WorldWideScience

Sample records for ear hair cell

  1. Origin of inner ear hair cells: morphological and functional differentiation from ciliary cells into hair cells in zebrafish inner ear.

    Science.gov (United States)

    Tanimoto, Masashi; Ota, Yukiko; Inoue, Maya; Oda, Yoichi

    2011-03-09

    Auditory and vestibular functions in vertebrates depend on the transduction of sound vibration or head acceleration into electrical responses in inner ear hair cells. Mechanoelectrical transduction occurs at the tip of stereocilia, which are polarized to form an orientational arrangement that determines directional sensitivity. It remains to be clarified when and how premature hair cells acquire their specialized structure and function in living animals. The developmental origin of inner ear hair cells has been studied in vivo in zebrafish embryos. Tether cells, a small number of ciliated cells associated with an "ear stone" (or otolith) in the embryonic zebrafish inner ear, are believed to be precocious hair cells. However, whether or not tether cells acquire hair bundles and mechanosensitivity remains unknown. In the present study, we investigated the morphological and functional development of tether cells. Immunohistochemical examination revealed that stereocilia appeared on the tether cell apex in a polarized arrangement at 22 h postfertilization (hpf). Labeling with FM1-43, a marker of functional mechanotransduction channels, and the in vivo electrophysiological recording of mechanotransducer responses in the developing inner ear demonstrated that tether cells acquired direction-selective mechanosensitivity at 23 hpf. These results revealed that tether cells begin to function as hair cells within an hour after the appearance of a polarized array of stereociliary bundles. Thus, the ciliary cells morphologically and functionally differentiate into the first sensory hair cells in the inner ear of the zebrafish.

  2. A Review of Gene Delivery and Stem Cell Based Therapies for Regenerating Inner Ear Hair Cells

    Directory of Open Access Journals (Sweden)

    Michael S. Detamore

    2011-09-01

    Full Text Available Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  3. Supporting cells eliminate dying sensory hair cells to maintain epithelial integrity in the avian inner ear.

    Science.gov (United States)

    Bird, Jonathan E; Daudet, Nicolas; Warchol, Mark E; Gale, Jonathan E

    2010-09-15

    Epithelial homeostasis is essential for sensory transduction in the auditory and vestibular organs of the inner ear, but how it is maintained during trauma is poorly understood. To examine potential repair mechanisms, we expressed β-actin-enhanced green fluorescent protein (EGFP) in the chick inner ear and used live-cell imaging to study how sensory epithelia responded during aminoglycoside-induced hair cell trauma. We found that glial-like supporting cells used two independent mechanisms to rapidly eliminate dying hair cells. Supporting cells assembled an actin cable at the luminal surface that extended around the pericuticular junction and constricted to excise the stereocilia bundle and cuticular plate from the hair cell soma. Hair bundle excision could occur within 3 min of actin-cable formation. After bundle excision, typically with a delay of up to 2-3 h, supporting cells engulfed and phagocytosed the remaining bundle-less hair cell. Dual-channel recordings with β-actin-EGFP and vital dyes revealed phagocytosis was concurrent with loss of hair cell integrity. We conclude that supporting cells repaired the epithelial barrier before hair cell plasmalemmal integrity was lost and that supporting cell activity was closely linked to hair cell death. Treatment with the Rho-kinase inhibitor Y-27632 did not prevent bundle excision but prolonged phagocytic engulfment and resulted in hair cell corpses accumulating within the epithelium. Our data show that supporting cells not only maintain epithelial integrity during trauma but suggest they may also be an integral part of the hair cell death process itself.

  4. Growth Hormone Promotes Hair Cell Regeneration in the Zebrafish (Danio rerio) Inner Ear following Acoustic Trauma

    Science.gov (United States)

    Sun, Huifang; Lin, Chia-Hui; Smith, Michael E.

    2011-01-01

    Background Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma. Methodology/Principal Findings We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs. Conclusions/Significance Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of

  5. Evolution and development of hair cell polarity and efferent function in the inner ear.

    Science.gov (United States)

    Sienknecht, Ulrike J; Köppl, Christine; Fritzsch, Bernd

    2014-01-01

    The function of the inner ear critically depends on mechanoelectrically transducing hair cells and their afferent and efferent innervation. The first part of this review presents data on the evolution and development of polarized vertebrate hair cells that generate a sensitive axis for mechanical stimulation, an essential part of the function of hair cells. Beyond the cellular level, a coordinated alignment of polarized hair cells across a sensory epithelium, a phenomenon called planar cell polarity (PCP), is essential for the organ's function. The coordinated alignment of hair cells leads to hair cell orientation patterns that are characteristic of the different sensory epithelia of the vertebrate inner ear. Here, we review the developmental mechanisms that potentially generate molecular and morphological asymmetries necessary for the control of PCP. In the second part, this review concentrates on the evolution, development and function of the enigmatic efferent neurons terminating on hair cells. We present evidence suggestive of efferents being derived from motoneurons and synapsing predominantly onto a unique but ancient cholinergic receptor. A review of functional data shows that the plesiomorphic role of the efferent system likely was to globally shut down and protect the peripheral sensors, be they vestibular, lateral line or auditory hair cells, from desensitization and damage during situations of self-induced sensory overload. The addition of a dedicated auditory papilla in land vertebrates appears to have favored the separation of vestibular and auditory efferents and specializations for more sophisticated and more diverse functions. © 2014 S. Karger AG, Basel.

  6. Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear.

    Science.gov (United States)

    Chonko, Kurt T; Jahan, Israt; Stone, Jennifer; Wright, Margaret C; Fujiyama, Tomoyuki; Hoshino, Mikio; Fritzsch, Bernd; Maricich, Stephen M

    2013-09-15

    Atoh1 function is required for the earliest stages of inner ear hair cell development, which begins during the second week of gestation. Atoh1 expression in developing hair cells continues until early postnatal ages, but the function of this late expression is unknown. To test the role of continued Atoh1 expression in hair cell maturation we conditionally deleted the gene in the inner ear at various embryonic and postnatal ages. In the organ of Corti, deletion of Atoh1 at E15.5 led to the death of all hair cells. In contrast, deletion at E16.5 caused death only in apical regions, but abnormalities of stereocilia formation were present throughout the cochlea. In the utricle, deletion at E14.5 or E16.5 did not cause cell death but led to decreased expression of myosin VIIa and failure of stereocilia formation. Furthermore, we show that maintained expression of Barhl1 and Gfi1, two transcription factors implicated in cochlear hair cell survival, depends upon continued Atoh1 expression. However, maintained expression of Pou4f3 and several hair cell-specific markers is independent of Atoh1 expression. These data reveal novel late roles for Atoh1 that are separable from its initial role in hair cell development. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes.

    Science.gov (United States)

    Kawashima, Yoshiyuki; Géléoc, Gwenaëlle S G; Kurima, Kiyoto; Labay, Valentina; Lelli, Andrea; Asai, Yukako; Makishima, Tomoko; Wu, Doris K; Della Santina, Charles C; Holt, Jeffrey R; Griffith, Andrew J

    2011-12-01

    Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in the gene encoding transmembrane channel-like 1 (TMC1) cause hearing loss without vestibular dysfunction in both mice and humans, we investigated the contribution of Tmc1 and the closely related Tmc2 to mechanotransduction in mice. We found that Tmc1 and Tmc2 were expressed in mouse vestibular and cochlear hair cells and that GFP-tagged TMC proteins localized near stereocilia tips. Tmc2 expression was transient in early postnatal mouse cochlear hair cells but persisted in vestibular hair cells. While mice with a targeted deletion of Tmc1 (Tmc1(Δ) mice) were deaf and those with a deletion of Tmc2 (Tmc2(Δ) mice) were phenotypically normal, Tmc1(Δ)Tmc2(Δ) mice had profound vestibular dysfunction, deafness, and structurally normal hair cells that lacked all mechanotransduction activity. Expression of either exogenous TMC1 or TMC2 rescued mechanotransduction in Tmc1(Δ)Tmc2(Δ) mutant hair cells. Our results indicate that TMC1 and TMC2 are necessary for hair cell mechanotransduction and may be integral components of the mechanotransduction complex. Our data also suggest that persistent TMC2 expression in vestibular hair cells may preserve vestibular function in humans with hearing loss caused by TMC1 mutations.

  8. MicroRNA-183 Family in Inner Ear: Hair Cell Development and Deafness

    Science.gov (United States)

    Hashemzadeh-Chaleshtori, Morteza; Saidijam, Massoud; Jami, Mohammad-Saeid; Ghasemi-Dehkordi, Payam

    2016-01-01

    miRNAs are essential factors of an extensively conserved post-transcriptional process controlling gene expression at mRNA level. Varoius biological processes such as growth and differentiation are regulated by miRNAs. Web of Science and PubMed databases were searched using the Endnote software for the publications about the role miRNA-183 family in inner ear: hair cell development and deafness published from 2000 to 2016. A triplet of these miRNAs particularly the miR-183 family is highly expressed in vertebrate hair cells, as with some of the peripheral neurosensory cells. Point mutations in one member of this family, miR-96, underlie DFNA50 autosomal deafness in humans and lead to abnormal hair cell development and survival in mice. In zebrafish, overexpression of the miR-183 family induces extra and ectopic hair cells, while knockdown decreases the number of hair cell. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cell in the eye, nose and inner ear. In the inner ear, mechanosensory hair cells have a robust expression level. Despite much similarity of these miRs sequences, small differences lead to distinct targeting of messenger RNAs targets. In the near future, miRNAs are likely to be explored as potential therapeutic agents to repair or regenerate hair cells, cell reprogramming and regenerative medicine applications in animal models because they can simultaneously down-regulate dozens or even hundreds of transcripts. PMID:27942598

  9. MicroRNA-183 Family in Inner Ear: Hair Cell Development and Deafness.

    Science.gov (United States)

    Mahmoodian Sani, Mohammad Reza; Hashemzadeh-Chaleshtori, Morteza; Saidijam, Massoud; Jami, Mohammad-Saeid; Ghasemi-Dehkordi, Payam

    2016-12-01

    miRNAs are essential factors of an extensively conserved post-transcriptional process controlling gene expression at mRNA level. Varoius biological processes such as growth and differentiation are regulated by miRNAs. Web of Science and PubMed databases were searched using the Endnote software for the publications about the role miRNA-183 family in inner ear: hair cell development and deafness published from 2000 to 2016. A triplet of these miRNAs particularly the miR-183 family is highly expressed in vertebrate hair cells, as with some of the peripheral neurosensory cells. Point mutations in one member of this family, miR-96, underlie DFNA50 autosomal deafness in humans and lead to abnormal hair cell development and survival in mice. In zebrafish, overexpression of the miR-183 family induces extra and ectopic hair cells, while knockdown decreases the number of hair cell. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cell in the eye, nose and inner ear. In the inner ear, mechanosensory hair cells have a robust expression level. Despite much similarity of these miRs sequences, small differences lead to distinct targeting of messenger RNAs targets. In the near future, miRNAs are likely to be explored as potential therapeutic agents to repair or regenerate hair cells, cell reprogramming and regenerative medicine applications in animal models because they can simultaneously down-regulate dozens or even hundreds of transcripts.

  10. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel–like genes

    Science.gov (United States)

    Kawashima, Yoshiyuki; Géléoc, Gwenaëlle S.G.; Kurima, Kiyoto; Labay, Valentina; Lelli, Andrea; Asai, Yukako; Makishima, Tomoko; Wu, Doris K.; Della Santina, Charles C.; Holt, Jeffrey R.; Griffith, Andrew J.

    2011-01-01

    Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in the gene encoding transmembrane channel–like 1 (TMC1) cause hearing loss without vestibular dysfunction in both mice and humans, we investigated the contribution of Tmc1 and the closely related Tmc2 to mechanotransduction in mice. We found that Tmc1 and Tmc2 were expressed in mouse vestibular and cochlear hair cells and that GFP-tagged TMC proteins localized near stereocilia tips. Tmc2 expression was transient in early postnatal mouse cochlear hair cells but persisted in vestibular hair cells. While mice with a targeted deletion of Tmc1 (Tmc1Δ mice) were deaf and those with a deletion of Tmc2 (Tmc2Δ mice) were phenotypically normal, Tmc1ΔTmc2Δ mice had profound vestibular dysfunction, deafness, and structurally normal hair cells that lacked all mechanotransduction activity. Expression of either exogenous TMC1 or TMC2 rescued mechanotransduction in Tmc1ΔTmc2Δ mutant hair cells. Our results indicate that TMC1 and TMC2 are necessary for hair cell mechanotransduction and may be integral components of the mechanotransduction complex. Our data also suggest that persistent TMC2 expression in vestibular hair cells may preserve vestibular function in humans with hearing loss caused by TMC1 mutations. PMID:22105175

  11. HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    Geoffrey C Horwitz

    Full Text Available The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were originally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50-70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.

  12. Phase-locked spiking of inner ear hair cells and the driven noisy Adler equation.

    Science.gov (United States)

    Shlomovitz, Roie; Roongthumskul, Yuttana; Ji, Seung; Bozovic, Dolores; Bruinsma, Robijn

    2014-12-06

    The inner ear constitutes a remarkably sensitive mechanical detector. This detection occurs in a noisy and highly viscous environment, as the sensory cells-the hair cells-are immersed in a fluid-filled compartment and operate at room or higher temperatures. We model the active motility of hair cell bundles of the vestibular system with the Adler equation, which describes the phase degree of freedom of bundle motion. We explore both analytically and numerically the response of the system to external signals, in the presence of white noise. The theoretical model predicts that hair bundles poised in the quiescent regime can exhibit sporadic spikes-sudden excursions in the position of the bundle. In this spiking regime, the system exhibits stochastic resonance, with the spiking rate peaking at an optimal level of noise. Upon the application of a very weak signal, the spikes occur at a preferential phase of the stimulus cycle. We compare the theoretical predictions of our model to experimental measurements obtained in vitro from individual hair cells. Finally, we show that an array of uncoupled hair cells could provide a sensitive detector that encodes the frequency of the applied signal.

  13. XIRP2, an Actin-Binding Protein Essential for Inner Ear Hair-Cell Stereocilia

    Directory of Open Access Journals (Sweden)

    Déborah I. Scheffer

    2015-03-01

    Full Text Available Hair cells of the inner ear are mechanoreceptors for hearing and balance, and proteins highly enriched in hair cells may have specific roles in the development and maintenance of the mechanotransduction apparatus. We identified XIRP2/mXinβ as an enriched protein likely to be essential for hair cells. We found that different isoforms of this protein are expressed and differentially located: short splice forms (also called XEPLIN are targeted more to stereocilia, whereas two long isoforms containing a XIN-repeat domain are in both stereocilia and cuticular plates. Mice lacking the Xirp2 gene developed normal stereocilia bundles, but these degenerated with time: stereocilia were lost and long membranous protrusions emanated from the nearby apical surfaces. At an ultrastructural level, the paracrystalline actin filaments became disorganized. XIRP2 is apparently involved in the maintenance of actin structures in stereocilia and cuticular plates of hair cells, and perhaps in other organs where it is expressed.

  14. Epigenetic DNA demethylation causes inner ear stem cell differentiation into hair cell-like cells

    Directory of Open Access Journals (Sweden)

    Yang Zhou

    2016-08-01

    Full Text Available The DNA methyltransferase (DNMT inhibitor 5-azacytidine (5-aza causes genomic demethylation to regulate gene expression. However, it remains unclear whether 5-aza affects gene expression and cell fate determination of stem cells. In this study, 5-aza was applied to mouse utricle sensory epithelia-derived progenitor cells (MUCs to investigate whether 5-aza stimulated MUCs to become sensory hair cells. After treatment, MUCs increased expression of hair cell genes and proteins. The DNA methylation level (indicated by percentage of 5-methylcytosine showed a 28.57% decrease after treatment, which causes significantly repressed DNMT1 protein expression and DNMT activity. Additionally, FM1-43 permeation assays indicated that the permeability of 5-aza-treated MUCs was similar to that of sensory hair cells, which may result from mechanotransduction channels. This study not only demonstrates a possible epigenetic approach to induce tissue specific stem/progenitor cells to become sensory hair cell-like cells, but also provides a cell model to epigenetically modulate stem cell fate determination.

  15. LKB1 Is Required for the Development and Maintenance of Stereocilia in Inner Ear Hair Cells in Mice.

    Directory of Open Access Journals (Sweden)

    Yuqin Men

    Full Text Available The LKB1 gene, which encodes a serine/threonine kinase, was discovered to play crucial roles in cell differentiation, proliferation, and the establishment of cell polarity. In our study, LKB1 conditional knockout mice (Atoh1-LKB1-/- mice were generated to investigate LKB1 function in the inner ear. Tests of auditory brainstem response and distortion product otoacoustic emissions revealed significant decreases in the hearing sensitivities of the Atoh1-LKB1-/- mice. In Atoh1-LKB1-/- mice, malformations of hair cell stereocilliary bundles were present as early as postnatal day 1 (P1, a time long before the maturation of the hair cell bundles. In addition, we also observed outer hair cell (OHC loss starting at P14. The impaired stereocilliary bundles occurred long before the presence of hair cell loss. Stereociliary cytoskeletal structure depends on the core actin-based cytoskeleton and several actin-binding proteins. By Western blot, we examined actin-binding proteins, specifically ERM (ezrin/radixin/moesin proteins involved in the regulation of the actin cytoskeleton of hair cell stereocilia. Our results revealed that the phosphorylation of ERM proteins (pERM was significantly decreased in mutant mice. Thus, we propose that the decreased pERM may be a key factor for the impaired stereocillia function, and the damaged stereocillia may induce hair cell loss and hearing impairments. Taken together, our data indicates that LKB1 is required for the development and maintenance of stereocilia in the inner ear.

  16. Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV.

    Science.gov (United States)

    György, Bence; Sage, Cyrille; Indzhykulian, Artur A; Scheffer, Deborah I; Brisson, Alain R; Tan, Sisareuth; Wu, Xudong; Volak, Adrienn; Mu, Dakai; Tamvakologos, Panos I; Li, Yaqiao; Fitzpatrick, Zachary; Ericsson, Maria; Breakefield, Xandra O; Corey, David P; Maguire, Casey A

    2017-02-01

    Adeno-associated virus (AAV) is a safe and effective vector for gene therapy for retinal disorders. Gene therapy for hearing disorders is not as advanced, in part because gene delivery to sensory hair cells of the inner ear is inefficient. Although AAV transduces the inner hair cells of the mouse cochlea, outer hair cells remain refractory to transduction. Here, we demonstrate that a vector, exosome-associated AAV (exo-AAV), is a potent carrier of transgenes to all inner ear hair cells. Exo-AAV1-GFP is more efficient than conventional AAV1-GFP, both in mouse cochlear explants in vitro and with direct cochlear injection in vivo. Exo-AAV shows no toxicity in vivo, as assayed by tests of auditory and vestibular function. Finally, exo-AAV1 gene therapy partially rescues hearing in a mouse model of hereditary deafness (lipoma HMGIC fusion partner-like 5/tetraspan membrane protein of hair cell stereocilia [Lhfpl5/Tmhs-/-]). Exo-AAV is a powerful gene delivery system for hair cell research and may be useful for gene therapy for deafness. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  17. Role of somatostatin receptor-2 in gentamicin-induced auditory hair cell loss in the Mammalian inner ear.

    Directory of Open Access Journals (Sweden)

    Yves Brand

    Full Text Available Hair cells and spiral ganglion neurons of the mammalian auditory system do not regenerate, and their loss leads to irreversible hearing loss. Aminoglycosides induce auditory hair cell death in vitro, and evidence suggests that phosphatidylinositol-3-kinase/Akt signaling opposes gentamicin toxicity via its downstream target, the protein kinase Akt. We previously demonstrated that somatostatin-a peptide with hormone/neurotransmitter properties-can protect hair cells from gentamicin-induced hair cell death in vitro, and that somatostatin receptors are expressed in the mammalian inner ear. However, it remains unknown how this protective effect is mediated. In the present study, we show a highly significant protective effect of octreotide (a drug that mimics and is more potent than somatostatin on gentamicin-induced hair cell death, and increased Akt phosphorylation in octreotide-treated organ of Corti explants in vitro. Moreover, we demonstrate that somatostatin receptor-1 knockout mice overexpress somatostatin receptor-2 in the organ of Corti, and are less susceptible to gentamicin-induced hair cell loss than wild-type or somatostatin-1/somatostatin-2 double-knockout mice. Finally, we show that octreotide affects auditory hair cells, enhances spiral ganglion neurite number, and decreases spiral ganglion neurite length.

  18. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish.

    Science.gov (United States)

    Olt, Jennifer; Johnson, Stuart L; Marcotti, Walter

    2014-05-15

    Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in obtaining systematic electrophysiological recordings from hair cells under physiological recording conditions. Thus, the biophysical properties of developing and adult zebrafish hair cells are largely unknown. We investigated potassium and calcium currents, voltage responses and synaptic activity in hair cells from the lateral line and inner ear in vivo and using near-physiological in vitro recordings. We found that the basolateral current profile of hair cells from the lateral line becomes more segregated with age, and that cells positioned in the centre of the neuromast show more mature characteristics and those towards the edge retain a more immature phenotype. The proportion of mature-like hair cells within a given neuromast increased with zebrafish development. Hair cells from the inner ear showed a developmental change in current profile between the juvenile and adult stages. In lateral line hair cells from juvenile zebrafish, exocytosis also became more efficient and required less calcium for vesicle fusion. In hair cells from mature zebrafish, the biophysical characteristics of ion channels and exocytosis resembled those of hair cells from other lower vertebrates and, to some extent, those in the immature mammalian vestibular and auditory systems. We show that although the zebrafish provides a suitable animal model for studies on hair cell physiology, it is advisable to consider that the age at which the majority of hair cells acquire a mature-type configuration is reached only in the juvenile lateral line and in the inner ear from >2 months after hatching. © 2014 The

  19. How can teleostean inner ear hair cells maintain the proper association with the accreting otolith?

    Science.gov (United States)

    Shiao, Jen-Chieh; Lin, Li-Yih; Horng, Jiun-Lin; Hwang, Pung-Pung; Kaneko, Toyoji

    2005-08-01

    The perception of equilibrium and sound in fish depends on the deflection of hair bundles of hair cell by the otolith. However, the accreting nature of teleostean otoliths poses a problem for maintenance of proper contact between the hair bundle and the otolith surface. Immunocytochemical staining localizes abundant proton-secreting H(+)-ATPase in the apical membrane of the hair cells. The H(+)-ATPase-mediated proton secretion into the endolymph causes an approximately 0.4-unit pH decrease, which was quantified by an H(+)-selective microelectrode. Thus, the hair cells maintain the proper distance from the otolith by neutralizing the alkaline endolymph to retard CaCO(3) deposition on the otolith opposite the sensory macula. Carbonic anhydrase, which hydrolyses CO(2) and produces HCO(3) (-) and H(+), was also localized in the hair cells. Ionocytes showed prominent immunostaining of carbonic anhydrase and Na(+)-K(+)-ATPase, indicating its role in transepithelial transport of HCO(3) (-) across the membranous labyrinth into the endolymph. Ionocytes form a ring closely surrounding the sensory macula. HCO(3) (-) secreted from the ionocytes may serve as a barrier to neutralize H(+) diffused from the sensory macula while keeping the endolymph alkaline outside the sensory macula. The ingenious arrangement of ionocytes and hair cells results in a unique sculptured groove, which is a common feature on the proximal surface of all teleostean otoliths. (c) 2005 Wiley-Liss, Inc.

  20. Correct timing of proliferation and differentiation is necessary for normal inner ear development and auditory hair cell viability.

    Science.gov (United States)

    Kopecky, Benjamin J; Jahan, Israt; Fritzsch, Bernd

    2013-02-01

    Hearing restoration through hair cell regeneration will require revealing the dynamic interactions between proliferation and differentiation during development to avoid the limited viability of regenerated hair cells. Pax2-Cre N-Myc conditional knockout (CKO) mice highlighted the need of N-Myc for proper neurosensory development and possible redundancy with L-Myc. The late-onset hair cell death in the absence of early N-Myc expression could be due to mis-regulation of genes necessary for neurosensory formation and maintenance, such as Neurod1, Atoh1, Pou4f3, and Barhl1. Pax2-Cre N-Myc L-Myc double CKO mice show that proliferation and differentiation are linked together through Myc and in the absence of both Mycs, altered proliferation and differentiation result in morphologically abnormal ears. In particular, the organ of Corti apex is re-patterned into a vestibular-like organization and the base is truncated and fused with the saccule. These data indicate that therapeutic approaches to restore hair cells must take into account a dynamic interaction of proliferation and differentiation regulation of basic Helix-Loop-Helix transcription factors in attempts to stably replace lost cochlear hair cells. In addition, our data indicate that Myc is an integral component of the evolutionary transformation process that resulted in the organ of Corti development. Copyright © 2012 Wiley Periodicals, Inc.

  1. Channeling your inner ear potassium: K(+) channels in vestibular hair cells.

    Science.gov (United States)

    Meredith, Frances L; Rennie, Katherine J

    2016-08-01

    During development of vestibular hair cells, K(+) conductances are acquired in a specific pattern. Functionally mature vestibular hair cells express different complements of K(+) channels which uniquely shape the hair cell receptor potential and filtering properties. In amniote species, type I hair cells (HCI) have a large input conductance due to a ubiquitous low-voltage-activated K(+) current that activates with slow sigmoidal kinetics at voltages negative to the membrane resting potential. In contrast type II hair cells (HCII) from mammalian and non-mammalian species have voltage-dependent outward K(+) currents that activate rapidly at or above the resting membrane potential and show significant inactivation. A-type, delayed rectifier and calcium-activated K(+) channels contribute to the outward K(+) conductance and are present in varying proportions in HCII. In many species, K(+) currents in HCII in peripheral locations of vestibular epithelia inactivate more than HCII in more central locations. Two types of inward rectifier currents have been described in both HCI and HCII. A rapidly activating K(+)-selective inward rectifier current (IK1, mediated by Kir2.1 channels) predominates in HCII in peripheral zones, whereas a slower mixed cation inward rectifier current (Ih), shows greater expression in HCII in central zones of vestibular epithelia. The implications for sensory coding of vestibular signals by different types of hair cells are discussed. This article is part of a Special Issue entitled Reviews 2016>. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells

    OpenAIRE

    Shin, Jung-Bum; Adams, Dany; Paukert, Martin; Siba, Maria; Sidi, Samuel; Levin, Michael; Gillespie, Peter G.; Gründer, Stefan

    2005-01-01

    In vertebrates, the senses of hearing and balance depend on hair cells, which transduce sounds with their hair bundles, containing actin-based stereocilia and microtubule-based kinocilia. A longstanding question in auditory science is the identity of the mechanically sensitive transduction channel of hair cells, thought to be localized at the tips of their stereocilia. Experiments in zebrafish implicated the transient receptor potential (TRP) channel NOMPC (drTRPN1) in this role; TRPN1 is abs...

  3. Coupling and elastic loading affect the active response by the inner ear hair cell bundles.

    Directory of Open Access Journals (Sweden)

    Clark Elliott Strimbu

    Full Text Available Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures.

  4. Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells.

    Science.gov (United States)

    Shin, Jung-Bum; Adams, Dany; Paukert, Martin; Siba, Maria; Sidi, Samuel; Levin, Michael; Gillespie, Peter G; Gründer, Stefan

    2005-08-30

    In vertebrates, the senses of hearing and balance depend on hair cells, which transduce sounds with their hair bundles, containing actin-based stereocilia and microtubule-based kinocilia. A longstanding question in auditory science is the identity of the mechanically sensitive transduction channel of hair cells, thought to be localized at the tips of their stereocilia. Experiments in zebrafish implicated the transient receptor potential (TRP) channel NOMPC (drTRPN1) in this role; TRPN1 is absent from the genomes of higher vertebrates, however, and has not been localized in hair cells. Another candidate for the transduction channel, TRPA1, apparently is required for transduction in mammalian and nonmammalian vertebrates. This discrepancy raises the question of the relative contribution of TRPN1 and TRPA1 to transduction in nonmammalian vertebrates. To address this question, we cloned the TRPN1 ortholog from the amphibian Xenopus laevis, generated an antibody against the protein, and determined the protein's cellular and subcellular localization. We found that TRPN1 is prominently located in lateral-line hair cells, auditory hair cells, and ciliated epidermal cells of developing Xenopus embryos. In ciliated epidermal cells TRPN1 staining was enriched at the tips and bases of the cilia. In saccular hair cells, TRPN1 was located prominently in the kinocilial bulb, a component of the mechanosensory hair bundles. Moreover, we observed redistribution of TRPN1 upon treatment of hair cells with calcium chelators, which disrupts the transduction apparatus. This result suggests that although TRPN1 is unlikely to be the transduction channel of stereocilia, it plays an essential role, functionally related to transduction, in the kinocilium.

  5. Calcium imaging of inner ear hair cells within the cochlear epithelium of mice using two-photon microscopy

    Science.gov (United States)

    Yuan, Tao; Gao, Simon S.; Saggau, Peter; Oghalai, John S.

    2010-01-01

    Mice are an excellent model for studying mammalian hearing and transgenic mouse models of human hearing, loss are commonly available. However, the mouse cochlea is substantially smaller than other animal models routinely used to study cochlear physiology. This makes study of their hair cells difficult. We develop a novel methodology to optically image calcium within living hair cells left undisturbed within the excised mouse cochlea. Fresh cochleae are harvested, left intact within their otic capsule bone, and fixed in a recording chamber. The bone overlying the cochlear epithelium is opened and Reissner's membrane is incised. A fluorescent calcium indicator is applied to the preparation. A custom-built upright two-photon microscope was used to image the preparation using 3-D scanning. We are able to image about one third of a cochlear turn simultaneously, in either the apical or basal regions. Within one hour of animal sacrifice, we find that outer hair cells demonstrate increased fluorescence compared with surrounding supporting cells. This methodology is then used to visualize hair cell calcium changes during mechanotransduction over a region of the epithelium. Because the epithelium is left within the cochlea, dissection trauma is minimized and artifactual changes in hair cell physiology are expected to be reduced.

  6. Biophysics of Hair Cell Sensory Systems

    NARCIS (Netherlands)

    Duifhuis, Hendrikus; Horst, Johannes; van Dijk, Pim; van Netten, Sietse

    1993-01-01

    The last decade revealed to auditory researchers that hair cells can not only detect and process mechanical energy, but are also able to produce it. Thanks to the active hair cell, ears can produce otoacoustic emissions. This book gives the newest insights into the biophysics and physiology of

  7. [Regeneration of ciliated cells in the internal ear].

    Science.gov (United States)

    Lefèbvre, P

    2002-01-01

    Hair cells are the mechanotranducer transforming the sound into a bioelectrical signal. Hair cell and supporting cell productions are completed during early embryonic development of the mammalian cochlea. In mammalian, after an injury, no hair cell replacement is observed, as opposed to birds, where regenerative mechanisms produce new sensory cells and restore the auditory function. However, a production of hair cells occurs in the mammalian sensory epithelium. Progenitor cells, isolated from newborn rats, proliferate and differentiate in hair cells and supporting cells. Supernumerary hair cells also arise in the cultured organ of Corti. This model is used to investigate the role of cell cycle regulator molecules and cell-cell interaction. The persistence of sensory cell progenitors in adult mammalian organ of Corti and the understanding of the mechanisms leading to the production of hair cells, in the developing cochlea, open the prospect of hair cell regeneration in the mature inner ear.

  8. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  9. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis of sensory hair cells in the mouse inner ear

    Directory of Open Access Journals (Sweden)

    Neil eSegil

    2015-05-01

    Full Text Available Aminoglycoside antibiotics are the drug of choice for treating many bacterial infections, but their administration results in hearing loss in nearly one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 hours of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-κB pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternative pathway regulating gentamicin-induced hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contribute to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside

  10. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  11. Sensory hair cell death and regeneration in fishes

    Directory of Open Access Journals (Sweden)

    Jerry D. Monroe

    2015-04-01

    Full Text Available Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation versus direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.

  12. Mechanotransduction by Hair Cells: Models, Molecules, and Mechanisms

    OpenAIRE

    Gillespie, Peter G.; Müller, Ulrich

    2009-01-01

    Mechanotransduction, the transformation of mechanical force into an electrical signal, allows living organisms to hear, register movement and gravity, detect touch, and sense changes in cell volume and shape. Hair cells in the inner ear are specialized mechanoreceptor cells that detect sound and head movement. The mechanotransduction machinery of hair cells is extraordinarily sensitive and responds to minute physical displacements on a submillisecond timescale. The recent discovery of several...

  13. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  14. Development and regeneration of vestibular hair cells in mammals.

    Science.gov (United States)

    Burns, Joseph C; Stone, Jennifer S

    2017-05-01

    Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity.

    Directory of Open Access Journals (Sweden)

    Abdelrahman Alharazneh

    Full Text Available Aminoglycosides (AG are commonly prescribed antibiotics with potent bactericidal activities. One main side effect is permanent sensorineural hearing loss, induced by selective inner ear sensory hair cell death. Much work has focused on AG's initiating cell death processes, however, fewer studies exist defining mechanisms of AG uptake by hair cells. The current study investigated two proposed mechanisms of AG transport in mammalian hair cells: mechanotransducer (MET channels and endocytosis. To study these two mechanisms, rat cochlear explants were cultured as whole organs in gentamicin-containing media. Two-photon imaging of Texas Red conjugated gentamicin (GTTR uptake into live hair cells was rapid and selective. Hypocalcemia, which increases the open probability of MET channels, increased AG entry into hair cells. Three blockers of MET channels (curare, quinine, and amiloride significantly reduced GTTR uptake, whereas the endocytosis inhibitor concanavalin A did not. Dynosore quenched the fluorescence of GTTR and could not be tested. Pharmacologic blockade of MET channels with curare or quinine, but not concanavalin A or dynosore, prevented hair cell loss when challenged with gentamicin for up to 96 hours. Taken together, data indicate that the patency of MET channels mediated AG entry into hair cells and its toxicity. Results suggest that limiting permeation of AGs through MET channel or preventing their entry into endolymph are potential therapeutic targets for preventing hair cell death and hearing loss.

  16. Disheveled hair and ear (Dhe, a spontaneous mouse Lmna mutation modeling human laminopathies.

    Directory of Open Access Journals (Sweden)

    Paul R Odgren

    Full Text Available BACKGROUND: Investigations of naturally-occurring mutations in animal models provide important insights and valuable disease models. Lamins A and C, along with lamin B, are type V intermediate filament proteins which constitute the proteinaceous boundary of the nucleus. LMNA mutations in humans cause a wide range of phenotypes, collectively termed laminopathies. To identify the mutation and investigate the phenotype of a spontaneous, semi-dominant mutation that we have named Disheveled hair and ear (Dhe, which causes a sparse coat and small external ears in heterozygotes and lethality in homozygotes by postnatal day 10. FINDINGS: Genetic mapping identified a point mutation in the Lmna gene, causing a single amino acid change, L52R, in the coiled coil rod domain of lamin A and C proteins. Cranial sutures in Dhe/+ mice failed to close. Gene expression for collagen types I and III in sutures was deficient. Skulls were small and disproportionate. Skeletons of Dhe/+ mice were hypomineralized and total body fat was deficient in males. In homozygotes, skin and oral mucosae were dysplastic and ulcerated. Nuclear morphometry of cultured cells revealed gene dose-dependent blebbing and wrinkling. CONCLUSION: Dhe mice should provide a useful new model for investigations of the pathogenesis of laminopathies.

  17. Pairwise coupling of hair cell transducer channels links auditory sensitivity and dynamic range

    NARCIS (Netherlands)

    van Netten, Sietse M.; Meulenberg, Cecil J. W.; Lennan, George W. T.; Kros, Corne J.

    Hair cells in the inner ear provide the basis for the exquisite hearing capabilities of mammals. These cells transduce sound-induced displacements of their mechanosensitive hair bundle into electrical currents within a fraction of a millisecond and with nanometer fidelity. Excitatory displacements

  18. Coenzyme Q10 Protects Hair Cells against Aminoglycoside

    Science.gov (United States)

    Sugahara, Kazuma; Hirose, Yoshinobu; Mikuriya, Takefumi; Hashimoto, Makoto; Kanagawa, Eiju; Hara, Hirotaka; Shimogori, Hiroaki; Yamashita, Hiroshi

    2014-01-01

    It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10) is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group). In the neomycin group, utricles were cultured with neomycin (1 mM) to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30–0.3 µM). Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear. PMID:25265538

  19. Coenzyme Q10 protects hair cells against aminoglycoside.

    Directory of Open Access Journals (Sweden)

    Kazuma Sugahara

    Full Text Available It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10 is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group. In the neomycin group, utricles were cultured with neomycin (1 mM to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30-0.3 µM. Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear.

  20. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line

    Science.gov (United States)

    Thomas, Andrew J.; Hailey, Dale W.; Stawicki, Tamara M.; Wu, Patricia; Coffin, Allison B.; Rubel, Edwin W.; Raible, David W.; Simon, Julian A.; Ou, Henry C.

    2013-01-01

    Cisplatin, one of the most commonly used anti-cancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analogue of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line. PMID:23467357

  1. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2016-01-01

    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  2. Sensory and nonsensory ciliated cells in the ear of the sea lamprey, Petromyzon marinus.

    Science.gov (United States)

    Popper, A N; Hoxter, B

    1987-01-01

    The inner ear of the sea lamprey, Petromyzon marinus, was examined using scanning and transmission electron microscopy. Many of the nonsensory surfaces of the ear chamber are lined by numerous, noninnervated, multiciliated epithelial cells. Each multiciliated epithelial cell has 43-66 true cilia projecting from its apical surface into the lumen of the ear. Although the cilia leave the cell individually, all of the cilia from a single cell come together just above the apical cell surface and are held together by a cross-network of fibrillar material. The cell bodies of the multiciliated cells sit upon a basal lamina which overlies a collagen-filled matrix. Petromyzon has typical vertebrate sensory hair cells on the cristae of the two semicircular canals as well as on the main sensory epithelium, the macula communis. Cell bodies of the sensory hair cells are similar to hair cells of other vertebrates. However, unlike other fishes, the sensory hair cells in Petromyzon have striated organelles between the nucleus and the apical cell membrane. The hair cells are innervated by afferent and efferent nerve fibers.

  3. Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear.

    Directory of Open Access Journals (Sweden)

    Stephen D Freeman

    Full Text Available During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.

  4. Determination and Commitment of Mechanosensory Hair Cells

    Directory of Open Access Journals (Sweden)

    Matthew W. Kelley

    2002-01-01

    Full Text Available Sound and movement are perceived through the vibration of modified ciliary bundles located on the apical surfaces of specialized mechanosensory hair cells. These hair cells derive from specific regions of the otocyst that become determined to develop initially as sensory epithelia and ultimately as either hair cells or supporting cells. The number of hair cells in an individual vertebrate is surprisingly small and the ability to replace these cells varies among different classes. The molecular and cellular factors that specify hair cell identity are not known, but the results of recent experiments have begun to identify some of the signaling pathways that play important roles in hair cell development. This review will describe recent findings related to the factors that influence the final choice of a progenitor cell to develop as a hair cell and discuss their implications for the overall development of the auditory and vestibular systems.

  5. Mast cells and middle ear effusion.

    Science.gov (United States)

    Stenfors, L E; Albiin, N; Bloom, G D; Hellström, S; Widemar, L

    1985-01-01

    The mast cell--an important component of connective tissue--carries in its cytoplasmic granules various biologically active substances, such as heparin, histamine, and a broad spectrum of enzymes. This cell type plays a prominent role in inflammatory and allergic conditions. In the middle ear, the mast cells are mainly localized in the pars flaccida of the tympanic membrane and beneath the tracts of secretory and ciliated cells in the middle ear mucosa. Degranulation of the mast cells by the histamine liberator compound 48/80 causes histamine-rich effusion material to accumulate in the middle ear. Plugging of the eustachian tube and/or tympanic isthmus will bring about a similar accumulation. It would thus seem that mast cells in some way participate in the production of middle ear effusion, probably via their potent mediators.

  6. A novel splice site mutation of myosin VI in mice leads to stereociliary fusion caused by disruption of actin networks in the apical region of inner ear hair cells.

    Directory of Open Access Journals (Sweden)

    Yuta Seki

    Full Text Available An unconventional myosin encoded by the myosin VI gene (MYO6 contributes to hearing loss in humans. Homozygous mutations of MYO6 result in nonsyndromic profound congenital hearing loss, DFNB37. Kumamoto shaker/waltzer (ksv mice harbor spontaneous mutations, and homozygous mutants exhibit congenital defects in balance and hearing caused by fusion of the stereocilia. We identified a Myo6c.1381G>A mutation that was found to be a p.E461K mutation leading to alternative splicing errors in Myo6 mRNA in ksv mutants. An analysis of the mRNA and protein expression in animals harboring this mutation suggested that most of the abnormal alternatively spliced isoforms of MYO6 are degraded in ksv mice. In the hair cells of ksv/ksv homozygotes, the MYO6 protein levels were significantly decreased in the cytoplasm, including in the cuticular plates. MYO6 and stereociliary taper-specific proteins were mislocalized along the entire length of the stereocilia of ksv/ksv mice, thus suggesting that MYO6 attached to taper-specific proteins at the stereociliary base. Histological analysis of the cochlear hair cells showed that the stereociliary fusion in the ksv/ksv mutants, developed through fusion between stereociliary bundles, raised cuticular plate membranes in the cochlear hair cells and resulted in incorporation of the bundles into the sheaths of the cuticular plates. Interestingly, the expression of the stereociliary rootlet-specific TRIO and F-actin binding protein (TRIOBP was altered in ksv/ksv mice. The abnormal expression of TRIOBP suggested that the rootlets in the hair cells of ksv/ksv mice had excessive growth. Hence, these data indicated that decreased MYO6 levels in ksv/ksv mutants disrupt actin networks in the apical region of hair cells, thereby maintaining the normal structure of the cuticular plates and rootlets, and additionally provided a cellular basis for stereociliary fusion in Myo6 mutants.

  7. Physiological Maturation of Regenerating Hair Cells

    Science.gov (United States)

    Baird, Richard A.

    2003-01-01

    The bullfrog saccule, a sensor of gravity and substrate-borne vibration, is a model system for hair cell transduction. Saccular hair cells also increase in number throughout adult life and rapidly recover after hair cell damage, making this organ an ideal system for studying hair cell development, repair, and regeneration. We have used of hair cell and supporting cell immunocytochemical markers to identify damaged hair cells and hair cell precursors in organotypic cultures of the bullfrog saccule. We then used an innovative combination of confocal, electron, and time-lapse microscopy to study the fate of damaged hair cells and the origin of new hair cells after gentamicin ototoxicity in normal and mitotically blocked saccular cultures. These studies have shown that gentamicin ototoxicity produces both lethal and sublethal hair cell damage. They have also shown that hair cell recovery in this organ takes place by both the repair of sublethally damaged hair cells and by the replacement of lost hair cells by mitotic regeneration. In parallel studies, we have used biophysical and molecular biological techniques to study the differentiation and innervation of developing, repairing, and regenerating hair cells. More specifically, we have used RT-PCR to obtain the bullfrog homologues of L-type voltage- gated calcium (L-VGCC) and large-conductance Ca(2+)-activated potassium (BK) channel genes. We have then obtained probes for these genes and, using in situ hybridization, begun to examine their expression in the bullfrog saccule and amphibian papilla. We have also used fluorescent-labeled channel toxins and channel toxin derivatives to determine the time of appearance of L-type voltage-gated calcium (L-VGCC) and Ca(2+)-activated potassium (BK) channels and to study dynamic changes in the number, distribution, and co-localization of these proteins in developing, repairing, and regenerating hair cells. Using time-lapse microscopy, we are also studying the dynamic relationship

  8. Optimization of gene delivery methods in Xenopus laevis kidney (A6) and Chinese hamster ovary (CHO) cell lines for heterologous expression of Xenopus inner ear genes

    OpenAIRE

    Ramirez-Gordillo, Daniel; Trujillo-Provencio, Casilda; Knight, V. Bleu; Serrano, Elba E.

    2011-01-01

    The Xenopus inner ear provides a useful model for studies of hearing and balance because it shares features with the mammalian inner ear, and because amphibians are capable of regenerating damaged mechanosensory hair cells. The structure and function of many proteins necessary for inner ear function have yet to be elucidated and require methods for analysis. To this end, we seek to characterize Xenopus inner ear genes outside of the animal model through heterologous expression in cell lines. ...

  9. Insensitivity of the Audiogram to Carboplatin Induced Inner hair cell loss in Chinchillas

    Science.gov (United States)

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2013-01-01

    Noise trauma, aging, and ototoxicity preferentially damage the outer hair cells of the inner ear, leading to increased hearing thresholds and poorer frequency resolution. Whereas outer hair cells make synaptic connections with less than 10% of afferent auditory nerve fibers (type-II), inner hair cells make connections with over 90% of afferents (type-I). Despite these extensive connections, little is known about how selective inner hair cell loss impacts hearing. In chinchillas, moderate to high doses of the anticancer compound carboplatin produce selective inner hair cell and type-I afferent loss with little to no effect on outer hair cells. To determine the effects of carboplatin-induced inner hair cell loss on the most widely used clinical measure of hearing, the audiogram, pure-tone thresholds were determined behaviorally before and after 75 mg/kg carboplatin. Following carboplatin treatment, small effects on audiometric thresholds were observed even with extensive inner hair cell losses that exceed 80%. These results suggest that conventional audiometry is insensitive to inner hair cell loss and that only small populations of inner hair cells appear to be necessary for detecting tonal stimuli in a quiet background. PMID:23566980

  10. Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas.

    Science.gov (United States)

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2013-08-01

    Noise trauma, aging, and ototoxicity preferentially damage the outer hair cells of the inner ear, leading to increased hearing thresholds and poorer frequency resolution. Whereas outer hair cells make synaptic connections with less than 10% of afferent auditory nerve fibers (type-II), inner hair cells make connections with over 90% of afferents (type-I). Despite these extensive connections, little is known about how selective inner hair cell loss impacts hearing. In chinchillas, moderate to high doses of the anticancer compound carboplatin produce selective inner hair cell and type-I afferent loss with little to no effect on outer hair cells. To determine the effects of carboplatin-induced inner hair cell loss on the most widely used clinical measure of hearing, the audiogram, pure-tone thresholds were determined behaviorally before and after 75 mg/kg carboplatin. Following carboplatin treatment, small effects on audiometric thresholds were observed even with extensive inner hair cell losses that exceed 80%. These results suggest that conventional audiometry is insensitive to inner hair cell loss and that only small populations of inner hair cells appear to be necessary for detecting tonal stimuli in a quiet background. Published by Elsevier B.V.

  11. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms

    Science.gov (United States)

    Sipe, Conor W.; Lu, Xiaowei

    2011-01-01

    Auditory hair cells represent one of the most prominent examples of epithelial planar polarity. In the auditory sensory epithelium, planar polarity of individual hair cells is defined by their V-shaped hair bundle, the mechanotransduction organelle located on the apical surface. At the tissue level, all hair cells display uniform planar polarity across the epithelium. Although it is known that tissue planar polarity is controlled by non-canonical Wnt/planar cell polarity (PCP) signaling, the hair cell-intrinsic polarity machinery that establishes the V-shape of the hair bundle is poorly understood. Here, we show that the microtubule motor subunit Kif3a regulates hair cell polarization through both ciliary and non-ciliary mechanisms. Disruption of Kif3a in the inner ear led to absence of the kinocilium, a shortened cochlear duct and flattened hair bundle morphology. Moreover, basal bodies are mispositioned along both the apicobasal and planar polarity axes of mutant hair cells, and hair bundle orientation was uncoupled from the basal body position. We show that a non-ciliary function of Kif3a regulates localized cortical activity of p21-activated kinases (PAK), which in turn controls basal body positioning in hair cells. Our results demonstrate that Kif3a-PAK signaling coordinates planar polarization of the hair bundle and the basal body in hair cells, and establish Kif3a as a key component of the hair cell-intrinsic polarity machinery, which acts in concert with the tissue polarity pathway. PMID:21752934

  12. Human hair genealogies and stem cell latency

    Directory of Open Access Journals (Sweden)

    Tavaré Simon

    2006-02-01

    Full Text Available Abstract Background Stem cells divide to reproduce themselves and produce differentiated progeny. A fundamental problem in human biology has been the inability to measure how often stem cells divide. Although it is impossible to observe every division directly, one method for counting divisions is to count replication errors; the greater the number of divisions, the greater the numbers of errors. Stem cells with more divisions should produce progeny with more replication errors. Methods To test this approach, epigenetic errors (methylation in CpG-rich molecular clocks were measured from human hairs. Hairs exhibit growth and replacement cycles and "new" hairs physically reappear even on "old" heads. Errors may accumulate in long-lived stem cells, or in their differentiated progeny that are eventually shed. Results Average hair errors increased until two years of age, and then were constant despite decades of replacement, consistent with new hairs arising from infrequently dividing bulge stem cells. Errors were significantly more frequent in longer hairs, consistent with long-lived but eventually shed mitotic follicle cells. Conclusion Constant average hair methylation regardless of age contrasts with the age-related methylation observed in human intestine, suggesting that error accumulation and therefore stem cell latency differs among tissues. Epigenetic molecular clocks imply similar mitotic ages for hairs on young and old human heads, consistent with a restart with each new hair, and with genealogies surreptitiously written within somatic cell genomes.

  13. Lead roles for supporting actors: critical functions of inner ear supporting cells.

    Science.gov (United States)

    Monzack, Elyssa L; Cunningham, Lisa L

    2013-09-01

    Many studies that aim to investigate the underlying mechanisms of hearing loss or balance disorders focus on the hair cells and spiral ganglion neurons of the inner ear. Fewer studies have examined the supporting cells that contact both of these cell types in the cochlea and vestibular end organs. While the roles of supporting cells are still being elucidated, emerging evidence indicates that they serve many functions vital to maintaining healthy populations of hair cells and spiral ganglion neurons. Here we review recent studies that highlight the critical roles supporting cells play in the development, function, survival, death, phagocytosis, and regeneration of other cell types within the inner ear. Many of these roles have also been described for glial cells in other parts of the nervous system, and lessons from these other systems continue to inform our understanding of supporting cell functions. This article is part of a Special Issue entitled "Annual Reviews 2013". Published by Elsevier B.V.

  14. Hair cell transduction, tuning and synaptic transmission in the mammalian cochlea

    Science.gov (United States)

    Fettiplace, Robert

    2017-01-01

    Sound pressure fluctuations striking the ear are conveyed to the cochlea, where they vibrate the basilar membrane on which sit hair cells, the mechanoreceptors of the inner ear. Recordings of hair cell electrical responses have shown that they transduce sound via sub-micrometer deflections of their hair bundles, which are arrays of interconnected stereocilia containing the mechanoelectrical transducer (MET) channels. MET channels are activated by tension in extracellular tip links bridging adjacent stereocilia, and they can respond within microseconds to nanometer displacements of the bundle, facilitated by multiple processes of Ca2+-dependent adaptation. Studies of mouse mutants have produced much detail about the molecular organization of the stereocilia, the tip links and their attachment sites, and the MET channels localized to the lower ends of each tip link. The mammalian cochlea contains two categories of hair cells. Inner hair cells relay acoustic information via multiple ribbon synapses that transmit rapidly without rundown. Outer hair cells are important for amplifying sound-evoked vibrations. The amplification mechanism primarily involves contractions of the outer hair cells, which are driven by changes in membrane potential and mediated by prestin, a motor protein in the outer hair cell lateral membrane. Different sound frequencies are separated along the cochlea, with each hair cell being tuned to a narrow frequency range; amplification sharpens the frequency resolution and augments sensitivity 100-fold around the cell’s characteristic frequency. Genetic mutations and environmental factors such as acoustic overstimulation cause hearing loss through irreversible damage to the hair cells or degeneration of inner hair cell synapses. PMID:28915323

  15. Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear☆

    Science.gov (United States)

    Chonko, Kurt T.; Jahan, Israt; Stone, Jennifer; Wright, Margaret C.; Fujiyama, Tomoyuki; Hoshino, Mikio; Fritzsch, Bernd; Maricich, Stephen M.

    2013-01-01

    Atoh1 function is required for the earliest stages of inner ear hair cell development, which begins during the second week of gestation. Atoh1 expression in developing hair cells continues until early postnatal ages, but the function of this late expression is unknown. To test the role of continued Atoh1 expression in hair cell maturation we conditionally deleted the gene in the inner ear at various embryonic and postnatal ages. In the organ of Corti, deletion of Atoh1 at E15.5 led to the death of all hair cells. In contrast, deletion at E16.5 caused death only in apical regions, but abnormalities of stereocilia formation were present throughout the cochlea. In the utricle, deletion at E14.5 or E16.5 did not cause cell death but led to decreased expression of myosin VIIa and failure of stereocilia formation. Furthermore, we show that maintained expression of Barhl1 and Gfi1, two transcription factors implicated in cochlear hair cell survival, depends upon continued Atoh1 expression. However, maintained expression of Pou4f3 and several hair cell-specific markers is independent of Atoh1 expression. These data reveal novel late roles for Atoh1 that are separable from its initial role in hair cell development. PMID:23796904

  16. Live cell imaging of Arabidopsis root hairs

    NARCIS (Netherlands)

    Ketelaar, T.

    2014-01-01

    Root hairs are tubular extensions from the root surface that expand by tip growth. This highly focused type of cell expansion, combined with position of root hairs on the surface of the root, makes them ideal cells for microscopic observation. This chapter describes the method that is routinely used

  17. NOTCH SIGNALING ALTERS SENSORY OR NEURONAL CELL FATE SPECIFICATION OF INNER EAR STEM CELLS

    Science.gov (United States)

    Jeon, Sang-Jun; Fujioka, Masato; Kim, Shi-Chan; Edge, Albert S.B.

    2011-01-01

    Multipotent progenitor cells in the otic placode give rise to the specialized cell types of the inner ear, including neurons, supporting cells and hair cells. The mechanisms governing acquisition of specific fates by the cells that form the cochleovestibular organs remain poorly characterized. Here we show that whereas blocking Notch signaling with a γ-secretase inhibitor increased the conversion of inner ear stem cells to hair cells by a mechanism that involved the upregulation of bHLH transcription factor, Math1 (mouse Atoh1), differentiation to a neuronal lineage was increased by expression of the Notch intracellular domain. The shift to a neuronal lineage could be attributed in part to the continued cell proliferation in cells that did not undergo sensory cell differentiation due to the high Notch signaling, but also involved upregulation of Ngn1. The Notch intracellular domain influenced Ngn1 indirectly by upregulation of Sox2, a transcription factor expressed in many neural progenitor cells, and directly by an interaction with an RBP-J binding site in the Ngn1 promoter/enhancer. The induction of Ngn1 was blocked partially by mutation of the RBP-J site and nearly completely when the mutation was combined with inhibition of Sox2 expression. Thus Notch signaling had a significant role in the fate specification of neurons and hair cells from inner ear stem cells, and decisions about cell fate were mediated in part by a differential effect of combinatorial signaling by Notch and Sox2 on the expression of bHLH transcription factors. PMID:21653840

  18. Molecular basis of hair cell loss.

    Science.gov (United States)

    Furness, David N

    2015-07-01

    Mechanisms that lead to the death of hair cells are reviewed. Exposure to noise, the use of ototoxic drugs that damage the cochlea and old age are accompanied by hair cell death. Outer hair cells are often more susceptible than inner hair cells, partly because of an intrinsically greater susceptibility; high frequency cells are also more vulnerable. A common factor in hair cell loss following age-related changes and exposure to ototoxic drugs or high noise levels is the generation of reactive oxygen species, which can trigger intrinsic apoptosis (the mitochondrial pathway). However, hair cell death is sometimes produced via an extracellular signal pathway triggering extrinsic apoptosis. Necrosis and necroptosis also play a role and, in various situations in which cochlear damage occurs, a balance exists between these possible routes of cell death, with no one mechanism being exclusively activated. Finally, the numerous studies on these mechanisms of hair cell death have led to the identification of many potential therapeutic agents, some of which have been used to attempt to treat people exposed to damaging events, although clinical trials are not yet conclusive. Continued work in this area is likely to lead to clinical treatments that could be used to prevent or ameliorate hearing loss.

  19. Energy output from a single outer hair cell

    CERN Document Server

    Iwasa, Kuni H

    2016-01-01

    Electromotility of outer hair cells (OHCs) has been extensively studied with in vitro experiments because of its physiological significance in the cochlear amplifier, which provides the exquisite sensitivity and frequency selectivity of the mammalian ear. However, these studies have been performed largely under load-free conditions or with static load, while these cells function in vivo in a dynamic environment, receiving electrical energy to enhance mechanical oscillation in the inner ear. This gap leaves uncertainties in addressing a key issue, how much mechanical energy an OHC provides. The present report is an attempt of bridging the gap by introducing a simple one-dimensional model for electromotility of OHC in a dynamic environment. This model incorporates a feedback loop involving the receptor potential and the mechanical load on OHC, and leads to an analytical expression for the membrane capacitance, which explicitly describes the dependence on the elastic load, viscous drag, and the mass. The derived...

  20. From embryonic stem cells to sensory hair cells : a programming approach

    OpenAIRE

    Costa, Aida Isabel Santos, 1984-

    2014-01-01

    Tese de doutoramento, Ciências Biomédicas (Biologia do Desenvolvimento), Universidade de Lisboa, Faculdade de Medicina, 2014 It is estimated that 10% of the world population suffers from hearing impairment, and this number tends to rise with the increase in noise pollution and growth of aging population. The most frequent cause is irreversible damage to sensory hair cells (HCs) of the inner ear, which are highly specialized mechanoreceptor cells able to respond to acoustic signals. Non-mam...

  1. Natural bizbenzoquinoline derivatives protect zebrafish lateral line sensory hair cells from aminoglycoside toxicity

    Directory of Open Access Journals (Sweden)

    Matthew eKruger

    2016-03-01

    Full Text Available Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.

  2. TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells.

    Science.gov (United States)

    Zhao, Bo; Wu, Zizhen; Grillet, Nicolas; Yan, Linxuan; Xiong, Wei; Harkins-Perry, Sarah; Müller, Ulrich

    2014-12-03

    Hair cells are the mechanosensory cells of the inner ear. Mechanotransduction channels in hair cells are gated by tip links. The molecules that connect tip links to transduction channels are not known. Here we show that the transmembrane protein TMIE forms a ternary complex with the tip-link component PCDH15 and its binding partner TMHS/LHFPL5. Alternative splicing of the PCDH15 cytoplasmic domain regulates formation of this ternary complex. Transducer currents are abolished by a homozygous Tmie-null mutation, and subtle Tmie mutations that disrupt interactions between TMIE and tip links affect transduction, suggesting that TMIE is an essential component of the hair cell's mechanotransduction machinery that functionally couples the tip link to the transduction channel. The multisubunit composition of the transduction complex and the regulation of complex assembly by alternative splicing is likely critical for regulating channel properties in different hair cells and along the cochlea's tonotopic axis. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Depletion of CD200+ Hair Follicle Stem Cells in Human Prematurely Gray Hair Follicles

    OpenAIRE

    Mohanty, Sujata; Kumar, Anil; Dhawan, Jyoti; Sharma, Vinod K; Gupta, Somesh

    2013-01-01

    Introduction: Melanocyte stem cells (MelSCs) are known to be depleted in gray hair follicles. Hair follicle stem cells (HFSCs) are important for maintenance of stemness of MelSCs. Methods: We compared the proportion of CD200+ (Cluster of Differentiation 200 positive) stem cells in the outer root sheath cell suspension of gray and pigmented hair follicles of three patients with the premature graying of hair. In addition, explants culture for HFSCs was also carried out from gray and pigmented h...

  4. Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene.

    Science.gov (United States)

    Li, Shengguo; Price, Sandy M; Cahill, Hugh; Ryugo, David K; Shen, Michael M; Xiang, Mengqing

    2002-07-01

    The cochlea of the mammalian inner ear contains three rows of outer hair cells and a single row of inner hair cells. These hair cell receptors reside in the organ of Corti and function to transduce mechanical stimuli into electrical signals that mediate hearing. To date, the molecular mechanisms underlying the maintenance of these delicate sensory hair cells are unknown. We report that targeted disruption of Barhl1, a mouse homolog of the Drosophila BarH homeobox genes, results in severe to profound hearing loss, providing a unique model for the study of age-related human deafness disorders. Barhl1 is expressed in all sensory hair cells during inner ear development, 2 days after the onset of hair cell generation. Loss of Barhl1 function in mice results in age-related progressive degeneration of both outer and inner hair cells in the organ of Corti, following two reciprocal longitudinal gradients. Our data together indicate an essential role for Barhl1 in the long-term maintenance of cochlear hair cells, but not in the determination or differentiation of these cells.

  5. In vitro induction and differentiation of newborn guinea pig hippocampus neural stem cells into cells resembling inner hair cells, using artificial perilymph.

    Science.gov (United States)

    Wang, Y; Dong, M-M

    2011-08-01

    To investigate whether artificial perilymph can induce neural stem cells, derived from the hippocampus of newborn guinea pigs, to differentiate into inner ear hair cells, in vitro. Primary neural stem cells derived from the hippocampus of newborn guinea pigs were incubated in medium containing either 10 per cent fetal bovine serum or 5, 10 or 15 per cent artificial perilymph, for three weeks. Differentiated cells were identified using immunofluorescence, Western blot and scanning electron microscopy. Both fetal bovine serum and artificial perilymph induced the neural stem cells to differentiate into cells with hair-cell-specific antibodies. Neural stem cells can survive in both fetal bovine serum and artificial perilymph, and within these media can differentiate into cells with hair-cell-specific antibodies. This provides an experimental basis for transplantation of neural stem cells into the inner ear.

  6. A Novel Atoh1 “Self-Terminating” Mouse Model Reveals the Necessity of Proper Atoh1 Level and Duration for Hair Cell Differentiation and Viability

    Science.gov (United States)

    Pan, Ning; Jahan, Israt; Kersigo, Jennifer; Duncan, Jeremy S.; Kopecky, Benjamin; Fritzsch, Bernd

    2012-01-01

    Atonal homolog1 (Atoh1) is a bHLH transcription factor essential for inner ear hair cell differentiation. Targeted expression of Atoh1 at various stages in development can result in hair cell differentiation in the ear. However, the level and duration of Atoh1 expression required for proper hair cell differentiation and maintenance remain unknown. We generated an Atoh1 conditional knockout (CKO) mouse line using Tg(Atoh1-cre), in which the cre expression is driven by an Atoh1 enhancer element that is regulated by Atoh1 protein to “self-terminate” its expression. The mutant mice show transient, limited expression of Atoh1 in all hair cells in the ear. In the organ of Corti, reduction and delayed deletion of Atoh1 result in progressive loss of almost all the inner hair cells and the majority of the outer hair cells within three weeks after birth. The remaining cells express hair cell marker Myo7a and attract nerve fibers, but do not differentiate normal stereocilia bundles. Some Myo7a-positive cells persist in the cochlea into adult stages in the position of outer hair cells, flanked by a single row of pillar cells and two to three rows of disorganized Deiters cells. Gene expression analyses of Atoh1, Barhl1 and Pou4f3, genes required for survival and maturation of hair cells, reveal earlier and higher expression levels in the inner compared to the outer hair cells. Our data show that Atoh1 is crucial for hair cell mechanotransduction development, viability, and maintenance and also suggest that Atoh1 expression level and duration may play a role in inner vs. outer hair cell development. These genetically engineered Atoh1 CKO mice provide a novel model for establishing critical conditions needed to regenerate viable and functional hair cells with Atoh1 therapy. PMID:22279587

  7. A novel Atoh1 "self-terminating" mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability.

    Science.gov (United States)

    Pan, Ning; Jahan, Israt; Kersigo, Jennifer; Duncan, Jeremy S; Kopecky, Benjamin; Fritzsch, Bernd

    2012-01-01

    Atonal homolog1 (Atoh1) is a bHLH transcription factor essential for inner ear hair cell differentiation. Targeted expression of Atoh1 at various stages in development can result in hair cell differentiation in the ear. However, the level and duration of Atoh1 expression required for proper hair cell differentiation and maintenance remain unknown. We generated an Atoh1 conditional knockout (CKO) mouse line using Tg(Atoh1-cre), in which the cre expression is driven by an Atoh1 enhancer element that is regulated by Atoh1 protein to "self-terminate" its expression. The mutant mice show transient, limited expression of Atoh1 in all hair cells in the ear. In the organ of Corti, reduction and delayed deletion of Atoh1 result in progressive loss of almost all the inner hair cells and the majority of the outer hair cells within three weeks after birth. The remaining cells express hair cell marker Myo7a and attract nerve fibers, but do not differentiate normal stereocilia bundles. Some Myo7a-positive cells persist in the cochlea into adult stages in the position of outer hair cells, flanked by a single row of pillar cells and two to three rows of disorganized Deiters cells. Gene expression analyses of Atoh1, Barhl1 and Pou4f3, genes required for survival and maturation of hair cells, reveal earlier and higher expression levels in the inner compared to the outer hair cells. Our data show that Atoh1 is crucial for hair cell mechanotransduction development, viability, and maintenance and also suggest that Atoh1 expression level and duration may play a role in inner vs. outer hair cell development. These genetically engineered Atoh1 CKO mice provide a novel model for establishing critical conditions needed to regenerate viable and functional hair cells with Atoh1 therapy.

  8. A novel Atoh1 "self-terminating" mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability.

    Directory of Open Access Journals (Sweden)

    Ning Pan

    Full Text Available Atonal homolog1 (Atoh1 is a bHLH transcription factor essential for inner ear hair cell differentiation. Targeted expression of Atoh1 at various stages in development can result in hair cell differentiation in the ear. However, the level and duration of Atoh1 expression required for proper hair cell differentiation and maintenance remain unknown. We generated an Atoh1 conditional knockout (CKO mouse line using Tg(Atoh1-cre, in which the cre expression is driven by an Atoh1 enhancer element that is regulated by Atoh1 protein to "self-terminate" its expression. The mutant mice show transient, limited expression of Atoh1 in all hair cells in the ear. In the organ of Corti, reduction and delayed deletion of Atoh1 result in progressive loss of almost all the inner hair cells and the majority of the outer hair cells within three weeks after birth. The remaining cells express hair cell marker Myo7a and attract nerve fibers, but do not differentiate normal stereocilia bundles. Some Myo7a-positive cells persist in the cochlea into adult stages in the position of outer hair cells, flanked by a single row of pillar cells and two to three rows of disorganized Deiters cells. Gene expression analyses of Atoh1, Barhl1 and Pou4f3, genes required for survival and maturation of hair cells, reveal earlier and higher expression levels in the inner compared to the outer hair cells. Our data show that Atoh1 is crucial for hair cell mechanotransduction development, viability, and maintenance and also suggest that Atoh1 expression level and duration may play a role in inner vs. outer hair cell development. These genetically engineered Atoh1 CKO mice provide a novel model for establishing critical conditions needed to regenerate viable and functional hair cells with Atoh1 therapy.

  9. Functional features of trans-differentiated hair cells mediated by Atoh1 reveals a primordial mechanism.

    Science.gov (United States)

    Yang, Juanmei; Bouvron, Sonia; Lv, Ping; Chi, Fanglu; Yamoah, Ebenezer N

    2012-03-14

    Evolution has transformed a simple ear with few vestibular maculae into a complex three-dimensional structure consisting of nine distinct endorgans. It is debatable whether the sensory epithelia underwent progressive segregation or emerged from distinct sensory patches. To address these uncertainties we examined the morphological and functional phenotype of trans-differentiated rat hair cells to reveal their primitive or endorgan-specific origins. Additionally, it is uncertain how Atoh1-mediated trans-differentiated hair cells trigger the processes that establish their neural ranking from the vestibulocochlear ganglia. We have demonstrated that the morphology and functional expression of ionic currents in trans-differentiated hair cells resemble those of "ancestral" hair cells, even at the lesser epithelia ridge aspects of the cochlea. The structures of stereociliary bundles of trans-differentiated hair cells were in keeping with cells in the vestibule. Functionally, the transient expression of Na⁺ and I(h) currents initiates and promotes evoked spikes. Additionally, Ca²⁺ current was expressed and underwent developmental changes. These events correlate well with the innervation of ectopic hair cells. New "born" hair cells at the abneural aspects of the cochlea are innervated by spiral ganglion neurons, presumably under the tropic influence of chemoattractants. The disappearance of inward currents coincides well with the attenuation of evoked electrical activity, remarkably recapitulating the development of hair cells. Ectopic hair cells underwent stepwise changes in the magnitude and kinetics of transducer currents. We propose that Atoh1 mediates trans-differentiation of morphological and functional "ancestral" hair cells that are likely to undergo diversification in an endorgan-specific manner.

  10. Signaling in the Auditory System: Implications in Hair Cell Regeneration and Hearing Function.

    Science.gov (United States)

    Mittal, Rahul; Debs, Luca H; Nguyen, Desiree; Patel, Amit P; Grati, M'hamed; Mittal, Jeenu; Yan, Denise; Eshraghi, Adrien A; Liu, Xue Zhong

    2017-10-01

    Ear is a sensitive organ involved in hearing and balance function. The complex signaling network in the auditory system plays a crucial role in maintaining normal physiological function of the ear. The inner ear comprises a variety of host signaling pathways working in synergy to deliver clear sensory messages. Any disruption, as minor as it can be, has the potential to affect this finely tuned system with temporary or permanent sequelae including vestibular deficits and hearing loss. Mutations linked to auditory symptoms, whether inherited or acquired, are being actively researched for ways to reverse, silence, or suppress them. In this article, we discuss recent advancements in understanding the pathways involved in auditory system signaling, from hair cell development through transmission to cortical centers. Our review discusses Notch and Wnt signaling, cell to cell communication through connexin and pannexin channels, and the detrimental effects of reactive oxygen species on the auditory system. There has been an increased interest in the auditory community to explore the signaling system in the ear for hair cell regeneration. Understanding signaling pathways in the auditory system will pave the way for the novel avenues to regenerate sensory hair cells and restore hearing function. J. Cell. Physiol. 232: 2710-2721, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss.

    Science.gov (United States)

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2016-04-01

    Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits.

  12. Cryopreservation of Hair-Follicle Associated Pluripotent (HAP) Stem Cells Maintains Differentiation and Hair-Growth Potential.

    Science.gov (United States)

    Hoffman, Robert M; Kajiura, Satoshi; Cao, Wenluo; Liu, Fang; Amoh, Yasuyuki

    2016-01-01

    Hair follicles contain nestin-expressing pluripotent stem cells which originate above the bulge area of the follicle, below the sebaceous gland. We have termed these cells hair follicle-associated pluripotent (HAP) stem cells. We have established efficient cryopreservation methods of the hair follicle that maintain the pluripotency of HAP stem cells as well as hair growth. We cryopreserved the whole hair follicle by slow-rate cooling in TC-Protector medium or in DMSO-containing medium and storage in liquid nitrogen or at -80 °C. After thawing and culture of the cryopreserved whisker follicles, growing HAP stem cells formed hair spheres. The hair spheres contained cells that differentiated to neurons, glial cells, and other cell types. The hair spheres derived from slow-cooling cryopreserved hair follicles were as pluripotent as hair spheres from fresh hair follicles. We have also previously demonstrated that cryopreserved mouse whisker hair follicles maintain their hair-growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. DMSO-cryopreserved hair follicles also maintained the HAP stem cells, evidenced by P75ntr expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair-shaft growth of cryopreserved hair follicles. HAP stem cells can be used for nerve and spinal-cord repair. This biobanking of hair follicles can allow each patient the potential for their own stem cell use for regenerative medicine or hair transplantation.

  13. N-Myc and L-Myc are essential for hair cell formation but not maintenance.

    Science.gov (United States)

    Kopecky, Benjamin J; Decook, Rhonda; Fritzsch, Bernd

    2012-11-12

    Sensorineural hearing loss results from damage to the hair cells of the organ of Corti and is irreversible in mammals. While hair cell regeneration may prove to be the ideal therapy after hearing loss, prevention of initial hair cell loss could provide even more benefit at a lower cost. Previous studies have shown that the deletion of Atoh1 results in embryonic loss of hair cells while the absence of Barhl1, Gfi1, and Pou4f3 leads to the progressive loss of hair cells in newborn mice. We recently reported that in the early embryonic absence of N-Myc (using Pax2-Cre), hair cells in the organ of Corti develop and remain until at least seven days after birth, with subsequent progressive loss. Thus, N-Myc plays a role in hair cell viability; however, it is unclear if this is due to its early expression in hair cell precursors and throughout the growing otocyst as it functions through proliferation or its late expression exclusively in differentiated hair cells. Furthermore, the related family member L-Myc is mostly co-expressed in the ear, including in differentiated hair cells, but its function has not been studied and could be partially redundant to N-Myc. To test for a long-term function of the Mycs in differentiated hair cells, we generated nine unique genotypes knocking out N-Myc and/or L-Myc after initial formation of hair cells using the well-characterized Atoh1-Cre. We tested functionality of the auditory and vestibular systems at both P21 and four months of age and under the administration of the ototoxic drug cisplatin. We conclude that neither N-Myc nor L-Myc is likely to play important roles in long-term hair cell maintenance. Therefore, it is likely that the late-onset loss of hair cells resulting from early deletion of the Mycs leads to an unsustainable developmental defect. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The elusive mechanotransduction machinery of hair cells.

    Science.gov (United States)

    Zhao, Bo; Müller, Ulrich

    2015-10-01

    Hair cells in the mammalian cochlea are specialized sensory cells that convert mechanical signals evoked by sound waves into electrochemical signals. Several integral membrane proteins have recently been identified that are closely linked to the mechanotransduction process. Efforts are under way to determine the extent to which they are subunits of the long thought-after mechanotransduction channel. Recent findings also suggest that mechanotransduction may have a role in fine tuning the length of the stereocilia and thus in the regulation of morphological features of hair cells that are inherently linked to the mechanotransduction process. Copyright © 2015. Published by Elsevier Ltd.

  15. An electrical tuning mechanism in turtle cochlear hair cells.

    Science.gov (United States)

    Crawford, A C; Fettiplace, R

    1981-03-01

    1. Intracellular recordings were made from single cochlear hair cells in the isolated half-head of the turtle. The electrical responses of the cells were recorded under two conditions: (a) when the ear was stimulated with low-intensity tones of different frequencies and (b) when current steps were injected through the intracellular electrode. The aim of the experiments was to evaluate the extent to which the cochlea's frequency selectivity could be accounted for by the electrical properties of the hair cells.2. At low levels of acoustic stimulation, the amplitude of the hair cell's receptor potential was proportional to sound pressure. The linear tuning curve, which is defined as the sensitivity of the cell as a function of frequency when the cell is operating in its linear range, was measured for a number of hair cells with characteristic frequencies from 86 Hz to 425 Hz.3. A rectangular current passed into a hair cell elicited a membrane potential change consisting of a damped oscillation superimposed on a step. Small currents produced symmetrical oscillations at the beginning and end of the pulse. Larger currents increased the initial ringing frequency if depolarizing and decreased it if hyperpolarizing.4. For small currents the frequency of the oscillations and the quality factor (Q) of the electrical resonance derived from the decay of the oscillations were close to the characteristic frequency and Q of the hair-cell linear tuning curve obtained from sound presentations.5. The hair cell's membrane potential change to small-current pulses or low-intensity tone bursts could be largely described by representing the hair cell as a simple electrical resonator consisting of an inductance, resistor and capacitor.6. When step displacements of 29-250 nm were applied to a micropipette, placed just outside a hair cell in the basilar papilla, an initial periodic firing of impulses could be recorded from single fibres in the auditory nerve. Currents of up to 1 nA, injected

  16. Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea

    Directory of Open Access Journals (Sweden)

    Azadeh Jadali

    2016-06-01

    Full Text Available Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss.

  17. Gene, cell, and organ multiplication drives inner ear evolution.

    Science.gov (United States)

    Fritzsch, Bernd; Elliott, Karen L

    2017-11-01

    We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Depletion of CD200+ hair follicle stem cells in human prematurely gray hair follicles

    Directory of Open Access Journals (Sweden)

    Sujata Mohanty

    2013-01-01

    Full Text Available Introduction: Melanocyte stem cells (MelSCs are known to be depleted in gray hair follicles. Hair follicle stem cells (HFSCs are important for maintenance of stemness of MelSCs. Methods: We compared the proportion of CD200+ (Cluster of Differentiation 200 positive stem cells in the outer root sheath cell suspension of gray and pigmented hair follicles of three patients with the premature graying of hair. In addition, explants culture for HFSCs was also carried out from gray and pigmented hair follicles. Cultured HFSCs were also differentiated into melanocytes. Results: The mean ± SD CD200+ HFSCs population were 9.4 ± 1.4% and 3.5 ± 0.5% for pigmented and gray hair follicles, respectively ( P = 0.002. In explants culture, the growth of HFSCs from the gray hair follicle stopped at around day 20-22, whereas the growth of the cells from the pigmented follicle continued. Conclusion: CD200+ HFSCs are depleted in prematurely gray hair in the humans. CD200+ hair follicle stem cell yield is poorer in gray hair explant culture than pigmented hair explant culture.

  19. Depletion of CD200+ Hair Follicle Stem Cells in Human Prematurely Gray Hair Follicles.

    Science.gov (United States)

    Mohanty, Sujata; Kumar, Anil; Dhawan, Jyoti; Sharma, Vinod K; Gupta, Somesh

    2013-04-01

    Melanocyte stem cells (MelSCs) are known to be depleted in gray hair follicles. Hair follicle stem cells (HFSCs) are important for maintenance of stemness of MelSCs. We compared the proportion of CD200+ (Cluster of Differentiation 200 positive) stem cells in the outer root sheath cell suspension of gray and pigmented hair follicles of three patients with the premature graying of hair. In addition, explants culture for HFSCs was also carried out from gray and pigmented hair follicles. Cultured HFSCs were also differentiated into melanocytes. The mean ± SD CD200+ HFSCs population were 9.4 ± 1.4% and 3.5 ± 0.5% for pigmented and gray hair follicles, respectively (P = 0.002). In explants culture, the growth of HFSCs from the gray hair follicle stopped at around day 20-22, whereas the growth of the cells from the pigmented follicle continued. CD200+ HFSCs are depleted in prematurely gray hair in the humans. CD200+ hair follicle stem cell yield is poorer in gray hair explant culture than pigmented hair explant culture.

  20. Imaging collective cell migration and hair cell regeneration in the sensory lateral line.

    Science.gov (United States)

    Venero Galanternik, M; Navajas Acedo, J; Romero-Carvajal, A; Piotrowski, T

    2016-01-01

    The accessibility of the lateral line system and its amenability to long-term in vivo imaging transformed the developing lateral line into a powerful model system to study fundamental morphogenetic events, such as guided migration, proliferation, cell shape changes, organ formation, organ deposition, cell specification and differentiation. In addition, the lateral line is not only amenable to live imaging during migration stages but also during postembryonic events such as sensory organ tissue homeostasis and regeneration. The robust regenerative capabilities of the mature, mechanosensory lateral line hair cells, which are homologous to inner ear hair cells and the ease with which they can be imaged, have brought zebrafish into the spotlight as a model to develop tools to treat human deafness. In this chapter, we describe protocols for long-term in vivo confocal imaging of the developing and regenerating lateral line. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses.

    Science.gov (United States)

    Highstein, Stephen M; Holstein, Gay R; Mann, Mary Anne; Rabbitt, Richard D

    2014-04-08

    Present data support the conclusion that protons serve as an important neurotransmitter to convey excitatory stimuli from inner ear type I vestibular hair cells to postsynaptic calyx nerve terminals. Time-resolved pH imaging revealed stimulus-evoked extrusion of protons from hair cells and a subsequent buildup of [H(+)] within the confined chalice-shaped synaptic cleft (ΔpH ∼ -0.2). Whole-cell voltage-clamp recordings revealed a concomitant nonquantal excitatory postsynaptic current in the calyx terminal that was causally modulated by cleft acidification. The time course of [H(+)] buildup limits the speed of this intercellular signaling mechanism, but for tonic signals such as gravity, protonergic transmission offers a significant metabolic advantage over quantal excitatory postsynaptic currents--an advantage that may have driven the proliferation of postsynaptic calyx terminals in the inner ear vestibular organs of contemporary amniotes.

  2. Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein.

    Science.gov (United States)

    Gopal, Suhasini R; Chen, Daniel H-C; Chou, Shih-Wei; Zang, Jingjing; Neuhauss, Stephan C F; Stepanyan, Ruben; McDermott, Brian M; Alagramam, Kumar N

    2015-07-15

    Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype

  3. Making sense of Wnt signaling – linking hair cell regeneration to development

    Directory of Open Access Journals (Sweden)

    Lina eJansson

    2015-03-01

    Full Text Available Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.

  4. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  5. Lectin from Griffonia simplicifolia identifies an immature-appearing subpopulation of sensory hair cells in the avian utricle.

    Science.gov (United States)

    Warchol, M E

    2001-03-01

    The sensory hair cells of the inner ear are coated with a variety of glycoproteins and glycolipids which can be identified by the binding of specific lectins. The present study examined the binding patterns of three lectins-Wheat Germ Agglutinin, Peanut Agglutinin, and lectin from Griffonia simplicifolia (Isoform B(4))-in the avian utricle. Each of the lectins exhibited a distinct pattern of hair cell labeling. Wheat Germ Agglutinin (WGA) appeared to label the ciliary bundles of all sensory hair cells. In contrast, the binding of Peanut Agglutinin (PNA) was mainly confined to the ciliary bundles of extrastriolar hair cells. Finally, lectin from Griffonia simplicifolia (GS-IB(4)) labeled a subpopulation of hair cells in all regions of the chick utricle. Those bundles were much smaller than the majority of ciliary bundles labeled by either WGA or PNA, and the density of GS-IB(4)-labeled bundles in the normal mature utricle was relatively low. Increased densities of GS-IB(4)-labeled hair cells were observed in the embryonic utricle and during the process of hair cell regeneration. The observations suggest that GS-IB(4) labels a glycoprotein that is expressed preferentially on the ciliary bundles of immature hair cells.

  6. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction.

    Science.gov (United States)

    Suzuki, Jun; Hashimoto, Ken; Xiao, Ru; Vandenberghe, Luk H; Liberman, M Charles

    2017-04-03

    The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a "designer" AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs.

  7. Sensory hair cell development and regeneration: similarities and differences.

    Science.gov (United States)

    Atkinson, Patrick J; Huarcaya Najarro, Elvis; Sayyid, Zahra N; Cheng, Alan G

    2015-05-01

    Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration. © 2015. Published by The Company of Biologists Ltd.

  8. Hepatocyte growth factor mimetic protects lateral line hair cells from aminoglycoside exposure

    Directory of Open Access Journals (Sweden)

    Phillip eUribe

    2015-01-01

    Full Text Available Loss of sensory hair cells from exposure to certain licit drugs (e.g., aminoglycoside antibiotics, platinum-based chemotherapy agents can result in permanent hearing loss. Here we ask if allosteric activation of the hepatocyte growth factor (HGF cascade via Dihexa, a small molecule drug candidate, can protect hair cells from aminoglycoside toxicity. Unlike native HGF, Dihexa is chemically stable and blood-brain barrier permeable. As a synthetic HGF mimetic, it forms a functional ligand by dimerizing with endogenous HGF to activate the HGF receptor and downstream signaling cascades. To evaluate Dihexa as a potential hair cell protectant, we used the larval zebrafish lateral line, which possesses hair cells that are homologous to mammalian inner ear hair cells and show similar responses to toxins. A dose-response relationship for Dihexa protection was established using two ototoxins, neomycin and gentamicin. We found that a Dihexa concentration of 1 µM confers optimal protection from acute treatment with either ototoxin. Pretreatment with Dihexa does not affect the amount of fluorescently tagged gentamicin that enters hair cells, indicating that Dihexa’s protection is likely mediated by intracellular events and not by inhibiting aminoglycoside entry. Dihexa-mediated protection is attenuated by co-treatment with the HGF antagonist 6-AH, further evidence that HGF activation is a component of the observed protection. Additionally, Dihexa’s robust protection is partially attenuated by co-treatment with inhibitors of the downstream HGF targets Akt, TOR and MEK. Addition of an amino group to the N-terminal of Dihexa also attenuates the protective response, suggesting that even small substitutions greatly alter the specificity of Dihexa for its target. Our data suggest that Dihexa confers protection of hair cells through an HGF-mediated mechanism and that Dihexa holds clinical potential for mitigating chemical ototoxicity.

  9. Approach towards developing a novel procedure to selectively quantify topically applied substances in the hair follicles of the model tissue porcine ear skin.

    Science.gov (United States)

    Knorr, Fanny; Patzelt, Alexa; Richter, Heike; Schanzer, Sabine; Sterry, Wolfram; Lademann, Juergen

    2013-06-01

    Hair follicles represent reservoirs for localized drug therapy and transport pathways for systemic drug delivery. This study describes an approach towards developing a novel procedure for quantifying topically applied substances located in the hair follicles of porcine ear skin, a model for human in vivo skin, using a fluorescent dye. Approximately 5% of the topically applied dye was recovered from the hair follicles, which is in accordance with a previous study. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Functional calcium imaging in zebrafish lateral-line hair cells.

    Science.gov (United States)

    Zhang, Q X; He, X J; Wong, H C; Kindt, K S

    2016-01-01

    Sensory hair-cell development, function, and regeneration are fundamental processes that are challenging to study in mammalian systems. Zebrafish are an excellent alternative model to study hair cells because they have an external auxiliary organ called the lateral line. The hair cells of the lateral line are easily accessible, which makes them suitable for live, function-based fluorescence imaging. In this chapter, we describe methods to perform functional calcium imaging in zebrafish lateral-line hair cells. We compare genetically encoded calcium indicators that have been used previously to measure calcium in lateral-line hair cells. We also outline equipment required for calcium imaging and compare different imaging systems. Lastly, we discuss how to set up optimal imaging parameters and how to process and visualize calcium signals. Overall, using these methods, in vivo calcium imaging is a powerful tool to examine sensory hair-cell function in an intact organism. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A critical period of ear development controlled by distinct populations of ciliated cells in the zebrafish.

    Science.gov (United States)

    Riley, B B; Zhu, C; Janetopoulos, C; Aufderheide, K J

    1997-11-15

    The zebrafish (Danio rerio) is a useful model system for analyzing development of the inner ear. A number of mutations affecting the inner ear have been identified. Here we investigate the initial stages of otolith morphogenesis in wild-type embryos as well as in monolith (mnl) mutant embryos, which fail to form anterior otoliths but otherwise appear normal. Otolith growth is initiated at 18-18.5 h by localized accretion of free-moving precursor particles. This process, referred to as otolith seeding, is regulated by two classes of cilia: First, kinocilia of precociously forming hair cells (tether cells) bind seeding particles, thereby localizing otolith formation. Tether cells usually occur in pairs at the anterior and posterior ends of the ear. Despite the presence of functional kinocilia, tether cells initially appear immature and do not acquire the characteristics of mature hair cells until approximately 21.5 h. Second, beating cilia distributed throughout the ear agitate seeding particles, thereby inhibiting premature agglutination. Constraining particles with laser tweezers caused them to fuse into large untethered masses. Bringing such masses into contact with tethered otoliths caused them to fuse, greatly enhancing otolith growth. Selectively enhancing one otolith greatly inhibited growth of the second, creating an imbalance that persisted for many days. Seeding particles and beating cilia disappear soon after 24 h, and the rate of otolith growth decreases by nearly 90%. In mnl mutant embryos, tethers and beating cilia are distributed normally, but anterior otoliths fail to form in 80-85% of mutant ears. The binding properties of seeding particles appear normal, as shown by their ability to fuse when entrapped by laser tweezers and their binding to posterior tethers. We infer that anterior tethers have a weakened ability to bind seeding particles in mnl embryos. Immobilizing mnl embryos with the anterior end of the ear oriented downward effectively

  12. Three-dimensional architecture of hair-cell linkages as revealedby electron-microscopic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Manfred; Koster, Bram; Ziese, Ulrike; Bajaj, Chandrajit; Volkmann, Niels; Wang, Da Neng; Hudspeth, A. James

    2006-07-28

    The senses of hearing and balance rest upon mechanoelectrical transduction by the hair bundles of hair cells in the inner ear. Located at the apical cellular surface, each hair bundle comprises several tens of stereocilia and a single kinocilium that are interconnected by extracellular proteinaceous links. Using electron-microscopic tomography of bullfrog saccular sensory epithelia, we examined the three-dimensional structures of ankle or basal links, kinociliary links, and tip links. We observed clear differences in the dimensions and appearances of the three links. We found two distinct populations of tip links suggestive of the involvement of two proteins or splice variants. We noted auxiliary links connecting the upper portions of tip links to the taller stereocilia. Tip links and auxiliary links show a tendency to adopt a globular conformation when disconnected from the membrane surface.

  13. Thermal noise and the incessant vibration of the outer hair cells in the cochlea

    Directory of Open Access Journals (Sweden)

    W. Fritze

    1998-01-01

    Full Text Available The continual exposure of outer hair cells (OHCs to thermal noise causes vibrations in resonant frequency. As these vibrations are backprojected, they should be recordable as audiofrequencies in the outer ear canal. But even though they are likely to be amplified in some areas by clustering in terms of the chaos theory, they cannot be picked up in the outer ear canal by currently available recording technologies. Conditions change in the presence of pathology, e.g. loss of OHCs and fibrous replacement: Clusters grow in size and amplitudes become larger so that the vibrations can be picked up as spontaneous oto-acoustic emissions (SOAEs in the outer ear canal. Efforts are needed to demonstrate the presence of physiological OHC vibrations (emission by incessant vibration, EIV by processing auditory recordings with statistical methods.

  14. Mechanobiology and cell tensegrity: the root of ethnic hair curling?

    Science.gov (United States)

    Piérard-Franchimont, Claudine; Paquet, Philippe; Quatresooz, Pascale; Piérard, Gérald E

    2011-06-01

    The hair shape, either straight, crimp, or curly, is basically under genetic influence. It is possibly altered by some drugs such as cytostatic agents. In addition, specific innate molecular characteristics are modulated by some cosmetic procedures to reshape the hair shafts. To revisit the possible implication of mechanobiology and cell tensegrity in shaping ethnic hair. Optical and scanning electron microscopy of hairs. It is generally held that the cross-section shape of hair is related to differences in the global aspect of the hair shaft. A possible biologic link between these features may rely on shaping cell tensegrity at any portion of the hair shaft. Cell tensegrity encompasses all intrinsic and extrinsic forces responsible for the three-dimensional arrangement of intracellular macromolecules. We offer as a hypothesis that the hair shape in part depends on the organization of the cell proliferation in the hair matrix. This review gathers observations supporting the involvement of cell tensegrity in shaping the hair shaft. © 2011 Wiley Periodicals, Inc.

  15. Barhl1 Regulatory Sequences Required for Cell-Specific Gene Expression and Autoregulation in the Inner Ear and Central Nervous System▿ †

    Science.gov (United States)

    Chellappa, Ramesh; Li, Shengguo; Pauley, Sarah; Jahan, Israt; Jin, Kangxin; Xiang, Mengqing

    2008-01-01

    The development of the nervous system requires the concerted actions of multiple transcription factors, yet the molecular events leading to their expression remain poorly understood. Barhl1, a mammalian homeodomain transcription factor of the BarH class, is expressed by developing inner ear hair cells, cerebellar granule cells, precerebellar neurons, and collicular neurons. Targeted gene inactivation has demonstrated a crucial role for Barhl1 in the survival and/or migration of these sensory cells and neurons. Here we report the regulatory sequences of Barhl1 necessary for directing its proper spatiotemporal expression pattern in the inner ear and central nervous system (CNS). Using a transgenic approach, we have found that high-level and cell-specific expression of Barhl1 within the inner ear and CNS depends on both its 5′ promoter and 3′ enhancer sequences. Further transcriptional, binding, and mutational analyses of the 5′ promoter have identified two homeoprotein binding motifs that can be occupied and activated by Barhl1. Moreover, proper Barhl1 expression in inner ear hair cells and cerebellar and precerebellar neurons requires the presence of Atoh1. Together, these data delineate useful Barhl1 regulatory sequences that direct strong and specific gene expression to inner ear hair cells and CNS sensory neurons, establish a role for autoregulation in the maintenance of Barhl1 expression, and identify Atoh1 as a key upstream regulator. PMID:18212062

  16. Barhl1 regulatory sequences required for cell-specific gene expression and autoregulation in the inner ear and central nervous system.

    Science.gov (United States)

    Chellappa, Ramesh; Li, Shengguo; Pauley, Sarah; Jahan, Israt; Jin, Kangxin; Xiang, Mengqing

    2008-03-01

    The development of the nervous system requires the concerted actions of multiple transcription factors, yet the molecular events leading to their expression remain poorly understood. Barhl1, a mammalian homeodomain transcription factor of the BarH class, is expressed by developing inner ear hair cells, cerebellar granule cells, precerebellar neurons, and collicular neurons. Targeted gene inactivation has demonstrated a crucial role for Barhl1 in the survival and/or migration of these sensory cells and neurons. Here we report the regulatory sequences of Barhl1 necessary for directing its proper spatiotemporal expression pattern in the inner ear and central nervous system (CNS). Using a transgenic approach, we have found that high-level and cell-specific expression of Barhl1 within the inner ear and CNS depends on both its 5' promoter and 3' enhancer sequences. Further transcriptional, binding, and mutational analyses of the 5' promoter have identified two homeoprotein binding motifs that can be occupied and activated by Barhl1. Moreover, proper Barhl1 expression in inner ear hair cells and cerebellar and precerebellar neurons requires the presence of Atoh1. Together, these data delineate useful Barhl1 regulatory sequences that direct strong and specific gene expression to inner ear hair cells and CNS sensory neurons, establish a role for autoregulation in the maintenance of Barhl1 expression, and identify Atoh1 as a key upstream regulator.

  17. Ear Problems

    Science.gov (United States)

    ... Women Hair Loss Hand/Wrist/Arm Problems Headaches Hearing Problems Hip Problems Knee Problems Leg Problems Lower Back ... have ear pain or redness but is having problems hearing?YesNo Back to Questions Step 3 Possible Causes ...

  18. Artificial Hair Cells for Sensing Flows

    Science.gov (United States)

    Chen, Jack

    2007-01-01

    The purpose of this article is to present additional information about the flow-velocity sensors described briefly in the immediately preceding article. As noted therein, these sensors can be characterized as artificial hair cells that implement an approximation of the sensory principle of flow-sensing cilia of fish: A cilium is bent by an amount proportional to the flow to which it is exposed. A nerve cell at the base of the cilium senses the flow by sensing the bending of the cilium. In an artificial hair cell, the artificial cilium is a microscopic cantilever beam, and the bending of an artificial cilium is measured by means of a strain gauge at its base (see Figure 1). Figure 2 presents cross sections of a representative sensor of this type at two different stages of its fabrication process. The process consists of relatively- low-temperature metallization, polymer-deposition, microfabrication, and surface-micromachining subprocesses, including plastic-deformation magnetic assembly (PDMA), which is described below. These subprocesses are suitable for a variety of substrate materials, including silicon, some glasses, and some polymers. Moreover, because it incorporates a polymeric supporting structure, this sensor is more robust, relative to its silicon-based counterparts.

  19. Penetration of topically applied nanocarriers into the hair follicles of dog and rat dorsal skin and porcine ear skin.

    Science.gov (United States)

    Knorr, Fanny; Patzelt, Alexa; Darvin, Maxim E; Lehr, Claus-Michael; Schäfer, Ulrich; Gruber, Achim D; Ostrowski, Anja; Lademann, Jürgen

    2016-08-01

    In humans, topically applied nanocarriers penetrate effectively into the hair follicles where they can be exploited for the localized and targeted treatment of skin disorders. The objective of the present study was to examine the applicability of particle-based systems for follicular drug delivery in companion animals and livestock, which have a large follicular reservoir. Skin samples from 10 beagle dogs, 14 Wistar rats and four ears from freshly slaughtered cross-bred pigs were used. Fluoresceinamine labelled poly (L-lactide-co-glycolide) nanocarriers (256 or 430 nm) were applied on the different skin samples. After penetration, skin biopsies were removed and cryohistological cross sections prepared and investigated with regard to the follicular penetration depths (in μm ± standard deviation) of the nanocarriers using confocal laser scanning microscopy. In canine, rat and porcine hair follicles, the smaller nanoparticles were detected at mean follicular penetration depths of 630.16 ± 135.75 μm, 253.55 ± 47.36 μm and 653.40 ± 94.71 μm, respectively. The larger particles were observed at average follicular depths of 604.79 ± 132.42 μm; 262.87 ± 55.25 μm and 786.81 ± 121.73 μm, respectively, in canine, rat and porcine hair follicles. Statistically significant differences (P porcine skin samples. The mean follicular penetration depths of the differently sized nanocarriers were mostly significantly different between the different species, which might be due to different species-specific follicular dimensions. This issue needs to be addressed specifically in further studies. © 2016 ESVD and ACVD.

  20. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier

    Science.gov (United States)

    Liberman, M. Charles; Gao, Jiangang; He, David Z. Z.; Wu, Xudong; Jia, Shuping; Zuo, Jian

    2002-09-01

    Hearing sensitivity in mammals is enhanced by more than 40dB (that is, 100-fold) by mechanical amplification thought to be generated by one class of cochlear sensory cells, the outer hair cells. In addition to the mechano-electrical transduction required for auditory sensation, mammalian outer hair cells also perform electromechanical transduction, whereby transmembrane voltage drives cellular length changes at audio frequencies in vitro. This electromotility is thought to arise through voltage-gated conformational changes in a membrane protein, and prestin has been proposed as this molecular motor. Here we show that targeted deletion of prestin in mice results in loss of outer hair cell electromotility in vitro and a 40-60dB loss of cochlear sensitivity in vivo, without disruption of mechano-electrical transduction in outer hair cells. In heterozygotes, electromotility is halved and there is a twofold (about 6dB) increase in cochlear thresholds. These results suggest that prestin is indeed the motor protein, that there is a simple and direct coupling between electromotility and cochlear amplification, and that there is no need to invoke additional active processes to explain cochlear sensitivity in the mammalian ear.

  1. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels.

    Science.gov (United States)

    Wu, Zizhen; Grillet, Nicolas; Zhao, Bo; Cunningham, Christopher; Harkins-Perry, Sarah; Coste, Bertrand; Ranade, Sanjeev; Zebarjadi, Navid; Beurg, Maryline; Fettiplace, Robert; Patapoutian, Ardem; Mueller, Ulrich

    2017-01-01

    Auditory hair cells contain mechanotransduction channels that rapidly open in response to sound-induced vibrations. We report here that auditory hair cells contain two molecularly distinct mechanotransduction channels. One ion channel is activated by sound and is responsible for sensory transduction. This sensory transduction channel is expressed in hair cell stereocilia, and previous studies show that its activity is affected by mutations in the genes encoding the transmembrane proteins TMHS, TMIE, TMC1 and TMC2. We show here that the second ion channel is expressed at the apical surface of hair cells and that it contains the Piezo2 protein. The activity of the Piezo2-dependent channel is controlled by the intracellular Ca(2+) concentration and can be recorded following disruption of the sensory transduction machinery or more generally by disruption of the sensory epithelium. We thus conclude that hair cells express two molecularly and functionally distinct mechanotransduction channels with different subcellular distributions.

  2. Concise Review: Regeneration in Mammalian Cochlea Hair Cells: Help from Supporting Cells Transdifferentiation.

    Science.gov (United States)

    Franco, Bénédicte; Malgrange, Brigitte

    2017-03-01

    It is commonly assumed that mammalian cochlear cells do not regenerate. Therefore, if hair cells are lost following an injury, no recovery could occur. However, during the first postnatal week, mice harbor some progenitor cells that retain the ability to give rise to new hair cells. These progenitor cells are in fact supporting cells. Upon hair cells loss, those cells are able to generate new hair cells both by direct transdifferentiation or following cell cycle re-entry and differentiation. However, this property of supporting cells is progressively lost after birth. Here, we review the molecular mechanisms that are involved in mammalian hair cell development and regeneration. Manipulating pathways used during development constitute good candidates for inducing hair cell regeneration after injury. Despite these promising studies, there is still no evidence for a recovery following hair cells loss in adult mammals. Stem Cells 2017;35:551-556. © 2017 AlphaMed Press.

  3. Toluene diisocyanate (TDI) disposition and co-localization of immune cells in hair follicles.

    Science.gov (United States)

    Nayak, Ajay P; Hettick, Justin M; Siegel, Paul D; Anderson, Stacey E; Long, Carrie M; Green, Brett J; Beezhold, Donald H

    2014-08-01

    Diisocyanates (dNCOs) are potent chemical allergens utilized in various industries. It has been proposed that skin exposure to dNCOs produces immune sensitization leading to work-related asthma and allergic disease. We examined dNCOs sensitization by using a dermal murine model of toluene diisocyanate (TDI) exposure to characterize the disposition of TDI in the skin, identify the predominant haptenated proteins, and discern the associated antigen uptake by dendritic cells. Ears of BALB/c mice were dosed once with TDI (0.1% or 4% v/v acetone). Ears and draining lymph nodes (DLNs) were excised at selected time points between 1 h and 15 days post-exposure and were processed for histological, immunohistochemical, and proteomic analyses. Monoclonal antibodies specific for TDI-haptenated protein (TDI-hp) and antibodies to various cell markers were utilized with confocal microscopy to determine co-localization patterns. Histopathological changes were observed following exposure in ear tissue of mice dosed with 4% TDI/acetone. Immunohistochemical staining demonstrated TDI-hp localization in the stratum corneum, hair follicles, and sebaceous glands. TDI-hp were co-localized with CD11b(+) (integrin αM/Mac-1), CD207(+) (langerin), and CD103(+) (integrin αE) cells in the hair follicles and in sebaceous glands. TDI-hp were also identified in the DLN 1 h post-exposure. Cytoskeletal and cuticular keratins along with mouse serum albumin were identified as major haptenated species in the skin. The results of this study demonstrate that the stratum corneum, hair follicles, and associated sebaceous glands in mice are dendritic cell accessible reservoirs for TDI-hp and thus identify a mechanism for immune recognition following epicutaneous exposure to TDI. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  5. Capturing and profiling adult hair follicle stem cells.

    Science.gov (United States)

    Morris, Rebecca J; Liu, Yaping; Marles, Lee; Yang, Zaixin; Trempus, Carol; Li, Shulan; Lin, Jamie S; Sawicki, Janet A; Cotsarelis, George

    2004-04-01

    The hair follicle bulge possesses putative epithelial stem cells. Characterization of these cells has been hampered by the inability to target bulge cells genetically. Here, we use a Keratin1-15 (Krt1-15, also known as K15) promoter to target mouse bulge cells with an inducible Cre recombinase construct or with the gene encoding enhanced green fluorescent protein (EGFP), which allow for lineage analysis and for isolation of the cells. We show that bulge cells in adult mice generate all epithelial cell types within the intact follicle and hair during normal hair follicle cycling. After isolation, adult Krt1-15-EGFP-positive cells reconstituted all components of the cutaneous epithelium and had a higher proliferative potential than Krt1-15-EGFP-negative cells. Genetic profiling of hair follicle stem cells revealed several known and unknown receptors and signaling pathways important for maintaining the stem cell phenotype. Ultimately, these findings provide potential targets for the treatment of hair loss and other disorders of skin and hair.

  6. Aqueous Extract of Red Deer Antler Promotes Hair Growth by Regulating the Hair Cycle and Cell Proliferation in Hair Follicles

    Directory of Open Access Journals (Sweden)

    Jing-jie Li

    2014-01-01

    Full Text Available Deer antlers are the only mammalian appendage capable of regeneration. We aimed to investigate the effect of red deer antler extract in regulating hair growth, using a mouse model. The backs of male mice were shaved at eight weeks of age. Crude aqueous extracts of deer antler were prepared at either 4°C or 100°C and injected subcutaneously to two separate groups of mice (n=9 at 1 mL/day for 10 consecutive days, with water as a vehicle control group. The mice skin quantitative hair growth parameters were measured and 5-bromo-2-deoxyuridine was used to identify label-retaining cells. We found that, in both the 4°C and the 100°C deer antler aqueous extract-injection groups, the anagen phase was extended, while the number of BrdU-incorporated cells was dramatically increased. These results indicate that deer antler aqueous extract promotes hair growth by extending the anagen phase and regulating cell proliferation in the hair follicle region.

  7. Hair cell mechano-transduction : Its influence on the gross mechanical characteristics of a hair cell sense organ

    NARCIS (Netherlands)

    vanNetten, Sietse M.

    1997-01-01

    The complex mechanical behaviour of a hair cell bundle appears to be a direct consequence of the gating forces on the individual transduction channels. The mechanical molecular interactions involved in transduction channel gating, therefore, also bear a reciprocal influence, via the hair bundles; on

  8. Identification of small molecule inhibitors of cisplatin-induced hair cell death: results of a 10,000 compound screen in the zebrafish lateral line.

    Science.gov (United States)

    Thomas, Andrew J; Wu, Patricia; Raible, David W; Rubel, Edwin W; Simon, Julian A; Ou, Henry C

    2015-03-01

    The zebrafish lateral line can be used to identify small molecules that protect against cisplatin-induced hair cell death. Cisplatin is a commonly used chemotherapeutic agent, which causes hearing loss by damaging hair cells of the inner ear. There are currently no FDA-approved pharmacologic strategies for preventing this side effect. The zebrafish lateral line has been used successfully in the past to study hair cell death and protection. In this study, we used the zebrafish lateral line to screen a library of 10,000 small molecules for protection against cisplatin-induced hair cell death. Dose-response relationships for identified protectants were determined by quantifying hair cell protection. The effect of each protectant on uptake of a fluorescent cisplatin analog was also quantified. From this screen, we identified 2 compounds exhibiting dose-dependent protection: cisplatin hair cell protectant 1 and 2 (CHCP1 and 2). CHCP1 reduced the uptake of a fluorescent cisplatin analog, suggesting its protective effects may be due to decreased cisplatin uptake. CHCP2 did not affect uptake, which suggests an intracellular mechanism of action. Evaluation of analogs of CHCP2 revealed 3 additional compounds that significantly reduced cisplatin-induced hair cell death, although none exceed the effectiveness or potency of the parent compound. The zebrafish lateral line was used to identify 2 small molecules that protected against cisplatin-induced hair cell death.

  9. Swimmer's Ear (External Otitis)

    Science.gov (United States)

    ... scratching their ear canals when they try to clean their ears. This is especially true if they use cotton swabs or dangerously sharp small objects, like hair clips or bobby pins. Sometimes, in a person ...

  10. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.

    Science.gov (United States)

    Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W

    2016-06-01

    Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. © 2016. Published by The Company of Biologists Ltd.

  11. d-Tubocurarine and Berbamine: Alkaloids That Are Permeant Blockers of the Hair Cell's Mechano-Electrical Transducer Channel and Protect from Aminoglycoside Toxicity

    NARCIS (Netherlands)

    Kirkwood, Nerissa K.; Derudas, Marco; Kenyon, Emma J; Huckvale, Rosemary; van Netten, Sietse; Ward, Simon; Richardson, Guy P; Kros, Corne J

    2017-01-01

    Aminoglycoside antibiotics are widely used for the treatment of life-threatening bacterial infections, but cause permanent hearing loss in a substantial proportion of treated patients. The sensory hair cells of the inner ear are damaged following entry of these antibiotics via the mechano-electrical

  12. β3-integrin is required for differentiation in OC-2 cells derived from mammalian embryonic inner ear

    Directory of Open Access Journals (Sweden)

    Brunetta Ivan

    2012-03-01

    Full Text Available Abstract Background The mammalian inner ear contains the organ of Corti which is responsible for the conversion of sound into neuronal signals. This specialised epithelial tissue is the product of a complex developmental process where a common precursor cell type differentiates into the sound transducing hair cells and the non-innervated supporting cells. We hypothesised that integrin proteins, which are involved in cell attachment to extracellular matrix proteins and cellular signalling, play a role in the differentiation process of the precursor inner ear epithelial cells. To test our hypothesis we have utilised a cell line (OC-2 derived from E13 embryonic immortomouse inner ears. In vitro, by switching the incubation temperature from 33°C to 39°C, the OC-2 cells can be induced to differentiate and express hair cells markers, such as Myosin VIIa. The OC-2 cells are thus a useful model system for testing mechanism of hair cells differentiation. Results We have identified 4 integrin subunits which are expressed in OC-2 cells: α6, αv, β1 and β3. Among these, the relative level of expression of the αv, β1 and β3 subunits increased in a time dependent manner when the cells were exposed to the differentiating temperature of 39°C, most notably so for β3 which was not detectable at 33°C. Treatment of fully differentiated OC-2 cells with siRNA against the four integrin subunits reduced the expression of not only the respective integrin proteins but also of the hair cell marker Myosin VIIa. Conversely over-expression of β3 was sufficient to induce the expression of Myosin VIIa at 33°C. Conclusions Our data demonstrate that modulation of integrin expression is associated with the differentiation process of the OC-2 cells. This suggests that the maturation of the organ of Corti, from where OC-2 cells are derived, may also depend on changes of gene expression associated with integrin expression.

  13. Stem cell dynamics in the hair follicle niche

    Science.gov (United States)

    Rompolas, Panteleimon; Greco, Valentina

    2014-01-01

    Hair follicles are skin appendages of the mammalian skin that have the ability to periodically and stereotypically regenerate in order to continuously produce new hair over our lifetime. The ability of the hair follicle to regenerate is due to the presence of stem cells that along with other cell populations and non-cellular components, including molecular signals and extracellular material, make up a niche microenvironment. Mounting evidence suggests that the niche is critical for regulating stem cell behavior and thus the process of regeneration. Here we review the literature concerning past and current studies that have utilized mouse genetic models, combined with other approaches to dissect the molecular and cellular composition of the hair follicle niche. We also discuss our current understanding of how stem cells operate within the niche during the process of tissue regeneration and the factors that regulate their behavior. PMID:24361866

  14. Semicircular canals circumvent Brownian Motion overload of mechanoreceptor hair cells

    DEFF Research Database (Denmark)

    Muller, Mees; Heeck, Kier; Elemans, Coen P H

    2016-01-01

    Vertebrate semicircular canals (SCC) first appeared in the vertebrates (i.e. ancestral fish) over 600 million years ago. In SCC the principal mechanoreceptors are hair cells, which as compared to cochlear hair cells are distinctly longer (70 vs. 7 μm), 10 times more compliant to bending (44 vs. 500...... nN/m), and have a 100-fold higher tip displacement threshold (hair cells where the bundle is approximated as a stiff, cylindrical elastic rod subject to friction and thermal agitation. Our models suggest that the above...... differences aid SCC hair cells in circumventing the masking effects of Brownian motion noise of about 70 nm, and thereby permit transduction of very low frequency (

  15. Falsification of the ionic channel theory of hair cell transduction.

    Science.gov (United States)

    Rossetto, Michelangelo

    2013-11-01

    The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment.

  16. Barhl1 Regulatory Sequences Required for Cell-Specific Gene Expression and Autoregulation in the Inner Ear and Central Nervous System▿ †

    OpenAIRE

    Chellappa, Ramesh; Li, Shengguo; Pauley, Sarah; Jahan, Israt; Jin, Kangxin; Xiang, Mengqing

    2008-01-01

    The development of the nervous system requires the concerted actions of multiple transcription factors, yet the molecular events leading to their expression remain poorly understood. Barhl1, a mammalian homeodomain transcription factor of the BarH class, is expressed by developing inner ear hair cells, cerebellar granule cells, precerebellar neurons, and collicular neurons. Targeted gene inactivation has demonstrated a crucial role for Barhl1 in the survival and/or migration of these sensory ...

  17. Co-administration of Cisplatin and Furosemide Causes Rapid and Massive Loss of Cochlear Hair Cells in Mice

    Science.gov (United States)

    Li, Yongqi; Ding, Dalian; Jiang, Haiyan; Fu, Yong

    2011-01-01

    The expanding arsenal of transgenic mice has created a powerful tool for investigating the biological mechanisms involved in ototoxicity. However, cisplatin ototoxicity is difficult to investigate in mice because of their small size and vulnerability to death by nephrotoxicity. To overcome this problem, we developed a strategy for promoting cisplatin-induced ototoxicity by coadministration of furosemide a loop diuretic. A dose–response study identified 200 mg/kg of furosemide as the optimal dose for disrupting the stria vascularis and opening the blood–ear barrier. Our analysis of stria pathology indicated that the optimal period for administering cisplatin was 1 h after furosemide treatment. Combined treatment with 0.5 mg/kg of cisplatin and 200 mg/kg furosemide resulted in only moderate loss of outer hair cells in the basal 20% of the cochlea, only mild threshold shifts and minimal loss of distortion product otoacoustic emission (DPOAE). In contrast, 1 mg/kg of cisplatin plus 200 mg/kg of furosemide resulted in a permanent 40–50 dB elevation of auditory brainstem response thresholds, almost complete elimination of DPOAE, and nearly total loss of outer hair cells. The widespread outer hair cell lesions that develop in mice treated with cisplatin plus furosemide could serve as extremely useful murine model for investigating techniques for regenerating outer hair cells, studying the mechanisms of cisplatin and furosemide ototoxicity and assessing the perceptual and electrophysiological consequences of outer hair cell loss on central auditory plasticity. PMID:21455790

  18. Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics

    NARCIS (Netherlands)

    van Netten, SM; Kros, CJ

    2000-01-01

    We quantified the molecular energies and forces involved in opening and closing of mechanoelectrical transducer channels in hair cells using a novel generally applicable method. It relies on a thermodynamic description of the free energy of an ion channel in terms of its open probability. The

  19. Quercetin protects against hair cell loss in the zebrafish lateral line and guinea pig cochlea.

    Science.gov (United States)

    Hirose, Yoshinobu; Sugahara, Kazuma; Kanagawa, Eiju; Takemoto, Yousuke; Hashimoto, Makoto; Yamashita, Hiroshi

    2016-12-01

    Eighteen supplement drugs were screened using hair cells to determine a protective effect against the adverse effects of neomycin by using the zebrafish lateral line. The zebrafish were administered the supplement drugs 1 h before neomycin exposure. One hour later, animals were fixed in paraformaldehyde. Dose-response curves were generated to evaluate the protective effect on hair cells. The screen identified 3 supplements (quercetin, catechin and tannic acid). Three minutes after exposure to neomycin, increased antioxidant activity was found in the lateral line hair cells, as determined by the analysis of oxidative stress. Quercetin decreases antioxidant activity. The identified drugs were also investigated to determine whether they protect the cochlea against noise-induced hearing loss in guinea pigs. The drugs were administered via the intraperitoneal route in the guinea pigs 3 days before and 4 days after noise exposure. Seven days after noise exposure (130-dB sound pressure level for 3 h), the auditory brainstem response threshold shifts were assessed. We observed that the auditory brainstem response threshold shift was significantly less in the quercetin group than in the vehicle control group. The results of our study indicate that screening drugs using zebrafish can determine additional protective drugs for the inner ear. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Transient receptor potential melastatin 1: a hair cell transduction channel candidate.

    Directory of Open Access Journals (Sweden)

    John Gerka-Stuyt

    Full Text Available Sound and head movements are perceived through sensory hair cells in the inner ear. Mounting evidence indicates that this process is initiated by the opening of mechanically sensitive calcium-permeable channels, also referred to as the mechanoelectrical transducer (MET channels, reported to be around the tips of all but the tallest stereocilia. However, the identity of MET channel remains elusive. Literature suggests that the MET channel is a non-selective cation channel with a high Ca(2+ permeability and ~100 picosiemens conductance. These characteristics make members of the transient receptor potential (TRP superfamily likely candidates for this role. One of these candidates is the transient receptor potential melastatin 1 protein (TRPM1, which is expressed in various cells types within the cochlea of the mouse including the hair cells. Recent studies demonstrate that mutations in the TRPM1 gene underlie the inherited retinal disease complete congenital stationary night blindness in humans and depolarizing bipolar cell dysfunction in the mouse retina, but auditory function was not assessed. Here we investigate the role of Trpm1 in hearing and as a possible hair cell MET channel using mice homozygous for the null allele of Trpm1 (Trpm1(-/- or a missense mutation in the pore domain of TRPM1 (Trpm1(tvrm27/tvrm27. Hearing thresholds were evaluated in adult (4-5 months old mice with auditory-evoked brain stem responses. Our data shows no statistically significant difference in hearing thresholds in Trpm1(-/- or Trpm1(tvrm27/tvrm27 mutants compared to littermate controls. Further, none of the mutant mice showed any sign of balance disorder, such as head bobbing or circling. These data suggest that TRPM1 is not essential for development of hearing or balance and it is unlikely that TRPM1 is a component of the hair cell MET channel.

  1. The Effects of Urethane on Rat Outer Hair Cells

    Directory of Open Access Journals (Sweden)

    Mingyu Fu

    2016-01-01

    Full Text Available The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microphonic responses between awake and urethane-anesthetized rats. The results revealed that the amplitude of the cochlear microphonic was decreased by urethane, resulting in an increase in the threshold at all of the sound frequencies examined. To deduce the possible mechanism underlying the urethane-induced decrease in cochlear sensitivity, we examined the electrical response properties of isolated outer hair cells using whole-cell patch-clamp recording. We found that urethane hyperpolarizes the outer hair cell membrane potential in a dose-dependent manner and elicits larger outward current. This urethane-induced outward current was blocked by strychnine, an antagonist of the α9 subunit of the nicotinic acetylcholine receptor. Meanwhile, the function of the outer hair cell motor protein, prestin, was not affected. These results suggest that urethane anesthesia is expected to decrease the responses of outer hair cells, whereas the frequency selectivity of cochlea remains unchanged.

  2. Protective effect of hexane and ethanol extract of piper longum L. On gentamicin-induced hair cell loss in neonatal cultures.

    Science.gov (United States)

    Yadav, Mukesh Kumar; Choi, June; Song, Jae-Jun

    2014-03-01

    Gentamicin (GM) is a commonly used aminoglycoside antibiotic that generates free oxygen radicals within the inner ear, which can cause vestibulo-cochlear toxicity and permanent damage to the sensory hair cells and neurons. Piper longum L. (PL) is a well-known spice and traditional medicine in Asia and Pacific islands, which has been reported to exhibit a wide spectrum of activity, including antioxidant activity. In this study, we evaluated the effect of hexane:ethanol (2:8) PL extract (subfraction of PL [SPL] extract) on GM-induced hair cell loss in basal, middle and apical regions in a neonatal cochlea cultures. The protective effects of SPL extract were measured by phalloidin staining of cultures from postnatal day 2-3 mice with GM-induced hair cell loss. The anti-apoptosis activity of SPL extract was measured using double labeling by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and myosin-7a staining. The radical-scavenging activity of SPL extract was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. SPL extract at a concentration of 1 µg/mL significantly inhibited GM-induced hair cell loss at basal and middle region of cochlea, while 5 µg/mL was effective against apical region hair cell loss. The protective effect of SPL extract was concentration dependent and hair cells retained their stereocilia in explants treated with SPL extract prior to treatment with 0.3 mM GM. SPL extract decreased GM-induced apoptosis of hair cells as assessed by TUNEL staining. The outer hair and inner hair counts were not decreased in SPL extract treated groups in compare to GM treated explants. Additionally, SPL extract showed concentration dependent radical scavenging activity in a DPPH assay. An anti-apoptosis effect and potent radical scavenger activity of SPL extract protects from GM-induced hair cell loss at basal, middle and apical regions in neonatal cochlea cultures.

  3. Semicircular Canals Circumvent Brownian Motion Overload of Mechanoreceptor Hair Cells.

    Directory of Open Access Journals (Sweden)

    Mees Muller

    Full Text Available Vertebrate semicircular canals (SCC first appeared in the vertebrates (i.e. ancestral fish over 600 million years ago. In SCC the principal mechanoreceptors are hair cells, which as compared to cochlear hair cells are distinctly longer (70 vs. 7 μm, 10 times more compliant to bending (44 vs. 500 nN/m, and have a 100-fold higher tip displacement threshold (< 10 μm vs. <400 nm. We have developed biomechanical models of vertebrate hair cells where the bundle is approximated as a stiff, cylindrical elastic rod subject to friction and thermal agitation. Our models suggest that the above differences aid SCC hair cells in circumventing the masking effects of Brownian motion noise of about 70 nm, and thereby permit transduction of very low frequency (<10 Hz signals. We observe that very low frequency mechanoreception requires increased stimulus amplitude, and argue that this is adaptive to circumvent Brownian motion overload at the hair bundles. We suggest that the selective advantage of detecting such low frequency stimuli may have favoured the evolution of large guiding structures such as semicircular canals and otoliths to overcome Brownian Motion noise at the level of the mechanoreceptors of the SCC.

  4. Usher protein functions in hair cells and photoreceptors.

    Science.gov (United States)

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Are TMCs the Mechanotransduction Channels of Vertebrate Hair Cells?

    Science.gov (United States)

    Corey, David P; Holt, Jeffrey R

    2016-10-26

    Sensory transduction in vertebrate hair cells and the molecules that mediate it have long been of great interest. Some components of the mechanotransduction apparatus have been identified, most as deafness gene products. Although prior candidates for the mechanotransduction channel have been proposed, each has faded with new evidence. Now, two strong candidates, TMC1 and TMC2 (transmembrane channel-like), have emerged from discovery of deafness genes in humans and mice. They are expressed at the right time during development: exactly at the onset of mechanosensitivity. They are expressed in the right place: in hair cells but not surrounding cells. Fluorescently tagged TMCs localize to the tips of stereocilia, the site of the transduction channels. TMCs bind other proteins essential for mechanosensation, suggesting a larger transduction complex. Although TMC1 and TMC2 can substitute for each other, genetic deletion of both renders mouse hair cells mechanically insensitive. Finally, the conductance and Ca(2+) selectivity of the transduction channels depend on the TMC proteins, differing when hair cells express one or the other TMC, and differing if TMC1 harbors a point mutation. Some contrary evidence has emerged: a current activated in hair cells by negative pressure, with some similarity to the transduction current, persists in TMC knock-outs. But it is not clear that this anomalous current is carried by the same proteins. Further evidence is desired, such as production of a mechanically gated conductance by pure TMCs. But the great majority of evidence is consistent with these TMCs as pore-forming subunits of the long-sought hair-cell transduction channel. Copyright © 2016 the authors 0270-6474/16/3610921-06$15.00/0.

  6. Sensing sound: molecules that orchestrate mechanotransduction by hair cells.

    Science.gov (United States)

    Kazmierczak, Piotr; Müller, Ulrich

    2012-04-01

    Animals use acoustic signals to communicate and to obtain information about their environment. The processing of acoustic signals is initiated at auditory sense organs, where mechanosensory hair cells convert sound-induced vibrations into electrical signals. Although the biophysical principles underlying the mechanotransduction process in hair cells have been characterized in much detail over the past 30 years, the molecular building-blocks of the mechanotransduction machinery have proved to be difficult to determine. We review here recent studies that have both identified some of these molecules and established the mechanisms by which they regulate the activity of the still-elusive mechanotransduction channel. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance.

    Science.gov (United States)

    Cruz, Ivan A; Kappedal, Ryan; Mackenzie, Scott M; Hailey, Dale W; Hoffman, Trevor L; Schilling, Thomas F; Raible, David W

    2015-06-15

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A Model for the representation of Speech Signals in Normal and Impaired Ears

    DEFF Research Database (Denmark)

    Christiansen, Thomas Ulrich

    2004-01-01

    hearing was modelled as a combination of outer- and inner hair cell loss. The percentage of dead inner hair cells was calculated based on a new computational method relating auditory nerve fibre thresholds to behavioural thresholds. Finally, a model of the entire auditory nerve fibre population......A model of human auditory periphery, ranging from the outer ear to the auditory nerve, was developed. The model consists of the following components: outer ear transfer function, middle ear transfer function, basilar membrane velocity, inner hair cell receptor potential, inner hair cell probability...... of neurotransmitter release and auditory nerve fibre refractoriness. The model builds on previously published models, however, parameters for basilar membrane velocity and inner hair cell probability of neurotransmitter release were successfully fitted to model data from psychophysical and physiological data...

  9. Towards expansion of human hair follicle stem cells in vitro.

    Science.gov (United States)

    Oh, J H; Mohebi, P; Farkas, D L; Tajbakhsh, J

    2011-06-01

    Multipotential human hair follicle stem cells can differentiate into various cell lineages and thus are investigated here as potential autologous sources for regenerative medicine. Towards this end, we have attempted to expand these cells, directly isolated from minimal amounts of hair follicle explants, to numbers more suitable for stem-cell therapy. Two types of human follicle stem cells, commercially available and directly isolated, were cultured using an in-house developed medium. The latter was obtained from bulge areas of hair follicles by mechanical and enzymatic dissociation, and was magnetically enriched for its CD200(+) fraction. Isolated cells were cultured for up to 4 weeks, on different supports: blank polystyrene, laminin- and Matrigel(TM) -coated surfaces. Two-fold expansion was found, highlighting the slow-cycling nature of these cells. Flow cytometry characterization revealed: magnetic enrichment increased the proportion of CD200(+) cells from initially 43.3% (CD200+, CD34: 25.8%; CD200+, CD34+: 17.5%) to 78.2% (CD200+, CD34: 41.5%; CD200+, CD34+: 36.7%). Enriched cells seemed to have retained and passed on their morphological and molecular phenotypes to their progeny, as isolated CD200(+) presenting cells expanded in our medium to a population with 80% of cells being CD200(+): 51.5% (CD200(+), CD34(-)) and 29.6% (CD200(+), CD34(+)). This study demonstrates the possibility of culturing human hair follicle stem cells without causing any significant changes to phenotypes of the cells. © 2011 Blackwell Publishing Ltd.

  10. Efferent control of the electrical and mechanical properties of hair cells in the bullfrog's sacculus.

    Directory of Open Access Journals (Sweden)

    Manuel Castellano-Muñoz

    2010-10-01

    Full Text Available Hair cells in the auditory, vestibular, and lateral-line systems respond to mechanical stimulation and transmit information to afferent nerve fibers. The sensitivity of mechanoelectrical transduction is modulated by the efferent pathway, whose activity usually reduces the responsiveness of hair cells. The basis of this effect remains unknown.We employed immunocytological, electrophysiological, and micromechanical approaches to characterize the anatomy of efferent innervation and the effect of efferent activity on the electrical and mechanical properties of hair cells in the bullfrog's sacculus. We found that efferent fibers form extensive synaptic terminals on all macular and extramacular hair cells. Macular hair cells expressing the Ca(2+-buffering protein calretinin contain half as many synaptic ribbons and are innervated by twice as many efferent terminals as calretinin-negative hair cells. Efferent activity elicits inhibitory postsynaptic potentials in hair cells and thus inhibits their electrical resonance. In hair cells that exhibit spiking activity, efferent stimulation suppresses the generation of action potentials. Finally, efferent activity triggers a displacement of the hair bundle's resting position.The hair cells of the bullfrog's sacculus receive a rich efferent innervation with the heaviest projection to calretinin-containing cells. Stimulation of efferent axons desensitizes the hair cells and suppresses their spiking activity. Although efferent activation influences mechanoelectrical transduction, the mechanical effects on hair bundles are inconsistent.

  11. Stem cell plasticity enables hair regeneration following Lgr5+ cell loss.

    Science.gov (United States)

    Hoeck, Joerg D; Biehs, Brian; Kurtova, Antonina V; Kljavin, Noelyn M; de Sousa E Melo, Felipe; Alicke, Bruno; Koeppen, Hartmut; Modrusan, Zora; Piskol, Robert; de Sauvage, Frederic J

    2017-06-01

    Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5+ (leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5+ cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34+ (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34+ cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5+ cells and inhibition of Wnt signalling prevents Lgr5+ cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.

  12. Generation of sensory hair cells by genetic programming with a combination of transcription factors.

    Science.gov (United States)

    Costa, Aida; Sanchez-Guardado, Luis; Juniat, Stephanie; Gale, Jonathan E; Daudet, Nicolas; Henrique, Domingos

    2015-06-01

    Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. Elucidation of the transcriptional networks regulating HC fate determination and differentiation is crucial not only to understand inner ear development but also to improve cell replacement therapies for hearing disorders. Here, we show that combined expression of the transcription factors Gfi1, Pou4f3 and Atoh1 can induce direct programming towards HC fate, both during in vitro mouse embryonic stem cell differentiation and following ectopic expression in chick embryonic otic epithelium. Induced HCs (iHCs) express numerous HC-specific markers and exhibit polarized membrane protrusions reminiscent of stereociliary bundles. Transcriptome profiling confirms the progressive establishment of a HC-specific gene signature during in vitro iHC programming. Overall, this work provides a novel approach to achieve robust and highly efficient HC production in vitro, which could be used as a model to study HC development and to drive inner ear HC regeneration. © 2015. Published by The Company of Biologists Ltd.

  13. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity

    Science.gov (United States)

    Baird, Richard A.; Torres, M. A.; Schuff, N. R.

    1994-01-01

    Adult bullfrogs were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 (mu) M gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence of absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest sterocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier times than hair cell types with shorter kinocilia. In the same sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.

  14. d-Tubocurarine and Berbamine: Alkaloids That Are Permeant Blockers of the Hair Cell's Mechano-Electrical Transducer Channel and Protect from Aminoglycoside Toxicity

    Directory of Open Access Journals (Sweden)

    Nerissa K. Kirkwood

    2017-09-01

    Full Text Available Aminoglycoside antibiotics are widely used for the treatment of life-threatening bacterial infections, but cause permanent hearing loss in a substantial proportion of treated patients. The sensory hair cells of the inner ear are damaged following entry of these antibiotics via the mechano-electrical transducer (MET channels located at the tips of the hair cell's stereocilia. d-Tubocurarine (dTC is a MET channel blocker that reduces the loading of gentamicin-Texas Red (GTTR into rat cochlear hair cells and protects them from gentamicin treatment. Berbamine is a structurally related alkaloid that reduces GTTR labeling of zebrafish lateral-line hair cells and protects them from aminoglycoside-induced cell death. Both compounds are thought to reduce aminoglycoside entry into hair cells through the MET channels. Here we show that dTC (≥6.25 μM or berbamine (≥1.55 μM protect zebrafish hair cells in vivo from neomycin (6.25 μM, 1 h. Protection of zebrafish hair cells against gentamicin (10 μM, 6 h was provided by ≥25 μM dTC or ≥12.5 μM berbamine. Hair cells in mouse cochlear cultures are protected from longer-term exposure to gentamicin (5 μM, 48 h by 20 μM berbamine or 25 μM dTC. Berbamine is, however, highly toxic to mouse cochlear hair cells at higher concentrations (≥30 μM whilst dTC is not. The absence of toxicity in the zebrafish assays prompts caution in extrapolating results from zebrafish neuromasts to mammalian cochlear hair cells. MET current recordings from mouse outer hair cells (OHCs show that both compounds are permeant open-channel blockers, rapidly and reversibly blocking the MET channel with half-blocking concentrations of 2.2 μM (dTC and 2.8 μM (berbamine in the presence of 1.3 mM Ca2+ at −104 mV. Berbamine, but not dTC, also blocks the hair cell's basolateral K+ current, IK,neo, and modeling studies indicate that berbamine permeates the MET channel more readily than dTC. These studies reveal key properties of

  15. Development of the inner ear.

    Science.gov (United States)

    Whitfield, Tanya T

    2015-06-01

    The vertebrate inner ear is a sensory organ of exquisite design and sensitivity. It responds to sound, gravity and movement, serving both auditory (hearing) and vestibular (balance) functions. Almost all cell types of the inner ear, including sensory hair cells, sensory neurons, secretory cells and supporting cells, derive from the otic placode, one of the several ectodermal thickenings that arise around the edge of the anterior neural plate in the early embryo. The developmental patterning mechanisms that underlie formation of the inner ear from the otic placode are varied and complex, involving the reiterative use of familiar signalling pathways, together with roles for transcription factors, transmembrane proteins, and extracellular matrix components. In this review, I have selected highlights that illustrate just a few of the many recent discoveries relating to the development of this fascinating organ system. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Static length changes of cochlear outer hair cells can tune low-frequency hearing.

    Directory of Open Access Journals (Sweden)

    Nikola Ciganović

    2018-01-01

    Full Text Available The cochlea not only transduces sound-induced vibration into neural spikes, it also amplifies weak sound to boost its detection. Actuators of this active process are sensory outer hair cells in the organ of Corti, whereas the inner hair cells transduce the resulting motion into electric signals that propagate via the auditory nerve to the brain. However, how the outer hair cells modulate the stimulus to the inner hair cells remains unclear. Here, we combine theoretical modeling and experimental measurements near the cochlear apex to study the way in which length changes of the outer hair cells deform the organ of Corti. We develop a geometry-based kinematic model of the apical organ of Corti that reproduces salient, yet counter-intuitive features of the organ's motion. Our analysis further uncovers a mechanism by which a static length change of the outer hair cells can sensitively tune the signal transmitted to the sensory inner hair cells. When the outer hair cells are in an elongated state, stimulation of inner hair cells is largely inhibited, whereas outer hair cell contraction leads to a substantial enhancement of sound-evoked motion near the hair bundles. This novel mechanism for regulating the sensitivity of the hearing organ applies to the low frequencies that are most important for the perception of speech and music. We suggest that the proposed mechanism might underlie frequency discrimination at low auditory frequencies, as well as our ability to selectively attend auditory signals in noisy surroundings.

  17. Study of mouse induced pluripotent stem cell transplantation intoWistar albino rat cochleae after hair cell damage.

    Science.gov (United States)

    Gökcan, Mustafa Kürşat; Mülazimoğlu, Selçuk; Ocak, Emre; Can, Pınar; Çalışkan, Murat; Beşaltı, Ömer; Dizbay Sak, Serpil; Kaygusuz, Gülşah

    2016-11-17

    As the regeneration capacity of hair cells is limited, inner ear stem cell therapies hold promise. Effects of mouse induced pluripotent stem cells (IPSCs) on Wistar albino rats (WARs) with hearing impairment were investigated. Thirty-five adult WARs with normal hearing were divided into 4 groups. Excluding the study group (n = 15), the other three groups served as control groups for ototoxicity and IPSC injection models. IPSC injections were performed via cochleostomy after a retroauricular approach. Auditory functions were evaluated with auditory brainstem responses (ABRs) before and after the injections. After a final hearing assessment the WARs were sacrificed and cochleae were extracted to see the biologic behavior of IPSCs in the inner ear by light microscopy and immunohistochemistry. There were no significant differences in the click-ABR thresholds in the study group after IPSC transplantation. The mean hearing threshold in the study group after ototoxic agent injection was 53.2 dB (10-90 dB). There was no significant difference between groups (P > 0.05) and no differentiated stem cells were observed immunohistochemically. Transplanted IPSCs did not show a therapeutic effect in this trial. We discuss potential pitfalls and factors affecting the therapeutic effect.

  18. Inexhaustible hair-cell regeneration in young and aged zebrafish

    Directory of Open Access Journals (Sweden)

    Filipe Pinto-Teixeira

    2015-07-01

    Full Text Available Animals have evolved two general strategies to counter injury and maintain physiological function. The most prevalent is protection by isolating vital organs into body cavities. However, protection is not optimal for sensory systems because their external components need to be exposed to the environment to fulfill their receptive function. Thus, a common strategy to maintain sensory abilities against persistent environmental insult involves repair and regeneration. However, whether age or frequent injuries affect the regenerative capacity of sensory organs remains unknown. We have found that neuromasts of the zebrafish lateral line regenerate mechanosensory hair cells after recurrent severe injuries and in adulthood. Moreover, neuromasts can reverse transient imbalances of Notch signaling that result in defective organ proportions during repair. Our results reveal inextinguishable hair-cell regeneration in the lateral line, and suggest that the neuromast epithelium is formed by plastic territories that are maintained by continuous intercellular communication.

  19. Repair of traumatized mammalian hair cells via sea anemone repair proteins.

    Science.gov (United States)

    Tang, Pei-Ciao; Smith, Karen Müller; Watson, Glen M

    2016-08-01

    Mammalian hair cells possess only a limited ability to repair damage after trauma. In contrast, sea anemones show a marked capability to repair damaged hair bundles by means of secreted repair proteins (RPs). Previously, it was found that recovery of traumatized hair cells in blind cavefish was enhanced by anemone-derived RPs; therefore, the ability of anemone RPs to assist recovery of damaged hair cells in mammals was tested here. After a 1 h incubation in RP-enriched culture media, uptake of FM1-43 by experimentally traumatized murine cochlear hair cells was restored to levels comparable to those exhibited by healthy controls. In addition, RP-treated explants had significantly more normally structured hair bundles than time-matched traumatized control explants. Collectively, these results indicate that anemone-derived RPs assist in restoring normal function and structure of experimentally traumatized hair cells of the mouse cochlea. © 2016. Published by The Company of Biologists Ltd.

  20. Temperature-sensitive SV40-immortalized rat middle ear epithelial cells.

    Science.gov (United States)

    Toyama, Katsuhiro; Kim, Youngki; Paparella, Michael M; Lin, Jizhen

    2004-12-01

    The proliferation and differentiation of middle ear epithelial cells are essential in both normal and diseased middle ears. The normal situation involves physiologic growth and renewal of the epithelium, and the diseased situation involves pathological changes of the epithelium such as mucous cell metaplasia and ciliated cell proliferation in otitis media. In this study, we used a temperature-sensitive large T antigen (the SV40 mutant) to transduce and immortalize the primary culture of middle ear epithelial cells. SV40-immortalized middle ear epithelial cells have been cultured for more than 50 passages and are stable morphologically. Their nonimmortalized parent cells died at the second passage. Immortalized middle ear epithelial cells carrying the SV40 mutant show a monolayer, cobblestonelike morphology. The cell line expresses characteristic middle ear mucosal molecules such as mucins, keratins, and collagens. It also responds to temperature changes; namely, cells proliferate at 33 degrees C, when the SV40 antigen is active, and differentiate at 39 degrees C, when the SV40 antigen is inactive. Therefore, we conclude that a temperature-sensitive middle ear epithelial cell line has successfully been established.

  1. A link between planar polarity and staircase-like bundle architecture in hair cells.

    Science.gov (United States)

    Tarchini, Basile; Tadenev, Abigail L D; Devanney, Nicholas; Cayouette, Michel

    2016-11-01

    Sensory perception in the inner ear relies on the hair bundle, the highly polarized brush of movement detectors that crowns hair cells. We previously showed that, in the mouse cochlea, the edge of the forming bundle is defined by the 'bare zone', a microvilli-free sub-region of apical membrane specified by the Insc-LGN-Gαi protein complex. We now report that LGN and Gαi also occupy the very tip of stereocilia that directly abut the bare zone. We demonstrate that LGN and Gαi are both essential for promoting the elongation and differential identity of stereocilia across rows. Interestingly, we also reveal that total LGN-Gαi protein amounts are actively balanced between the bare zone and stereocilia tips, suggesting that early planar asymmetry of protein enrichment at the bare zone confers adjacent stereocilia their tallest identity. We propose that LGN and Gαi participate in a long-inferred signal that originates outside the bundle to model its staircase-like architecture, a property that is essential for direction sensitivity to mechanical deflection and hearing. © 2016. Published by The Company of Biologists Ltd.

  2. Hair follicle reformation induced by dermal papilla cells from human scalp skin.

    Science.gov (United States)

    Wu, Jin-Jin; Zhu, Tang-You; Lu, Yuan-Gang; Liu, Rong-Qing; Mai, Yue; Cheng, Bo; Lu, Zhong-Fa; Zhong, Bai-Yu; Tang, Shu-Qian

    2006-09-01

    To investigate the possibility of hair follicle reformation induced by dermal papilla cells in vivo and in vitro. Dermal papilla cells, dermal sheath cells obtained from human scalp skin by enzyme digestion were mixed with collagen to form mesenchymal cell-populated collagen gels. Superior and inferior epithelial cells and bulb matrical cells were then cultured on these gels by organotypic culture to recombine bilayer artificial skins. Dermal papilla cells and outer root sheath keratinocytes were mingled together and transplanted under subcutaneous tissue of the dorsal skin of nude mice. The results of histologic examination was observed with HE stain. These recombinants by organotypic culture all reformed bilayer structure like nature skin. Hair follicle-like structure reformation was found in dermal sheath cell-populated collagen gel when combined with superior or inferior epithelial cells. Dermal papilla cells also induced superior and inferior epithelial cells to form hair follicle on nude mice. Low passage dermal papilla cells mixed with hair follicle epithelial cells reformed many typical hair follicle structures and produced hair fibres after transplantation on nude mice. The dermal part of hair follicle, such as dermal papilla cells and dermal sheath cells, has the ability to induce hair follicle formation by interaction with the epithelial cells of hair follicle.

  3. Human Mesenchymal Stem Cell-Derived Conditioned Media for Hair Regeneration Applications.

    Science.gov (United States)

    Ramdasi, Sushilkumar; Tiwari, Shashi Kant

    Hair loss can have major psychological impact on affected population belonging to varied ethnic background. Hair is a mini organ in itself and serves many distinguishing functions ranging from maintaining body temperature to promoting social interactions. Major cause of hair loss is androgenic alopecia. Hair follicles possess receptor for androgen. However, DHT (Dihydrotestosterone) in excess results into shrinkage of hair follicle affecting hair growth adversely. The present review is focused on etiology of hair loss, traditional treatment approach and their limitations with side effects with special emphasis on unique properties of stem cells, favourable growth factors secreted by stem cells and strategies to enhance favourable growth factor/cytokine production for hair loss therapeutics. We discussed in details the present available treatment options for hair loss like drugs (Finasteride and Minoxidil), follicular hair transplant, laser therapy and serum therapy. These treatment options have their own disadvantages and side effects with appropriate alerts from regulatory authorities. The side effects of these modalities cannot be ignored and demands alternate therapy approach with less or no side effects. We feel that the stem cell therapy is advancing and is a promising modality in near future owing to its advantages and promising outcomes. This review article discusses possible stem cell therapy for hair regrowth and its advantages. We focused on use of conditioned media derived from stem cells instead of using stem cells directly for the therapy.

  4. Gradient-dependent release of the model drug TRITC-dextran from FITC-labeled BSA hydrogel nanocarriers in the hair follicles of porcine ear skin.

    Science.gov (United States)

    Tran, Ngo Bich Nga Nathalie; Knorr, Fanny; Mak, Wing Cheung; Cheung, Kwan Yee; Richter, Heike; Meinke, Martina; Lademann, Jürgen; Patzelt, Alexa

    2017-07-01

    Hair follicle research is currently focused on the development of drug-loaded nanocarriers for the targeting of follicular structures in the treatment of skin and hair follicle-related disorders. In the present study, a dual-label nanocarrier system was implemented in which FITC-labeled BSA hydrogel nanocarriers loaded with the model drug and dye TRITC-dextran were applied topically to porcine ear skin. Follicular penetration and the distribution of both dyes corresponding to the nanocarriers and the model drug in the follicular ducts subsequent to administration to the skin were investigated using confocal laser scanning microscopy. The release of TRITC-dextran from the particles was induced by washing of the nanocarriers, which were kept in a buffer containing TRITC-labeled dextran to balance out the diffusion of the dextran during storage, thereby changing the concentration gradient. The results showed a slightly but statistically significantly deeper follicular penetration of fluorescent signals corresponding to TRITC-dextran as opposed to fluorescence corresponding to the FITC-labeled particles. The different localizations of the dyes in the cross-sections of the skin samples evidenced the release of the model drug from the labeled nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Optimization of gene delivery methods in Xenopus laevis kidney (A6) and Chinese hamster ovary (CHO) cell lines for heterologous expression of Xenopus inner ear genes.

    Science.gov (United States)

    Ramirez-Gordillo, Daniel; Trujillo-Provencio, Casilda; Knight, V Bleu; Serrano, Elba E

    2011-10-01

    The Xenopus inner ear provides a useful model for studies of hearing and balance because it shares features with the mammalian inner ear, and because amphibians are capable of regenerating damaged mechanosensory hair cells. The structure and function of many proteins necessary for inner ear function have yet to be elucidated and require methods for analysis. To this end, we seek to characterize Xenopus inner ear genes outside of the animal model through heterologous expression in cell lines. As part of this effort, we aimed to optimize physical (electroporation), chemical (lipid-mediated; Lipofectamine™ 2000, Metafectene® Pro), and biological (viral-mediated; BacMam virus Cellular Lights™ Tubulin-RFP) gene delivery methods in amphibian (Xenopus; A6) cells and mammalian (Chinese hamster ovary (CHO)) cells. We successfully introduced the commercially available pEGFP-N3, pmCherry-N1, pEYFP-Tubulin, and Cellular Lights™ Tubulin-RFP fluorescent constructs to cells and evaluated their transfection or transduction efficiencies using the three gene delivery methods. In addition, we analyzed the transfection efficiency of a novel construct synthesized in our laboratory by cloning the Xenopus inner ear calcium-activated potassium channel β1 subunit, then subcloning the subunit into the pmCherry-N1 vector. Every gene delivery method was significantly more effective in CHO cells. Although results for the A6 cell line were not statistically significant, both cell lines illustrate a trend towards more efficient gene delivery using viral-mediated methods; however the cost of viral transduction is also much higher. Our findings demonstrate the need to improve gene delivery methods for amphibian cells and underscore the necessity for a greater understanding of amphibian cell biology.

  6. Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs

    Science.gov (United States)

    Steyger, P. S.; Burton, M.; Hawkins, J. R.; Schuff, N. R.; Baird, R. A.

    1997-01-01

    Earlier studies have demonstrated hair cell regeneration in the absence of cell proliferation, and suggested that supporting cells could phenotypically convert into hair cells following hair cell loss. Because calcium-binding proteins are involved in gene up-regulation, cell growth, and cell differentiation, we wished to determine if these proteins were up-regulated in scar formations and regenerating hair cells following gentamicin treatment. Calbindin and parvalbumin immunolabeling was examined in control or gentamicin-treated (GT) bullfrog saccular and utricular explants cultured for 3 days in amphibian culture medium or amphibian culture medium supplemented with aphidicolin, a blocker of nuclear DNA replication in eukaryotic cells. In control cultures, calbindin and parvalbumin immunolabeled the hair bundles and, less intensely, the cell bodies of mature hair cells. In GT or mitotically-blocked GT (MBGT) cultures, calbindin and parvalbumin immunolabeling was also seen in the hair bundles, cuticular plates, and cell bodies of hair cells with immature hair bundles. Thus, these antigens were useful markers for both normal and regenerating hair cells. Supporting cell immunolabeling was not seen in control cultures nor in the majority of supporting cells in GT cultures. In MBGT cultures, calbindin and parvalbumin immunolabeling was up-regulated in the cytosol of single supporting cells participating in scar formations and in supporting cells with hair cell-like characteristics. These data provide further evidence that non-mitotic hair cell regeneration in cultures can be accomplished by the conversion of supporting cells into hair cells.

  7. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration

    Directory of Open Access Journals (Sweden)

    Peipei Zhang

    2014-10-01

    Full Text Available Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration.

  8. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Na [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Chen, Yan [Central Laboratory, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Wang, Zhengmin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Chen, Guoling [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Lin, Qin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Otolaryngology Institute of Fujian Province, Fuzhou (China); Chen, Zheng-Yi, E-mail: Zheng-yi_chen@meei.harvard.edu [Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Li, Huawei, E-mail: hwli@shmu.edu.cn [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  9. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development.

    Science.gov (United States)

    Tateya, Tomoko; Imayoshi, Itaru; Tateya, Ichiro; Ito, Juichi; Kageyama, Ryoichiro

    2011-04-15

    Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment

  10. Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish.

    Science.gov (United States)

    Stawicki, Tamara M; Hernandez, Liana; Esterberg, Robert; Linbo, Tor; Owens, Kelly N; Shah, Arish N; Thapa, Nihal; Roberts, Brock; Moens, Cecilia B; Rubel, Edwin W; Raible, David W

    2016-07-07

    Hair cells possess a single primary cilium, called the kinocilium, early in development. While the kinocilium is lost in auditory hair cells of most species it is maintained in vestibular hair cells. It has generally been believed that the primary role of the kinocilium and cilia-associated genes in hair cells is in the establishment of the polarity of actin-based stereocilia, the hair cell mechanotransduction apparatus. Through genetic screening and testing of candidate genes in zebrafish (Danio rerio) we have found that mutations in multiple cilia genes implicated in intraflagellar transport (dync2h1, wdr35, ift88, and traf3ip), and the ciliary transition zone (cc2d2a, mks1, and cep290) lead to resistance to aminoglycoside-induced hair cell death. These genes appear to have differing roles in hair cells, as mutations in intraflagellar transport genes, but not transition zone genes, lead to defects in kinocilia formation and processes dependent upon hair cell mechanotransduction activity. These mutants highlight a novel role of cilia-associated genes in hair cells, and provide powerful tools for further study. Copyright © 2016 Stawicki et al.

  11. Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line.

    Science.gov (United States)

    Ou, Henry; Simon, Julian A; Rubel, Edwin W; Raible, David W

    2012-06-01

    The zebrafish lateral line is an efficient model system for the evaluation of chemicals that protect and damage hair cells. Located on the surface of the body, lateral line hair cells are accessible for manipulation and visualization. The zebrafish lateral line system allows rapid screens of large chemical libraries, as well as subsequent thorough evaluation of interesting compounds. In this review, we focus on the results of our previous screens and the evolving methodology of our screens for chemicals that protect hair cells, and chemicals that damage hair cells using the zebrafish lateral line. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Gap junctional connections between hair cells, supporting cells and nerves in a vestibular organ.

    Science.gov (United States)

    Mulroy, M J; Dempewolf, S A; Curtis, S; Iida, H C

    1993-12-01

    The pattern of gap-junctional connections between cells in the vestibular neuroepithelium of the posterior semicircular duct of the alligator lizard are described based upon the study of freeze fracture replicas and ultrathin sections with a transmission electron microscope. Both type I and type II hair cells are coupled to adjacent supporting cells by a series of small macular gap junctions located in a ring around the hair cell at the level of the apical circumferential belt of actin filaments. Adjacent supporting cells are extensively interconnected by gap junctions. A few cases of gap junctions between afferent dendrites and supporting cells, and between afferent dendrites and calyceal nerve endings were seen. These morphological observations together with data from other studies in the literature suggest a possible role for supporting cells in altering the micromechanical properties of the hair cell receptor organs during stimulation.

  13. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells

    Science.gov (United States)

    Garza, Luis A.; Yang, Chao-Chun; Zhao, Tailun; Blatt, Hanz B.; Lee, Michelle; He, Helen; Stanton, David C.; Carrasco, Lee; Spiegel, Jeffrey H.; Tobias, John W.; Cotsarelis, George

    2011-01-01

    Androgenetic alopecia (AGA), also known as common baldness, is characterized by a marked decrease in hair follicle size, which could be related to the loss of hair follicle stem or progenitor cells. To test this hypothesis, we analyzed bald and non-bald scalp from AGA individuals for the presence of hair follicle stem and progenitor cells. Cells expressing cytokeratin15 (KRT15), CD200, CD34, and integrin, α6 (ITGA6) were quantitated via flow cytometry. High levels of KRT15 expression correlated with stem cell properties of small cell size and quiescence. These KRT15hi stem cells were maintained in bald scalp samples. However, CD200hiITGA6hi and CD34hi cell populations — which both possessed a progenitor phenotype, in that they localized closely to the stem cell–rich bulge area but were larger and more proliferative than the KRT15hi stem cells — were markedly diminished. In functional assays, analogous CD200hiItga6hi cells from murine hair follicles were multipotent and generated new hair follicles in skin reconstitution assays. These findings support the notion that a defect in conversion of hair follicle stem cells to progenitor cells plays a role in the pathogenesis of AGA. PMID:21206086

  14. Transplantation and survival of mouse inner ear progenitor/stem cells in the organ of Corti after cochleostomy of hearing-impaired guinea pigs: preliminary results.

    Science.gov (United States)

    Barboza, L C M; Lezirovitz, K; Zanatta, D B; Strauss, B E; Mingroni-Netto, R C; Oiticica, J; Haddad, L A; Bento, R F

    2016-01-01

    In mammals, damage to sensory receptor cells (hair cells) of the inner ear results in permanent sensorineural hearing loss. Here, we investigated whether postnatal mouse inner ear progenitor/stem cells (mIESCs) are viable after transplantation into the basal turns of neomycin-injured guinea pig cochleas. We also examined the effects of mIESC transplantation on auditory functions. Eight adult female Cavia porcellus guinea pigs (250-350 g) were deafened by intratympanic neomycin delivery. After 7 days, the animals were randomly divided in two groups. The study group (n=4) received transplantation of LacZ-positive mIESCs in culture medium into the scala tympani. The control group (n=4) received culture medium only. At 2 weeks after transplantation, functional analyses were performed by auditory brainstem response measurement, and the animals were sacrificed. The presence of mIESCs was evaluated by immunohistochemistry of sections of the cochlea from the study group. Non-parametric tests were used for statistical analysis of the data. Intratympanic neomycin delivery damaged hair cells and increased auditory thresholds prior to cell transplantation. There were no significant differences between auditory brainstem thresholds before and after transplantation in individual guinea pigs. Some mIESCs were observed in all scalae of the basal turns of the injured cochleas, and a proportion of these cells expressed the hair cell marker myosin VIIa. Some transplanted mIESCs engrafted in the cochlear basilar membrane. Our study demonstrates that transplanted cells survived and engrafted in the organ of Corti after cochleostomy.

  15. Transplantation and survival of mouse inner ear progenitor/stem cells in the organ of Corti after cochleostomy of hearing-impaired guinea pigs: preliminary results

    Directory of Open Access Journals (Sweden)

    L.C.M. Barboza Jr.

    2016-01-01

    Full Text Available In mammals, damage to sensory receptor cells (hair cells of the inner ear results in permanent sensorineural hearing loss. Here, we investigated whether postnatal mouse inner ear progenitor/stem cells (mIESCs are viable after transplantation into the basal turns of neomycin-injured guinea pig cochleas. We also examined the effects of mIESC transplantation on auditory functions. Eight adult female Cavia porcellus guinea pigs (250-350g were deafened by intratympanic neomycin delivery. After 7 days, the animals were randomly divided in two groups. The study group (n=4 received transplantation of LacZ-positive mIESCs in culture medium into the scala tympani. The control group (n=4 received culture medium only. At 2 weeks after transplantation, functional analyses were performed by auditory brainstem response measurement, and the animals were sacrificed. The presence of mIESCs was evaluated by immunohistochemistry of sections of the cochlea from the study group. Non-parametric tests were used for statistical analysis of the data. Intratympanic neomycin delivery damaged hair cells and increased auditory thresholds prior to cell transplantation. There were no significant differences between auditory brainstem thresholds before and after transplantation in individual guinea pigs. Some mIESCs were observed in all scalae of the basal turns of the injured cochleas, and a proportion of these cells expressed the hair cell marker myosin VIIa. Some transplanted mIESCs engrafted in the cochlear basilar membrane. Our study demonstrates that transplanted cells survived and engrafted in the organ of Corti after cochleostomy.

  16. Role of the planar cell polarity pathway in regulating ectopic hair cell-like cells induced by Math1 and testosterone treatment.

    Science.gov (United States)

    Yang, Xiao-Yu; Jin, Kai; Ma, Rui; Yang, Juan-Mei; Luo, Wen-Wei; Han, Zhao; Cong, Ning; Ren, Dong-Dong; Chi, Fang-Lu

    2015-07-30

    Planar cell polarity (PCP) signaling regulates cochlear extension and coordinates orientation of sensory hair cells in the inner ear. Retroviral-mediated introduction of the Math1 transcription factor leads to the transdifferentiation of some mature supporting cells into hair cells. Testosterone, a gonadal sex steroid hormone, is associated with neuroprotection and regeneration in Central Nervous System (CNS) development. Experiments were performed in vitro using Ad5-EGFP-Math1/Ad5-Math1 in neonatal mouse cochleas. Establishment of ectopic hair-cell like cell(HCLC) polarity in the lesser epithelial ridge (LER) with or without testosterone-3-(O-carboxymethyl) oxime bovine serum albumin (testosterone-BSA) treatment was investigated to determine the role of the PCP pathway in regulating ectopic regenerated (HCLCs) through induction by Math1 and testosterone treatment. After Math1 infection, new ectopic regenerated HCLCs were detected in the LER. After the HCLCs developed actin-rich stereocilia, the basal bodies moved from the center to the distal side. Moreover, the narrower, non-sensory LER region meant that the convergent extension (CE) was also established after transfection with Math1. After 9 days of in vitro testosterone-BSA treatment, more Edu(+), Sox2(+), and HCLC cells were observed in the LER with an accompanying downregulation of E-cadherin. Interestingly, the CE of the Ad5-EGFP-math1 treated LER is altered, but the intrinsic cellular polarity of the HCLCs is not obviously changed. In summary, our results indicate that PCP signaling is involved in the development of ectopic HCLCs and the CE of the ectopic sensory region is altered by testosterone-BSA through downregulation of cell-cell adhesion. Testosterone-BSA and Math1 treatment could promote an increase in HCLCs in the LER through proliferation and transdifferentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro

    Directory of Open Access Journals (Sweden)

    Katharina Leitmeyer

    2015-01-01

    Full Text Available Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR by blocking the mTOR complex 1 (mTORC1. mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp. are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.

  18. A somewhat unexpected result from the deconvolution of DSC curves for human hair: There is no apparent relation between cortical cell fractions and hair curliness.

    Science.gov (United States)

    Wortmann, Franz J; Wortmann, Gabriele

    2017-11-04

    A deconvolution process has been developed for curves obtained by differential scanning calorimetry in water for Merino wool and the main ethnic hair types. This enables estimation of the fractions of ortho- and para-type cell groups. The results also indicate that hair may contain a further, low-sulphur subgroup of ortho-type cells. The sizes of the major cell fractions are in line with expectations from microscopical investigations. The fractions are comparable for hair types, and no consistent association between cell-type fractions and hair curvature is observed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Root hairs

    NARCIS (Netherlands)

    Grierson, C.; Nielsen, E.; Ketelaar, T.; Schiefelbein, J.

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair

  20. Mechanical Stresses and Forces in Stereocilia Bundles of Inner and Outer Hair Cells

    Science.gov (United States)

    Mueller, R.; Maier, H.; Boehnke, F.; Arnold, W.

    2003-02-01

    The precise mechanism of mechanoelectrical transduction in stereocilia bundles is not known. It is very difficult to measure the extremely small stresses, which occur at the stereocilia bundles. Therefore we developed 3-D finite element models of stereocilia bundles (guinea pig) to obtain quantitative results. The stereocilia bundles of the outer hair cells show a characteristic W-form. Therefore, it is interesting to compare the mechanical behavior of the stereocilia bundle of an outer hair cell with that of an inner hair cell with its linear arrangement. Our analysis provides estimates of forces and stresses on the transducer channels of mammalian hair bundles, although the model does not include active mechanisms yet.

  1. Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2012-09-01

    Full Text Available Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs. Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the animal ears. After 4 days, the blastema ring formed in the periphery of the hole was removed and cultivated. The cells were expanded through several subcultures and compared with the MSCs derived from the marrow of same animal in terms of in vitro differentiation capacity, growth kinetics and culture requirements for optimal proliferation. The primary cultures from both cells tended to be heterogeneous. Fibroblastic cells became progressively dominant with advancing passages. Similar to MSCs blastema passaged-3 cells succeeded to differentiate into bone, cartilage and adipose cell lineages. Even lineage specific genes tended to express in higher level in blastema cells compared to MSCs (p < 0.05. Moreover blastema cells appeared more proliferative; producing more colonies (p < 0.05. While blastema cells showed extensive proliferation in 15% fetal bovine serum (FBS, MSCs displayed higher expansion rate at 10% FBS. In conclusion, blastema from rabbit ear contains a population of fibroblastic cells much similar in characteristic to bone marrow mesenchymal stem cells. However, the two cells were different in the level of lineage-specific gene expression, the growth curve characteristics and the culture requirements.

  2. Expression of proliferating cell nuclear antigen in cultured middle ear epithelial cells of the guinea pig.

    Science.gov (United States)

    Takeno, S; Hamamura, N; Hirakawa, K; Yajin, K

    1996-01-01

    Primary cultures of middle ear epithelium from the guinea pig were successfully established on type I collagen coated dishes. To characterize cellular outgrowth, antibodies to the proliferating cell nuclear antigen were used as a marker for spreading cells in the S phase of the cell cycle. A number of migrating epithelial cells positively stained for proliferating cell nuclear antigen after 7 and 14 days in culture. Confocal laser scanning microscopy was used to evaluate the localization pattern of this antigen, and the fluorescence intensity was quantified in different areas of the migrating epithelial sheet after various times in culture. Two distinct areas proved to be major sites of proliferating cell nuclear antigen expression. One was at the edge of the tissue explants from which multilayered epithelial cells had begun to migrate. The other was along the margin of the outgrowth, where the cells often had elongated shapes and were aligned in rows. The cells in both areas were identified as nonciliated cells; ciliated cells in the outgrowth showed little staining. We hypothesized that the outgrowth cells in this experiment might be identical to the migrating cells usually observed in renewing epithelia after injury. This model may provide a simple and reproducible method of evaluating the regenerative ability of the middle ear epithelium.

  3. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro

    Directory of Open Access Journals (Sweden)

    Niliksha Gunewardene

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days’ coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients.

  4. Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Haibo Shi

    2017-04-01

    Full Text Available Cochlear supporting cells (SCs have been shown to be a promising resource for hair cell (HC regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry. As expected, we found that Lgr5+ progenitors had significantly higher proliferation and HC regeneration ability than Lgr5- SCs. Next, we performed RNA-Seq to determine the gene expression profiles of Lgr5+ progenitors and Lgr5- SCs. We analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors and Lgr5- SCs, and we found 8 cell cycle genes, 9 transcription factors, and 24 cell signaling pathway genes that were uniquely expressed in one population but not the other. Last, we made a protein–protein interaction network to further analyze the role of these differentially expressed genes. In conclusion, we present a set of genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these might serve as potential new therapeutic targets for HC regeneration.

  5. Biotechnology in the Treatment of Sensorineural Hearing Loss: Foundations and Future of Hair Cell Regeneration

    Science.gov (United States)

    Parker, Mark A.

    2011-01-01

    Purpose: To provide an overview of the methodologies involved in the field of hair cell regeneration. First, the author provides a tutorial on the biotechnological foundations of this field to assist the reader in the comprehension and interpretation of the research involved in hair cell regeneration. Next, the author presents a review of stem…

  6. My oh my(osin): Insights into how auditory hair cells count, measure, and shape.

    Science.gov (United States)

    Pollock, Lana M; Chou, Shih-Wei; McDermott, Brian M

    2016-01-18

    The mechanisms underlying mechanosensory hair bundle formation in auditory sensory cells are largely mysterious. In this issue, Lelli et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509017) reveal that a pair of molecular motors, myosin IIIa and myosin IIIb, is involved in the hair bundle's morphology and hearing. © 2016 Pollock et al.

  7. The otoferlin interactome in neurosensory hair cells: significance for synaptic vesicle release and trans-Golgi network (Review).

    Science.gov (United States)

    Zak, Magdalena; Pfister, Markus; Blin, Nikolaus

    2011-09-01

    Sound perception in terrestrial vertebrates relies on a structure in the inner ear consisting of the utriculus, sacculus and lagena. In mammals, the lagena has developed into the cochlea where mechanotransduction at ciliated cells leads to ion influx via regulated ion channels. To maintain proper Ca2+ concentration many cellular systems use a variety of functional proteins; the neurosensory systems use calcium-sensors like hippocalcin, visinin or recoverin. In cochlear hair cells the 230 kDa protein otoferlin has been suggested to play this role. While several observations support this hypothesis additional data argue for a more expanded functional profile of otoferlin. Evidence for otoferlin's multiple roles and newer results on otoferlin's interacting partners are presented and the existence of a protein complex as a functional unit ('interactome') in the cochlea and further tissues is suggested.

  8. Sequence similarity between stereocilin and otoancorin points to a unified mechanism for mechanotransduction in the mammalian inner ear

    Directory of Open Access Journals (Sweden)

    Wassarman Paul M

    2002-11-01

    Full Text Available Abstract Background Interaction between hair cells and acellular gels of the mammalian inner ear, the tectorial and otoconial membranes, is crucial for mechanoreception. Recently, otoancorin was suggested to be a mediator of gel attachment to nonsensory cells, but the molecular components of the interface between gels and sensory cells remain to be identified. Hypothesis We report that the inner ear protein stereocilin is related in sequence to otoancorin and, based on its localisation and predicted GPI-anchoring, may mediate attachment of the tectorial and otoconial membranes to sensory hair bundles. Testing It is expected that antibodies directed against stereocilin would specifically label sites of contact between sensory hair cells and tectorial/otoconial membranes of the inner ear. Implications Our findings support a unified molecular mechanism for mechanotransduction, with stereocilin and otoancorin defining a new protein family responsible for the attachment of acellular gels to both sensory and nonsensory cells of the inner ear.

  9. Shape deformation of the organ of Corti associated with length changes of outer hair cell

    Science.gov (United States)

    Zimmermann, U.; Fermin, C.

    1996-01-01

    Cochlear outer hair cells (OHC) are commonly assumed to function as mechanical effectors as well as sensory receptors in the organ of Corti (OC) of the inner ear. OHC in vitro and in organ explants exhibit mechanical responses to electrical, chemical or mechanical stimulation which may represent an aspect of their effector process that is expected in vivo. A detailed description, however, of an OHC effector operation in situ is still missing. Specifically, little is known as to how OHC movements influence the geometry of the OC in situ. Previous work has demonstrated that the motility of isolated OHCs in response to electrical stimulation and to K(+)-gluconate is probably under voltage control and causes depolarisation (shortening) and hyperpolarization (elongation). This work was undertaken to investigate if the movements that were observed in isolated OHC, and which are induced by ionic stimulation, could change the geometry of the OC. A synchronized depolarization of OHC was induced in guinea pig cochleae by exposing the entire OC to artificial endolymph (K+). Subsequent morphometry of mid-modiolar sections from these cochleae revealed that the distance between the basilar membrane (BM) and the reticular lamina (RL) had decreased considerably. Furthermore, in the three upper turns OHC had significantly shortened in all rows. The results suggest that OHC can change their length in the organ of Corti (OC) thus deforming the geometry of the OC. The experiments reveal a tonic force generation within the OC that may change the position of RL and/or BM, contribute to damping, modulate the BM-RL-distance and control the operating points of RL and sensory hair bundles. Thus, the results suggest active self-adjustments of cochlear mechanics by slow OHC length changes. Such mechanical adjustments have recently been postulated to correspond to timing elements of animal communication, speech or music.

  10. TMHS is an Integral Component of the Mechanotransduction Machinery of Cochlear Hair Cells

    Science.gov (United States)

    Xiong, Wei; Grillet, Nicolas; Elledge, Heather M.; Wagner, Thomas F.J.; Zhao, Bo; Johnson, Kenneth R.; Kazmierczak, Piotr; Müller, Ulrich

    2012-01-01

    SUMMARY Hair cells are mechanosensors for the perception of sound, acceleration and fluid motion. Mechanotransduction channels in hair cells are gated by tip links, which connect the stereocilia of a hair cell in the direction of their mechanical sensitivity. The molecular constituents of the mechanotransduction channels of hair cells are not known. Here we show that mechanotransduction is impaired in mice lacking the tetraspan TMHS. TMHS binds to the tip-link component PCDH15 and regulates tip-link assembly, a process that is disrupted by deafness-causing Tmhs mutations. TMHS also regulates transducer channel conductance and is required for fast channel adaptation. TMHS therefore resembles other ion channel regulatory subunits such as the TARPs of AMPA receptors that facilitate channel transport and regulate the properties of pore-forming channel subunits. We conclude that TMHS is an integral component of the hair cells mechanotransduction machinery that functionally couples PCDH15 to the transduction channel. PMID:23217710

  11. Large basolateral processes on type II hair cells comprise a novel processing unit in mammalian vestibular organs

    Science.gov (United States)

    Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.

    2014-01-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750

  12. Repigmentation of gray hair in lesions of annular elastolytic giant cell granuloma.

    Science.gov (United States)

    Fernandez-Flores, Angel; Manjon, Jose A

    2015-07-01

    Hair pigmentation is a complex phenomenon that involves many hormones, neurotransmitters, cytokines, growth factors, eicosanoids, cyclic nucleotides, nutrients, and a physicochemical milieu. We report a case of repigmentation of gray hairs in lesions of annular elastolytic giant cell granuloma (AEGCG) on the scalp of a 67-year-old man.

  13. Type I hair cell degeneration in the utricular macula of the waltzing guinea pig

    DEFF Research Database (Denmark)

    Severinsen, Stig A; Raarup, Merete Krog; Ulfendahl, Mats

    2008-01-01

    Waltzing guinea pigs are an inbred guinea pig strain with a congenital and progressive balance and hearing disorder. A unique rod-shaped structure is found in the type I vestibular hair cells, that traverses the cell in an axial direction, extending towards the basement membrane. The present study...... estimates the total number of utricular hair cells and supporting cells in waltzing guinea pigs and age-matched control animals using the optical fractionator method. Animals were divided into four age groups (1, 7, 49 and 343 day-old). The number of type I hair cells decreased by 20% in the 343 day......-old waltzing guinea pigs compared to age-matched controls and younger animals. Two-photon confocal laser scanning microscopy using antibodies against fimbrin and betaIII-tubulin showed that the rods were exclusive to type I hair cells. There was no significant change in the length of the filament rods with age...

  14. EF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells.

    Science.gov (United States)

    Pangršič, Tina; Gabrielaitis, Mantas; Michanski, Susann; Schwaller, Beat; Wolf, Fred; Strenzke, Nicola; Moser, Tobias

    2015-03-03

    EF-hand Ca(2+)-binding proteins are thought to shape the spatiotemporal properties of cellular Ca(2+) signaling and are prominently expressed in sensory hair cells in the ear. Here, we combined genetic disruption of parvalbumin-α, calbindin-D28k, and calretinin in mice with patch-clamp recording, in vivo physiology, and mathematical modeling to study their role in Ca(2+) signaling, exocytosis, and sound encoding at the synapses of inner hair cells (IHCs). IHCs lacking all three proteins showed excessive exocytosis during prolonged depolarizations, despite enhanced Ca(2+)-dependent inactivation of their Ca(2+) current. Exocytosis of readily releasable vesicles remained unchanged, in accordance with the estimated tight spatial coupling of Ca(2+) channels and release sites (effective "coupling distance" of 17 nm). Substitution experiments with synthetic Ca(2+) chelators indicated the presence of endogenous Ca(2+) buffers equivalent to 1 mM synthetic Ca(2+)-binding sites, approximately half of them with kinetics as fast as 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Synaptic sound encoding was largely unaltered, suggesting that excess exocytosis occurs extrasynaptically. We conclude that EF-hand Ca(2+) buffers regulate presynaptic IHC function for metabolically efficient sound coding.

  15. Auditory sensitivity and the outer hair cell system in the CBA mouse model of age-related hearing loss.

    Science.gov (United States)

    Frisina, Robert D; Zhu, Xiaoxia

    2010-06-01

    Age-related hearing loss is a highly prevalent sensory disorder, from both the clinical and animal model perspectives. Understanding of the neurophysiologic, structural, and molecular biologic bases of age-related hearing loss will facilitate development of biomedical therapeutic interventions to prevent, slow, or reverse its progression. Thus, increased understanding of relationships between aging of the cochlear (auditory portion of the inner ear) hair cell system and decline in overall hearing ability is necessary. The goal of the present investigation was to test the hypothesis that there would be correlations between physiologic measures of outer hair cell function (otoacoustic emission levels) and hearing sensitivity (auditory brainstem response thresholds), starting in middle age. For the CBA mouse, a useful animal model of age-related hearing loss, it was found that correlations between these two hearing measures occurred only for high sound frequencies in middle age. However, in old age, a correlation was observed across the entire mouse range of hearing. These findings have implications for improved early detection of progression of age-related hearing loss in middle-aged mammals, including mice and humans, and distinguishing peripheral etiologies from central auditory system decline.

  16. Macrophages contribute to the cyclic activation of adult hair follicle stem cells

    DEFF Research Database (Denmark)

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells...... in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis...

  17. Hair follicle melanocyte cells as a renewable source of melanocytes for culture and transplantation.

    Science.gov (United States)

    Kwon, Ho; Liu, Perry H; Lew, Dae-Hyun; Nishimura, Emi; Orgill, Dennis P

    2008-01-01

    Advances in melanocyte culture techniques have not yet led to reliable clinical methods for treating hypopigmentation disorders. We hypothesized that melanocytes harvested from plucked hair follicles may provide a renewable source of melanocytes for the treatment of hypopigmentation. Hairs with attached cells from the follicles were plucked from Yucatan pigs and implanted in a collagen-glycosaminoglycan matrix for either immediate or delayed implantation into full-thickness excisional porcine wounds. Wounds were allowed to heal and were biopsied at 2 and 4 weeks, respectively. Fully healed wounds with transplanted hair follicles showed central areas of dark pigmentation corresponding to the location of implanted hair follicles. Corresponding collagen-glycosaminoglycan matrix wounds showed no central areas of pigmentation. Hair follicle--derived melanocytes may potentially serve as a renewable source of pigment-producing cells for treating hypopigmentation disorders.

  18. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-12-01

    Full Text Available Hair cell (HC loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway.

  19. The actin Cytoskeleton in Root Hairs: a cell elongation device

    NARCIS (Netherlands)

    Ketelaar, T.; Emons, A.M.C.

    2009-01-01

    The actin cytoskeleton plays an important role in root hair development. It is involved in both the delivery of growth materials to the expanding tip of root hairs and the regulation of the area of tip growth. This review starts with a discussion of the techniques that are available to visualize the

  20. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis

    OpenAIRE

    Favery, Bruno; Ryan, Eoin; Foreman, Julia; Linstead, Paul; Boudonck, Kurt; Steer, Martin; Shaw, Peter; Dolan, Liam

    2001-01-01

    The cell wall is an important determinant of plant cell form. Here we define a class of Arabidopsis root hair mutants with defective cell walls. Plants homozygous for kojak (kjk) mutations initiate root hairs that rupture at their tip soon after initiation. The KJK gene was isolated by positional cloning, and its identity was confirmed by the molecular complementation of the Kjk− phenotype and the sequence of three kjk mutant alleles. KOJAK encodes a cellulose synthase-like protein, AtCSLD3. ...

  1. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury

    OpenAIRE

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-01-01

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and char...

  2. Extracted hair follicle outer root sheath cell suspension for pigment cell restoration in vitiligo

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2013-01-01

    Full Text Available Vitiligo surgery has come up a long way from punch skin grafts to epidermal cell suspension and latest to the extracted hair follicle outer root sheath cell suspension (EHF-ORS-CS transplantation. The progressive development from one technique to the other is always in a quest for the best. In the latest development- EHF-ORS-CS, which is an enriched source of follicular inactive melanocyte (melanocyte stem cells, seems to be a good addition to the prevailing cell-based therapies for vitiligo; however, need to be explored further in larger, and preferably randomized blinded studies. This review discusses the principle, technical details, and stem cell composition of hair follicular outer root sheath cell suspension.

  3. Hair Follicle Development in Mouse Pluripotent Stem Cell-Derived Skin Organoids

    Directory of Open Access Journals (Sweden)

    Jiyoon Lee

    2018-01-01

    Full Text Available The mammalian hair follicle arises during embryonic development from coordinated interactions between the epidermis and dermis. It is currently unclear how to recapitulate hair follicle induction in pluripotent stem cell cultures for use in basic research studies or in vitro drug testing. To date, generation of hair follicles in vitro has only been possible using primary cells isolated from embryonic skin, cultured alone or in a co-culture with stem cell-derived cells, combined with in vivo transplantation. Here, we describe the derivation of skin organoids, constituting epidermal and dermal layers, from a homogeneous population of mouse pluripotent stem cells in a 3D culture. We show that skin organoids spontaneously produce de novo hair follicles in a process that mimics normal embryonic hair folliculogenesis. This in vitro model of skin development will be useful for studying mechanisms of hair follicle induction, evaluating hair growth or inhibitory drugs, and modeling skin diseases.

  4. [CO-TRANSPLANTATION OF MOUSE EPIDERMIS AND DERMIS CELLS IN INDUCING HAIR FOLLICLE REGENERATION].

    Science.gov (United States)

    Chen, Lin; Xi, Jiafei; Liu, Daqing; Zhang, Xiuyuan; Lü, Yang; Li, Jing; Wang, Jingxue; Zhou, Junnian; Nan, Xue; Yue, Wen; Pei, Xuetao

    2016-04-01

    To investigate the co-transplantation of C57-green fluorescent protein (GFP) mouse epidermis and dermis cells subcutaneously to induce the hair follicle regeneration. C57-GFP mouse epidermis and dermis were harvested for isolation the mouse epidermis and dermis cells. The morphology of epidermis and dermis mixed cells at ratio of 1:1 of adult mouse, dermis cells of adult mouse, cultured 3rd generation dermis cells were observed by fluorescence microscope. Immunocytochemistry staining was used to detect hair follicle stem cells markers in cultured 3rd generation dermis cells from new born C57-GFP mouse. And then the epidermis and dermis mixed cells of adult mouse (group A), dermis cells of adult mouse (group B), cultured 3rd generation dermis cells of new born mouse (group C), and saline (group D) were transplanted subcutaneously into Balb/c nude mice. The skin surface of nude mice were observed at 4, 5, 6 weeks of transplantation and hair follicle formation were detected at 6 weeks by immunohistochemistry staining. The isolated C57-GFP mouse epidermis and dermis cells strongly expressed the GFP under the fluorescence microscope. Immunocytochemistry staining for hair follicle stem cells markers in cultured 3rd generation dermis cells showed strong expression of Vimentin and α-smooth muscle actin, indicating that the cells were dermal sheath cells; some cells expressed CD133, Versican, and cytokeratin 15. After transplanted for 4-6 weeks, the skin became black at the injection site in group A, indicating new hair follicle formation. However, no color change was observed in groups B, C, and D. Immunohistochemical staining showed that new complete hair follicles structures formed in group A. GFP expression could be only observed in the hair follicle dermal sheath and outer root sheath in group B, and it could also be observed in the hair follicle dermal sheath, outer root sheath, dermal papilla cells, and sweat gland in group C. The expression of GFP was negative in

  5. ELMOD1 stimulates ARF6-GTP hydrolysis to stabilize apical structures in developing vestibular hair cells.

    Science.gov (United States)

    Krey, Jocelyn F; Dumont, Rachel A; Wilmarth, Philip A; David, Larry L; Johnson, Kenneth R; Barr-Gillespie, Peter G

    2017-12-08

    Sensory hair cells require control of physical properties of their apical plasma membranes for normal development and function. Members of the ARF small GTPase family regulate membrane trafficking and cytoskeletal assembly in many cells. We identified ELMOD1, a guanine nucleoside triphosphatase activating protein (GAP) for ARF6, as the most highly enriched ARF regulator in hair cells. To characterize ELMOD1 control of trafficking, we analyzed mice of both sexes from a strain lacking functional ELMOD1 (roundabout; rda). In rda/rda mice, cuticular plates of utricle hair cells initially formed normally, then degenerated after postnatal day 5 (P5); large numbers of vesicles invaded the compromised cuticular plate. Hair bundles initially developed normally, but the cell's apical membrane lifted away from the cuticular plate, and stereocilia elongated and fused. Membrane trafficking in type I hair cells, measured by FM1-43 dye labeling, was altered in rda/rda mice. Consistent with the proposed GAP role for ELMOD1, the ARF6 GTP/GDP ratio was significantly elevated in rda/rda utricles as compared to controls, and the level of ARF6-GTP was correlated with the severity of the rda/rda phenotype. These results suggest that conversion of ARF6 to its GDP-bound form is necessary for final stabilization of the hair bundle.SIGNIFICANCE STATEMENTAssembly of the mechanically sensitive hair bundle of sensory hair cells requires growth and reorganization of apical actin and membrane structures. Hair bundles and apical membranes in mice with mutations in the Elmod1 gene degenerate after formation, suggesting that the ELMOD1 protein stabilizes these structures. We show that ELMOD1 is a GTPase-activating protein in hair cells for the small GTP-binding protein ARF6, known to participate in actin assembly and membrane trafficking. We propose that conversion of ARF6 into the GDP-bound form in the apical domain of hair cells is essential for stabilizing apical actin structures like the hair

  6. Notch signaling in bulge stem cells is not required for selection of hair follicle fate

    Science.gov (United States)

    Demehri, Shadmehr; Kopan, Raphael

    2009-01-01

    Summary Notch signaling plays an important role in hair follicle maintenance, and it has been suggested that Notch is also required for follicular fate selection by adult hair follicle stem cells in the bulge. Here we demonstrate that, on the contrary, Notch signaling in bi-potential bulge stem cells or their uncommitted descendents acts to suppress the epidermal fate choice, thus ensuring follicular fate selection. To examine the role of Notch signaling in adult hair follicle stem cells, we used a Krt1-15-CrePR1 transgenic mouse line to delete Rbpj or all Notch proteins specifically in the bulge stem cells. We conclusively determined that in the absence of Notch signaling, bulge stem cell descendents retain their capacity to execute the follicular differentiation program but fail to maintain it owing to their genetic deficiency. The defect in terminal differentiation caused the diversion of Notch-deficient hair follicles to epidermal cysts, and the presence of wild-type cells could not prevent this conversion. Importantly, our analysis revealed that a functional Notch signaling pathway was required to block bulge stem cells from migrating into, and assuming the fate of, interfollicular epidermis. Taken together, our findings yield detailed insight into the function of Notch signaling in hair follicle stem cells and reveal the mechanism of the replacement of Notch-deficient adult hair follicles by epidermal cysts. PMID:19211676

  7. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    Directory of Open Access Journals (Sweden)

    Yingzi eHe

    2014-11-01

    Full Text Available In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, nonmammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well suited for studying hair cell development and regeneration. Histone deacetylase (HDAC activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA or valproic acid (VPA increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line.

  8. Probing the mechanism of exocytosis at the hair cell ribbon synapse

    NARCIS (Netherlands)

    Neef, Andreas; Khimich, Darina; Pirih, Primoz; Riedel, Dietmar; Wolf, Fred; Moser, Tobias

    2007-01-01

    Hearing relies on faithful synaptic transmission at the ribbon synapse of cochlear inner hair cells (IHCs). Postsynaptic recordings from this synapse in prehearing animals had delivered strong indications for synchronized release of several vesicles. The underlying mechanism, however, remains

  9. Natural Compounds as Occult Ototoxins? Ginkgo biloba Flavonoids Moderately Damage Lateral Line Hair Cells.

    Science.gov (United States)

    Neveux, Sarah; Smith, Nicole K; Roche, Anna; Blough, Bruce E; Pathmasiri, Wimal; Coffin, Allison B

    2017-04-01

    Several drugs, including aminoglycosides and platinum-based chemotherapy agents, are well known for their ototoxic properties. However, FDA-approved drugs are not routinely tested for ototoxicity, so their potential to affect hearing often goes unrecognized. This issue is further compounded for natural products, where there is a lack of FDA oversight and the manufacturer is solely responsible for ensuring the safety of their products. Natural products such as herbal supplements are easily accessible and commonly used in the practice of traditional eastern and alternative medicine. Using the zebrafish lateral line, we screened a natural products library to identify potential ototoxins. We found that the flavonoids quercetin and kaempferol, both from the Gingko biloba plant, demonstrated significant ototoxicity, killing up to 30 % of lateral line hair cells. We then examined a third Ginkgo flavonoid, isorhamnetin, and found similar levels of ototoxicity. After flavonoid treatment, surviving hair cells demonstrated reduced uptake of the vital dye FM 1-43FX, suggesting that the health of the remaining hair cells was compromised. We then asked if these flavonoids enter hair cells through the mechanotransduction channel, which is the site of entry for many known ototoxins. High extracellular calcium or the quinoline derivative E6 berbamine significantly protected hair cells from flavonoid damage, implicating the transduction channel as a site of flavonoid uptake. Since known ototoxins activate cellular stress responses, we asked if reactive oxygen species were necessary for flavonoid ototoxicity. Co-treatment with the antioxidant D-methionine significantly protected hair cells from each flavonoid, suggesting that antioxidant therapy could prevent hair cell loss. How these products affect mammalian hair cells is still an open question and will be the target of future experiments. However, this research demonstrates the potential for ototoxic damage caused by unregulated

  10. Squamous cell carcinoma of the middle ear arising from CSOM: A case report

    Directory of Open Access Journals (Sweden)

    S R Davanageri

    2014-01-01

    Full Text Available Squamous cell carcinoma occurring in a background of chronic suppurative otitis media (CSOM is a rare complication. It runs an aggressive course. Hence early identification is significant to prevent disease progression and to improve the survival rate. Subjecting granulation tissue from middle ear for histopathologic examination is of importance to rule out associated malignant change.

  11. [Preventive effects of cerebro cellular growth peptide on gentamycin-induced inner ear damage in guinea pigs].

    Science.gov (United States)

    Kang, Song-Jian; Shi, Xian-Jun; Wei, You-Zhen; Hong, An; Jiang, Xin-Quan

    2003-02-01

    To investigate the preventive effects of the cerebro cellular growth peptide (CCGP) on gentamycin-induced inner ear damage in guinea pigs, and to clarify its mechanism. The hypoacusis severity and enzymatic activity in the cochlear hair cells were examined by brainstem auditory evoked potential (BAEP) and histochemistry, respectively. The damaged hair cells was counted in three groups. CCGP reduced the elevated BAEP reaction thresholds. It protected activities of mitochondrial succinate dehydrogenase and lysosome acid phosphatase in the cochlear hair cells. The number of damaged hair cells in the CCGP group was less than that in the gentamycin (GM) group. CCGP can reduce GM ototoxicity. The mechanism may be associated with the protective activity of mitochondrial enzyme, the maintenance of lysosome intactness, energy metabolism of the cochlear hair cells, and reduction of autolysis of hair cells induced by hydrolase over flowing from lysosome.

  12. The murine catecholamine methyltransferase mTOMT is essential for mechanotransduction by cochlear hair cells

    Science.gov (United States)

    Cunningham, Christopher L; Wu, Zizhen; Jafari, Aria; Zhao, Bo; Schrode, Kat; Harkins-Perry, Sarah; Lauer, Amanda; Müller, Ulrich

    2017-01-01

    Hair cells of the cochlea are mechanosensors for the perception of sound. Mutations in the LRTOMT gene, which encodes a protein with homology to the catecholamine methyltransferase COMT that is linked to schizophrenia, cause deafness. Here, we show that Tomt/Comt2, the murine ortholog of LRTOMT, has an unexpected function in the regulation of mechanotransduction by hair cells. The role of mTOMT in hair cells is independent of mTOMT methyltransferase function and mCOMT cannot substitute for mTOMT function. Instead, mTOMT binds to putative components of the mechanotransduction channel in hair cells and is essential for the transport of some of these components into the mechanically sensitive stereocilia of hair cells. Our studies thus suggest functional diversification between mCOMT and mTOMT, where mTOMT is critical for the assembly of the mechanotransduction machinery of hair cells. Defects in this process are likely mechanistically linked to deafness caused by mutations in LRTOMT/Tomt. DOI: http://dx.doi.org/10.7554/eLife.24318.001 PMID:28504928

  13. Calcium-induced calcium release supports recruitment of synaptic vesicles in auditory hair cells.

    Science.gov (United States)

    Castellano-Muñoz, Manuel; Schnee, Michael E; Ricci, Anthony J

    2016-01-01

    Hair cells from auditory and vestibular systems transmit continuous sound and balance information to the central nervous system through the release of synaptic vesicles at ribbon synapses. The high activity experienced by hair cells requires a unique mechanism to sustain recruitment and replenishment of synaptic vesicles for continuous release. Using pre- and postsynaptic electrophysiological recordings, we explored the potential contribution of calcium-induced calcium release (CICR) in modulating the recruitment of vesicles to auditory hair cell ribbon synapses. Pharmacological manipulation of CICR with agents targeting endoplasmic reticulum calcium stores reduced both spontaneous postsynaptic multiunit activity and the frequency of excitatory postsynaptic currents (EPSCs). Pharmacological treatments had no effect on hair cell resting potential or activation curves for calcium and potassium channels. However, these drugs exerted a reduction in vesicle release measured by dual-sine capacitance methods. In addition, calcium substitution by barium reduced release efficacy by delaying release onset and diminishing vesicle recruitment. Together these results demonstrate a role for calcium stores in hair cell ribbon synaptic transmission and suggest a novel contribution of CICR in hair cell vesicle recruitment. We hypothesize that calcium entry via calcium channels is tightly regulated to control timing of vesicle fusion at the synapse, whereas CICR is used to maintain a tonic calcium signal to modulate vesicle trafficking. Copyright © 2016 the American Physiological Society.

  14. The murine catecholamine methyltransferase mTOMT is essential for mechanotransduction by cochlear hair cells.

    Science.gov (United States)

    Cunningham, Christopher L; Wu, Zizhen; Jafari, Aria; Zhao, Bo; Schrode, Kat; Harkins-Perry, Sarah; Lauer, Amanda; Müller, Ulrich

    2017-05-15

    Hair cells of the cochlea are mechanosensors for the perception of sound. Mutations in the LRTOMT gene, which encodes a protein with homology to the catecholamine methyltransferase COMT that is linked to schizophrenia, cause deafness. Here, we show that Tomt/Comt2, the murine ortholog of LRTOMT, has an unexpected function in the regulation of mechanotransduction by hair cells. The role of mTOMT in hair cells is independent of mTOMT methyltransferase function and mCOMT cannot substitute for mTOMT function. Instead, mTOMT binds to putative components of the mechanotransduction channel in hair cells and is essential for the transport of some of these components into the mechanically sensitive stereocilia of hair cells. Our studies thus suggest functional diversification between mCOMT and mTOMT, where mTOMT is critical for the assembly of the mechanotransduction machinery of hair cells. Defects in this process are likely mechanistically linked to deafness caused by mutations in LRTOMT/Tomt.

  15. Development of the inner ear efferent system across vertebrate species.

    Science.gov (United States)

    Simmons, Dwayne D

    2002-11-05

    Inner ear efferent neurons are part of a descending centrifugal pathway from the hindbrain known across vertebrates as the octavolateralis efferent system. This centrifugal pathway terminates on either sensory hair cells or eighth nerve ganglion cells. Most studies of efferent development have used either avian or mammalian models. Recent studies suggest that prevailing notions of the development of efferent innervation need to be revised. In birds, efferents reside in a single, diffuse nucleus, but segregate according to vestibular or cochlear projections. In mammals, the auditory and vestibular efferents are completely separate. Cochlear efferents can be divided into at least two distinct, descending medial and lateral pathways. During development, inner ear efferents appear to be a specific motor neuron phenotype, but unlike motor neurons have contralateral projections, innervate sensory targets, and, at least in mammals, also express noncholinergic neurotransmitters. Contrary to prevailing views, newer data suggest that medial efferent neurons mature early, are mostly, if not exclusively, cholinergic, and project transiently to the inner hair cell region of the cochlea before making final synapses on outer hair cells. On the other hand, lateral efferent neurons mature later, are neurochemically heterogeneous, and project mostly, but not exclusively to the inner hair cell region. The early efferent innervation to the ear may serve an important role in the maturation of afferent responses. This review summarizes recent data on the neurogenesis, pathfinding, target selection, innervation, and onset of neurotransmitter expression in cholinergic efferent neurons. Copyright 2002 Wiley Periodicals, Inc.

  16. COMMON INFECTIONS OF THE EAR

    African Journals Online (AJOL)

    Enrique

    function, the recommended treatment is intravenous ciprofloxacin and ... respiratory tract infection. The infec- tion spreads to the middle ..... structures. The underlying pathophysiology of otitis externa is maceration of the skin of the external ear canal. The hair and lipid content of cerumen renders the ear canal impervious to ...

  17. SuperSILAC Quantitative Proteome Profiling of Murine Middle Ear Epithelial Cell Remodeling with NTHi.

    Directory of Open Access Journals (Sweden)

    Stéphanie Val

    Full Text Available Chronic Otitis Media with effusion (COME develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Non-typeable Haemophilus influenzae (NTHi, the most common acute Otitis Media (OM pathogen, is postulated to promote middle ear epithelial remodeling in the progression of OM from acute to chronic. The goals of this study were to examine histopathological and quantitative proteomic epithelial effects of NTHi challenge in a murine middle ear epithelial cell line.NTHi lysates were generated and used to stimulate murine epithelial cells (mMEEC cultured at air-liquid interface over 48 hours- 1 week. Conditional quantitative Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC of cell lysates was performed to interrogate the global protein production in the cells, using the SuperSILAC technique. Histology of the epithelium over time was done to measure bacterial dependent remodeling.Mass spectrometry analysis identified 2,565 proteins across samples, of which 74 exhibited differential enrichment or depletion in cell lysates (+/-2.0 fold-change; p value<0.05. The key molecular functions regulated by NTHi lysates exposure were related to cell proliferation, death, migration, adhesion and inflammation. Finally, chronic exposure induced significant epithelial thickening of cells grown at air liquid interface.NTHi lysates drive pathways responsible of cell remodeling in murine middle ear epithelium which likely contributes to observed epithelial hyperplasia in vitro. Further elucidation of these mediators will be critical in understanding the progression of OM from acute to chronic at the molecular level.

  18. Generation of iPS-derived model cells for analyses of hair shaft differentiation.

    Science.gov (United States)

    Kido, Takumi; Horigome, Tomoatsu; Uda, Minori; Adachi, Naoki; Hirai, Yohei

    2017-09-01

    Biological evaluation of hair growth/differentiation activity in vitro has been a formidable challenge, primarily due to the lack of relevant model cell systems. To solve this problem, we generated a stable model cell line in which successive differentiation via epidermal progenitors to hair components is easily inducible and traceable. Mouse induced pluripotent stem (iPS) cell-derived cells were selected to stably express a tetracycline (Tet)-inducible bone morphogenic protein-4 (BMP4) expression cassette and a luciferase reporter driven by a hair-specific keratin 31 gene (krt31) promoter (Tet-BMP4-KRT31-Luc iPS). While Tet- BMP4-KRT31-Luc iPS cells could be maintained as stable iPS cells, the cells differentiated to produce luciferase luminescence in the presence of all-trans retinoic acid (RA) and doxycycline (Dox), and addition of a hair differentiation factor significantly increased luciferase fluorescence. Thus, this cell line may provide a reliable cell-based screening system to evaluate drug candidates for hair differentiation activity.

  19. Monitoring intracellular calcium ion dynamics in hair cell populations with Fluo-4 AM.

    Directory of Open Access Journals (Sweden)

    Kateri J Spinelli

    Full Text Available We optimized Fluo-4 AM loading of chicken cochlea to report hair-bundle Ca(2+ signals in populations of hair cells. The bundle Ca(2+ signal reported the physiological state of the bundle and cell; extruding cells had very high bundle Fluo-4 fluorescence, cells with intact bundles and tip links had intermediate fluorescence, and damaged cells with broken tip links had low fluorescence. Moreover, Fluo-4 fluorescence in the bundle correlated with Ca(2+ entry through transduction channels; mechanically activating transduction channels increased the Fluo-4 signal, while breaking tip links with Ca(2+ chelators or blocking Ca(2+ entry through transduction channels each caused bundle and cell-body Fluo-4 fluorescence to decrease. These results show that when tip links break, bundle and soma Ca(2+ decrease, which could serve to stimulate the hair cell's tip-link regeneration process. Measurement of bundle Ca(2+ with Fluo-4 AM is therefore a simple method for assessing mechanotransduction in hair cells and permits an increased understanding of the interplay of tip links, transduction channels, and Ca(2+ signaling in the hair cell.

  20. Development and evolution of the vestibular sensory apparatus of the mammalian ear.

    Science.gov (United States)

    Beisel, Kirk W; Wang-Lundberg, Yesha; Maklad, Adel; Fritzsch, Bernd

    2005-01-01

    Herein, we will review molecular aspects of vestibular ear development and present them in the context of evolutionary changes and hair cell regeneration. Several genes guide the development of anterior and posterior canals. Although some of these genes are also important for horizontal canal development, this canal strongly depends on a single gene, Otx1. Otx1 also governs the segregation of saccule and utricle. Several genes are essential for otoconia and cupula formation, but protein interactions necessary to form and maintain otoconia or a cupula are not yet understood. Nerve fiber guidance to specific vestibular end-organs is predominantly mediated by diffusible neurotrophic factors that work even in the absence of differentiated hair cells. Neurotrophins, in particular Bdnf, are the most crucial attractive factor released by hair cells. If Bdnf is misexpressed, fibers can be redirected away from hair cells. Hair cell differentiation is mediated by Atoh1. However, Atoh1 may not initiate hair cell precursor formation. Resolving the role of Atoh1 in postmitotic hair cell precursors is crucial for future attempts in hair cell regeneration. Additional analyses are needed before gene therapy can help regenerate hair cells, restore otoconia, and reconnect sensory epithelia to the brain.

  1. Ethanol affects the development of sensory hair cells in larval zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Phillip M Uribe

    Full Text Available Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS. The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%-1.75% by volume from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA and bromodeoxyuridine (BrdU demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS.

  2. The morphology of the inner ear from the domestic pig (Sus scrofa).

    Science.gov (United States)

    Lovell, J M; Harper, G M

    2007-12-01

    The morphology of the hair cells of the inner ear end organs from the domestic pig (Sus scrofa) have been studied using a combination of Scanning and Transmission Electron Microscopy (SEM and TEM), revealing hair cells from the cochlea and vestibule using a novel surgical and technical approach. This is the first time that the inner ear hair cells from S. scrofa have been studied, thus providing useful anatomical information on the morphology of the hair cells from the cochlea, saccule and utricle from a large mammal. Anatomical information in relation to the morphology of the inner ear is of considerable importance, both in the pathological diagnosis of trauma and in the development of cochlea implants and other biotechnological systems associated with the enhancement of hearing. Standard fixation protocols using cardiac perfusion was not employed in this study as this method cannot always be applied, such as the pathological examination of the human ear, or the study of animals protected by endangered species legislation. With the exception of a very few countries, cetaceans cannot be killed for research purposes, yet physiological information on the inner ear from these species is urgently required for ecological assessment reasons. Supporting the use of S. scrofa as a model for cetacean hearing research is that this animal is a member of the order Artiodactyla, which includes both the hippopotamus and cetaceans. Being of a similar size, the pig is an ideal subject for developing protocols and surgical techniques required to investigate both the human and small cetacean auditory systems.

  3. The candidate splicing factor Sfswap regulates growth and patterning of inner ear sensory organs.

    Directory of Open Access Journals (Sweden)

    Yalda Moayedi

    2014-01-01

    Full Text Available The Notch signaling pathway is thought to regulate multiple stages of inner ear development. Mutations in the Notch signaling pathway cause disruptions in the number and arrangement of hair cells and supporting cells in sensory regions of the ear. In this study we identify an insertional mutation in the mouse Sfswap gene, a putative splicing factor, that results in mice with vestibular and cochlear defects that are consistent with disrupted Notch signaling. Homozygous Sfswap mutants display hyperactivity and circling behavior consistent with vestibular defects, and significantly impaired hearing. The cochlea of newborn Sfswap mutant mice shows a significant reduction in outer hair cells and supporting cells and ectopic inner hair cells. This phenotype most closely resembles that seen in hypomorphic alleles of the Notch ligand Jagged1 (Jag1. We show that Jag1; Sfswap compound mutants have inner ear defects that are more severe than expected from simple additive effects of the single mutants, indicating a genetic interaction between Sfswap and Jag1. In addition, expression of genes involved in Notch signaling in the inner ear are reduced in Sfswap mutants. There is increased interest in how splicing affects inner ear development and function. Our work is one of the first studies to suggest that a putative splicing factor has specific effects on Notch signaling pathway members and inner ear development.

  4. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss.

    Science.gov (United States)

    Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne

    2015-10-01

    Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. How do the medial olivocochlear efferents influence the biomechanics of the outer hair cells and thereby the cochlear amplifier? Simulation results

    Science.gov (United States)

    Saremi, Amin; Stenfelt, Stefan; Verhulst, Sarah

    2015-12-01

    The bottom-up signal pathway, which starts from the outer ear and leads to the brain cortices, gives the classic image of the human sound perception. However, there have been growing evidences in the last six decades for existence of a functional descending network whereby the central auditory system can modulate the early auditory processing, in a top-down manner. The medial olivocochlear efferent fibers project from the superior olivary complex at the brainstem into the inner ear. They are linked to the basal poles of the hair cells by forming synaptic cisterns. This descending network can activate nicotinic cholinergic receptors (nAChR) that increase the membrane conductance of the outer hair cells and thereby modify the magnitude of the active force generated inside the cochlea. The aim of the presented work is to quantitatively investigate how the changes in the biomechanics of the outer hair cells, caused by the efferent activation, manipulate the cochlear responses. This is done by means of a frequency-domain biophysical model of the cochlea [12] where the parameters of the model convey physiological interpretations of the human cochlear structures. The simulations manifest that a doubling of the outer hair cell conductance, due to efferent activation, leads to a frequency-dependent gain reduction along the cochlear duct with its highest effect at frequencies between 1 kHz and 3.5 kHz and a maximum of approximately 10 dB gain reduction at 2 kHz. This amount of the gain inhibition and its frequency dependence reasonably agrees with the experimental data recorded from guinea pig, cat and human cochleae where the medial olivococlear efferents had been elicited by broad-band stimuli. The simulations also indicate that the efferent-induced increase of the outer hair cell conductance increases the best frequency of the cochlear responses, in the basal region. The presented simulations quantitatively confirm that activation of the medial olivocochlear efferents can

  6. Re-Emergent Inhibition of Cochlear Inner Hair Cells in a Mouse Model of Hearing Loss.

    Science.gov (United States)

    Zachary, Stephen Paul; Fuchs, Paul Albert

    2015-07-01

    Hearing loss among the elderly correlates with diminished social, mental, and physical health. Age-related cochlear cell death does occur, but growing anatomical evidence suggests that synaptic rearrangements on sensory hair cells also contribute to auditory functional decline. Here we present voltage-clamp recordings from inner hair cells of the C57BL/6J mouse model of age-related hearing loss, which reveal that cholinergic synaptic inputs re-emerge during aging. These efferents are functionally inhibitory, using the same ionic mechanisms as do efferent contacts present transiently before the developmental onset of hearing. The strength of efferent inhibition of inner hair cells increases with hearing threshold elevation. These data indicate that the aged cochlea regains features of the developing cochlea and that efferent inhibition of the primary receptors of the auditory system re-emerges with hearing impairment. Synaptic changes in the auditory periphery are increasingly recognized as important factors in hearing loss. To date, anatomical work has described the loss of afferent contacts from cochlear hair cells. However, relatively little is known about the efferent innervation of the cochlea during hearing loss. We performed intracellular recordings from mouse inner hair cells across the lifespan and show that efferent innervation of inner hair cells arises in parallel with the loss of afferent contacts and elevated hearing threshold during aging. These efferent neurons inhibit inner hair cells, raising the possibility that they play a role in the progression of age-related hearing loss. Copyright © 2015 the authors 0270-6474/15/359701-06$15.00/0.

  7. Ear discharge

    Science.gov (United States)

    ... antibiotic medicines, which are placed in the ear. Antibiotics may be given by mouth if a ruptured eardrum from an ear infection is causing the discharge. Alternative Names Drainage from the ear; Otorrhea; Ear bleeding; ...

  8. Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context.

    Directory of Open Access Journals (Sweden)

    Israt eJahan

    2015-02-01

    Full Text Available Atoh1 (Math1 was the first gene discovered in ear development that showed no hair cell (HC differentiation when absent and could induce HC differentiation when misexpressed. These data implied that Atoh1 was both necessary and sufficient for hair cell development. However, other gene mutations also result in loss of initially forming HCs, notably null mutants for Pou4f3, Barhl1 and Gfi1. HC development and maintenance also depend on the expression of other genes (Sox2, Eya1, Gata3, Pax2 and several genes have been identified that can induce HCs when misexpressed (Jag1 or knocked out (Lmo4. In the ear Atoh1 is not only expressed in HCs but also in some supporting cells and neurons that do not differentiate into HCs. Simple removal of one gene, Neurod1, can de-repress Atoh1 and turns those neurons into HCs suggesting that Neurod1 blocks Atoh1 function in neurons. Atoh1 expression in inner pillar cells may also be blocked by too many Hes/Hey factors but conversion into HCs has only partially been achieved through Hes/Hey removal. Detailed analysis of cell cycle exit confirmed an apex to base cell cycle exit progression of HCs of the organ of Corti. In contrast, Atoh1 expression progresses from the base towards the apex with a variable delay relative to the cell cycle exit. Most HCs exit the cell cycle and are thus defined as precursors before Atoh1 is expressed. Atoh1 is a potent differentiation factor but can differentiate and maintain HCs only in the ear and when other factors are co-expressed. Upstream factors are essential to regulate Atoh1 level of expression duration while downstream, co-activated by other factors, will define the context of Atoh1 action. We suggest that these insights need to be taken into consideration and approaches beyond the simple Atoh1 expression need to be designed able to generate the radial and longitudinal variations in hair cell types for normal function of the organ of Corti.

  9. Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context.

    Science.gov (United States)

    Jahan, Israt; Pan, Ning; Fritzsch, Bernd

    2015-01-01

    Atoh1 (Math1) was the first gene discovered in ear development that showed no hair cell (HC) differentiation when absent and could induce HC differentiation when misexpressed. These data implied that Atoh1 was both necessary and sufficient for hair cell development. However, other gene mutations also result in loss of initially forming HCs, notably null mutants for Pou4f3, Barhl1, and Gfi1. HC development and maintenance also depend on the expression of other genes (Sox2, Eya1, Gata3, Pax2) and several genes have been identified that can induce HCs when misexpressed (Jag1) or knocked out (Lmo4). In the ear Atoh1 is not only expressed in HCs but also in some supporting cells and neurons that do not differentiate into HCs. Simple removal of one gene, Neurod1, can de-repress Atoh1 and turns those neurons into HCs suggesting that Neurod1 blocks Atoh1 function in neurons. Atoh1 expression in inner pillar cells may also be blocked by too many Hes/Hey factors but conversion into HCs has only partially been achieved through Hes/Hey removal. Detailed analysis of cell cycle exit confirmed an apex to base cell cycle exit progression of HCs of the organ of Corti. In contrast, Atoh1 expression progresses from the base toward the apex with a variable delay relative to the cell cycle exit. Most HCs exit the cell cycle and are thus defined as precursors before Atoh1 is expressed. Atoh1 is a potent differentiation factor but can differentiate and maintain HCs only in the ear and when other factors are co-expressed. Upstream factors are essential to regulate Atoh1 level of expression duration while downstream, co-activated by other factors, will define the context of Atoh1 action. We suggest that these insights need to be taken into consideration and approaches beyond the simple Atoh1 expression need to be designed able to generate the radial and longitudinal variations in hair cell types for normal function of the organ of Corti.

  10. Twist-off purification of hair bundles.

    Science.gov (United States)

    Shin, Jung-Bum; Pagana, James; Gillespie, Peter G

    2009-01-01

    Purification of hair bundles from inner-ear organs allows biochemical analysis of bundle constituents, including proteins and lipids. We describe here the "twist-off" method of bundle isolation, where dissected inner-ear organs are embedded in agarose, then subjected to a mechanical disruption that shears off bundles and leaves them in agarose blocks. With care in the dissection and in clean-up of the isolated bundles, contamination from cell bodies can be kept to a minimum. Isolated bundles can be analyzed by a variety of techniques, including immunocytochemistry, SDS-PAGE, immunoblotting, and mass spectrometry.

  11. Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain.

    Science.gov (United States)

    Fritzsch, Bernd; Pauley, Sarah; Matei, Veronica; Katz, David M; Xiang, Mengqing; Tessarollo, Lino

    2005-08-01

    We review the in vivo evidence for afferent fiber guidance to the inner ear sensory epithelia and the central nuclei of termination. Specifically, we highlight our current molecular understanding for the role of hair cells and sensory epithelia in guiding afferents, how disruption of certain signals can alter fiber pathways, even in the presence of normal hair cells, and what role neurotrophins play in fiber guidance of sensory neurons to hair cells. The data suggest that the neurotrophin BDNF is the most important molecule known for inner ear afferent fiber guidance to hair cells in vivo. This suggestion is based on experiments on Ntf3 transgenic mice expressing BDNF under Ntf3 promoter that show deviations of fiber growth in the ear to areas that express BDNF but have no hair cells. However, fiber growth can occur in the absence of BDNF as demonstrated by double mutants for BDNF and Bax. We directly tested the significance of hair cells or sensory epithelia for fiber guidance in mutants that lose hair cells (Pou4f3) or do not form a posterior crista (Fgf10). While these data emphasize the role played by BDNF, normally released from hair cells, there is some limited capacity for directed growth even in the absence of hair cells, BDNF, or sensory epithelia. This directed growth may rely on semaphorins or other matrix proteins because targeted ablation of the sema3 docking site on the sema receptor Npn1 results in targeting errors of fibers even in the presence of hair cells and BDNF. Overall, our data support the notion that targeting of the afferent processes in the ear is molecularly distinct from targeting processes in the central nuclei. This conclusion is derived from data that show no recognizable central projection deviation, even if fibers are massively rerouted in the periphery, as in Ntf3(tgBDNF) mice in which vestibular fibers project to the cochlea.

  12. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury.

    Science.gov (United States)

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-12-25

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.

  13. Functional Analysis of the Transmembrane and Cytoplasmic Domains of Pcdh15a in Zebrafish Hair Cells.

    Science.gov (United States)

    Maeda, Reo; Pacentine, Itallia V; Erickson, Timothy; Nicolson, Teresa

    2017-03-22

    Protocadherin 15 (PCDH15) is required for mechanotransduction in sensory hair cells as a component of the tip link. Isoforms of PCDH15 differ in their cytoplasmic domains (CD1, CD2, and CD3), but share the extracellular and transmembrane (TMD) domains, as well as an intracellular domain known as the common region (CR). In heterologous expression systems, both the TMD and CR of PCDH15 have been shown to interact with members of the mechanotransduction complex. The in vivo significance of these protein-protein interaction domains of PCDH15 in hair cells has not been determined. Here, we examined the localization and function of the two isoforms of zebrafish Pcdh15a (CD1 and CD3) in pcdh15a-null mutants by assessing Pcdh15a transgene-mediated rescue of auditory/vestibular behavior and hair cell morphology and activity. We found that either isoform alone was able to rescue the Pcdh15a-null phenotype and that the CD1- or CD3-specific regions were dispensable for hair bundle integrity and labeling of hair cells with FM4-64, which was used as a proxy for mechanotransduction. When either the CR or TMD domain was deleted, the mutated proteins localized to the stereocilial tips, but were unable to rescue FM4-64 labeling. Disrupting both domains led to a complete failure of Pcdh15a to localize to the hair bundle. Our findings demonstrate that the TMD and cytoplasmic CR domains are required for the in vivo function of Pcdh15a in zebrafish hair cells.SIGNIFICANCE STATEMENT Tip links transmit force to mechanotransduction channels at the tip of hair bundles in sensory hair cells. One component of tip links is Protocadherin 15 (PCDH15). Here, we demonstrate that, when transgenically expressed, either zebrafish Pcdh15a-cytodomain 1 (CD1) or Pcdh15a-CD3 can rescue the phenotype of a pcdh15a-null mutant. Even when lacking the specific regions for CD1 or CD3, truncated Pcdh15a that contains the so-called common region (CR) at the cytoplasmic/membrane interface still has the ability to

  14. Frequency response for electromotility of isolated outer hair cells of the guinea pig

    NARCIS (Netherlands)

    Wit, HP; vanDijk, P; Segenhout, HM

    1996-01-01

    Frequency and impulse responses were determined for isolated guinea pig outer hair cells by electrically stimulating the cells between two wire electrodes with white noise. Cells were attached to the bottom of a small culture dish at one end while the other end was freely moving. Results have the

  15. Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration.

    Science.gov (United States)

    Lee, Jung-Seob; Kim, Byoung Soo; Seo, Donghwan; Park, Jeong Hun; Cho, Dong-Woo

    2017-03-01

    The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: Factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, a humidifier, and a Peltier system, which provides a suitable printing environment for the production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.

  16. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis.

    Science.gov (United States)

    Favery, B; Ryan, E; Foreman, J; Linstead, P; Boudonck, K; Steer, M; Shaw, P; Dolan, L

    2001-01-01

    The cell wall is an important determinant of plant cell form. Here we define a class of Arabidopsis root hair mutants with defective cell walls. Plants homozygous for kojak (kjk) mutations initiate root hairs that rupture at their tip soon after initiation. The KJK gene was isolated by positional cloning, and its identity was confirmed by the molecular complementation of the Kjk(-) phenotype and the sequence of three kjk mutant alleles. KOJAK encodes a cellulose synthase-like protein, AtCSLD3. KOJAK/AtCSLD3 is the first member of this subfamily of proteins to be shown to have a function in cell growth. Subcellular localization of the KOJAK/AtCSLD3 protein using a GFP fusion shows that KOJAK/AtCSLD3 is located on the endoplasmic reticulum, indicating that KOJAK/AtCSLD3 is required for the synthesis of a noncellulosic wall polysaccharide. Consistent with the cell specific defect in the roots of kjk mutants, KOJAK/AtCSDL3 is preferentially expressed in hair cells of the epidermis. The Kjk(-) phenotype and the pattern of KOJAK/AtCSLD3 expression suggest that this gene acts early in the process of root hair outgrowth. These results suggest that KOJAK/AtCSLD3 is involved in the biosynthesis of beta-glucan-containing polysaccharides that are required during root hair elongation.

  17. Stria vascularis and cochlear hair cell changes in syphilis: A human temporal bone study.

    Science.gov (United States)

    Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M; Cureoglu, Sebahattin

    2016-12-01

    To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis. We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the two groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis did not significantly differ, in any turn of the cochlea, between the 2 groups (P>0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (Psyphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Imaging living hair cells within the cochlear epithelium of mice using two-photon microscopy

    Science.gov (United States)

    Yuan, Tao; Gao, Simon S.; Saggau, Peter; Oghalai, John S.

    2009-02-01

    Mice are an excellent model for studying mammalian hearing and transgenic mouse models of human hearing loss are commonly available for research. However, the mouse cochlea is substantially smaller than other animal models routinely used to study cochlear physiology. This makes the study of their hair cells difficult. We developed a novel methodology to optically image calcium within living hair cells left undisturbed within the excised mouse cochlea. Fresh cochleae were harvested, left intact within their otic capsule bone, and glued upright in a recording chamber. The bone overlying the region of the cochlear epithelium to be studied was opened and Reissner's membrane was incised. A fluorescent indicator was applied to the preparation to image intracellular calcium. A custom-built upright two-photon microscope was used to image the preparation using three dimensional scanning. We were able to image about 1/3 of a cochlear turn simultaneously, in either the apical or basal regions. Within one hour of animal sacrifice, we found that outer hair cells demonstrated increased fluorescence compared with surrounding supporting cells. Thus, this methodology can be used to visualize hair cell calcium changes and mechanotransduction over a region of the epithelium. Because the epithelium is left within the cochlea, dissection trauma is minimized and artifactual changes in hair cell physiology are reduced.

  19. Ber-EP4 antigen is a marker for a cell population related to the secondary hair germ.

    Science.gov (United States)

    Ozawa, Maki; Aiba, Setsuya; Kurosawa, Masahiro; Tagami, Hachiro

    2004-07-01

    Ber-EP4 is an antibody to a cell membrane glycoprotein of unknown function. In the skin, Ber-EP4 immunoreactivity has been reported to be localized in structures composed of basaloid epithelial cells, i.e. fetal epithelial germ cells, basal cell carcinoma, and trichoepithelioma as well as eccrine or apocrine ducts. In this study, we further characterized the follicular expression of Ber-EP4 immunoreactivity at different stages of the hair cycle of human terminal hair follicles. In addition, to clarify the location of Ber-EP4(+) cells, we compared the Ber-EP4 immunoreactivity with the expression of keratin 15 and keratin 19. Positive staining by Ber-EP4 was found in the lower part of the epithelial strand of late catagen hair follicles, in the secondary hair germ of telogen hair follicles, and in the matrix of early anagen hair follicles but not in any parts of mature anagen hair follicles. In contrast, the follicular expression of keratin 15 detected by using LHK15 antibody was restricted to two distinct parts of anagen hair follicles, i.e. the outer root sheath above the hair bulb and that of the isthmus including the bulge area, and to the outer root sheath of late catagen and telogen hair follicles. The follicular expressions of keratin 19 and that of keratin 15 were apparently superimposed, whereas keratin 15 expression was more extended. The immunoreactivity of LHK15 antibody and antikeratin 19 antibody against the secondary hair germ of telogen follicles was negative or dim. Our results suggest that Ber-EP4 reacts with the secondary hair germ and possibly a cell population related to the secondary hair germ but not with the presumptive stem cell population as revealed immunohistochemically either by the keratin 15 or keratin 19 expression.

  20. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    2017-07-01

    Full Text Available Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment.

  1. Progressive hearing loss and degeneration of hair cell stereocilia in taperin gene knockout mice.

    Science.gov (United States)

    Chen, Mo; Wang, Qin; Zhu, Gang-Hua; Hu, Peng; Zhou, Yuan; Wang, Tian; Lai, Ruo-Sha; Xiao, Zi-An; Xie, Ding-Hua

    2016-10-28

    The TPRN gene encodes taperin, which is prominently present at the taper region of hair cell stereocilia. Mutations in TPRN have been reported to cause autosomal recessive nonsyndromic deafness 79(DFNB 79). To investigate the role of taperin in pathogenesis of hearing loss, we generated TPRN knockout mice using TALEN technique. Sanger sequencing confirmed an 11 bp deletion at nucleotide 177-187 in exon 1 of TPRN, which results in a truncated form of taperin protein. Heterozygous TPRN+/- mice showed apparently normal auditory phenotypes to their wide-type (WT) littermates. Homozygous TPRN-/- mice exhibited progressive sensorineural hearing loss as reflected by auditory brainstem response to both click and tone burst stimuli at postnatal days 15 (P15), 30 (P30), and 60 (P60). Alex Fluor-594 phalloidin labeling showed no obvious difference in hair cell numbers in the cochlea between TPRN-/- mice and WT mice under light microscope. However, scanning electronic microscopy revealed progressive degeneration of inner hair cell stereocilia, from apparently normal at postnatal days 3 (P3) to scattered absence at P15 and further to substantial loss at P30. The outer hair cell stereocilia also showed progressive degeneration, though much less severe, Collectively, we conclude that taperin plays an important role in maintenance of hair cell stereocilia. Establishment of TPRN knockout mice enables further investigation into the function of this gene. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells.

    Science.gov (United States)

    Xiong, Wei; Grillet, Nicolas; Elledge, Heather M; Wagner, Thomas F J; Zhao, Bo; Johnson, Kenneth R; Kazmierczak, Piotr; Müller, Ulrich

    2012-12-07

    Hair cells are mechanosensors for the perception of sound, acceleration, and fluid motion. Mechanotransduction channels in hair cells are gated by tip links, which connect the stereocilia of a hair cell in the direction of their mechanical sensitivity. The molecular constituents of the mechanotransduction channels of hair cells are not known. Here, we show that mechanotransduction is impaired in mice lacking the tetraspan TMHS. TMHS binds to the tip-link component PCDH15 and regulates tip-link assembly, a process that is disrupted by deafness-causing Tmhs mutations. TMHS also regulates transducer channel conductance and is required for fast channel adaptation. TMHS therefore resembles other ion channel regulatory subunits such as the transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor regulatory proteins (TARPs) of AMPA receptors that facilitate channel transport and regulate the properties of pore-forming channel subunits. We conclude that TMHS is an integral component of the hair cell's mechanotransduction machinery that functionally couples PCDH15 to the transduction channel. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A non-toxic dose of cobalt chloride blocks hair cells of the zebrafish lateral line.

    Science.gov (United States)

    Stewart, William J; Johansen, Jacob L; Liao, James C

    2017-07-01

    Experiments on the flow-sensitive lateral line system of fishes have provided important insights into the function and sensory transduction of vertebrate hair cells. A common experimental approach has been to pharmacologically block lateral line hair cells and measure how behavior changes. Cobalt chloride (CoCl 2 ) blocks the lateral line by inhibiting calcium movement through the membrane channels of hair cells, but high concentrations can be toxic, making it unclear whether changes in behavior are due to a blocked lateral line or poor health. Here, we identify a non-toxic treatment of cobalt that completely blocks lateral line hair cells. We exposed 5-day post fertilization zebrafish larvae to CoCl 2 concentrations ranging from 1 to 20 mM for 15 min and measured 1) the spiking rate of the afferent neurons contacting hair cells and 2) the larvae's health and long-term survival. Our results show that a 15-min exposure to 5 mM CoCl 2 abolishes both spontaneous and evoked afferent firing. This treatment does not change swimming behavior, and results in >85% survival after 5 days. Weaker treatments of CoCl 2 did not eliminate afferent activity, while stronger treatments caused close to 50% mortality. Our work provides a guideline for future zebrafish investigations where physiological confirmation of a blocked lateral line system is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Apoptosis and its molecular mechanism in vestibular hair cell after gentamycin toxicity].

    Science.gov (United States)

    Jiang, Xuejun; Li, Wei; Zang, Hongrui; Wang, Jin; Guan, Chao; Yang, Ning

    2005-10-01

    To investigate the character of damaged vestibular hair cells caused by gentamycin, and to identify whether apoptosis and phosphorylation of JNK occurs in the damaged cells. Healthy guinea pigs were divided into experimental group and control group randomly with 15 in each group, animals in experimental and control group received systemic injection of gentamycin [100 mg/(kg x d)] and saline respectively for 7 consequent days. All the animals were sacrificed on the 8th day, the crista vestibular of each were observed by preparation and frozen dissection. The apoptosis of hair cell were detected by TUNEL method and phosphorylation of JNK were detected by immunochemistry. The lesion and apoptosis of hair cells could be seen in the experimental group,and the phosphorylation could be observed too; the hair cells of control group showed no sign of apoptosis or phosphorylation of JNK. Gentamycin cause vestibular hair lesion by inducing apoptosis and activation of JNK plays an important role in the procedure of apoptosis.

  5. Spatiotemporal patterns of Musashi1 expression during inner ear development.

    Science.gov (United States)

    Sakaguchi, Hirofumi; Yaoi, Takeshi; Suzuki, Toshihiro; Okano, Hideyuki; Hisa, Yasuo; Fushiki, Shinji

    2004-04-29

    Musashi1 (Msi 1) is an RNA binding protein associated with asymmetric cell divisions in neural progenitor cells. To investigate the involvement of Msi1 in the inner ear development, we studied the expression of Msi1 in mouse inner ears with RT-PCR and immunohistochemistry. Immunohistochemistry revealed that Msi1 was expressed in all otocyst cells at embryonic day (E) 10 and 12. Msi1 immunoreactivity became lost in hair cells after E14 in vestibule and after E16 in cochlea, whereas it persisted in supporting cells until adulthood. The subcellular localization of Msi1 changed from "cytoplasmic predominance" to "nuclear predominance" during the first 2 weeks after birth. The present data suggested that Msi may play a role in inner ear development.

  6. Chemical Ototoxicity of the Fish Inner Ear and Lateral Line.

    Science.gov (United States)

    Coffin, Allison B; Ramcharitar, John

    2016-01-01

    Hair cell-driven mechanosensory systems are crucial for successful execution of a number of behaviors in fishes, and have emerged as good models for exploring questions relevant to human hearing. This review focuses on ototoxic effects in the inner ear and lateral line system of fishes. We specifically examine studies where chemical ototoxins such as aminoglycoside antibiotics have been employed as tools to disable the lateral line. Lateral line ablation results in alterations to feeding behavior and orientation to water current in a variety of species. However, neither behavior is abolished in the presence of additional sensory cues, supporting the hypothesis that many fish behaviors are driven by multisensory integration. Within biomedical research, the larval zebrafish lateral line has become an important model system for understanding signaling mechanisms that contribute to hair cell death and for developing novel pharmacological therapies that protect hair cells from ototoxic damage. Furthermore, given that fishes robustly regenerate damaged hair cells, ototoxin studies in fishes have broadened our understanding of the molecular and genetic events in an innately regenerative system, offering potential targets for mammalian hair cell regeneration. Collectively, studies of fish mechanosensory systems have yielded insight into fish behavior and in mechanisms of hair cell death, protection, and regeneration.

  7. Dynamics of Lgr6(+) Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis

    NARCIS (Netherlands)

    Füllgrabe, Anja; Joost, Simon; Are, Alexandra; Jacob, Tina; Sivan, Unnikrishnan; Haegebarth, Andrea; Linnarsson, Sten; Simons, Benjamin D; Clevers, Hans; Toftgård, Rune; Kasper, Maria

    2015-01-01

    The dynamics and interactions between stem cell pools in the hair follicle (HF), sebaceous gland (SG), and interfollicular epidermis (IFE) of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6-expressing basal cells in the HF isthmus, SG, and IFE.

  8. Your Ears

    Science.gov (United States)

    ... Outer Ear: Catch the Wave The Middle Ear: Good Vibrations The Inner Ear: Nerve Signals Start Here Day or Night, Ears Keep You Upright Three Cheers for the Ears! en español Tus oídos Did you hear something? Maybe the sound you heard was as quiet as your cat licking her paws. Or maybe it was loud, ...

  9. Up-to-date Clinical Trials of Hair Regeneration Using Conditioned Media of Adipose-Derived Stem Cells in Male and Female Pattern Hair Loss.

    Science.gov (United States)

    Shin, Hyoseung; Won, Chong Hyun; Chung, Woon-Kyung; Park, Byung-Soon

    2017-01-01

    The primary roles of mesenchymal stem cells (MSCs) are to maintain the stem cell niche, facilitate recovery after injury, and ensure healthy aging and the homeostasis of organ and tissues. MSCs have recently emerged as a new therapeutic option for hair loss. Since adipose-derived stem cells (ADSCs) are the most accessible sources of MSCs, ADSCbased hair regeneration is investigated. Besides replacing degenerated cells in affected organs, ADSCs exhibit their beneficial effects through the paracrine actions of various cytokines and growth factors. Several laboratory experiments and animal studies have shown that ADSC-related proteins can stimulate hair growth. In addition, we introduce our clinical pilot studies using conditioned media of ADSCs for pattern hair loss in men and women. We believe that conditioned media of ADSCs represents a promising alternative therapeutic strategy for hair loss. We also discuss practical therapeutic challenges and the direction of future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.

    Science.gov (United States)

    Larouche, Danielle; Cuffley, Kristine; Paquet, Claudie; Germain, Lucie

    2011-03-01

    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.

  11. SRPP, a Cell Wall Protein is Involved in Development and Protection of Seeds and Root Hairs in Arabidopsis thaliana.

    Science.gov (United States)

    Tanaka, Natsuki; Uno, Hiroshi; Okuda, Shohei; Gunji, Shizuka; Ferjani, Ali; Aoyama, Takashi; Maeshima, Masayoshi

    2017-04-01

    Enhancement of root hair development in response to phosphate (Pi) deficit has been reported extensively. Root hairs are involved in major root functions such as the absorption of water, acquisition of nutrients and secretion of organic acids and enzymes. Individual root hair cells maintain these functions and appropriate structure under various physiological conditions. We carried out a study to identify protein(s) which maintain the structure and function of root hairs, and identified a protein (SEED AND ROOT HAIR PROTECTIVE PROTEIN, SRPP) that was induced in root hairs under Pi-deficient conditions. Promoter assay and mRNA quantification revealed that SRPP was expressed in root hairs and seeds. A knockout mutant, srpp-1, consistently displayed defects in root hairs and seeds. Root hairs in srpp-1 were short and the phenotypes observed under Pi-deficient conditions were also detected in ethylene-treated srpp-1 plants. Propidium iodide stained most root hairs of srpp-1 grown under Pi-deficient conditions, suggesting cell death. In addition to root hairs, most srpp-1 seeds were withered and their embryos were dead. SRPP tagged with green fluorescent protein was detected in the cell wall. Electron microscopy showed abnormal morphology of the cell wall. Wild-type phenotypes were restored when the SRPP gene was expressed in srpp-1. These data strongly suggest that SRPP contributes to the construction of robust cell walls, whereby it plays a key role in the development of root hairs and seeds. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Probing the Xenopus laevis inner ear transcriptome for biological function

    Directory of Open Access Journals (Sweden)

    Powers TuShun R

    2012-06-01

    Full Text Available Abstract Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome

  13. ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23erl/erl mutant mice.

    Science.gov (United States)

    Hu, Juan; Li, Bo; Apisa, Luke; Yu, Heping; Entenman, Shami; Xu, Min; Stepanyan, Ruben; Guan, Bo-Jhih; Müller, Ulrich; Hatzoglou, Maria; Zheng, Qing Yin

    2016-11-24

    Hearing loss is one of the most common sensory impairments in humans. Mouse mutant models helped us to better understand the mechanisms of hearing loss. Recently, we have discovered that the erlong (erl) mutation of the cadherin23 (Cdh23) gene leads to hearing loss due to hair cell apoptosis. In this study, we aimed to reveal the molecular pathways upstream to apoptosis in hair cells to exploit more effective therapeutics than an anti-apoptosis strategy. Our results suggest that endoplasmic reticulum (ER) stress is the earliest molecular event leading to the apoptosis of hair cells and hearing loss in erl mice. We also report that the ER stress inhibitor, Salubrinal (Sal), could delay the progression of hearing loss and preserve hair cells. Our results provide evidence that therapies targeting signaling pathways in ER stress development prevent hair cell apoptosis at an early stage and lead to better outcomes than those targeting downstream factors, such as tip-link degeneration and apoptosis.

  14. Effects of NSAIDs on the Inner Ear: Possible Involvement in Cochlear Protection

    Directory of Open Access Journals (Sweden)

    Akira Hara

    2010-04-01

    Full Text Available Cyclooxygenase and lipoxygenase, two important enzymes involved in arachidonic acid metabolism, are major targets of non-steroidal anti-inflammatory drugs (NSAIDs. Recent investigations suggest that arachidonic cascades and their metabolites may be involved in maintaining inner ear functions. The excessive use of aspirin may cause tinnitus in humans and impairment of the outer hair cell functions in experimental animals. On the other hand, NSAIDs reportedly exhibit protective effects against various kinds of inner ear disorder. The present review summarizes the effects of NSAIDs on cochlear pathophysiology. NSAIDs are a useful ameliorative adjunct in the management of inner ear disorders.

  15. Secretory otitis. Histopathology and goblet-cell density in the Eustachian tube and middle ear in children.

    Science.gov (United States)

    Tos, M; Bak-Pedersen, K

    1976-05-01

    The histological changes in the middle ear of four children with incipient or mild chronic secretory otitis are described. They consist in vascular dilatation and proliferation, round-cell infiltration, epithelial metaplasia into pseudostratified, columnar, ciliated epithelium posteriorly in the middle ear, formation of abnormal mucous tubular glands, and an increase in goblet-cell density in the osseous tube and middle ear. The causes of these changes were presumably long-lasting tubal occlusion due to a permanent nasogastric tube and protracted catarrhal diseases. The density of goblet cells was determined in various parts of the Eustachian tube and middle ear. The findings were analysed statistically and compared with the density in prematures and newborns, normal children, and normal adults. In the tympanic orifice and in the osseous Eustachian tube the goblet-cell density was greatly increased, whereas the increase in the middle ear varied individually, but was in conformity with the other findings. These cases illustrate that the histopathological changes in the middle-ear mucosa in secretory otitis must be regarded not only from a qualitative, but certainly also from a quantitative point of view.

  16. Micronucleus frequency in exfoliated buccal cells from hairdresser who expose to hair products

    Directory of Open Access Journals (Sweden)

    Koh Hui Yee

    2015-06-01

    Full Text Available Background: Hairdresser is one of the fastest growing occupations in today’s society. Hairdresser help styling, cutting, colouring, perming, curling, straightening hair and various treatment to customer. Somehow, hairdresser are constantly exposed to chemical substances such as aromatic amines, hydrogen peroxide, thioglycolic acid, formaldehyde in hair products which can cause damage to human’s genome. Micronucleus is one of the effective biomarker for processes associated with the induction of DNA damage. Purpose: The aim of this study was to determine the micronucleus frequencies in buccal mucosa epithelial cells of hairdresser who were exposed to chemical of hair products. Method: This study was conducted on twenty female subjects, who were divided into 2 groups: exposed and non-exposed (control group. All subjects recruited were working in the same beauty salon. Buccal cells were obtained from each individual by using cytobrush. The cells were stained with modified Feulgen-Ronssenback method and counting of micronucleus per 1000 cell was done under light microscope. The data were analyzed using independent t-test and one-way Anova (p<0.05. Result: The result showed a significant difference in micronucleus frequency between 2 groups. There were a significantly increase of micronucleus frequency in hairdressers and increase of  micronucleus frequency with the longer duration of exposure. Conclusion: It concluded that the chemical substances of hair products had affected the micronucleus frequency ofthe epithelial cells in buccal mucosa of hairdressers.

  17. Ciliary and secretory differentiation of normal human middle ear epithelial cells.

    Science.gov (United States)

    Choi, Jae Young; Kim, Chang-Hoon; Lee, Won-Sang; Kim, Hee-Nam; Song, Kyoung-Seob; Yoon, Joo-Heon

    2002-04-01

    Recent technical advances now permit the serial culture of normal human middle ear epithelial (NHMEE) cells. However, the ciliary differentiation of these cells has not been achieved. The purpose of this study was to establish a culture system in order to differentiate serially cultured NHMEE cells into ciliated cells. If ciliated cells developed, the percentages of ciliated cells and secretory cells were measured throughout the duration of culture. We also examined the levels of mucin and lysozyme secretion and their mRNAs in a time-dependent manner. Human middle ear mucosa with a normal appearance was harvested and serially cultured after enzymatic disaggregation. These cells were cultured in an air-liquid interface (ALI) culture system for 2, 7, 14, 21 and 28 days after confluence. Ciliogenesis usually began 16-18 days after confluence. The percentage of ciliated cells detected by means of immunohistochemical staining increased over time up to a maximum of 10.6% but the percentage of secretory cells remained stable at approximately 40% throughout the duration of culture. By Day 14 after confluence, the amounts of mucin and lysozyme secretion, as measured by dot-blotting analysis, had increased significantly and then remained stable. The expression levels of mucin gene 5B (MUC5B), MUC8 and lysozyme increased with the duration of culture. MUC8 in particular showed a dramatic increase on Day 28 after confluence. In contrast, the level of MUC5AC mRNA peaked on Day 14 after confluence, and then decreased. In conclusion, ciliary differentiation of NHMEE cells can be induced using an ALI culture system. Our study also suggests that secretory function develops earlier than ciliogenesis, and that the expressions of MUC5B and MUC8 mRNAs increase as a function of differentiation.

  18. Spermidine promotes human hair growth and is a novel modulator of human epithelial stem cell functions.

    Directory of Open Access Journals (Sweden)

    Yuval Ramot

    Full Text Available BACKGROUND: Rapidly regenerating tissues need sufficient polyamine synthesis. Since the hair follicle (HF is a highly proliferative mini-organ, polyamines may also be important for normal hair growth. However, the role of polyamines in human HF biology and their effect on HF epithelial stem cells in situ remains largely unknown. METHODS AND FINDINGS: We have studied the effects of the prototypic polyamine, spermidine (0.1-1 µM, on human scalp HFs and human HF epithelial stem cells in serum-free organ culture. Under these conditions, spermidine promoted hair shaft elongation and prolonged hair growth (anagen. Spermidine also upregulated expression of the epithelial stem cell-associated keratins K15 and K19, and dose-dependently modulated K15 promoter activity in situ and the colony forming efficiency, proliferation and K15 expression of isolated human K15-GFP+ cells in vitro. Inhibiting the rate-limiting enzyme of polyamine synthesis, ornithine decarboyxlase (ODC, downregulated intrafollicular K15 expression. In primary human epidermal keratinocytes, spermidine slightly promoted entry into the S/G2-M phases of the cell cycle. By microarray analysis of human HF mRNA extracts, spermidine upregulated several key target genes implicated e.g. in the control of cell adherence and migration (POP3, or endoplasmic reticulum and mitochondrial functions (SYVN1, NACA and SLC25A3. Excess spermidine may restrict further intrafollicular polyamine synthesis by inhibiting ODC gene and protein expression in the HF's companion layer in situ. CONCLUSIONS: These physiologically and clinically relevant data provide the first direct evidence that spermidine is a potent stimulator of human hair growth and a previously unknown modulator of human epithelial stem cell biology.

  19. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung Ho [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Troy, Frederic A., E-mail: fatroy@ucdavis.edu [Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, CA 95616 (United States); Xiamen University, School of Medicine, Xiamen City (China)

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  20. Computational Modeling of Outer Hair Cell Damage: Implications for Hearing Aid Signal Processing

    Science.gov (United States)

    Giguére, Christian; Smoorenburg, Guido F.

    This paper describes a number of computer simulations illustrating the main effects of outer hair loss upon the representation of sounds on the basilar membrane. These include (1) a basalward shift of the place of maximum vibration, (2) a decreased gain near the place of maximum vibration, (3) a broadening of the tuning curves, (4) an altered summation of activity across frequency components, and (5) an altered temporal response. It is argued that, for large classes of sounds, the basilar membrane patterns resulting from a loss of outer hair cells cannot, in principle, be compensated for by hearing aid signal processing techniques, such as multi-band amplitude compression and spectral sharpening.

  1. Automated High-Throughput Damage Scoring of Zebrafish Lateral Line Hair Cells After Ototoxin Exposure.

    Science.gov (United States)

    Philip, Rohit C; Rodriguez, Jeffrey J; Niihori, Maki; Francis, Ross H; Mudery, Jordan A; Caskey, Justin S; Krupinski, Elizabeth; Jacob, Abraham

    2018-01-30

    Zebrafish have emerged as a powerful biological system for drug development against hearing loss. Zebrafish hair cells, contained within neuromasts along the lateral line, can be damaged with exposure to ototoxins, and therefore, pre-exposure to potentially otoprotective compounds can be a means of identifying promising new drug candidates. Unfortunately, anatomical assays of hair cell damage are typically low-throughput and labor intensive, requiring trained experts to manually score hair cell damage in fluorescence or confocal images. To enhance throughput and consistency, our group has developed an automated damage-scoring algorithm based on machine-learning techniques that produce accurate damage scores, eliminate potential operator bias, provide more fidelity in determining damage scores that are between two levels, and deliver consistent results in a fraction of the time required for manual analysis. The system has been validated against trained experts using linear regression, hypothesis testing, and the Pearson's correlation coefficient. Furthermore, performance has been quantified by measuring mean absolute error for each image and the time taken to automatically compute damage scores. Coupling automated analysis of zebrafish hair cell damage to behavioral assays for ototoxicity produces a novel drug discovery platform for rapid translation of candidate drugs into preclinical mammalian models of hearing loss.

  2. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  3. Daunomycin accumulation and induction of programmed cell death in rat hair follicles

    DEFF Research Database (Denmark)

    Shin, Masashi; Larsson, Lars-Inge; Hougaard, David M.

    2009-01-01

    The anthracycline antibiotic daunomycin (DM) is useful for the treatment of leukemia but has side-effects such as alopecia. Using immunocytochemistry, we show that, after a single i.v. injection, DM accumulates in the nuclei of matrix cells and in the outer root sheath of hair follicles. DM...

  4. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells

    NARCIS (Netherlands)

    Corns, Laura F.; Johnson, Stuart L.; Kros, Corne J.; Marcotti, Walter

    2014-01-01

    Mechanotransduction in the auditory and vestibular systems depends on mechanosensitive ion channels in the stereociliary bundles that project from the apical surface of the sensory hair cells. In lower vertebrates, when the mechanoelectrical transducer (MET) channels are opened by movement of the

  5. Hair transplant

    Science.gov (United States)

    ... hair transplant is a surgical procedure to improve baldness. Description During a hair transplant, hairs are moved ... a hair transplant have male or female pattern baldness . Hair loss is on the front or top ...

  6. Proteomic identification of hair cell repair proteins in the model sea anemone Nematostella vectensis.

    Science.gov (United States)

    Tang, Pei-Ciao; Watson, Glen M

    2015-09-01

    Sea anemones have an extraordinary capability to repair damaged hair bundles, even after severe trauma. A group of secreted proteins, named repair proteins (RPs), found in mucus covering sea anemones significantly assists the repair of damaged hair bundle mechanoreceptors both in the sea anemone Haliplanella luciae and the blind cavefish Astyanax hubbsi. The polypeptide constituents of RPs must be identified in order to gain insight into the molecular mechanisms by which repair of hair bundles is accomplished. In this study, several polypeptides of RPs were isolated from mucus using blue native PAGE and then sequenced using LC-MS/MS. Thirty-seven known polypeptides were identified, including Hsp70s, as well as many polypeptide subunits of the 20S proteasome. Other identified polypeptides included those involved in cellular stress responses, protein folding, and protein degradation. Specific inhibitors of Hsp70s and the 20S proteasome were employed in experiments to test their involvement in hair bundle repair. The results of those experiments suggested that repair requires biologically active Hsp70s and 20S proteasomes. A model is proposed that considers the function of extracellular Hsp70s and 20S proteasomes in the repair of damaged hair cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Organ-level quorum sensing directs regeneration in hair stem cell populations

    Science.gov (United States)

    Chen, Chih-Chiang; Wang, Lei; Plikus, Maksim V.; Jiang, Ting Xin; Murray, Philip J.; Ramos, Raul; Guerrero-Juarez, Christian F.; Hughes, Michael W; Lee, Oscar K.; Shi, Songtao; Widelitz, Randall B.; Lander, Arthur D.; Chuong, Cheng Ming

    2015-01-01

    SUMMARY Coordinated organ behavior is crucial for an effective response to environmental stimuli. By studying regeneration of hair follicles in response to patterned hair removal, we demonstrate that organ-level quorum sensing allows coordinated responses to skin injury. Removing hair at different densities leads to a regeneration of up to 5 times more neighboring, unplucked resting hairs, indicating activation of a collective decision-making process. Through data modeling, the range of the quorum signal was estimated to be on the order of 1 mm, greater than expected for a diffusible molecular cue. Molecular and genetic analysis uncovered a two-step mechanism, where release of CCL2 from injured hairs leads to recruitment of TNF-α secreting macrophages, which accumulate and signal to both plucked and unplucked follicles. By coupling immune response with regeneration, this mechanism allows skin to respond predictively to distress, disregarding mild injury, while meeting stronger injury with full-scale cooperative activation of stem cells. PMID:25860610

  8. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses

    Science.gov (United States)

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T.; Wangsawihardja, Felix; Ricci, Anthony J.; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1dw) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1dw mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1dw IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1dw IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1dw IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. PMID:26386265

  9. Msi2 Maintains Quiescent State of Hair Follicle Stem Cells by Directly Repressing the Hh Signaling Pathway.

    Science.gov (United States)

    Ma, Xianghui; Tian, Yuhua; Song, Yongli; Shi, Jianyun; Xu, Jiuzhi; Xiong, Kai; Li, Jia; Xu, Wenjie; Zhao, Yiqiang; Shuai, Jianwei; Chen, Lei; Plikus, Maksim V; Lengner, Christopher J; Ren, Fazheng; Xue, Lixiang; Yu, Zhengquan

    2017-05-01

    Hair follicles (HFs) undergo precisely regulated cycles of active regeneration (anagen), involution (catagen), and relative quiescence (telogen). Hair follicle stem cells (HFSCs) play important roles in regenerative cycling. Elucidating mechanisms that govern HFSC behavior can help uncover the underlying principles of hair development, hair growth disorders, and skin cancers. RNA-binding proteins of the Musashi (Msi) have been implicated in the biology of different stem cell types, yet they have not been studied in HFSCs. Here we utilized gain- and loss-of-function mouse models to demonstrate that forced MSI2 expression retards anagen entry and consequently delays hair growth, whereas loss of Msi2 enhances hair regrowth. Furthermore, our findings show that Msi2 maintains quiescent state of HFSCs in the process of the telogen-to-anagen transition. At the molecular level, our unbiased transcriptome profiling shows that Msi2 represses Hedgehog signaling activity and that Shh is its direct target in the hair follicle. Taken together, our findings reveal the importance of Msi2 in suppressing hair regeneration and maintaining HFSC quiescence. The previously unreported Msi2-Shh-Gli1 pathway adds to the growing understanding of the complex network governing cyclic hair growth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The actin-binding proteins eps8 and gelsolin have complementary roles in regulating the growth and stability of mechanosensory hair bundles of mammalian cochlear outer hair cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Olt

    Full Text Available Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamically regulated. Recently, it was shown that the actin-binding protein gelsolin is expressed in the stereocilia of outer hair cells (OHCs and in its absence they become long and straggly. Gelsolin is part of a whirlin scaffolding protein complex at the stereocilia tip, which has been shown to interact with other actin regulatory molecules such as Eps8. Here we investigated the physiological effects associated with the absence of gelsolin and its possible overlapping role with Eps8. We found that, in contrast to Eps8, gelsolin does not affect mechanoelectrical transduction during immature stages of development. Moreover, OHCs from gelsolin knockout mice were able to mature into fully functional sensory receptors as judged by the normal resting membrane potential and basolateral membrane currents. Mechanoelectrical transducer current in gelsolin-Eps8 double knockout mice showed a profile similar to that observed in the single mutants for Eps8. We propose that gelsolin has a non-overlapping role with Eps8. While Eps8 is mainly involved in the initial growth of stereocilia in both inner hair cells (IHCs and OHCs, gelsolin is required for the maintenance of mature hair bundles of low-frequency OHCs after the onset of hearing.

  11. Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs

    NARCIS (Netherlands)

    Ketelaar, M.J.; Ruijter, de N.C.A.; Emons, A.M.C.

    2003-01-01

    Plant cells expand by exocytosis of wall material contained in Golgi-derived vesicles. We examined the role of local instability of the actin cytoskeleton in specifying the exocytosis site in Arabidopsis root hairs. During root hair growth, a specific actin cytoskeleton configuration is present in

  12. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  13. Advances in a rapidly emerging field of hair follicle stem cell research.

    Science.gov (United States)

    Mokos, Zrinka Bukvić; Mosler, Elvira Lazić

    2014-03-01

    Human skin maintains the ability to regenerate during adulthood, as it constantly renews itself throughout adult life, and the hair follicle (HF) undergoes a perpetual cycle of growth and degeneration. The study of stem cells (SCs) in the epidermis and skin tissue engineering is a rapidly emerging field, where advances have been made in both basic and clinical research. Advances in basic science include the ability to assay SCs of the epidermis in vivo, identification of an independent interfollicular epidermal SC, and improved ability to analyze individual SCs divisions, as well as the recent hair organ regeneration via the bioengineered hair follicular unit transplantation (FUT) in mice. Advances in the clinic include recognition of the importance of SCs for wound repair and for gene therapy in inherited skin diseases, for example epidermolysis bullosa. The study of the HF stem cells (HFSCs) started by identification of epidermal SC in the HF bulge as quiescent "label retaining cells". The research of these cells emerged rapidly after the identification of bulge cell molecular markers, such as keratin 15 (K15) and CD34 in mice and CD200 in humans, which allowed the isolation and characterization of bulge cells from follicles. This paper provides an overview of the current knowledge on epidermal SCs in the HF describing their essential characteristics and the control of follicle SCs fate, their role in alopecia, as well as their use in tissue engineering.

  14. Hair Follicle Dermal Sheath Derived Cells Improve Islet Allograft Survival without Systemic Immunosuppression

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2015-01-01

    Full Text Available Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1 or fibroblasts (FB, group 2 under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P<0.001 without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation.

  15. Effect of intense pulsed light treatment on human skin in vitro: analysis of immediate effects on dermal papillae and hair follicle stem cells.

    Science.gov (United States)

    Larouche, D; Kim, D H; Ratté, G; Beaumont, C; Germain, L

    2013-10-01

    Hair follicles house a permanent pool of epithelial stem cells. Intense pulsed light (IPL) sources have been successfully used for hair removal, but long-term hair reduction may require several treatments. Many questions remain regarding the impact of IPL treatment on the structure of the hair follicle, more specifically on hair follicular stem cells and dermal papilla cells, a group of specialized cells that orchestrate hair growth. To characterize the destruction of human hair follicles and surrounding tissues following IPL treatment, with more attention paid to the bulge and the bulb regions. Human scalp specimens of Fitzpatrick skin phototype II were exposed ex vivo to IPL pulses and were then processed for histological analysis, immunodetection of stem cell-associated keratin 19, and revelation of the endogenous alkaline phosphatase activity expressed in dermal papilla cells. Histological analysis confirmed that pigmented structures, such as the melanin-rich matrix cells of the bulb in anagen follicles and the hair shaft, are principally targeted by IPL treatment, while white hairs and epidermis remained unaffected. Damage caused by heat sometimes extended over the dermal papilla cells, while stem cells were mostly spared. IPL epilation principally targets pigmented structures. Our results suggest that, under the tested conditions, collateral damage does not deplete stem cells. Damage at the dermal papilla was observed only with high-energy treatment modalities. Extrapolated to frequently treated hairs, these observations explain why some hairs grow back after a single IPL treatment. © 2013 British Association of Dermatologists.

  16. Molecular Identity of the Mechanotransduction Channel in Hair Cells: Not Quiet There Yet.

    Science.gov (United States)

    Wu, Zizhen; Müller, Ulrich

    2016-10-26

    Hair cells in the mammalian cochlea are specialized mechanosensory cells that convert sound-induced vibrations into electrochemical signals. The molecular composition of the mechanotransduction channel underlying auditory perception has been difficult to define. The study of genes that are linked to inherited forms of deafness has recently provided tantalizing clues. Current findings indicate that the mechanotransduction channel in hair cells is a complex molecular machine. Four different proteins (TMHS/LHFPL5, TMIE, TMC1, and TMC2) have so far been linked to the transduction channel, but which proteins contribute to the channel pore still needs to be determined. Current evidence also suggests that the channel complex may contain additional, yet to be identified components. Copyright © 2016 the authors 0270-6474/16/3610927-08$15.00/0.

  17. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches.

    Science.gov (United States)

    Peterson, Shelby C; Eberl, Markus; Vagnozzi, Alicia N; Belkadi, Abdelmadjid; Veniaminova, Natalia A; Verhaegen, Monique E; Bichakjian, Christopher K; Ward, Nicole L; Dlugosz, Andrzej A; Wong, Sunny Y

    2015-04-02

    Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as "hot spots" for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The effect of dexamethasone/cell-penetrating peptide nanoparticles on gene delivery for inner ear therapy.

    Science.gov (United States)

    Yoon, Ji Young; Yang, Keum-Jin; Park, Shi-Nae; Kim, Dong-Kee; Kim, Jong-Duk

    Dexamethasone (Dex)-loaded PHEA-g-C18-Arg8 (PCA) nanoparticles (PCA/Dex) were developed for the delivery of genes to determine the synergistic effect of Dex on gene expression. The cationic PCA nanoparticles were self-assembled to create cationic micelles containing an octadecylamine (C18) core with Dex and an arginine 8 (Arg8) peptide shell for electrostatic complexation with nucleic acids (connexin 26 [Cx26] siRNA, green fluorescent protein [GFP] DNA or brain-derived neurotrophic factor [BDNF] pDNA). The PCA/Dex nanoparticles conjugated with Arg8, a cell-penetrating peptide that enhances permeability through a round window membrane in the inner ear for gene delivery, exhibited high uptake efficiency in HEI-OC1 cells. This potential carrier co-delivering Dex and the gene into inner ear cells has a diameter of 120-140 nm and a zeta potential of 20-25 mV. Different types of genes were complexed with the Dex-loaded PCA nanoparticle (PCA/Dex/gene) for gene expression to induce additional anti-inflammatory effects. PCA/Dex showed mildly increased expression of GFP and lower mRNA expression of inflammatory cytokines (IL1b, IL12, and INFr) than did Dex-free PCA nanoparticles and Lipofectamine(®) reagent in HEI-OC1 cells. In addition, after loading Cx26 siRNA onto the surface of PCA/Dex, Cx26 gene expression was downregulated according to real-time polymerase chain reaction for 24 h, compared with that using Lipofectamine reagent. After loading BDNF DNA into PCA/Dex, increased expression of BDNF was observed for 30 h, and its signaling pathway resulted in an increase in phosphorylation of Akt, observed by Western blotting. Thus, Dex within PCA/Dex/gene nanoparticles created an anti-inflammatory effect and enhanced gene expression.

  19. Human ear recognition by computer

    CERN Document Server

    Bhanu, Bir; Chen, Hui

    2010-01-01

    Biometrics deals with recognition of individuals based on their physiological or behavioral characteristics. The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. Unlike the fingerprint and iris, it can be easily captured from a distance without a fully cooperative subject, although sometimes it may be hidden with hair, scarf and jewellery. Also, unlike a face, the ear is a relatively stable structure that does not change much with the age and facial expressions. ""Human Ear Recognition by Computer"" is the first book o

  20. Attitudes of the UK ear, nose and throat clinical community to the future potential use of stem cell therapies to treat deafness.

    Science.gov (United States)

    Ali, Khalid H M; Williams, David J; Jackson, Peter; Pau, Henry P

    2012-03-01

    Hearing loss is commonly due to the degeneration and death of hair cells and their associated spiral ganglion neurons. A total of 250 million people are affected worldwide. Stem cell treatments offer new and powerful strategies to enable recovery from hearing loss. This study focuses on the translational process required to move stem cell therapy from the laboratory to clinical use as a novel treatment of deafness and an alternative to conventional therapy. In particular, this study aims to inform and enable the adoption process for such therapies, including understanding the awareness of and attitudes towards stem cell therapy for hearing loss among ear, nose and throat surgeons, physicians, audiologists and scientists, who are key stakeholders in the adoption process. A structured questionnaire has been developed and applied to assess the knowledge and awareness of the clinical community with respect to the future potential use of stem cell therapies to treat deafness. Results showed >87% of the clinicians sampled have very little or no knowledge of stem cell therapy. A total of 11% have been asked by patients about the use of stem cell therapies to treat deafness, and 64% felt a new treatment is needed for deafness. Significantly, 40% felt that a stem cell therapy would be a good adjuvant to a cochlear implant. In total, 78% were supportive of investment in stem cell therapy research and manufacturing. This investment should be in work directed at those areas where clinicians favor adoption. Alignment is required between the scientific and clinical communities. This should not only take into account the likelihood of scientific success when pursuing the therapeutic alternatives, but should also consider the clinical trial requirements, regulatory landscape and reimbursement conditions for each option.

  1. Conditional deletion of pejvakin in adult outer hair cells causes progressive hearing loss in mice.

    Science.gov (United States)

    Harris, Suzan L; Kazmierczak, Marcin; Pangršič, Tina; Shah, Prahar; Chuchvara, Nadiya; Barrantes-Freer, Alonso; Moser, Tobias; Schwander, Martin

    2017-03-06

    Mutations in the Pejvakin (Pjvk) gene cause autosomal recessive hearing loss DFNB59 with audiological features of auditory neuropathy spectrum disorder (ANSD) or cochlear dysfunction. The precise mechanisms underlying the variable clinical phenotypes of DFNB59 remain unclear. Here, we demonstrate that mice with conditional ablation of the Pjvk gene in all sensory hair cells or only in outer hair cells (OHCs) show similar auditory phenotypes with early-onset profound hearing loss. By contrast, loss of Pjvk in adult OHCs causes a slowly progressive hearing loss associated with OHC degeneration and delayed loss of inner hair cells (IHCs), indicating a primary role for pejvakin in regulating OHC function and survival. Consistent with this model, synaptic transmission at the IHC ribbon synapse is largely unaffected in sirtaki mice that carry a C-terminal deletion mutation in Pjvk. Using the C-terminal domain of pejvakin as bait, we identified in a cochlear cDNA library ROCK2, an effector for the small GTPase Rho, and the scaffold protein IQGAP1, involved in modulating actin dynamics. Both ROCK2 and IQGAP1 associate via their coiled-coil domains with pejvakin. We conclude that pejvakin is required to sustain OHC activity and survival in a cell-autonomous manner likely involving regulation of Rho signaling. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. A theoretical model for ROP localisation by auxin in Arabidopsis root hair cells.

    Directory of Open Access Journals (Sweden)

    Robert J H Payne

    2009-12-01

    Full Text Available Local activation of Rho GTPases is important for many functions including cell polarity, morphology, movement, and growth. Although a number of molecules affecting Rho-of-Plants small GTPase (ROP signalling are known, it remains unclear how ROP activity becomes spatially organised. Arabidopsis root hair cells produce patches of ROP at consistent and predictable subcellular locations, where root hair growth subsequently occurs.We present a mathematical model to show how interaction of the plant hormone auxin with ROPs could spontaneously lead to localised patches of active ROP via a Turing or Turing-like mechanism. Our results suggest that correct positioning of the ROP patch depends on the cell length, low diffusion of active ROP, a gradient in auxin concentration, and ROP levels. Our theory provides a unique explanation linking the molecular biology to the root hair phenotypes of multiple mutants and transgenic lines, including OX-ROP, CA-rop, aux1, axr3, tip1, eto1, etr1, and the triple mutant aux1 ein2 gnom(eb.We show how interactions between Rho GTPases (in this case ROPs and regulatory molecules (in this case auxin could produce characteristic subcellular patterning that subsequently affects cell shape. This has important implications for research on the morphogenesis of plants and other eukaryotes. Our results also illustrate how gradient-regulated Turing systems provide a particularly robust and flexible mechanism for pattern formation.

  3. Severe hearing loss and outer hair cell death in homozygous Foxo3 knockout mice after moderate noise exposure.

    Science.gov (United States)

    Gilels, Felicia; Paquette, Stephen T; Beaulac, Holly J; Bullen, Anwen; White, Patricia M

    2017-04-21

    Noise induced hearing loss (NIHL) is a disease that affects millions of Americans. Identifying genetic pathways that influence recovery from noise exposure is an important step forward in understanding NIHL. The transcription factor Foxo3 integrates the cellular response to oxidative stress and plays a role in extending lifespan in many organisms, including humans. Here we show that Foxo3 is required for auditory function after noise exposure in a mouse model system, measured by ABR. Absent Foxo3, outer hair cells are lost throughout the middle and higher frequencies. SEM reveals persistent damage to some surviving outer hair cell stereocilia. However, DPOAE analysis reveals that some function is preserved in low frequency outer hair cells, despite concomitant profound hearing loss. Inner hair cells, auditory synapses and spiral ganglion neurons are all present after noise exposure in the Foxo3KO/KO fourteen days post noise (DPN). We also report anti-Foxo3 immunofluorescence in adult human outer hair cells. Taken together, these data implicate Foxo3 and its transcriptional targets in outer hair cell survival after noise damage. An additional role for Foxo3 in preserving hearing is likely, as low frequency auditory function is absent in noise exposed Foxo3KO/KOs even though all cells and structures are present.

  4. Hair Loss

    Science.gov (United States)

    ... overall hair thinning and not bald patches. Full-body hair loss. Some conditions and medical treatments, such as ... in the loss of hair all over your body. The hair usually grows back. Patches of scaling that spread ...

  5. Synaptic calcium regulation in hair cells of the chicken basilar papilla.

    Science.gov (United States)

    Im, Gi Jung; Moskowitz, Howard S; Lehar, Mohammed; Hiel, Hakim; Fuchs, Paul Albert

    2014-12-10

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents ("minis") resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. Copyright © 2014 the authors 0270-6474/14/3416688-10$15.00/0.

  6. Pierced Ears

    Science.gov (United States)

    ... Medical Words En Español What Other Kids Are Reading Should You Fight a Bully? What You Need to Know About ... What's in this article? Getting Your Ears Pierced Metal Matters Taking Care of Your Ears If Your Ears ...

  7. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  8. Changes in ADF/destrin expression in the development of hair cells following Atoh1-induced ectopic regeneration.

    Science.gov (United States)

    Jin, Kai; Ren, Dong-Dong; Chi, Fang-Lu; Yang, Juan-Mei; Huang, Yi-Bo; Li, Wen

    2013-07-01

    The aim of this study was to investigate the effects of actin depolymerizing factor (ADF)/destrin and position changes of kinetosomes in the development of hair cells following Atoh1-induced ectopic regeneration in the basilar membrane of mice. We observed through immunofluorescence at various time-points the expression of ADF/destrin and the specific kinetosome marker, γ-tubulin, in hair cells following ectopic regeneration induced by adenovirus transfection, overexpression of Atoh1 and in vitro culture. Changes of ADF/destrin distribution and kinetosome position during in vitro culture of new hair cells [Myo7a(+)] following Atoh1-induced ectopic regeneration are consistent with the changes in ADF/destrin expression and the polar migration of kinetosomes in hair cells of the cochlear sensory epithelium in normal development. ADF/destrin is involved in the development of the auditory epithelium and the development and structural rearrangement of ectopically regenerated hair cells in mammals. The kinetosomes of hair cells following Atoh1-induced ectopic regeneration show positional changes in vitro at different time-points.

  9. Ethanol extract of Piper longum L. attenuates gentamicin-induced hair cell loss in neonatal cochlea cultures.

    Science.gov (United States)

    Du, Xiao Fei; Song, Jae-Jun; Hong, Seungug; Kim, Jihye

    2012-06-01

    Piper longum L. (PL), also as known as long pepper, a well-known spice and traditional medicine in Asia and Pacific islands, has been reported to exhibit wide spectrum activity including antioxidant activity. However, little information is available on its protective effect on gentamicin (GM) induced ototoxicity which is commonly regarded as being mediated by reactive oxygen species and reactive nitrogen species. This study was undertaken to investigate the protective effect of PL ethanol extract on gentamicin-induced hair cell loss in neonatal cochlea cultures. Cochlea cultures from postnatal day 2-3 mice were used for analysis of the protective effects of PL against gentamicin-induced hair cell loss by phalloidin staining. E. coil cultures were used to determine whether PL interferes with the antibiotic activity of GM. Nitric oxide (NO)-scavenging activity of PL was also measured in vitro. GM induced significant dose-dependent hair cell loss in cochlea cultures. However, without interfering with the antibiotic activity of GM, PL showed a significant and concentration-dependent protective effect against GM-induced hair cell loss, and hair cells retained their stereocilia well. In addition, PL expressed direct scavenging activity toward NO radical liberated within solution of sodium nitroprusside. These findings demonstrate the protective effect of PL on GM-induced hair cell loss in neonatal cochlea cultures, and suggest that it might be of therapeutic benefit for treatment of GM-induced ototoxicity.

  10. The cell membrane complex: three related but different cellular cohesion components of mammalian hair fibers.

    Science.gov (United States)

    Robbins, Clarence

    2009-01-01

    The structure, chemistry and physical properties of the cell membrane complex (CMC) of keratin fibers are reviewed, highlighting differences in the three types of CMC. Starting with Rogers' initial description of the CMC in animal hairs, several important developments have occurred that will be described, adding new details to this important structure in mammalian hair fibers. These developments show that essentially all of the covalently bound fatty acids of the beta layers are in the cuticle and exist as monolayers. The beta layers of the cortex are bilayers that are not covalently bonded but are attached by ionic and polar linkages on one side to the cortical cell membranes and on the other side to the delta layer. The delta layer between cortical cells consists of five sublayers; its proteins are clearly different from the delta layer that exists between cuticle cells. The cell membranes of cuticle cells are also markedly different from the cell membranes of cortical cells. Models with supporting evidence are presented for the three different types of cell membrane complex: cuticle-cuticle CMC, cuticle-cortex CMC, and cortex-cortex CMC.

  11. Mobilizing Transit-Amplifying Cell-Derived Ectopic Progenitors Prevents Hair Loss from Chemotherapy or Radiation Therapy.

    Science.gov (United States)

    Huang, Wen-Yen; Lai, Shih-Fan; Chiu, Hsien-Yi; Chang, Michael; Plikus, Maksim V; Chan, Chih-Chieh; Chen, You-Tzung; Tsao, Po-Nien; Yang, Tsung-Lin; Lee, Hsuan-Shu; Chi, Peter; Lin, Sung-Jan

    2017-11-15

    Genotoxicity-induced hair loss from chemotherapy and radiotherapy is often encountered in cancer treatment, and there is a lack of effective treatment. In growing hair follicles (HF), quiescent stem cells (SC) are maintained in the bulge region, and hair bulbs at the base contain rapidly dividing, yet genotoxicity-sensitive transit-amplifying cells (TAC) that maintain hair growth. How genotoxicity-induced HF injury is repaired remains unclear. We report here that HFs mobilize ectopic progenitors from distinct TAC compartments for regeneration in adaptation to the severity of dystrophy induced by ionizing radiation (IR). Specifically, after low-dose IR, keratin 5+ basal hair bulb progenitors, rather than bulge SCs, were quickly activated to replenish matrix cells and regenerated all concentric layers of HFs, demonstrating their plasticity. After high-dose IR, when both matrix and hair bulb cells were depleted, the surviving outer root sheath cells rapidly acquired an SC-like state and fueled HF regeneration. Their progeny then homed back to SC niche and supported new cycles of HF growth. We also revealed that IR induced HF dystrophy and hair loss and suppressed WNT signaling in a p53- and dose-dependent manner. Augmenting WNT signaling attenuated the suppressive effect of p53 and enhanced ectopic progenitor proliferation after genotoxic injury, thereby preventing both IR- and cyclophosphamide-induced alopecia. Hence, targeted activation of TAC-derived progenitor cells, rather than quiescent bulge SCs, for anagen HF repair can be a potential approach to prevent hair loss from chemotherapy and radiotherapy. Cancer Res; 77(22); 6083-96. ©2017 AACR. ©2017 American Association for Cancer Research.

  12. Characterization of biological effect of 1763 MHz radiofrequency exposure on auditory hair cells.

    Science.gov (United States)

    Huang, Tai-Qin; Lee, Min Su; Oh, Eun-Ha; Kalinec, Federico; Zhang, Byoung-Tak; Seo, Jeong-Sun; Park, Woong-Yang

    2008-11-01

    Radiofrequency (RF) exposure at the frequency of mobile phones has been reported not to induce cellular damage in in vitro and in vivo models. We chose HEI-OC1 immortalized mouse auditory hair cells to characterize the cellular response to 1763 MHz RF exposure, because auditory cells could be exposed to mobile phone frequencies. Cells were exposed to 1763 MHz RF at a 20 W/kg specific absorption rate (SAR) in a code division multiple access (CDMA) exposure chamber for 24 and 48 h to check for changes in cell cycle, DNA damage, stress response, and gene expression. Neither of cell cycle changes nor DNA damage was detected in RF-exposed cells. The expression of heat shock proteins (HSP) and the phosphorylation of mitogen-activated protein kinases (MAPK) did not change, either. We tried to identify any alteration in gene expression using microarrays. Using the Applied Biosystems 1700 full genome expression mouse microarray, we found that only 29 genes (0.09% of total genes examined) were changed by more than 1.5-fold on RF exposure. From these results, we could not find any evidence of the induction of cellular responses, including cell cycle distribution, DNA damage, stress response and gene expression, after 1763 MHz RF exposure at an SAR of 20 W/kg in HEI-OC1 auditory hair cells.

  13. MicroRNA-148b promotes proliferation of hair follicle cells by targeting NFAT5

    Directory of Open Access Journals (Sweden)

    Wanbao YANG,Qinqun LI,Bo SU,Mei YU

    2016-03-01

    Full Text Available MicroRNAs (miRNAs, small non-coding RNAs, are involved in many aspects of biological processes. Previous studies have indicated that miRNAs are important for hair follicle development and growth. In our study, we found by qRT-PCR that miR-148b was significantly upregulated in sheep wool follicle bulbs in anagen phase compared with the telogen phase of the hair follicle cycle. Overexpression of miR-148b promoted proliferation of both HHDPC and HHGMC. By using the TOPFlash system we demonstrated that miR-148b could activate Wnt/β-catenin pathway and b-catenin, cycD, c-jun and PPARD were consistently upregulated accordingly. Furthermore, transcript factor nuclear factor of activated T cells type 5 (NFAT5 and Wnt10b were predicted to be the target of miR-148b and this was substantiated using a Dual-Luciferase reporter system. Subsequently NFAT5 was further identified as the target of miR-148b using western blotting. These results were considered to indicate that miR-148b could activate the Wnt/β-catenin signal pathway by targeting NFAT5 to promote the proliferation of human hair follicle cells.

  14. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear.

    Directory of Open Access Journals (Sweden)

    Amy E Kiernan

    2006-01-01

    Full Text Available In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27kip1 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27kip1 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27kip1. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.

  15. [Cell culture of middle-ear epithelium of the guinea pig--histochemical localization of mitochondrial enzymatic activities in cultured cells].

    Science.gov (United States)

    Takeno, S

    1990-01-01

    Primary cell culture system from middle-ear epithelium of the guinea pig was established in defined condition. Mucosal cells were dispersed with enzymatic procedure and over 90% of the cell viability was obtained. Collagen gel and fibronectin coated Thermanox plate were used as culture substrates, and cultured cells on both materials formed confluent epithelial linings. Histochemical localization of succinate dehydrogenase, cytochrome oxidase and adenosine triphosphatase in mitochondria were examined. Cultured ciliated cells and some non-ciliated cells with numerous microvilli showed strong activities of succinate dehydrogenase and cytochrome oxidase. Also in vivo, normal ciliated epithelium near the eustachian tube in the middle-ear cavity of the guinea pig revealed strong mitochondrial metabolic activities. We concluded that this system would be useful for the study of cellular multiplication and differentiation systems of the middle-ear epithelium.

  16. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  17. Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK.

    Science.gov (United States)

    Hill, Kayla; Yuan, Hu; Wang, Xianren; Sha, Su-Hua

    2016-07-13

    Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy. Copyright © 2016 the authors 0270-6474/16/367497-14$15.00/0.

  18. Travel Inside the Ear

    Medline Plus

    Full Text Available ... the sound through the hair cells to your brain. Last Updated Date: July 30, 2014 Related Topic Journey of Sound to the Brain Video Languages Español Order free publications Find organizations ...

  19. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells

    Science.gov (United States)

    Veraitch, Ophelia; Mabuchi, Yo; Matsuzaki, Yumi; Sasaki, Takashi; Okuno, Hironobu; Tsukashima, Aki; Amagai, Masayuki; Okano, Hideyuki; Ohyama, Manabu

    2017-01-01

    The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties. The resultant cells (induced DP-substituting cells [iDPSCs]) exhibited up-regulated DP markers, interacted with human keratinocytes to up-regulate HF related genes, and when co-grafted with human keratinocytes in vivo gave rise to fibre structures with a hair cuticle-like coat resembling the hair shaft, as confirmed by scanning electron microscope analysis. Furthermore, iDPSCs responded to the clinically used hair growth reagent, minoxidil sulfate, to up-regulate DP genes, further supporting that they were capable of, at least in part, reproducing DP properties. Thus, LNGFR(+)THY-1(+) iMCs may provide material for HF bioengineering and drug screening for hair diseases. PMID:28220862

  20. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors.

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong

    2016-12-01

    : Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.

  1. A Case of Basal Cell Carcinoma with Outer Hair Follicle Sheath Differentiation

    Directory of Open Access Journals (Sweden)

    Masazumi Onishi

    2015-12-01

    Full Text Available A 70-year-old Japanese man presented at our hospital with an asymptomatic, blackish, irregularly shaped plaque with a gray nodule in the periphery on his left lower leg. The lesion had been present for 10 years and had recently enlarged, associated with bleeding. Histopathologically, the tumor consisted of three distinct parts: The first part showed massive aggregation of basophilic basaloid cells with peripheral palisading and abundant melanin granules, and was diagnosed as solid-type basal cell carcinoma. The second part showed aggregation of clear cells with squamous eddies, and was diagnosed as proliferating trichilemmal tumor. The third part showed reticular aggregation of basaloid cells with infundibular cysts in the papillary dermis, and was diagnosed as infundibulocystic basal cell carcinoma. We diagnosed this tumor as basal cell carcinoma with various forms of hair follicle differentiation, including differentiation into the outer root sheath.

  2. Distinguishing diffuse alopecia areata (AA) from pattern hair loss (PHL) using CD3(+) T cells.

    Science.gov (United States)

    Kolivras, Athanassios; Thompson, Curtis

    2016-05-01

    Distinguishing between diffuse subacute alopecia areata (AA), in which the peribulbar infiltrate is absent, and pattern hair loss is challenging, particularly in cases that lack marked follicular miniaturization and a marked catagen/telogen shift. We sought to distinguish diffuse AA from pattern hair loss using CD3(+) T lymphocytes. A total of 28 cases of subacute AA and 31 cases of pattern hair loss were selected and a 4-mm punch biopsy was performed. All the specimens were processed using the "HoVert" (horizontal and vertical) technique. In all cases, hematoxylin-eosin and immunohistochemical stains for CD3, CD4, CD8, and CD20 were performed. The presence of CD3(+) lymphocytes within empty follicular fibrous tracts (stela), even without a concomitant peribulbar infiltrate, is a reliable histopathological clue in supporting a diagnosis of AA (sensitivity 0.964, specificity 1, P ≤ .001). Limited tissue for analysis remained in the clinical sample tissue blocks. The presence of CD3(+) T-cells within empty follicular fibrous tracts (stela) supports a diagnosis of AA. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Investigating outer hair cell motility with a combination of external alternating electrical field stimulation and high-speed image analysis.

    Science.gov (United States)

    Kitani, Rei; Kalinec, Federico

    2011-07-18

    OHCs are cylindrical sensorimotor cells located in the Organ of Corti, the auditory organ inside the mammalian inner ear. The name "hair cells" derives from their characteristic apical bundle of stereocilia, a critical element for detection and transduction of sound energy. OHCs are able to change shape -elongate, shorten and bend- in response to electrical, mechanical and chemical stimulation, a motor response considered crucial for cochlear amplification of acoustic signals. OHC stimulation induces two different motile responses: i) electromotility, a.k.a fast motility, changes in length in the microsecond range derived from electrically-driven conformational changes in motor proteins densely packed in OHC plasma membrane, and ii) slow motility, shape changes in the millisecond to seconds range involving cytoskeletal reorganization. OHC bending is associated with electromotility, and result either from an asymmetric distribution of motor proteins in the lateral plasma membrane, or asymmetric electrical stimulation of those motor proteins (e.g., with an electrical field perpendicular to the long axis of the cells). Mechanical and chemical stimuli induce essentially slow motile responses, even though changes in the ionic conditions of the cells and/or their environment can also stimulate the plasma membrane-embedded motor proteins. Since OHC motile responses are an essential component of the cochlear amplifier, the qualitative and quantitative analysis of these motile responses at acoustic frequencies (roughly from 20 Hz to 20 kHz in humans) is a very important matter in the field of hearing research. The development of new imaging technology combining high-speed videocameras, LED-based illumination systems, and sophisticated image analysis software now provides the ability to perform reliable qualitative and quantitative studies of the motile response of isolated OHCs to an external alternating electrical field (EAEF). This is a simple and non-invasive technique

  4. Modulation of voltage-gated Ca2+ current in vestibular hair cells by nitric oxide.

    Science.gov (United States)

    Almanza, Angélica; Navarrete, Francisco; Vega, Rosario; Soto, Enrique

    2007-02-01

    The structural elements of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling pathway have been described in the vestibular peripheral system. However, the functions of NO in the vestibular endorgans are still not clear. We evaluated the action of NO on the Ca(2+) currents in hair cells isolated from the semicircular canal crista ampullaris of the rat (P14-P18) by using the whole cell and perforated-cell patch-clamp technique. The NO donors 3-morpholinosydnonimine (SIN-1), sodium nitroprusside (SNP), and (+/-)-(E)-4-ethyl-2-[(Z)-hydroxyimino]-5-nitro-3-hexen-1-yl-nicotinamide (NOR-4) inhibited the Ca(2+) current in hair cells in a voltage-independent manner. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) prevented the inhibitory effect of SNP on the Ca(2+) current. The selective inhibitor of the soluble form of the enzyme guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), also decreased the SNP-induced inhibition of the Ca(2+) current. The membrane-permeant cGMP analogue 8-Br-cGMP mimicked the SNP effect. KT-5823, a specific inhibitor of cGMP-dependent protein kinase (PGK), prevented the inhibition of the Ca(2+) current by SNP and 8-Br-cGMP. In the presence of N-ethylmaleimide (NEM), a sulfhydryl alkylating agent that prevents the S-nitrosylation reaction, the SNP effect on the Ca(2+) current was significantly diminished. These results demonstrated that NO inhibits in a voltage-independent manner the voltage-activated Ca(2+) current in rat vestibular hair cells by the activation of a cGMP-signaling pathway and through a direct action on the channel protein by a S-nitrosylation reaction. The inhibition of the Ca(2+) current by NO may contribute to the regulation of the intracellular Ca(2+) concentration and hair-cell synaptic transmission.

  5. Perspectives for the treatment of sensorineural hearing loss by cellular regeneration of the inner ear.

    Science.gov (United States)

    Almeida-Branco, Mario S; Cabrera, Sonia; Lopez-Escamez, Jose A

    2015-01-01

    Sensorineural hearing loss is a caused by the loss of the cochlear hair cells with the consequent deafferentation of spiral ganglion neurons. Humans do not show endogenous cellular regeneration in the inner ear and there is no exogenous therapy that allows the replacement of the damaged hair cells. Currently, treatment is based on the use of hearing aids and cochlear implants that present different outcomes, some difficulties in auditory discrimination and a limited useful life. More advanced technology is hindered by the functional capacity of the remaining spiral ganglion neurons. The latest advances with stem cell therapy and cellular reprogramming have developed several possibilities to induce endogenous regeneration or stem cell transplantation to replace damaged inner ear hair cells and restore hearing function. With further knowledge of the cellular and molecular biology of the inner ear and its embryonic development, it will be possible to use induced stem cells as in vitro models of disease and as replacement cellular therapy. Investigation in this area is focused on generating cellular therapy with clinical use for the treatment of profound sensorineural hearing loss. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  6. Local Mechanisms for Loud Sound-Enhanced Aminoglycoside Entry into Outer Hair Cells

    Directory of Open Access Journals (Sweden)

    Hongzhe eLi

    2015-04-01

    Full Text Available Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS and enhances uptake of aminoglycosides, like gentamicin, by cochlear outer hair cells (OHCs. Here, we explore mechanisms by which loud sound exposure and TTS could increase aminoglycoside uptake by OHCs that may underlie this form of ototoxic synergy.Mice were exposed to loud sound levels to induce TTS, and received fluorescently-tagged gentamicin (GTTR for 30 minutes prior to fixation. The degree of TTS was assessed by comparing auditory brainstem responses before and after loud sound exposure. The number of tip links, which gate the GTTR-permeant mechanoelectrical transducer (MET channels, was determined in OHC bundles, with or without exposure to loud sound, using scanning electron microscopy.We found wide-band noise (WBN levels that induce TTS also enhance OHC uptake of GTTR compared to OHCs in control cochleae. In cochlear regions with TTS, the increase in OHC uptake of GTTR was significantly greater than in adjacent pillar cells. In control mice, we identified stereociliary tip links at ~50% of potential positions in OHC bundles. However, the number of OHC tip links was significantly reduced in mice that received WBN at levels capable of inducing TTS.These data suggest that GTTR uptake by OHCs during TTS occurs by increased permeation of surviving, mechanically-gated MET channels, and/or non-MET aminoglycoside-permeant channels activated following loud sound exposure. Loss of tip links would hyperpolarize hair cells and potentially increase drug uptake via aminoglycoside-permeant channels expressed by hair cells. The effect of TTS on aminoglycoside-permeant channel kinetics will shed new light on the mechanisms of loud sound-enhanced aminoglycoside uptake, and consequently on ototoxic

  7. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    Science.gov (United States)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  8. Isolation, expansion and neural differentiation of stem cells from human plucked hair: a further step towards autologous nerve recovery.

    Science.gov (United States)

    Gho, Coen G; Schomann, Timo; de Groot, Simon C; Frijns, Johan H M; Rivolta, Marcelo N; Neumann, Martino H A; Huisman, Margriet A

    2016-10-01

    Stem cells from the adult hair follicle bulge can differentiate into neurons and glia, which is advantageous for the development of an autologous cell-based therapy for neurological diseases. Consequently, bulge stem cells from plucked hair may increase opportunities for personalized neuroregenerative therapy. Hairs were plucked from the scalps of healthy donors, and the bulges were cultured without prior tissue treatment. Shortly after outgrowth from the bulge, cellular protein expression was established immunohistochemically. The doubling time was calculated upon expansion, and the viability of expanded, cryopreserved cells was assessed after shear stress. The neuroglial differentiation potential was assessed from cryopreserved cells. Shortly after outgrowth, the cells were immunopositive for nestin, SLUG, AP-2α and SOX9, and negative for SOX10. Each bulge yielded approximately 1 × 10(4) cells after three passages. Doubling time was 3.3 (±1.5) days. Cellular viability did not differ significantly from control cells after shear stress. The cells expressed class III β-tubulin (TUBB3) and synapsin-1 after 3 weeks of neuronal differentiation. Glial differentiation yielded KROX20- and MPZ-immunopositive cells after 2 weeks. We demonstrated that human hair follicle bulge-derived stem cells can be cultivated easily, expanded efficiently and kept frozen until needed. After cryopreservation, the cells were viable and displayed both neuronal and glial differentiation potential.

  9. Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss

    Science.gov (United States)

    Rhee, Chung-Ku; He, Peijie; Jung, Jae Yun; Ahn, Jin-Chul; Chung, Phil-Sang; Lee, Min Young; Suh, Myung-Whan

    2013-12-01

    The primary cause of hearing loss includes damage to cochlear hair cells. Low-level laser therapy (LLLT) has become a popular treatment for damaged nervous systems. Based on the idea that cochlea hair cells and neural cells are from same developmental origin, the effect of LLLT on hearing loss in animal models is evaluated. Hearing loss animal models were established, and the animals were irradiated by 830-nm diode laser once a day for 10 days. Power density of the laser treatment was 900 mW/cm2, and the fluence was 162 to 194 J. The tympanic membrane was evaluated after LLLT. Thresholds of auditory brainstem responses were evaluated before treatment, after gentamicin, and after 10 days of LLLT. Quantitative scanning electron microscopic (SEM) observations were done by counting remaining hair cells. Tympanic membranes were intact at the end of the experiment. No adverse tissue reaction was found. On SEM images, LLLT significantly increased the number of hair cells in middle and basal turns. Hearing was significantly improved by laser irradiation. After LLLT treatment, both the hearing threshold and hair-cell count significantly improved.

  10. Titrated extract of Centella asiatica increases hair inductive property through inhibition of STAT signaling pathway in three-dimensional spheroid cultured human dermal papilla cells.

    Science.gov (United States)

    Choi, Yeong Min; An, Sungkwan; Lee, Junwoo; Lee, Jae Ho; Lee, Jae Nam; Kim, Young Sam; Ahn, Kyu Joong; An, In-Sook; Bae, Seunghee

    2017-12-01

    Dermal papilla (DP) is a pivotal part of hair follicle, and the smaller size of the DP is related with the hair loss. In this study, we investigated the effect of titrated extract of Centella asiatica (TECA) on hair growth inductive property on 3D spheroid cultured human DP cells (HDP cells). Significantly increased effect of TECA on cell viability was only shown in 3D sphered HPD cells, not in 2D cultured HDP cells. Also, TECA treatment increased the sphere size of HDP cells. The luciferase activity of STAT reporter genes and the expression of STAT-targeted genes, SOCS1 and SOCS3, were significantly decreased. Also, TECA treatment increased the expression of the hair growth-related signature genes in 3D sphered HDP cells. Furthermore, TECA led to downregulation of the level of phosphorylated STAT proteins in 3D sphered HDP cells. Overall, TECA activates the potential of hair inductive capacity in HDP cells.

  11. Hair keratin KRT81 is expressed in normal and breast cancer cells and contributes to their invasiveness.

    Science.gov (United States)

    Nanashima, Naoki; Horie, Kayo; Yamada, Toshiyuki; Shimizu, Takeshi; Tsuchida, Shigeki

    2017-05-01

    Keratins are fibrous proteins. Hair keratins constitute hard structures such as the hair and nails, and cytokeratins have been used as markers of breast carcinoma. However, the expression and function of full-size hair keratin genes have not been previously demonstrated in breast cancer. We investigated the expression of the hair keratin, KRT81, and its function in human breast cancer and normal mammary epithelial cells. Western blotting showed full size 55-kDa KRT81 expression in the human breast cancer cell lines, MCF7, SKBR3 and MDA-MB-231, normal human mammary epithelial cells (HMEC), and non-neoplastic cells (MCF10A). Reverse transcription-polymerase chain reaction revealed that the full size KRT81, including its 5' region is expressed in breast cells. Immunohistochemical and immunofluorescence analyses showed that KRT81 was located in the cytoplasm. To investigate the function of KRT81, we knocked down KRT81 by siRNA in MCF10A cells. Microarray analysis revealed that the expression of genes related to invasion such as matrix metallopeptidase (MMP)9 was decreased. In KRT81-knockdown MDA-MB231 cells, zymography revealed a decrease in MMP9 activity, while scratch and invasion assays revealed that KRT81-knockdown decreased cell migration and invasion abilities. This is the first study showing that full size KRT81 is expressed in normal breast epithelial cells and breast cancer cells. Moreover, our results indicate that KRT81 contributes to the migration and invasion of breast cancer cells.

  12. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis.

    Science.gov (United States)

    Ito, Mayumi; Liu, Yaping; Yang, Zaixin; Nguyen, Jane; Liang, Fan; Morris, Rebecca J; Cotsarelis, George

    2005-12-01

    The discovery of long-lived epithelial stem cells in the bulge region of the hair follicle led to the hypothesis that epidermal renewal and epidermal repair after wounding both depend on these cells. To determine whether bulge cells are necessary for epidermal renewal, here we have ablated these cells by targeting them with a suicide gene encoding herpes simplex virus thymidine kinase (HSV-TK) using a Keratin 1-15 (Krt1-15) promoter. We show that ablation leads to complete loss of hair follicles but survival of the epidermis. Through fate-mapping experiments, we find that stem cells in the hair follicle bulge do not normally contribute cells to the epidermis which is organized into epidermal proliferative units, as previously predicted. After epidermal injury, however, cells from the bulge are recruited into the epidermis and migrate in a linear manner toward the center of the wound, ultimately forming a marked radial pattern. Notably, although the bulge-derived cells acquire an epidermal phenotype, most are eliminated from the epidermis over several weeks, indicating that bulge stem cells respond rapidly to epidermal wounding by generating short-lived 'transient amplifying' cells responsible for acute wound repair. Our findings have implications for both gene therapy and developing treatments for wounds because it will be necessary to consider epidermal and hair follicle stem cells as distinct populations.

  13. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction.

    Science.gov (United States)

    Sultemeier, David R; Hoffman, Larry F

    2017-01-01

    Although the effects of aminoglycoside antibiotics on hair cells have been investigated for decades, their influences on the dendrites of primary afferent neurons have not been widely studied. This is undoubtedly due to the difficulty in disassociating pathology to dendritic processes from that resulting from loss of the presynaptic hair cell. This was overcome in the present investigation through development of a preparation using Chinchilla laniger that enabled direct perilymphatic infusion. Through this strategy we unmasked gentamicin's potential effects on afferent calyces. The pathophysiology of the vestibular neuroepithelia after post-administration durations of 0.5 through 6 months was assessed using single-neuron electrophysiology, immunohistochemistry, and confocal microscopy. Hair cell densities within cristae central zones (0.5-, 1-, 2-, and 6-months) and utricle peri- and extrastriola (6-months) regions were determined, and damage to calretinin-immunoreactive calyces was quantified. Gentamicin-induced hair cell loss exhibited a profile that reflected elimination of a most-sensitive group by 0.5-months post-administration (18.2%), followed by loss of a second group (20.6%) over the subsequent 5.5 months. The total hair cell loss with this gentamicin dose (approximately 38.8%) was less than the estimated fraction of type I hair cells in the chinchilla's crista central zone (approximately 60%), indicating that viable type I hair cells remained. Extensive lesions to afferent calyces were observed at 0.5-months, though stimulus-evoked modulation was intact at this post-administration time. Widespread compromise to calyx morphology and severe attenuation of stimulus-evoked afferent discharge modulation was found at 1 month post-administration, a condition that persisted in preparations examined through the 6-month post-administration interval. Spontaneous discharge was robust at all post-administration intervals. All calretinin-positive calyces had retracted

  14. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction

    Science.gov (United States)

    Sultemeier, David R.; Hoffman, Larry F.

    2017-01-01

    Although the effects of aminoglycoside antibiotics on hair cells have been investigated for decades, their influences on the dendrites of primary afferent neurons have not been widely studied. This is undoubtedly due to the difficulty in disassociating pathology to dendritic processes from that resulting from loss of the presynaptic hair cell. This was overcome in the present investigation through development of a preparation using Chinchilla laniger that enabled direct perilymphatic infusion. Through this strategy we unmasked gentamicin’s potential effects on afferent calyces. The pathophysiology of the vestibular neuroepithelia after post-administration durations of 0.5 through 6 months was assessed using single-neuron electrophysiology, immunohistochemistry, and confocal microscopy. Hair cell densities within cristae central zones (0.5-, 1-, 2-, and 6-months) and utricle peri- and extrastriola (6-months) regions were determined, and damage to calretinin-immunoreactive calyces was quantified. Gentamicin-induced hair cell loss exhibited a profile that reflected elimination of a most-sensitive group by 0.5-months post-administration (18.2%), followed by loss of a second group (20.6%) over the subsequent 5.5 months. The total hair cell loss with this gentamicin dose (approximately 38.8%) was less than the estimated fraction of type I hair cells in the chinchilla’s crista central zone (approximately 60%), indicating that viable type I hair cells remained. Extensive lesions to afferent calyces were observed at 0.5-months, though stimulus-evoked modulation was intact at this post-administration time. Widespread compromise to calyx morphology and severe attenuation of stimulus-evoked afferent discharge modulation was found at 1 month post-administration, a condition that persisted in preparations examined through the 6-month post-administration interval. Spontaneous discharge was robust at all post-administration intervals. All calretinin-positive calyces had

  15. The potential and electric field in the cochlear outer hair cell membrane.

    Science.gov (United States)

    Harland, Ben; Lee, Wen-han; Brownell, William E; Sun, Sean X; Spector, Alexander A

    2015-05-01

    Outer hair cell electromechanics, critically important to mammalian active hearing, is driven by the cell membrane potential. The membrane protein prestin is a crucial component of the active outer hair cell's motor. The focus of the paper is the analysis of the local membrane potential and electric field resulting from the interaction of electric charges involved. Here the relevant charges are the ions inside and outside the cell, lipid bilayer charges, and prestin-associated charges (mobile-transferred by the protein under the action of the applied field, and stationary-relatively unmoved by the field). The electric potentials across and along the membrane are computed for the case of an applied DC-field. The local amplitudes and phases of the potential under different frequencies are analyzed for the case of a DC + AC-field. We found that the effect of the system of charges alters the electric potential and internal field, which deviate significantly from their traditional linear and constant distributions. Under DC + AC conditions, the strong frequency dependence of the prestin mobile charge has a relatively small effect on the amplitude and phase of the resulting potential. The obtained results can help in a better understanding and experimental verification of the mechanism of prestin performance.

  16. Intravital imaging of hair-cell development and regeneration in the zebrafish

    Directory of Open Access Journals (Sweden)

    Hernan eLopez-Schier

    2013-10-01

    Full Text Available Direct videomicroscopic visualization of organ formation and regeneration in toto is a powerful strategy to study cellular processes that often cannot be replicated in vitro. Intravital imaging aims at quantifying changes in tissue architecture or subcellular organization over time during organ development, regeneration or degeneration. A general feature of this approach is its reliance on the optical isolation of defined cell types in the whole animals by transgenic expression of fluorescent markers. Here we describe a simple and robust method to analyze sensory hair-cell development and regeneration in the zebrafish lateral line by high-resolution intravital imaging using laser-scanning confocal microscopy (LSCM and selective plane illumination microscopy (SPIM. The main advantage of studying hair-cell regeneration in the lateral line is that it occurs throughout the life of the animal, which allows its study in the most natural context. We detail protocols to achieve continuous videomicroscopy for up to 68 hours, enabling direct observation of cellular behavior, which can provide a sensitive assay for the quantitative classification of cellular phenotypes and cell-lineage reconstruction. Modifications to this protocol should facilitate pharmacogenetic assays to identify or validate otoprotective or reparative drugs for future clinical strategies aimed at preserving aural function in humans.

  17. [Effects of erlong zuoci pills and its effective disassembled prescriptions on gentamycin induced hair cell apoptosis].

    Science.gov (United States)

    Wang, Jing; Guo, Chunrong; Dong, Yang; Jin, Guoqin; Guo, Ruixin; Han, Zhifen; Cai, Xichen; Shi, Jianrong

    2010-09-01

    To investigate the effects of erlong zuoci (ELZC) pills and its disassembled prescriptions (Shudi-huang-Zexie group and Zexie group) on the enzymatic activity and protein expression changes of the key apoptosis molecules in the gentamycin injured hair cells. The model of gentamycin induced ototoxicity in mice cochlear primary cultures was copied. Cochlear organotypic cultures of postnatal day 3-5 (P3-P5) mice were treated with gentamycin alone or in combination with ELZC pills, Shudihuang-Zexie group or Zexie group respectively. The enzymatic activity of Caspase-9 and Caspase-3 was determined by means of fluorescence staining in situ. The protein expression of Bcl-2 and Bax in the hair cell area was examined by immunofluorescence in normal and treated specimens. Average optical density analysis indicated that, compared to the normal group, 0.03 mmol x L(-1) gentamycin could significantly activate Caspase-9 and Caspase-3, downregulate the ratio of Bcl-2 and Bax protein expression. Compared to the gentamycin model group, ELZC pills significantly inhibited the enzymatic activity of Caspase-9 and upregulated the ratio of Bcl-2 and Bax protein expression, showing inhibition trend toward the enzymatic activity of Caspase-3. Both Shudihuang-Zexie group and Zexie group could effectively inhibit the enzymatic activity of Caspase-9 and Caspase-3, upregulate the ratio of Bcl-2 and Bax protein expression. ELZC pills, Shudihuang-Zexie group and Zexie group can effectively protect hair cells from gentamycin by correcting the abnormal changes of the mitochondrion-dependent signal transduction pathway.

  18. Transmitter release from cochlear hair cells is phase-locked to cyclic stimuli of different intensities and frequencies

    Science.gov (United States)

    2013-01-01

    The auditory system processes time and intensity through separate brainstem pathways to derive spatial location as well as other salient features of sound. The independent coding of time and intensity begins in the cochlea where afferent neurons can fire action potentials at constant phase throughout a wide range of stimulus intensities. We have investigated time and intensity coding by simultaneous pre- and post-synaptic recording at the hair cell-afferent synapse from rats. Trains of depolarizing steps to the hair cell were used to elicit postsynaptic currents that occurred at constant phase, for a range of membrane potentials over which release probability varied significantly. To probe the underlying mechanisms, release was examined using single steps to various command voltages. As expected for vesicular release, first synaptic events occurred earlier as presynaptic calcium influx grew larger. However, synaptic depression produced smaller responses with longer first latencies. Thus, during repetitive hair cell stimulation, as the hair cell is more strongly depolarized, increased calcium channel gating hurries transmitter release, but the resulting vesicular depletion produces a compensatory slowing. Quantitative simulation of ribbon function shows that these two factors varied reciprocally with hair cell depolarization (stimulus intensity) to produce constant synaptic phase. Finally, we propose that the observed rapid vesicle replenishment would help maintain the vesicle pool, which in turn would equilibrate with the stimulus intensity (and therefore, the number of open Ca2+ channels), so for trains of different levels the average phase will be conserved. PMID:23175853

  19. [Effect of JNK signal transduction pathway in intense noise-induced apoptosis of vestibular hair cells in guinea pigs].

    Science.gov (United States)

    Wei, Ming; Wang, Wei-tao; Zhang, Tao; Tu, Ling; Liang, Ying-hong; Liu, Jia; Zhang, Jun-hua; Gong, Yan-jie

    2012-10-01

    To investigate the mechanism of intense noise-induced apoptosis of vestibular hair cells in guinea pigs and the effect of phosphorylated c-Jun N-terminal kinase (JNK) signal transduction pathway in intense noise-induced apoptosis of vestibular hair cells. Thirty-two guinea pigs were randomly and equally divided into 1, 5, and 15 d experimental groups and control group. The guinea pigs in the experimental groups were exposed to 4 kHz narrow-band noise at 120 dB SPL for 4 h and then subjected to measurement of auditory brainstem response at 1, 5, or 15 d after noise exposure. In each group, four guinea pigs were used to prepare paraffin sections of vestibular hair cells, and the rest for extraction of total protein from vestibular hair cells. The apoptosis of vestibular hair cells was detected by terminal deoxynucleotidyl transferase (TdT)-mediated d-UTP nick-end labeling (TUNEL). The expression levels of p-JNK and pc-Jun were measured by immunohistochemistry and Western blot. TUNEL-positive cells were found in the vestibular hair cells in the experimental groups, most in the 1 d experimental group and least in the 15 d experimental group, but no positive cells were found in the control group. The immunohistochemical results showed that p-JNK and pc-Jun were detected in the cell nuclei in the experimental groups, but no p-JNK- and pc-Jun-positive cells were found in the control group. The Western blot showed that p-JNK and pc-Jun were increased and activated quickly at 1d after noise exposure, reached the peak levels at 5 d after noise exposure, and were then decreased gradually, but they were still at relatively high levels at 15 d after noise exposure. Intense noise can cause injury to vestibular hair cells by inducing cell apoptosis, and p-JNK marks the activation of JNK signal transduction pathway, suggesting that JNK signal transduction pathway plays an important role in intense noise-induced apoptosis of vestibular hair cells in guinea pigs.

  20. Body Hair

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... spreads up in a V shape over time. Body hair is normal, and some people think it looks ...

  1. [Gentamicin on inner hair cells ribbon synapses CaV1.3 calcium ion channel protein expression].

    Science.gov (United States)

    Sun, Jianhua; Wang, Xuefeng; Liu, Ke

    2014-02-01

    To learn the influence the gentamycin on C57BL/6J mice hear and cochlear hair cell ribbon synapses CaV1.3 calcium protein amount. To explore the relationship between hear loss and its dosage correlation change and significance. The fixed amino glucoside to C57BL/6J mice was used to make abdominal cavity injection mold every day. The auditory brain-stem response ABR was used to measure the hear of mice in 7th, 14th, 28th after the injection. Immunofluorescence method was used to observe cochlear basement membrane of hair ribbon synapse CaV1.3 calcium channel proteins in the distribution and expression. Inner hair cells synaptic membrane was immune fluorescent tags with CtbP2 and CaV1. 3. With the growth of the injected drugs, ABR threshold increased,but all the hair cells and shape had no obvious change. However the amount of hair rib bon synapse CaV1.3 calcium ion channel proteins in the expression had significant differences (P < 0.01). CaV1.3 calcium ion channel proteins increased slightly lower than normal at 7th day, significantly decreased at 14th day, had increased, increased quantity compare with 14th day, but at 28th day after intraperitoneal injection of gentamicin. The increasing,decreasing and increasing trend of cochlear hair cells CaV1.3 proteins in the environment of amino glucoside drug toxicity showed that the increase of hair ribbon synapse CaV1.3 proteins may have a compensatory effect on the drug toxicity. With the increase of the drug toxicity effect, this kind of decompensated function could be the listening decline, which may be one of the mechanism of damage to hearing.

  2. Airplane Ear

    Science.gov (United States)

    ... an imbalance in the air pressure in the middle ear and air pressure in the environment prevents your eardrum (tympanic membrane) from vibrating as ... eustachian tube. One end is connected to the middle ear. The other end has a ... in the environment changes rapidly, and your eustachian tube often doesn' ...

  3. Gentamicin rapidly inhibits mitochondrial metabolism in high-frequency cochlear outer hair cells.

    Directory of Open Access Journals (Sweden)

    Heather C Jensen-Smith

    Full Text Available Aminoglycosides (AG, including gentamicin (GM, are the most frequently used antibiotics in the world and are proposed to cause irreversible cochlear damage and hearing loss (HL in 1/4 of the patients receiving these life-saving drugs. Akin to the results of AG ototoxicity studies, high-frequency, basal turn outer hair cells (OHCs preferentially succumb to multiple HL pathologies while inner hair cells (IHCs are much more resilient. To determine if endogenous differences in IHC and OHC mitochondrial metabolism dictate differential sensitivities to AG-induced HL, IHC- and OHC-specific changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH fluorescence during acute (1 h GM treatment were compared. GM-mediated decreases in NADH fluorescence and succinate dehydrogenase activity were observed shortly after GM application. High-frequency basal turn OHCs were found to be metabolically biased to rapidly respond to alterations in their microenvironment including GM and elevated glucose exposures. These metabolic biases may predispose high-frequency OHCs to preferentially produce cell-damaging reactive oxygen species during traumatic challenge. Noise-induced and age-related HL pathologies share key characteristics with AG ototoxicity, including preferential OHC loss and reactive oxygen species production. Data from this report highlight the need to address the role of mitochondrial metabolism in regulating AG ototoxicity and the need to illuminate how fundamental differences in IHC and OHC metabolism may dictate differences in HC fate during multiple HL pathologies.

  4. Cadherin-23 may be dynamic in hair bundles of the model sea anemone Nematostella vectensis.

    Directory of Open Access Journals (Sweden)

    Pei-Ciao Tang

    Full Text Available Cadherin 23 (CDH23, a component of tip links in hair cells of vertebrate animals, is essential to mechanotransduction by hair cells in the inner ear. A homolog of CDH23 occurs in hair bundles of sea anemones. Anemone hair bundles are located on the tentacles where they detect the swimming movements of nearby prey. The anemone CDH23 is predicted to be a large polypeptide featuring a short exoplasmic C-terminal domain that is unique to sea anemones. Experimentally masking this domain with antibodies or mimicking this domain with free peptide rapidly disrupts mechanotransduction and morphology of anemone hair bundles. The loss of normal morphology is accompanied, or followed by a decrease in F-actin in stereocilia of the hair bundles. These effects were observed at very low concentrations of the reagents, 0.1-10 nM, and within minutes of exposure. The results presented herein suggest that: (1 the interaction between CDH23 and molecular partners on stereocilia of hair bundles is dynamic and; (2 the interaction is crucial for normal mechanotransduction and morphology of hair bundles.

  5. Cadherin-23 may be dynamic in hair bundles of the model sea anemone Nematostella vectensis.

    Science.gov (United States)

    Tang, Pei-Ciao; Watson, Glen M

    2014-01-01

    Cadherin 23 (CDH23), a component of tip links in hair cells of vertebrate animals, is essential to mechanotransduction by hair cells in the inner ear. A homolog of CDH23 occurs in hair bundles of sea anemones. Anemone hair bundles are located on the tentacles where they detect the swimming movements of nearby prey. The anemone CDH23 is predicted to be a large polypeptide featuring a short exoplasmic C-terminal domain that is unique to sea anemones. Experimentally masking this domain with antibodies or mimicking this domain with free peptide rapidly disrupts mechanotransduction and morphology of anemone hair bundles. The loss of normal morphology is accompanied, or followed by a decrease in F-actin in stereocilia of the hair bundles. These effects were observed at very low concentrations of the reagents, 0.1-10 nM, and within minutes of exposure. The results presented herein suggest that: (1) the interaction between CDH23 and molecular partners on stereocilia of hair bundles is dynamic and; (2) the interaction is crucial for normal mechanotransduction and morphology of hair bundles.

  6. The Competition between the Noise and Shear Motion Sensitivity of Cochlear Inner Hair Cell Stereocilia.

    Science.gov (United States)

    Sasmal, Aritra; Grosh, Karl

    2018-01-23

    Acoustical excitation of the organ of Corti induces radial fluid flow in the subtectorial space (STS) that excites the hair bundles (HBs) of the sensory inner hair cell of the mammalian cochlea. The inner hair cell HBs are bathed in endolymphatic fluid filling a thin gap in the STS between the tectorial membrane and the reticular lamina. According to the fluctuation dissipation theorem, the fluid viscosity gives rise to mechanical fluctuations that are transduced into current noise. Conversely, the stochastic fluctuations of the mechanically gated channels of the HBs also induce dissipation. We develop an analytic model of the STS complex in a cross section of the gerbil organ of Corti. We predict that the dominant noise at the apex is due to the channel stochasticity whereas viscous effects dominate at the base. The net root mean square fluctuation of the HB motion is estimated to be at least 1.18 nm at the base and 2.72 nm at the apex. By varying the HB height for a fixed STS gap, we find that taller HBs are better sensors with lower thresholds. An integrated active HB model is shown to reduce the hydrodynamic resistance through a cycle-by-cycle power addition through adaptation, reducing the thresholds of hearing, hinting at one potential role for HB activity in mammalian hearing. We determine that a Couette flow approximation in the STS underestimates the dissipation and that modeling the entire STS complex is necessary to correctly predict the low-frequency dissipation in the cochlea. Finally, the difference in the noise budget at the base and the apex of the cochlea indicate that a sensing modality other than the shear motion of the TM that may be used to achieve low-noise acoustic sensing at the apex. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA, a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo.Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP. VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX, a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl(2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice.Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth.

  8. Sensitivity and directionality of lipid bilayer mechanotransduction studied using a revised, highly durable membrane-based hair cell sensor

    Science.gov (United States)

    Tamaddoni, Nima; Freeman, Eric C.; Sarles, Stephen A.

    2015-06-01

    A bioinspired, membrane-based hair cell sensor consists of a planar lipid bilayer formed between two lipid-coated water droplets that connect to an artificial hair. This assembly enables motion of the hair caused by mechanical stimuli to vibrate the bilayer and produce a capacitive current. In this work, the mechanoelectrical transduction mechanism and sensing performance is experimentally characterized for a more-durable, revised hair cell embodiment that includes a cantilevered hair rooted firmly in the surrounding solid substrate. Specifically, this study demonstrates that the revised membrane-based hair cell sensor produces higher time rates of change in capacitance (0.8-6.0 nF s-1) in response to airflow across the hair compared to the original sensor (45-60 pF s-1) that did not feature a cantilevered hair. The 10-fold to 100-fold increase in the time rate change of capacitance corresponds to greater membrane bending and, thus, higher sensing currents. Membranes in the revised sensor exhibit changes in area due to bending on the order of 0.2-2.0%, versus 0.02% for the original sensor. Experiments also reveal that the bilayer displays highest sensitivity to mechanical perturbations normal to the plane of the bilayer, a membrane can transduce hair motion at frequencies below the hair’s characteristic frequency, and bilayers formed between polymerized hydrogel volumes exhibit a higher sensing currents than those formed between liquid aqueous volumes. Finally, measurements of sensitivity (5-35 pA m-1 s-1) and minimum (4.0-0.6 m s-1) and maximum (28-13 m s-1) sensing thresholds to airflow are performed for the first time, and we observe maximum electrical power (˜65 pW) in the membrane occurs for combinations of slower airflow and higher voltage. These results highlight that along with the dimensions of the hair and the compositions of the aqueous volumes, sensing performance can be tuned with applied voltage.

  9. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it ... If you have a bad reaction to hair dyes and relaxers, you should: Stop using the product. ...

  10. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    Science.gov (United States)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  11. Alternative Splice Forms Influence Functions of Whirlin in Mechanosensory Hair Cell Stereocilia

    Directory of Open Access Journals (Sweden)

    Seham Ebrahim

    2016-05-01

    Full Text Available WHRN (DFNB31 mutations cause diverse hearing disorders: profound deafness (DFNB31 or variable hearing loss in Usher syndrome type II. The known role of WHRN in stereocilia elongation does not explain these different pathophysiologies. Using spontaneous and targeted Whrn mutants, we show that the major long (WHRN-L and short (WHRN-S isoforms of WHRN have distinct localizations within stereocilia and also across hair cell types. Lack of both isoforms causes abnormally short stereocilia and profound deafness and vestibular dysfunction. WHRN-S expression, however, is sufficient to maintain stereocilia bundle morphology and function in a subset of hair cells, resulting in some auditory response and no overt vestibular dysfunction. WHRN-S interacts with EPS8, and both are required at stereocilia tips for normal length regulation. WHRN-L localizes midway along the shorter stereocilia, at the level of inter-stereociliary links. We propose that differential isoform expression underlies the variable auditory and vestibular phenotypes associated with WHRN mutations.

  12. Expression of EFR3A in the mouse cochlea during degeneration of spiral ganglion following hair cell loss.

    Directory of Open Access Journals (Sweden)

    Chen Nie

    Full Text Available Retrograde degeneration of spiral ganglion cells in the cochlea following hair cell loss is similar to dying back in pathology. The EFR3A gene has recently been discovered to be involved in the pathogenesis of dying back. The relationship of EFR3A and spiral ganglion degeneration, however, was rarely investigated. In this study, we destroyed the hair cells of the mouse cochlea by co-administration of kanamycin and furosemide and then investigated the EFR3A expression during the induced spiral ganglion cell degeneration. Our results revealed that co-administration of kanamycin and furosemide quickly induced hair cell loss in the C57BL/6J mice and then resulted in progressive degeneration of the spiral ganglion beginning at day 5 following drug administration. The number of the spiral ganglion cells began to decrease at day 15. The expression of EFR3A increased remarkably in the spiral ganglion at day 5 and then decreased to near normal level within the next 10 days. Our study suggested that the change of EFR3A expression in the spiral ganglion was coincident with the time of the spiral ganglion degeneration, which implied that high expression of EFR3A may be important to prompt initiation of spiral ganglion degeneration following hair cell loss.

  13. Constitutive transgene expression of Stem Cell Antigen-1 in the hair follicle alters the sensitivity to tumor formation and progression

    Directory of Open Access Journals (Sweden)

    Rikke Christensen

    2017-08-01

    Full Text Available The cell surface protein Stem Cell Antigen-1 (Sca-1 marks stem or progenitor cells in several murine tissues and is normally upregulated during cancer development. Although the specific function of Sca-1 remains unknown, Sca-1 seems to play a role in proliferation, differentiation and cell migration in a number of tissues. In the skin epithelium, Sca-1 is highly expressed in the interfollicular epidermis but is absent in most compartments of the hair follicle; however, the function of Sca-1 in the skin has not been investigated. To explore the role of Sca-1 in normal and malignant skin development we generated transgenic mice that express Sca-1 in the hair follicle stem cells that are normally Sca-1 negative. Development of hair follicles and interfollicular epidermis appeared normal in Sca-1 mutant mice; however, follicular induction of Sca-1 expression in bulge region and isthmus stem cells reduced the overall yield of papillomas in a chemical carcinogenesis protocol. Despite that fewer papillomas developed in transgenic mice a higher proportion of the papillomas underwent malignant conversion. These findings suggest that overexpression of Sca-1 in the hair follicle stem cells contributes at different stages of tumour development. In early stages, overexpression of Sca-1 decreases tumour formation while at later stages overexpression of Sca-1 seems to drive tumours towards malignant progression.

  14. Amiloride causes changes in the mechanical properties of hair cell bundles in the fish lateral line similar to those induced by dihydrostreptomycin

    NARCIS (Netherlands)

    Wiersinga-Post, JEC; van Netten, SM

    1998-01-01

    Amiloride is a known blocker of the mechano-electrical transduction current in sensory hair cells. Measurements of cupular motion in the lateral line organ of fish now show that amiloride concurrently changes the micromechanical properties of the hair cell bundles. The effects of amiloride on the

  15. Transduction without Tip Links in Cochlear Hair Cells Is Mediated by Ion Channels with Permeation Properties Distinct from Those of the Mechano-Electrical Transducer Channel

    NARCIS (Netherlands)

    Marcotti, Walter; Corns, Laura F.; Desmonds, Terri; Kirkwood, Nerissa K.; Richardson, Guy P.; Kros, Corne J.

    2014-01-01

    Tip links between adjacent stereocilia are believed to gate mechano-electrical transducer (MET) channels and mediate the electrical responses of sensory hair cells. We found that mouse auditory hair cells that lack tip links due to genetic mutations or exposure to the Ca2+ chelator BAPTA can,

  16. Characteristics of laser-induced shock wave injury to the inner ear of rats.

    Science.gov (United States)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  17. Effects of Human Adipose-Derived Stem Cells on the Survival of Rabbit Ear Composite Grafts

    Directory of Open Access Journals (Sweden)

    Chae Min Kim

    2017-09-01

    Full Text Available Background Composite grafts are frequently used for facial reconstruction. However, the unpredictability of the results and difficulties with large defects are disadvantages. Adipose-derived stem cells (ADSCs express several cytokines, and increase the survival of random flaps and fat grafts owing to their angiogenic potential. Methods This study investigated composite graft survival after ADSC injection. Circular chondrocutaneous composite tissues, 2 cm in diameter, from 15 New Zealand white rabbits were used. Thirty ears were randomly divided into 3 groups. In the experimental groups (1 and 2, ADSCs were subcutaneously injected 7 days and immediately before the operation, respectively. Similarly, phosphate-buffered saline was injected in the control group just before surgery in the same manner as in group 2. In all groups, chondrocutaneous composite tissue was elevated, rotated 90 degrees, and repaired in its original position. Skin flow was assessed using laser Doppler 1, 3, 6, 9, and 12 days after surgery. At 1 and 12 days after surgery, the viable area was assessed using digital photography; the rabbits were euthanized, and immunohistochemical staining for CD31 was performed to assess neovascularization. Results The survival of composite grafts increased significantly with the injection of ADSCs (P<0.05. ADSC injection significantly improved neovascularization based on anti-CD31 immunohistochemical analysis and vascular endothelial growth factor expression (P<0.05 in both group 1 and group 2 compared to the control group. No statistically significant differences in graft survival, anti-CD31 neovascularization, or microcirculation were found between groups 1 and 2. Conclusions Treatment with ADSCs improved the composite graft survival, as confirmed by the survival area and histological evaluation. The differences according to the injection timing were not significant.

  18. Morphogenetic Mechanisms in the Cyclic Regeneration of Hair Follicles and Deer Antlers from Stem Cells

    Directory of Open Access Journals (Sweden)

    Chunyi Li

    2013-01-01

    Full Text Available We have made comparisons between hair follicles (HFs and antler units (AUs—two seemingly unrelated mammalian organs. HFs are tiny and concealed within skin, whereas AUs are gigantic and grown externally for visual display. However, these two organs share some striking similarities. Both consist of permanent and cyclic/temporary components and undergo stem-cell-based organogenesis and cyclic regeneration. Stem cells of both organs reside in the permanent part and the growth centres are located in the temporary part of each respective organ. Organogenesis and regeneration of both organs depend on epithelial-mesenchymal interactions. Establishment of these interactions requires stem cells and reactive/niche cells (dermal papilla cells for HFs and epidermal cells for AUs to be juxtaposed, which is achieved through destruction of the cyclic part to bring the reactive cells into close proximity to the respective stem cell niche. Developments of HFs and AUs are regulated by similar endocrine (particularly testosterone and paracrine (particularly IGF1 factors. Interestingly, these two organs come to interplay during antlerogenesis. In conclusion, we believe that investigators from the fields of both HF and AU biology could greatly benefit from a comprehensive comparison between these two organs.

  19. Non-uniform distribution of outer hair cell transmembrane potential induced by extracellular electric field.

    Science.gov (United States)

    Ramamoorthy, Sripriya; Wilson, Teresa M; Wu, Tao; Nuttall, Alfred L

    2013-12-17

    Intracochlear electric fields arising out of sound-induced receptor currents, silent currents, or electrical current injected into the cochlea induce transmembrane potential along the outer hair cell (OHC) but its distribution along the cells is unknown. In this study, we investigated the distribution of OHC transmembrane potential induced along the cell perimeter and its sensitivity to the direction of the extracellular electric field (EEF) on isolated OHCs at a low frequency using the fast voltage-sensitive dye ANNINE-6plus. We calibrated the potentiometric sensitivity of the dye by applying known voltage steps to cells by simultaneous whole-cell voltage clamp. The OHC transmembrane potential induced by the EEF is shown to be highly nonuniform along the cell perimeter and strongly dependent on the direction of the electrical field. Unlike in many other cells, the EEF induces a field-direction-dependent intracellular potential in the cylindrical OHC. We predict that without this induced intracellular potential, EEF would not generate somatic electromotility in OHCs. In conjunction with the known heterogeneity of OHC membrane microdomains, voltage-gated ion channels, charge, and capacitance, the EEF-induced nonuniform transmembrane potential measured in this study suggests that the EEF would impact the cochlear amplification and electropermeability of molecules across the cell. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Cauliflower Ear

    Science.gov (United States)

    ... way to prevent cauliflower ear. Wearing the right headgear when playing sports — especially contact sports — is a ... any sport where helmets or other forms of headgear are recommended or required (like football, baseball, hockey, ...

  1. Ear examination

    Science.gov (United States)

    ... to the side, or the child's head may rest against an adult's chest. Older children and adults may sit with the head tilted toward the shoulder opposite the ear being examined. The provider will ...

  2. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Holly A.; Nguyen, Lynn Y. [Bioengineering, University of Utah, Salt Lake City, Utah (United States); Tran, Vy M.; Arungundram, Sailaja; Kalita, Mausam [Medicinal Chemistry, University of Utah, Salt Lake City, Utah (United States); Kuberan, Balagurunathan [Medicinal Chemistry, University of Utah, Salt Lake City, Utah (United States); Neuroscience Program, University of Utah, Salt Lake City, Utah (United States); Rabbitt, Richard D. [Bioengineering, University of Utah, Salt Lake City, Utah (United States); Neuroscience Program, University of Utah, Salt Lake City, Utah (United States); Otolaryngology, University of Utah, Salt Lake City, Utah (United States); Marine Biological Laboratory, Woods Hole, Massachusetts (United States)

    2015-12-31

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  3. Combover/CG10732, a novel PCP effector for Drosophila wing hair formation.

    Directory of Open Access Journals (Sweden)

    Jeremy K Fagan

    Full Text Available The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP, the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh and Rho Kinase (Rok are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC, similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh.

  4. Combover/CG10732, a novel PCP effector for Drosophila wing hair formation.

    Science.gov (United States)

    Fagan, Jeremy K; Dollar, Gretchen; Lu, Qiuheng; Barnett, Austen; Pechuan Jorge, Joaquin; Schlosser, Andreas; Pfleger, Cathie; Adler, Paul; Jenny, Andreas

    2014-01-01

    The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP), the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh) and Rho Kinase (Rok) are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb)/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC), similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh.

  5. Gene Expression in Hair Follicle Dermal Papilla Cells after Treatment with Stanozolol

    Directory of Open Access Journals (Sweden)

    M. Reiter

    2009-01-01

    Full Text Available Doping with anabolic agents is a topic in sports where strength is crucial, e.g. sprinting, weight lifting and many more. Testosterone and its functional analogs are the drugs of choice taken as pills, creams, tape or injections to increase muscle mass and body performance, and to reduce body fat. Stanozolol (17β-hydroxy-17α-methyl-5α-androst- 2-eno[3,2c]pyrazol is a testosterone analogue with the same anabolic effect like testosterone but its ring structure makes it possible to take it orally. Therefore, stanozolol is one of the most frequently used anabolic steroids. Common verification methods for anabolic drugs exist, identifying the chemicals in tissues, like hair or blood samples. The idea of this feasibility study was to search for specific gene expression regulations induced by stanozolol to identify the possible influence of the synthetically hormone on different metabolic pathways. Finding biomarkers for anabolic drugs could be supportive of the existing methods and an additional proof for illegal drug abuse. In two separate cell cultures, human HFDPC (hair follicle dermal papilla cells from a female and a male donor were treated with stanozolol. In the female cell culture treatment concentrations of 0 nM (control, 1 nM, 10 nM and 100 nM were chosen. Cells were taken 0 h, 6 h, 24 h and 48 h after stimulation and totalRNA was extracted. Learning from the results of the pilot experiment, the male cell culture was treated in 10 nM and 100 nM concentrations and taken after 0 h, 6 h, 24 h and 72 h. Using quantitative real-time RT-PCR expression of characteristics of different target genes were analysed. Totally 13 genes were selected according to their functionality by screening the actual literature and composed to functional groups: factors of apoptosis regulation were Fas Ligand (FasL, its receptor (FasR, Caspase 8 and Bcl-2. Androgen receptor (AR and both estrogen receptors (ERα, ERβ were summarized in the steroid receptor group

  6. Gene expression in hair follicle dermal papilla cells after treatment with stanozolol.

    Science.gov (United States)

    Reiter, M; Pfaffl, M W; Schönfelder, M; Meyer, H H D

    2008-12-23

    Doping with anabolic agents is a topic in sports where strength is crucial, e.g. sprinting, weight lifting and many more. Testosterone and its functional analogs are the drugs of choice taken as pills, creams, tape or injections to increase muscle mass and body performance, and to reduce body fat. Stanozolol (17beta-hydroxy-17alpha-methyl-5alpha-androst-2-eno[3,2c]pyrazol) is a testosterone analogue with the same anabolic effect like testosterone but its ring structure makes it possible to take it orally. Therefore, stanozolol is one of the most frequently used anabolic steroids.Common verification methods for anabolic drugs exist, identifying the chemicals in tissues, like hair or blood samples. The idea of this feasibility study was to search for specific gene expression regulations induced by stanozolol to identify the possible influence of the synthetically hormone on different metabolic pathways. Finding biomarkers for anabolic drugs could be supportive of the existing methods and an additional proof for illegal drug abuse.In two separate cell cultures, human HFDPC (hair follicle dermal papilla cells) from a female and a male donor were treated with stanozolol. In the female cell culture treatment concentrations of 0 nM (control), 1 nM, 10 nM and 100 nM were chosen. Cells were taken 0 h, 6 h, 24 h and 48 h after stimulation and totalRNA was extracted. Learning from the results of the pilot experiment, the male cell culture was treated in 10 nM and 100 nM concentrations and taken after 0 h, 6 h, 24 h and 72 h. Using quantitative real-time RT-PCR expression of characteristics of different target genes were analysed.Totally 13 genes were selected according to their functionality by screening the actual literature and composed to functional groups: factors of apoptosis regulation were Fas Ligand (FasL), its receptor (FasR), Caspase 8 and Bcl-2. Androgen receptor (AR) and both estrogen receptors (ERalpha, ERbeta) were summarized in the steroid receptor group. The

  7. Argon protects hypoxia-, cisplatin- and gentamycin-exposed hair cells in the newborn rat's organ of Corti.

    Science.gov (United States)

    Yarin, Yury M; Amarjargal, Nyamaa; Fuchs, Julia; Haupt, Heidemarie; Mazurek, Birgit; Morozova, Svetlana V; Gross, Johann

    2005-03-01

    During the last few years, an important protective effect of the noble gas xenon against neuronal hypoxic damage was observed. However, argon (Ar), a gas from the same chemical group, but less expensive and without anesthetic effect at normobaric pressure, has not been studied in terms of possible biological effects on cell protection. Ar was tested for its ability to protect organotypic cultures of the organ of Corti from 3-5 day old rats against hypoxia, cisplatin, and gentamycin toxicity. Cultures were exposed to nitrogen hypoxia (5% CO2, 95% N2), Ar hypoxia (5% CO2, 95% Ar) or normoxia for 30 h. Ar protected the hair cells from hypoxia-induced damage by about 25%. Ar-oxygen (O2) mixtures (21% O2, 5% CO2, 74% Ar) had no effect on the hair cell survival. Cisplatin (7.5-25 microM) and gentamycin (5-40 microM) exposed in medium under air damaged the hair cells in a dose-dependent manner. The exposure of cisplatin- and gentamycin-treated cultures to the Ar-O2 atmosphere significantly reduced the hair cell damage by up to 25%. This protective effect of Ar might provide a new protective approach against ototoxic processes.

  8. Hair Treatments and Pregnancy

    Science.gov (United States)

    ... hair treatments? Hair treatments include hair coloring, hair curling (permanents), hair bleaching, and hair straightening (relaxers) agents. ... dyes include hydrogen peroxide, ammonia, and alcohols. Hair curling or permanent wave chemicals include ammonium thioglycolate and ...

  9. Responses of the ear to low frequency sounds, infrasound and wind turbines.

    Science.gov (United States)

    Salt, Alec N; Hullar, Timothy E

    2010-09-01

    Infrasonic sounds are generated internally in the body (by respiration, heartbeat, coughing, etc) and by external sources, such as air conditioning systems, inside vehicles, some industrial processes and, now becoming increasingly prevalent, wind turbines. It is widely assumed that infrasound presented at an amplitude below what is audible has no influence on the ear. In this review, we consider possible ways that low frequency sounds, at levels that may or may not be heard, could influence the function of the ear. The inner ear has elaborate mechanisms to attenuate low frequency sound components before they are transmitted to the brain. The auditory portion of the ear, the cochlea, has two types of sensory cells, inner hair cells (IHC) and outer hair cells (OHC), of which the IHC are coupled to the afferent fibers that transmit "hearing" to the brain. The sensory stereocilia ("hairs") on the IHC are "fluid coupled" to mechanical stimuli, so their responses depend on stimulus velocity and their sensitivity decreases as sound frequency is lowered. In contrast, the OHC are directly coupled to mechanical stimuli, so their input remains greater than for IHC at low frequencies. At very low frequencies the OHC are stimulated by sounds at levels below those that are heard. Although the hair cells in other sensory structures such as the saccule may be tuned to infrasonic frequencies, auditory stimulus coupling to these structures is inefficient so that they are unlikely to be influenced by airborne infrasound. Structures that are involved in endolymph volume regulation are also known to be influenced by infrasound, but their sensitivity is also thought to be low. There are, however, abnormal states in which the ear becomes hypersensitive to infrasound. In most cases, the inner ear's responses to infrasound can be considered normal, but they could be associated with unfamiliar sensations or subtle changes in physiology. This raises the possibility that exposure to the

  10. Indolent CD8-positive lymphoid proliferation of the ear: a distinct primary cutaneous T-cell lymphoma?

    Science.gov (United States)

    Petrella, Tony; Maubec, Eve; Cornillet-Lefebvre, Pascale; Willemze, Rein; Pluot, Michel; Durlach, Anne; Marinho, Eduardo; Benhamou, Jean-Luc; Jansen, Patty; Robson, Alistair; Grange, Florent

    2007-12-01

    The authors report 4 cases of cutaneous lymphoproliferation unusual by their histology and their clinical presentation. Each presented with a history of a slow growing nodule on the ear. Despite the indolent clinical evolution, the histology suggested a high-grade lymphoma. All lesions consisted of a dense, diffuse proliferation of monomorphous medium-sized T cells throughout the dermis and subcutis. There was no epidermotropism and a grenz zone was clearly present in each case. The tumor cells displayed irregular blastlike nuclei, with small nucleoli and clear chromatin and had a CD3+, CD8+, CD4+, TIA1+, granzyme B(-)immunophenotype with a loss of other T-cell antigens. The 3 cases with available material for polymerase chain reaction studies displayed a monoclonal T-cell rearrangement of the T-cell receptor-gamma chain. These cases do not correspond to a recognized cutaneous T-cell lymphoma as described in the recent WHO/EORTC classification. The apparent striking propensity for the ear suggests that they might represent a specific entity. Further cases are needed to confirm this hypothesis. It is important for such indolent lesions to be known to avoid over treatment.

  11. CLRN1 is nonessential in the mouse retina but is required for cochlear hair cell development.

    Science.gov (United States)

    Geller, Scott F; Guerin, Karen I; Visel, Meike; Pham, Aaron; Lee, Edwin S; Dror, Amiel A; Avraham, Karen B; Hayashi, Toshinori; Ray, Catherine A; Reh, Thomas A; Bermingham-McDonogh, Olivia; Triffo, William J; Bao, Shaowen; Isosomppi, Juha; Västinsalo, Hanna; Sankila, Eeva-Marja; Flannery, John G

    2009-08-01

    Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT-PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration.

  12. CLRN1 is nonessential in the mouse retina but is required for cochlear hair cell development.

    Directory of Open Access Journals (Sweden)

    Scott F Geller

    2009-08-01

    Full Text Available Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3, a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH, laser capture microdissection (LCM, and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT-PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal

  13. Eye and hair colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma. A Danish case-control study

    DEFF Research Database (Denmark)

    Lock-Andersen, J; Drzewiecki, K T; Wulf, H C

    1999-01-01

    To assess the importance of hair and eye colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma in fair-skinned Caucasians, we conducted two identical case-control studies in Denmark. We studied 145 cases with basal cell...... the present hair colour and eye colour, and the constitutive skin pigmentation was measured objectively by skin reflectance of UV unexposed buttock skin. There were no differences between basal cell carcinoma cases and controls in hair colour or eye colour or constitutive skin pigmentation, but more cases...... were of skin type II than skin type IV; skin type 11 was a risk factor for basal cell carcinoma with an odds ratio (OR) of 2.3. For cutaneous malignant melanoma, more cases than controls were red-haired or blond and of skin type II, but there was no difference in constitutive skin pigmentation. Hair...

  14. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    Science.gov (United States)

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  15. Successful Treatment of Two Cases of Squamous Cell Carcinoma on the Ear with Intra-Arterial Administration of Peplomycin through a Superficial Temporal Artery

    Directory of Open Access Journals (Sweden)

    Takahiro Haga

    2014-09-01

    Full Text Available Cutaneous squamous cell carcinoma (SCC is the second most common non-melanoma skin cancer and tends to develop in sun-exposed cosmetic areas, including the ear. In this report, we describe two cases of SCC on the ear successfully treated with intra-arterial administration of peplomycin through a superficial temporal artery. In addition to this selective chemotherapy, we administered oral tegafur, which achieved complete remission of the tumor. These findings suggest that intra-arterial administration of peplomycin with tegafur is one of the optimal therapies for the treatment of SCC developing on the ear.

  16. Morin hydrate promotes inner ear neural stem cell survival and differentiation and protects cochlea against neuronal hearing loss.

    Science.gov (United States)

    He, Qiang; Jia, Zhanwei; Zhang, Ying; Ren, Xiumin

    2017-03-01

    We aimed to investigate the effect of morin hydrate on neural stem cells (NSCs) isolated from mouse inner ear and its potential in protecting neuronal hearing loss. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and bromodeoxyuridine incorporation assays were employed to assess the effect of morin hydrate on the viability and proliferation of in vitro NSC culture. The NSCs were then differentiated into neurons, in which neurosphere formation and differentiation were evaluated, followed by neurite outgrowth and neural excitability measurements in the subsequent in vitro neuronal network. Mechanotransduction of cochlea ex vivo culture and auditory brainstem responses threshold and distortion product optoacoustic emissions amplitude in mouse ototoxicity model were also measured following gentamicin treatment to investigate the protective role of morin hydrate against neuronal hearing loss. Morin hydrate improved viability and proliferation, neurosphere formation and neuronal differentiation of inner ear NSCs, and promoted in vitro neuronal network functions. In both ex vivo and in vivo ototoxicity models, morin hydrate prevented gentamicin-induced neuronal hearing loss. Morin hydrate exhibited potent properties in promoting growth and differentiation of inner ear NSCs into functional neurons and protecting from gentamicin ototoxicity. Our study supports its clinical potential in treating neuronal hearing loss. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. LGR4 and LGR5 regulate hair cell differentiation in the sensory epithelium of the developing mouse cochlea

    NARCIS (Netherlands)

    Zak, Magdalena; Van Oort, Thijs; Hendriksen, Ferry G.; Garcia, Marie Isabelle; Vassart, Gilbert; Grolman, Wilko

    2016-01-01

    In the developing cochlea, Wnt/β-catenin signaling positively regulates the proliferation of precursors and promotes the formation of hair cells by up-regulating Atoh1 expression. Not much, however, is known about the regulation of Wnt/β-catenin activity in the cochlea. In multiple tissues, the

  18. Temperature dependency of cupular mechanics and hair cell frequency selectivity in the fish canal lateral line organ

    NARCIS (Netherlands)

    Wiersinga-Post, JEC; van Netten, SM

    2000-01-01

    The mechanical frequency selectivity of the cupula located in the supraorbital lateral line canal and the frequency selectivity of the hair cells driven by the cupula were measured simultaneously in vivo. Laser interferometry was used to measure cupular mechanics and extracellular receptor

  19. Furosemide Alters Organ of Corti Mechanics: Evidence for Feedback of Outer Hair Cells upon the Basilar Membrane

    Science.gov (United States)

    Ruggero, Mario A.; Rich, Nola C.

    2013-01-01

    A widely held hypothesis of mammalian cochlear function is that the mechanical responses to sound of the basilar membrane depend on transduction by the outer hair cells. We have tested this hypothesis by studying the effect upon basilar membrane vibrations (measured by means of either the Mössbauer technique or Doppler-shift laser velocimetry) of systemic injection of furosemide, a loop diuretic that decreases transduction currents in hair cells. Furosemide reversibly altered the responses to tones and clicks of the chinchilla basilar membrane, causing response-magnitude reductions that were largest (up to 61 dB, averaging 25-30 dB) at low stimulus intensities at the characteristic frequency (CF) and small or nonexistent at high intensities and at frequencies far removed from CF. Furosemide also induced response-phase lags that were largest at low stimulus intensities (averaging 77°) and were confined to frequencies close to CF. These results constitute the most definitive demonstration to date that mechanical responses of the basilar membrane are dependent on the normal function of the organ of Corti and strongly implicate the outer hair cells as being responsible for the high sensitivity and frequency selectivity of basilar membrane responses. A corollary of these findings is that sensorineural hearing deficits in humans due to outer hair cell loss reflect pathologically diminished vibrations of the basilar membrane. PMID:2010805

  20. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations

    NARCIS (Netherlands)

    Kros, CJ; Marcotti, W; van Netten, SM; Self, TJ; Libby, RT; Brown, SDM; Richardson, GP; Steel, KP

    Mutations in Myo7a cause hereditary deafness in mice and humans. We describe the effects of two mutations, Myo7a(6J) and Myo7a(4626SB). on mechano-electrical transduction in cochlear hair cells. Both mutations result in two major functional abnormalities that would interfere with sound transduction.

  1. Laser hair removal pearls.

    Science.gov (United States)

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal.

  2. System approaches to study root hairs as a single cell plant model: current status and future perspectives

    Directory of Open Access Journals (Sweden)

    Md Shakhawat eHossain

    2015-05-01

    Full Text Available Our current understanding of plant functional genomics derives primarily from measurements of gene, protein and/or metabolite levels averaged over the whole plant or multicellular tissues. These approaches risk diluting the response of specific cells that might respond strongly to the treatment but whose signal is diluted by the larger proportion of non-responding cells. For example, if a gene is expressed at a low level, does this mean that it is indeed lowly expressed or is it highly expressed, but only in a few cells? In order to avoid these issues, we adopted the soybean root hair cell, derived from a single, differentiated root epidermal cell, as a single-cell model for functional genomics. Root hair cells are intrinsically interesting since they are major conduits for root water and nutrient uptake and are also the preferred site of infection by nitrogen-fixing rhizobium bacteria. Although a variety of other approaches have been used to study single plant cells or single cell types, the root hair system is perhaps unique in allowing application of the full repertoire of functional genomic and biochemical approaches. In this mini review, we summarize our published work and place this within the broader context of root biology, with a significant focus on understanding the initial events in the soybean-rhizobium interaction.

  3. The how and why of identifying the hair cell mechano-electrical transduction channel

    Science.gov (United States)

    Effertz, Thomas; Scharr, Alexandra L; Ricci, Anthony J

    2014-01-01

    Identification of the auditory hair cell mechano-electrical transduction (hcMET) channel has been a major focus in the hearing research field since the 1980s, when direct mechanical gating of a transduction channel was proposed [23]. To this day, the molecular identity of this channel remains controversial. However, many of the hcMET-channel's properties have been characterized including: pore properties, calcium dependent ion permeability, rectification, and single channel conductance. At this point, elucidating the molecular identity of the hcMET-channel will provide new tools for understanding the mechanotransduction process. This review discusses the significance of identifying the hcMET-channel, the difficulties associated with that task, as well as the establishment of clear criteria for this identification. Finally, we discuss potential candidate channels in light of these criteria. PMID:25241775

  4. Low-Frequency Oscillations in Outer Hair Cells and Homeostatic Regulation of the Organ of Corti

    Science.gov (United States)

    Patuzzi, R. B.

    2003-02-01

    Microphonic potentials in the basal cochlear turn of guinea pigs evoked by 200-Hz tones can be analysed in terms of the Boltzmann parameters governing the mechanoelectrical transduction channels at the apex of outer hair cells (OHCs). Detailed analysis of the changes in these parameters with cochlear perturbations reveals slow damped oscillations with cycle times between 250s and 500s, interpretted as oscillations in the homeostatic feedback loops regulating cochlear transduction. We describe these oscillations, and present a model of cochlear homeostasis which includes known electrophysiological and mechanical properties of OHCs, and invokes a slow second-messenger system triggered by Ca2+ involving unknown intermediates (M2 and M3) which control OHC slow contractions and Ca2+ sequestration.

  5. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration

    Directory of Open Access Journals (Sweden)

    Rahul Mittal

    2017-07-01

    Full Text Available Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.

  6. Dynamics of Lgr6+ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis

    Directory of Open Access Journals (Sweden)

    Anja Füllgrabe

    2015-11-01

    Full Text Available The dynamics and interactions between stem cell pools in the hair follicle (HF, sebaceous gland (SG, and interfollicular epidermis (IFE of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6-expressing basal cells in the HF isthmus, SG, and IFE. We show that these Lgr6+ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6+ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6+ and Lgr6− cells did not reveal a distinct Lgr6-associated gene expression signature, raising the question of whether Lgr6 expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6+ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments.

  7. Dynamics of Lgr6+ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis

    Science.gov (United States)

    Füllgrabe, Anja; Joost, Simon; Are, Alexandra; Jacob, Tina; Sivan, Unnikrishnan; Haegebarth, Andrea; Linnarsson, Sten; Simons, Benjamin D.; Clevers, Hans; Toftgård, Rune; Kasper, Maria

    2015-01-01

    Summary The dynamics and interactions between stem cell pools in the hair follicle (HF), sebaceous gland (SG), and interfollicular epidermis (IFE) of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6-expressing basal cells in the HF isthmus, SG, and IFE. We show that these Lgr6+ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6+ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6+ and Lgr6− cells did not reveal a distinct Lgr6-associated gene expression signature, raising the question of whether Lgr6 expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6+ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments. PMID:26607954

  8. Hey1 and Hey2 control the spatial and temporal pattern of mammalian auditory hair cell differentiation downstream of Hedgehog signaling.

    Science.gov (United States)

    Benito-Gonzalez, Ana; Doetzlhofer, Angelika

    2014-09-17

    Mechano-sensory hair cells (HCs), housed in the inner ear cochlea, are critical for the perception of sound. In the mammalian cochlea, differentiation of HCs occurs in a striking basal-to-apical and medial-to-lateral gradient, which is thought to ensure correct patterning and proper function of the auditory sensory epithelium. Recent studies have revealed that Hedgehog signaling opposes HC differentiation and is critical for the establishment of the graded pattern of auditory HC differentiation. However, how Hedgehog signaling interferes with HC differentiation is unknown. Here, we provide evidence that in the murine cochlea, Hey1 and Hey2 control the spatiotemporal pattern of HC differentiation downstream of Hedgehog signaling. It has been recently shown that HEY1 and HEY2, two highly redundant HES-related transcriptional repressors, are highly expressed in supporting cell (SC) and HC progenitors (prosensory cells), but their prosensory function remained untested. Using a conditional double knock-out strategy, we demonstrate that prosensory cells form and proliferate properly in the absence of Hey1 and Hey2 but differentiate prematurely because of precocious upregulation of the pro-HC factor Atoh1. Moreover, we demonstrate that prosensory-specific expression of Hey1 and Hey2 and its subsequent graded downregulation is controlled by Hedgehog signaling in a largely FGFR-dependent manner. In summary, our study reveals a critical role for Hey1 and Hey2 in prosensory cell maintenance and identifies Hedgehog signaling as a novel upstream regulator of their prosensory function in the mammalian cochlea. The regulatory mechanism described here might be a broadly applied mechanism for controlling progenitor behavior in the central and peripheral nervous system. Copyright © 2014 the authors 0270-6474/14/3412865-12$15.00/0.

  9. The role of type I allergy in secretory otitis media and mast cells in the middle ear mucosa.

    Science.gov (United States)

    Mogi, G; Tomonaga, K; Watanabe, T; Chaen, T

    1992-01-01

    To clarify the role of type I allergy in the etiology and pathogenesis of secretory otitis media (SOM), clinical and experimental studies were done. The distribution of mast cells in the tubotympanum of normal and developing guinea pigs was also investigated. Our clinical study revealed that the ratio of complications of nasal allergy (NA) in 222 SOM-young children is 42%, while that of SOM in 259 NA-young children is 35%. These ratios were significantly higher than those seen in control group which consists of 104-children randomly selected from a kindergarten and elementary school. Findings of our animal experiment showed that the eustachian tube is involved, both functionally and morphologically, in type I allergic reactions of the nose. The tubal dysfunction evoked by nasal allergic reactions was transient, not culminating in middle ear effusion (MEE). However, this dysfunction interferes with the clearance of MEE. Our studies suggest that type I allergic reactions of upper respiratory tracts are factors indicative of a chronic state of disease, rather than a cause of SOM. In adult guinea pigs, the density of mast cells was highest in the pharyngeal orifice of the eustachian tube. The density was higher in the adult than in developing guinea pigs. Mast cells in the middle ear mucosa appeared in areas covered by ciliated epithelia or areas richly vasculized. The results of our investigation suggest that mast cells distribute in the tubotympanum responding to continuous stimuli to the tubotympanic cavity.

  10. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies

    Science.gov (United States)

    Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.

    2000-01-01

    This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.

  11. Inner-ear morphology of the New Zealand kiwi (Apteryx mantelli) suggests high-frequency specialization.

    Science.gov (United States)

    Corfield, Jeremy R; Kubke, M Fabiana; Parsons, Stuart; Köppl, Christine

    2012-10-01

    The sensory systems of the New Zealand kiwi appear to be uniquely adapted to occupy a nocturnal ground-dwelling niche. In addition to well-developed tactile and olfactory systems, the auditory system shows specializations of the ear, which are maintained along the central nervous system. Here, we provide a detailed description of the auditory nerve, hair cells, and stereovillar bundle orientation of the hair cells in the North Island brown kiwi. The auditory nerve of the kiwi contained about 8,000 fibers. Using the number of hair cells and innervating nerve fibers to calculate a ratio of average innervation density showed that the afferent innervation ratio in kiwi was denser than in most other birds examined. The average diameters of cochlear afferent axons in kiwi showed the typical gradient across the tonotopic axis. The kiwi basilar papilla showed a clear differentiation of tall and short hair cells. The proportion of short hair cells was higher than in the emu and likely reflects a bias towards higher frequencies represented on the kiwi basilar papilla. The orientation of the stereovillar bundles in the kiwi basilar papilla showed a pattern similar to that in most other birds but was most similar to that of the emu. Overall, many features of the auditory nerve, hair cells, and stereovilli bundle orientation in the kiwi are typical of most birds examined. Some features of the kiwi auditory system do, however, support a high-frequency specialization, specifically the innervation density and generally small size of hair-cell somata, whereas others showed the presumed ancestral condition similar to that found in the emu.

  12. Middle ear ventilation status postoperatively after translabyrinthine resection of vestibular schwannoma with mastoid obliteration and Eustachian tube occlusion: is the Eustachian tube enough to ventilate the middle ear without the mastoid air cell system?

    Science.gov (United States)

    Belyea, James; Wickens, Brandon; Bance, Manohar

    2016-08-30

    Gas pressure balance is essential for maintaining normal middle ear function. The mucosal surfaces of the middle ear, the mastoid air cell system (MACS), and the Eustachian tube (ET) play a critical role in this process; however, the extent that each of these factors contributes to overall middle ear ventilation is unknown. The objective of this study was to determine if the ET alone can maintain normal middle ear pressure without the MACS. To do this, we reviewed subjects who had their MACS completely removed with translabyrinthine (TL) surgery for vestibular schwannoma. A retrospective chart review was done to collect pre and postoperative tympanometry data from patients who underwent resection of vestibular schwannoma. Data from the operative side was compared to the non-operative side at 2 years post-op. Twenty-four patients were included in this study. Of these, 63 % achieved a type A tympanogram at 2 years post-op in the TL resection group, implying an ability to maintain middle ear pressure in the absence of a mastoid cavity. Because some had negative pressures post TL resection, the average change in pre and postoperative pressure was -37.5 daPa for the operative side and 7.8 daPa for the non-operative side. This was significantly different. The difference for change in pre and postoperative pressure and compliance between operative and non-operative side might be expected from the ET plugging during TL resection. However, more interesting are those patients in whom the ET presumably reopens, and in these subjects, despite having no mastoid compartment at all, and the space obliterated with fat, they were still able to maintain normal ventilation of the middle ear space. Our findings imply that the ET alone is adequate to ventilate at least the reduced middle ear space following TL surgery in most subjects, and perhaps in 100 % if the ET hadn't been plugged during surgery. Hence, the mastoid air cell system, even when healthy, is not needed to maintain

  13. MicroRNAs in sensorineural diseases of the ear

    Directory of Open Access Journals (Sweden)

    Kathy eUshakov

    2013-12-01

    Full Text Available Non-coding microRNAs have a fundamental role in gene regulation and expression in almost every multicellular organism. Only discovered in the last decade, microRNAs are already known to play a leading role in many aspects of disease. In the vertebrate inner ear, microRNAs are essential for controlling development and survival of hair cells. Moreover, dysregulation of microRNAs has been implicated in sensorineural hearing impairment, as well as in other ear diseases such as cholesteatomas, vestibular schwannomas and otitis media. Due to the inaccessibility of the ear in humans, animal models have provided the optimal tools to study microRNA expression and function, in particular mice and zebrafish. A major focus of current research has been to discover the targets of the microRNAs expressed in the inner ear, in order to determine the regulatory pathways of the auditory and vestibular systems. The potential for microRNA manipulation in development of therapeutic tools for hearing impairment is as yet unexplored, paving the way for future work in the field.

  14. CaMK-II activation is essential for zebrafish inner ear development and acts through Delta-Notch signaling.

    Science.gov (United States)

    Rothschild, Sarah C; Lahvic, Jamie; Francescatto, Ludmila; McLeod, Jamie J A; Burgess, Shawn M; Tombes, Robert M

    2013-09-01

    Zebrafish inner ear development is characterized by the crystallization of otoliths onto immotile kinocilia that protrude from sensory "hair" cells. The stereotypical formation of these sensory structures is dependent on the expression of key patterning genes and on Ca2+ signals. One potential target of Ca2+ signaling in the inner ear is the type II Ca2+/calmodulin-dependent protein kinase (CaMK-II), which is preferentially activated in hair cells, with intense activation at the base of kinocilia. In zebrafish, CaMK-II is encoded by seven genes; the expression of one of these genes (camk2g1) is enriched in hair cells. The suppression of camk2g1 expression by antisense morpholino oligonucleotides or inhibition of CaMK-II activation by the pharmacological antagonist, KN-93, results in aberrant otolith formation without preventing cilia formation. In fact, CaMK-II suppression results in additional ciliated hair cells and altered levels of Delta-Notch signaling members. DeltaA and deltaD transcripts are increased and DeltaD protein accumulates in hair cells of CaMK-II morphants, indicative of defective recycling and/or exocytosis. Our findings indicate that CaMK-II plays a critical role in the developing ear, influencing cell differentiation through extranuclear effects on Delta-Notch signaling. Continued expression and activation of CaMK-II in maculae and cristae in older embryos suggests continued roles in auditory sensory maturation and transduction. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells.

    Science.gov (United States)

    Roberts, W M

    1994-05-01

    A recent study (Roberts, 1993) of saccular hair cells from grass frogs (Rana pipiens) has suggested a mechanism by which the unusually high concentrations of calcium-binding proteins found in certain sensory receptors and neurons, particularly in the auditory system, can influence short-range intracellular calcium signaling. In frog saccular hair cells, the mechanism operates within arrays of calcium channels and calcium-activated potassium channels that are involved in the cells' electrical resonance and synaptic transmission. The present study tests the hypothesis that calbindin-D28k, one of the most abundant proteins in these cells, can serve as a mobile calcium buffer that reduces and localizes changes in the intracellular free-calcium concentration ([Ca2+]i) by shuttling calcium away from the channel arrays. Based upon theoretical analysis and computer modeling, it is shown that [Ca2+]i near one or more open channels quickly reaches a steady-state level determined primarily by two properties of the buffer, the mean time (tau c) before it captures a free-calcium ion and a replenishment factor (R), which are related to the buffer's diffusional mobility (DBu), association rate constant (kon), and concentration (Bo) by tau c = (konB0)-1 and R = B0DBu. Simulation of calcium entry through a channel array showed that approximately 1.5 mM of a molecule with the diffusional and binding properties expected for calbindin-D28k (Bo approximately 8 mM calcium-binding sites) is needed to reproduce the previous experimental results. A lower concentration (B0 = 2 mM) was almost completely depleted within the channel array by a modest calcium current (8 pA = 12% of calcium channels open), but still had two important effects: it caused [Ca2+]i to fall steeply with distance outside the array (space constant < 50 nm), and returned [Ca2+]i quickly to the resting level after the channels closed. A high concentration of calbindin-D28k can thus influence the cell's electrical

  16. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    Science.gov (United States)

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  17. 3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling

    Science.gov (United States)

    Kim, Young Eun; Choi, Hyung Chul; Lee, In-Chul; Yuk, Dong Yeon; Lee, Hyosung; Choi, Bu Young

    2016-01-01

    3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of β-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of WNT/β-catenin and STAT signaling. PMID:27795451

  18. Ingrown Hair

    Science.gov (United States)

    ... with curly beards. It develops when shaved hairs curve back into the skin, leading to inflammation. Chronic ingrown hairs can lead to: Bacterial infection (from scratching) Skin darkening (hyperpigmentation) Permanent scarring (keloids) Pseudofolliculitis barbae, also known as razor bumps Prevention ...

  19. Your Hair

    Science.gov (United States)

    ... hair, like that on your cheek, is almost invisible. Depending on where it is, hair has different ... of Use Notice of Nondiscrimination Visit the Nemours Web site. Note: All information on KidsHealth® is for ...

  20. Hair Loss

    Science.gov (United States)

    ... to treat acne, bipolar disorder, and ADHD. Diet pills that contain amphetamines also can cause hair loss. Alopecia areata (pronounced: al-uh-PEE-shuh air-ee-AH-tuh) . This skin disease causes hair ...

  1. Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer.

    Science.gov (United States)

    Peng, Anthony W; Gnanasambandam, Radhakrishnan; Sachs, Frederick; Ricci, Anthony J

    2016-03-09

    The auditory system is able to detect movement down to atomic dimensions. This sensitivity comes in part from mechanisms associated with gating of hair cell mechanoelectric transduction (MET) channels. MET channels, located at the tops of stereocilia, are poised to detect tension induced by hair bundle deflection. Hair bundle deflection generates a force by pulling on tip-link proteins connecting adjacent stereocilia. The resting open probability (P(open)) of MET channels determines the linearity and sensitivity to mechanical stimulation. Classically, P(open) is regulated by a calcium-sensitive adaptation mechanism in which lowering extracellular calcium or depolarization increases P(open). Recent data demonstrated that the fast component of adaptation is independent of both calcium and voltage, thus requiring an alternative explanation for the sensitivity of P(open) to calcium and voltage. Using rat auditory hair cells, we characterize a mechanism, separate from fast adaptation, whereby divalent ions interacting with the local lipid environment modulate resting P(open). The specificity of this effect for different divalent ions suggests binding sites that are not an EF-hand or calmodulin model. GsMTx4, a lipid-mediated modifier of cationic stretch-activated channels, eliminated the voltage and divalent sensitivity with minimal effects on adaptation. We hypothesize that the dual mechanisms (lipid modulation and adaptation) extend the dynamic range of the system while maintaining adaptation kinetics at their maximal rates. Copyright © 2016 the authors 0270-6474/16/362945-12$15.00/0.

  2. Ear Infections

    Science.gov (United States)

    ... can cause your child’s eardrum to rupture or pop, leaving a hole in the ear. The initial pop hurts, but actually relieves the pressure and pain. ... turns up the volume of the TV or music, is not responding to softer sounds or is ...

  3. Repeated exposure to hair dye induces regulatory T cells in mice

    DEFF Research Database (Denmark)

    Rubin, I M C; Dabelsteen, S; Nielsen, M M

    2010-01-01

    We have recently shown that commercial p-phenylenediamine (PPD)-containing hair dyes are potent immune activators that lead to severe contact hypersensitivity in an animal model. However, only a minority of people exposed to permanent hair dyes develops symptomatic contact hypersensitivity. This ...

  4. Determination of ototoxicity of common otic drops using isolated cochlear outer hair cells.

    Science.gov (United States)

    Jinn, T H; Kim, P D; Russell, P T; Church, C A; John, E O; Jung, T T

    2001-12-01

    Otic drops are commonly used not only for otitis externa, but also for otorrhea in the presence of tympanostomy tubes or tympanic membrane perforations. Many studies have demonstrated the ototoxicity of common otic preparations such as Cortisporin otic drops (Monarch Pharmaceuticals, Bristol, TN). The purpose of this study was to assess the relative ototoxicity of common otic preparations by direct exposure to isolated cochlear outer hair cells (OHCs). OHCs from adult chinchilla cochlea were exposed to standard bathing solution (control), acetic acid, Acetasol HC (Alpharma USPD Inc., Baltimore, MD), Gentacidin (CIBA Vision Ophthalmics, Atlanta, GA), and Tobradex (Alcon, Fort Worth, TX). The cells were observed using an inverted microscope, and the images were recorded in digital still-frame and video, and analyzed on the Image Pro-Plus 3.0 program (Media Cybernetics, Silver Spring, MD). As measured by time to cell death and change in morphology of OHCs, acetic acid with or without hydrocortisone was most toxic to OHCs. Cortisporin was more cytotoxic than gentamicin and Tobradex.

  5. Effects of common topical otic preparations on the morphology of isolated cochlear outer hair cells.

    Science.gov (United States)

    Russell, P T; Church, C A; Jinn, T H; Kim, D J; John, E O; Jung, T T

    2001-01-01

    Otic drops are commonly used not only for otitis externa but also for otorrhea in the presence of tympanostomy tube or tympanic membrane perforation. Many studies have demonstrated the ototoxicity of common otic preparations such as Cortisporin otic drops. Recent studies have suggested the use of fluoroquinolone antibiotic drops as an alternative owing to their excellent antimicrobial coverage and no ototoxic effect. The purpose of this study was to assess the relative ototoxicity of four common otic preparations by direct exposure to isolated cochlear outer hair cells (OHCs). OHCs from adult chinchilla cochlea were exposed to standard bathing solution (control), Cortisporin, Cipro HC, Ciloxan, and Floxin. The cells were observed using an inverted microscope, and the images recorded in digital still-frame and video, and analyzed on the Image Pro-Plus 3.0 program. As measured by time to cell death and change in morphology of OHCs, Cortisporin was most toxic to OHCs. Among the fluoroquinolone drops, Floxin was more toxic than Ciloxan or Cipro HC.

  6. Hair Loss

    Science.gov (United States)

    ... hair if you have certain diseases, such as thyroid problems, diabetes, or lupus. If you take certain medicines or have chemotherapy for cancer, you may also lose your hair. Other causes are stress, a low protein diet, a family history, or poor nutrition. Treatment for hair loss depends ...

  7. Hair cosmetics.

    Science.gov (United States)

    Madnani, Nina; Khan, Kaleem

    2013-01-01

    The hair cosmetic industry has undergone a revolutionary change over the last two decades. The focus has dramatically veered from merely cleaning to repair, increasing the tensile strength, reducing oxidative damage, and stimulating growth. Newer shorter procedures to make hair look naturally more lustrous, smooth, and manageable have evolved. Specialized grooming products have been formulated to cleanse, calm, and condition the hair, and are tailored for different hair-types, for example, dry, dry-damaged, oily, colored, and gray hair. Other products are formulated to alter the color or structure of the hair shaft, for example, hair dyes, perming/relaxing. Hair sprays and waxes/gels, can alter the 'lift' of the hair-shaft. Although dermatologists are experts in managing scalp and hair diseases, the esthetic applications of newer cosmetic therapies still remain elusive. This article attempts to fill the lacunae in our knowledge of hair cosmetics and esthetic procedures relevant in today's rapidly changing beauty-enhancing industry, with special emphasis on the Indian scenario for chemical and 'natural' hair products.

  8. Hair cosmetics

    Directory of Open Access Journals (Sweden)

    Nina Madnani

    2013-01-01

    Full Text Available The hair cosmetic industry has undergone a revolutionary change over the last two decades. The focus has dramatically veered from merely cleaning to repair, increasing the tensile strength, reducing oxidative damage, and stimulating growth. Newer shorter procedures to make hair look naturally more lustrous, smooth, and manageable have evolved. Specialized grooming products have been formulated to cleanse, calm, and condition the hair, and are tailored for different hair-types, for example, dry, dry-damaged, oily, colored, and gray hair. Other products are formulated to alter the color or structure of the hair shaft, for example, hair dyes, perming/relaxing. Hair sprays and waxes/gels, can alter the ′lift′ of the hair-shaft. Although dermatologists are experts in managing scalp and hair diseases, the esthetic applications of newer cosmetic therapies still remain elusive. This article attempts to fill the lacunae in our knowledge of hair cosmetics and esthetic procedures relevant in today′s rapidly changing beauty-enhancing industry, with special emphasis on the Indian scenario for chemical and ′natural′ hair products.

  9. Hair Removal

    Science.gov (United States)

    ... in girls who need it. Deciding to remove body hair is a personal choice. Getting rid of body hair doesn't make a person healthier, and you ... you don't want to. Some cultures view body hair as beautiful and natural, so do what feels ...

  10. The physics of hearing: fluid mechanics and the active process of the inner ear.

    Science.gov (United States)

    Reichenbach, Tobias; Hudspeth, A J

    2014-07-01

    Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear, adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a largely independent traveling wave for each frequency component of the input. Because the basilar membrane is graded in mass and stiffness along its length, however, each traveling wave grows in magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the ear's sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and shorten, thus pumping energy into the basilar membrane's movements. The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness. These features arise because the

  11. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance.

    Science.gov (United States)

    Fritzsch, Bernd; Tessarollo, Lino; Coppola, Enzo; Reichardt, Louis F

    2004-01-01

    We review the history of neurotrophins in the ear and the current understanding of the function of neurotrophins in ear innervation, development and maintenance. Only two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), and their receptors, tyrosine kinase B (TrkB) and TrkC, appear to provide trophic support for inner ear sensory neuron afferents. Mice lacking either both receptors or both ligands lose essentially all sensory innervation of targets in the vestibular and auditory systems of the ear. Analyzes of single mutants show less complete and differential effects on innervation of the different sensory organs within the ear. BDNF and TrkB are most important for survival of vestibular sensory neurons whereas NT-3 and TrkC are most important for survival of cochlear sensory neurons. The largely complementary roles of BDNF to TrkB and NT-3 to TrkC signaling do not reflect specific requirements for innervation of different classes of hair cells. Most neurons express both receptors. Instead, the losses observed in single mutants are related to the spatio-temporal expression pattern of the two neurotrophins. In an area where only one neurotrophin is expressed at a particular time in development, the other neurotrophin is not present to compensate for this absence, resulting in death of neurons innervating that region. Decisive evidence for this suggestion is provided by transgenic mice in which the BDNF coding region has been inserted into the NT-3 gene, resulting in expression of BDNF instead of NT-3. The expression of BDNF in the spatio-temporal pattern of NT-3 results in survival of almost all neurons that are normally lost in the NT-3 mutant. Thus, BDNF and NT-3 have a high level of functional equivalence for inner ear sensory neuron survival. Further analysis of the patterns of afferent fiber losses in mutations that do not develop differentiated hair cells shows that the expression of neurotrophins is remarkably strong and can

  12. Cosmetic ear surgery

    Science.gov (United States)

    Otoplasty; Ear pinning; Ear surgery - cosmetic; Ear reshaping; Pinnaplasty ... Cosmetic ear surgery may be done in the surgeon's office, an outpatient clinic, or a hospital. It can be performed under ...

  13. Travel Inside the Ear

    Medline Plus

    Full Text Available ... Info » Hearing, Ear Infections, and Deafness Travel Inside the Ear Video When sound waves reach your ear, ... heard a soft sound or a loud sound. The sound passes through the outer ear and is ...

  14. Ear Injuries (For Parents)

    Science.gov (United States)

    ... Cochlear Implants Ototoxicity (Ear Poisoning) Auditory Neuropathy Spectrum Disorder (ANSD) Dealing With Earwax Is Earwax Removal Safe? Hearing Evaluation in Children Middle Ear Infections Middle Ear Infections and Ear ...

  15. Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression.

    Science.gov (United States)

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-09

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  16. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF Expression

    Directory of Open Access Journals (Sweden)

    Shu-Mei Lee

    2015-01-01

    Full Text Available Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  17. Bottom-up Nanoencapsulation from Single Cells to Tunable and Scalable Cellular Spheroids for Hair Follicle Regeneration.

    Science.gov (United States)

    Wang, Jin; Miao, Yong; Huang, Yong; Lin, Bojie; Liu, Xiaomin; Xiao, Shune; Du, Lijuan; Hu, Zhiqi; Xing, Malcolm

    2017-12-11

    Cell surface engineering technology advances cell therapeutics and tissue engineering by accurate micro/nanoscale control in cell-biomaterial ensembles and cell spheroids formation. By tailoring cell surface, microgels can encapsulate cells for versatile uses. However, microgels are coated in a thick layer to house multiple cells together but not a single cell based. Besides, excessive deposition on cell surface is detrimental to cellular functions. Herein, layer-by-layer (LbL) self-assembly to encapsulate single cell using nanogel is reported, owing to its security and tunable thickness at nanoscale, and further forms cell spheroids by physical cross-linking on nanogel-coated cells for delivery. A hair follicle (HF) regeneration model where the dermal papilla cells (DPCs) are given a 3D installation to maintain its ability of HF induction during in vitro culture is studied. Dermal papilla (DP) spheroids are optimized and that LbL-DPCs aggregation is akin to primary DP is demonstrated. The markers ALP, Versican, and NCAM are examined to investigate that high-passaged (P8) DP spheroids can restore the hair induction potential, which are lost in 2D culture. New HFs are regenerated successfully by implantation of DP spheroids in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells

    Science.gov (United States)

    Zenner, H. P.; Reuter, G.; Zimmermann, U.; Gitter, A. H.; Fermin, C.; LePage, E. L.

    1994-01-01

    There are types of deafness and tinnitus in which ruptures or massive changes in the ionic permeability of the membranes lining the endolymphatic space [e.g., of the reticular lamina (RL)] are believed to allow potassium-rich endolymph to deluge the low [K+] perilymphatic fluid (e.g., in the small spaces of Nuel). This would result in a K+ intoxication of sensory and neural structures. Acute attacks of Meniere's disease have been suggested to be an important example for this event. The present study investigated the effects of transiently elevated [K+] due to the addition of artificial endolymph to the basolateral cell surface of outer hair cells (OHC) in replicating endolymph-induced K+ intoxication of the perilymph in the small spaces of Nuel. The influence of K+ intoxication of the basolateral OHC cell surface on the transduction was then examined. Intoxication resulted in an inhibition of the physiological repolarizing K+ efflux from hair cells. This induced unwanted depolarizations of the hair cells, interfering with mechanoelectrical transduction. A pathological longitudinal OHC shortening was also found, with subsequent compression of the organ of Corti possibly influencing the micromechanics of the mechanically active OHC. Both micromechanical and electrophysiological alterations are proposed to contribute to endolymph leakage induced attacks of deafness and possibly also to tinnitus. Moreover, repeated or long-lasting K+ intoxications of OHC resulted in a chronic and complete loss of OHC motility. This is suggested to be a pathophysiological basis in some patients with chronic hearing loss resulting from Meniere's syndrome.

  19. Supernumerary human hair cells-signs of regeneration or impaired development? A field emission scanning electron microscopy study.

    Science.gov (United States)

    Rask-Andersen, Helge; Li, Hao; Löwenheim, Hubert; Müller, Marcus; Pfaller, Kristian; Schrott-Fischer, Annelies; Glueckert, Rudolf

    2017-03-01

    Current attempts to regenerate cochlear sensorineural structures motivate further inspection of the human organ of hearing. Here, we analyzed the supernumerary inner hair cell (sIHC), a possible sign of regeneration and cell replacement. Human cochleae were studied using field emission scanning electron microscopy (FESEM; maximum resolution 2 nm) obtained from individuals aged 44, 48, and 58 years with normal sensorineural pure-tone average (PTA) thresholds (PTA <20 dB). The wasted tissue was harvested during trans-cochlear approaches and immediately fixed for ultrastructural analysis. All specimens exhibited sIHCs at all turns except at the extreme lower basal turn. In one specimen, it was possible to image and count the inner hair cells (IHCs) along the cochlea representing the 0.2 kHz-8 kHz region according to the Greenwood place/frequency scale. In a region with 2,321 IHCs, there were 120 scattered one-cell losses or 'gaps' (5%). Forty-two sIHCs were present facing the modiolus. Thirty-eight percent of the sIHCs were located near a 'gap' in the IHC row (±6 IHCs). The prevalence of ectopic inner hair cells was higher than expected. The morphology and placement could reflect a certain ongoing regeneration. Further molecular studies are needed to verify if the regenerative capacity of the human auditory periphery might have been underestimated.

  20. Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy

    Science.gov (United States)

    Larraona-Puy, M.; Ghita, A.; Zoladek, A.; Perkins, W.; Varma, S.; Leach, I. H.; Koloydenko, A. A.; Williams, H.; Notingher, I.

    2011-05-01

    Skin cancer is the most common human malignancy and basal cell carcinoma (BCC) represents approximately 80% of the non-melanoma cases. Current methods of treatment require histopathological evaluation of the tissues by qualified personnel. However, this method is subjective and in some cases BCC can be confused with other structures in healthy skin, including hair follicles. In this preliminary study, we investigated the potential of Raman micro-spectroscopy (RMS) to discriminate between hair follicles and BCC in skin tissue sections excised during Mohs micrographic surgery (MMS). Imaging and diagnosis of skin sections was automatically generated using ' a priori'-built spectral model based on LDA. This model had 90 ± 9% sensitivity and 85 ± 9% specificity for discrimination of BCC from dermis and epidermis. The model used selected Raman bands corresponding to the largest spectral differences between the Raman spectra of BCC and the normal skin regions, associated mainly with nucleic acids and collagen type I. Raman spectra corresponding to the epidermis regions of the hair follicles were found to be closer to those of healthy epidermis rather than BCC. Comparison between Raman spectral images and the gold standard haematoxylin and eosin (H&E) histopathology diagnosis showed good agreement. Some hair follicle regions were misclassified as BCC; regions corresponded mainly to the outermost layer of hair follicle (basal cells) which are expected to have higher nucleic acid concentration. This preliminary study shows the ability of RMS to distinguish between BCC and other tissue structures associated to healthy skin which can be confused with BCC due to their similar morphology.

  1. IL-1beta promotes the ciliogenesis of human middle ear epithelial cells: possible linkage with the expression of mucin gene 8.

    Science.gov (United States)

    Choi, Jae Young; Kim, Jin-Young; Kim, Chang-Woo; Ho, Jung Sang; Lee, Kyung-Dong; Yoo, Jong-Bum; Ahn, Young Eun; Yoon, Joo-Heon

    2005-03-01

    These findings suggest that IL-1beta, increases ciliogenesis in NHMEE cells and that MUC8 protein may play a role in this process. The morphology of the middle ear epithelium changes under various pathologic conditions. We compared the density of ciliated cells and the level of mucin gene 8 (MUC8) mRNA in the middle ear epithelial cells of mucoid otitis media (MOM) patients with those of normal controls. We also investigated the effect of IL-1beta on the ciliogenesis and expression of MUC8 mRNA in cultured normal human middle ear epithelial (NHMEE) cells. In addition, we localized the MUC8 protein in cultured NHMEE cells. The surface morphology of NHMEE cells was examined using scanning electron microscopy. Reverse transcriptase polymerase chain reaction was performed to determine the level of MUC8 mRNA expression. After synthesis of MUC8 polyclonal antibody, we performed immunohistochemical staining. The density of ciliated cells was increased in the middle ear epithelium of both MOM patients and IL-1beta-treated cultures. Similarly, the expression of MUC8 was increased in both cases. MUC8 antibody was primarily stained on the ciliated cells of NHMEE cells.

  2. Allicin protects auditory hair cells and spiral ganglion neurons from cisplatin - Induced apoptosis.

    Science.gov (United States)

    Wu, Xianmin; Li, Xiaofei; Song, Yongdong; Li, He; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Li, Jianfeng; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-04-01

    Cisplatin is a broad-spectrum anticancer drug that is commonly used in the clinic. Ototoxicity is one of the major side effects of this drug, which caused irreversible sensorineural hearing loss. Allicin, the main biologically active compound derived from garlic, has been shown to exert various anti-apoptotic and anti-oxidative activities in vitro and in vivo studies. We took advantage of C57 mice intraperitoneally injected with cisplatin alone or with cisplatin and allicin combined, to investigate whether allicin plays a protective role in vivo against cisplatin ototoxicity. The result showed that C57 mice in cisplatin group exhibited increased shift in auditory brainstem response, whereas the auditory fuction of mice in allicin + cisplatin group was protected in most frequencies, which was accordance with observed damages of outer hair cells (OHCs) and spiral ganglion neurons (SGNs) in the cochlea. Allicin markedly protected SGN mitochondria from damage and releasing cytochrome c, and significantly reduced pro-apoptosis factor expressions activated by cisplatin, including Bax, cleaved-caspase-9, cleaved-caspase-3and p53. Furthermore, allicin reduced the level of Malondialdehyde (MDA), but increased the level of superoxide dismutase (SOD). All data suggested that allicin could prevent hearing loss induced by cisplatin effectively, of which allicin protected SGNs from apoptosis via mitochondrial pathway while protected OHCs and supporting cells (SCs) from apoptosis through p53 pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells.

    Science.gov (United States)

    Vogl, Christian; Cooper, Benjamin H; Neef, Jakob; Wojcik, Sonja M; Reim, Kerstin; Reisinger, Ellen; Brose, Nils; Rhee, Jeong-Seop; Moser, Tobias; Wichmann, Carolin

    2015-02-15

    Ribbon synapses of cochlear inner hair cells (IHCs) employ efficient vesicle replenishment to indefatigably encode sound. In neurons, neuroendocrine and immune cells, vesicle replenishment depends on proteins of the mammalian uncoordinated 13 (Munc13, also known as Unc13) and Ca(2+)-dependent activator proteins for secretion (CAPS) families, which prime vesicles for exocytosis. Here, we tested whether Munc13 and CAPS proteins also regulate exocytosis in mouse IHCs by combining immunohistochemistry with auditory systems physiology and IHC patch-clamp recordings of exocytosis in mice lacking Munc13 and CAPS isoforms. Surprisingly, we did not detect Munc13 or CAPS proteins at IHC presynaptic active zones and found normal IHC exocytosis as well as auditory brainstem responses (ABRs) in Munc13 and CAPS deletion mutants. Instead, we show that otoferlin, a C2-domain protein that is crucial for vesicular fusion and replenishment in IHCs, clusters at the plasma membrane of the presynaptic active zone. Electron tomography of otoferlin-deficient IHC synapses revealed a reduction of short tethers holding vesicles at the active zone, which might be a structural correlate of impaired vesicle priming in otoferlin-deficient IHCs. We conclude that IHCs use an unconventional priming machinery that involves otoferlin. © 2015. Published by The Company of Biologists Ltd.

  4. Splice-site A choice targets plasma-membrane Ca2+-ATPase isoform 2 to hair bundles.

    Science.gov (United States)

    Hill, Jennifer K; Williams, Diane E; LeMasurier, Meredith; Dumont, Rachel A; Strehler, Emanuel E; Gillespie, Peter G

    2006-06-07

    Localization of mechanotransduction in sensory hair cells to hair bundles requires selective targeting of essential proteins to specific locations. Isoform 2 of the plasma-membrane Ca2+-ATPase (PMCA2), required for hearing and balance, is found exclusively in hair bundles. We determined the contribution of splicing at the two major splicing sites (A and C) to hair-cell targeting of PMCA2. When PMCA2 isoforms were immunoprecipitated from purified hair bundles of rat utricle, 2w was the only site A variant detected; moreover, immunocytochemistry for 2w in rat vestibular and cochlear tissues indicated that this splice form was located solely in bundles. To demonstrate the necessity of the 2w sequence, we transfected hair cells with PMCA2 containing different variants at splice sites A and C. Although native hair bundles exclusively use the 2a form at splice-site C, epitope-tagged PMCA2w/a and PMCA2w/b were both concentrated in bundles, indicating that site C is not involved in bundle targeting. In contrast, PMCA2z/a was excluded from bundles and was instead targeted to the basolateral plasma membrane. Bundle-specific targeting of PMCA2w/a tagged with green fluorescent protein (GFP) was diminished, suggesting that GFP interfered with splice-site A. Together, these data demonstrate that PMCA2w/a is the hair-bundle isoform of PMCA in rat hair cells and that 2w targets PMCA2 to bundles. The 2w sequence is thus the first targeting signal identified for a hair-bundle membrane protein; moreover, the striking distribution of inner-ear PMCA isoforms dictated by selective targeting suggests a critical functional role for segregated pathways of Ca2+ transport.

  5. Resveratrol attenuates CoCl2-induced cochlear hair cell damage through upregulation of Sirtuin1 and NF-κB deacetylation.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available The goals of this study were to investigate the effects of hypoxia on cochlear hair cell damage, and to explore the role of sirtuin1 in hypoxia-induced hair cell damage. Cochlear organotypic cultures from postnatal day 4 rats were used in this study. Hypoxia was induced by treating cochlear explants with CoCl2. Cochlear cultures were treated with CoCl2 alone or in combination with the sirtuin1 activator resveratrol and the sirtuin1 inhibitor sirtinol. Hair cell damage was identified by phalloidin staining and imaged using scanning electron microscopy. RT-PCR and Western blot analyses were used to detect the expression of sirtuin1 and acetylated nuclear factor-κB (NF-κB. Low concentrations of CoCl2 (100-200 μM did not cause an obvious change in the number and morphology of hair cells, whereas higher concentrations of CoCl2 (300-400 μM induced swelling of hair cells, accompanied by cell loss. Increased sirtuin1 expression was induced by CoCl2 at 100 to 200 μM, but not at 400 μM. NF-κB acetylation was significantly increased in explants treated with 400 μM CoCl2. Pretreatment with resveratrol prevented CoCl2-induced hair cell loss and acetylation of NF-κB. The protective effect of resveratrol was significantly reduced by sirtinol. CoCl2 induces hair cell damage in organotypic cochleae cultures. Resveratrol attenuates CoCl2-induced cochlear hair cell damage possibly via activation of sirtuin1, which deacetylates NF-κB.

  6. Loss of Slc4a1b chloride/bicarbonate exchanger function protects mechanosensory hair cells from aminoglycoside damage in the zebrafish mutant persephone.

    Directory of Open Access Journals (Sweden)

    Dale W Hailey

    Full Text Available Mechanosensory hair cell death is a leading cause of hearing and balance disorders in the human population. Hair cells are remarkably sensitive to environmental insults such as excessive noise and exposure to some otherwise therapeutic drugs. However, individual responses to damaging agents can vary, in part due to genetic differences. We previously carried out a forward genetic screen using the zebrafish lateral line system to identify mutations that alter the response of larval hair cells to the antibiotic neomycin, one of a class of aminoglycoside compounds that cause hair cell death in humans. The persephone mutation confers resistance to aminoglycosides. 5 dpf homozygous persephone mutants are indistinguishable from wild-type siblings, but differ in their retention of lateral line hair cells upon exposure to neomycin. The mutation in persephone maps to the chloride/bicarbonate exchanger slc4a1b and introduces a single Ser-to-Phe substitution in zSlc4a1b. This mutation prevents delivery of the exchanger to the cell surface and abolishes the ability of the protein to import chloride across the plasma membrane. Loss of function of zSlc4a1b reduces hair cell death caused by exposure to the aminoglycosides neomycin, kanamycin, and gentamicin, and the chemotherapeutic drug cisplatin. Pharmacological block of anion transport with the disulfonic stilbene derivatives DIDS and SITS, or exposure to exogenous bicarbonate, also protects hair cells against damage. Both persephone mutant and DIDS-treated wild-type larvae show reduced uptake of labeled aminoglycosides. persephone mutants also show reduced FM1-43 uptake, indicating a potential impact on mechanotransduction-coupled activity in the mutant. We propose that tight regulation of the ionic environment of sensory hair cells, mediated by zSlc4a1b activity, is critical for their sensitivity to aminoglycoside antibiotics.

  7. The inner ear is involved in the aggravation of nociceptive behavior induced by lowering barometric pressure of nerve injured rats.

    Science.gov (United States)

    Funakubo, Megumi; Sato, Jun; Honda, Takashi; Mizumura, Kazue

    2010-01-01

    Patients suffering from neuropathic pain often complain of pain aggravation when the weather is changing. The exact mechanism for weather change-induced pain has not been clarified. We have previously demonstrated that experimentally lowering barometric pressure (LP) intensifies pain-related behaviors in rats with chronic constriction injury (CCI). In the present experiment we examined whether this pain aggravating effect of LP exposure in nerve injured rats is still present after lesioning of the inner ear. We used both CCI and spinal nerve ligation (SNL) models for this study. We injected into the middle ear sodium arsanilate solution (100mg/ml, 50microl/ear), which is known to degenerate vestibular hair cells, under anesthesia the day before surgery. Rats were exposed to LP (27hPa decrease over 8min) 7-9 days after CCI or 5-8 days after SNL surgery, and pain-related behavior (number of paw lifts induced by von Frey hair stimuli) was measured. When the inner ear lesioned SNL or CCI rats were exposed to LP, they showed no augmentation of pain-related behavior. On the other hand, the pain aggravating effect of a temperature decrease (from 24 to 17 degrees C) was maintained in both SNL and CCI rats. These results suggest that the barometric sensor/sensing system influencing nociceptive behavior during LP in rats is located in the inner ear.

  8. Fractal auditory-nerve firing patterns may derive from fractal switching in sensory hair-cell ion channels

    Science.gov (United States)

    Lowen, S. B.; Teich, M. C.

    1993-08-01

    Hair-cell ion channels, which provide a crucial link in the transformation of incoming acoustic information to neural action-potential trains, switch between open and closed states with power-law-distributed (fractal) dwell times. Trains of action potentials recorded from auditory nerves in mammals always exhibit fractal behavior, including a 1/f-type spectrum, for long time scales. We provide a mathematical model linking these two fractal behaviors within a common framework.

  9. Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide.

    Science.gov (United States)

    Chen, J W; Eatock, R A

    2000-07-01

    Mammalian vestibular organs have two types of hair cell, type I and type II, which differ morphologically and electrophysiologically. Type I hair cells alone express an outwardly rectifying current, I(K, L), which activates at relatively negative voltages. We used whole cell and patch configurations to study I(K,L) in hair cells isolated from the sensory epithelia of rat semicircular canals. I(K,L) was potassium selective, blocked by 4-aminopyridine, and permeable to internal cesium. It activated with sigmoidal kinetics and was half-maximally activated at -74.5 +/- 1.6 mV (n = 35; range -91 to -50 mV). It was a very large conductance (91 +/- 8 nS at -37 mV; 35 nS/pF for a cell of average size). Patch recordings from type I cells revealed a candidate ion channel with a conductance of 20-30 pS. Because I(K,L) was activated at the resting potential, the cells had low input resistances (R(m)): median 25 MOmega at -67 mV versus 1.3 GOmega for type II cells. Consequently, injected currents comparable to large transduction currents (300 pA) evoked small (afferent neurotransmission: how does the receptor potential depolarize the cell into the activation range of Ca(2+) channels (positive to -60 mV) that mediate transmitter release? One possibility, suggested by spontaneous positive shifts in the activation range of I(K,L) during whole cell recording, is that the activation range might be modulated in vivo. Any factor that reduces the number of I(K,L) channels open at V(R) will increase R(m) and depolarize V(R). Nitric oxide (NO) is an ion channel modulator that is present in vestibular epithelia. Four different NO donors, applied externally, inhibited the I(K,L) conductance at -67 mV, with mean effects ranging from 33 to 76%. The NO donor sodium nitroprusside inhibited channel activity in patches when they were cell-attached but not excised, suggesting an intracellular cascade. Consistent with an NO-cGMP cascade, 8-bromo-cGMP also inhibited whole cell I(K,L). Ca(2

  10. Cochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss

    Science.gov (United States)

    Wang, Yanli; Steele, Charles R.; Puria, Sunil

    2016-01-01

    Since the discovery of otoacoustic emissions and outer hair cell (OHC) motility, the fundamental question of whether the cochlea produces mechanical power remains controversial. In the present work, direct calculations are performed on power loss due to fluid viscosity and power generated by the OHCs. A three-dimensional box model of the mouse cochlea is used with a feed-forward/feed-backward approximation representing the organ of Corti cytoarchitecture. The model is fit to in vivo basilar membrane motion with one free parameter for the OHCs. The calculations predict that the total power output from the three rows of OHCs can be over three orders of magnitude greater than the acoustic input power at 10 dB sound pressure level (SPL). While previous work shows that the power gain, or the negative damping, diminishes with intensity, we show explicitly based on our model that OHC power output increases and saturates with SPL. The total OHC power output is about 2 pW at 80 dB SPL, with a maximum of about 10 fW per OHC.

  11. Developmental refinement of hair cell synapses tightens the coupling of Ca2+ influx to exocytosis

    Science.gov (United States)

    Wong, Aaron B; Rutherford, Mark A; Gabrielaitis, Mantas; Pangršič, Tina; Göttfert, Fabian; Frank, Thomas; Michanski, Susann; Hell, Stefan; Wolf, Fred; Wichmann, Carolin; Moser, Tobias

    2014-01-01

    Cochlear inner hair cells (IHCs) develop from pre-sensory pacemaker to sound transducer. Here, we report that this involves changes in structure and function of the ribbon synapses between IHCs and spiral ganglion neurons (SGNs) around hearing onset in mice. As synapses matured they changed from holding several small presynaptic active zones (AZs) and apposed postsynaptic densities (PSDs) to one large AZ/PSD complex per SGN bouton. After the onset of hearing (i) IHCs had fewer and larger ribbons; (ii) CaV1.3 channels formed stripe-like clusters rather than the smaller and round clusters at immature AZs; (iii) extrasynaptic CaV1.3-channels were selectively reduced, (iv) the intrinsic Ca2+ dependence of fast exocytosis probed by Ca2+ uncaging remained unchanged but (v) the apparent Ca2+ dependence of exocytosis linearized, when assessed by progressive dihydropyridine block of Ca2+ influx. Biophysical modeling of exocytosis at mature and immature AZ topographies suggests that Ca2+ influx through an individual channel dominates the [Ca2+] driving exocytosis at each mature release site. We conclude that IHC synapses undergo major developmental refinements, resulting in tighter spatial coupling between Ca2+ influx and exocytosis. PMID:24442635

  12. Frequency locking in auditory hair cells: Distinguishing between additive and parametric forcing

    Science.gov (United States)

    Edri, Yuval; Bozovic, Dolores; Yochelis, Arik

    2016-10-01

    The auditory system displays remarkable sensitivity and frequency discrimination, attributes shown to rely on an amplification process that involves a mechanical as well as a biochemical response. Models that display proximity to an oscillatory onset (also known as Hopf bifurcation) exhibit a resonant response to distinct frequencies of incoming sound, and can explain many features of the amplification phenomenology. To understand the dynamics of this resonance, frequency locking is examined in a system near the Hopf bifurcation and subject to two types of driving forces: additive and parametric. Derivation of a universal amplitude equation that contains both forcing terms enables a study of their relative impact on the hair cell response. In the parametric case, although the resonant solutions are 1 : 1 frequency locked, they show the coexistence of solutions obeying a phase shift of π, a feature typical of the 2 : 1 resonance. Different characteristics are predicted for the transition from unlocked to locked solutions, leading to smooth or abrupt dynamics in response to different types of forcing. The theoretical framework provides a more realistic model of the auditory system, which incorporates a direct modulation of the internal control parameter by an applied drive. The results presented here can be generalized to many other media, including Faraday waves, chemical reactions, and elastically driven cardiomyocytes, which are known to exhibit resonant behavior.

  13. Otoferlin couples to clathrin-mediated endocytosis in mature cochlear inner hair cells.

    Science.gov (United States)

    Duncker, Susanne V; Franz, Christoph; Kuhn, Stephanie; Schulte, Uwe; Campanelli, Dario; Brandt, Niels; Hirt, Bernhard; Fakler, Bernd; Blin, Nikolaus; Ruth, Peter; Engel, Jutta; Marcotti, Walter; Zimmermann, Ulrike; Knipper, Marlies

    2013-05-29

    The encoding of auditory information with indefatigable precision requires efficient resupply of vesicles at inner hair cell (IHC) ribbon synapses. Otoferlin, a transmembrane protein responsible for deafness in DFNB9 families, has been postulated to act as a calcium sensor for exocytosis as well as to be involved in rapid vesicle replenishment of IHCs. However, the molecular basis of vesicle recycling in IHCs is largely unknown. In the present study, we used high-resolution liquid chromatography coupled with mass spectrometry to copurify otoferlin interaction partners in the mammalian cochlea. We identified multiple subunits of the adaptor protein complex AP-2 (CLAP), an essential component of clathrin-mediated endocytosis, as binding partners of otoferlin in rats and mice. The interaction between otoferlin and AP-2 was confirmed by coimmunoprecipitation. We also found that AP-2 interacts with myosin VI, another otoferlin binding partner important for clathrin-mediated endocytosis (CME). The expression of AP-2 in IHCs was verified by reverse transcription PCR. Confocal microscopy experiments revealed that the expression of AP-2 and its colocalization with otoferlin is confined to mature IHCs. When CME was inhibited by blocking dynamin action, real-time changes in membrane capacitance showed impaired synaptic vesicle replenishment in mature but not immature IHCs. We suggest that an otoferlin-AP-2 interaction drives Ca(2+)- and stimulus-dependent compensating CME in mature IHCs.

  14. Existence of Nicotinic Receptors in A Subset of Type I Vestibular Hair Cells of Guinea Pigs.

    Science.gov (United States)

    Guo, Chang-Kai

    2017-12-30

    In mammals, vestibular hair cells (VHCs) are classified as type I and II according to morphological criteria. Acetylcholine (ACh) is identified as the primary efferent neurotransmitter. To date, cholinergic activities have been reported in mammalian type II VHCs, but similar activities in type I VHCs have not been pursued presumably because the body of type I VHCs were suggested to be totally surrounded by afferent nerve calyces. A few reports showed that part of type I VHCs were incompletely surrounded by calyces and received contact from the efferent nerve endings in the mammals studied. The possibility of the expression of cholinergic receptors, their subunit composition, and their function in mammals' type I VHCs are still unclear. In this study, nicotinic responses were investigated by the whole-cell patch clamp technique in isolated type I VHCs of guinea pigs. Of the cells, 7.3% were sensitive to cholinergic agonists and showed an excitatory current at -40mV which was not sensitive to nifedipine, iberiotoxin (IBTX), and apamin. The main carriers of this current were Na+ and K+. The rank order of activation potency was nicotine > 1,1-dimethyl-4-phenyl-piperazinium (DMPP) > ACh. These nicotinic ACh receptors (nAChRs) were not blocked by strychnine and α-bungarotoxin (α-BTX), but sensitive to d-tubocurarine (dTC) and mecamylamine (Mec). The findings provide physiological evidence that some subtypes of nAChRs may be located in a subset of type I VHCs, which were different from α9α10 nAChRs. Copyright © 2017. Published by Elsevier B.V.

  15. Cholesterol influences potassium currents in inner hair cells isolated from guinea pig cochlea.

    Science.gov (United States)

    Kimitsuki, Takashi

    2017-02-01

    There is a correlation between serum hyperlipidemia and hearing loss. Cholesterol is an integral component of the cell membrane and regulates the activity of ion channels in the lipid bilayer. The aim of this study was to investigate the effects of cholesterol on the potassium currents in IHCs by using the cholesterol-depleting drug, MβCD, and water-soluble cholesterol. IHCs were acutely isolated from a mature guinea-pig cochlea and potassium currents were recorded. MβCD and water-soluble cholesterol were applied to IHCs under pressure puff pipettes. IHCs showed outwardly rectifying currents (IK,f and IK,s) in response to depolarizing voltage pulses, with only a slight inward current (IK,n) when hyperpolarized. In 10mM MβCD solutions, the amplitude of outward K currents reversely decreased; however, fast activation kinetics was preserved. In contrast, in solution of 1mM water-soluble cholesterol, the amplitude of outward K currents reversely increased. At the membrane potential of +110mV, relative conductances were 0.87±0.07 and 1.18±0.11 in MβCD solutions and cholesterol solutions, respectively. The amplitude of K currents in isolated IHCs was reversely changed by cholesterol-depleting drug and water-soluble cholesterol. These results demonstrated the possibility of the involvement of IHC function in hyperlipidemia-induced inner ear disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale.

    Science.gov (United States)

    Kozlov, Andrei S; Baumgart, Johannes; Risler, Thomas; Versteegh, Corstiaen P C; Hudspeth, A J

    2011-05-22

    The detection of sound begins when energy derived from an acoustic stimulus deflects the hair bundles on top of hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental physical challenge to the ear's high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part of the solution involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors that stabilize the structure further reduce the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of viscous and elastic forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.

  17. Hair casts

    Directory of Open Access Journals (Sweden)

    Sweta S Parmar

    2014-01-01

    Full Text Available Hair casts or pseudonits are circumferential concretions,which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  18. Cell culture of mechanoreceptor neurons innervating proleg sensory hairs in Manduca sexta larvae, and co-culture with target motoneurons.

    Science.gov (United States)

    Melville, J M; Hoffman, K L; Jarrard, H E; Weeks, J C

    2003-01-01

    The tip of each proleg in Manduca sexta larvae bears a dense array of mechanosensory hairs termed planta hairs (PHs), each innervated by a single sensory neuron (termed a PH-SN) located in the underlying epidermis. In the CNS, axon terminals of PH-SNs make direct, excitatory, nicotinic cholinergic synapses with proleg retractor motoneurons including the accessory planta retractor (APR). These synapses mediate a proleg withdrawal reflex, exhibit multiple forms of activity-dependent plasticity and weaken during the prepupal peak of ecdysteroids. In the present study we developed methods to dissociate PH-SNs from the epidermis and culture them alone or with APRs. The PH-SNs were fluorescently labeled in situ by introducing dye through the cut hair shaft or by retrograde axonal staining. Alternatively, unlabeled PH-SNs were utilized. The epidermis beneath the planta hair array was separated from the cuticle, enzymatically treated and mechanically dissociated into single cells. PH-SNs were cultured on glass coverslips coated with concanavalin A and laminin, in modified Leibovitz's IL-15 medium. Supplementation with medium conditioned by an insect cell line produced the best results. Dissociated PH-SNs had somatic diameters of ~10 micro m and typically bore a stout dendrite consisting of the inner and, occasionally, the outer dendritic segment. An axonal stump was sometimes retained. Viable PH-SNs typically extended new processes and often survived for 2-4 weeks. When co-cultured, PH-SNs and APRs exhibited robust growth and made close anatomical appositions. This culture system provides convenient experimental access to PH-SNs and may potentially permit sensorimotor synapses to be investigated in vitro.

  19. Specific and efficient transduction of Cochlear inner hair cells with recombinant adeno-associated virus type 3 vector.

    Science.gov (United States)

    Liu, Yuhe; Okada, Takashi; Sheykholeslami, Kianoush; Shimazaki, Kuniko; Nomoto, Tatsuya; Muramatsu, Shin-Ichi; Kanazawa, Takeharu; Takeuchi, Koichi; Ajalli, Rahim; Mizukami, Hiroaki; Kume, Akihiro; Ichimura, Keiichi; Ozawa, Keiya

    2005-10-01

    Recombinant adeno-associated virus (AAV) vectors are of interest for cochlear gene therapy because of their ability to mediate the efficient transfer and long-term stable expression of therapeutic genes in a wide variety of postmitotic tissues with minimal vector-related cytotoxicity. In the present study, seven AAV serotypes (AAV1-5, 7, 8) were used to construct vectors. The expression of EGFP by the chicken beta-actin promoter associated with the cytomegalovirus immediate-early enhancer in cochlear cells showed that each of these serotypes successfully targets distinct cochlear cell types. In contrast to the other serotypes, the AAV3 vector specifically transduced cochlear inner hair cells with high efficiency in vivo, while the AAV1, 2, 5, 7, and 8 vectors also transduced these and other cell types, including spiral ganglion and spiral ligament cells. There was no loss of cochlear function with respect to evoked auditory brain-stem responses over the range of frequencies tested after the injection of AAV vectors. These findings are of value for further molecular studies of cochlear inner hair cells and for gene replacement strategies to correct recessive genetic hearing loss due to monogenic mutations in these cells.

  20. Potassium currents of pear-shaped hair cells in relation to their location in frog crista ampullaris.

    Science.gov (United States)

    Prigioni, I; Russo, G; Marcotti, W

    1996-07-29

    Voltage-dependent K+ currents in pear-shaped hair cells of the frog crista ampullaris were investigated in thin slice preparations using the whole-cell variant of the patch-clamp technique. Microscopy observation revealed that pear-shaped cells are located in intermediate and peripheral regions of the crista, whereas they are absent in the central region. Voltage-clamp recordings in cells from the peripheral regions revealed that the total outward K+ current could be separated pharmacologically into three distinct components: a A-type K+ current (IA); an inactivating calcium-activated K+ current (IK(Ca)) and a delayed rectifier K+ current (IK). IK and IK(Ca) exhibited similar magnitude and accounted for most of the membrane cell conductance. The same experimental protocol applied to cells from the intermediate regions showed the presence of a large and sustained IK(Ca) which represented 95% of the total outward current. In this region IA was absent. The present results demonstrated that pear-shaped hair cells located in two discrete regions of frog crista ampullaris exhibit a different complement of voltage-dependent conductances, suggesting that they can play a different role in processing the natural stimulus.

  1. [Implantable middle ear hearing aids].

    Science.gov (United States)

    à Wengen, D F

    2004-01-01

    Conventional acoustic hearing aids are limited in their performance. Due to physical laws their amplification of sound is limited to within 5 kHz. However, the frequencies between 5 and 10 kHz are essential for understanding consonants. Words can only be understood correctly if their consonants can be understood. Furthermore noise amplification remains a problem with hearing aids. Other problems consist of recurrent infections of the external auditory canal, intolerance for occlusion of the ear canal, feedback noise, and resonances in speech or singing. Implantable middle ear hearing aids like the Soundbridge of Symphonix-Siemens and the MET of Otologics offer improved amplification and a more natural sound. Since the first implantation of a Soundbridge in Switzerland in 1996 almost one thousand patients have been implanted worldwide. The currents systems are semi-implantable. The external audio processor containing the microphone, computer chip, battery and radio system is worn in the hair bearing area behind the ear. Implantation is only considered after unsuccessful fitting of conventional hearing aids. In Switzerland the cost for these implantable hearing aids is covered by social insurances. Initially the cost for an implant is higher than for hearing aids. However, hearing aids need replacement every 5 or 6 years whereas implants will last 20 to 30 years. Due to the superior sound quality and the improved understanding of speech in noise, the number of patients with implantable hearing aids will certainly increase in the next years. Other middle ear implants are in clinical testing.

  2. Hair removal

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair...

  3. Hair Removal

    DEFF Research Database (Denmark)

    Hædersdal, Merete

    2011-01-01

    suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair...

  4. Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction.

    Science.gov (United States)

    Sotomayor, Marcos; Weihofen, Wilhelm A; Gaudet, Rachelle; Corey, David P

    2012-12-06

    Hearing and balance use hair cells in the inner ear to transform mechanical stimuli into electrical signals. Mechanical force from sound waves or head movements is conveyed to hair-cell transduction channels by tip links, fine filaments formed by two atypical cadherins known as protocadherin 15 and cadherin 23 (refs 4, 5). These two proteins are involved in inherited deafness and feature long extracellular domains that interact tip-to-tip in a Ca(2+)-dependent manner. However, the molecular architecture of this complex is unknown. Here we combine crystallography, molecular dynamics simulations and binding experiments to characterize the protocadherin 15-cadherin 23 bond. We find a unique cadherin interaction mechanism, in which the two most amino-terminal cadherin repeats (extracellular cadherin repeats 1 and 2) of each protein interact to form an overlapped, antiparallel heterodimer. Simulations predict that this tip-link bond is mechanically strong enough to resist forces in hair cells. In addition, the complex is shown to become unstable in response to Ca(2+) removal owing to increased flexure of Ca(2+)-free cadherin repeats. Finally, we use structures and biochemical measurements to study the molecular mechanisms by which deafness mutations disrupt tip-link function. Overall, our results shed light on the molecular mechanics of hair-cell sensory transduction and on new interaction mechanisms for cadherins, a large protein family implicated in tissue and organ morphogenesis, neural connectivity and cancer.

  5. Modes and Regulation of Endocytic Membrane Retrieval in Mouse Auditory Hair Cells

    Science.gov (United States)

    Jung, SangYong; Wong, Aaron B.; Reuter, Kirsten; Pangršič, Tina; Chakrabarti, Rituparna; Kügler, Sebastian; Lenz, Christine; Nouvian, Régis; Boumil, Rebecca M.; Frankel, Wayne N.; Wichmann, Carolin

    2014-01-01

    Synaptic vesicle recycling sustains high rates of neurotransmission at the ribbon-type active zones (AZs) of mouse auditory inner hair cells (IHCs), but its modes and molecular regulation are poorly understood. Electron microscopy indicated the presence of clathrin-mediated endocytosis (CME) and bulk endocytosis. The endocytic proteins dynamin, clathrin, and amphiphysin are expressed and broadly distributed in IHCs. We used confocal vglut1–pHluorin imaging and membrane capacitance (Cm) measurements to study the spatial organization and dynamics of IHC exocytosis and endocytosis. Viral gene transfer expressed vglut1–pHluorin in IHCs and targeted it to synaptic vesicles. The intravesicular pH was ∼6.5, supporting only a modest increase of vglut1–pHluorin fluorescence during exocytosis and pH neutralization. Ca2+ influx triggered an exocytic increase of vglut1–pHluorin fluorescence at the AZs, around which it remained for several seconds. The endocytic Cm decline proceeded with constant rate (linear component) after exocytosis of the readily releasable pool (RRP). When exocytosis exceeded three to four RRP equivalents, IHCs additionally recruited a faster Cm decline (exponential component) that increased with the amount of preceding exocytosis and likely reflects bulk endocytosis. The dynamin inhibitor Dyngo-4a and the clathrin blocker pitstop 2 selectively impaired the linear component of endocytic Cm decline. A missense mutation of dynamin 1 (fitful) inhibited endocytosis to a similar extent as Dyngo-4a. We propose that IHCs use dynamin-dependent endocytosis via CME to support vesicle cycling during mild stimulation but recruit bulk endocytosis to balance massive exocytosis. PMID:24431429

  6. Hair removal.

    Science.gov (United States)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available systems. Evidence has been found for long-term hair removal efficacy beyond 6 months after repetitive treatments with alexandrite, diode, and long-pulse Nd:YAG lasers, whereas the current long-term evidence is sparse for IPL devices. Treatment parameters must be adjusted to patient skin type and chromophore. Longer wavelengths and cooling are safer for patients with darker skin types. Hair removal with lasers and IPL sources are generally safe treatment procedures when performed by properly educated operators. However, safety issues must be addressed since burns and adverse events do occur. New treatment procedures are evolving. Consumer-based treatments with portable home devices are rapidly evolving, and presently include low-level diode lasers and IPL devices. Copyright © 2011 S. Karger AG, Basel.

  7. Travel Inside the Ear

    Science.gov (United States)

    ... Home » Health Info » Hearing, Ear Infections, and Deafness Travel Inside the Ear Video When sound waves reach ... are smaller than an orange seed. It then travels into the inner ear, which is filled with ...

  8. Travel Inside the Ear

    Medline Plus

    Full Text Available ... Home » Health Info » Hearing, Ear Infections, and Deafness Travel Inside the Ear Video When sound waves reach ... are smaller than an orange seed. It then travels into the inner ear, which is filled with ...

  9. A keratin 15 containing stem cell population from the hair follicle contributes to squamous papilloma development in the mouse.

    Science.gov (United States)

    Li, Shulan; Park, Heuijoon; Trempus, Carol S; Gordon, Derek; Liu, Yaping; Cotsarelis, George; Morris, Rebecca J

    2013-10-01

    The multistage model of nonmelanoma skin carcinogenesis has contributed significantly to our understanding of epithelial cancer in general. We used the Krt1-15CrePR1;R26R transgenic mouse to determine the contribution of keratin 15+ cells from the hair follicle to skin tumor development by following the labeled progeny of the keratin 15 expressing cells into papillomas. We present three novel observations. First, we found that keratin 15 expressing cells contribute to most of the papillomas by 20 weeks of promotion. Second, in contrast to the transient behavior of labeled keratin 15-derived progeny in skin wound healing, keratin 15 progeny persist in papillomas, and some malignancies for many months following transient induction of the reporter gene. Third, papillomas have surprising heterogeneity not only in their cellular composition, but also in their expression of the codon 61 signature Ha-ras mutation with approximately 30% of keratin 15-derived regions expressing the mutation. Together, these results demonstrate that keratin 15 expressing cells of the hair follicle contribute to cutaneous papillomas with long term persistence and a subset of which express the Ha-ras signature mutation characteristic of initiated cells. © 2012 Wiley Periodicals, Inc.

  10. Generation of Induced Pluripotent Stem Cells from Hair Follicle Bulge Neural Crest Stem Cells

    NARCIS (Netherlands)

    Ma, Ming-San; Czepiel, Marcin; Krause, Tina; Schaefer, Karl-Herbert; Boddeke, Erik; Copray, Sjef

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising candidates for the study of disease models as well as for tissue engineering purposes. Part of a strategy to develop safe reprogramming technique is reducing the number of exogenous reprogramming factors. Some cells types are more prone to

  11. Use of body hair and beard hair in hair restoration.

    Science.gov (United States)

    Umar, Sanusi

    2013-08-01

    For many hair restoration patients with limited scalp donor hair it is possible to use nonhead hair sources to increase the potential follicle supply. Follicular unit extraction provides the hair restoration surgeon with a useful surgical means for accessing this valuable source of donor reserve. Nonhead hair can also be used to restore eyebrows, eyelashes, and moustaches. This article focuses on the use of body hair and beard in hair restoration. Discussed are the indications and effective techniques for performing hair transplants using non head hair donor sources, along with the pitfalls and risks of this surgical modality. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Leptin controls hair follicle cycling.

    Science.gov (United States)

    Watabe, Reiko; Yamaguchi, Takashi; Kabashima-Kubo, Rieko; Yoshioka, Manabu; Nishio, Daisuke; Nakamura, Motonobu

    2014-04-01

    Leptin is a cytokine well known for its ability to control body weight and energy metabolism. Several lines of evidence have recently revealed that leptin also plays an important role in wound healing and immune modulation in skin. Sumikawa et al. Exp Dermatol 2014 evaluated the effect of leptin on hair follicle cycling using mutant and wild-type mice. They report that leptin is produced in dermal papilla cells in hair follicles and that leptin receptor-deficient db/db mice show an abnormality in hair follicle cycling. Moreover, leptin injection induced the transition into the growth stage of the hair cycle (anagen). On this basis, it now deserves exploration whether leptin-mediated signalling is a key stimulus for anagen induction and whether this may be targeted to manage human hair disorders with defect in the control of hair follicle cycling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-06

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. © 2015 The Author(s).

  14. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.

    2015-01-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  15. FCHSD1 and FCHSD2 are expressed in hair cell stereocilia and cuticular plate and regulate actin polymerization in vitro.

    Directory of Open Access Journals (Sweden)

    Huiren Cao

    Full Text Available Mammalian FCHSD1 and FCHSD2 are homologous proteins containing an amino-terminal F-BAR domain and two SH3 domains near their carboxyl-termini. We report here that FCHSD1 and FCHSD2 are expressed in mouse cochlear sensory hair cells. FCHSD1 mainly localizes to the cuticular plate, whereas FCHSD2 mainly localizes along the stereocilia in a punctuate pattern. Nervous Wreck (Nwk, the Drosophila ortholog of FCHSD1 and FCHSD2, has been shown to bind Wsp and play an important role in F-actin assembly. We show that, like its Drosophila counterpart, FCHSD2 interacts with WASP and N-WASP, the mammalian orthologs of Drosophila Wsp, and stimulates F-actin assembly in vitro. In contrast, FCHSD1 doesn't bind WASP or N-WASP, and can't stimulate F-actin assembly when tested in vitro. We found, however, that FCHSD1 binds via its F-BAR domain to the SH3 domain of Sorting Nexin 9 (SNX9, a well characterized BAR protein that has been shown to promote WASP-Arp2/3-dependent F-actin polymerization. FCHSD1 greatly enhances SNX9's WASP-Arp2/3-dependent F-actin polymerization activity. In hair cells, SNX9 was detected in the cuticular plate, where it colocalizes with FCHSD1. Our results suggest that FCHSD1 and FCHSD2 could modulate F-actin assembly or maintenance in hair cell stereocilia and cuticular plate.

  16. An in vivo root hair assay for determining rates of apoptotic-like programmed cell death in plants

    Directory of Open Access Journals (Sweden)

    Hogg Bridget V

    2011-12-01

    Full Text Available Abstract In Arabidopsis thaliana we demonstrate that dying root hairs provide an easy and rapid in vivo model for the morphological identification of apoptotic-like programmed cell death (AL-PCD in plants. The model described here is transferable between species, can be used to investigate rates of AL-PCD in response to various treatments and to identify modulation of AL-PCD rates in mutant/transgenic plant lines facilitating rapid screening of mutant populations in order to identify genes involved in AL-PCD regulation.

  17. Aqueous and Methanolic Extracts of Caulerpa mexicana Suppress Cell Migration and Ear Edema Induced by Inflammatory Agents

    Science.gov (United States)

    Bitencourt, Mariana Angelica Oliveira; Dantas, Gracielle Rodrigues; Lira, Daysianne Pereira; Barbosa-Filho, Jose Maria; de Miranda, George Emmanuel Cavalcanti; de Oliveira Santos, Barbara Viviana; Souto, Janeusa Trindade

    2011-01-01

    The regulation of the inflammatory response is essential to maintaining homeostasis. Several studies have investigated new drugs that may contribute to avoiding or minimizing excessive inflammatory process. The aim of this study was to evaluate the effect of extracts of green algae Caulerpa mexicana on models inflammation. In mice, the inflammatory peritonitis model is induced by zymosan. Previous treatment of mice with aqueous and methanolic extracts of C. mexicana was able to suppress the cell migration to the peritoneal cavity, in a time-dependent but not in a dose-dependent manner. The treatment of mice with C. mexicana extracts also decreased the xylene-induced ear edema, exerting strong inhibitory leukocyte migration elicited by zymosan into the air pouch. We concluded that administration of the extracts resulted in a reduction of cell migration to different sites as well as a decrease in edema formation induced by chemical irritants. This study demonstrates for the first time the anti-inflammatory effect of aqueous and methanolic extracts from the green marine algae Caulerpa mexicana. PMID:21892348

  18. Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix.

    Science.gov (United States)

    Purba, Talveen S; Brunken, Lars; Peake, Michael; Shahmalak, Asim; Chaves, Asuncion; Poblet, Enrique; Ceballos, Laura; Gandarillas, Alberto; Paus, Ralf

    2017-09-01

    Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21(CIP1), p27(KIP1) and p57(KIP2)) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21(CIP1), p27(KIP1) and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57(KIP2) protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically

  19. Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears

    Science.gov (United States)

    Fritzsch, B.; Signore, M.; Simeone, A.

    2001-01-01

    We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.

  20. Interspecies nuclear transfer using fibroblasts from leopard, tiger, and lion ear piece collected postmortem as donor cells and rabbit oocytes as recipients.

    Science.gov (United States)

    Yelisetti, Uma Mahesh; Komjeti, Suman; Katari, Venu Charan; Sisinthy, Shivaji; Brahmasani, Sambasiva Rao

    2016-06-01

    Skin fibroblast cells were obtained from a small piece of an ear of leopard, lion, and tiger collected postmortem and attempts were made to synchronize the skin fibroblasts at G0/G1 of cell cycle using three different approaches. Efficiency of the approaches was tested following interspecies nuclear transfer with rabbit oocytes as recipient cytoplasm. Fluorescence-activated cell sorting revealed that the proportion of G0/G1 cells increased significantly (P rabbit-rabbit nuclear transfer embryos (22.9%). In conclusion, fibroblast cells of leopard, lion, and tiger were successfully synchronized and used for the development of blastocysts using rabbit oocytes as recipient cytoplasm.

  1. Eye and hair colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma. A Danish case-control study

    DEFF Research Database (Denmark)

    Lock-Andersen, J; Drzewiecki, K T; Wulf, H C

    1999-01-01

    were of skin type II than skin type IV; skin type 11 was a risk factor for basal cell carcinoma with an odds ratio (OR) of 2.3. For cutaneous malignant melanoma, more cases than controls were red-haired or blond and of skin type II, but there was no difference in constitutive skin pigmentation. Hair...... colour and skin type were found to be independent risk factors for cutaneous malignant melanoma; red hair vs. black/brown: OR >9.7, blond hair vs. brown/black: OR = 2.4, and skin type 11 vs. type IV: OR=2.0. There were no gender-related differences in risk factors for basal cell carcinoma and cutaneous......To assess the importance of hair and eye colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma in fair-skinned Caucasians, we conducted two identical case-control studies in Denmark. We studied 145 cases with basal cell...

  2. Play it by Ear

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2014-01-01

    The first antenna for ear-to-ear communication with a standard Bluetooth chip has the potential to improve hearing aid technology.......The first antenna for ear-to-ear communication with a standard Bluetooth chip has the potential to improve hearing aid technology....

  3. Effects of ultraviolet-visible irradiation in the presence of melanin isolated from human black or red hair upon Ehrlich ascites carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Menon, I.A.; Persad, S.; Ranadive, N.S.; Haberman, H.F.

    1983-07-01

    The present study is an attempt to investigate the possibility that ultraviolet irradiation in the presence of pheomelanin may be more harmful to cells than the irradiation in the presence of eumelanin. The effects of UV-visible irradiation upon Ehrlich ascites carcinoma cells in the presence of the melanin isolated from human black hair (eumelanin) or from red hair (pheomelanin) were investigated. Irradiation of these cells was found to produce cell lysis, as observed by leakage of 51Cr from labeled cells and intracellular lactic dehydrogenase from the cells and decrease in cell viability demonstrated by the trypan blue exclusion test. The three parameters were quantitatively parallel to one another under various experimental conditions, namely different periods of irradiation and irradiation in the presence of different concentrations of melanin. The above effects were more pronounced when the irradiation was carried out in the presence of melanin from red hair than in the presence of black-hair melanin. In the absence of either melanin, the irradiation did not produce any significant effect in cell viability or cell lysis. Irradiation of the cells in the presence of red-hair melanin also decreased the transplantability of these cells. These observations clearly show that irradiation of cells in the presence of pheomelanin could produce cytotoxic effects. The present experimental design may have application in the development of in vitro models for the study of UV radiation-induced cutaneous carcinogenesis. The reactions of pheomelanin may be related to the susceptibility of ''Celtic'' skin to UV radiation-induced skin damage and carcinogenesis.

  4. Cell Source and Mechanism of Hair Cell Regeneration in the Neonatal Mouse Cochlea

    Science.gov (United States)

    2015-09-30

    including prestin, a protein specific to outer HCs that is necessary for the amplification of sound . Our findings demonstrate that, in contrast to common...the regeneration process ·,ve obse~ved is the ir natural response to HC death. The Atohl DTA aJld Pou4_f3DTR’· models likely induce HC death by react...cells in small intestine and colon by marker gene Lgr5. Nature 449. 1003- 1007. Belyantseva, I. A., Adler, H. J ., Curi, R., Frolenkov, G. I. and

  5. Cockayne syndrome group B (Csb) and group a (Csa) deficiencies predispose to hearing loss and cochlear hair cell degeneration in mice.

    Science.gov (United States)

    Nagtegaal, A Paul; Rainey, Robert N; van der Pluijm, Ingrid; Brandt, Renata M C; van der Horst, Gijsbertus T J; Borst, J Gerard G; Segil, Neil

    2015-03-11

    Sensory hair cells in the cochlea, like most neuronal populations that are postmitotic, terminally differentiated, and non-regenerating, depend on robust mechanisms of self-renewal for lifelong survival. We report that hair cell homeostasis requires a specific sub-branch of the DNA damage nucleotide excision repair pathway, termed transcription-coupled repair (TCR). Cockayne syndrome (CS), caused by defects in TCR, is a rare DNA repair disorder with a broad clinical spectrum that includes sensorineural hearing loss. We tested hearing and analyzed the cellular integrity of the organ of Corti in two mouse models of this disease with mutations in the Csb gene (CSB(m/m) mice) and Csa gene (Csa(-/-) mice), respectively. Csb(m/m) and Csa(-/-) mice manifested progressive hearing loss, as measured by an increase in auditory brainstem response thresholds. In contrast to wild-type mice, mutant mice showed reduced or absent otoacoustic emissions, suggesting cochlear outer hair cell impairment. Hearing loss in Csb(m/m) and Csa(-/-) mice correlated with progressive hair cell loss in the base of the organ of Corti, starting between 6 and 13 weeks of age, which increased by 16 weeks of age in a basal-to-apical gradient, with outer hair cells more severely affected than inner hair cells. Our data indicate that the hearing loss observed in CS patients is reproduced in mouse models of this disease. We hypothesize that accumulating DNA damage, secondary to the loss of TCR, contributes to susceptibility to hearing loss. Copyright © 2015 the authors 0270-6474/15/354280-07$15.00/0.

  6. Pharmacological models for inner ear therapy with emphasis on nitric oxide.

    Science.gov (United States)

    Takumida, M; Anniko, M; Popa, R; Zhang, D M

    2001-01-01

    Nitric oxide (NO)-mediated neurotoxicity may be an appropriate pathophysiological model with which to explain a variety of inner ear diseases characterized by acute or progressive hearing loss, tinnitus and vertigo. The localization of NO synthase (NOS) isoforms was examined in the inner ear of the pigmented guinea pig after intratympanic injection of 1 mg lipopolysaccharide (LPS) or 5 mg gentamicin (GM) using an immunohistochemical method, revealing the expression of NOS II in the inner ear. Production of NO in the isolated organ of Corti and utricle or in the isolated vestibular and cochlear hair cells after stimulation with L-arginine, glutamate, GM and LPS was investigated using the fluorescence indicator 4,5-diaminofluorescein diacetate. The fluorescence intensity of the sensory cells was augmented by stimulation with L-arginine, glutamate, GM and LPS. A significant increase in NO production was also noted in the LPS-treated animals. These findings imply that NO from constitutive NOS may mediate ototoxicity in the early phase, whereas NO from NOS II may contribute to the late phase of tissue damage in the inner ear. Based on this hypothesis, reduction of glutamatergic excitotoxicity and inhibition of NOS, scavenging superoxide and scavenging peroxynitrite are thought to attenuate NO-mediated otoneurotoxicity.

  7. Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt)

    Science.gov (United States)

    Erickson, Timothy; Morgan, Clive P; Olt, Jennifer; Hardy, Katherine; Busch-Nentwich, Elisabeth; Maeda, Reo; Clemens, Rachel; Krey, Jocelyn F; Nechiporuk, Alex; Barr-Gillespie, Peter G; Marcotti, Walter; Nicolson, Teresa

    2017-01-01

    Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle. DOI: http://dx.doi.org/10.7554/eLife.28474.001 PMID:28534737

  8. Role of mitochondrial uncoupling protein 4 in rat inner ear.

    Science.gov (United States)

    Smorodchenko, Alina; Rupprecht, Anne; Fuchs, Julia; Gross, Johann; Pohl, Elena E

    2011-08-01

    The uncoupling protein 4 (UCP4) belongs to the mitochondrial anion transporter family. Protein tissue distribution and functions are still a matter of debate. Using an antibody we have previously shown that UCP4 appears in neurons and to a lesser extent in astrocytes of murine neuronal tissue as early as days 12-14 of embryonic development (Smorodchenko et al., 2009). Here we demonstrated for the first time that neurosensory cells such as hair cells of the inner ear and mechanosensitive Merkel cells in skin also express a significant amount of UCP4. We tested the hypothesis about whether UCP4 contributes to the regulation of oxidative stress using the model of oxygen deprivation. For this we compared the protein expression level in freshly isolated explants of organ of Corti, modiolus and stria vascularis from neonatal rats with explants cultured under hypoxia. Western blot analysis revealed that the UCP4 level was not increased under hypoxic conditions, when compared to the mitochondrial outer membrane protein VDAC or to the anti-oxidative enzyme SOD2. We moreover demonstrated that UCP4 expression is differently regulated during postnatal stages and is region-specific. We hypothesized that UCP4 may play an important role in functional maturation of the rat inner ear. Copyright © 2011. Published by Elsevier Inc.

  9. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Raekil

    2006-01-01

    Full Text Available Abstract Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi and that interleukin 1 alpha (IL-1 alpha up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM. Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway.

  10. Remodeling of the Inner Hair Cell Microtubule Meshwork in a Mouse Model of Auditory Neuropathy AUNA1.

    Science.gov (United States)

    Surel, Clément; Guillet, Marie; Lenoir, Marc; Bourien, Jérôme; Sendin, Gaston; Joly, Willy; Delprat, Benjamin; Lesperance, Marci M; Puel, Jean-Luc; Nouvian, Régis

    2016-01-01

    Auditory neuropathy 1 (AUNA1) is a form of human deafness resulting from a point mutation in the 5' untranslated region of the Diaphanous homolog 3 (DIAPH3) gene. Notably, the DIAPH3 mutation leads to the overexpression of the DIAPH3 protein, a formin family member involved in cytoskeleton dynamics. Through study of diap3-overexpressing transgenic (Tg) mice, we examine in further detail the anatomical, functional, and molecular mechanisms underlying AUNA1. We identify diap3 as a component of the hair cells apical pole in wild-type mice. In the diap3-overexpressing Tg mice, which show a progressive threshold shift associated with a defect in inner hair cells (IHCs), the neurotransmitter release and potassium conductances are not affected. Strikingly, the overexpression of diap3 results in a selective and early-onset alteration of the IHC cuticular plate. Molecular dissection of the apical components revealed that the microtubule meshwork first undergoes aberrant targeting into the cuticular plate of Tg IHCs, followed by collapse of the stereociliary bundle, with eventual loss of the IHC capacity to transmit incoming auditory stimuli.

  11. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    Directory of Open Access Journals (Sweden)

    Ohlemiller Kevin K

    2010-07-01

    Full Text Available Abstract Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family.

  12. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    Science.gov (United States)

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  13. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    Directory of Open Access Journals (Sweden)

    Yong Miao

    Full Text Available Ginger (Zingiber officinale has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  14. Effects of gamma rays on the regeneration of murine hair follicles in the natural hair cycle.

    Science.gov (United States)

    Sugaya, Kimihiko

    2017-09-01

    This review evaluates the effects of γ-rays on the regeneration of murine hair follicles in the natural hair cycle. A series of studies were performed to investigate this issue, in which the whole bodies of C57BL/10JHir mice in the 1st telogen phase of the hair cycle were irradiated with γ-rays. The dermis of the irradiated skin showed a decrease in hair follicle density and induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs in the 2nd and 3rd anagen phases. An increased frequency of hypopigmented hair bulbs was still observed in the later hair cycle at postnatal day 200. There was no significant difference in the number of stem cells in the hair bulge region between control and irradiated skin. These results show that the effects of γ-rays on the pigmentation of murine hair follicles are persistently carried over to later hair cycles, although those on the number and structure of hair follicles appear to be hidden by the effects of aging. Our findings may be important for understanding the mechanisms of the actions of stem cells on hair regeneration in connection with age-related phenotypes.

  15. Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth.

    Science.gov (United States)

    Berson, Tobias; von Wangenheim, Daniel; Takáč, Tomáš; Šamajová, Olga; Rosero, Amparo; Ovečka, Miroslav; Komis, George; Stelzer, Ernst H K; Šamaj, Jozef

    2014-09-27

    Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. RabA1d is located in early endosomes/TGN and is involved in vesicle

  16. Developmental morphology of the middle ear.

    Science.gov (United States)

    Nishizaki, K; Anniko, M

    1997-01-01

    The development of the murine middle ear was monitored both qualitatively and morphometrically by scanning electron microscopy from the 19th gestational day to the adult stage. At birth, the middle ear was less well developed than the inner ear. The tympanic membrane (TM) was obscured by occlusion of the external auditory canal. Ciliated cells and secretory granules were present in the middle ear epithelium already 5 days after birth (DAB). Keratin debris was discerned on the external layer of the TM 9 DAB. By 12 DAB, mesenchymal tissue had resorbed from the middle ear cavity, except around the upper part of the ossicles. The middle ear was immature at birth but developed rapidly until 12 DAB. When compared with the avian middle ear the mouse middle ear was basically similar to that of humans, although in the human the stapedial artery is vestigial whereas in the mouse it persists as an important vessel. In man, there is no orbicular apophysis and no gonial of the malleus. The hypotympanum of the human middle ear is less developed than that of the murine middle ear. The mouse external auditory canal matures postnatally until 12 DAB, while in humans its development is complete at birth.

  17. Study of the betulin enriched birch bark extracts effects on human carcinoma cells and ear inflammation

    Directory of Open Access Journals (Sweden)

    Dehelean Cristina A

    2012-11-01

    Full Text Available Abstract Background Pentacyclic triterpenes, mainly betulin and betulinic acid, are valuable anticancer agents found in the bark of birch tree. This study evaluates birch bark extracts for the active principles composition. Results New improved extraction methods were applied on the bark of Betula pendula in order to reach the maximum content in active principles. Extracts were analyzed by HPLC-MS, Raman, SERS and 13C NMR spectroscopy which revealed a very high yield of betulin (over 90%. Growth inhibiting effects were measured in vitro on four malignant human cell lines: A431 (skin epidermoid carcinoma, A2780 (ovarian carcinoma, HeLa (cervix adenocarcinoma and MCF7 (breast adenocarcinoma, by means of MTT assay. All of the prepared bark extracts exerted a pronounced antiproliferative effect against human cancer cell lines. In vivo studies involved the anti-inflammatory effect of birch extracts on TPA-induced model of inflammation in mice. Conclusions The research revealed the efficacy of the extraction procedures as well as the antiproliferative and anti-inflammatory effects of birch extracts.

  18. Developmental expression of the actin depolymerizing factor ADF in the mouse inner ear and spiral ganglia.

    Science.gov (United States)

    Herde, Michel K; Friauf, Eckhard; Rust, Marco B

    2010-05-15

    Hair cells, the inner ear's sensory cells, are characterized by tens to hundreds of actin-rich stereocilia that form the hair bundle apparatus necessary for mechanoelectrical transduction. Both the number and length of actin filaments are precisely regulated in stereocilia. Proper cochlear and vestibular function also depends on actin filaments in nonsensory supporting cells. The formation of actin filaments is a dynamic, treadmill-like process in which actin-binding proteins play crucial roles. However, little is known about the presence and function of actin binding molecules in the inner ear, which set up, and maintain, actin-rich structures and regulate actin turnover. Here we examined the expression and subcellular location of the actin filament depolymerizing factor (ADF) in the cochlea and vestibular organs. By means of immunocytochemistry and confocal microscopy, we analyzed whole-mount preparations and cross-sections in fetal and postnatal mice (E15-P26). We found a transient ADF expression in immature hair cells of the organ of Corti, the utricle, and the saccule. Interestingly, the stereocilia were not labeled. By P26, ADF expression was restricted to supporting cells. In addition, we localized ADF in presynaptic terminals of medio-olivocochlear projections after hearing onset. A small population of spiral ganglion neurons strongly expressed ADF. Based on their relative number, peripheral location within the ganglion, smaller soma size, and coexpression of neurofilament 200, we identified these cells as Type II spiral ganglion neurons. The developmentally regulated ADF expression suggests a temporally restricted function in the stereocilia and, thus, a hitherto undescribed role of ADF. (c) 2009 Wiley-Liss, Inc.

  19. Anatomical and physiological development of the human inner ear.

    Science.gov (United States)

    Lim, Rebecca; Brichta, Alan M

    2016-08-01

    We describe the development of the human inner ear with the invagination of the otic vesicle at 4 weeks gestation (WG), the growth of the semicircular canals from 5 WG, and the elongation and coiling of the cochlea at 10 WG. As the membranous labyrinth takes shape, there is a concomitant development of the sensory neuroepithelia and their associated structures within. This review details the growth and differentiation of the vestibular and auditory neuroepithelia, including synaptogenesis, the expression of stereocilia and kinocilia, and innervation of hair cells by afferent and efferent nerve fibres. Along with development of essential sensory structures we outline the formation of crucial accessory structures of the vestibular system - the cupula and otolithic membrane and otoconia as well as the three cochlea compartments and the tectorial membrane. Recent molecular studies have elaborated on classical anatomical studies to characterize the development of prosensory and sensory regions of the fetal human cochlea using the transcription factors, PAX2, MAF-B, SOX2, and SOX9. Further advances are being made with recent physiological studies that are beginning to describe when hair cells become functionally active during human gestation. This article is part of a Special Issue entitled . Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Presynaptic CaV1.3 channels regulate synaptic ribbon size and are required for synaptic maintenance in sensory hair cells.

    Science.gov (United States)

    Sheets, Lavinia; Kindt, Katie S; Nicolson, Teresa

    2012-11-28

    L-type calcium channels (Ca(V)1) are involved in diverse processes, such as neurotransmission, hormone secretion, muscle contraction, and gene expression. In this study, we uncover a role for Ca(V)1.3a in regulating the architecture of a cellular structure, the ribbon synapse, in developing zebrafish sensory hair cells. By combining in vivo calcium imaging with confocal and super-resolution structured illumination microscopy, we found that genetic disruption or acute block of Ca(V)1.3a channels led to enlargement of synaptic ribbons in hair cells. Conversely, activating channels reduced both synaptic-ribbon size and the number of intact synapses. Along with enlarged presynaptic ribbons in ca(V)1.3a mutants, we observed a profound loss of juxtaposition between presynaptic and postsynaptic components. These synaptic defects are not attributable to loss of neurotransmission, because vglut3 mutants lacking neurotransmitter release develop relatively normal hair-cell synapses. Moreover, regulation of synaptic-ribbon size by Ca(2+) influx may be used by other cell types, because we observed similar pharmacological effects on pinealocyte synaptic ribbons. Our results indicate that Ca(2+) influx through Ca(V)1.3 fine tunes synaptic ribbon size during hair-cell maturation and that Ca(V)1.3 is required for synaptic maintenance.

  1. Human Wharton's Jelly Mesenchymal Stem Cells plasticity augments scar-free skin wound healing with hair growth.

    Science.gov (United States)

    Sabapathy, Vikram; Sundaram, Balasubramanian; V M, Sreelakshmi; Mankuzhy, Pratheesh; Kumar, Sanjay

    2014-01-01

    Human mesenchymal stem cells (MSCs) are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS) supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL). Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG) at optimal concentration can be resourcefully used for labeling of stem cells and in vivo

  2. Human Wharton's Jelly Mesenchymal Stem Cells plasticity augments scar-free skin wound healing with hair growth.

    Directory of Open Access Journals (Sweden)

    Vikram Sabapathy

    Full Text Available Human mesenchymal stem cells (MSCs are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL. Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG at optimal concentration can be resourcefully used for labeling of stem cells

  3. Quantitative Analysis of Aquaporin Expression Levels during the Development and Maturation of the Inner Ear.

    Science.gov (United States)

    Miyoshi, Takushi; Yamaguchi, Taro; Ogita, Kiyokazu; Tanaka, Yasuko; Ishibashi, Ken-Ichi; Ito, Hiroaki; Kobayashi, Taisuke; Nakagawa, Takayuki; Ito, Juichi; Omori, Koichi; Yamamoto, Norio

    2017-04-01

    Aquaporins (AQPs) are a family of small membrane proteins that transport water molecules across the plasma membrane along the osmotic gradient. Mammals express 13 subtypes of AQPs, including the recently reported "subcellular AQPs", AQP11 and 12. Each organ expresses specific subsets of AQP subtypes, and in the inner ear, AQPs are essential for the establishment and maintenance of two distinct fluids, endolymph and perilymph. To evaluate the contribution of AQPs during the establishment of inner ear function, we used quantitative reverse transcription polymerase chain reaction to quantify the expression levels of all known AQPs during the entire development and maturation of the inner ear. Using systematic and longitudinal quantification, we found that AQP11 was majorly and constantly expressed in the inner ear, and that the expression levels of several AQPs follow characteristic longitudinal patterns: increasing (Aqp0, 1, and 9), decreasing (Aqp6, 8, and 12), and peak of expression on E18 (Aqp2, 5, and 7). In particular, the expression level of Aqp9 increased by 70-fold during P3-P21. We also performed in situ hybridization of Aqp11, and determined the unique localization of Aqp11 in the outer hair cells. Immunohistochemistry of AQP9 revealed its localization in the supporting cells inside the organ of Corti, and in the root cells. The emergence of AQP9 expression in these cells was during P3-P21, which was coincident with the marked increase of its expression level. Combining these quantification and localization data, we discuss the possible contributions of these AQPs to inner ear function.

  4. Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation.

    Science.gov (United States)

    Youssef, Khalil Kass; Lapouge, Gaëlle; Bouvrée, Karine; Rorive, Sandrine; Brohée, Sylvain; Appelstein, Ornella; Larsimont, Jean-Christophe; Sukumaran, Vijayakumar; Van de Sande, Bram; Pucci, Doriana; Dekoninck, Sophie; Berthe, Jean-Valery; Aerts, Stein; Salmon, Isabelle; del Marmol, Véronique; Blanpain, Cédric

    2012-12-01

    Basal cell carcinoma, the most frequent human skin cancer, arises from activating hedgehog (HH) pathway mutations; however, little is known about the temporal changes that occur in tumour-initiating cells from the first oncogenic hit to the development of invasive cancer. Using an inducible mouse model enabling the expression of a constitutively active Smoothened mutant (SmoM2) in the adult epidermis, we carried out transcriptional profiling of SmoM2-expressing cells at different times during cancer initiation. We found that tumour-initiating cells are massively reprogrammed into a fate resembling that of embryonic hair follicle progenitors (EHFPs). Wnt/ β-catenin signalling was very rapidly activated following SmoM2 expression in adult epidermis and coincided with the expression of EHFP markers. Deletion of β-catenin in adult SmoM2-expressing cells prevents EHFP reprogramming and tumour initiation. Finally, human basal cell carcinomas also express genes of the Wnt signalling and EHFP signatures.

  5. Nanoparticle Mediated Drug Delivery of Rolipram to Tyrosine Kinase B Positive Cells in the Inner Ear with Targeting Peptides and Agonistic Antibodies

    Directory of Open Access Journals (Sweden)

    Rudolf eGlueckert

    2015-05-01

    Full Text Available AimSystemic pharmacotherapies have limitation due to blood-labyrinth barrier, so local delivery via the round window membrane opens a path for effective treatment. Multifunctional nanoparticle (NP mediated cell specific drug delivery may enhance efficacy and reduce side effects. Different NPs with ligands to target TrkB receptor were tested. Distribution, uptake mechanisms, trafficking, and bioefficacy of drug release of rolipram loaded NPs were evaluated.Methods We tested lipid based nanocapsules (LNCs, Quantum Dot, silica NPs with surface modification by peptides mimicking TrkB or TrkB activating antibodies. Bioefficacy of drug release was tested with rolipram loaded LNCs to prevent cisplatin induced apoptosis. We established different cell culture models with SH-SY-5Y and inner ear derived cell lines and used neonatal and adult mouse explants. Uptake and trafficking was evaluated with FACS and confocal as well as transmission electron microscopy. ResultsPlain NPs show some selectivity in uptake related to the in-vitro system properties, carrier material and NP size. Some peptide ligands provide enhanced targeted uptake to neuronal cells but failed to show this in cell cultures. Agonistic antibodies linked to silica NPs showed TrkB activation and enhanced binding to inner ear derived cells. Rolipram loaded LNCs proved as effective carriers to prevent cisplatin induced apoptosis.DiscussionMost NPs with targeting ligands showed limited effects to enhance uptake. NP aggregation and unspecific binding may change uptake mechanisms and impair endocytosis by an overload of NPs. This may affect survival signaling. NPs with antibodies activate survival signaling and show effective binding to TrkB positive cells but needs further optimization for specific internalization. Bioefficiacy of rolipram release confirms LNCs as encouraging vectors for drug delivery of lipophilic agents to the inner ear with ideal release characteristics independent of

  6. Nanoparticle mediated drug delivery of rolipram to tyrosine kinase B positive cells in the inner ear with targeting peptides and agonistic antibodies.

    Science.gov (United States)

    Glueckert, Rudolf; Pritz, Christian O; Roy, Soumen; Dudas, Jozsef; Schrott-Fischer, Anneliese

    2015-01-01

    Systemic pharmacotherapies have limitation due to blood-labyrinth barrier, so local delivery via the round window membrane opens a path for effective treatment. Multifunctional nanoparticle (NP)-mediated cell specific drug delivery may enhance efficacy and reduce side effects. Different NPs with ligands to target TrkB receptor were tested. Distribution, uptake mechanisms, trafficking, and bioefficacy of drug release of rolipram loaded NPs were evaluated. We tested lipid based nanocapsules (LNCs), Quantum Dot, silica NPs with surface modification by peptides mimicking TrkB or TrkB activating antibodies. Bioefficacy of drug release was tested with rolipram loaded LNCs to prevent cisplatin-induced apoptosis. We established different cell culture models with SH-SY-5Y and inner ear derived cell lines and used neonatal and adult mouse explants. Uptake and trafficking was evaluated with FACS and confocal as well as transmission electron microscopy. Plain NPs show some selectivity in uptake related to the in vitro system properties, carrier material, and NP size. Some peptide ligands provide enhanced targeted uptake to neuronal cells but failed to show this in cell cultures. Agonistic antibodies linked to silica NPs showed TrkB activation and enhanced binding to inner ear derived cells. Rolipram loaded LNCs proved as effective carriers to prevent cisplatin-induced apoptosis. Most NPs with targeting ligands showed limited effects to enhance uptake. NP aggregation and unspecific binding may change uptake mechanisms and impair endocytosis by an overload of NPs. This may affect survival signaling. NPs with antibodies activate survival signaling and show effective binding to TrkB positive cells but needs further optimization for specific internalization. Bioefficiacy of rolipram release confirms LNCs as encouraging vectors for drug delivery of lipophilic agents to the inner ear with ideal release characteristics independent of endocytosis.

  7. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana

    NARCIS (Netherlands)

    Thole, J.M.; Vermeer, J.E.M.; Zhang, Y.; Gadella, Th.W.J.; Nielsen, E.

    2008-01-01

    Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair-defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed

  8. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  9. Ciliary hair cells and cuticular photoreceptor of the hornet Vespa orientalis as components of a gravity detecting system : an SEM/TEM investigation

    NARCIS (Netherlands)

    Jongebloed, WL; Rosenzweig, E; Kalicharan, D; van der Want, JJL; Ishay, JS

    1999-01-01

    This paper describes three types of hair cell configurations with stereo- and kinocilia in the head of the hornet; these were encountered at the vertex and frons regions adjacent to the three ocelli and are assumed to be part of the hornet's gravity detecting system together with cuticular

  10. Development of a drug delivery system for the inner ear using poly(amino acid)-based nanoparticles.

    Science.gov (United States)

    Kim, Dong-Kee; Park, Shi-Nae; Park, Kyoung-Ho; Park, Chan Woo; Yang, Keum-Jin; Kim, Jong-Duk; Kim, Min-Sik

    2015-05-01

    Local delivery systems for treatment of intractable inner ear disorders have been attempted by many investigators. To evaluate the permeability and safety of a drug delivery system for the inner ear using a poly(2-hydroxyethyl aspartamide) (PHEA) polymersome. One-month-old male C57/BL6 mice were used. We administered the same amount of the fluorescent dye, Nile red, into the middle ear in two forms: loaded in PHEA polymersomes (NP group) or diluted in ethanol (NR group). At 1 day after administration, we harvested the cochlea and counted visible red particles in the tissues of cochlea under confocal microscopy and compared the groups. In a safety evaluation, 1 week after the same surgery, we conducted hearing tests and histological evaluations of the bulla and cochlea, and compared the results with those of the sham operation and negative control groups. In terms of permeability, the number of red particles in the organ of Corti was increased significantly in the NP group, and three subjects in the NP group showed uptake of red particles in inner hair cells. However, there was no statistically significant difference in the observations in the lateral wall or modiolus. In safety tests, the NP and sham-operation groups showed decreased DPOAE responses and mildly swollen middle ear mucosa, compared with the negative control group, which was thought to be the result of postoperative changes. PHEA nanoparticles may have utility as a drug carrier into the inner ear in terms of both permeability and safety.

  11. Hair Dye

    African Journals Online (AJOL)

    cosmetics, temporary tattoos, photographic development and lithography plates, photocopying and printing inks, black rubber, oils, greases and gasoline [2]. PPD is the most common constituent of hair dye formulations. It is often the key ingredient but can also be used for color enhancement. PPD is commonly used.

  12. Hair Loss

    Science.gov (United States)

    ... Infants and Children Shoulder Problems Skin Rashes & Other Skin Problems Throat Problems Tooth Problems Urination Problems Back to Symptoms Step 2 Answering Questions Is your hair falling out in small patches?YesNoAre these patches red, itchy or oily?YesNoAre you a man who has gradually lost ...

  13. Ear Infection and Vaccines

    Science.gov (United States)