribution. These developed SNCHs were used to study the antibacterial activity by inhibition zone method against gram-positive and gram-negative bacteria such as Bacillus and Escherichia coli. The results indicated that these SNCHs can be used potentially for biomedical applications.

  5. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7.

    Science.gov (United States)

    Ramar, Manikandan; Manikandan, Beulaja; Marimuthu, Prabhu Narayanan; Raman, Thiagarajan; Mahalingam, Anjugam; Subramanian, Palanisamy; Karthick, Saravanan; Munusamy, Arumugam

    2015-04-05

    In the present study, we have synthesized silver nanoparticles by a simple and eco-friendly method using unripe fruits of Solanum trilobatum. The aqueous silver ions when exposed to unripe fruits extract were reduced and stabilized over long time resulting in biosynthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). These biologically synthesized silver nanoparticles were tested for its antibacterial activity against few human pathogenic bacteria including Gram-positive (Streptococcus mutans, Enterococcus faecalis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) bacteria. In addition, we also demonstrated anticancer activity of these nanoparticles in vitro against human breast cancer cell line (MCF 7) using MTT, nuclear morphology assay, Western blot and RT-PCR expression. These results taken together show the potential applications of biosynthesized silver nanoparticles using S. trilobatum fruits.

  6. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors.

    Science.gov (United States)

    Velu, Kuppan; Elumalai, Devan; Hemalatha, Periaswamy; Janaki, Arumugam; Babu, Muthu; Hemavathi, Maduraiveeran; Kaleena, Patheri Kunyil

    2015-11-01

    Silver nanoparticles (AgNPs) were successfully synthesised from aqueous silver nitrate using the extracts of Arachis hypogaea peels. The synthesised SNPs were characterized by Fourier transform-infrared spectroscopy analysis, X-ray diffraction, transmission electron microscopy analysis and high-resonance scanning electron microscopy, and energy dispersive X-ray spectroscopy. AgNPs were well defined and measured 20 to 50 nm in size. The nanoparticles were crystallized with a face-centered cubic structure. Larvicidal activity of synthesised AgNPs from A. hypogaea peels was tested for their larvicidal activity against the fourth instar larvae of Aedes aegypti (Yellow fever), Anopheles stephensi (Human malaria). The results suggest that the synthesised AgNPs have the potential to be used as an ideal eco-friendly resource for the control of A. aegypti and A. stephensi. This study provides the first report on the mosquito larvicidal activity of synthesised AgNPs from A. hypogaea peels against vectors of malaria and dengue.

  7. Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L.

    Science.gov (United States)

    Kumar, V; Yadav, S K

    2012-03-01

    Green synthesis of nanoparticles is one of the crucial requirements in today's climate change scenario all over the world. In view of this, leaf extract (LE) of Bauhinia variegata L. possessing strong antidiabetic and antibacterial properties has been used to synthesise silver nanoparticles (SNP) in a controlled manner. Various-sized SNP (20-120 nm) were synthesised by varying incubation temperature, silver nitrate and LE concentrations. The rate of SNP synthesis and their size increased with increase in AgNO(3) concentration up to 4 mM. With increase in LE concentration, size and aggregation of SNP was increased. The size and aggregation of SNP were also increased at temperatures above and below 40°C. This has suggested that size and dispersion of SNP can be controlled by varying reaction components and conditions. Polarity-based fractionation of B. variegata LE has suggested that only water-soluble fraction is responsible for SNP synthesis. Fourier transform infrared spectroscopy analysis revealed the attachment of polyphenolic and carbohydrate moieties to SNP. The synthesised SNPs were found stable in double distilled water, BSA and phosphate buffer (pH 7.4). On the contrary, incubation of SNP with NaCl induced aggregation. This suggests the safe use of SNP for various in vivo applications.

  8. Rapid Biosynthesis of Silver Nanoparticles Using Pepino (Solanum muricatum Leaf Extract and Their Cytotoxicity on HeLa Cells

    Directory of Open Access Journals (Sweden)

    Mónica Gorbe

    2016-04-01

    Full Text Available Within nanotechnology, gold and silver nanostructures have unique physical, chemical, and electronic properties [1,2], which make them suitable for a number of applications. Moreover, biosynthetic methods are considered to be a safer alternative to conventional physicochemical procedures for both the environmental and biomedical applications, due to their eco-friendly nature and the avoidance of toxic chemicals in the synthesis. For this reason, employing bio routes in the synthesis of functionalized silver nanoparticles (FAgNP have gained importance recently in this field. In the present study, we report the rapid synthesis of FAgNP through the extract of pepino (Solanum muricatum leaves and employing microwave oven irradiation. The core-shell globular morphology and characterization of the different shaped and sized FAgNP, with a core of 20–50 nm of diameter is established using the UV-Visible spectroscopy (UV-vis, field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM and Zeta potential and dynamic light scanning (DLS studies. Moreover, cytotoxic studies employing HeLa (human cervix carcinoma cells were undertaken to understand FAgNP interactions with cells. HeLa cells showed significant dose dependent antiproliferative activity in the presence of FAgNP at relatively low concentrations. The calculated IC50 value was 37.5 µg/mL, similar to others obtained for FAgNPs against HeLa cells.

  9. Proof-of-Concept of a Zinc-Silver Battery for the Extraction of Energy from a Concentration Difference

    Directory of Open Access Journals (Sweden)

    Massimo Marino

    2014-06-01

    Full Text Available The conversion of heat into current can be obtained by a process with two stages. In the first one, the heat is used for distilling a solution and obtaining two flows with different concentrations. In the second stage, the two flows are sent to an electrochemical cell that produces current by consuming the concentration difference. In this paper, we propose such an electrochemical cell, working with water solutions of zinc chloride. The cell contains two electrodes, made respectively of zinc and silver covered by silver chloride. The operation of the cell is analogous to that of the capacitive mixing and of the “mixing entropy battery”: the electrodes are charged while dipped in the concentrated solution and discharged when dipped in the diluted solution. The cyclic operation allows us to extract a surplus of energy, at the expense of the free energy of the concentration difference. We evaluate the feasibility of such a cell for practical applications and find that a power up to 2 W per m2 of the surface of the electrodes can be achieved.

  10. Proof of concept of a zinc-silver battery for the extraction of energy from a concentration difference

    CERN Document Server

    Marino, M; Carati, A; Brogioli, D

    2014-01-01

    The conversion of heat into current can be obtained by a process with two stages. In the first one, the heat is used for distilling a solution and obtaining two flows with different concentrations. In the second stage, the two flows are sent to an electrochemical cell that produces current by consuming the concentration difference. In this paper, we propose such an electrochemical cell, working with water solutions of zinc chloride. The cell contains two electrodes, made respectively of zinc and silver covered by silver chloride. The operation of the cell is analogous to that of the capacitive mixing and of the "mixing entropy battery": the electrodes are charged while dipped in the concentrated solution and discharged when dipped in the diluted solution. The cyclic operation allows us to extract a surplus of energy, at the expense of the free energy of the concentration difference. We evaluate the feasibility of such a cell for practical applications, and find that a power up to 2 W per square meter of surfa...

  11. Green Synthesis of Silver Nanoparticles using Achillea biebersteinii Flower Extract and Its Anti-Angiogenic Properties in the Rat Aortic Ring Model

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2014-04-01

    Full Text Available Silver nanoparticles display unique physical and biological properties which have attracted intensive research interest because of their important medical applications. In this study silver nanoparticles (Ab.Ag-NPs were synthesized for biomedical applications using a completely green biosynthetic method using Achillea biebersteinii flowers extract. The structure and properties of Ab.Ag-NPs were investigated using UV-visible spectroscopic techniques, transmission electron microscopy (TEM, zeta potential and energy dispersive X-ray spectrometers (EDS. The UV-visible spectroscopic analysis showed the absorbance peak at 460 nm, which indicates the synthesis of silver nanoparticles. The average particle diameter as determined by TEM was found to be 12 ± 2 nm. The zeta potential analysis indicated that Ab.Ag-NPs have good stability EDX analysis also exhibits presentation of silver element. As angiogenesis is an important phenomenon and as growth factors imbalance in this process causes the acceleration of several diseases including cancer, the anti-angiogenic properties of Ab.Ag-NPs were evaluated using the rat aortic ring model. The results showed that Ab.Ag-NPs (200 μg/mL lead to a 50% reduction in the length and number of vessel-like structures. The synthesized silver nanoparticles from the Achillea biebersteinii flowers extract, which do not involve any harmful chemicals were well-dispersed and stabilized through this green method and showed potential therapeutic benefits against angiogenesis.

  12. Green synthesis of silver nanoparticles using Carica Papaya fruit extract under sunlight irradiation and their colorimetric detection of mercury ions

    Science.gov (United States)

    Firdaus, M.; Andriana, S.; Elvinawati; Alwi, W.; Swistoro, E.; Ruyani, A.; Sundaryono, A.

    2017-04-01

    We have successfully synthesized silver nanoparticles (AgNPs) by using aqueous extract of papaya (Carica papaya) fruit as bioreductant under sunlight irradiation without additional capping agent. Characterizations were done using UV-Visible spectrophotometry and Fourier Transform Infrared Spectroscopy (FTIR). The synthesized AgNPs have yellowish-brown color with surface plasmon resonance peak at 410 nm. Good selectivity of the AgNPs towards hazardous heavy metal of mercury ions in aqueous solution has been developed as a green environmental sensor. The presence of Hg(II) ions in the mixture changed the yellowish-brown color of AgNPs to colorless due to oxidation of Ag(O) in AgNPs to Ag(I) ions. Effect of samples matrix such as alkali metal, alkaline earth metal and transition metal ions were evaluated.

  13. Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa.

    Science.gov (United States)

    Arokiyaraj, Selvaraj; Vincent, Savariar; Saravanan, Muthupandian; Lee, Yoonseok; Oh, Young Kyoon; Kim, Kyoung Hoon

    2017-03-01

    In the present study, silver nanoparticles (AgNPs) were synthesized by using aqueous root extracts of Rheum palmatum and characterized by various spectroscopic methods. The nanoparticles were found to be in hexagonal and spherical shapes. The average particle size was found to be 121 ± 2 nm with zeta potential values of -21.6 mv by dynamic light scattering (DLS) method. Gas chromatography-mass spectrometry (GC-MS) analysis of R. palmatum revealed 35 compounds. The synthesized AgNPs showed significant activity against Staphylococcus aureus and Pseudomonas aeruginosa with IC90 values of 15 μg/ml and IC50 values of 7.5 μg/ml, respectively. The protein leakage level was high and morphological changes occurred in bacteria treated with AgNPs.

  14. Sol–gel-based silver nanoparticles-doped silica – Polydiphenylamine nanocomposite for micro-solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu; Banihashemi, Solmaz

    2015-07-30

    A nanocomposite of silica-polydiphenylamine doped with silver nanoparticles (Ag–SiO{sub 2}-PDPA) was successfully synthesized by the sol–gel process. For its preparation, PDPA was mixed with butanethiol capped Ag nanoparticles (NPs) and added to the silica sol solution. The Ag NPs were stabilized as a result of their adsorption on the SiO{sub 2} spheres. The surface characteristic of nanocomposite was investigated using scanning electron microscopy (SEM). In this work the Ag–SiO{sub 2}-PDPA nanocomposite was employed as an efficient sorbent for micro-solid-phase extraction (μ-SPE) of some selected pesticides. An amount of 15 mg of the prepared sorbent was used to extract and determine the representatives from organophosphorous, organochlorine and aryloxyphenoxy propionic acids from aqueous samples. After the implementation of extraction process, the analytes were desorbed by methanol and determined using gas chromatography–mass spectrometry (GC–MS). Important parameters influencing the extraction and desorption processes such as pH of sample solution, salting out effect, type and volume of the desorption solvent, the sample loading and eluting flow rates along with the sample volume were experimentally optimized. Limits of detection (LODs) and the limits of quantification (LOQs) were in the range of 0.02–0.05 μg L{sup −1} and 0.1–0.2 μg L{sup −1}, respectively, using time scheduled selected ion monitoring (SIM) mode. The relative standard deviation percent (RSD %) with four replicates was in the range of 6–10%. The applicability of the developed method was examined by analyzing different environmental water samples and the relative recovery (RR %) values for the spiked water samples were found to be in the range of 86–103%. - Highlights: • A sol–gel-based silver nanoparticles doped silica-polydiphenylamine nanocomposite was synthesized. • The sorbent was applied to micro-solid-phase extraction of some selected pesticides in water

  15. Microstructural, spectroscopic, and antibacterial properties of silver-based hybrid nanostructures biosynthesized using extracts of coriander leaves and seeds

    Science.gov (United States)

    Luna, Carlos; Barriga-Castro, Enrique Díaz; Gómez-Treviño, Alberto; Núñez, Nuria O; Mendoza-Reséndez, Raquel

    2016-01-01

    Coriander leaves and seeds have been highly appreciated since ancient times, not only due to their pleasant flavors but also due to their inhibitory activity on food degradation and their beneficial properties for health, both ascribed to their strong antioxidant activity. Recently, it has been shown that coriander leaf extracts can mediate the synthesis of metallic nanoparticles through oxidation/reduction reactions. In the present study, extracts of coriander leaves and seeds have been used as reaction media for the wet chemical synthesis of ultrafine silver nanoparticles and nanoparticle clusters, with urchin- and tree-like shapes, coated by biomolecules (mainly, proteins and polyphenols). In this greener route of nanostructure preparation, the active biocompounds of coriander simultaneously play the roles of reducing and stabilizing agents. The morphological and microstructural studies of the resulting biosynthesized silver nanostructures revealed that the nanostructures prepared with a small concentration of the precursor Ag salt (AgNO3 =5 mM) exhibit an ultrafine size and a narrow size distribution, whereas particles synthesized with high concentrations of the precursor Ag salt (AgNO3 =0.5 M) are polydisperse and formation of supramolecular structures occurs. Fourier transform infrared and Raman spectroscopy studies indicated that the bioreduction of the Ag− ions takes place through their interactions with free amines, carboxylate ions, and hydroxyl groups. As a consequence of such interactions, residues of proteins and polyphenols cap the biosynthesized Ag nanoparticles providing them a hybrid core/shell structure. In addition, these biosynthesized Ag nanomaterials exhibited size-dependent plasmon extinction bands and enhanced bactericidal activities against both Gram-positive and Gram-negative bacteria, displaying minimal inhibitory Ag concentrations lower than typical values reported in the literature for Ag nanoparticles, probably due to the synergy of

  16. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity.

    Science.gov (United States)

    Sadeghi, Babak; Rostami, Amir; Momeni, S S

    2015-01-05

    In the present work, we describe the synthesis of silver nanoparticles (Ag-NPs) using seed aqueous extract of Pistacia atlantica (PA) and its antibacterial activity. UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray energy dispersive spectrophotometer (EDAX) were performed to ascertain the formation of Ag-NPs. It was observed that the growths of Ag-NPs are stopped within 35 min of reaction time. The synthesized Ag-NPs were characterized by a peak at 446 nm in the UV-visible spectrum. XRD confirmed the crystalline nature of the nanoparticles of 27 nm size. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (111), (200), (220) and (311) Bragg's reflections of cubic structure of metallic silver, respectively. The FTIR result clearly showed that the extracts containing OH as a functional group act in capping the nanoparticles synthesis. Antibacterial activities of Ag-NPs were tested against the growth of Gram-positive (S. aureus) using SEM. The inhibition was observed in the Ag-NPs against S. aureus. The results suggest that the synthesized Ag-NPs act as an effective antibacterial agent. It is confirmed that Ag-NPs are capable of rendering high antibacterial efficacy and hence has a great potential in the preparation of used drugs against bacterial diseases. The scanning electron microscopy (SEM), indicated that, the most strains of S. aureus was damaged and extensively disappeared by addition of Ag-NPs. The results confirmed that the (PA) is a very good eco friendly and nontoxic source for the synthesis of Ag-NPs as compared to the conventional chemical/physical methods.

  17. Synthesis of silver nanoparticles using methanol and dichloromethane extracts of Pulicaria gnaphalodes (Vent.) Boiss. aerial parts.

    Science.gov (United States)

    Chitsazi, Mohammad Reza; Korbekandi, Hassan; Asghari, Gholamreza; Bahri Najafi, Rahim; Badii, Akbar; Iravani, Siavash

    2016-01-01

    The objectives were to study the potential of Pulicaria gnaphalodes (Vent.) Boiss. aerial parts in production of nanoparticles and the effect of the extraction solvent on the produced nanoparticles. Methanol and dichloromethane extracts were prepared by percolation of the plant powder. Both the extracts of P. gnaphalodes (Vent.) Boiss. successfully produced small and polydispersed nanoparticles with low aggregates in early hours of the biotransformation. Methanol extract produced spherical and many single nanoparticles, whereas dichloromethane produced porous polyhedral and more aggregated nanoparticles. Methanol extract of this plant seems to be quiet useful for industrial scale production of nanoparticles.

  18. Microstructural, spectroscopic, and antibacterial properties of silver-based hybrid nanostructures biosynthesized using extracts of coriander leaves and seeds

    Directory of Open Access Journals (Sweden)

    Luna C

    2016-09-01

    Full Text Available Carlos Luna,1 Enrique Díaz Barriga-Castro,2 Alberto Gómez-Treviño,3 Nuria O Núñez,4 Raquel Mendoza-Reséndez1 1Research Center of Mathematics and Physics, Faculty of Mathematics and Physics, Autonomous University of Nuevo León, Nuevo León, Mexico; 2Central Laboratory of Analytical Instrumentation, Research Center for Applied Chemistry, Coahuila, Mexico; 3Laboratory of Molecular Biology, Faculty of Chemistry, Autonomous University of Nuevo León, Nuevo León, Mexico; 4Colloidal Materials Research Group, Institute of Materials Science of Seville, Spanish National Research Council, University of Seville, Seville, Spain Abstract: Coriander leaves and seeds have been highly appreciated since ancient times, not only due to their pleasant flavors but also due to their inhibitory activity on food degradation and their beneficial properties for health, both ascribed to their strong antioxidant activity. Recently, it has been shown that coriander leaf extracts can mediate the synthesis of metallic nanoparticles through oxidation/reduction reactions. In the present study, extracts of coriander leaves and seeds have been used as reaction media for the wet chemical synthesis of ultrafine silver nanoparticles and nanoparticle clusters, with urchin- and tree-like shapes, coated by biomolecules (mainly, proteins and polyphenols. In this greener route of nanostructure preparation, the active biocompounds of coriander simultaneously play the roles of reducing and stabilizing agents. The morphological and microstructural studies of the resulting biosynthesized silver nanostructures revealed that the nanostructures prepared with a small concentration of the precursor Ag salt (AgNO3 =5 mM exhibit an ultrafine size and a narrow size distribution, whereas particles synthesized with high concentrations of the precursor Ag salt (AgNO3 =0.5 M are polydisperse and formation of supramolecular structures occurs. Fourier transform infrared and Raman spectroscopy

  19. Synthesis of Silver Nanoparticles from the Aqueous Extract of Leaves of Ocimum sanctum for Enhanced Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Charusheela Ramteke

    2013-01-01

    Full Text Available The field of nanotechnology is the most active area of research in modern materials science. Though there are many chemical as well as physical methods, green synthesis of nanomaterials is the most emerging method of synthesis. We report the synthesis of antibacterial silver nanoparticles (AgNPs using leaf broth of medicinal herb, Ocimum sanctum (Tulsi. The synthesized AgNPs have been characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM, and X-ray diffractometry. The mean particle of synthesized NPs was found to be 18 nm, as confirmed by TEM. The qualitative assessment of reducing potential of leaf extract has also been carried out which indicated presence of significant amount of reducing entities. FTIR analysis revealed that the AgNPs were stabilized by eugenols, terpenes, and other aromatic compounds present in the extract. Such AgNPs stabilized by Tulsi leaf extract were found to have enhanced antimicrobial activity against well-known pathogenic strains, namely Staphylococcus aureus and E. coli.

  20. Green synthesis and characterization of silver nanoparticles using aqueous petal extract of the medicinal plant Combretum indicum

    Science.gov (United States)

    Bahuguna, Gaurav; Kumar, Amit; Mishra, Neeraj K.; Kumar, Chitresh; Bahlwal, Aseema; Chaudhary, Pratibha; Singh, Rajeev

    2016-07-01

    For the first time, any type of plant extract from the medicinally important plant Combretum indicum has been used for the biosynthesis of silver nanoparticles (AgNPs). The present investigation reports the synthesis and characterization of AgNPs using the flower petal extract of Combretum indicum. For monitoring the formation and optical properties of the synthesized nanoparticles, they were analyzed using UV-visible spectroscopy. Apart from this, the luminescence properties were also studied by photoluminescence (PL) spectroscopy. Scanning electron microscopy (SEM) analysis revealed the formation of AgNPs and the surface morphology has been determined. The mean particle diameter using the dynamic light scattering (DLS) technique ranged from 50-120 nm depending upon the reaction time. The atomic percentage of Ag in synthesized NPs and the crystallinity were determined by energy dispersive x-ray (EDX) and x-ray diffraction (XRD), respectively. This green approach of synthesizing AgNPs, using a biologically important plant extract is found to be cost effective, economical, eco-friendly and convenient in synthesis.

  1. Biogenic synthesis of silver nanoparticles via indigenous Anigozanthos manglesii, (red and green kangaroo paw leaf extract and its potential antibacterial activity

    Directory of Open Access Journals (Sweden)

    Monaliben Shah

    2016-08-01

    Results: Characterisation revealed the nanoparticles ranged in size from 50 nm up to 150 nm, and their morphologies included cubes, triangular plates and hexagonal plates. Antibacterial studies revealed Deinococcus was sensitive and susceptible to the biosynthesised nanoparticles. Escherichia coli and Staphylococcus Epidermis strains were also found to be less susceptible to the silver nanoparticles. Conclusions: The present study has shown that silver nanoparticles biosynthesised using Anigozanthos manglesii leaf extracts have antibacterial activity against Deinococcus, Escherichia coli and Staphylococcus Epidermis bacterial strains [Int J Res Med Sci 2016; 4(8.000: 3427-3432

  2. Biosynthesis of silver nanoparticles using Euglena gracilis, Euglena intermedia and their extract.

    Science.gov (United States)

    Li, Yong; Tang, Xiaoling; Song, Wenshuang; Zhu, Lina; Liu, Xingang; Yan, Xiaomin; Jin, Chengzhi; Ren, Qingguang

    2015-02-01

    Extracellular and intracellular biosynthesis of silver nanoparticles (AgNPs) by Euglena gracilis (EG) strain and Euglena intermedia (EI) strain are reported in this study. The obtained nanoparticles showed an absorption peak approximates 420 nm in the UV-visible spectrum, corresponding to the plasmon resonance of AgNPs. According to the result of inductively coupled plasma-atomic emission spectrometer, the intakes of silver ions by EI and EG are roughly equal. The transmission electron microscope (TEM) analysis of the successful in vivo and in vitro synthesised AgNPs indicated the sizes, ranging from 6 to 24 nm and 15 to 60 nm in diameter, respectively, and a spherical-shaped polydispersal of the particles. The successful formation of AgNPs has been confirmed by energy dispersive X-ray analysis connected to the TEM. The Fourier transform infrared spectroscopy measurements reveal the presence of bioactive functional groups such as amines are found to be the capping and stabilising agents of nanoparticles. To our knowledge, this is the first report where two kinds of Euglena microalga were used as the potential source for in vivo and in vitro biosynthesis of AgNPs.

  3. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity

    Science.gov (United States)

    Phromviyo, Nutthakritta; Boueroy, Parichart; Chompoosor, Apiwat

    2016-01-01

    Background There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. Methods AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in

  4. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity

    Directory of Open Access Journals (Sweden)

    Patcharaporn Tippayawat

    2016-10-01

    Full Text Available Background There is worldwide interest in silver nanoparticles (AgNPs synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV with antibacterial activity. Methods AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively

  5. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity.

    Science.gov (United States)

    Tippayawat, Patcharaporn; Phromviyo, Nutthakritta; Boueroy, Parichart; Chompoosor, Apiwat

    2016-01-01

    There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 (o)C for 6 h and 200 (o)C for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in pharmaceutical

  6. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity

    Science.gov (United States)

    Govindappa, M.; Farheen, H.; Chandrappa, C. P.; Channabasava; Rai, Ravishankar V.; Raghavendra, Vinay B.

    2016-09-01

    Silver nanoparticles were synthesized using endophytic fungal species, Penicillium species from Glycosmis mautitiana. Phytochemicals, namely tannins, saponins, terpenoids and flavonoids, were identified in Penicillium species extracts, and act as agents of reducing and capping in the conversion of silver nanoparticles into nanoparticles. Using SEM, UV-spectroscopy and XRD, the Penicillium species silver nanoparticles (PsAgNPs) were characterized. The PsAgNPs are shown to be strong antioxidants (DDPH and FRAP), have demonstrated anti-inflammatory properties by three different methods in vitro and strongly inhibited the activity of xanthine oxidase, lipoxygenase and tyrosine kinase. E. coli and P. aeruginosa bacterial species were strongly inhibited by PsAgNPs activity at maximum levels and SEM picture of P. aeruginosa confirms these effects and that they were shrunken due to the toxic effect of PsAgNPs.

  7. Green synthesis of silver nanoparticles using Cadaba indica lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    K. Kalimuthu

    2013-09-01

    Full Text Available Green nanoparticle synthesis was achieved using environmentally acceptable plant extracts and eco-friendly reducing and capping agents. In the present study, activity of silver nanoparticles (AgNPs synthesized using Cadaba indica lam plant against Anopheles stephensi and Culex quinquefasciatus was determined. A range of concentrations of synthesized AgNPs (3.125, 6.25, 12.5, 25, 50 ppm and crude extract (50, 100, 150, 200, 250 ppm were tested against A. stephensi and C. quinquefasciatus. The synthesized AgNPs from C. indica lam were much more toxic than crude extract in both mosquito species. The cured extract high mortality values were 50% lethal concentration (LC50=88.22, 90.84 ppm; 90% lethal concentration (LC90=172.94, 178.55 ppm, and the AgNPs high mortality values were LC50=3.90, 4.39 ppm; LC90=19.04, 17.35 ppm against A. stephensi and C. quinquefasciatus, respectively. The results recorded from ultraviolet-visible spectrophotometer, scanning electron microscopy, energy dispersive X-ray and Fourier transformed infrared support the biosynthesis and characterization of silver nanoparticles. These results suggest that the leaf cured extracts of C. indica lam and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of A. stephensi and C. quinquefasciatus.

  8. Antigenotoxic effect of green-synthesised silver nanoparticles from Ocimum sanctum leaf extract against cyclophosphamide induced genotoxicity in human lymphocytes—in vitro

    Science.gov (United States)

    Vijaya, P. P.; Rekha, B.; Mathew, Anu Thersa; Syed Ali, M.; Yogananth, N.; Anuradha, V.; Kalitha Parveen, P.

    2014-04-01

    The present study was aimed to identify the antigenotoxic effect of bio-synthesised silver nanoparticles (SNP) of Ocimum sanctum leaf extract against cyclophosphamide (CP). We tested the antigenotoxic effect of bio-synthesized silver nanoparticles of O. sanctum leaf extract on human lymphocytes against CP by using chromosomal aberration assay (CAA). Silver nanoparticles was first synthesized from fresh leaf extract of O. sanctum and characterised. Their quality was checked by XRD technique and morphology by SEM. Three different doses of the bio-synthesised SNPs namely, 50, 100 and 200 μl/ml were selected and CP (100 μg/ml) was used as a positive control for CAA. CP administration to human lymphocytes culture caused reduction in mitotic index (MI) and increase in chromosomal damages. The three doses (50, 100 and 200 μl/ml) significantly ( P SNPs has advantages like cost effectiveness and eco-friendly. Also the bio-synthesised SNPs of O. sanctum leaf extract was found to be an powerful genoprotectant. Furthermore works are to be carried out in future to find the extract mechanism of its genoprotective nature.

  9. Effect of EDTA, HCl, and citric acid on Ca salt removal from Asian (silver) carp scales prior to gelatin extraction.

    Science.gov (United States)

    Wang, Yan; Regenstein, Joe M

    2009-08-01

    Pretreatments with different chemicals at different concentrations to remove Ca compounds were studied to determine their effects on gelatin extraction from silver carp (Hypophthalmichthys molitrix) scales. During Ca removal with HCl, citric acid, and EDTA, all 3 chemicals were able to decalcify (>90%) scales; however, protein losses with EDTA were lower than with HCl and citric acid (P < 0.05), and protein losses with citric acid were lower than with HCl (P < 0.05). Ca removal with HCl yielded a solution where 4% to 5% of the protein was Hyp, with estimated gelatin losses from 0.9% to 2.5%. After 0.20 mol/L HCl was used for Ca removal, the extracted gelatin solution was 15.4% of the initial scales weight and gave a gel strength of 128 g. After using 1.2 g/L citric acid for Ca removal, the extracted gelatin solution was only 9% of the scales and the gel strength was 97 g. Using 0.20 mol/L EDTA for Ca removal gave a yield of 22% and a gel strength of 152 g. These data suggest that EDTA at 0.20 mol/L provides the best Ca removal with minimal collagen/gelatin removal (estimated gelatin loss was less than 0.013%) during the Ca removal step, and subsequently gave a high gelatin yield and gel strength. Fish gelatin has generally been extracted from fish skins and occasionally fish bones. This article focuses on removing the Ca compounds in fish scales and then producing fish gelatin with a good gel strength and yield. With further studies, this study may help the fish industry to have a new source of fish gelatin for food and pharmaceutical applications.

  10. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers.

    Science.gov (United States)

    Jayaseelan, Chidambaram; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Vishnu Kirthi, Arivarasan; Santhoshkumar, Thirunavukkarasu; Marimuthu, Sampath; Bagavan, Asokan; Kamaraj, Chinnaperumal; Zahir, Abdul Abduz; Elango, Gandhi

    2011-07-01

    Insecticide resistance and inadequate attention to the application instructions of topical pediculicides are common reasons for treatment failure. Essential oils or plant extracts are good and safe alternatives due to their low toxicity to mammals and easy biodegradability. The present study was carried out to establish the pediculocidal and larvicidal activity of synthesized silver nanoparticles (AgNPs) using leaf aqueous extract of Tinospora cordifolia Miers (Menispermaceae) against the head louse Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae) and fourth instar larvae of malaria vector, Anopheles subpictus Grassi and filariasis vector, Culex quinquefasciatus Say (Diptera: Culicidae). We reported the aqueous plant extract and synthesized AgNPs against head lice and vectors. Direct contact method was conducted to determine the potential of pediculocidal activity. The synthesized AgNPs characterized by UV-vis spectrum, scanning electron microscopy, Fourier transform infrared, and X-ray diffraction. Head lice and mosquito larvae were exposed to varying concentrations of aqueous extracts and synthesized AgNPs for 24 h. The results suggest that the optimal times for measuring mortality effects of synthesized AgNPs were 33% at 5 min, 67% at 15 min, and 100% after 1 h. The maximum activity was observed in the synthesized AgNPs against lice, A. subpictus and C. quinquefasciatus (LC(50) = 12.46, 6.43 and 6.96 mg/L; r (2) = 0.978, 0.773 and 0.828), respectively. The findings revealed that synthesized AgNPs possess excellent anti-lice and mosquito larvicidal activity. These results suggest that the green synthesis of AgNPs have the potential to be used as an ideal ecofriendly approach for the control of head lice and vectors.

  11. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties.

    Science.gov (United States)

    Salehi, Soheil; Shandiz, Seyed Ataollah Sadat; Ghanbar, Farinaz; Darvish, Mohammad Raouf; Ardestani, Mehdi Shafiee; Mirzaie, Amir; Jafari, Mohsen

    2016-01-01

    A rapid phytosynthesis of silver nanoparticles (AgNPs) using an extract from the aerial parts of Artemisia marschalliana Sprengel was investigated in this study. The synthesized AgNPs using A. marschalliana extract was analyzed by UV-visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy and further characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, and energy-dispersive spectroscopy. Characteristic absorption bands of AgNPs were found near 430 nm in the UV-vis spectrum. Energy-dispersive spectroscopy analysis of AgNPs in the energy range 2-4 keV confirmed the silver signal due to surface plasmon resonance. Scanning electron microscopy and transmission electron microscopy results revealed that the AgNPs were mostly spherical with an average size ranging from 5 nm to 50 nm. The zeta potential value of -31 mV confirmed the stability of the AgNPs. AgNPs produced using the aqueous A. marschalliana extract might serve as a potent in vitro antioxidant, as revealed by 2,2-diphenyl-1-picryl hydrazyl assay. The present study demonstrates the anticancer properties of phytosynthesized AgNPs against human gastric carcinoma AGS cells. AgNPs exerted a dose-dependent inhibitory effect on the viability of cells. Real-time polymerase chain reaction was used for the investigation of Bax and Bcl-2 gene expression in cancer and normal cell lines. Our findings show that the mRNA levels of pro-apoptotic Bax gene expression were significantly upregulated, while the expression of anti-apoptotic Bcl-2 was declined in cells treated with AgNPs compared to normal cells. In addition, flow cytometric analysis showed that the number of early and late apoptotic AGS cells was significantly enhanced following treatment with AgNPs as compared to untreated cells. In addition, the AgNPs showed strong antibacterial properties against tested pathogenic bacteria such as Staphylococcus aureus, Bacillus cereus, Acinetobacter

  12. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities

    Science.gov (United States)

    Kathiravan, V.; Ravi, S.; Ashokkumar, S.; Velmurugan, S.; Elumalai, K.; Khatiwada, Chandra Prasad

    2015-03-01

    Biologically synthesized nanoparticles have been widely used in the field of medicine. Especially, silver nanoparticles (Ag NPs) synthesized by the leaf extract lead the biological activity. In the present work, the synthesized Ag NPs by using the leaf extract of Croton sparsiflorus morong Ag NPs were characterized by using UV-Visible (UV-Vis) absorption spectroscopy, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) along with Energy Dispersive X-ray (EDX) Spectroscopy and Fourier Infrared (FT-IR) Spectroscopy, respectively. UV-Vis peak at 457 nm confirmed the Ag NPs due to the absorption. Cubic structural analysis and 16 nm particle size of the Ag NPs were calculated by using XRD analysis. The surface morphology along with the presence of Ag NPs was identified by using FE-SEM and EDX, respectively. The FT-IR study revealed with the functional groups of the Ag NPs. Finally, the present research has been explored to exhibit the significant antimicrobial activities.

  13. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita, E-mail: nayakb@nitrkl.ac.in

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV–vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. - Highlights: • Rapid, cost effective, benign synthesis of AgNPs using novel bark extracts • Color change and absorbance peak observed at 426 and 420 nm due to SPR phenomenon • Crystalline and spherical nanoparticles having average size of ~ 40 and ~ 50 nm each • Highly enhanced antimicrobial activity against human nosocomial strains • Demonstrated dose dependent toxicity towards osteosarcoma MG-63 cell lines.

  14. Facile synthesis of mosquitocidal silver nanoparticles using Mussaenda glabra leaf extract: characterisation and impact on non-target aquatic organisms.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Nicoletti, Marcello; Benelli, Giovanni

    2016-11-01

    Plant-borne compounds have been proposed for extracellular synthesis of mosquitocidal nanoparticles. However, their impact against mosquito natural enemies has been scarcely studied. Here, we synthesised silver nanoparticles (Ag NPs) using Mussaenda glabra leaf extract as reducing and stabilising agent. Biofabricated Ag NPs were characterised by UV-vis spectrophotometry, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Compared to the leaf aqueous extract, biosynthesised Ag NPs showed higher toxicity against mosquito vectors Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus with LC50 of 17-19 μg/mL, respectively. Ag NPs were found safer to non-target organisms Diplonychus indicus and Gambusia affinis, with respective LC50 values ranging from 1446 to 8628 μg/mL. Overall, M. glabra-fabricated Ag NPs are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target aquatic organisms.

  15. Inhibition of Phytophthora parasitica and P. capsici by Silver Nanoparticles Synthesized Using Aqueous Extract of Artemisia absinthium.

    Science.gov (United States)

    Ali, Mohammad; Kim, Bosung; Belfield, Kevin D; Norman, David; Brennan, Mary; Ali, Gul Shad

    2015-09-01

    Application of nanoparticles for controlling plant pathogens is a rapidly emerging area in plant disease management, and nanoparticles synthesis methods that are economical and ecofriendly are extensively investigated. In this project, we investigated the potential of silver nanoparticles (AgNPs) synthesized with aqueous extract of Artemisia absinthium against several Phytophthora spp., which cause many economically important crop diseases. In in vitro dose-response tests conducted in microtiter plates, 10 µg ml⁻¹ of AgNPs inhibited mycelial growth of P. parasitica, P. infestans, P. palmivora, P. cinnamomi, P. tropicalis, P. capsici, and P. katsurae. Detailed in vitro dose-response analyses conducted with P. parasitica and P. capsici revealed that AgNPs synthesized with A. absinthium extract were highly potent (IC50: 2.1 to 8.3 µg ml⁻¹) and efficacious (100%) in inhibiting mycelial growth, zoospore germination, germ tube elongation, and zoospore production. Interestingly, AgNP treatment accelerated encystment of zoospores. Consistent with in vitro results, in planta experiments conducted in a greenhouse revealed that AgNP treatments prevented Phytophthora infection and improved plant survival. Moreover, AgNP in in planta experiments did not produce any adverse effects on plant growth. These investigations provide a simple and economical method for controlling Phytophthora with AgNP without affecting normal plant physiology.

  16. Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract.

    Science.gov (United States)

    Du, Juan; Singh, Hina; Yi, Tae-Hoo

    2016-12-01

    This study described a simple and green approach for the synthesis of silver nanoparticles (AgNPs) employing benzoin gum water extract as a reducing and capping agent and their applications. The AgNPs were characterized by ultraviolet-visible spectrophotometer, X-ray diffraction pattern, field emission transmission electron microscopy, dynamic light scattering, zeta potential and fourier transform infrared spectroscopy. The AgNPs showed promising antimicrobial activity against various pathogens (Gram-negative, Gram-positive and fungus) and possessed high free radical scavenging activity (104.5 ± 7.21 % at 1 mg/ml). In addition, the AgNPs exhibited strong cytotoxicity towards human cervical cancer and human lung cancer cells as compared to the normal mouse macrophage cells. Moreover, the AgNPs possessed anti-biofilm activity against Escherichia coli, and compatibility to human keratinocyte HaCaT cells, which suggests the use of dressing with the AgNPs in chronic wound treatment. Therefore, AgNPs synthesized by benzoin gum extract are comparatively green and may have broad spectrum potential application in biomedicine.

  17. Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries

    Science.gov (United States)

    Sundriyal, Poonam; Bhattacharya, Shantanu

    2017-03-01

    The exploration of new and advanced electrode materials are required in electronic and electrical devices for power storage applications. Also, there has been a continuous endeavour to formulate strategies for extraction of high performance electrode materials from naturally obtained waste products. In this work, we have developed an in situ hybrid nanocomposite from coffee waste extracted porous graphene oxide (CEPG), polyaniline (PANI) and silver nanoparticles (Ag) and have found this novel composite to serve as an efficient electrode material for batteries. The successful interaction among the three phases of the nano-composite i.e. CEPG-PANI-Ag have been thoroughly understood through RAMAN, Fourier transform infrared and x-ray diffraction spectroscopy, morphological studies through field emission scanning electron microscope and transmission electron microscope. Thermo-gravimetric analysis of the nano-composite demonstrates higher thermal stability up-to a temperature of 495 °C. Further BET studies through nitrogen adsorption-desorption isotherms confirm the presence of micro/meso and macro-pores in the nanocomposite sample. The cyclic-voltammetry (CV) analysis performed on CEPG-PANI-Ag nanocomposite exhibits a purely faradic behaviour using nickel foam as a current collector thus suggests the prepared nanocomposite as a battery electrode material. The nanocomposite reports a maximum specific capacity of 1428 C g-1 and excellent cyclic stability up-to 5000 cycles.

  18. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes.

    Science.gov (United States)

    Veerakumar, Kaliyan; Govindarajan, Marimuthu

    2014-11-01

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg mL(-1)) and aqueous leaf extract (40, 80, 120, 160, and 200 μg mL(-1)) were tested against the adults of A. stephensi, A. aegypti, and C. quinquefasciatus. Adults were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy analysis (EDX), and transmission electron microscopy (TEM). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following lethal dose (LD)₅₀ and LD₉₀ values: A. stephensi had LD₅₀ and LD₉₀ values of 18

  19. Extracting Metallic Nanoparticles from Soils for Quantitative Analysis: Method Development Using Engineered Silver Nanoparticles and SP-ICP-MS.

    Science.gov (United States)

    Schwertfeger, D M; Velicogna, Jessica R; Jesmer, Alexander H; Saatcioglu, Selin; McShane, Heather; Scroggins, Richard P; Princz, Juliska I

    2017-02-21

    The lack of an efficient and standardized method to disperse soil particles and quantitatively subsample the nanoparticulate fraction for characterization analyses is hindering progress in assessing the fate and toxicity of metallic engineered nanomaterials in the soil environment. This study investigates various soil extraction and extract preparation techniques for their ability to remove nanoparticulate Ag from a field soil amended with biosolids contaminated with engineered silver nanoparticles (AgNPs), while presenting a suitable suspension for quantitative single-particle inductively coupled plasma mass spectroscopy (SP-ICP-MS) analysis. Extraction parameters investigated included reagent type (water, NaNO3, KNO3, tetrasodium pyrophosphate (TSPP), tetramethylammonium hydroxide (TMAH)), soil-to-reagent ratio, homogenization techniques as well as procedures commonly used to separate nanoparticles from larger colloids prior to analysis (filtration, centrifugation, and sedimentation). We assessed the efficacy of the extraction procedure by testing for the occurrence of potential procedural artifacts (dissolution, agglomeration) using a dissolved/particulate Ag mass ratio and by monitoring the amount of Ag mass in discrete particles. The optimal method employed 2.5 mM TSPP used in a 1:100 (m/v) soil-to-reagent ratio, with ultrasonication to enhance particle dispersion and sedimentation to settle out the micrometer-sized particles. A spiked-sample recovery analysis shows that 96% ± 2% of the total Ag mass added as engineered AgNP is recovered, which includes the recovery of 84.1% of the particles added, while particle recovery in a spiked method blank is ∼100%, indicating that both the extraction and settling procedure have a minimal effect on driving transformation processes. A soil dilution experiment showed that the method extracted a consistent proportion of nanoparticulate Ag (9.2% ± 1.4% of the total Ag) in samples containing 100%, 50%, 25%, and 10

  20. The Antibacterial Activity of Silver Nanoparticles Produced in the Plant Sesamum indicum Seed Extract: A Green Method Against Multi-Drug Resistant Escherichia coli

    Directory of Open Access Journals (Sweden)

    Mohammad Bokaeian

    2014-05-01

    Full Text Available Background: The nanoparticles synthesis through biological processes is evolving a new era of research interests in nanotechnology. In usual methods silver nanoparticles are synthesized through chemical methods, having extremely toxic and flammable natures. Objectives: The aim of the present study was to synthesize silver nanoparticles, through the green method of utilizing Sesamum indicum (S. indicum extract and to determine the potential antibacterial effects of the product against multi-drug resistant Escherichia coli (E. coli. Materials and Methods: The formation and characterization of AgNPs (silver nanoparticles were confirmed by UV-vis spectroscopy, energy-dispersive spectroscopy (EDX, X-ray diffraction (XRD and transmission electron microscope (TEM. All 30 strains of E. coli were isolated from urine cultures of hospitalized patients (Amir Al-Momenin Hospital, Zabol, South-Eastern Iran with urinary tract infection, 2011-2012. The minimum inhibitory (MIC concentrations were investigated by microdilution method. Results: The results showed that isolated E. coli were resistant to four different antimicrobial agents including ceftazidime (26.6%, cefixime (40%, tetracycline (63.3% and erythromycin (56.6%. The highest MIC value for produced nano silver in S. indicum seed extract, was 200 ppm, against five isolates of E. coli. Conclusions: Considering the sufficient antimicrobial activities of nanoparticles tested in this study, they are suggested for enterobacterial infection treatment, especially in hospital environment.

  1. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts

    Science.gov (United States)

    Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...

  2. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts

    Science.gov (United States)

    Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...

  3. Cytotoxic Effect on MG-63 Cell Line and Antimicrobial and Antioxidant Properties of Silver Nanoparticles Synthesized with Seed Extracts of Capsicum sp.

    Directory of Open Access Journals (Sweden)

    Nidhi Singh

    2016-01-01

    Full Text Available Applying the concept of ethnobotany, plant extract was taken into consideration as an alternative to chemicals synthesis of silver nanoparticle. The extracts from the chilli seeds were used to synthesize silver nanoparticles (AgNPs. In this study two species of chilli, Capsicum annuum and Capsicum frutescens, have been used to analyse the characteristics of the bio-active compounds found in their seeds. Analysis of the bioactive compound was performed by using Soxhlet extraction with solvents followed by Thin Layer Chromatography (TLC, High Performance Liquid Chromatography (HPLC and GC-MS. Furthermore, green synthesis of nanoparticles with chilli extracts was carried out using silver nitrate to detect its antimicrobial activity. The characterizations of both the nanoparticles were carried out using UV-Vis Spectroscopy, Atomic Force Microscopy (AFM, Fourier Transform Infrared Spectroscopy (FTIR, X-Ray Diffractometry (XRD, Scanning Electron Microscopy (SEM and energy Dispersive X-Ray Spectroscopy (EDX. Antimicrobial activity against clinical pathogens and the antioxidant assay using DPPH and FRAP assays were performed. The cytotoxicity effects on osteosarcoma cell lines were also evaluated with the synthesized AgNPs.

  4. Formic acid aided hot water extraction of hemicellulose from European silver birch (Betula pendula) sawdust.

    Science.gov (United States)

    Goldmann, Werner Marcelo; Ahola, Juha; Mikola, Marja; Tanskanen, Juha

    2017-05-01

    Hemicellulose has been extracted from birch (Betula pendula) sawdust by formic acid aided hot water extraction. The maximum amount of hemicellulose extracted was about 70mol% of the total hemicellulose content at 170°C, measured as the combined yield of xylose and furfural. Lower temperatures (130 and 140°C) favored hemicellulose hydrolysis rather than cellulose hydrolysis, even though the total hemicellulose yield was less than at 170°C. It was found that formic acid greatly increased the hydrolysis of hemicellulose to xylose and furfural at the experimental temperatures. The amount of lignin in the extract remained below the detection limit of the analysis (3g/L) in all cases. Formic acid aided hot water extraction is a promising technique for extracting hemicellulose from woody biomass, while leaving a solid residue with low hemicellulose content, which can be delignified to culminate in the three main isolated lignocellulosic fractions: cellulose, hemicellulose, and lignin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Salehi S

    2016-04-01

    Full Text Available Soheil Salehi,1 Seyed Ataollah Sadat Shandiz,2 Farinaz Ghanbar,3 Mohammad Raouf Darvish,4 Mehdi Shafiee Ardestani,5 Amir Mirzaie,2 Mohsen Jafari6 1Department of Phytochemistry and Essential Oils Technology, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran (IAUPS, 2Young Researchers and Elite Club, East Tehran Branch, Islamic Azad University, Tehran, 3Department of Biology, Tehran North Branch, 4Department of Chemistry, Shahre-Rey Branch, Islamic Azad University, Tehran, 5Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 6Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran Abstract: A rapid phytosynthesis of silver nanoparticles (AgNPs using an extract from the aerial parts of Artemisia marschalliana Sprengel was investigated in this study. The synthesized AgNPs using A. marschalliana extract was analyzed by UV–visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy and further characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, and energy-dispersive spectroscopy. Characteristic absorption bands of AgNPs were found near 430 nm in the UV–vis spectrum. Energy-dispersive spectroscopy analysis of AgNPs in the energy range 2–4 keV confirmed the silver signal due to surface plasmon resonance. Scanning electron microscopy and transmission electron microscopy results revealed that the AgNPs were mostly spherical with an average size ranging from 5 nm to 50 nm. The zeta potential value of -31 mV confirmed the stability of the AgNPs. AgNPs produced using the aqueous A. marschalliana extract might serve as a potent in vitro antioxidant, as revealed by 2,2-diphenyl-1-picryl hydrazyl assay. The present study demonstrates the anticancer properties of phytosynthesized AgNPs against human gastric carcinoma AGS cells. AgNPs exerted a dose

  6. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens.

    Science.gov (United States)

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale

    2017-07-01

    Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375-480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3-6 nm, 3-22 nm, and 3-18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized using UV-Vis spectroscopy, SEM and TEM microscopy, as well as EDX, XRD and FTIR spectroscopy AgNPs were well dispersed with spherical shapes and average sizes of 3-6nm, 3-22nm and 3-18 nm for garlic, ginger and cayenne pepper respectivelyAmine, protein, phenolic and alkyne

  7. Testing single extraction methods and in vitro tests to assess the geochemical reactivity and human bioaccessibility of silver in urban soils amended with silver nanoparticles

    NARCIS (Netherlands)

    Cruz, N.; Rodrigues, S.M.; Tavares, D.; Monteiro, R.J.R.; Carvalho, L.; Trindade, T.; Duarte, A.C.; Pereira, E.; Romkens, Paul

    2015-01-01

    To assess if the geochemical reactivity and human bioaccessibility of silver nanoparticles (AgNPs) in soils can be determined by routine soil tests commonly applied to other metals in soil, colloidal Ag was introduced to five pots containing urban soils (equivalent to 6.8mgAgkg-1 soil)

  8. Selective cloud point extraction and preconcentration of trace amounts of silver as a dithizone complex prior to flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Manzoori, Jamshid L.; Karim-Nezhad, Ghasem

    2003-05-19

    Dithizone (diphenylthiocarbazone) was used as a complexing agent in cloud point extraction for the first time and applied for selective preconcentration of trace amounts of silver. The analyte in the initial aqueous solution was acidified with sulfuric acid (pH<1) and Triton X-114 was added as a surfactant. After phase separation, based on the cloud point separation of the mixture, the surfactant rich phase was diluted with tetrahydrofuran (THF) and the analyte determined in the enriched solution by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, a preconcentration factor of 43 was obtained for only 10 ml of sample. The analytical curve was linear in the range of 3-200 ng ml{sup -1} and the limit of detection was 0.56 ng ml{sup -1}. The proposed method was applied to the determination of silver in water samples.

  9. Optimization of Lead and Silver Extraction from Zinc Plant Residues in the Presence of Calcium Hypochlorite Using Statistical Design of Experiments

    Science.gov (United States)

    Behnajady, Bahram; Moghaddam, Javad

    2014-12-01

    In this work, a chloride/hypochlorite leaching process was performed for zinc plant residues. Sodium chloride and calcium hypochlorite were used as leaching and oxidizing agents, respectively. Fractional factorial method has been used to test main effects, and interactions among factors were investigated. The statistical software named Design-Expert 7 has been utilized to design experiments and subsequent analysis. Parameters and their levels were reaction time ( t = 16 and 120 minutes), reaction temperature [ T = 303 K and 343 K (30 °C and 70 °C)], solid-to-liquid ratio ( S/ L = 1/6 and 1/38), pH (pH = 0.5 and 2), and Ca(OCl)2 concentration ( C = 0.6 and 3 g/L). Analysis of variance was also employed to determine the relationship between experimental conditions and yield levels. Results showed that reaction temperature and pH were significant parameters for both lead and silver extractions but solid-to-liquid ratio had significant effect only on lead extraction. Increasing pH reduced leaching efficiency of lead and silver. However, increasing reaction temperature promoted the extraction of lead and silver. Ultimate optimum conditions from this study were t 1: 16 min, T 2: 343 K (70 °C), ( S/ L)2: 1/38, pH1: 0.5, and C 1: 0.6 g/L. Under these conditions, extractions of lead and silver were 93.60 and 49.21 pct, respectively.

  10. Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles stephensi

    OpenAIRE

    S. Sivapriyajothi; P. Mahesh Kumar; K. Kovendan; Subramaniam, J; K Murugan

    2014-01-01

    Mosquitoes are one of the most medically significant groups of vectors, having an ability to transmit parasites and pathogens that can have devastating impacts on humans. The development of reliable and ecofriendly processes for the synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. In this study, we address the biosynthesis of silver nanoparticles (AgNPs) using Leucas aspera leaf extract, and evaluate its lethal concentration (LC50 and LC9...

  11. Early extraction: a silver bullet to avoid nerve injury in lower third molar removal?

    Science.gov (United States)

    Zhang, Q-B; Zhang, Z-Q

    2012-10-01

    This retrospective study evaluated the effects of early extraction of immature lower third molar on preventing complications, particularly nerve injury following lower third molar removal. Patients were grouped according to age and radiographic results: group A (518 patients, ≤23 years, immature teeth with apical foramen not closed); group B (532 patients, >23 years, mature teeth with closed apical foramen). Group A included 230 males and 288 females (average age 17 years). In group A, 808 lower mandibular third molars were extracted bilaterally in 290 and unilaterally in 228 patients; the incidence of complications was 2.48% (20/808) (all were temporary), the incidence of nerve injury was 0%. Group B included 250 males and 282 females (average age 39 years). In group B, 810 lower third molars were extracted bilaterally in 278 and unilaterally in 254 patients; the incidence of complications was 10% (81/810), the incidence of nerve injury was 1.6% (13/810). All complications were temporary, except two removals of permanent inferior alveolar nerve numbness (>6 months). In this study, early removal of the lower third molar was effective in avoiding some postoperative complications, especially nerve injury. Early extraction of lower third molar in youngsters is recommended following a team consultation.

  12. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract

    Directory of Open Access Journals (Sweden)

    Afrah Eltayeb Mohammed

    2015-05-01

    Conclusions: Our findings indicated that extracellular synthesis of AgNPs mediated by E. camaldulensis leaf extract had an efficient bactericidal activity against the bacterial species tested. The exact mechanism of the extracellular biosynthesis of metal NP was not well understood. Further studies are needed to highlight the biosynthesis process of AgNPs and also to characterize the toxicity effect of these particles.

  13. Researches on Evaluating the Efficiency of Hormonal Stimulation with Silver Carp Pituitary Extract in Order to Optimize Controlled Reproductive Technology at Asian Cyprinids

    Directory of Open Access Journals (Sweden)

    Adina Popescu

    2011-10-01

    Full Text Available Large requirements of fish larvae, led the specialists at the Carja 1 farm to experience injection with pituitary extract from other species of cyprinids, silver carp pituitary. The experiment took place in the period from 2-25 June 2008. To verify the effectiveness of injections of silver carp pituitary suspension were used two experimental groups of 30 exemplars (1:1, the first group of females received a total dose of 2.9 mg/kg, and the second batch a dose of 4.5 mg/kg. The total dose used for breeding male is 2 mg/kg pituitary. During the Asian cyprinid reproductive guided aimed to determine: the proportion of breeding maturation, fertilization rates and survival during embryonic development index and the index of survival to hatch from eggs to larvae of 3-5 days (most representative for the whole process of reproduction. Determining the number of larvae from each batch of fertilized eggs, the ultimate goal of action is guided by reproductive hormonal stimulation with silver carp pituitary. The number of larvae obtained from experimental plots 3-5 days silver carp injected with silver carp pituitary extract (63,96 and 64,67 thousand comparable with those obtained in experimental groups grass carp (36,21 and 31,14 thousand and bighead carp (39,36 and 41, 34 thousand was approximately 58% higher.

  14. Trace monitoring of silver ions in food and water samples by flame atomic absorption spectrophotometry after preconcentration with solvent-assisted dispersive solid phase extraction.

    Science.gov (United States)

    Omidi, Fariborz; Behbahani, Mohammad; Shahtaheri, Seyed Jamaleddin; Salimi, Sara

    2015-06-01

    In this research, a new sample treatment technique termed solvent-assisted dispersive solid phase extraction (SADSPE) was developed. The new method was based on the dispersion of the sorbent into the sample to maximize the contact surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by injecting a mixture solution of the sorbent and disperser solvent into the aqueous sample. Thereby, a cloudy solution formed. The cloudy solution resulted from the dispersion of the fine particles of the sorbent in the bulk aqueous sample. After extraction, the cloudy solution was centrifuged and the enriched analytes in the sediment phase dissolved in ethanol and determined by FAAS. Under the optimized conditions, the detection limit for silver ions was 0.8 μg L(-1). The relative standard deviations for six separate extraction experiments for determination of 5 and 200 μg L(-1) of silver ions was 3.4 and 3.1 %. The preconcentration factor was found to be 61.7. SADSPE was successfully applied for trace determination of silver ions in water and food samples.

  15. 某复杂银精矿提金、银工艺研究%Extracting process of gold and silver from a complex silver concentrate

    Institute of Scientific and Technical Information of China (English)

    曾斌; 谢博毅; 王瑞祥; 余攀; 毛继勇; 王志刚; 阮建国

    2013-01-01

    Roasting-acid leaching-cyanided process is adopted to treat the complex silver concentrate. The result shows that the cyanide leaching rate of gold and silver are 72.01 % and 18.41 % respectively, with the silver content of 355 g/t in residue, under the condition that roasting temperature is 923 K with roasting time of 2 h, sulfuric acid leaching liquid-solid ratio of 1.5∶1, reaction pH value of 0.8~1.0, acid leaching temperature of 368 K with reaction time of 1.5 h, cyanided liquid-solid ratio of 2∶1with reaction pH value of 10~11, sodium cyanide concentration of 1.5 ‰ with reaction time of 48 h. Under the same conditions, when complex silver concentrate blended with other mineral secondary ore according to certain proportion, the cyanide leaching rate of gold and silver raises by 24.89 % and 15.66 % respectively. The silver content reduces by 223.35 g/t in residue.%采用一段焙烧-酸浸-氰化工艺处理某复杂银精矿,结果表明:在焙烧温度923 K,焙烧时间2 h,酸浸反应液固比1.5∶1,反应pH值为0.8~1.0,反应温度368 K,反应时间1.5 h,氰化反应液固比2∶1,反应 pH值为10~11,NaCN浓度1.5‰,反应时间48 h条件下,氰化浸出时 Au、Ag的浸出率分别为72.01%、18.41%,尾渣银含量355 g/t.在复杂银精矿与其它矿样按一定比例重新配矿后,采用相同试验条件,氰化时Au、Ag的浸出率分别提高24.89%、15.66%,尾渣中银含量降低了223.35 g/t.

  16. Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: Characterization, antimicrobial activity, and toxicity studies.

    Science.gov (United States)

    Otari, S V; Pawar, S H; Patel, Sanjay K S; Singh, Raushan K; Kim, Sang-Yong; Lee, Jai Hyo; Zhang, Liaoyuan; Lee, Jung-Kul

    2017-01-12

    A novel approach to synthesize silver nanoparticles (AgNPs) using leaf extract of Canna edulis Ker-Gawl. (CELE) under ambient conditions is reported here. The as-prepared AgNPs were analyzed by UV-visible spectroscopy, transmission emission microscopy, X-ray diffraction, Fourier transform-infra red spectroscopy, energy-dispersive analysis of X-ray spectroscopy, zeta potential, and dynamic light scattering. The AgNPs showed excellent antimicrobial activity against various pathogens, including bacteria and various fungi. The biocompatibility of the AgNPs was analyzed in the L929 cell line using NRU and MTT assays. Acridine orange/ethidium bromide staining was used to determine whether the AgNPs had necrotic or apoptotic effects on L929 cells. The concentration of AgNPs required for 50% inhibition of growth of mammalian cells is far more than that required for inhibition of pathogenic microorganisms. Thus, CELE is a candidate for eco-friendly, clean, cost-effective, and non-toxic synthesis of AgNPs.

  17. Controlled assembly of silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation

    Science.gov (United States)

    Khan, Faria; Hashmi, Muhammad Uzair; Khalid, Nauman; Hayat, Muhammad Qasim; Ikram, Aamer; Janjua, Hussnain A.

    2016-11-01

    The study describes the optimized method for silver nanoparticle (AgNPs) synthesis using Heliotropium crispum (HC) plant extract. Optimization of physicochemical parameters resulted in stable and rapidly assembled AgNPs. FTIR results suggest presence of plant phytochemicals that helped in the reduction, stabilization and capping of AgNPs. The assembled Ag nano-composites displayed the peak surface plasmon resonance (SPR) around 428 nm. The presence of uniquely assembled Ag-biomolecule composites, cap and stabilize nanoparticles in aqueous plant suspension. Spherical, uniform-shaped AgNPs with low poly-dispersion and average particle size of 42 nm and was determined through dynamic light scattering (DLS) and scanning election microscopy (SEM) which present robust interaction with microbes. The study also evaluates the antimicrobial and anti-biofilm properties of biologically synthesized AgNPs on clinical isolates of MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii. Minimum inhibitory concentration (0.5 mg mL-1) of nanoparticles that presented bactericidal effect was made through inhibition assays on bacterial strains. The concentration which presented potent bactericidal response was then evaluated through growth inhibition in liquid medium for anti-biofilm studies at 2.0 mg mL-1. HC-Ag nanoparticles mediated anti-biofilm effects on Pseudomonas aeruginosa was revealed through SEM. Complete breakdown of biofilm's extracellular polymeric substances resulted after incubation with AgNPs. Peptidoglycan cell wall destruction was also revealed on planktonic bacterial images after 24 h of incubation.

  18. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma.

    Science.gov (United States)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV-vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity.

    Science.gov (United States)

    Vijayan, Sri Ramkumar; Santhiyagu, Prakash; Singamuthu, Muthukkumarasamy; Kumari Ahila, Natarajan; Jayaraman, Ravindran; Ethiraj, Kannapiran

    2014-01-01

    Silver and gold nanoparticles were synthesized using an aqueous extract of the seaweed Turbinaria conoides and their antibiofilm activity against marine biofilm forming bacteria is reported here. The UV-Vis spectra showed the characteristics SPR absorption band for Ag NPs at 421 and for Au NPs at 538 nm. Further, the synthesized nanoparticles were characterized using FT-IR, XRD, FESEM, EDX, and HRTEM analysis. Spherical and triangular nanostructures of the Ag and Au nanoparticles were observed between the size ranges of 2-17 nm and 2-19 nm, respectively. The synthesized Ag NPs are efficient in controlling the bacterial biofilm formation; however, Au NPs did not show any remarkable antibiofilm activity. The maximum zone of inhibition was recorded against E. coli (17.6 ± 0.42 mm), followed by Salmonella sp., S. liquefaciens, and A. hydrophila. The macrotube dilution method inferred the MIC (20-40 µL mL(-1)) and MBC (40-60 µL mL(-1)) of Ag NPs. The CLSM images clearly showed the weak adherence and disintegrating biofilm formation of marine biofilm bacterial strains treated with Ag NPs. The Artemia cytotoxicity assay recorded the LC50 value of 88.914 ± 5.04 µL mL(-1). Thus the present study proved the efficiency of Ag NPs as a potent antimicrofouling agent and became the future perspective for the possible usage in the biofouling related issues in the aquaculture installations and other marine systems.

  20. Metal nanoparticles (other than gold or silver) prepared using plant extracts for medical applications

    Science.gov (United States)

    Pasca, Roxana-Diana; Santa, Szabolcs; Racz, Levente Zsolt; Racz, Csaba Pal

    2016-12-01

    There are many modalities to prepare metal nanoparticles, but the reducing of the metal ions with plant extracts is one of the most promising because it is considerate less toxic for the environment, suitable for the use of those nanoparticles in vivo and not very expensive. Various metal ions have been already studied such as: cobalt, copper, iron, platinum, palladium, zinc, indium, manganese and mercury and the number of plant extracts used is continuously increasing. The prepared systems were characterized afterwards with a great number of methods of investigation: both spectroscopic (especially UV-Vis spectroscopy) and microscopic (in principal, electron microscopy-TEM) methods. The applications of the metal nanoparticles obtained are diverse and not completely known, but the medical applications of such nanoparticles occupy a central place, due to their nontoxic components, but some diverse industrial applications do not have to be forgotten.

  1. Synthesis and characterisation of neem leaf extract, 2, 3-dehydrosalanol and quercetin dihydrate mediated silver nano particles for therapeutic applications.

    Science.gov (United States)

    Avinash, Bodaballa; Venu, Ravipati; Prasad, Tollamadugu N V K V; Alpha Raj, Mekapogu; Srinivasa Rao, Kothapalli; Srilatha, Chintamaneni

    2017-06-01

    The utility of green silver nanoparticles (AgNPs) in veterinary medicine is steadily increasing as they have many therapeutic applications against pathogens and arthropods of livestock. In this study, green AgNPs using neem (N-AgNPs), 2,3-dehydrosalanol (2,3-DHS-AgNPs) and quercetin dihydrate (QDH-AgNPs) were synthesised and characterised. Synthesised compounds were characterised by UV-Vis spectroscopy and the peak absorbance was recorded at 370 nm for neem extract. For N-AgNPs, 2,3-DHS-AgNPs and QDH-AgNPs, the maximum absorbance peaks were at 430, 230 and 220 nm, respectively. The FTIR analysis confirmed the synthesis of green AgNPs. The XRD pattern of N-AgNPs showed the peaks corresponding to whole spectra of 2 θ values ranging from 10-80. The relatively higher intensity of (111, 222) planes in face centred cubic crystalline structure supports the formation of synthesised AgNPs. In DLS analysis, the hydrodynamic diameter of neem leaf extract was found to be 259.8 nm, followed by 5.3, 6.7 and 261.8 nm for 2,3-DHS-AgNPs, N-AgNPs and QDH-AgNPs, respectively. Based on the transmission electron microscopy and scanning electron microscopy image analyses, confirmed the formation of N-AgNPs, 2,3-DHS-AgNPs and QDH-AgNPs. These eco-friendly phyto-AgNPs may be of use as an effective alternative to chemical control methods against the arthropods of livestock.

  2. Plant-mediated synthesis of silver nanoparticles using parsley ( Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of nanomaterials may involve various routes including physical, chemical and biological approaches. Here, the biological green route was chosen to prepare silver nanoparticles from silver salts to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. To make the process clean and green, leaf extract of parsley ( Petroselinum crispum) was used to synthesize Ag nanoparticles at room temperature. The formation of Ag-nanoparticles was monitored by UV-Vis spectroscopy. The presence of silver in the sample and its crystalline nature were verified by X-ray diffraction (XRD) analysis. The size distribution profile and particle size in the suspension were manipulated from dynamic light scattering (DLS) pattern. The shape, size and morphology of the biogenic nanoparticles were studied using high resolution transmission electron microscope (TEM). Fourier transform infra-red spectroscopy was used to detect the biomolecules responsible for reduction of silver ions. These biogenic Ag-nanoparticles showed appreciable antibacterial efficacy against three bacteria— Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus.

  3. Study on roasting pretreatment process of silver extraction from industrial residues%工业废渣焙烧预处理提取银工艺研究

    Institute of Scientific and Technical Information of China (English)

    赖子球; 曾斌; 余攀; 蓝金莲

    2014-01-01

    Roasting-sulfuric acid leaching-cyanide leaching process is used to extract silver from complex industri-al residues.The effects of roasting atmosphere ,additives and their dosage ,roasting temperature and time have on ex-traction rate of silver were investigated by experiments .The results show that the optimal roasting conditions include rich oxygen ,3 %of sodium carbonate dosage ,903 K of roasting temperature ,and 3 h of roasting time .With the calci-ning leached by sulfuric acid and cyanide ,the extraction rate of silver was 78.41%,and then the content of silver in residues can be reduced from 0.049 %to 0.014 5 %.%采用焙烧-硫酸浸出-氰化浸出工艺,从某复杂工业废渣中提取银。通过试验考察了焙烧气氛、添加剂种类和加入量、焙烧温度、焙烧时间等预处理因素对银浸出率的影响。试验结果表明:优化焙烧预处理条件为富氧气氛、温度903 K、焙烧时间3 h、添加剂硫酸钠加入量3%;焙砂经酸浸-氰化浸出后,银的提取率为78.41%;废渣中银质量分数由原来的0.049%降低至0.0145%。

  4. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?

    Science.gov (United States)

    Dinesh, Devakumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Nicoletti, Marcello; Jiang, Wei; Benelli, Giovanni; Chandramohan, Balamurugan; Suresh, Udaiyan

    2015-04-01

    Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7%, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in

  5. Biosynthesis of silver nanoparticles using fresh extracts of Tridax procumbens linn.

    Science.gov (United States)

    Bhati-Kushwaha, Himakshi

    2014-04-01

    A simple and eco-friendly method for the synthesis of biogenic nanoparticles (NP's) using an aqueous solution of T. procumbens fresh plant extract (leaf and stem) as a bioreductant is reported. The prepared biogenic nanoparticles were well characterized using U.V. visible spectroscopy, scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. The particles were confirmed to be elemental crystal by X-ray diffraction. The potential applications of biosynthesized nanoparticles as antimicrobial (antibacterial and antifungal) against pathogens Escherichia coli, Vibrio cholerae, Aspergillus niger and Aspergillusflavus were demonstrated.

  6. Bach Adsorption Study for the Extraction of Silver Ions by Hydrazone Compounds from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Abdussalam Salhin Mohamad Ali

    2012-01-01

    Full Text Available Sorbent materials based on a hydrazone Schiff base compound, C14H11BrN4O4, were prepared either by immobilizing the ligand into sol-gel (SG1 or bonding to silica (SG2. The sorbent materials were characterized by FT-IR, EDX, SEM, TEM, and TGA. The sorption characteristics of a matrix of eight transition metal ions (Ag+, Cu2+, Co2+, Ni2+, Fe3+, Pb2+, Zn2+, and Mn2+ using batch method were studied. Several key parameters that affected the extraction efficiency such as pH, contact time, metal ions concentration, and gel size (for SGl were investigated and optimized. Under the optimized conditions, the physically immobilized hydrazone sorbent (SG1 exhibits highest selectivity towards Ag+ ions, while the chemically bonded hydrazone sorbent (SG2 exhibits high extraction for all metal ions tested. However, for practical applications such as the removal and preconcentration of Ag+, the physically immobilized sorbent (SG1 is preferred.

  7. Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector.

    Science.gov (United States)

    Santhosh, S B; Yuvarajan, R; Natarajan, D

    2015-08-01

    Mosquitoes transmit several diseases which cause millions of deaths every year. The use of synthetic insecticides to control mosquitoes caused diverse effects to the environment, mammals, and high manufacturing cost. The present study was aimed to test the larvicidal activity of green synthesized silver nanoparticles using Annona muricata plant leaf extract against third instar larvae of three medically important mosquitoes, i.e., Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. The different concentrations of green synthesized Ag Nanoparticles (AgNPs; 6, 12, 18, 24, 30 μg mL(-1)) and aqueous crude leaf extract (30, 60, 90, 120, 150 μg mL(-1)) were tested against the larvae for 24 h. Significant larval mortality was observed after the treatment of A. muricata for all mosquitoes with lowest LC50 and LC90 values, viz., A. aegypti (LC50 and LC90 values of 12.58 and 26.46 μg mL(-1)), A. stephensi (LC50 and LC90 values of 15.28 and 31.91 μg mL(-1)) and C. quinquefasciatus (LC50 and LC90 values of 18.77 and 35.72 μg mL(-1)), respectively. The synthesized AgNPs from A. muricata were highly toxic than aqueous crude extract. The nanoparticle characterization was done using spectral and microscopic analysis, namely UV-visible spectroscopy which showed a sharp peak at 420 nm of aqueous medium containing AgNPs, X-ray diffraction (XRD) analysis revealed the average crystalline size of synthesized AgNPs (approximately 45 nm), and Fourier transform infrared spectroscopy (FTIR) study exhibited prominent peaks 3381.28, 2921.03, 1640.17, 1384.58, 1075.83, and 610.77 cm(-1). Particle size analysis (PSA) showed the size and distribution of AgNPs (103 nm); field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) analysis showed a spherical shape, size range from 20 to 53 nm; and energy-dispersive X-ray spectroscopy (EDX) reflects the chemical composition of synthesized AgNPs. Heat stability of the AgNPs was

  8. Green Biosynthesis of Spherical Silver Nanoparticles by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities.

    Science.gov (United States)

    Farhadi, Saeed; Ajerloo, Bahram; Mohammadi, Abdelnassar

    2017-01-01

    In this work, we have synthesized spherical silver nanoparticles (Ag NPs) by a low-cost, rapid, simple and ecofriendly approach using Date palm fruit extract as a novel natural reducing and stabilizing agent. The product was characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), energy-dispersive X-ray (EDX) spectroscopy and Zeta potential measurements. The reaction conditions including time, content of reducing agent and silver nitrate, temperature and pH were investigated. The optimum yield of Ag NPs was obtained when 10 mM of silver nitrate was reacted with Date fruit extract at pH 11 and heated it to 55 °C within 10 minutes. The elemental and crystalline nature of Ag NPs were confirmed from EDX and XRD analysis. SEM and TEM images showed that the Ag NPs were spherical and with sizes in the range of 25-60 nm. On the base of FT-IR analysis, it can be stated that the functional groups present in bio-molecules of Date fruits are responsible for the reduction and stabilization of Ag NPs, respectively. The Ag NPs showed good antibacterial activity against a few human pathogenic bacteria. The catalytic activity of the Ag NPs for rapid and efficient reduction of toxic nitro compounds into less toxic corresponding amines by using NaBH4 was also investigated.

  9. Ultra-trace determination of silver in water samples by electrothermal atomic absorption spectrometry after preconcentration with a ligand-less cloud point extraction methodology

    Energy Technology Data Exchange (ETDEWEB)

    Manzoori, Jamshid L. [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: manzoori@tabrizu.ac.ir; Abdolmohammad-Zadeh, Hossein [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Amjadi, Mohammad [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2007-06-01

    A very simple and ligand-less cloud point extraction (CPE) methodology for the preconcentration of ultra-trace amounts of silver as a prior step to its determination by electrothermal atomic absorption spectrometry (ETAAS) has been developed. The method is based on the extraction of silver at pH 9 by using non-ionic surfactant polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) without adding any chelating agent. Several important variables that affect the CPE efficiency and ETAAS signal were investigated and optimized. The preconcentration of 15 ml sample solution allowed us to achieve an enhancement factor of 60. The calibration graph using the preconcentration system was linear in the range of 5-100 ng l{sup -1} with a correlation coefficient of 0.9991. The lower limit of detection (3s) obtained in the optimal conditions was 1.2 ng l{sup -1}. The relative standard deviation (R.S.D.) for eight replicate determinations at 30 ng l{sup -1} Ag level was 4.2%. The proposed method was successfully applied to the ultra-trace determination of silver in water samples.

  10. Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustainability

    Science.gov (United States)

    Shanmugam, C.; Sivasubramanian, G.; Parthasarathi, Bera; Baskaran, K.; Balachander, R.; Parameswaran, V. R.

    2016-06-01

    Silver nanoparticles (Ag-NPs) were synthesized from aqueous silver nitrate through a simple route using the leaf extract of Aristolochia indica L. (LAIL) which acted as a reducing as well as capping agent. X-ray diffraction confirmed that the synthesized silver particles have a face centred cubic structure. EDS predicted the presence of elemental silver. The SEM images showed the synthesis of spherically mono-dispersed particles, with nano dimensions accounted by the TEM images. Infra-red spectrum adopted to the different organic functionalities present at the surface of the particles. TGA indicated an overall 11 % weight loss up to 1000 °C, suggesting desorption of biomolecules from the surface. X-ray photoelectron spectroscopy (XPS) analysis revealed the presence of metallic silver nanoparticles. The prepared material was utilized as catalyst in the oxidation of benzyl alcohol with molecular oxygen as the oxidant in methanol, under ambient conditions of temperature and pressure. Also Ag-NPs showed good to moderate anti-microbial activity employing the Agar disc diffusion method against various strains using Ciprofloxacin and Fluconazole as standard. Free radical scavenging activity of the nanoparticles were observed by modified 1,1-diphynyl-2-picrylhydrazyl, DPPH and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS in vitro assays. The work presented here demonstrates the adaptability of the synthesized Ag-NPs in participating as a disinfectant agent, free radical scavenger and an effective oxidation catalyst. The basic premise of attaining sustainability through the green synthesis of smart multifaceted materials has been consciously addressed.

  11. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities

    Directory of Open Access Journals (Sweden)

    Wang C

    2016-08-01

    Full Text Available Chao Wang,1 Ramya Mathiyalagan,2 Yeon Ju Kim,1 Veronica Castro-Aceituno,1 Priyanka Singh,1 Sungeun Ahn,1 Dandan Wang,1 Deok Chun Yang1,2 1Department of Oriental Medicine Biotechnology and Ginseng Bank, 2Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea Abstract: Dendropanax morbifera Léveille is an oriental medicinal plant that is traditionally used in folk medicine and grows in a specific region of South Korea. We aimed to enhance the utilization of D. morbifera medicinal plants for synthesis of silver nanoparticles (AgNPs and gold nanoparticles (AuNPs. D. morbifera leaf extract acted as both a reducing and a stabilizing agent that rapidly synthesized Dendropanax AgNPs (D-AgNPs and Dendropanax AuNPs (D-AuNPs. The D-AgNPs and D-AuNPs were characterized by ultraviolet-visible spectroscopy, energy dispersive X-ray analysis, elemental mapping, field emission transmission electron microscopy, X-ray diffraction, and dynamic light scattering. The characterizations revealed that the D-AgNPs and D-AuNPs were in polygon and hexagon shapes with average sizes of 100–150 nm and 10–20 nm, respectively. The important outcomes were the synthesis of AgNPs and AuNPs within 1 hour and 3 minutes, respectively, avoiding the subsequent processing for removal of any toxic components or for stabilizing the nanoparticles. Additionally, D-AgNPs and D-AuNPs were examined for cytotoxicity in a human keratinocyte cell line and in A549 human lung cancer cell line. The results indicated that D-AgNPs exhibited less cytotoxicity in the human keratinocyte cell line at 100 µg/mL after 48 hours. On the other hand, D-AgNPs showed potent cytotoxicity in the lung cancer cells at the same concentration after 48 hours, whereas D-AuNPs did not exhibit cytotoxicity in both cell lines at the same concentration. However, both D-AgNPs and D-AuNPs at 50 µg/mL enhanced the cytotoxicity of ginsenoside

  12. Synthesis and Characterization of Silver and Gold Nanoparticles Using Aqueous Extract of Seaweed, Turbinaria conoides, and Their Antimicrofouling Activity

    Directory of Open Access Journals (Sweden)

    Sri Ramkumar Vijayan

    2014-01-01

    Full Text Available Silver and gold nanoparticles were synthesized using an aqueous extract of the seaweed Turbinaria conoides and their antibiofilm activity against marine biofilm forming bacteria is reported here. The UV-Vis spectra showed the characteristics SPR absorption band for Ag NPs at 421 and for Au NPs at 538 nm. Further, the synthesized nanoparticles were characterized using FT-IR, XRD, FESEM, EDX, and HRTEM analysis. Spherical and triangular nanostructures of the Ag and Au nanoparticles were observed between the size ranges of 2–17 nm and 2–19 nm, respectively. The synthesized Ag NPs are efficient in controlling the bacterial biofilm formation; however, Au NPs did not show any remarkable antibiofilm activity. The maximum zone of inhibition was recorded against E. coli (17.6±0.42 mm, followed by Salmonella sp., S. liquefaciens, and A. hydrophila. The macrotube dilution method inferred the MIC (20–40 µL mL−1 and MBC (40–60 µL mL−1 of Ag NPs. The CLSM images clearly showed the weak adherence and disintegrating biofilm formation of marine biofilm bacterial strains treated with Ag NPs. The Artemia cytotoxicity assay recorded the LC50 value of 88.914±5.04 µL mL−1. Thus the present study proved the efficiency of Ag NPs as a potent antimicrofouling agent and became the future perspective for the possible usage in the biofouling related issues in the aquaculture installations and other marine systems.

  13. A silver-free, reflective substrate electrode for electron extraction in top-illuminated organic photovoltaics.

    Science.gov (United States)

    Tyler, Martin S; Hutter, Oliver S; Walker, Marc; Hatton, Ross A

    2015-04-27

    The choice of metals suitable as the reflective substrate electrode for top-illuminated organic photovoltaics (OPVs) is extremely limited. Herein, we report a novel substrate electrode for this class of OPV architecture based on an Al | Cu | AlOx triple-layer structure, which offers a reflectivity comparable to that of Al over the wavelength range 400-900 nm, a work function suitable for efficient electron extraction in OPVs and high stability towards oxidation. In addition to demonstrating the advantage of this composite electrode over Al in model top-illuminated OPVs, we also present the results of a photoelectron spectroscopy study, which show that an oxidised 0.8 nm Al layer deposited by thermal evaporation onto an Al | Cu reflective substrate electrode is sufficient to block oxidation of the underlying Cu by air or during deposition of a ZnO1-x electron-transport layer. This is remarkable given that the self-limiting oxide thickness on Al metal is greater than 2 nm.

  14. Fabrication, optimization and characterization of noble silver nanoparticles from sugarcane leaves (Saccharum officinarum) extract for antifungal application

    Science.gov (United States)

    Metal nanoparticles obtained from green route are gaining significant prominence as a result of their potential applications in nanomedicine and material engineering. Overall metal nanoparticles studied, silver nanoparticles (AgNPs) clutch prominent place in nanoparticles research field. Herein, we ...

  15. Silver Sulfadiazine

    Science.gov (United States)

    Silver sulfadiazine, a sulfa drug, is used to prevent and treat infections of second- and third-degree ... Silver sulfadiazine comes in a cream. Silver sulfadiazine usually is applied once or twice a day. Follow ...

  16. Biosynthesis of gold and silver chloride nanoparticles mediated by Crataegus pinnatifida fruit extract: in vitro study of anti-inflammatory activities.

    Science.gov (United States)

    Kang, Jong Pyo; Kim, Yeon Ju; Singh, Priyanka; Huo, Yue; Soshnikova, Veronika; Markus, Josua; Ahn, Sungeun; Chokkalingam, Mohan; Lee, Hyun A; Yang, Deok Chun

    2017-09-18

    This research article investigates the one-pot synthesis of gold and silver chloride nanoparticles functionalized by fruit extract of Crataegus pinnatifida as reducing and stabilizing agents and their possible roles as novel anti-inflammatory agents. Hawthorn (C. pinnatifida) fruits are increasingly popular as raw materials for functional foods and anti-inflammatory potential agents because of abundant flavonoids. The reduction of auric chloride and silver nitrate by the aqueous fruit extract led to the formation of gold and silver chloride nanoparticles. The nanoparticles were further characterized by field emission transmission electron microscopy indicated that CP-AuNps and CP-AgClNps were hexagonal and cubic shape, respectively. According to X-ray diffraction results, the average crystallite sizes of CP-AuNps and CP-AgClNps were 14.20 nm and 24.80 nm. The biosynthesized CP-AgClNps served as efficient antimicrobial agents against Escherichia coli and Staphylococcus aureus. Furthermore, CP-AuNps and CP-AgClNps enhanced the DPPH radical scavenging activity of the fruit extract. Lastly, MTT assay of nanoparticles demonstrated low toxicity in murine macrophage (RAW264.7). Biosynthesized nanoparticles also reduced the production of the inflammatory cytokines including nitric oxide and prostaglandin E2 in lipopolysaccharide-induced RAW264.7 cells. Altogether, these findings suggest that CP-AuNps and CP-AgClNps can be used as novel drug carriers or biosensors with intrinsic anti-inflammatory activity.

  17. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation.

    Science.gov (United States)

    Francis, Sijo; Joseph, Siby; Koshy, Ebey P; Mathew, Beena

    2017-07-01

    Plant-derived nanomaterials opened a green approach in solving the current environment issues. Present study focused on rapid microwave-assisted synthesis and applications of gold and silver nanoparticles mediated by aqueous leaf extract of Mussaenda glabrata. The synthesized nanoparticles were characterized by UV-vis, FT-IR, powder XRD, energy-dispersive X-ray spectroscopy (EDX), transmission electron (TEM), and atomic force microscopic techniques (AFM). FCC crystal structure of both nanoparticles was confirmed by peaks corresponding to (111), (200), (220), and (311) planes in XRD spectra and bright circular spots in SAED pattern. IC50 values shown by gold and silver nanoparticles (44.1 ± 0.82 and 57.92 ± 1.33 μg/mL) reflected their high free radical scavenging potential. The synthesized gold and silver nanoparticles revealed their potency to inhibit pathogenic microorganisms Bacillus pumilus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus niger, and Penicillium chrysogenum. Anthropogenic pollutants rhodamine B and methyl orange were effectively degraded from aquatic environment and waste water sewages of dye industries using the prepared nanocatalysts. The catalytic capacities of the synthesized nanoparticles were also exploited in the reduction of 4-nitrophenol. Graphical abstract.

  18. Pox Pottery: Earliest Identified Mexican Ceramic.

    Science.gov (United States)

    Brush, C F

    1965-07-09

    The earliest known ceramics from Mexico, termed "Pox Pottery," may mark the transition from a nomadic to a settled way of life. The presence of "Pox Pottery" in both coastal Guerrero and the Tehuacan Valley might provide evidence as to the type of environment in which this change first occurred.

  19. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action.

    Science.gov (United States)

    Fouad, Hatem; Hongjie, Li; Hosni, Dawood; Wei, Jiqian; Abbas, Ghulam; Ga'al, Hassan; Jianchu, Mo

    2017-05-25

    Mosquitoes act as key vector for transmission of devastating parasites and pathogens which affect millions of people globally. In this research, the green synthesis of silver nanoparticles of Cassia fistula fruit pulp as an innovative and operative tool against vector mosquitoes is presented. Silver nanoparticles were characterized by a series of techniques including Fourier transform infrared spectroscopy, Transmission Electron Microscope and confirmed by Scanning Electron Microscope, UV-Vis spectrophotometry and X-ray diffraction. Silver nanoparticles were highly effective against the larvae (I-IV instar) and pupae of Aedes albopictus and Culex pipiens pallens after 24, 48 and 72 h of treatment. Ae. albopictus had LC50 values ranging from 8.3 mg/L (I instar) to 17.3 mg/L (pupae) and LC50 ranging from 1.1 mg/L (I instar) to 19.0 mg/L (pupae) against Cx. pipiens pallens. The systemic effect of AgNPs was further assessed in the fourth instar larvae of Ae. albopictus and Cx. pipiens pallens by measuring the levels of total proteins and activity of two important marker enzymes: Acetylcholinesterase and α- and β-carboxylesterase. Overall, the findings of the study suggest that the use of Cassia fistula-fruit pulp extract mediated synthesis of silver nanoparticles can be used for controlling vector mosquitoes. This is the first report on the mosquito larvicidal and pupicidal activity of AgNPs synthesized by Cassia fistula fruit pulp and its possible mechanism of action.

  20. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities.

    Science.gov (United States)

    Wang, Chao; Mathiyalagan, Ramya; Kim, Yeon Ju; Castro-Aceituno, Veronica; Singh, Priyanka; Ahn, Sungeun; Wang, Dandan; Yang, Deok Chun

    2016-01-01

    Dendropanax morbifera Léveille is an oriental medicinal plant that is traditionally used in folk medicine and grows in a specific region of South Korea. We aimed to enhance the utilization of D. morbifera medicinal plants for synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). D. morbifera leaf extract acted as both a reducing and a stabilizing agent that rapidly synthesized Dendropanax AgNPs (D-AgNPs) and Dendropanax AuNPs (D-AuNPs). The D-AgNPs and D-AuNPs were characterized by ultraviolet-visible spectroscopy, energy dispersive X-ray analysis, elemental mapping, field emission transmission electron microscopy, X-ray diffraction, and dynamic light scattering. The characterizations revealed that the D-AgNPs and D-AuNPs were in polygon and hexagon shapes with average sizes of 100-150 nm and 10-20 nm, respectively. The important outcomes were the synthesis of AgNPs and AuNPs within 1 hour and 3 minutes, respectively, avoiding the subsequent processing for removal of any toxic components or for stabilizing the nanoparticles. Additionally, D-AgNPs and D-AuNPs were examined for cytotoxicity in a human keratinocyte cell line and in A549 human lung cancer cell line. The results indicated that D-AgNPs exhibited less cytotoxicity in the human keratinocyte cell line at 100 µg/mL after 48 hours. On the other hand, D-AgNPs showed potent cytotoxicity in the lung cancer cells at the same concentration after 48 hours, whereas D-AuNPs did not exhibit cytotoxicity in both cell lines at the same concentration. However, both D-AgNPs and D-AuNPs at 50 µg/mL enhanced the cytotoxicity of ginsenoside compound K at 25 µM after 48 hours of treatment compared with CK alone. We believe that this rapid green synthesis of D-AgNPs and D-AuNPs is a valuable addition to the applications of D. morbifera medicinal plant. D-AuNPs can be used as carriers for drug delivery and in cancer therapy due to their lack of normal cell cytotoxicity.

  1. Atomic-absorption determination of mercury in geological materials by flame and carbon-rod atomisation after solvent extraction and using co-extracted silver as a matrix modifier

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1983-01-01

    Based on modifications and expansion of the original Tindall's solvent extraction flame atomic-absorption procedure, an atomic-absorption spectrophotometric method has been developed for the determination of mercury in geological materials. The sample is digested with nitric and hydrochloric acids in a boiling water-bath. The solution is made ammoniacal and potassium iodide and silver nitrate are added. The mercury is extracted into isobutyl methyl ketone as the tetraiodomercurate(ll). Added silver is co-extracted with mercury and serves as a matrix modifier in the carbon-rod atomiser. The mercury in the isobutyl methyl ketone extract may be determined by either the flame- or the carbon-rod atomisation method, depending on the concentration level. The limits of determination are 0.05-10 p.p.m. of mercury for the carbon-rod atomisation and 1 -200 p.p.m. of mercury for the flame atomisation. Mercury values for reference samples obtained by replicate analyses are in good agreement with those reported by other workers, with relative standard deviations ranging from 2.3 to 0.9%. Recoveries of mercury spiked at two levels were 93-106%. Major and trace elements commonly found in geological materials do not interfere.

  2. Silver ion imprinted polymer nanobeads based on a aza-thioether crown containing a 1,10-phenanthroline subunit for solid phase extraction and for voltammetric and potentiometric silver sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Hashemi, Beshare; Dehdashtian, Sara; Mohammadi, Moslem; Gholivand, Mohammad Bagher [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Garau, Alessandra; Lippolis, Vito [Dipartimento di Scienze Chimiche e Geologiche, Universita' degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, CA (Italy)

    2014-12-10

    Highlights: • Preparation of Ag{sup +} imprinted polymeric nanobeads via precipitation polymerization. • Use of a mixed aza-thioether crown containing a 1,10-phenanthroline subunit a selective host for Ag{sup +} ion. • Highly selective, sensitive and fast recognition of traces of Ag{sup +} ions. • Use of the prepared Ag{sup +}-IIP for preparation of an Ag{sup +}-voltammetric sensor with LOD of 9.0 × 10{sup −10} M. • Use of the prepared Ag{sup +}-IIP for preparation of Ag{sup +}-ISEs with LOD of 1.2 × 10{sup −9} M 9.0 × 10{sup −10} M. - Abstract: A new nano-sized silver(I) ion-imprinted polymer (IIP) was prepared via precipitation copolymerization using ethyleneglycol dimethacrylate, as a cross-linking agent in the presence of Ag{sup +} and an aza-thioether crown containing a 1,10-phenanthroline subunit as a highly selective complexing agent. The imprint silver(I) ion was removed from the polymeric matrix using a 1.0 M HNO{sub 3} solution. The resulting powder material was characterized using IR spectroscopy and scanning electron microscopy. The SEM micrographs showed colloidal nanoparticles of about 52 nm and 75 nm in diameter and slightly irregular in shape for leached and unleached IIPs, respectively. The optimal pH for quantitative enrichment was 6.0 and maximum sorbent capacity of the prepared IIP for Ag{sup +} was 18.08 μmol g{sup −1}. The relative standard deviation and limit of detection (LOD = 3S{sub b}/m) for flame atomic absorption spectrometric determination of silver(I) ion, after its selective extraction by the prepared IIP nanobeads, were evaluated as 2.42% and 2.2 × 10{sup −8} M, respectively. The new Ag{sup +}-IIP was also applied as a suitable sensing element to the preparation of highly selective and sensitive voltammetric and potentiometric sensors for ultra trace detection of silver(I) ion in water samples, with limits of detection of 9.0 × 10{sup −10} and 1.2 × 10{sup −9} M, respectively.

  3. Comparison of the Antimicrobial Effects of Silver Nanoparticles Alone and In Combination with Zataria Multiflora Extract On Some Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Shirin Sheikholeslami (MSc

    2016-02-01

    Full Text Available Background and Objective: The spread of drug resistance in bacteria have prompted researchers to seek suitable alternative for antimicrobial drugs among various medicinal plants and nanoparticles. The aim of this study was to evaluate the effect of silver nanoparticles alone and in combination with methanol extract of Zataria multiflora on five Gram-positive and Gram-negative bacteria. Methods: Different concentrations of the nanoparticles and extract alone or in combination with each other were tested against the bacteria, using well diffusion method. Three concentration levels (lowest, average and highest were prepared form the nanoparticles and the extract for the combination, and finally nine different combinations were prepared. Results: The extract and nanoparticles showed inhibitory effects against all the tested bacteria. The maximum diameter of growth inhibition zone in the presence of the extract and nanoparticles were observed in Streptococcus pyogenes (35.6mm and methicillin-resistant Staphylococcus aureus (20.6mm, respectively. The maximum diameter of growth inhibition zone for the combination was measured in S. pyogenes (31mm. Conclusion: The combination of low concentrations of the plant extract and nanoparticles are more effective against bacteria, but the combination of their high concentrations reduce the antibacterial effects in some cases.

  4. Silver nanoparticles in soil: Aqueous extraction combined with single-particle ICP-MS for detection and characterization

    NARCIS (Netherlands)

    Mahdi, Karrar N.M.; Peters, Ruud J.B.; Klumpp, Erwin; Bohme, Steffi; Ploeg, Van der Martine; Ritsema, Coen; Geissen, Violette

    2017-01-01

    Silver nanoparticles (AgNPs) are used in a growing number of applications and products. Previous studies showed AgNPs can leach from these products to the environment. As a result of AgNPs leaching, sediment, soil and sludge-treated soils may be contaminated with AgNPs. Methods to detect, quantify a

  5. Greener Techniques for the Synthesis of Silver Nanoparticles Using Plant Extracts, Enzymes, Bacteria, Biodegradable Polymers, and Microwaves

    Science.gov (United States)

    The use of silver nanoparticles (AgNPs) is gaining in popularity due to silver’s antibacterial properties. Conventional methods for AgNP synthesis require dangerous chemicals and large quantities of energy (heat) and can result in formation of hazardous by-products. This article ...

  6. Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae).

    Science.gov (United States)

    Sundaravadivelan, Chandran; Nalini Padmanabhan, Madanagopal; Sivaprasath, Prabhu; Kishmu, Lingan

    2013-01-01

    Mosquitoes transmit dreadful diseases to human beings wherein biological control of these vectors using plant-derived molecules would be an alternative to reduce mosquito population. Aqueous leaf extract and green synthesized silver nanoparticles (Ag NPs) from Pedilanthus tithymaloides (L.) Poit. were investigated for their efficacy against the dengue vector Aedes aegypti L. (Diptera; Culicidae). The biologically synthesized Ag NPs were characterized by UV-vis spectrum, X-ray diffraction, Fourier transform infrared, and surface characteristics by atomic force microscopy. Further, on exposure of the larvae to varying concentrations of aqueous leaf and Ag NPs for 24 h, these Ag NPs showed 100 % mortality from first to fourth instars and pupae of A. aegypti at 0.25 %, which is the highest concentration, tested, wherein it was the lowest concentration of aqueous leaf extract alone which showed only 10-18 % of mortality. Lethal concentration (LC(50)) values of Ag NPs against the larval and pupal stages were 0.029, 0.027, 0.047, 0.086, and 0.018 % with no mortality in control. These results suggest that the use of P. tithymaloides silver nanoparticles can be a rapid, environmentally safer bio-pesticide which can form a novel approach to develop effective biocides for controlling the target vector.

  7. Plant-mediated biosynthesis of silver nanoparticles by leaf extracts of Lasienthra africanum and a study of the influence of kinetic parameters

    Indian Academy of Sciences (India)

    ELIAS E ELEMIKE; DAMIAN C ONWUDIWE; OLAYINKA ARIJEH; HENRY U NWANKWO

    2017-02-01

    Lasienthra africanum (LA) leaf extract was employed for nano-silver synthesis. The reducing effect of the plant extract was investigated at different times, pH, temperatures and concentrations. The effect of variouskinetic parameters was studied using UV–vis spectroscopy. Blue-shifted surface plasmon bands indicating smaller sized nanoparticles were obtained at neutral pH (6.8–7.0), temperature of 65$^{\\circ}$C and concentration ratio of 1:10 (leafextract: AgNO$_3$) with increasing reaction times under the reaction conditions. The kinetics of the reaction followed pseudo-first- and -second-order rate equations, and was thermodynamically favoured at higher time. Sphericallyshaped nanoparticles were obtained at different reaction conditions.

  8. Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae).

    Science.gov (United States)

    Lallawmawma, H; Sathishkumar, Gnanasekar; Sarathbabu, Subburayan; Ghatak, Souvik; Sivaramakrishnan, Sivaperumal; Gurusubramanian, Guruswami; Kumar, Nachimuthu Senthil

    2015-11-01

    Silver and gold nanoparticles of Jasminum nervosum L. had unique optical properties such as broad absorbance band in the visible region of the electromagnetic spectrum. Characterization of the nanoparticles using UV spectrophotometer, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the particles were silver (AgNPs) and gold (AuNPs) ranging between 4-22 and 2-20 nm with an average particles size of 9.4 and 10 nm, respectively. AgNPs and AuNPs of J. nervosum had high larvicidal activity on the filarial and arboviral vector, Culex quinquefasciatus, than the leaf aqueous extract. Observed lethal concentrations (LC50 and LC95) against the third instar larvae were 57.40 and 144.36 μg/ml for AgNPs and 82.62 and 254.68 μg/ml for AuNPs after 24 h treatment, respectively. The lethal time to kill 50% of C. quinquefasciatus larvae were 2.24 and 4.51 h at 150 μg/ml of AgNPs and AuNPs, respectively, while in the case of aqueous leaf extract of J. nervosum it was 9.44 h at 500 μg/ml (F 2,14 = 397.51, P < 0.0001). The principal component analysis plot presented differential clustering of the aqueous leaf extract, AgNP and AuNPs in relation to lethal dose and lethal time. It is concluded from the present findings that the biosynthesised AgNPs and AuNPs using leaf aqueous extract of J. nervosum could be an environmentally safer nanobiopesticide, and provided potential larvicidal effect on C. quinquefasciatus larvae which could be used for prevention of several dreadful diseases.

  9. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus andCulex gelidus

    Institute of Scientific and Technical Information of China (English)

    Kanayairam Velayutham; Chinnadurai Siva; Abdul Abdul Rahuman; Govindasamy Rajakumar; Selvaraj Mohana Roopan; Gandhi Elango; Chinnaperumal Kamaraj; Sampath Marimuthu; Thirunavukkarasu Santhoshkumar; Moorthy Iyappan

    2013-01-01

    Objective:To investigate the larvicidal activity of synthesized silver nanoparticles (AgNPs) utilizing aqueous bark extract ofFicus racemosa (F. racemosa) was tested against fourth instar larvae of filariasis vector,Culex quinquefasciatus (Cx. quinquefasciatus) and japanese encephalitis vectors,Culex gelidus (Cx. gelidus).Methods:The synthesizedAgNPs was characterized byUV-vis spectrum,X-ray diffraction (XRD),Scanning electron microscopy (SEM) andFourier transform infrared (FTIR).The larvicidal activities were assessed for24 h against the larvae ofCx. quinquefasciatus andCx. gelidus with varying concentrations of aqueous bark extract ofF. racemosa and synthesizedAgNPs.LC50 andr2 values were calculated.Results:The maximum efficacy was observed in crude aqueous extract ofF. racemosa against the larvae of Cx. quinquefasciatus andCx. gelidus (LC50=67.72 and63.70 mg/L;r2=0.995 and0.985) and the synthesizedAgNPs (LC50=12.00 and11.21 mg/L;r2=0.997 and0.990), respectively.SynthesizedAg NPs showed theXRD peaks at2θ values of27.61,29.60,35.48,43.48 and79.68were identified as (210), (121), (220), (200) and (311) reflections, respectively.TheFTIR spectra ofAgNPs exhibited prominent peaks at3425,2878,1627 and1382 in the region500-3000 cm-1.The peaks correspond to the presence of a stretching vibration of (NH)C=O group.SEM analysis showed shape in cylindrical, uniform and rod with the average size of250.60 nm.Conclusions:The biosynthesis of silver nanoparticles using bark aqueous extract ofF. racemosa and its larvicidal activity against the larvae of disease spreading vectors.The maximum larvicidal efficacy was observed in the synthesizedAgNPs.

  10. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities.

    Science.gov (United States)

    Swamy, Mallappa Kumara; Akhtar, Mohd Sayeed; Mohanty, Sudipta Kumar; Sinniah, Uma Rani

    2015-12-05

    Plant mediated synthesis of nanoparticles has been considered as green route and a reliable technique for the synthesis of nanoparticles due to its eco-friendly approach. In this study, we report a simple and eco-friendly approach for the synthesis of silver nanoparticles (AgNPs) using methanolic Momordica cymbalaria fruit extract as reducing agent. The fruit extract of M. cymbalaria exposed to AgNO3 solution showed the change in color from green to light yellow at room temperature within 1h of incubation confirms the synthesis of AgNPs. UV-vis spectra analysis revealed that the synthesized AgNPs had a sharp surface plasmon resonance at around 450 nm, while, the X-ray Diffraction (XRD) patterns confirmed distinctive peaks indices to the crystalline planes of the face centered cubic silver. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) analysis results confirmed the presence of spherical shaped AgNPs by a huge disparity in the particle size distribution with an average size of 15.5 nm. The synthesized AgNPs showed strong antibacterial activity against all the tested multidrug resistant human pathogenic bacterial strains and also exhibited highest free radical scavenging activity (74.2%) compared to fruit extract (60.4%). Moreover, both fruit extract and the synthesized AgNPs showed the cytotoxicity towards Rat L6 skeletal muscle cell line at different concentrations, but the highest inhibition percentage was recorded for AgNPs at concentration of 100 μg/ml. Copyright © 2015. Published by Elsevier B.V.

  11. Silver Extraction from Silver Iron Oxide and Its Kinetic Study%从含银氧化铁矿提取银及其动力学研究

    Institute of Scientific and Technical Information of China (English)

    陈国兰; 朱云

    2014-01-01

    针对含银氧化铁矿中银被磁性铁所包裹而不易被浸出的特性,采用硫酸预浸-酸性硫脲浸出工艺回收其中的银,相对直接硫脲浸出,银的可浸性由40%提高到80%以上.在液固比为10∶1,Fe3+浓度为0.01 mol/L,硫脲浓度为10 g/L,pH为1.0~2.0,搅拌时间为1 h,银的浸出率为85.23%.采用未反应收缩核模型对硫脲浸银进行动力学研究,试验结果表明:该浸出反应对硫脲的表观反应级数为0.68;动力学方程为:1-23η-(1-η)2/3=0.0377e-5.725/RT·CTu0.68·t;反应的表观活化能为5.725 kJ/mol,浸取过程为固膜扩散控制过程.%Based on the characteristics that silver is wrapped by the magnetic iron and hard to leach in silver ox-ide ore,acid pre -acidic thiourea leaching process is employed to recover Ag.Compared with direct thiourea leaching,the leaching rate of Ag increases from 40% to over 80%.When ratio of liquid to solid is 10∶1 ,the concentration of Fe3+0.01 mol/L,concentration of thiourea 10 g/L,pH 1.0~2.0,and the mixing time 1h,the leaching rate of Ag is 85.23%. The model of contractibility and unreacted core is used for study on kinetics of thiourea leaching of Ag. The results show that the reaction apparent reaction progression of thiourea is 0.68;the kinetics equation is 1 -23 η-(1 -η)2/3 =0.0377e-5.725/RT·CTu0.68 ·t;the apparent activation energy of the reaction is 5.725 kJ/mol.The leaching reaction is mostly controlled by the solid membrane diffusion process.

  12. Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti.

    Science.gov (United States)

    Kumar, Vundru Anil; Ammani, Kandru; Jobina, Rajkumari; Subhaswaraj, Pattnaik; Siddhardha, Busi

    2017-06-01

    Due to the increased development of resistance of vectors against synthetic insecticides and chemical drugs, plant based insecticides serve as promising biocontrol agents for effective vector control. Green approach for the synthesis of nanoparticles has been attained using environmentally safe, non-toxic plant extracts. The present study was aimed to investigate the potent larvicidal activity of silver nanoparticles (AgNPs) produced by Derris trifoliata leaf extract in relation to the various concentrations of methanol and chloroform extracts for 24h against 3rd and 4th instar larvae of Aedes aegypti. AgNPs were synthesized using D. trifoliata leaf extract as reducing and stabilizing agent. Synthesized AgNPs were characterized by UV-Vis spectroscopy, FTIR spectroscopy, SEM, EDX, XRD and HRTEM. The size of AgNPs as estimated from the full width at half-maximum of (200) peak of silver was 16.13nm, the average crystalline size of the synthesized AgNPs was approximately 20nm, which was correlated with the HRTEM results (20nm). SEM and TEM images have shown the formation of polydispersed nanoparticles with an average size of 20nm. The FTIR spectra of AgNPs exhibited prominent peaks at 2360.7, 1606.2, 1095.6 and 785.9cm(-1). The spectral peak observed at 1606.2, assigned to stretching vibration (C=O) in carbonyl compounds characterized by the presence of major constituents of flavonoids and terpenoids. The results obtained in FTIR spectroscopy correlated with the GC-MS analysis of methanol and chloroform extracts and indicates the presence of phytosteroids, flavonoids and terpenoids. The highest larvicidal activity was observed for the synthesized AgNPs against the 3rd instar larvae with LC50 values of 5.87mg/l and LC90 of 12.11mg/l, while against 4th instar larvae these values were7.00 and17.76mg/l respectively. The chloroform extracts also showed increased larvicidal activity than methanol extracts against 3rd instar larvae (LC50=54.42mg/l, LC90=140.83mg/l) and 4th

  13. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach

    Science.gov (United States)

    Kokila, T.; Ramesh, P. S.; Geetha, D.

    2015-11-01

    Biosynthesis of metallic silver nanoparticles has now become an alternative to physical and chemical approaches. In the present study, silver nanoparticles (AgNPs) were synthesized from Cavendish banana peel extract (CBPE) and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Atomic force microscopy (AFM), Field emission scanning electronic microscope (FESEM), Dynamic light scattering (DLS) and zeta potential (ZP). The AgNPs formation was confirmed by UV-visible spectroscopy through color conversion due to surface plasma resonance band at 430 nm. The effect of pH on nanoparticle synthesis was determined by adjusting the various pH of the reaction mixtures. The crystalline nature of nanoparticles was confirmed from the XRD pattern, and the grain size was found to be around 34 nm. To identify the compounds responsible for the bioreduction of Ag+ ion and the stabilization of AgNPs produced, the functional group present in Cavendish banana peel extract was investigated using FTIR. AFM has proved to be very helpful in determining morphological features and the diameter of AgNPs in the range of 23-30 nm was confirmed by FESEM. DLS studies revealed that the average size of AgNPs was found to be around 297 nm. Zeta potential value for AgNPs obtained was -11 mV indicating the moderate stability of synthesized nanoparticles. The antibacterial activity of the nanoparticles was studied against Gram-positive and Gram-negative bacteria. Biosynthesized AgNPs showed a strong DPPH radical and ABTS scavengers compared to the aqueous peel extract of Cavendish banana.

  14. Experimental study on extracting gold and silver from depositing-sludge%从某沉积污泥中提取金、银试验研究

    Institute of Scientific and Technical Information of China (English)

    简椿林

    2013-01-01

    采用焙烧-酸浸-氰化工艺从沉积污泥中提取金、银,试验考察了氰化浸出反应液固比、pH值、氰化钠质量分数、反应时间、搅拌速度对金、银浸出率的影响。沉淀污泥在焙烧温度903 K、焙烧时间2 h的条件下,进行预处理;焙砂在反应液固比4∶1、硫酸浓度0.5 mol/L、反应时间3 h、反应温度323 K、搅拌速度300 r/min的条件下,进行硫酸浸出;酸浸渣在反应液固比4∶1、pH 10.5、氰化钠质量分数0.4%、反应温度298 K、搅拌速度250 r/min、反应时间72 h的条件下,进行氰化浸出;金、银浸出率分别可达93.2%、79.1%。%Roasting-acid leaching-cyanide process was used to extract gold and silver from depositing-sludge.The effects of liquid-solid ratio,pH value,NaCN concentration,reaction temperature,stirring speed on extraction rate of gold and silver were investigated.Pre-treatment of depositing-sludge is done with the roasting temperature of 903 K and roasting time of 2 h.The sulfuric acid leaching of calcine goes under the conditions such as liquid-solid ratio of 4∶1, H2 SO4 concentration of 0.5 mol/L, reaction temperature of 323 K, reaction time of 3 h and stirring speed of 300 r/min.The cyanide leaching condition is like this:liquid-solid ration of 4∶1,pH value of 10.5,NaCN concentra-tion of 0.4 %,stirring speed of 300 r/min and reaction time of 72 h.Under such conditions,the extraction rates of gold and silver were respectively 93.20 %and 79.10 %.

  15. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities

    Science.gov (United States)

    Manikandan, Ramar; Manikandan, Beulaja; Raman, Thiagarajan; Arunagirinathan, Koodalingam; Prabhu, Narayanan Marimuthu; Jothi Basu, Muthuramalingam; Perumal, Muthulakshmi; Palanisamy, Subramanian; Munusamy, Arumugam

    2015-03-01

    The present study was aimed at biosynthesis of silver nanoparticles (AgNPs) using ethanolic extract of rose (Rosa indica) petals and testing their potential antibacterial activity using selective human pathogenic microbes, anticancer activity using human colon adenocarcinoma cancer cell line HCT 15 as well as anti-inflammatory activity using rat peritoneal macrophages in vitro. The biologically synthesized AgNPs were also characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The characterized AgNPs showed an effective antibacterial activity against Gram negative (Escherichia coli, Klebsiella pneumoniae) than Gram positive (Streptococcus mutans, Enterococcus faecalis) bacteria. MTT assay, analysis of nuclear morphology, mRNA expression of Bcl-2, Bax and protein expression of caspase 3 as well as 9, indicated potential anticancer activity. In addition, green synthesized AgNPs also attenuated cytotoxicity, nuclear morphology and free radical generation (O2- and NO) by rat peritoneal macrophages in vitro. The results of our study show the potential green synthesis of silver nanoparticles in mitigating their toxicity while retaining their antibacterial activities.

  16. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities.

    Science.gov (United States)

    Manikandan, Ramar; Manikandan, Beulaja; Raman, Thiagarajan; Arunagirinathan, Koodalingam; Prabhu, Narayanan Marimuthu; Jothi Basu, Muthuramalingam; Perumal, Muthulakshmi; Palanisamy, Subramanian; Munusamy, Arumugam

    2015-03-05

    The present study was aimed at biosynthesis of silver nanoparticles (AgNPs) using ethanolic extract of rose (Rosa indica) petals and testing their potential antibacterial activity using selective human pathogenic microbes, anticancer activity using human colon adenocarcinoma cancer cell line HCT 15 as well as anti-inflammatory activity using rat peritoneal macrophages in vitro. The biologically synthesized AgNPs were also characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The characterized AgNPs showed an effective antibacterial activity against Gram negative (Escherichia coli, Klebsiella pneumoniae) than Gram positive (Streptococcus mutans, Enterococcus faecalis) bacteria. MTT assay, analysis of nuclear morphology, mRNA expression of Bcl-2, Bax and protein expression of caspase 3 as well as 9, indicated potential anticancer activity. In addition, green synthesized AgNPs also attenuated cytotoxicity, nuclear morphology and free radical generation (O2(-) and NO) by rat peritoneal macrophages in vitro. The results of our study show the potential green synthesis of silver nanoparticles in mitigating their toxicity while retaining their antibacterial activities.

  17. Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon

    Science.gov (United States)

    Yugandhar, P.; Savithramma, N.

    2016-02-01

    In nanotechnology, the plant mediated synthesis of nanoparticles has terrific application in biomedicine due to its novel properties and its eco-friendly nature. The present study deals with the biosynthesis of stable silver nanoparticles (SNPs) from aqueous fruit extract of S. alternifolium an endemic medicinal plant to Eastern Ghats. The synthesized nanoparticles are characterized by UV-VIS spectroscopy, FTIR, XRD, AFM, SEM with EDAX and TEM. Colour change from brown to grey indicates the formation of nanoparticles and UV-VIS surface plasmon resonance spectroscopy observed at 442 nm further confirms the synthesized nanoparticles are SNPs. FTIR studies reveal that the phenols and primary amines of proteins are main responsible for reduction, stabilization and capping agents towards these SNPs. The XRD data show crystalline nature of nanoparticles and EDAX measurements reveal the (12.74 %) percentage presence of Ag metal. AFM, SEM and TEM microscopic analyses revealed that the size of synthesized SNPs ranging from 5 to 68 nm has spherical shape and they are in polydispersed condition. Further, the antimicrobial studies of synthesized SNPs show high toxicity towards different bacterial and fungal isolates. This is the first report on fruit mediated synthesis of silver nanoparticles from S. alternifolium.

  18. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7).

    Science.gov (United States)

    Jinu, U; Gomathi, M; Saiqa, I; Geetha, N; Benelli, G; Venkatachalam, P

    2017-02-16

    This research focused on green engineering and characterization of silver (PcAgNPs) and copper nanoparticles (PcCuNPs) using Prosopis cineraria (Pc) leaf extract prepared by using microwave irradiation. We studied their enhanced antimicrobial activity on human pathogens as well as cytotoxicity on breast cancer cells (MCF-7). Biofabricated silver and copper nanoparticles exhibited UV-Visible absorbance peaks at 420 nm and 575 nm, confirming the bioreduction and stabilization of nanoparticles. Nanoparticles were characterized by FTIR, XRD, FESEM, and EDX analysis. FTIR results indicated the presence of alcohols, alkanes, aromatics, phenols, ethers, benzene, amines and amides that were possibly involved in the reduction and capping of silver and copper ions. XRD analysis was performed to confirm the crystalline nature of the silver and copper nanoparticles. FESEM analysis suggested that the nanoparticles were hexagonal or spherical in shape with size ranging from 20 to 44.49 nm and 18.9-32.09 nm for AgNPs and CuNPs, respectively. EDX analysis confirmed the presence of silver and copper elemental signals in the nanoparticles. The bioengineered silver and copper nanohybrids showed enhanced antimicrobial activity against Gram-positive and Gram-negative MDR human pathogens. MTT assay results indicated that CuNPs show potential cytotoxic effect followed by AgNPs against MCF-7 cancer cell line. IC50 were 65.27 μg/ml, 37.02 μg/ml and 197.3 μg/ml for PcAgNPs, PcCuNPs and P. cineraria leaf extracts, respectively, treated MCF-7 cells. The present investigation highlighted an effective protocol for microwave-assisted synthesis of biomolecule-loaded silver and copper nanoparticles with enhanced antibacterial and anticancer activity. Results strongly suggested that bioengineered AgNPs and CuNPs could be used as potential tools against microbial pathogens and cancer cells.

  19. Biosynthesis of Silver Nanoparticles Using Marine Sponge

    Directory of Open Access Journals (Sweden)

    Mahta Rezazaeh Hamed

    2015-12-01

    Full Text Available Biosynthesis of silver nanoparticles using marine sponge extract Haliclona was carried out. Marine sponges' extracts are responsible for the reduction of silver nitrate solution. Silver nanoparticles synthesized using fresh and dry marine sponge. Experimental factors including, time duration, pH, temperature were optimized. Silver nanoparticles were characterized by UV-Visible spectrophotometry. The sizes of synthesis silver nanoparticles were 27-46 nm and confirmed by scanning electron microscopy (SEM. X-ray diffraction (XRD crystallography indicated the silver nanoparticles crystalline nature. Fourier transform infrared spectroscopy (FT-IR was revealed the functional groups of extract of Haliclona, which are capable of reduction of silver nanoparticles. This method is a cost-effective, eco-friendly and nontoxic procedure..

  20. EARLIEST TRIASSIC CONODONTS FROM CHITRAL, NORTHERNMOST PAKISTAN

    Directory of Open Access Journals (Sweden)

    MARIA CRISTINA PERRI

    2004-07-01

    Full Text Available Extensive tracts of very shallow water carbonates in the valleys of the Yarkhun and Mastuj rivers of Chitral (northernmost Pakistan previously though to be Permian (or Cretaceous are shown by conodonts from two horizons in sequences 110 km apart—near Torman Gol (Mastuj valley and near Sakirmul (upper Yarkhun valley—to include earliest Triassic (Scythian—Induan horizons. Both faunas have Isarcicella staeschei Dai & Zhang, Is. lobata Perri, Is. turgida (Kozur et al. and Hindeodus parvus (Kozur & Pjatakova, whereas Is. Isarcica (Huckriede has been recognised only in the Torman Gol occurrence. The presence, respectively, of Is. staeschei in the Sakirmul and Is. isarcica in the Torman Gol occurrences, allows discrimination of the staeschei and isarcica zones respectively the third and the fourth conodont biozones of the Early Triassic conodont biozonation of Perri (in Perri & Farabegoli 2003. Such faunas, consisting mainly of isarcicellids and hindeodids but lacking gondolellids, are characteristic of restricted sea environments across the Permian–Triassic boundary and in the earliest Triassic in other Tethyan areas. The conodont faunas from these two occurrences are remarkably similar, nearly contemporaneous, and indicate shallow water biofacies. They are inferred to equate with the Ailak Dolomite, a sequence of Late Permian–?Late Triassic dolostones discriminated farther up the Yarkhun valley and extending eastwards into the upper Hunza region of northernmost Pakistan. The Zait Limestone and Sakirmul carbonate sequence are consistent with extension of the previously inferred Triassic carbonate platform at least 110 km farther to the SW than previously supposed.

  1. The earliest published electrocardiogram showing ventricular preexcitation.

    Science.gov (United States)

    Von Knorre, Georg H

    2005-03-01

    When in 1930, Wolff, Parkinson, and White published what is today known as the WPW, or preexcitation syndrome, they, and subsequently others, found few comparable cases in the preceding literature. Among these the report of Cohn and Fraser, published in 1913, was the earliest. However, another even earlier documentation in a 1909 article by Hoffmann escaped notice till now. The ECG of a patient with paroxysmal tachycardia reveals a short PR interval and a delta-wave-induced widening of the QRS complex, even though the reproduced tachycardia was not preexcitation related. The interpretation of this poorly reproduced ECG can be confirmed by another and more detailed description of the patient in an electrocardiography textbook published in 1914 by the same author. Thus, the earliest publication of an ECG showing ventricular preexcitation now can be dated back to 1909. Moreover, the Hoffmann monograph contains two additional examples of the WPW syndrome not noticed until now. All three cases published by Hoffmann had their first ECG recordings in 1912 or earlier.

  2. Biosynthesis, Antibacterial Activity and Anticancer Effects Against Prostate Cancer (PC-3) Cells of Silver Nanoparticles Using Dimocarpus Longan Lour. Peel Extract

    Science.gov (United States)

    He, Yan; Du, Zhiyun; Ma, Shijing; Cheng, Shupeng; Jiang, Sen; Liu, Yue; Li, Dongli; Huang, Huarong; Zhang, Kun; Zheng, Xi

    2016-06-01

    Metal nanoparticles, particularly silver nanoparticles (AgNPs), are developing more important roles as diagnostic and therapeutic agents for cancers with the improvement of eco-friendly synthesis methods. This study demonstrates the biosynthesis, antibacterial activity, and anticancer effects of silver nanoparticles using Dimocarpus Longan Lour. peel aqueous extract. The AgNPs were characterized by UV-vis absorption spectroscopy, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscope (FTIR). The bactericidal properties of the synthesized AgNPs were observed via the agar dilution method and the growth inhibition test. The cytotoxicity effect was explored on human prostate cancer PC-3 cells in vitro by trypan blue assay. The expressions of phosphorylated stat 3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. The longan peel extract acted as a strong reducing and stabilizing agent during the synthesis. Water-soluble AgNPs of size 9-32 nm was gathered with a face-centered cubic structure. The AgNPs had potent bactericidal activities against gram-positive and gram-negative bacteria with a dose-related effect. AgNPs also showed dose-dependent cytotoxicity against PC-3 cells through a decrease of stat 3, bcl-2, and survivin, as well as an increase in caspase-3. These findings confirm the bactericidal properties and explored a potential anticancer application of AgNPs for prostate cancer therapy. Further research should be focused on the comprehensive study of molecular mechanism and in vivo effects on the prostate cancer.

  3. Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line.

    Science.gov (United States)

    El Kassas, Hala Yassin; Attia, Azza Ahmed

    2014-01-01

    Nano-biotechnology is recognized as offering revolutionary changes in various fields of medicine. Biologically synthesized silver nanoparticles have a wide range of applications. Silver nanoparticles (AgNPs) were biosynthesized with an aqueous extract of Pterocladiella (Pterocladia) capillacea, used as a reducing and stabilizing agent, and characterized using UV-VIS spectroscopy, Fourier Transform Infra red (FT-IR) spectroscopy, transmission electron microscopy (TEM) and energy dispersive analysis (EDX). The biosynthesized AgNPs were tested for cytotoxic activity in a human hepatocellular carcinoma (HepG2) cell line cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, 1% antibiotic and antimycotic solution and 2 mM glutamine. Bacterial susceptibility to AgNPs was assessed with Staphylococcus aureus, Bacillus subtilis [Gram+ve] and Pseudomonas aeruginosa and Escherichia coli [Gram-ve]. The agar well diffusion technique was adopted to evaluate the bactericidal activity of the biosynthesized AgNPs using Ampicillin and Gentamicin as gram+ve and gram-ve antibacterial standard drugs, respectively. The biosynthesized AgNPs were 11.4±3.52 nm in diameter. FT-IR analysis showed that carbonyl groups from the amino acid residues and proteins could assist in formation and stabilization of AgNPs. The AgNPs showed potent cytotoxic activity against the human hepatocellular carcinoma (HepG2) cell line at higher concentrations. The results also showed that the biosynthesized AgNPs inhibited the entire panel of tested bacteria with a marked specificity towards Bacillus subtillus. Cytotoxic activity of the biosynthesized AgNPs may be due to the presence of alkaloids present in the algal extract. Our AgNPs appear more bactericidal against gram-positive bacteria (B. subtillus).

  4. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples.

    Science.gov (United States)

    Ghaedi, Mehrorang; Shokrollahi, Ardeshir; Niknam, Khodabakhsh; Niknam, Ebrahim; Najibi, Asma; Soylak, Mustafa

    2009-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1molL(-1) HNO(3) was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL(-1) for Cd(2+), Pb(2+), Pd(2+) and Ag(+) along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd(2+), Pb(2+), Pd(2+) and Ag(+), respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  5. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Niknam, Ebrahim; Najibi, Asma [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2009-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL{sup -1} for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +} along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +}, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  6. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Marta Krychowiak

    Full Text Available Staphylococcus aureus is the most common infectious agent involved in the development of skin infections that are associated with antibiotic resistance, such as burn wounds. As drug resistance is a growing problem it is essential to establish novel antimicrobials. Currently, antibiotic resistance in bacteria is successfully controlled by multi-drug therapies. Here we demonstrate that secondary metabolites present in the extract obtained from Drosera binata in vitro cultures are effective antibacterial agents against S. aureus grown in planktonic culture and in biofilm. Moreover, this is the first report demonstrating the synergistic interaction between the D. binata extract and silver nanoparticles (AgNPs, which results in the spectacular enhancement of the observed bactericidal activity, while having no cytotoxic effects on human keratinocytes. Simultaneous use of these two agents in significantly reduced quantities produces the same effect, i.e. by killing 99.9% of bacteria in inoculum or eradicating the staphylococcal biofilm, as higher amounts of the agents used individually. Our data indicates that combining AgNPs with either the D. binata extract or with its pure compound (3-chloroplumbagin may provide a safe and highly effective alternative to commonly used antibiotics, which are ineffective towards the antibiotic-resistant S. aureus.

  7. Combination of Silver Nanoparticles and Drosera binata Extract as a Possible Alternative for Antibiotic Treatment of Burn Wound Infections Caused by Resistant Staphylococcus aureus

    Science.gov (United States)

    Krychowiak, Marta; Grinholc, Mariusz; Banasiuk, Rafal; Krauze-Baranowska, Miroslawa; Głód, Daniel; Kawiak, Anna; Królicka, Aleksandra

    2014-01-01

    Staphylococcus aureus is the most common infectious agent involved in the development of skin infections that are associated with antibiotic resistance, such as burn wounds. As drug resistance is a growing problem it is essential to establish novel antimicrobials. Currently, antibiotic resistance in bacteria is successfully controlled by multi-drug therapies. Here we demonstrate that secondary metabolites present in the extract obtained from Drosera binata in vitro cultures are effective antibacterial agents against S. aureus grown in planktonic culture and in biofilm. Moreover, this is the first report demonstrating the synergistic interaction between the D. binata extract and silver nanoparticles (AgNPs), which results in the spectacular enhancement of the observed bactericidal activity, while having no cytotoxic effects on human keratinocytes. Simultaneous use of these two agents in significantly reduced quantities produces the same effect, i.e. by killing 99.9% of bacteria in inoculum or eradicating the staphylococcal biofilm, as higher amounts of the agents used individually. Our data indicates that combining AgNPs with either the D. binata extract or with its pure compound (3-chloroplumbagin) may provide a safe and highly effective alternative to commonly used antibiotics, which are ineffective towards the antibiotic-resistant S. aureus. PMID:25551660

  8. Earliest known crown-group salamanders.

    Science.gov (United States)

    Gao, Ke-Qin; Shubin, Neil H

    2003-03-27

    Salamanders are a model system for studying the rates and patterns of the evolution of new anatomical structures. Recent discoveries of abundant Late Jurassic and Early Cretaceous salamanders are helping to address these issues. Here we report the discovery of well-preserved Middle Jurassic salamanders from China, which constitutes the earliest known record of crown-group urodeles (living salamanders and their closest relatives). The new specimens are from the volcanic deposits of the Jiulongshan Formation (Bathonian), Inner Mongolia, China, and represent basal members of the Cryptobranchidae, a family that includes the endangered Asian giant salamander (Andrias) and the North American hellbender (Cryptobranchus). These fossils document a Mesozoic record of the Cryptobranchidae, predating the previous record of the group by some 100 million years. This discovery provides evidence to support the hypothesis that the divergence of the Cryptobranchidae from the Hynobiidae had taken place in Asia before the Middle Jurassic period.

  9. Imaging the earliest stages of Alzheimer's disease.

    Science.gov (United States)

    Wu, William; Small, Scott A

    2006-12-01

    Historical progress in medicine can be charted along the lines of technical innovations that have visualized the invisible. One hundred years ago, Alois Alzheimer exploited newly developed histological stains to visualize his eponymonous disease in dead tissue under the microscope. Now, as we are entering the second century of Alzheimer's disease research, technical innovation has endowed us with a range of in vivo imaging techniques that promise to visualize Alzheimer' disease in living people. The earliest stage of Alzheimer's disease is characterized by cell-sickness, not cell-death, and can occur before the deposition of amyloid plaques or neurofibrillary tangles. In principle, 'functional' imaging techniques might be able to detect this early stage of the disease, a stage that was invisible to Alzheimer himself. Here, we will first define the neurobiological meaning of 'function' and then review the different approaches that measure brain dysfunction in Alzheimer' disease.

  10. Spectroscopic interaction study of human serum albumin and human hemoglobin with Mersilea quadrifolia leaves extract mediated silver nanoparticles having antibacterial and anticancer activity

    Science.gov (United States)

    Maji, Anukul; Beg, Maidul; Mandal, Amit Kumar; Das, Somnath; Jha, Pradeep K.; Kumar, Anoop; Sarwar, Shamila; Hossain, Maidul; Chakrabarti, Pinak

    2017-08-01

    This study looks into a safe, proficient and low-cost way for the preparation of novel silver nanoparticles by using 5% aqueous leaves extract of a medicinal plant, Marsilea quadrifolia (family: Marsileaceae) without using any external reducing and stabilizing agents. The synthesized AgNPs showed maximum UV-Vis absorbance at 435 nm due to surface plasmon resonance (SPR). The average diameter (∼22.5 nm) of AgNPs was measured from TEM analysis and was also supported by FE-SEM. The existence of a silver signal in EDX spectra supported the AgNPs formation and negative zeta potential value (-18.7 mV) which suggested its stability. FT-IR spectroscopic analysis showed that the functional groups like sbnd Osbnd H, sbnd Nsbnd H and sbnd Cdbnd O were responsible for the synthesis of AgNPs. The antibacterial activity of the AgNPs was tested against E. coli ATCC 25922. The anticancer potential of AgNPs was also assessed using two different cell lines, such as MCF-7 and HeLa. The interaction study of AgNPs with human serum albumin (HSA) and human hemoglobin (Hb) was performed by means of UV-Vis, fluorescence spectroscopy, Circular dichroism (CD) and zeta potential measurement. More negative zeta potential values of AgNPs-HSA/Hb (-21.1/-19.5 mV) complexes than AgNPs (-18.7 mV) indicated corresponding stability of bio-conjugates. The basic structure of HSA/Hb remained unchanged and its secondary structure was slightly changed upon interaction with the AgNPs concluded from Circular dichroism. So, it can be predicted that this AgNPs may be applied in the medical field.

  11. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw.

    Directory of Open Access Journals (Sweden)

    Baskaran XR

    2016-11-01

    Full Text Available Xavierravi Baskaran,1 Antony Varuvel Geo Vigila,2 Thangaraj Parimelazhagan,3 Doulathabad Muralidhara-Rao,4 Shouzhou Zhang1 1Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, People’s Republic of China; 2Department of Zoology, St Xavier’s College, Palayamkottai, 3Department of Botany, Bioprospecting Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, 4Department of Biotechnology, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, IndiaAbstract: The objective of the study was to characterize silver nanoparticles (Ag-NPs and their bioactivities in early tracheophytes (Pteridophyta. Aqueous leaf extract of a critically endangered fern, Pteris tripartita Sw., was used for one-step green synthesis of Ag-NPs. The biosynthesized Ag-NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Morphologically, the Ag-NPs showed hexagonal, spherical, and rod-shaped structures. Size distributions of Ag-NPs, calculated using Scherrer’s formula, showed an average size of 32 nm. Ag-NPs were studied for in vitro antioxidant, antimicrobial, and in vivo anti-inflammatory activities. Ag-NPs exhibited significant anti-inflammatory activity in carrageenan-induced paw volume tests performed in female Wistar albino rats. Furthermore, Ag-NPs showed significant antimicrobial activity against 12 different microorganisms in three different assays (disk diffusion, time course growth, and minimum inhibitory concentration. This study reports that colloidal Ag-NPs can be synthesized by simple, nonhazardous methods, and that biosynthesized Ag-NPs have significant therapeutic properties.Keywords: silver nanoparticles, Pteris tripartita, FTIR, HRTEM, antioxidant, antimicrobial

  12. Development and characterization of a nanodendritic silver-based solid-phase extraction sorbent for selective enrichment of endocrine-disrupting chemicals in water and milk samples.

    Science.gov (United States)

    Gao, Yuanji; Xia, Bing; Liu, Jie; Ji, Baocheng; Ma, Fengwei; Ding, Lisheng; Li, Bangjing; Zhou, Yan

    2015-11-01

    In this study, 4-[4-phenylazo-phenoxy] butyl-1-thiol (AzSH) functionalized nanodendritic silver (AzS@AgNDs) materials were prepared as a solid-phase extraction (SPE) sorbent for the selective extraction of estrogens. AzS@AgNDs possess an extremely large surface-to-volume ratio and a small average particle size. The performance of the material was evaluated by selective enrichment of hexestrol, diethylstilbestrol, dienestrol and bisphenol A in water and milk samples followed by rapid ultra-performance liquid chromatography-electrospray ionization mass spectrometry (UPLC-ESI-MS) analyses. The results exhibited that AzS@AgNDs had excellent adsorption capability for the targeted estrogens. The limits of detection of the four estrogens ranged from 0.1 to 5.0 pg/mL. The recoveries of the estrogens spiked into tap water were over the range of 83.6-105.3% with relative standard deviations of 2.8-6.0%. The results indicated the capability of this method for the rapid determination of estrogens in milk and other environmental water samples. In addition, this method would be useful for the determination of human exposure and health risk assessments trace level of endocrine-disrupting compounds (EDCs) in drinking water.

  13. Supramolecular solvent-based extraction coupled with vortex-mixing for determination of palladium and silver in water samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Meng, Lifen; Cheng, Jiaxi; Yang, Yaling

    2014-01-01

    A simple and practical extraction method of supramolecular solvents (SUPRAS) was developed for separation and enrichment of trace amounts of palladium (Pd) and silver (Ag) in water samples prior to flame atomic absorption spectrometry (FAAS) analysis. The SUPRAS selected was made up of an aqueous solution containing tetrahydrofuran and nonanoic acid. Pd and Ag reacted with diethyldithiocarbamate to form hydrophobic chelates, which were extracted into the vesicles of SUPRAS. Different parameters such as the concentration of chelating agent, sample pH, supramolecular solvent and the effect of foreign ions were studied. Under the optimal conditions, the linear ranges of Pd and Ag were from 10 to 1,000 μg/L. The relative recoveries of Pd and Ag in tap and river water samples at the spiking level of 10 ug/mL ranged from 90.8 to 116%. The relative standard deviations were 3.6-4.0% (n = 9), the limits of detection were 2.8 and 1.9 μg/L and the enrichment factors were 36 and 18 for Pd and Ag, respectively. The quantification limits were 3.2 and 2.4 μg/L. The method was successfully applied to the determination of Pd and Ag in water samples.

  14. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan

    2013-12-01

    Mosquitoes act as a vector for most of the life-threatening diseases like malaria, yellow fever, dengue fever, chikungunya fever, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management, emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, the larvicidal activity of silver nanoparticles (AgNPs) synthesized using Sida acuta plant leaf extract against late third instar larvae of Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (10, 20, 30, 40, and 50 μg/mL) and aqueous leaf extract (50, 100, 150, 200, and 250 μg/mL) were tested against the larvae of C. quinquefasciatus, A. stephensi and A. aegypti. The synthesized AgNPs from S. acuta leaf were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of S. acuta for all three important vector mosquitoes. The LC50 and LC90 values of S. acuta aqueous leaf extract appeared to be most effective

  15. The Earliest Ion Channels in Protocellular Membranes

    Science.gov (United States)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    2010-01-01

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously selfassemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their structures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological reality, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  16. Oxygen requirements of the earliest animals

    Science.gov (United States)

    Mills, Daniel B.; Ward, Lewis M.; Jones, CarriAyne; Sweeten, Brittany; Forth, Michael; Treusch, Alexander H.; Canfield, Donald E.

    2014-03-01

    A rise in the oxygen content of the atmosphere and oceans is one of the most popular explanations for the relatively late and abrupt appearance of animal life on Earth. In this scenario, Earth's surface environment failed to meet the high oxygen requirements of animals up until the middle to late Neoproterozoic Era (850-542 million years ago), when oxygen concentrations sufficiently rose to permit the existence of animal life for the first time. Although multiple lines of geochemical evidence support an oxygenation of the Ediacaran oceans (635-542 million years ago), roughly corresponding with the first appearance of metazoans in the fossil record, the oxygen requirements of basal animals remain unclear. Here we show that modern demosponges, serving as analogs for early animals, can survive under low-oxygen conditions of 0.5-4.0% present atmospheric levels. Because the last common ancestor of metazoans likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content of the atmosphere and oceans. Instead, other ecological and developmental processes are needed to adequately explain the origin and earliest evolution of animal life on Earth.

  17. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    Science.gov (United States)

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50 ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500 ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65 ppm (24h) and 546.7, 516.2, and 618.4 ppm (48 h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48 hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes.

  18. Earliest Holozoan Expansion of Phosphotyrosine Signaling

    Science.gov (United States)

    Suga, Hiroshi; Torruella, Guifré; Burger, Gertraud; Brown, Matthew W.; Ruiz-Trillo, Iñaki

    2015-01-01

    Phosphotyrosine (pTyr) signaling is involved in development and maintenance of metazoans’ multicellular body through cell-to-cell communication. Tyrosine kinases (TKs), tyrosine phosphatases, and other proteins relaying the signal compose the cascade. Domain architectures of the pTyr signaling proteins are diverse in metazoans, reflecting their complex intercellular communication. Previous studies had shown that the metazoan-type TKs, as well as other pTyr signaling proteins, were already diversified in the common ancestor of metazoans, choanoflagellates, and filastereans (which are together included in the clade Holozoa) whereas they are absent in fungi and other nonholozoan lineages. However, the earliest-branching holozoans Ichthyosporea and Corallochytrea, as well as the two fungi-related amoebae Fonticula and Nuclearia, have not been studied. Here, we analyze the complete genome sequences of two ichthyosporeans and Fonticula, and RNAseq data of three additional ichthyosporeans, one corallochytrean, and Nuclearia. Both the ichthyosporean and corallochytrean genomes encode a large variety of receptor TKs (RTKs) and cytoplasmic TKs (CTKs), as well as other pTyr signaling components showing highly complex domain architectures. However, Nuclearia and Fonticula have no TK, and show much less diversity in other pTyr signaling components. The CTK repertoires of both Ichthyosporea and Corallochytrea are similar to those of Metazoa, Choanoflagellida, and Filasterea, but the RTK sets are totally different from each other. The complex pTyr signaling equipped with positive/negative feedback mechanism likely emerged already at an early stage of holozoan evolution, yet keeping a high evolutionary plasticity in extracellular signal reception until the co-option of the system for cell-to-cell communication in metazoans. PMID:24307687

  19. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw.

    Science.gov (United States)

    Baskaran, Xavierravi; Geo Vigila, Antony Varuvel; Parimelazhagan, Thangaraj; Muralidhara-Rao, Doulathabad; Zhang, Shouzhou

    The objective of the study was to characterize silver nanoparticles (Ag-NPs) and their bioactivities in early tracheophytes (Pteridophyta). Aqueous leaf extract of a critically endangered fern, Pteris tripartita Sw., was used for one-step green synthesis of Ag-NPs. The biosynthesized Ag-NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Morphologically, the Ag-NPs showed hexagonal, spherical, and rod-shaped structures. Size distributions of Ag-NPs, calculated using Scherrer's formula, showed an average size of 32 nm. Ag-NPs were studied for in vitro antioxidant, antimicrobial, and in vivo anti-inflammatory activities. Ag-NPs exhibited significant anti-inflammatory activity in carrageenan-induced paw volume tests performed in female Wistar albino rats. Furthermore, Ag-NPs showed significant antimicrobial activity against 12 different microorganisms in three different assays (disk diffusion, time course growth, and minimum inhibitory concentration). This study reports that colloidal Ag-NPs can be synthesized by simple, nonhazardous methods, and that biosynthesized Ag-NPs have significant therapeutic properties.

  20. Biogenic synthesis and spectroscopic characterization of silver nanoparticles using leaf extract of Indoneesiella echioides: in vitro assessment on antioxidant, antimicrobial and cytotoxicity potential

    Science.gov (United States)

    Kuppurangan, Gunaseelan; Karuppasamy, Balaji; Nagarajan, Kanipandian; Krishnasamy Sekar, Rajkumar; Viswaprakash, Nilmini; Ramasamy, Thirumurugan

    2016-10-01

    Natural synthesis of metal nanoparticles is gaining more attention in recent years. This article demonstrates the phytochemical synthesis of silver nanoparticles (AgNPs) by using Indoneesiella echioides (L) leaf extract as a reducing and stabilizing agent. Biosynthesis of AgNPs was monitored by UV-visible spectroscopy which revealed intense surface plasmon resonance bands at 420 nm. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction were employed to identify various functional groups and crystalline nature of AgNPs. High-resolution transmission electron microscopy studies demonstrated that synthesized particles were spherical with average size of ~29 nm. In vitro antioxidant effects were analyzed by 2,2'-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), which exhibited 69 and 71 % of scavenging activity, respectively. The antimicrobial activity of green AgNPs displayed better zone of inhibition against selected human pathogens. The present study also investigated the toxicity effect of biogenic AgNPs against human lung adenocarcinoma cancer cells (A549) and normal human epithelial cells (HBL-100) in vitro, and the inhibitory concentrations (IC50) were found to be 30 and 60 µg/mL, respectively. Herein, we propose a previously unexplored medicinal plant for the biological synthesis of AgNPs with potent biomedical applications.

  1. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw.

    Science.gov (United States)

    Baskaran, Xavierravi; Geo Vigila, Antony Varuvel; Parimelazhagan, Thangaraj; Muralidhara-Rao, Doulathabad; Zhang, Shouzhou

    2016-01-01

    The objective of the study was to characterize silver nanoparticles (Ag-NPs) and their bioactivities in early tracheophytes (Pteridophyta). Aqueous leaf extract of a critically endangered fern, Pteris tripartita Sw., was used for one-step green synthesis of Ag-NPs. The biosynthesized Ag-NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Morphologically, the Ag-NPs showed hexagonal, spherical, and rod-shaped structures. Size distributions of Ag-NPs, calculated using Scherrer’s formula, showed an average size of 32 nm. Ag-NPs were studied for in vitro antioxidant, antimicrobial, and in vivo anti-inflammatory activities. Ag-NPs exhibited significant anti-inflammatory activity in carrageenan-induced paw volume tests performed in female Wistar albino rats. Furthermore, Ag-NPs showed significant antimicrobial activity against 12 different microorganisms in three different assays (disk diffusion, time course growth, and minimum inhibitory concentration). This study reports that colloidal Ag-NPs can be synthesized by simple, nonhazardous methods, and that biosynthesized Ag-NPs have significant therapeutic properties. PMID:27895478

  2. Non-chromatographic speciation of chromium at sub-ppb levels using cloud point extraction in the presence of unmodified silver nanoparticles.

    Science.gov (United States)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2015-01-01

    The cloud point extraction (CPE) of silver nanoparticles (AgNPs) by Triton X-114 allows chromium (III) ions to be transferred to the surfactant-rich phase, where they can be measured by electrothermal atomic absorption spectrometry. Using 20 mL sample and 50 μL Triton X-114 (30% w/v), the enrichment factor was 1150, and calibration graphs were obtained in the 5-100 ng L(-1) chromium range in the presence of 5 µg L(-1) AgNPs. Speciation of trivalent and hexavalent chromium was achieved by carrying out two CPE experiments, one of them in the presence of ethylenediaminetetraacetate. While in the first experiment, in absence of the complexing agent, the concentration of total chromium was obtained, the analytical signal measured in the presence of this chemical allowed the chromium (VI) concentration to be measured, being that of chromium (III) calculated by difference. The reliability of the procedure was verified by using three standard reference materials before applying to water, beer and wine samples.

  3. Biosynthesis of Silver Nanoparticles Using Aegle marmelos (Bael Fruit Extract and Its Application to Prevent Adhesion of Bacteria: A Strategy to Control Microfouling

    Directory of Open Access Journals (Sweden)

    A. Nithya Deva Krupa

    2014-01-01

    Full Text Available Marine biofilms formed due to adhesion of bacteria and other microorganisms on submerged surfaces are generally considered to be a major form of microfouling. Subsequent attachment of larvae of higher organisms like barnacles, mussels, and so forth, on marine biofilms, causes macrofouling. Several approaches have been used to prevent micro- and macrofouling. Silver nanoparticles (AgNPs are known to exhibit strong inhibitory and antimicrobial activity. Biological synthesis of AgNPs is rapidly gaining importance due to its growing success. Hence, the present study is focused on the biosynthesis of AgNPs using fruit extract of Aegle marmelos and its characterization through UV-Vis spectrophotometer, X-ray diffractometer (XRD, Fourier transform infrared spectroscopy (FTIR, and atomic force microscopy (AFM. Further isolation and identification of marine biofilm forming bacteria were carried out through 16S rDNA analysis. The antimicrofouling effect of the biosynthesized AgNPs was tested against marine biofilm forming bacteria and the results suggested that it could effectively inhibit biofilm formation. This preliminary study has proved that AgNPs may be used as antimicrofouling agent for the prevention of biofouling in the early stages.

  4. Cloud point extraction for the preconcentration of silver and palladium in real samples and determination by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, Hossein; Yazdandoust, Saeed; Yazdandoust, Mozhdeh [Department of Chemistry, Payame Noor University (PNU), Shiraz (Iran)

    2010-03-15

    A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag{sup +} and Pd{sup 2+} in various samples. After complexation with 2-((2-((1H-benzo[d]imidazole-2-yl)methoxy)phenoxy)methyl)-1H-benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X-114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0.10{sup -5} mol/L BIMPI and 0.036% (w/v) Triton X-114), calibration graphs were linear in the range of 28.0-430.0 {mu}g/L and 57.0-720.0 {mu}g/L with detection limits of 10.0 and 25.0 {mu}g/L for Ag{sup +} and Pd{sup 2+}, respectively. The enrichment factors were 35.0 and 28.0 for Ag{sup +} and Pd{sup 2+}, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    S. Sivapriyajothi

    2014-08-01

    Full Text Available Mosquitoes are one of the most medically significant groups of vectors, having an ability to transmit parasites and pathogens that can have devastating impacts on humans. The development of reliable and ecofriendly processes for the synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. In this study, we address the biosynthesis of silver nanoparticles (AgNPs using Leucas aspera leaf extract, and evaluate its lethal concentration (LC50 and LC90 values against first to fourth instar larvae and pupae of the mosquito vectors, Aedes aegypti and Anopheles stephensi. The nanoparticles were characterized by UV-Vis spectrum, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transformed infrared spectroscopy analysis. Larvae and pupae were exposed to varying concentrations of aqueous extracts of synthesized AgNPs for 24 h. The maximum mortality was observed from synthesized AgNPs, with LC50 values for I-IV instars and pupae ranging from 13.06 to 25.54, and LC90 values ranging from 24.11 to 47.34 for A. aegypti; for A. stephensi, the corresponding LC50 values ranged from 12.45 to 22.26, and the LC90 values ranged from 23.50 to 42.95. With methanol leaf extract of L. aspera against A. aegypti, the LC50 values ranged from 174.89 to 462.96 and the LC90 values ranged from 488.16 to 963.74; for A. stephensi, the corresponding LC50 values ranged from 148.93 to 417.07 and the LC90 values ranged from 449.72 to 912.94. The study suggests that nanoparticles could be a preferred alternative to the most hazardous existing chemical pesticides, contributing to a more healthy environment by providing an ideal ecological and user-friendly vector control strategy for managing malaria and dengue, and contributing to their eventual elimination in the near future.

  6. 从高硫多金属金精矿中提取金银铜试验研究%Experimental study on extraction of gold,silver and copper from high-sulfur content and polymetallic gold concentrates

    Institute of Scientific and Technical Information of China (English)

    王瑞祥; 谢博毅; 刘建华; 张焕然

    2014-01-01

    采用焙烧-酸浸-氰化工艺从高硫多金属金精矿中提取金、银、铜。其试验结果表明:在最佳条件下,金、银、铜的平均浸出率分别可达到96.56%、79.12%、91.33%。通过对比金精矿、焙砂、氰化渣中金、银的化学物相可知,硅酸盐包裹金、银不易被氰化浸出,而加入复合添加剂焙烧,硅酸盐包裹的金、银品位大幅度下降,由直接焙烧的2.05 g/t、163.35 g/t分别降到0.81 g/t、25.24 g/t。%Gold ,silver and copper are extracted from high-sulfur content and polymetallic gold concentrates by roasting-acid leaching -cyanidation process .It is revealed that under optimal conditions the leaching rates of gold , silver and copper were respectively were 96.56%,79.12%and 91.33%.By comparing the chemical phase of gold and silver in gold concentrates ,calcines and cyanidation slags ,it is known that the gold and silver encapsulated in sili-cates are difficult to leach by cyanide ,but with composite additive in roasting ,the amount of gold and silver encapsula-ted in silicates is greatly reduced obviously ,from 2.05 g/t,163.35 g/t respectively to 0.18 g/t,25.24 g/t.

  7. Biosynthesis of Silver Nanoparticles from Marine Seaweed Sargassum cinereum and their Antibacterial Activity

    OpenAIRE

    C Mohandass; A S Vijayaraj; R Rajasabapathy; S Satheeshbabu; S. V. Rao; Shiva, C.; De-Mello, I.

    2013-01-01

    Seaweed extracts of Sargassum cinereum was used as a reducing agent in the eco-friendly extracellular synthesis of silver nanoparticles from an aqueous solution of silver nitrate (AgNO 3 ). High conversion of silver ions to silver nanoparticles was achieved with a reaction temperature of 100΀ and a seaweed extract concentration of 10% with a residential time of 3 h. Formation of silver nanoparticles was characterised by spectrophotometry and the scanning electron microscope. The average parti...

  8. 硝酸浸出失效催化剂提取银的实验研究%Experimental Study on Extracting Silver by Leaching Spent Catalyst with Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    范兴祥; 董海刚; 吴跃东; 付光强; 刘杨; 赵家春; 吴晓峰; 昝林寒; 李博捷

    2013-01-01

    采用硝酸浸出失效催化剂提取其中金属银,研究了失效催化剂粒度、硝酸用量、浸出温度、浸出时间和洗涤次数等因素对银浸出率的影响.结果表明,失效催化剂粒度对银浸出率影响显著,增加洗涤次数有利于提高银的浸出率.通过实验,确定了合理的工艺参数为:硝酸用量为失效催化剂质量的70%、浸出温度65℃、浸出时间3h、催化剂粒度为0.125 ~0.18 mm、搅拌洗涤3次.在此条件下,银的浸出率为99.52%,浸出渣含银0.072%.综合实验结果表明,从失效催化剂到海绵银产品,银的直收率达到99.27%.%Spent catalyst was leached by nitric acid to extract metallic silver from it. The effects of the particle size of spent catalyst, the dosage of nitric acid, leaching temperature, leaching time and washing times on the leaching rate of silver were investigated. The results showed that the particle size of spent catalyst has great effect on the leaching rate of silver which would also be improved by increasing washing times. Based on experiments, technological parameters are reasonably determined as follows; the dosage of nitric acid was 70% of the quality of spent catalyst, the leaching temperature was set at 65 ℃, leaching time was 3 h, the particle size was 0.125 ~0.18 mm, the washing times were 3. Under these conditions, the leaching rate of silver was 99.52% and the content of silver in the leaching residues was 0.072%. The comprehensive experiment showed that spent catalyst can be transferred to sponge silver products with this process with direct recovery rate of silver reaching 99.27%.

  9. Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona.

    Science.gov (United States)

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-07-21

    Production and application of nanoparticles in consumer products is at an all-time high due to the emerging field of nanotechnology. Direct detection and quantification of trace levels of nanoparticles within consumer products is very challenging and problematic. Although multiple methodologies are available for this purpose, each method has its own set of limitations. Herein, we developed an analytical platform consisting of asymmetric flow-field flow fractionation (AF4) coupled with inductively coupled plasma mass spectroscopy (ICP-MS) for the speciation and quantification of silver ions and silver nanoparticles at the ng/kg level (ppt). AF4 is utilized to concentrate the nanoparticles, and ICP-MS acts as the detector. The protein corona that forms upon exposure of nanoparticles to bovine serum albumin was utilized as a nanoparticle stabilization and AF4 recovery enhancement mechanism. Speciation of silver ions and nanoparticles was achieved with the assistance of penicillamine as a complexation ligand. The effect of nanoparticle size, surface coating, and ionization state toward the detection and quantification of the developed methodology was evaluated. The detection limit was found to be 4 ng/kg with the application of a 5 mL sample loop. Further application of this developed methodology on environmentally relevant samples was demonstrated by the analysis of Arkansas River water spiked with silver nanoparticles and nanoparticle spiked into humic acid solution (50 mg/L) at an environmentally relevant level.

  10. Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales).

    Science.gov (United States)

    Rawani, Anjali; Ghosh, Anupam; Chandra, Goutam

    2013-12-01

    Silver nanoparticles (AgNPs) that are synthesized by using aqueous extracts of Solanum nigrum L., is a simple, non-toxic and ecofriendly green material. The present study is based on assessments of the larvicidal and antimicrobial activities of the synthesized AgNPs from fresh leaves, dry leaves and green berries of S. nigrum against larvae of Culex quinquefasciatus and Anopheles stephensi and four human pathogenic and five fish pathogenic bacteria respectively. The synthesized nanoparticles are characterized with UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM) analysis. The nanoparticles are spherical to polyhedral in shape with size of 50-100nm (average size of 56.6nm). In larvicidal bioassay with synthesized AgNPs, highest mortality are observed at 10ppm against An. stephensi with LC50 values of 1.33, 1.59, 1.56ppm and LC90 values of 3.97, 7.31, 4.76ppm for dry leaves, fresh leaves and berries respectively. Antibacterial activity test reveals better results against fish pathogenic bacteria than human pathogenic bacteria. Non target organism like Toxorhynchites larvae (mosquito predator), Diplonychus annulatum (predatory water-bug) and Chironomus circumdatus larvae (chironomid) are also exposed to respective lethal concentrations (to mosquito larvae) of dry nanoparticles and no abnormality in the non target organisms are recorded. These results suggest that the synthesized AgNPs of S. nigrum have the potential to be used as an ideal eco-friendly compound for the control of the mosquito larvae and harmful bacteria.

  11. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy.

    Science.gov (United States)

    Verma, Devendra Kumar; Hasan, Syed Hadi; Banik, Rathindra Mohan

    2016-02-01

    Current study presents an economic, ecofriendly and simple photo-catalytic green route for the swift biosynthesis of silver nanoparticles (AgNPs) within 20s, devoid of any instrumental support or chemical reductant. Aqueous leaf-extract of an aquatic fern, Salvinia molesta (AES), was used as a bioreductant as well as a stabilizing agent. Rapid change in color of reaction mixture from yellowish green to reddish brown within 20s in direct sun light exposure was considered as the primary visual indication of AgNPs biosynthesis. The biosynthesis of AgNPs was confirmed by UV-visible spectroscopy through the presence of a characteristic surface plasmon resonance (SPR) band for AgNPs at λmax of 425 nm. The process parameters were optimized through one factor at a time approach. Optimal values of different process parameters for the current biosynthetic system were found as; 35 min of reaction time under sun light, 8.0mM AgNO3 concentration and 5.0% (v/v) AES inoculum dose. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis showed that most of AgNPs were spherical in shape with average size distribution of 12.46 nm having face centered cubic (fcc) crystal lattice. IR analysis of AES and synthesized AgNPs indicated the involvement of both hydroxyl and amino groups in the biosynthesis and stabilization of AgNPs. The synthesized AgNPs were found to be an effective antibacterial agent against both Gram positive and Gram negative bacteria. On the basis of results and facts, a probable mechanism has also been proposed to explore the possible route of biosynthesis of AgNPs through AES. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparative proteomic analysis of the response to silver ions and yeast extract in Salvia miltiorrhiza hairy root cultures.

    Science.gov (United States)

    Wang, Yajun; Shen, Ye; Shen, Zhuo; Zhao, Le; Ning, Deli; Jiang, Chao; Zhao, Rong; Huang, Luqi

    2016-10-01

    Biotic and abiotic stresses can inhibit plant growth, resulting in losses of crop productivity. However, moderate adverse stress can promote the accumulation of valuable natural products in medicinal plants. Elucidating the underlying molecular mechanisms thus might help optimize the variety of available plant medicinal materials and improve their quality. In this study, Salvia miltiorrhiza hairy root cultures were employed as an in vitro model of the Chinese herb Danshen. A comparative proteomic analysis using 2-dimensional gel electrophoresis and MALDI-TOF-MS was performed. By comparing the gel images of groups exposed to the stress of yeast extract (YE) combined with Ag(+) and controls, 64 proteins were identified that showed significant changes in protein abundance for at least one time point after treatment. According to analysis based on the KEGG and related physiological experimental verification, it was found that YE and Ag(+) stress induced a burst of reactive oxygen species and activated the Ca(2+)/calmodulin signaling pathway. Expression of immune-suppressive proteins increased. Epidermal cells underwent programmed cell death. Energy metabolism was enhanced and carbon metabolism shifted to favor the production of secondary metabolites such as lignin, tanshinone and salvianolic acids. The tanshinone and salvianolic acids were deposited on the collapsed epidermal cells forming a physicochemical barrier. The defense proteins and these natural products together enhanced the stress resistance of the plants. Since higher levels of natural products represent good quality in medicinal materials, this study sheds new light on quality formation mechanisms of medicinal plants and will hopefully encourage further research on how the planting environment affects the efficacy of herbal medicines.

  13. Study on Extraction of Acid-Soluble Collagens from Silver Carp Skin%鲢鱼鱼皮中酸溶性胶原蛋白提取工艺研究

    Institute of Scientific and Technical Information of China (English)

    黄爱妮; 汪海波; 李丽; 胡小泓; 周胜男

    2016-01-01

    With silver carp fish skin as raw material,the optimal extraction parameters of acid-soluble collagens were explored by single factor test and orthogonal test. The denaturation temperatures of acid-soluble collagens were analyzed by AR-500 dynamic rheometer. The results showed that the optimal parameters for the extraction of acid-soluble collagens from silver carp skin were with acetate as the extraction agent,the concentration of acetic acid 0.3 mol/L,material/liquid ratio of 1∶60 (g/mL) for 96 h. The starting denaturation temperature of acid-soluble collagens from silver carp skin was 32.31℃,and the peak temperature was 34.82℃.%以鲢鱼鱼皮为原料,通过单因素试验和正交试验对鲢鱼鱼皮中酸溶性胶原蛋白的提取工艺参数进行分析,并用AR-500动态流变仪对鲢鱼鱼皮中酸溶性胶原蛋白的热变性温度进行分析。结果表明:鲢鱼鱼皮原料中酸溶性胶原蛋白提取的最佳工艺条件为:以乙酸作为提取剂,乙酸浓度0.3 mol/L,料液比1∶60(g/mL),提取时间96 h;此胶原蛋白的热变性起始温度为32.31℃,峰值温度为34.82℃。

  14. Attachment of 13 Types of Foodborne Bacteria to Jalapeño and Serrano Peppers and Antibacterial Effect of Roselle Calyx Extracts, Sodium Hypochlorite, Colloidal Silver, and Acetic Acid against These Foodborne Bacteria on Peppers.

    Science.gov (United States)

    Rangel-Vargas, Esmeralda; Gómez-Aldapa, Carlos A; Falfan-Cortes, Reyna N; Rodríguez-Marín, María L; Godínez-Oviedo, Angélica; Acevedo-Sandoval, Otilio A; Castro-Rosas, Javier

    2017-03-01

    Chili peppers are a very important crop in Mexico. However, these peppers have been associated with Salmonella infection outbreaks in the United States, and Salmonella and diarrheagenic Escherichia coli pathotypes have been isolated from jalapeño and serrano peppers in Mexico. To decrease microbial contamination of fruits and vegetables, chemical agents are commonly used; however, chemical agents used to eliminate pathogenic bacteria on vegetables have a limited antimicrobial effect. Roselle ( Hibiscus sabdariffa ) calyces have been reported to have an antimicrobial effect on pathogenic bacteria. In the present study, the antibacterial effect of four roselle calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria was evaluated on contaminated jalapeño and serrano peppers. The 13 types of foodborne bacteria evaluated were Listeria monocytogenes , Shigella flexneri , Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Staphylococcus aureus , E. coli O157:H7, five E. coli pathotypes (Shiga toxin producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. All 13 types attached to both pepper types, with no significant differences in attachment between jalapeño and serrano peppers. Roselle calyx extract treatment resulted in a greater reduction in levels of all foodborne bacteria than did treatment with sodium hypochlorite, colloidal silver, and acetic acid on both pepper types. Roselle calyx extracts may be a useful for disinfection of chili peppers in the field, processing plants, restaurants, and homes.

  15. Silver extraction using nitric acid from lead-zinc mine tail slag by response surface design%响应面法优化硝酸浸铅锌矿尾渣回收银工艺研究

    Institute of Scientific and Technical Information of China (English)

    杨彦松

    2011-01-01

    以硝酸浸铅锌矿尾渣回收银工艺进行了研究.以银浸出率为评价指标,探讨了硝酸质量浓度、液固比、浸出时间和浸出温度对回收银工艺的影响.在单因素实验的基础上,利用响应面法对银浸出的条件进行了优化.结果表明,当硝酸质量浓度为33.16%,液固比为16.39:1,在64.62℃的条件下浸出1.3h,该模型预测的最大银浸出率为69.73%.验证实验误差<3%,表明该模型与实际情况拟合良好.%The extraction process using nitric acid leaching silver from lead-zinc mine tail slag was studied. According to silver leaching rate using as an evaluation index, the effect of nitric acid mass concentration, the liquid-solid ratio,leaching time and leaching temperature on silver leaching rate was discussed. Based on single factor experiment, the leaching condition is further optimized by response surface method. The results showed that the largest model silver leaching rate of 69. 73% was obtained under the conditions of the concentration of 33.16% nitric acid quality and the liquid-solid ratio of 16.39:1 at 64.62 ℃ for 1.3 h. The verify error of the model was less than 3% ,and the model was fitted for the actual experiments well.

  16. Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates.

    Directory of Open Access Journals (Sweden)

    Khursheed Ali

    Full Text Available A simple and rapid microwave assisted method of green synthesis of silver nanoparticles (AgNPs was developed using aqueous leaf extract of Eucalyptus globulus(ELE, and their antibacterial and antibiofilm potential investigated. With this aim, the aqueous solutions of ELE and AgNO3(1 mM were mixed (1:4 v/v, and microwave irradiated at 2450 Mhz, for 30 sec. The instant color change of the ELE-AgNO3 mixture from pale yellow to dark brown indicated ELE-AgNPs synthesis. The intensity of peak at 428 nm in UV-Vis spectra, due to the surface plasmon resonance of AgNPs, varied with the amount of ELE, AgNO3 concentration, pH and time of incubation. The biosynthesized ELE-AgNPs were characterized by UV-visible spectroscopy, XRD, TEM, SEM-EDX, FTIR and TGA analyses. The size of ELE-AgNPs was determined to be in range of 1.9-4.3 nm and 5-25 nm, with and without microwave treatment, respectively. SEM exhibited the capping of AgNPs with the ELE constituents, and validated by FTIR analysis. The FTIR data revealed the presence of plant organic constituents and metabolites bound to ELE-AgNPs, which contributes for their stability. The antimicrobial activity of ELE-AgNPs was assessed by growth and biofilm inhibition of extended spectrum β-lactamase (ESBL producing Pseudomonas aeruginosa, Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA and methicillin-sensitive Staphylococcus aureus (MSSA clinical bacterial isolates. The results demonstrated that S. aureus were more sensitive to ELE-AgNPs than E. coli and P. aeruginosa. MRSA exhibited higher sensitive than MSSA, whereas P. aeruginosa were more sensitive than E. coli to ELE-AgNPs treatment. Also, significant (83 ± 3% and 84 ± 5% biofilm inhibition was observed in case of S. aureus and P. aeruginosa, respectively. The results elucidated environmentally friendly, economical and quick method for production of colloidal bio-functionalized ELE-AgNPs, for effectual clinical applications, as broad

  17. Diet and the evolution of the earliest human ancestors.

    Science.gov (United States)

    Teaford, M F; Ungar, P S

    2000-12-05

    Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations.

  18. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines.

    Science.gov (United States)

    Priyadharshini, Ramaramesh Indra; Prasannaraj, Govindaraj; Geetha, Natesan; Venkatachalam, Perumal

    2014-12-01

    A rapid and novel microwave-mediated protocol was established for extracellular synthesis of metallic silver (Ag) and zinc oxide (ZnO) nanoparticles using the extracts of macro-algae Gracilaria edulis (GE) and also examined its anticancer activity against human prostate cancer cell lines (PC3). The formation of silver nanoparticles (GEAgNPs) and zinc oxide nanoparticles (GEZnONPs) in the reaction mixture was determined by ultraviolet-visible spectroscopy. The synthesized Ag and ZnO nanoparticles were characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, energy dispersive X-ray, and field emission scanning electron microscopy. The silver and zinc oxide nanoparticles were spherical and rod-shaped, respectively. Cell viability assays were carried out to determine the cytotoxic effects of AgNPs and ZnONPs against PC3 and normal African monkey kidney (VERO) cell line. The inhibitory concentration values were found to be 39.60, 28.55, 53.99 μg/mL and 68.49, 88.05, 71.98 μg/mL against PC3 cells and Vero cells for AgNPs, ZnONPs, and aqueous G. edulis extracts, respectively, at 48 h incubation period. As evidenced by acridine orange/ethidium bromide staining, the percentage of the apoptotic bodies was found to be 62 and 70 % for AgNPs and ZnONPs, respectively. The present results strongly suggest that the synthesized ZnONPs showed an effective anticancer activity against PC3 cell lines than AgNPs.

  19. Earliest tea as evidence for one branch of the Silk Road across the Tibetan Plateau

    Science.gov (United States)

    Lu, Houyuan; Zhang, Jianping; Yang, Yimin; Yang, Xiaoyan; Xu, Baiqing; Yang, Wuzhan; Tong, Tao; Jin, Shubo; Shen, Caiming; Rao, Huiyun; Li, Xingguo; Lu, Hongliang; Fuller, Dorian Q.; Wang, Luo; Wang, Can; Xu, Deke; Wu, Naiqin

    2016-01-01

    Phytoliths and biomolecular components extracted from ancient plant remains from Chang’an (Xi’an, the city where the Silk Road begins) and Ngari (Ali) in western Tibet, China, show that the tea was grown 2100 years ago to cater for the drinking habits of the Western Han Dynasty (207BCE-9CE), and then carried toward central Asia by ca.200CE, several hundred years earlier than previously recorded. The earliest physical evidence of tea from both the Chang’an and Ngari regions suggests that a branch of the Silk Road across the Tibetan Plateau, was established by the second to third century CE.

  20. Use of ferricyanide for gold and silver cyanidation

    Institute of Scientific and Technical Information of China (English)

    F. XIE; D. B. DREISINGER

    2009-01-01

    Low gold and silver leaching kinetics has been commonly observed in traditional gold-silver cyanidation process, especially in heap leaching and in situ leaching operations. The different mineralogy of gold and silver in the ores is suspected to be the main reason, e.g., the occurrence of low solubility acanthite (Ag2S) typically results in low overall silver extraction. Due to the low solubility of oxygen in cyanide solution, the reactivity and availability of oxidant is believed to be the critical limitation for gold and silver dissolution. The use of ferricyanide as the auxiliary oxidant for gold and silver cyanidation has been examined. The rotating disc test results prove the assistant effect of ferricyanide on increasing the dissolution rate of gold and silver. The potential use of ferricyanide in gold/silver cyanidation process is proposed based on the leaching results of actual ores.

  1. Green Synthesis of Silver Nanoparticles Using Leaf Extracts of Clitoria ternatea and Solanum nigrum and Study of Its Antibacterial Effect against Common Nosocomial Pathogens

    Directory of Open Access Journals (Sweden)

    Narayanaswamy Krithiga

    2015-01-01

    Full Text Available Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental friendly technology for synthesis of nanomaterials. Silver has been known to have effective bactericidal properties for centuries. Nowadays, silver based topical dressings have been widely used as a treatment for infection in burns, open wounds, and chronic ulcer. As the pathogenic organisms are getting evolved day by day due to mutation and gaining antibiotic resistance, an important industrial sector of nanoscience deals with the preparation and study of nanoparticles in antibacterial clothing, burn ointments, and coating for medical device. The size of nanomaterials is much smaller than that of most biological molecules and structures; therefore, nanomaterials can be useful in both in vivo and in vitro biomedical research application. The purpose of the study is to synthesize and characterize the plant mediated silver nanoparticles using Clitoria ternatea and Solanum nigrum. Further investigation of the shape and size of nanoparticle was done by X-ray diffraction and scanning electron microscopic studies. A silver nanoparticle at different concentration was assessed for its antibacterial effect, against various nosocomial pathogens.

  2. 白鲢中盐溶蛋白提取工艺优化及其加工特性研究%Optimization of extraction conditions of silver carp salt soluble proteins and their processing

    Institute of Scientific and Technical Information of China (English)

    雷颂; 窦建洲; 梅志方; 杨品红; 王伯华

    2015-01-01

    Silver carp,one of the four famous freshwater fish,has limited commercial value due to its strong earthy taste and lots of fish bones.However,its salt soluble proteins can be extracted and has higher economic value.Therefore,optimization of extraction conditions of silver carp salt soluble protein and their processing properties are studied in this paper,The best extraction conditions are 0.8 mol/L NaCl concentration,pH 6.0,extraction time 30 h and solid-liquid ratio 1∶5.Under the above conditions,salt soluble protein concentration is 2.602 4 g/100 g and extraction yield is about 80%.Silver carp thermal induced salt soluble protein gel has good water retention,water holding capacity can be up to 98.24%,the best inducing temperature is 80 ℃.Phosphate can help water retention of the gel.Silver carp salt soluble protein has good emulsification ability and its emulsifying activity (EAI) is 19.47 m2/g,emulsion stability (ESI) is 89.45%.Therefore,the gel can effectively improve the quality of meat products.The study provides a new application of silver carp.%对白鲢盐溶蛋白的提取工艺优化及其加工特性的研究结果显示:NaCl浓度为0.8 mol/L、pH值为6.0、浸提时间为30 h、固液比为1∶5(g∶ mL),在此条件下鲢鱼鱼背肉盐溶蛋白提取浓度为2.6024 g/100 g,盐溶蛋白的提取率最高,为80%左右.白鲢盐溶蛋白热诱导凝胶具有较好保水性,可达98.24%左右,其最佳热诱导凝胶温度为80℃,添加磷酸盐对白鲢盐溶蛋白热诱导凝胶保水性具有一定提升作用.白鲢盐溶蛋白具有较好乳化能力,其乳化活性(EAI)为19.47 m2/g,乳化稳定性(ESI)为89.45%,可有效改善肉糜制品加工品质,为白鲢精深加工提供了新思路.

  3. Earliest Recollections and Birth Order: Two Adlerian Exercises.

    Science.gov (United States)

    Parrott, Les

    1992-01-01

    Presents two exercises designed to demonstrate the influence of two Adlerian principles on personality. Includes exercises dealing with birth order and earliest recollection. Concludes that the exercises actively demonstrate major concepts for counseling courses in Adlerian psychotherapy. Reports that students rated both exercises highly, with…

  4. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  5. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  6. Your Earliest Memory May Be Earlier than You Think: Prospective Studies of Children's Dating of Earliest Childhood Memories

    Science.gov (United States)

    Wang, Qi; Peterson, Carole

    2014-01-01

    Theories of childhood amnesia and autobiographical memory development have been based on the assumption that the age estimates of earliest childhood memories are generally accurate, with an average age of 3.5 years among adults. It is also commonly believed that early memories will by default become inaccessible later on and this eventually…

  7. EXTRACT

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra

    2016-01-01

    The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have the...... and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed.Database URL: https://extract.hcmr.gr/....

  8. Analysis of metals with luster: Roman brass and silver

    Energy Technology Data Exchange (ETDEWEB)

    Fajfar, H., E-mail: helena.fajfar@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia); Rupnik, Z. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Šmit, Ž. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia)

    2015-11-01

    Non-destructive PIXE analysis using in-air proton beam was used for the studies of earliest brass coins issued during the 1st century BC by Greek cities in Asia Minor, Romans and Celts, and for the studies of plated low grade silver coins of the 3rd century AD. The analysis determined the levels of zinc and important trace elements, notably selenium, which confirms spread of selenium-marked copper from the east. For plating, combined tinning and silvering was identified by the mapping technique for the mid 3rd century AD, which evolved into mere plating by 270 AD.

  9. Diet and the evolution of the earliest human ancestors

    OpenAIRE

    Mark F. Teaford; Peter S Ungar

    2000-01-01

    Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of...

  10. Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: Application of the nanoparticles for catalytic reduction of a variety of dyes in water.

    Science.gov (United States)

    Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud

    2017-05-01

    In this paper, silver nanoparticles (Ag NPs) are synthesized using Achillea millefolium L. extract as reducing and stabilizing agents and peach kernel shell as an environmentally benign support. FT-IR spectroscopy, UV-Vis spectroscopy, X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Thermo gravimetric-differential thermal analysis (TG-DTA) and Transmission Electron Microscopy (TEM) were used to characterize peach kernel shell, Ag NPs, and Ag NPs/peach kernel shell. The catalytic activity of the Ag NPs/peach kernel shell was investigated for the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), and Methylene Blue (MB) at room temperature. Ag NPs/peach kernel shell was found to be a highly active catalyst. In addition, Ag NPs/peach kernel shell can be recovered and reused several times with no significant loss of its catalytic activity.

  11. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent.

    Science.gov (United States)

    Yang, Guangyu; Fen, Weibo; Lei, Chun; Xiao, Weilie; Sun, Handong

    2009-02-15

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0molL(-1) HNO(3) was used as eluent. The metal ions in 300mL solution can be concentrated to 1.0mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4ngL(-1) for Cr(III), 1.0ngL(-1) for Ni(II), 0.85ngL(-1) for Ag(I), 1.2ngL(-1) for Co(II), 1.0ngL(-1) for Cu(II), 1.2ngL(-1) for Cd(II) and 1.3ngL(-1) for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method).

  12. Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag(+).

    Science.gov (United States)

    Hartmann, Georg; Baumgartner, Tanja; Schuster, Michael

    2014-01-01

    For the quantification of silver nanoparticles (Ag-NPs) in environmental samples using cloud point extraction (CPE) for selective enrichment, surface modification of the Ag-NPs and matrix effects can play a key role. In this work we validate CPE with respect to the influence of different coatings and naturally occurring matrix components. The Ag-NPs tested were functionalized with inorganic and organic compounds as well as with biomolecules. Commercially available NPs and NPs synthesized according to methods published in the literature were used. We found that CPE can extract almost all Ag-NPs tested with very good efficiencies (82-105%). Only Ag-NPs functionalized with BSA (bovine serum albumin), which is a protein with the function to keep colloids in solution, cannot be extracted. No or little effect of environmentally relevant salts, organic matter, and inorganic colloids on the CPE of AgNPs was found. Additionally we used CPE to observe the in situ formation of Ag-NPs produced by the reduction of Ag(+) with natural organic matter (NOM).

  13. 亚硫酸钠分银与氨浸分银工业实验%Industrial experiments of silver extraction by sodium sulfite and ammonia leaching

    Institute of Scientific and Technical Information of China (English)

    耿桂秀; 李勤; 周晓勇; 高武成

    2013-01-01

    Major factors of sodium sulfite-formaldehyde and ammonia leaching-hydrazine hydrate reduction methods in dealing with chlorinated gold residue were studied by the industrial trials. Furthermore, the advantages and disadvantages of the two methods were analyzed. The experimental results showed that the optimum operating conditions for the sulfite-formaldehyde reduction method: the dosage of sodium sulfite was 1.3 times of the theoretical value, the pH was 9.2, the temperature was 30℃, and the leaching rate of silver was 97.69%; the optimum operating conditions for the formaldehyde: the mass of formaldehyde was 0.4 times of the silver, the temperature was 40℃~50℃, the pH was 9.2, and the recovery of the silver was 96.83%. the best operating conditions for ammonia leaching-hydrazine hydrate reduction method: the optimum concentration of ammonia was 8%~10%, the temperature was 30℃, the leaching rate of the silver was 96.11%; the optimal reduction condition using hydrazine hydrate: the dosage of hydrazine hydrate was 2 times of the theoretical value, temperature was 60℃, the time of reaction was 0.5h, and the reduction rate of the silver was above 99%.%在湿法处理铜阳极泥过程中,分别采用亚硫酸钠-甲醛还原法和氨浸-水合肼还原法处理氯化分金渣.通过工业试验,研究了影响银回收的主要因素,并分析了这两种方法的优劣势.结果表明:在亚硫酸钠分银-甲醛还原中,最佳浸出条件为,亚硫酸钠用量为理论值的1.3倍,室温30℃,pH值为9.2,时间4h,银浸出率可达97.69%;甲醛最佳还原条件为,其用量m(甲醛):m(银)=1:2.5,pH值为9.2,时间4h,温度40℃~50℃,银还原率可达96.83%.在氨浸分银-水合肼还原中,最佳浸出条件为,体系氨浓度8%~10%,温度30℃,时间4h,银的浸出率96.11%;水合肼还原,其用量为理论值的2倍,60℃下反应0.5h,银的还原率达99%以上.

  14. Degradation of methylene blue using biologically synthesized silver nanoparticles.

    Science.gov (United States)

    Vanaja, M; Paulkumar, K; Baburaja, M; Rajeshkumar, S; Gnanajobitha, G; Malarkodi, C; Sivakavinesan, M; Annadurai, G

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.

  15. The earliest evidence for anatomically modern humans in northwestern Europe.

    Science.gov (United States)

    Higham, Tom; Compton, Tim; Stringer, Chris; Jacobi, Roger; Shapiro, Beth; Trinkaus, Erik; Chandler, Barry; Gröning, Flora; Collins, Chris; Hillson, Simon; O'Higgins, Paul; FitzGerald, Charles; Fagan, Michael

    2011-11-02

    The earliest anatomically modern humans in Europe are thought to have appeared around 43,000-42,000 calendar years before present (43-42 kyr cal BP), by association with Aurignacian sites and lithic assemblages assumed to have been made by modern humans rather than by Neanderthals. However, the actual physical evidence for modern humans is extremely rare, and direct dates reach no farther back than about 41-39 kyr cal BP, leaving a gap. Here we show, using stratigraphic, chronological and archaeological data, that a fragment of human maxilla from the Kent's Cavern site, UK, dates to the earlier period. The maxilla (KC4), which was excavated in 1927, was initially diagnosed as Upper Palaeolithic modern human. In 1989, it was directly radiocarbon dated by accelerator mass spectrometry to 36.4-34.7 kyr cal BP. Using a Bayesian analysis of new ultrafiltered bone collagen dates in an ordered stratigraphic sequence at the site, we show that this date is a considerable underestimate. Instead, KC4 dates to 44.2-41.5 kyr cal BP. This makes it older than any other equivalently dated modern human specimen and directly contemporary with the latest European Neanderthals, thus making its taxonomic attribution crucial. We also show that in 13 dental traits KC4 possesses modern human rather than Neanderthal characteristics; three other traits show Neanderthal affinities and a further seven are ambiguous. KC4 therefore represents the oldest known anatomically modern human fossil in northwestern Europe, fills a key gap between the earliest dated Aurignacian remains and the earliest human skeletal remains, and demonstrates the wide and rapid dispersal of early modern humans across Europe more than 40 kyr ago. ©2011 Macmillan Publishers Limited. All rights reserved

  16. Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive.

    Science.gov (United States)

    Bodznick, D; Northcutt, R G

    1981-04-24

    Evoked potential and unit responses from the lamprey brain to weak electric fields demonstrate that lampreys have an electrosensory system as sensitive as those of other electroreceptive fishes. Electrosensory responses were recorded in the dorsal medulla, the midbrain torus semicircularis, and the optic tectum. Similarities in the structure of the anterior lateral line nerves and medullary organization between lampreys and several primitive jawed fishes indicate that the electroreceptive systems are homologous in these taxa. Thus electroreception was probably present in the earliest vertebrates ancestral to both agnathans and gnathostomes.

  17. The Earliest Acupuncture and Moxibustion Manuscript Was Found in Dunhuang

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qi; Silke Assmus-Helfen

    2011-01-01

    @@ In 1900, around 50 000 books and manuscripts were discovered in the Mogao Grottoes of Dunhuang in Gansu Province, China.Known today as the "Dunhuang Heritage",this trove had been sealed in a cave for close on 900 years.Among the books, there was a volume entitled "New Compendium of Works on Moxibustion for Emergencies (新集备急灸经)".It is the earliest original manuscript for the collection of acupuncture papers at present and is particularly precious as not having been found recorded in any ancient books.

  18. A Clinical Observation of Col oidal Silver Gelatin Sponge on Preventing Dry Socket Caused by Extraction of Impacted Mandibular Third Molar%胶质银明胶海绵在下颌阻生智齿拔牙术后干槽症的临床观察

    Institute of Scientific and Technical Information of China (English)

    李明; 于素平

    2012-01-01

      目的观察胶质银止血明胶海绵预防阻生智齿拔牙后干槽症的效果。方法分组对256例下颌第三磨牙拔除术后进行不同的拔牙创口处理,观察术后发生干槽症的情况,分析病因。结果拔牙后创口常规处理发生干槽症的机率为11%,而创口置入胶质银止血明胶海绵,干槽症发生率1%。结论拔牙后创口用胶质银止血明胶海绵,可以大大减少干槽症发病机率。%  Objective To study the clinical effect of colloidal silver gelatin sponge on preventing dry socket of mandibular third molar extraction. Methods Group of 256 cases of impacted mandibular third molar extraction different after the extraction wound treatment, observation of dry socket occurred after the situation, analyze causes. Results Conventional extraction results after wound treatment of dry socket in the probability of 11%, and wound implantation colloidal silver gelatin sponge, dry socket incidence of 1%. Conclusion After extraction with colloidal silver gelatin sponge,which can greatly reduce the incidence rate of dry socket.

  19. Biosynthesis of Silver Nanoparticles Using Chenopodium ambrosioides

    Directory of Open Access Journals (Sweden)

    Luis M. Carrillo-López

    2014-01-01

    Full Text Available Biosynthesis of silver nanoparticles (AgNPs was achieved using extract of Chenopodium ambrosioides as a reducer and coating agent at room temperature (25°C. Two molar solutions of AgNO3 (1 mM and 10 mM and five extract volumes (0.5, 1, 2, 3, and 5 mL were used to assess quantity, shape, and size of the particles. The UV-Vis spectra gave surface plasmon resonance at 434–436 nm of the NPs synthesized with AgNO3 10 mM and all extract volumes tested, showing a direct relationship between extract volumes and quantity of particles formed. In contrast, the concentration of silver ions was related negatively to particle size. The smallest (4.9 ± 3.4 nm particles were obtained with 1 mL of extract in AgNO3 10 mM and the larger amount of particles were obtained with 2 mL and 5 mL of extract. TEM study indicated that the particles were polycrystalline and randomly oriented with a silver structure face centered cubic (fcc and fourier transform infrared spectroscopy (FTIR indicated that disappearance of the –OH group band after bioreduction evidences its role in reducing silver ions.

  20. Cattle Management for Dairying in Scandinavia's Earliest Neolithic.

    Directory of Open Access Journals (Sweden)

    Kurt J Gron

    Full Text Available New evidence for cattle husbandry practices during the earliest period of the southern Scandinavian Neolithic indicates multiple birth seasons and dairying from its start. Sequential sampling of tooth enamel carbonate carbon and oxygen isotope ratio analyses and strontium isotopic provenancing indicate more than one season of birth in locally reared cattle at the earliest Neolithic Funnel Beaker (EN I TRB, 3950-3500 cal. B.C. site of Almhov in Scania, Sweden. The main purpose for which cattle are manipulated to give birth in more than one season is to prolong lactation for the production of milk and dairy-based products. As this is a difficult, intensive, and time-consuming strategy, these data demonstrate complex farming practices by early Neolithic farmers. This result offers strong support for immigration-based explanations of agricultural origins in southern Scandinavia on the grounds that such a specialised skill set cannot represent the piecemeal incorporation of agricultural techniques into an existing hunter-gatherer-fisher economy.

  1. 从复杂银阳极泥中提取金、钯工艺优化与研究%Research and Optimization on Process of Extraction Gold and Palladium from the Complex Silver Anode Slime

    Institute of Scientific and Technical Information of China (English)

    潘从明; 李明; 黄虎军; 魏建强; 李进武; 冯岩

    2014-01-01

    复杂银阳极泥回收金工艺是通过对其水溶液氯化得到分金液,使用亚钠进行还原得到合格金粉,由于外购原料增多,经水溶液氯化得到的分金液含有铂钯,分金液亚钠还原效率仅能控制在65%左右,需二次亚钠还原回收金。然而,得到的二次金粉中钯含量超标,返工易富集循环,不利于钯回收。本研究改进了复杂银阳极泥氯化分金液在进行亚钠一次还原后提取金、钯的工艺,具体工艺流程:首先,通过小型试验对还原后液开展DBC萃金并提纯金工艺,萃余液在进行传统的提取钯工艺的基础上,采用水合肼还原二氯二氨络亚钯得到钯黑。之后,进行工业扩大试验,确定最佳工艺技术条件。整个工艺过程中,金和钯的直收率分别为99.52%和94.53%,技术指标良好。%Extraction gold from the complex silver anode slime is that points of gold liquid can be obtained by chloridizing the aqueous solution of the silver anode slime,and then qualified gold powders are obtained after reducing sodium nitrite.Because of the more outsourcing raw material,obtained the points of gold liquid contain platinum as well as palladium,the efficiency of sodium nitrite reduction of the liquid can only be controlled around 65%,thus sodium nitrite reduction for the second time is required.However,the content of palladium in the gold powders exceed standard,and the reword can lead to enrichment of circulation,which will go against the recycle of palladium.Extraction gold and palladium from the complex silver anode slime after sodium nitrite reduction for the first time.Firstly,on the basis of traditional technology of extraction in raffinate and small text on DBC extraction of gold,and we apply palladium black hydrazine hydrate to reduce two chlorine two ammino and palladium so as to get palladium black.And then Industry expanding test is carried out in order to identify the best condition during

  2. Detection of Trans Fatty Acids in Food with Silver Ion Solid Phase Extraction-Gas Chromatography%银离子固相萃取-气相色谱法检测食品中的反式脂肪酸

    Institute of Scientific and Technical Information of China (English)

    王涛; 邱歆磊; 汪国权; 蔡美琴

    2012-01-01

    [目的]评价银离子固相萃取结合气相色谱( silver ion solid phase extraction-gas chromatography,Ag+-SPE/GC)对市售加工食品中反式脂肪酸(trans fatty acids,TFA)的定性和定量检测效果.[方法]采用Ag+-SPE小柱预分离牛肉火腿、豆奶粉和巧克力威化中的TFA甲酯,然后按食品中反式脂肪酸的检测标准(GB/T 22110-2008)进行气相色谱检测.[结果]该方法对食品中TFA甲酯异构体的回收率为71.0%~90.5%,相对标准偏差(relative standard deviation,RSD)均小于13%,该方法对TFA甲酯单标的回收率为84.1%~98.7%,RSD均小于5.6%;最低检出限为10mg/100g(按脂肪计).牛肉火腿、豆奶粉和巧克力威化中TFA含量依次为37.26 mg/100 g、24.64 mg/100g和162.85 mg/100g;3种食品中t C18∶1含量较高,t C18∶2次之,t C18∶3较少;均未检测到t C16∶1.[结论]Ag+-SPE/GC方法灵敏度较高、分离效果好、重现性好,可以避免顺式脂肪酸和饱和脂肪酸的干扰,适用于乳、肉、巧克力及其制品等食物中TFA含量的测定.%[ Objective ] To evaluate the quantitative and qualitative detection of trans fatty acids (TFA) in processed foods with silver ion solid phase extraction-gas chromatography (Ag+-SPE/GC). [ Methods ] The fatty acid methyl esters derived from beef ham, soybean flour and chocolate wafer were priority separated by silver ion solid phase extraction column, and then tested with gas chromatography according to Determination of trans fatty acids in foods-Gas chromatography (GB/T 22110-2008). [ Results ] The recoveries of TFA methyl ester isomer in food ranged from 71.0% to 90.5% with the relative standard deviation (RSD) less than 13%. The average recoveries of TFA methyl ester standard ranged from 84.1% to 98.7% with the RSD less than 5.6%. The lowest detection limit was 10mg/100g fat. TFA content in beef ham, soybean flour and chocolate wafer were 37.26 mg/100 g, 24.64 mg/100g and 162.85 mg/100 g, respectively. These

  3. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution.

    Directory of Open Access Journals (Sweden)

    Samuel Zamora

    Full Text Available Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta. This provides a root for all echinoderms and confirms that the earliest members were deposit feeders not suspension feeders.

  4. The earliest fossil evidence for sexual dimorphism in primates

    Science.gov (United States)

    Krishtalka, Leonard; Stucky, Richard K.; Beard, K. C.

    1990-01-01

    Recently obtained material of the early Eocene primate Notharctus venticolus, including two partial skulls from a single stratigraphic horizon, provides the geologically earliest evidence of sexual dimorphism in canine size and shape in primates and the only unequivocal evidence for such dimorphism in strepsirhines. By analogy with living platyrrhines, these data suggest that Notharctus venticolus may have lived in polygynous social groups characterized by a relatively high level of intermale competition for mates and other limited resources. The anatomy of the upper incisors and related evidence imply that Notharctus is not as closely related to extant lemuriform primates as has been recently proposed. The early Eocene evidence for canine sexual dimorphism reported here, and its occurrence in a nonanthropoid, indicates that in the order Primates such a condition is either primitive or evolved independently more than once.

  5. Investigating the earliest epochs of the Milky Way halo

    Science.gov (United States)

    Starkenburg, Else; Starkenburg

    2016-08-01

    Resolved stellar spectroscopy can obtain knowledge about chemical enrichment processes back to the earliest times, when the oldest stars were formed. In this contribution I will review the early (chemical) evolution of the Milky Way halo from an observational perspective. In particular, I will discuss our understanding of the origin of the peculiar abundance patterns in various subclasses of extremely metal-poor stars, taking into account new data from our abundance and radial velocity monitoring programs, and their implications for our understanding of the formation and early evolution of both the Milky Way halo and the satellite dwarf galaxies therein. I conclude by presenting the ``Pristine'' survey, a program on the Canada-France-Hawaii Telescope to study this intriguing epoch much more efficiently.

  6. The earliest translations of Emily Dickinson's poetry in Slovene

    Directory of Open Access Journals (Sweden)

    Jerneja Petrič

    2006-12-01

    Full Text Available The article addresses the issue of the earliest  translations of Dickinson's poetry in Slovene. Only 6 of the total number of 19 poems, translated into Slovene by Vatro Grill, were published  in his 1979 memoir Med dvema svetovoma (Between Two Worlds. The other 13 poems included in Grill's manuscripts were never published.  In the first  part  of her article,  the author  briefly  surveys  the translations of Dickinson's poetry into Slovene by Mart  Ogen, Aleš  Debeljak, Ivo Svetina and Miklavž Komelj. In the second part, the focus is on_Grill's translation of two poems by Emily Dickinson whereby the translator's ability to capture the meaning of Dickinson's verse is measured against Mart Ogen's translation of the same poems.

  7. Ultrasonic hearing and echolocation in the earliest toothed whales.

    Science.gov (United States)

    Park, Travis; Fitzgerald, Erich M G; Evans, Alistair R

    2016-04-01

    The evolution of biosonar (production of high-frequency sound and reception of its echo) was a key innovation of toothed whales and dolphins (Odontoceti) that facilitated phylogenetic diversification and rise to ecological predominance. Yet exactly when high-frequency hearing first evolved in odontocete history remains a fundamental question in cetacean biology. Here, we show that archaic odontocetes had a cochlea specialized for sensing high-frequency sound, as exemplified by an Oligocene xenorophid, one of the earliest diverging stem groups. This specialization is not as extreme as that seen in the crown clade. Paired with anatomical correlates for high-frequency signal production in Xenorophidae, this is strong evidence that the most archaic toothed whales possessed a functional biosonar system, and that this signature adaptation of odontocetes was acquired at or soon after their origin.

  8. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy.

    Science.gov (United States)

    Patra, Jayanta Kumar; Das, Gitishree; Baek, Kwang-Hyun

    2016-08-01

    The biological synthesis of nanoparticles has gained tremendous interest, and plants and plant extracts are preferred over other biological sources for this process because of their rich content of bioactive metabolites. In this study, silver nanoparticles (AgNPs) were produced utilizing the aqueous extract of watermelon rind (WRA), an agricultural waste material under photo exposed condition at room temperature, and tested for their antibacterial, anticandidal and antioxidant activities. The synthesized AgNPs showed surface plasmon resonance at 425nm with an average size of 109.97nm. The morphology and elemental composition was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric and differential thermogravimetric analysis (TG/DTG) confirmed that the bioactive compounds from the WRA extract were involved in the synthesis and capping of AgNPs. X-ray diffraction (XRD) revealed the crystallite nature of the AgNPs. The AgNPs exhibited strong broad spectrum antibacterial activity against five different foodborne bacteria with zones of inhibition 9.12-14.54mm in diameter. When AgNPs were mixed with kanamycin and rifampicin the mixture exhibited strong antibacterial synergistic activity. The AgNPs also exerted strong synergistic anticandidal activity when they were combined with amphotericin b. The AgNPs had high antioxidant activity and reducing power. Overall, the results confirmed the bio-potentials of the synthesized AgNPs using WRA, which could have applications in the biomedical, cosmetic, pharmaceutical, food preservation and packaging industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Earliest evidence for commensal processes of cat domestication.

    Science.gov (United States)

    Hu, Yaowu; Hu, Songmei; Wang, Weilin; Wu, Xiaohong; Marshall, Fiona B; Chen, Xianglong; Hou, Liangliang; Wang, Changsui

    2014-01-01

    Domestic cats are one of the most popular pets globally, but the process of their domestication is not well understood. Near Eastern wildcats are thought to have been attracted to food sources in early agricultural settlements, following a commensal pathway to domestication. Early evidence for close human-cat relationships comes from a wildcat interred near a human on Cyprus ca. 9,500 y ago, but the earliest domestic cats are known only from Egyptian art dating to 4,000 y ago. Evidence is lacking from the key period of cat domestication 9,500-4,000 y ago. We report on the presence of cats directly dated between 5560-5280 cal B.P. in the early agricultural village of Quanhucun in Shaanxi, China. These cats were outside the wild range of Near Eastern wildcats and biometrically smaller, but within the size-range of domestic cats. The δ(13)C and δ(15)N values of human and animal bone collagen revealed substantial consumption of millet-based foods by humans, rodents, and cats. Ceramic storage containers designed to exclude rodents indicated a threat to stored grain in Yangshao villages. Taken together, isotopic and archaeological data demonstrate that cats were advantageous for ancient farmers. Isotopic data also show that one cat ate less meat and consumed more millet-based foods than expected, indicating that it scavenged among or was fed by people. This study offers fresh perspectives on cat domestication, providing the earliest known evidence for commensal relationships between people and cats.

  10. Considerations on Terrestrial Iron Depositing Analogs to Earliest Mars

    Science.gov (United States)

    Brown, Igor I.; Allen, Carlton C.; Sarkisova, S. A.; Garrison, D. H.; McKay, D. S.

    2007-01-01

    Iron oxide and hydroxide minerals, including hematite, can mineralize and preservemicrofossils and physical biomarkers (Allen at al., 2004). Preserved remnants of phototrophic microorganisms are recognized as biosignatures of past life on Earth (Schopf, 2006). To date, two types of surface iron depositing environments have been studied as analogs to possible habitable environments on earliest Mars: the highly acidified Rio Tinto River (Iberian Belt, Spain) [Gomez Ortis et al., 2007], and the nearneutral iron depositing Chocolate Pots Hot Spring (Yellowstone National Park, US) [Parenteau at al., 2005]. While phototrophs in the Rio Tinto are only represented by eukaryotic algae (Amaral Zettler et all., 2002), Chocolate Pots is mainly populated with cyanobacteria (Pierson et all., 2000; Brown et all., 2007). Which of these environments is the closer analog to a potentially habitable early Mars? Paleobiological data, combined with recent "tree of life" interpretations, suggest that phototrophic eukaryotes evolved not earlier than 2.5 - 2.8 b.y. after Earth s accretion (4.6 b.y.), while cyanobacteria and /or their iron-tolerant predecessors evolved between 1 - 1.5 b.y. after accretion (Brown et al., 2007). Lindsay and Brasier (2002) postulated that microbial life on Mars surface could have lasted no more than 1-1.5 b.y. after Mars accretion (also 4.6 b.y.). Recent multispectral mapping of Mars suggests that near-neutral wet environments prevailed at approximately this time (Bibring, et al., 2006). Thus, near-neutral iron depositing hot springs such as Chocolate Pots Hot Spring seem to be the more likely habitable analogs for earliest Mars.

  11. Optimization of silver-dielectric-silver nanoshell for sensing applications

    Science.gov (United States)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-08-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell.

  12. Optimization of silver-dielectric-silver nanoshell for sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shirzaditabar, Farzad; Saliminasab, Maryam [Department of Physics, Razi University, Kermanshah 67144-15111 (Iran, Islamic Republic of)

    2013-08-15

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell.

  13. Recovery of Silver and Gold from Copper Anode Slimes

    Science.gov (United States)

    Chen, Ailiang; Peng, Zhiwei; Hwang, Jiann-Yang; Ma, Yutian; Liu, Xuheng; Chen, Xingyu

    2015-02-01

    Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.

  14. Determination of silver(I) by electrothermal-AAS in a microdroplet formed from a homogeneous liquid-liquid extraction system using tetraspirocyclohexylcalix[4]pyrroles.

    Science.gov (United States)

    Ghiasvand, Ali Reza; Moradi, Farzaneh; Sharghi, Hashem; Hasaninejad, Ali Reza

    2005-04-01

    A simple and efficient method for the selective separation and preconcentration of Ag+ using homogeneous liquid-liquid extraction was developed. Tetraspirocyclohexylcalix[4]pyrrole (TSCC4P) was synthesized and investigated as a suitable selective complexing ligand for Ag+. Zonyl FSA (FSA) was applied as a phase-separator agent under mild pH conditions. Under the optimal conditions ([TSCC4P] = 3.4 x 10(-4) M, [THF] = 25.0% v/v, [FSA] = 1.25% w/v, and pH = 4.5), 5 microg of Ag+ in 6.0 ml aqueous phase could be extracted quantitatively into 20 microl of the sedimented phase. The maximum concentration factor was 300-fold. The limit of detection of the proposed method was 0.005 ng/ml. The reproducibility of the proposed method was at most 3.5%. The influence of the pH, type and volume of the water-miscible organic solvent, concentration of FSA, concentration of the complexing ligand and the effect of different diverse ions on the extraction and determination of Ag+ were investigated. The proposed method was applied to the extraction and determination of Ag+ in different water samples.

  15. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II).

    Science.gov (United States)

    Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna

    2016-08-20

    The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters.

  16. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

    DEFF Research Database (Denmark)

    Hyllested, Jes Ærøe; Espina Palanco, Marta; Hagen, Nicolai

    2015-01-01

    Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges...... microscopy shows that the shapes of the nanoparticles are different depending on the fruit used for preparation. The green preparation process results mainly in individual nanoparticles with a very poor tendency to form aggregates with narrow gaps even when aggregation is forced by the addition of Na...... absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multi-color luminesce signal...

  17. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

    DEFF Research Database (Denmark)

    Hyllested, Jes Ærøe; Espina Palanco, Marta; Hagen, Nicolai

    2015-01-01

    Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges...... as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles. Electron......Cl. This explains only modest enhancement factors for near-infrared-excited surface enhanced Raman scattering. In addition to the surface plasmon band, UV-visible absorption spectra show features in the UV range which indicates also the presence of small silver clusters, such as Ag42+. The increase of the plasmon...

  18. Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles

    Science.gov (United States)

    Bindhu, M. R.; Sathe, V.; Umadevi, M.

    2013-11-01

    Silver nanoparticles were rapidly synthesized using Moringa oleifera flower extract as the reducing agent shows surface plasmon resonance peak at 439 nm. The size and shape of the nanoparticles controlled by varying the concentration of M. oleifera flower extract in the reaction medium. The synthesized silver nanoparticles were well-dispersed spherical nanoparticles with the average size of 14 nm. The retinoic acid present in M. oleifera flower extract used as reducing agent and proteins was responsible for capping of the bioreduced silver nanoparticles. The obtained nanoparticle shows size-dependent SERS activity. The SERS spectrum indicates that the pyridine adsorbed on the silver surface in a stand-on orientation via its nitrogen lone pair electrons.

  19. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Rofouei, Mohammad Kazem, E-mail: rofouei@tmu.ac.ir [Faculty of Chemistry, Tarbiat Moalem University, Tehran (Iran, Islamic Republic of); Payehghadr, Mahmood [Department of Chemistry, Payame Noor University (PNU) (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Ahmadalinezhad, Asieh [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)

    2009-09-15

    A simple, reliable and rapid method for preconcentration and determination of the ultra trace amount of silver using octadecyl silica membrane disk modified by a recently synthesized triazene ligand, 1,3-bis(2-cyanobenzene)triazene (CBT), and flame atomic absorption spectrometry is presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping solvents were optimized. The breakthrough volume was greater than 1800 ml with an enrichment factor of more than 360 and 6.0 ng l{sup -1} detection limit. The capacity of the membrane disks modified by 5 mg of the ligand was found to be 1070 {mu}g of silver. The effects of various cationic interferences on the percent recovery of silver ion were studied. The method was successfully applied to the determination of silver ion in different samples, especially determination of ultra trace amount of silver in the presence of large amount of lead.

  20. Aurorae: The earliest datable observation of the aurora borealis

    Science.gov (United States)

    Stephenson, F. Richard; Willis, David M.; Hallinan, Thomas J.

    2004-12-01

    The Late Babylonian astronomical texts, discovered at the site of Babylon (32.5°N, 44.4°E) more than a century ago, contain what is probably the earliest reliable account of the aurora borealis. A clay tablet recording numerous celestial observations made by the official astronomers during the 37th year of King Nebuchadnezzar II (568/567 BC) describes an unusual ``red glow'' in the sky at night; the exact date of this observation corresponds to the night of 12/13 March in 567 BC. The most likely interpretation of the phenomenon is an auroral display. This event occurred several centuries before the first clearly identifiable observation of the aurora from elsewhere in the world, namely China in 193 BC. The Babylonian auroral observation is remarkable in the sense that it is one of a series of carefully recorded astronomical observations, for each of which the year, month and day are known precisely. This observation occurred at a time when the geomagnetic (dipole) latitude of Babylon was about 41°N compared with the present value of 27.5°N, suggesting a higher auroral incidence at Babylon in 567 BC than at present.

  1. Earliest evidence of pollution by heavy metals in archaeological sites

    Science.gov (United States)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  2. Potential Biomarkers of the Earliest Clinical Stages of Parkinson's Disease.

    Science.gov (United States)

    Alieva, Anelya Kh; Filatova, Elena V; Karabanov, Aleksey V; Illarioshkin, Sergey N; Slominsky, Petr A; Shadrina, Maria I

    2015-01-01

    Parkinson's disease (PD) is a widespread neurodegenerative disorder. Despite the intensive studies of this pathology, in general, the picture of the etiopathogenesis has still not been clarified fully. To understand better the mechanisms underlying the pathogenesis of PD, we analyzed the expression of 10 genes in the peripheral blood of treated and untreated patients with PD. 35 untreated patients with PD and 12 treated patients with Parkinson's disease (Hoehn and Yahr scores 1-2) were studied. An analysis of the mRNA levels of ATP13A2, PARK2, PARK7, PINK1, LRRK2, SNCA, ALDH1A1, PDHB, PPARGC1A, and ZNF746 genes in the peripheral blood of patients was carried out using reverse transcription followed by real-time PCR. A statistically significant and specific increase by more than 1.5-fold in the expression of the ATP13A2, PARK7, and ZNF746 genes was observed in patients with PD. Based on these results, it can be suggested that the upregulation of the mRNA levels of ATP13A2, PARK7, and ZNF746 in untreated patients in the earliest clinical stages can also be observed in the preclinical stages of PD, and that these genes can be considered as potential biomarkers of the preclinical stage of PD.

  3. The Formation and Growth of the Earliest Supermassive Black Holes

    Science.gov (United States)

    Aird, James; Comastri, Andrea; Topical Panel 2. 1

    2015-09-01

    Understanding how supermassive black holes (BHs) form and grow in the very early (z>6) Universe, when the first stars and galaxies were forming, is one of the major science aims of the Athena mission. The physical processes responsible for the initial formation of these BHs and their early growth via accretion - when they are seen as Active Galactic Nuclei (AGNs) - remain unclear. Large-scale optical/near-infrared imaging surveys have identified a few tens of luminous AGNs at z>6, powered by extremely massive BHs, and place vital constraints on the range of possible formation and growth mechanisms. To make further progress, however, we must identify lower luminosity and obscured AGNs at z>6, which represent the bulk of early BH growth. I will discuss recent measurements that trace the evolution of AGN population out to the highest possible redshifts (z~5-6) using the latest X-ray surveys with Chandra and XMM-Newton. However, Athena will provide the superb sensitivity over a wide field-of-view that is required to identify the earliest (z>6) growing BHs, trace their evolution within the early galaxy population, and determine the physical mechanisms that drive their formation and growth. Achieving these aims represents a major challenge that will push the capabilities of both Athena and supporting ground- and space-based observatories. I will present the prospects for a large Athena survey programme and discuss both the technical and scientific challenges that must be addressed in preparation for the Athena mission.

  4. History of the Earliest Russian Old Testament Translation

    Directory of Open Access Journals (Sweden)

    Kristina Ju. Anders

    2016-08-01

    Full Text Available This paper introduces a previously unstudied manuscript, “Opyt perevoda vetkhozavetnykh knig [. . .] Mikhailom Fotinskim” (1806. In this article, we analyze the history of this manuscript, the circumstances surrounding the translation, and its purpose; some personal facts about the translator are also reviewed. This source represents the earliest Russian translation of the Old Testament, antedating by more than fifteen years the Russian Bible Society translations. Rev. Mikhail Fotinsky’s translation of five Old Testament books (only two ones in the Genesis was sent to the Moscow Religious Censorship Committee (Moskovskaia Dukhovnaia tsenzura in 1806, and the next year, Fotinsky asked the Censorship Committee to allow him to make a translation of the entire Old Testament. However, the censors left the manuscript in their repository, and there was no further development on this project. Contemporaries ignored this translation for several reasons. The first reason might be related to language: Fotinsky’s translation includes many Ukrainian elements. The second reason relates to its literary quality (or lack thereof, as the translation was interlinear and thus not stylistically developed. The manuscript contains many commentaries by Fotinsky, who concentrated on the Hebrew original and Judaic exegesis, trying to show different interpretations that may have occurred as a result of the polysemy of the original text.

  5. Fixational eye movements in the earliest stage of metazoan evolution.

    Directory of Open Access Journals (Sweden)

    Jan Bielecki

    Full Text Available All known photoreceptor cells adapt to constant light stimuli, fading the retinal image when exposed to an immobile visual scene. Counter strategies are therefore necessary to prevent blindness, and in mammals this is accomplished by fixational eye movements. Cubomedusae occupy a key position for understanding the evolution of complex visual systems and their eyes are assumedly subject to the same adaptive problems as the vertebrate eye, but lack motor control of their visual system. The morphology of the visual system of cubomedusae ensures a constant orientation of the eyes and a clear division of the visual field, but thereby also a constant retinal image when exposed to stationary visual scenes. Here we show that bell contractions used for swimming in the medusae refresh the retinal image in the upper lens eye of Tripedalia cystophora. This strongly suggests that strategies comparable to fixational eye movements have evolved at the earliest metazoan stage to compensate for the intrinsic property of the photoreceptors. Since the timing and amplitude of the rhopalial movements concur with the spatial and temporal resolution of the eye it circumvents the need for post processing in the central nervous system to remove image blur.

  6. Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity.

    Science.gov (United States)

    Panneerselvam, Chellasamy; Murugan, Kadarkarai; Roni, Mathath; Aziz, Al Thabiani; Suresh, Udaiyan; Rajaganesh, Rajapandian; Madhiyazhagan, Pari; Subramaniam, Jayapal; Dinesh, Devakumar; Nicoletti, Marcello; Higuchi, Akon; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh; Desneux, Nicolas; Benelli, Giovanni

    2016-03-01

    Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum strains resistant to chloroquine. There is an urgent need to investigate new and effective sources of antimalarial drugs. This research proposed a novel method of fern-mediated synthesis of silver nanoparticles (AgNP) using a cheap plant extract of Pteridium aquilinum, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Phytochemical analysis of P. aquilinum leaf extract revealed the presence of phenols, alkaloids, tannins, flavonoids, proteins, carbohydrates, saponins, glycosides, steroids, and triterpenoids. LC/MS analysis identified at least 19 compounds, namely pterosin, hydroquinone, hydroxy-acetophenone, hydroxy-cinnamic acid, 5, 7-dihydroxy-4-methyl coumarin, trans-cinnamic acid, apiole, quercetin 3-glucoside, hydroxy-L-proline, hypaphorine, khellol glucoside, umbelliferose, violaxanthin, ergotamine tartrate, palmatine chloride, deacylgymnemic acid, methyl laurate, and palmitoyl acetate. In DPPH scavenging assays, the IC50 value of the P. aquilinum leaf extract was 10.04 μg/ml, while IC50 of BHT and rutin were 7.93 and 6.35 μg/ml. In mosquitocidal assays, LC50 of P. aquilinum leaf extract against Anopheles stephensi larvae and pupae were 220.44 ppm (larva I), 254.12 ppm (II), 302.32 ppm (III), 395.12 ppm (IV), and 502.20 ppm (pupa). LC50 of P. aquilinum-synthesized AgNP were 7.48 ppm (I), 10.68 ppm (II), 13.77 ppm (III), 18.45 ppm (IV), and 31.51 ppm (pupa). In the field, the application of P. aquilinum extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. Both the P. aquilinum extract and AgNP reduced longevity and fecundity of An. stephensi adults. Smoke toxicity experiments conducted against An. stephensi adults showed that P. aquilinum leaf-, stem-, and root-based coils

  7. Triphenylphosphine Stabilized Silver Carboxylates

    Institute of Scientific and Technical Information of China (English)

    Jian Lin HAN; Ying Zhong SHEN; Yi PAN

    2005-01-01

    A series of novel triphenylphosphine stabilized silver carboxylates, potential precursors for CVD growth of ultrafast interconnection link in microelectronic devices, have been prepared and characterized.

  8. Earliest example of a giant monitor lizard (Varanus, Varanidae, Squamata.

    Directory of Open Access Journals (Sweden)

    Jack L Conrad

    Full Text Available BACKGROUND: Varanidae is a clade of tiny (600 mm PCL lizards first appearing in the Cretaceous. True monitor lizards (Varanus are known from diagnostic remains beginning in the early Miocene (Varanus rusingensis, although extremely fragmentary remains have been suggested as indicating earlier Varanus. The paleobiogeographic history of Varanus and timing for origin of its gigantism remain uncertain. METHODOLOGY/PRINCIPAL FINDINGS: A new Varanus from the Mytilini Formation (Turolian, Miocene of Samos, Greece is described. The holotype consists of a partial skull roof, right side of a braincase, partial posterior mandible, fragment of clavicle, and parts of six vertebrae. A cladistic analysis including 83 taxa coded for 5733 molecular and 489 morphological characters (71 previously unincluded demonstrates that the new fossil is a nested member of an otherwise exclusively East Asian Varanus clade. The new species is the earliest-known giant (>600 mm PCL terrestrial lizard. Importantly, this species co-existed with a diverse continental mammalian fauna. CONCLUSIONS/SIGNIFICANCE: The new monitor is larger (longer than 99% of known fossil and living lizards. Varanus includes, by far, the largest limbed squamates today. The only extant non-snake squamates that approach monitors in maximum size are the glass-snake Pseudopus and the worm-lizard Amphisbaena. Mosasauroids were larger, but exclusively marine, and occurred only during the Late Cretaceous. Large, extant, non-Varanus, lizards are limbless and/or largely isolated from mammalian competitors. By contrast, our new Varanus achieved gigantism in a continental environment populated by diverse eutherian mammal competitors.

  9. Earliest land plants created modern levels of atmospheric oxygen

    Science.gov (United States)

    Lenton, Timothy M.; Dahl, Tais W.; Daines, Stuart J.; Mills, Benjamin J. W.; Ozaki, Kazumi; Saltzman, Matthew R.; Porada, Philipp

    2016-08-01

    The progressive oxygenation of the Earth’s atmosphere was pivotal to the evolution of life, but the puzzle of when and how atmospheric oxygen (O2) first approached modern levels (˜21%) remains unresolved. Redox proxy data indicate the deep oceans were oxygenated during 435-392 Ma, and the appearance of fossil charcoal indicates O2 >15-17% by 420-400 Ma. However, existing models have failed to predict oxygenation at this time. Here we show that the earliest plants, which colonized the land surface from ˜470 Ma onward, were responsible for this mid-Paleozoic oxygenation event, through greatly increasing global organic carbon burial—the net long-term source of O2. We use a trait-based ecophysiological model to predict that cryptogamic vegetation cover could have achieved ˜30% of today’s global terrestrial net primary productivity by ˜445 Ma. Data from modern bryophytes suggests this plentiful early plant material had a much higher molar C:P ratio (˜2,000) than marine biomass (˜100), such that a given weathering flux of phosphorus could support more organic carbon burial. Furthermore, recent experiments suggest that early plants selectively increased the flux of phosphorus (relative to alkalinity) weathered from rocks. Combining these effects in a model of long-term biogeochemical cycling, we reproduce a sustained +2‰ increase in the carbonate carbon isotope (δ13C) record by ˜445 Ma, and predict a corresponding rise in O2 to present levels by 420-400 Ma, consistent with geochemical data. This oxygen rise represents a permanent shift in regulatory regime to one where fire-mediated negative feedbacks stabilize high O2 levels.

  10. Green synthesis of silver nanoparticles and its application for mosquito control

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-02-01

    Full Text Available Objective: To synthesize and characterize silver nanoparticles from aqueous root extract of Parthenium hysterophorus (P. hysterophorus and also to evaluate the potentiality of synthesized silver nanoparticles as larvacidal agent against Culex quinquefasciatus (Cx. quinquefasciatus. Methods: The silver nano particles were generated using root extract of P. hysterophorus. The characterization of synthesized nanoparticles was done by visual color change, UV-Vis spectrum, scanning electron micrograph, fluorescent microscope and Fourier transform infrared spectroscopy. Results: It was found that aqueous silver ions can be reduced by aqueous root extract of P. hysterophorus to generate extremely stable silver nanoparticles in aqueous medium. Larvae were exposed to varying concentrations of plant extracts, aqueous silver nitrate solution and synthesized silver nanoparticles for 0, 24 and 48 h separately. Aqueous root extract showed moderate larvicidal effects; however, the maximum efficacy (60.18% was observed with the synthesized silver nanoparticles against the larvae of Cx. quinquefasciatus. Conclusions: These results suggest that the green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friently approach for the control of the Cx. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the nano particle synthesized by P. hysterophorus.

  11. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract.

    Science.gov (United States)

    Sathishkumar, Palanivel; Preethi, Johnson; Vijayan, Raji; Mohd Yusoff, Abdull Rahim; Ameen, Fuad; Suresh, Sadhasivam; Balagurunathan, Ramasamy; Palvannan, Thayumanavan

    2016-10-01

    In this present investigation, AgNPs were green synthesised using Coriandrum sativum leaf extract. The physicochemical properties of AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray (FESEM/EDX), Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Further, in vitro anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised AgNPs were assessed against Propionibacterium acnes MTCC 1951, Malassezia furfur MTCC 1374 and human breast adenocarcinoma (MCF-7) cell line, respectively. The flavonoids present in the plant extract were responsible for the AgNPs synthesis. The green synthesised nanoparticles size was found to be ≈37nm. The BET analysis result shows that the surface area of the synthesised AgNPs was found to be 33.72m(2)g(-1). The minimal inhibitory concentration (MIC) of AgNPs for acne causative agent P. acnes and dandruff causative agent M. furfur was found to be at 3.1 and 25μgmL(-1), respectively. The half maximal inhibitory concentration (IC50) value of the AgNPs for MCF-7 cells was calculated as 30.5μgmL(-1) and complete inhibition was observed at a concentration of 100μgmL(-1). Finally, our results proved that green synthesised AgNPs using C. sativum have great potential in biomedical applications such as anti-acne, anti-dandruff and anti-breast cancer treatment.

  12. Preliminary experimental research for silver recovery from radiographic films

    Science.gov (United States)

    Cânda, L. R.; Ardelean, E.

    2017-01-01

    Global demand for silver remains steadily to about 1,000 million ounces (28349500 kg), of which around 600 million ounces (17009700 kg) are used in industrial applications. Extraction of silver from the ore is expensive and harmful to the environment and low efficiency. X-ray films represent an important worldwide consumer as research on recovery of silver from exposed radiographic films must be oriented to achieve a maximum recovery and a high purity silver, with methods through the by-products will be less polluting for the environment. The paper presents some laboratory tests referring to the recovery of silver from radiographic films by leaching with sodium hydroxide. Two series of experiments were performed with different amounts of used X-ray film.

  13. 13 CFR 120.523 - What is the “earliest uncured payment default”?

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What is the âearliest uncured payment defaultâ? 120.523 Section 120.523 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION... uncured payment default is the date of the earliest failure by a Borrower to pay a regular installment...

  14. The silver ions contribution into the cytotoxic activity of silver and silver halides nanoparticles

    Science.gov (United States)

    Klimov, A. I.; Zherebin, P. M.; Gusev, A. A.; Kudrinskiy, A. A.; Krutyakov, Y. A.

    2015-11-01

    The biocidal action of silver nanoparticles capped with sodium citrate and silver halides nanoparticles capped with non-ionic surfactant polyoxyethylene(20)sorbitan monooleate (Tween 80®) against yeast cells Saccharomyces cerevisiae was compared to the effect produced by silver nitrate and studied through the measurement of cell loss and kinetics of K+ efflux from the cells. The cytotoxicity of the obtained colloids was strongly correlated with silver ion content in the dispersions. The results clearly indicated that silver and silver halides nanoparticles destroyed yeast cells through the intermediate producing of silver ions either by dissolving of salts or by oxidation of silver.

  15. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Science.gov (United States)

    Ferraris, S.; Miola, M.; Cochis, A.; Azzimonti, B.; Rimondini, L.; Prenesti, E.; Vernè, E.

    2017-02-01

    The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules - showing reducing ability to directly obtain in situ metallic silver - and silver nanoparticles was investigated by means of UV-vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  16. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

    Directory of Open Access Journals (Sweden)

    Jes Ærøe Hyllested

    2015-01-01

    Full Text Available Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles. Electron microscopy shows that the shapes of the nanoparticles are different depending on the fruit used for preparation. The green preparation process can result in individual nanoparticles with a very poor tendency to form aggregates with narrow gaps even when aggregation is forced by the addition of NaCl. This explains only modest enhancement factors for near-infrared-excited surface enhanced Raman scattering. In addition to the surface plasmon band, UV–visible absorption spectra show features in the UV range which indicates also the presence of small silver clusters, such as Ag42+. The increase of the plasmon absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multicolor luminesce signal emitted by the plasmonic particles during 473 nm excitation.

  17. Biosynthesis of PVA encapsulated silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Sharmila Chandran

    2016-10-01

    Full Text Available Green synthesis of metal nanoparticles is an important technique in the methods of eco-friendly nanoparticle production. The synthesis of silver nanoparticles was accomplished using Ocimum sanctum leaf extract at room temperature. These particles were then encapsulated with polyvinyl alcohol (PVA polymer matrix. The presence of silver was confirmed by different characterization techniques such as UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR and X-Ray Diffraction (XRD. Scanning electron microscopic (SEM images of the synthesized powder shows spherical shaped silver nanoparticles embedded in sponge-like polymer matrix. The energy dispersive X-ray analysis confirms the presence of elemental silver along with iron signal. Energy dispersive signal corresponding to elemental iron has been attributed to O. sanctum plant. The silver nanoparticles in PVA matrix thus obtained shows high antibacterial activity against gram positive Staphylococcus aureus (S. aureus and gram negative Escherichia coli (E. coli water borne bacteria. The inhibition zone against S. aureus and E. coli were also calculated.

  18. Study on Hydrometallurgical Process for Copper Anode Mud(Ⅲ).——Extraction of Silver%湿法处理铜阳极泥工艺研究(Ⅲ).——银的分离

    Institute of Scientific and Technical Information of China (English)

    李运刚

    2001-01-01

    对低温氧化焙烧湿法工艺处理铜阳极泥的第三步——亚硫酸钠浸出银及甲醛还原银进行了研究。结果表明,银的浸出率可达99.22%,还原率99%,直收率98.4%,总回收率为98%。%Selective leaching of silver from copper anode mud with sodiumsufite and reducing silver from the leaching solution with formaldehyde have been investigated.The results show that leaching rate and reduction rate of silver are 99.22% and 99.1%,respectively.Directive recovery rate of silver is 98.2%.

  19. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  20. Ichnotaxonomy of the Laetoli trackways: The earliest hominin footprints

    Science.gov (United States)

    Meldrum, D. J.; Lockley, Martin G.; Lucas, Spencer G.; Musiba, Charles

    2011-04-01

    At 3.6 Ma, the Laetoli Pliocene hominin trackways are the earliest direct evidence of hominin bipedalism. Three decades since their discovery, not only is the question of their attribution still discussed, but marked differences in interpretation concerning the footprints' qualitative features and the inferred nature of the early hominin foot morphology remain. Here, we establish a novel ichnotaxon, Praehominipes laetoliensis, for these tracks and clarify the distinctions of these footprints from those of later hominins, especially modern humans. We also contrast hominin, human, and ape footprints to establish morphological features of these footprints correlated with a midtarsal break versus a stiff longitudinal arch. Original photos, including stereo photographs, and casts of footprints from the 1978 Laetoli excavation, confirm midtarsal flexibility, and repeatedly indicate an associated midfoot pressure ridge. In contrast, the modern human footprint reflects the derived arched-foot architecture, combined with a stiff-legged striding gait. Fossilized footprints of unshod modern human pedestrians in Hawaii and Nicaragua unambiguously illustrate these contrasts. Some points of comparisons with ape footprints are complicated by a variable hallucal position and the distinct manner of ape facultative bipedalism. In contrast to the comparatively rigid platform of the modern human foot, midtarsal flexibility is present in the chimpanzee foot. In ape locomotion, flexion at the transverse tarsal joint, referred to as the "midtarsal break," uncouples the respective functions of the prehensile forefoot and the propulsive hindfoot during grasp-climbing. At some point after the transition to habitual bipedalism, these grasp-climb adaptations, presumed to be present in the last common ancestor of apes and humans, were initially compromised by the loss of divergence of the hallux. An analogous trajectory is evident along an array of increasingly terrestrial extant ape species

  1. Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl4-induced hepato-cancerous Swiss albino mice

    Science.gov (United States)

    Arockia John Paul, J.; Karunai Selvi, B.; Karmegam, N.

    2015-11-01

    In this study, we report the biosynthesis of silver nanoparticles using the ethanolic leaf powder extract of Premna serratifolia L. and its anticancer activity in carbon tetra chloride (CCl4)-induced liver cancer in Swiss albino mice (Balb/c). The synthesized silver nanoparticles were characterized by SEM, FTIR and XRD analyses. The Debye-Scherrer equation was used to calculate particle size and the average size of silver nanoparticles synthesized from P. serratifolia leaf extract was 22.97 nm. The typical pattern revealed that the sample contained cubic structure of silver nanoparticles. FTIR analysis confirmed that the bioreduction of silver ions to silver nanoparticles is due to reduction by capping material of the plant extract. The silver nanoparticles of P. serratifolia leaf extract were effective in treating liver cancer in Swiss albino mice when compared with P. serratifolia leaf extract with isoleucine.

  2. Photo-induced green synthesis and antimicrobial efficacy of poly (ɛ-caprolactone)/curcumin/grape leaf extract-silver hybrid nanoparticles.

    Science.gov (United States)

    El-Sherbiny, Ibrahim M; El-Shibiny, Ayman; Salih, Ehab

    2016-07-01

    This study reports the photo-induced green synthesis and antimicrobial assessment of poly(ɛ-caprolactone)/curcumin/grape leaf extract-Ag hybrid nanoparticles (PCL/Cur/GLE-Ag NPs). PCL/Cur/GLE NPs were synthesized via emulsion-solvent evaporation in the presence of PVA as a capping agent, then used as active nano-supports for the green synthesis and stabilization of AgNPs on their surfaces. Both Cur and GLE were selected and incorporated into the PCL nano-supports due to their reported promising antimicrobial activity that would further enhance that of the synthesized AgNPs. The developed PCL/Cur/GLE NPs and PCL/Cur/GLE-Ag hybrid NPs were characterized using UV-visible spectrophotometry, high resolution tran