WorldWideScience

Sample records for e2f target genes

  1. E2F target genes: unraveling the biology

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Ciro, Marco; Cocito, Andrea

    2004-01-01

    The E2F transcription factors are downstream effectors of the retinoblastoma protein (pRB) pathway and are required for the timely regulation of numerous genes essential for DNA replication and cell cycle progression. Several laboratories have used genome-wide approaches to discover novel target...

  2. DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function

    DEFF Research Database (Denmark)

    Britschgi, A; Trinh, E; Rizzi, M

    2008-01-01

    that is markedly decreased upon DAPK2 knockdown. Moreover, E2F1 and KLF6 show cooperation in activating the DAPK2 promoter. In summary, our findings establish DAPK2 as a novel Sp1-dependent target gene for E2F1 and KLF6 in cell death response.Oncogene advance online publication, 2 June 2008; doi:10.1038/onc.2008.179....

  3. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes

    DEFF Research Database (Denmark)

    Di Stefano, Luisa; Jensen, Michael Rugaard; Helin, Kristian

    2003-01-01

    The E2F family of transcription factors play an essential role in the regulation of cell cycle progression. In a screen for E2F-regulated genes we identified a novel E2F family member, E2F7. Like the recently identified E2F-like proteins of Arabidopsis, E2F7 has two DNA binding domains and binds ...

  4. Identification of target genes of the p16INK4A-pRB-E2F pathway

    DEFF Research Database (Denmark)

    Vernell, Richard; Helin, Kristian; Müller, Heiko

    2003-01-01

    Deregulation of the retinoblastoma protein (pRB) pathway is a hallmark of human cancer. The core members of this pathway include the tumor suppressor protein, pRB, which through binding to a number of cellular proteins, most notably members of the E2F transcription factor family, regulates...... progression through the cell division cycle. With the aim of identifying transcriptional changes provoked by deregulation of the pRB pathway, we have used cell lines that conditionally express a constitutively active phosphorylation site mutant of pRB (pRBDeltaCDK) or p16INK4A (p16). The expression of p...... degree of overlap between genes regulated by p16 and pRB. Data we have obtained previously for E2F family members showed that 74 of the genes repressed by pRB and p16 were induced by the E2Fs and 23 genes that were induced by pRB and p16 were repressed by the E2Fs. Thus, we have identified 97 genes...

  5. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1

    DEFF Research Database (Denmark)

    Jenal, Mathias; Trinh, Emmanuelle; Britschgi, Christian

    2009-01-01

    The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened...... to the HIC1 promoter was shown by chromatin immunoprecipitation assays in human TIG3 fibroblasts expressing tamoxifen-activated E2F1. In agreement, activation of E2F1 in TIG3-E2F1 cells markedly increased HIC1 expression. Interestingly, expression of E2F1 in the p53(-/-) hepatocellular carcinoma cell line...

  6. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase

    DEFF Research Database (Denmark)

    Vigo, E; Müller, H; Prosperini, E

    1999-01-01

    to the estrogen receptor ligand binding domain (ER). In this study, we demonstrated that activation of all three E2Fs could relieve the mitogen requirement for entry into S phase in Rat1 fibroblasts and that E2F activity leads to a shortening of the G(0)-G(1) phase of the cell cycle by 6 to 7 h. In contrast...... in the absence of protein synthesis. Furthermore, CDC25A is defined as a novel E2F target whose expression can be directly regulated by E2F-1. Data showing that CDC25A is an essential target for E2F-1, since its activity is required for efficient induction of S phase by E2F-1, are provided. Finally, our results...... show that expression of two E2F target genes, namely CDC25A and cyclin E, is sufficient to induce entry into S phase in quiescent fibroblasts. Taken together, our results provide an important step in defining how E2F activity leads to deregulated proliferation....

  7. Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia cell line

    DEFF Research Database (Denmark)

    Saito, M; Helin, K; Valentine, M B

    1995-01-01

    The E2F transcription factor plays an important regulatory role in cell proliferation, mediating the expression of genes whose products are essential for inducing resting cells to enter the cell cycle and synthesize DNA. To investigate the possible involvement of E2F in hematopoietic malignancies...... chromosomal locations previously assigned E2F2 and E2F3, two additional members of the E2F family. Although deletions or structural rearrangements of E2F1 were not detected in 14 primary acute leukemia or myelodysplasia samples with structural abnormalities of chromosome 20q11, the gene was amplified...... and overexpressed in HEL erythroleukemia cells and translocated to other chromosomes in several established human leukemia cell lines. This study provides the first evidence of gene amplification involving a member of the E2F family of transcription factors. We propose that E2F1 overexpression in erythroid...

  8. Copy Number Defects of G1-Cell Cycle Genes in Neuroblastoma are Frequent and Correlate with High Expression of E2F Target Genes and a Poor Prognosis

    NARCIS (Netherlands)

    Molenaar, Jan J.; Koster, Jan; Ebus, Marli E.; van Sluis, Peter; Westerhout, Ellen M.; de Preter, Katleen; Gisselsson, David; Øra, Ingrid; Speleman, Frank; Caron, Huib N.; Versteeg, Rogier

    2012-01-01

    The tightly controlled network of cell cycle genes consists of a core of cyclin dependent kinases (CDKs) that are activated by periodically expressed cyclins. The activity of the cyclin-CDK complexes is regulated by cyclin dependent kinase inhibitors (CDKIs) and multiple signal transduction routes

  9. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo

    NARCIS (Netherlands)

    Beijersbergen, R.L.; Kerkhoven, R.M.; Zhu, L.; Carlée, L.; Voorhoeve, P.M.; Bernards, R.A.

    1994-01-01

    The E2F family of transcription factors controls the expression of genes that are involved in cell cycle regulation. E2F DNA-binding activity is found in complex with the retinoblastoma protein, pRb, and with the pRb-related p107 and p130. To date, cDNAs for three members of the E2F gene family have

  10. Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas

    DEFF Research Database (Denmark)

    Liontos, Michalis; Niforou, Katerina; Velimezi, Georgia

    2009-01-01

    Osteosarcoma is the most common primary bone cancer. Mutations of the RB gene represent the most frequent molecular defect in this malignancy. A major consequence of this alteration is that the activity of the key cell cycle regulator E2F1 is unleashed from the inhibitory effects of pRb. Studies...... in animal models and in human cancers have shown that deregulated E2F1 overexpression possesses either "oncogenic" or "oncosuppressor" properties, depending on the cellular context. To address this issue in osteosarcomas, we examined the status of E2F1 relative to cell proliferation and apoptosis...... this aggressive neoplasm by innovative therapies....

  11. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression

    NARCIS (Netherlands)

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell

  12. E2F1-mediated transcriptional inhibition of the plasminogen activator inhibitor type 1 gene

    DEFF Research Database (Denmark)

    Koziczak, M; Müller, H; Helin, K

    2001-01-01

    -regulation of PAI-1 gene expression correlates with an increase in endogenous E2F activity. When cells were treated with a cdk2/4-specific inhibitor, which maintains E2F in an inactive state, the decline of serum-induced PAI-1 mRNA levels was suppressed. In mutant U2OS cells expressing a temperature....... These results all indicate that endogenous E2F can directly repress the PAI-1 gene. DNase I hypersensitive-site analysis of the PAI-1 promoter suggested the involvement of conformation changes in chromatin structure of the PAI-1 promoter. 5' deletion analysis of the PAI-1 promoter showed that multiple sites...

  13. E2f3a and E2f3b make overlapping but different contributions to total E2f3 activity

    OpenAIRE

    Danielian, PS; Friesenhahn, LB; Faust, AM; West, JC; Caron, AM; Bronson, RT; Lees, JA

    2008-01-01

    The E2f transcription factors are key downstream targets of the retinoblastoma protein tumor suppressor that control cell proliferation. E2F3 has garnered particular attention because it is amplified in various human tumors. E2f3 mutant mice typically die around birth and E2f3-deficient cells have a proliferation defect that correlates with impaired E2f-target gene activation and also induction of p19Arf and p53. The E2f3 locus encodes two isoforms, E2f3a and E2f3b, which differ in their N-te...

  14. Apaf-1 is a transcriptional target for E2F and p53

    DEFF Research Database (Denmark)

    Moroni, M C; Hickman, E S; Lazzerini Denchi, E

    2001-01-01

    Loss of function of the retinoblastoma protein, pRB, leads to lack of differentiation, hyperproliferation and apoptosis. Inactivation of pRB results in deregulated E2F activity, which in turn induces entry to S-phase and apoptosis. Induction of apoptosis by either the loss of pRB...... between the deregulation of the pRB pathway and apoptosis. Furthermore, because the pRB pathway is functionally inactivated in most cancers, the identification of Apaf-1 as a transcriptional target for E2F might explain the increased sensitivity of tumour cells to chemotherapy. We also show that......, independently of the pRB pathway, Apaf-1 is a direct transcriptional target of p53, suggesting that p53 might sensitize cells to apoptosis by increasing Apaf-1 levels....

  15. HER2 Signaling Drives DNA Anabolism and Proliferation through SRC-3 Phosphorylation and E2F1-Regulated Genes.

    Science.gov (United States)

    Nikolai, Bryan C; Lanz, Rainer B; York, Brian; Dasgupta, Subhamoy; Mitsiades, Nicholas; Creighton, Chad J; Tsimelzon, Anna; Hilsenbeck, Susan G; Lonard, David M; Smith, Carolyn L; O'Malley, Bert W

    2016-03-15

    Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2(+) tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease still develop over time. Although the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatic approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is impaired. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell-cycle progression, and DNA replication. We show that HER2 signaling promotes breast cancer cell proliferation through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin-dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor palbociclib, defines overlap and divergence of adjuvant pharmacologic targeting. Importantly, lapatinib and palbociclib strictly block de novo synthesis of DNA, mostly through disruption of E2F1 and its target genes. These results have implications for rational discovery of pharmacologic combinations in preclinical models of adjuvant treatment and therapeutic resistance. ©2016 American Association for Cancer Research.

  16. Timing of transcription during the cell cycle: Protein complexes binding to E2F, E2F/CLE, CDE/CHR, or CHR promoter elements define early and late cell cycle gene expression.

    Science.gov (United States)

    Müller, Gerd A; Stangner, Konstanze; Schmitt, Thomas; Wintsche, Axel; Engeland, Kurt

    2017-11-17

    A central question in cell cycle control is how differential gene expression is regulated. Timing of expression is important for correct progression through the cell cycle. E2F, CDE, and CHR promoter sites have been linked to transcriptional repression in resting cells and activation during the cell cycle. Further, the DREAM complex binds CHR or CDE/CHR elements of G2/M genes resulting in repression during G0/G1. Here, we show that DREAM also binds to E2F sites of S phase genes in quiescence and upon p53 activation. Furthermore, we describe a novel class of promoter sites, the CHR-like elements (CLE), which can support binding of DREAM to E2F elements. Activation of such S phase genes is achieved through binding of E2F1-3/DP complexes to E2F sites. In contrast, the activating MuvB complexes MMB and FOXM1-MuvB bind to CHR elements and mediate peak expression in G2/M. In conclusion, data presented here in combination with earlier results leads us to propose a model that explains how DREAM can repress early cell cycle genes through E2F or E2F/CLE sites and late genes through CHR or CDE/CHR elements. Also p53-dependent indirect transcriptional repression through the p53-p21-Cyclin/CDK-DREAM-E2F/CLE/CDE/CHR pathway requires DREAM binding to E2F or E2F/CLE sites in early cell cycle genes and binding of DREAM to CHR or CDE/CHR elements of late cell cycle genes. Specific timing of activation is achieved through binding of E2F1-3/DP to E2F sites and MMB or FOXM1-MuvB complexes to CHR elements.

  17. An inverted repeat motif stabilizes binding of E2F and enhances transcription of the dihydrofolate reductase gene

    DEFF Research Database (Denmark)

    Wade, M; Blake, M C; Jambou, R C

    1995-01-01

    and viral genes. This element, 5'-TTTCGCGCCAAA-3', is comprised of two overlapping, oppositely oriented sites which match the consensus E2F site (5'-TTT(C/G)(C/G)CGC-3'). Recent work has shown that E2F binding activity is composed of at least six related cellular polypeptides which are capable of forming...

  18. E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression

    Directory of Open Access Journals (Sweden)

    Fusco Alfredo

    2006-08-01

    Full Text Available Abstract The High Mobility Group protein HMGA2 is a nuclear architectural factor that plays a critical role in a wide range of biological processes including regulation of gene expression, embryogenesis and neoplastic transformation. Several studies are trying to identify the mechanisms by which HMGA2 protein is involved in each of these activities, and only recently some new significant insights are emerging from the study of transgenic and knock-out mice. Overexpression of HMGA2 gene leads to the onset of prolactin and GH-hormone induced pituitary adenomas in mice, suggesting a critical role of this protein in pituitary tumorigenesis. This was also confirmed in the human pathology by the finding that HMGA2 amplification and/or overexpression is present in human prolactinomas. This review focuses on recent data that explain the mechanism by which HMGA2 induces the development of pituitary adenomas in mice. This mechanism entails the activation of the E2F1 protein by the HMGA2-mediated displacement of HDAC1 from pRB protein.

  19. TNFα modulates Fibroblast Growth Factor Receptor 2 gene expression through the pRB/E2F1 pathway: identification of a non-canonical E2F binding motif.

    Directory of Open Access Journals (Sweden)

    Sirio D'Amici

    Full Text Available Interactions between epithelium and mesenchyme during wound healing are not fully understood, but Fibroblast Growth Factors (FGFs and their receptors FGFRs are recognized as key elements. FGFR2 gene encodes for two splicing transcript variants, FGFR2-IIIb or Keratinocyte Growth Factor Receptor (KGFR and FGFR2-IIIc, which differ for tissue localization and ligand specificity. Proinflammatory cytokines play an essential role in the regulation of epithelial-mesenchymal interactions, and have been indicated to stimulate FGFs production. Here we demonstrated that upregulation of FGFR2 mRNA and protein expression is induced by the proinflammatory cytokines Tumor Necrosis Factor-α, Interleukin-1β and Interleukin 2. Furthermore, we found that TNFα determines FGFR2 transcriptional induction through activation of pRb, mediated by Raf and/or p38 pathways, and subsequent release of the transcription factor E2F1. Experiments based on FGFR2 promoter serial deletions and site-directed mutagenesis allowed us to identify a minimal responsive element that retains the capacity to be activated by E2F1. Computational analysis indicated that this element is a non-canonical E2F responsive motif. Thus far, the molecular mechanisms of FGFR2 upregulation during wound healing or in pathological events are not known. Our data suggest that FGFR2 expression can be modulated by local recruitment of inflammatory cytokines. Furthermore, since alterations in FGFR2 expression have been linked to the pathogenesis of certain human cancers, these findings could also provide elements for diagnosis and potential targets for novel therapeutic approaches.

  20. Exploring Genetic Factors Involved in Huntington Disease Age of Onset: E2F2 as a New Potential Modifier Gene.

    Directory of Open Access Journals (Sweden)

    Leire Valcárcel-Ocete

    Full Text Available Age of onset (AO of Huntington disease (HD is mainly determined by the length of the CAG repeat expansion (CAGexp in exon 1 of the HTT gene. Additional genetic variation has been suggested to contribute to AO, although the mechanism by which it could affect AO is presently unknown. The aim of this study is to explore the contribution of candidate genetic factors to HD AO in order to gain insight into the pathogenic mechanisms underlying this disorder. For that purpose, two AO definitions were used: the earliest age with unequivocal signs of HD (earliest AO or eAO, and the first motor symptoms age (motor AO or mAO. Multiple linear regression analyses were performed between genetic variation within 20 candidate genes and eAO or mAO, using DNA and clinical information of 253 HD patients from REGISTRY project. Gene expression analyses were carried out by RT-qPCR with an independent sample of 35 HD patients from Basque Country Hospitals. We found suggestive association signals between HD eAO and/or mAO and genetic variation within the E2F2, ATF7IP, GRIN2A, GRIN2B, LINC01559, HIP1 and GRIK2 genes. Among them, the most significant was the association between eAO and rs2742976, mapping to the promoter region of E2F2 transcription factor. Furthermore, rs2742976 T allele patient carriers exhibited significantly lower lymphocyte E2F2 gene expression, suggesting a possible implication of E2F2-dependent transcriptional activity in HD pathogenesis. Thus, E2F2 emerges as a new potential HD AO modifier factor.

  1. Reactivation of the tumour suppressor RASSF1A in breast cancer by simultaneous targeting of DNA and E2F1 methylation.

    Directory of Open Access Journals (Sweden)

    María F Montenegro

    Full Text Available BACKGROUND: Tumour suppressor genes are often transcriptionally silenced by promoter hypermethylation, and recent research has implicated alterations in chromatin structure as the mechanistic basis for this repression. In addition to DNA methylation, other epigenetic post-translational modifications that modulate the stability and binding of specific transcription factors to gene promoters have emerged as important mechanisms for controlling gene expression. The aim of this study was to analyse the implications of these mechanisms and their molecular connections in the reactivation of RASSF1A in breast cancer. METHODS: Compounds that modulate the intracellular concentration of adenosine, such as dipyridamole (DIPY, greatly increase the antiproliferative effects of 3-O-(3,4,5-trimethoxybenzoyl-(--catechin (TMCG, a synthetic antifolate derived from the structure of tea catechins. Quantitative real-time PCR arrays and MALDI-TOF mass spectrometry indicated that this combination (TMCG/DIPY induced apoptosis in breast cancer cells by modulating the methylation levels of DNA and proteins (such as E2F1, respectively. Chromatin immunoprecipitation (ChIP assays were employed to confirm that this combination induced chromatin remodelling of the RASSF1A promoter and increased the occupancy of E2F1 at the promoter of this tumour suppressor gene. RESULTS: The TMCG/DIPY combination acted as an epigenetic treatment that reactivated RASSF1A expression and induced apoptosis in breast cancer cells. In addition to modulating DNA methylation and chromatin remodelling, this combination also induced demethylation of the E2F1 transcription factor. The ChIP assay showed enhancement of E2F1 occupancy at the unmethylated RASSF1A promoter after TMCG/DIPY treatment. Interestingly, inhibition of E2F1 demethylation using an irreversible inhibitor of lysine-specific demethylase 1 reduced both TMCG/DIPY-mediated RASSF1A expression and apoptosis in MDA-MB-231 cells, suggesting

  2. E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer

    DEFF Research Database (Denmark)

    Lu, Z; Luo, R Z; Peng, H

    2006-01-01

    ARHI is a maternally imprinted tumor suppressor gene whose expression is markedly downregulated in breast cancer. Reactivation of ARHI expression in breast cancer cells is associated with increased histone H3 acetylation and decreased lysine 9 methylation of histone H3. An ARHI promoter segment...... of the tumor suppressor gene ARHI in breast cancer cells....... that spanned bases -420 to +58 (designated the P2 region) exhibits significantly higher promoter activity in normal cells than in cancer cells. To better understand the molecular mechanisms contributing to this differential transcriptional activity, we sought to identify transcription factors that bind...

  3. Two E2F elements regulate the proliferating cell nuclear antigen promoter differently during leaf development.

    Science.gov (United States)

    Egelkrout, Erin M; Mariconti, Luisa; Settlage, Sharon B; Cella, Rino; Robertson, Dominique; Hanley-Bowdoin, Linda

    2002-12-01

    E2F transcription factors regulate genes expressed at the G1/S boundary of the cell division cycle in higher eukaryotes. Although animal E2F proteins and their target promoters have been studied extensively, little is known about how these factors regulate plant promoters. An earlier study identified two E2F consensus binding sites in the promoter of a Nicotiana benthamiana gene encoding proliferating cell nuclear antigen (PCNA) and showed that the proximal element (E2F2) is required for the full repression of PCNA expression in mature leaves. In this study, we examined the distal element (E2F1) and how it interacts with the E2F2 site to regulate the PCNA promoter. Gel shift assays using plant nuclear extracts or purified Arabidopsis E2F and DP proteins showed that different complexes bind to the two E2F sites. Mutation of the E2F1 site or both sites differentially altered PCNA promoter function in transgenic plants. As reported previously for the E2F2 mutation, the E2F1 and E2F1+2 mutations partially relieved the repression of the PCNA promoter in mature leaves. In young tissues, the E2F1 mutation resulted in a threefold reduction in PCNA promoter activity, whereas the E2F1+2 mutation had no detectable effect. The activity of E2F1+2 mutants was indistinguishable from that of E2F2 mutants. These results demonstrate that both E2F elements contribute to the repression of the PCNA promoter in mature leaves, whereas the E2F1 site counters the repression activity of the E2F2 element in young leaves.

  4. Knockdown of E2f1 by RNA interference impairs proliferation of rat cells in vitro

    Directory of Open Access Journals (Sweden)

    Luciana dos Reis Vasques

    2010-01-01

    Full Text Available E2F1 plays a key role in cell-cycle regulation in mammals, since its transcription factor activity controls genes required for DNA synthesis and apoptosis. E2F1 deregulation is a common feature among different tumor types and can be a major cause of cell proliferation. Thus, blocking E2F1 expression by RNA interference represents a promising therapeutic approach. In this study, the introduction of specific short hairpin RNAs (shRNAs reduced E2f1 expression by up to 77%, and impaired rat glioma cell proliferation by approximately 70%, as compared to control cells. Furthermore, we investigated the expression of E2f1 target genes, Cyclin A and Cyclin E. Cyclin A was found to be down-regulated, whereas Cyclin E had similar expression to control cells, indicating that gene(s other than E2f1 control its transcription. Other E2f family members, E2f2 and E2f3, which have been classified in the same subgroup of transcriptional activators, were also analyzed. Expression of both E2f2 and E2f3 was similar to control cells, showing no cross-inactivation or up-regulation to compensate for the absence of E2f1. Nevertheless, their expression was insufficient to maintain the initial proliferation potential. Taken together, our results suggest that shE2f1 is a promising therapy to control tumor cell proliferation.

  5. E2F-5, a new E2F family member that interacts with p130 in vivo

    NARCIS (Netherlands)

    Hijmans, E.M.; Voorhoeve, P.M.; Beijersbergen, R.L.; Veer, L.J. van 't; Bernards, R.A.

    1995-01-01

    E2F DNA binding sites are found in a number of genes whose expression is tightly regulated during the cell cycle. The activity of E2F transcription factors is regulated by association with specific repressor molecules that can bind and inhibit the E2F transactivation domain. For E2F-1, E2F-2, and

  6. G1/S-regulated E2F-containing protein complexes bind to the mouse thymidine kinase gene promoter

    DEFF Research Database (Denmark)

    Dou, Q P; Zhao, S; Levin, A H

    1994-01-01

    By performing DNase I footprint analysis, we had identified three distinct protein binding sequences (MT1, MT2, and MT3) located on the mouse thymidine kinase (TK) upstream promoter (Dou, Q.-P., Fridovich-Keil, J. L., and Pardee, A.B. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 1157-1161). Here we....... (iii) Formation of both these DNA-protein complexes were cell cycle-dependent: a G0/G1 phase-specific complex (E2F.G0/G1) was replaced by an S phase-specific complex(es) (E2F.S), whereas "free" E2F increased after the G1/S transition. (iv) Pulse inhibition of protein synthesis with cycloheximide...

  7. E2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program.

    Directory of Open Access Journals (Sweden)

    Xiaolei Jiang

    Full Text Available The E2F1 transcription factor regulates cell proliferation and apoptosis through the control of a considerable variety of target genes. Previous work has detailed the role of other transcription factors in mediating the specificity of E2F function. Here we identify the NF-YB transcription factor as a novel direct E2F1 target. Genome-wide expression analysis of the effects of NFYB knockdown on E2F1-mediated transcription identified a large group of genes that are co-regulated by E2F1 and NFYB. We also provide evidence that knockdown of NFYB enhances E2F1-induced apoptosis, suggesting a pro-survival function of the NFYB/E2F1 joint transcriptional program. Bioinformatic analysis suggests that deregulation of these NFY-dependent E2F1 target genes might play a role in sarcomagenesis as well as drug resistance.

  8. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Li, Jinru; Wang, Bo [College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Chen, Linfeng [Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, Boston, 02115 MA (United States); Niu, Wenyan; Yao, Zhi [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); Baniahmad, Aria, E-mail: aban@mti.uni-jena.de [Institute for Human Genetics, Jena University Hospital, 07740 Jena (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  9. Meta-analysis and gene set enrichment relative to er status reveal elevated activity of MYC and E2F in the "basal" breast cancer subgroup.

    Directory of Open Access Journals (Sweden)

    M Chehani Alles

    Full Text Available BACKGROUND: Breast cancers lacking the estrogen receptor (ER can be distinguished from other breast cancers on the basis of poor prognosis, high grade, distinctive histopathology and unique molecular signatures. These features further distinguish estrogen receptor negative (ER- tumor subtypes, but targeted therapy is currently limited to tumors over-expressing the ErbB2 receptor. METHODOLOGY/PRINCIPAL FINDINGS: To uncover the pathways against which future therapies could be developed we undertook a meta-analysis of gene expression from five large microarray datasets relative to ER status. A measure of association with ER status was calculated for every Affymetrix HG-U133A probe set and the pathways that distinguished ER- tumors were defined by testing for enrichment of biologically defined gene sets using Gene Set Enrichment Analysis (GSEA. As expected, the expression of the direct transcriptional targets of the ER was muted in ER- tumors, but the expression of genes indirectly regulated by estrogen was enhanced. We also observed enrichment of independent MYC- and E2F-driven transcriptional programs. We used a cell model of estrogen and MYC action to define the interaction between estrogen and MYC transcriptional activity in breast cancer. We found that the basal subgroup of ER- breast cancer showed a strong MYC transcriptional response that reproduced the indirect estrogen response seen in estrogen receptor positive (ER+ breast cancer cells. CONCLUSIONS/SIGNIFICANCE: Increased transcriptional activity of MYC is a characteristic of basal breast cancers where it mimics a large part of an estrogen response in the absence of the ER, suggesting a mechanism by which these cancers achieve estrogen-independence and providing a potential therapeutic target for this poor prognosis sub group of breast cancer.

  10. Analysis list: E2f1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available E2f1 Blood,Liver + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E2f1.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E2f1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E2f1....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/E2f1.Blood.tsv,http://dbarch...ive.biosciencedbc.jp/kyushu-u/mm9/colo/E2f1.Liver.tsv http://dbarchive.bioscience

  11. Analysis list: E2f3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available E2f3 Digestive tract,Embryonic fibroblast + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E2f3....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E2f3.5.tsv http://dbarch...ive.biosciencedbc.jp/kyushu-u/mm9/target/E2f3.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/E2f3....Digestive_tract.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/E2f3.Em

  12. The E2F2 transcription factor sustains hepatic glycerophospholipid homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Eduardo N Maldonado

    Full Text Available Increasing evidence links metabolic signals to cell proliferation, but the molecular wiring that connects the two core machineries remains largely unknown. E2Fs are master regulators of cellular proliferation. We have recently shown that E2F2 activity facilitates the completion of liver regeneration after partial hepatectomy (PH by regulating the expression of genes required for S-phase entry. Our study also revealed that E2F2 determines the duration of hepatectomy-induced hepatic steatosis. A transcriptomic analysis of normal adult liver identified "lipid metabolism regulation" as a major E2F2 functional target, suggesting that E2F2 has a role in lipid homeostasis. Here we use wild-type (E2F2+/+ and E2F2 deficient (E2F2-/- mice to investigate the in vivo role of E2F2 in the composition of liver lipids and fatty acids in two metabolically different contexts: quiescence and 48-h post-PH, when cellular proliferation and anabolic demands are maximal. We show that liver regeneration is accompanied by large triglyceride and protein increases without changes in total phospholipids both in E2F2+/+ and E2F2-/- mice. Remarkably, we found that the phenotype of quiescent liver tissue from E2F2-/- mice resembles the phenotype of proliferating E2F2+/+ liver tissue, characterized by a decreased phosphatidylcholine to phosphatidylethanolamine ratio and a reprogramming of genes involved in generation of choline and ethanolamine derivatives. The diversity of fatty acids in total lipid, triglycerides and phospholipids was essentially preserved on E2F2 loss both in proliferating and non-proliferating liver tissue, although notable exceptions in inflammation-related fatty acids of defined phospholipid classes were detected. Overall, our results indicate that E2F2 activity sustains the hepatic homeostasis of major membrane glycerolipid components while it is dispensable for storage glycerolipid balance.

  13. Regulation of cell proliferation by the E2F transcription factors

    DEFF Research Database (Denmark)

    Helin, K

    1998-01-01

    demonstrated that individual members of the E2F transcription factor family are likely to have distinct roles in mammalian development and homeostasis. Additional mechanisms regulating the activity of the E2F transcription factors have been reported, including subcellular localization and proteolysis of the E2......Fs in the proteasomes. Novel target genes for the E2F transcription factors have been identified that link the E2Fs directly to the initiation of DNA replication....

  14. E2F mediates induction of the Sp1-controlled promoter of the human DNA polymerase ɛ B-subunit gene POLE2

    Science.gov (United States)

    Huang, Deqi; Jokela, Maarit; Tuusa, Jussi; Skog, Sven; Poikonen, Kari; Syväoja, Juhani E.

    2001-01-01

    The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase ɛ (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F–pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase α, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes. PMID:11433027

  15. Activation of B-Myb by E2F1 in hepatocellular carcinoma.

    Science.gov (United States)

    Nakajima, Tomoaki; Yasui, Kohichiroh; Zen, Keika; Inagaki, Yoshikazu; Fujii, Hideki; Minami, Masahito; Tanaka, Shinji; Taniwaki, Masafumi; Itoh, Yoshito; Arii, Shigeki; Inazawa, Johji; Okanoue, Takeshi

    2008-09-01

    Deregulation of E2F1 transcriptional activity is observed in a variety of cancers, including hepatocellular carcinoma (HCC). The aim of the present study is to identify transcriptional target genes of E2F1 in HCC. We determined expression levels for E2F1 and ten candidate genes thought to be targets of E2F1 in primary HCCs using a real-time quantitative reverse transcription-PCR assay. Following small interfering RNA (siRNA)-mediated knockdown of E2F1 in HCC cell lines, we quantified mRNA levels of the candidate E2F1 target genes. E2F1 was significantly over-expressed in 41 primary HCCs as compared to non-tumorous liver tissues. Among the candidates, MYBL2, whose product is the transcriptional factor B-Myb, which is involved in controlling cell-cycle progression and apoptosis, was significantly over-expressed in primary HCCs. Additionally, expression levels of MYBL2 correlated with those of E2F1. Knockdown of E2F1 resulted in a decrease in expression of MYBL2. A copy-number gain for MYBL2 was observed in 36 of 66 primary HCCs, suggesting that MYBL2 expression is up-regulated by amplification in addition to being regulated by E2F1. Moreover, siRNA-mediated knockdown of MYBL2 led to reduced expression of CDC2 (which encodes CDC2), cyclin A2 (CCNA2), and topoisomerase II alpha (TOP2A), implicating these genes in the cell cycle and suggesting that they may be downstream targets of B-Myb. MYBL2 is a probable transcriptional target of E2F1 in HCC and may therefore be a useful biomarker for diagnosis and an attractive target for molecular therapies useful to treat HCC.

  16. Identification of cell cycle–regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors

    Science.gov (United States)

    Grant, Gavin D.; Brooks, Lionel; Zhang, Xiaoyang; Mahoney, J. Matthew; Martyanov, Viktor; Wood, Tammara A.; Sherlock, Gavin; Cheng, Chao; Whitfield, Michael L.

    2013-01-01

    We identify the cell cycle–regulated mRNA transcripts genome-wide in the osteosarcoma-derived U2OS cell line. This results in 2140 transcripts mapping to 1871 unique cell cycle–regulated genes that show periodic oscillations across multiple synchronous cell cycles. We identify genomic loci bound by the G2/M transcription factor FOXM1 by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and associate these with cell cycle–regulated genes. FOXM1 is bound to cell cycle–regulated genes with peak expression in both S phase and G2/M phases. We show that ChIP-seq genomic loci are responsive to FOXM1 using a real-time luciferase assay in live cells, showing that FOXM1 strongly activates promoters of G2/M phase genes and weakly activates those induced in S phase. Analysis of ChIP-seq data from a panel of cell cycle transcription factors (E2F1, E2F4, E2F6, and GABPA) from the Encyclopedia of DNA Elements and ChIP-seq data for the DREAM complex finds that a set of core cell cycle genes regulated in both U2OS and HeLa cells are bound by multiple cell cycle transcription factors. These data identify the cell cycle–regulated genes in a second cancer-derived cell line and provide a comprehensive picture of the transcriptional regulatory systems controlling periodic gene expression in the human cell division cycle. PMID:24109597

  17. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription

    DEFF Research Database (Denmark)

    Christensen, Jesper; Cloos, Paul; Toftegaard, Ulla

    2005-01-01

    The E2F family of transcription factors are downstream effectors of the retinoblastoma protein, pRB, pathway and are essential for the timely regulation of genes necessary for cell-cycle progression. Here we describe the characterization of human and murine E2F8, a new member of the E2F family...

  18. MicroRNA-125a Regulates Cell Proliferation Via Directly Targeting E2F2 in Osteosarcoma

    OpenAIRE

    Tieying Tao; Qinrong Shen; Jianmin Luo; Yang Xu; Wenqing Liang

    2017-01-01

    Background/Aims: Increasing evidence has shown that miR-125a plays important role in human cancer progression. However, little is known about the function of miR-125a in osteosarcoma. Methods: The expression of miR-125a in osteosarcoma tissues and cell lines were examined by qRT-PCR. The biological role of miR-125a in osteosarcoma cell proliferation was examined in vitro. The targets of miR-125a were identified by a dual-luciferase reporter assay. Results: The results showed that the expressi...

  19. Genome-wide analysis reveals NRP1 as a direct HIF1 alpha-E2F7 target in the regulation of motorneuron guidance in vivo

    NARCIS (Netherlands)

    de Bruin, Alain; Cornelissen, Peter W. A.; Kirchmaier, Bettina C.; Mokry, Michal; Iich, Elhadi; Nirmala, Ella; Liang, Kuo-Hsuan; Vegh, Anna M. D.; Scholman, Koen T.; Koerkamp, Marian J. Groot; Holstege, Frank C.; Cuppen, Edwin; Schulte-Merker, Stefan; Bakker, Walbert J.

    2016-01-01

    In this study, we explored the existence of a transcriptional network co-regulated by E2F7 and HIF1 alpha, as we show that expression of E2F7, like HIF1 alpha, is induced in hypoxia, and because of the previously reported ability of E2F7 to interact with HIF1 alpha. Our genome-wide analysis uncovers

  20. DcE2F, a functional plant E2F-like transcriptional activator from Daucus carota.

    Science.gov (United States)

    Albani, D; Mariconti, L; Ricagno, S; Pitto, L; Moroni, C; Helin, K; Cella, R

    2000-06-23

    In animal cells the progression of the cell cycle through G(1)/S transition and S phase is under the control of the pRB/E2F regulatory pathway. The E2F transcription factors are key activators of genes coding for several regulatory proteins and for enzymes involved in nucleotide and DNA synthesis. In this report we have detected the presence of E2F-like DNA binding activities in carrot nuclear extracts, and we have isolated a carrot cDNA (DcE2F) encoding a plant E2F homologue. The DcE2F gene is expressed in proliferating cells and is induced during the G(1)/S transition of the cell cycle. Supershift experiments using anti-DcE2F antiserum have confirmed that the DcE2F protein is a component of the carrot E2F-like nuclear activities. DNA binding assays have demonstrated that the DcE2F protein can recognize a canonical E2F cis-element in association with a mammalian DP protein. Furthermore, transactivation assays have revealed that DcE2F is a functional transcription factor that can transactivate, together with a DP partner, an E2F-responsive reporter gene in both plant and mammalian cells.

  1. Analysis list: E2f4 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available E2f4 Blood,Embryonic fibroblast,Liver,Muscle,Pluripotent stem cell + mm9 http://dba...rchive.biosciencedbc.jp/kyushu-u/mm9/target/E2f4.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E2f4....5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E2f4.10.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/colo/E2f4.Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/E2f4....Embryonic_fibroblast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/E2f4.Liver.tsv,htt

  2. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site

    DEFF Research Database (Denmark)

    Schulze, A; Zerfass, K; Spitkovsky, D

    1995-01-01

    Cyclin A is involved in the control of S phase and mitosis in mammalian cells. Expression of the cyclin A gene in nontransformed cells is characterized by repression of its promoter during the G1 phase of the cell cycle and its induction at S-phase entry. We show that this mode of regulation...

  3. E2F site in the essential promoter region does not confer S phase-specific transcription of the ABCC10 gene in human prostate cancer cells.

    Science.gov (United States)

    Dabrowska, Magdalena; Sirotnak, Francis M

    2017-01-01

    ABCC10 (MRP7) plays a role in cellular detoxification and resistance to anticancer drugs. Since ABCC10 gene transcription in human prostate cancer CWR22Rv1 cells was found dependent on E2F binding sequence motif, ABCC10 expression in G1 and S phases of the cell cycle of CWR22Rv1 cells, was analyzed. The cells were synchronized in G1 phase by double thymidine block and in S phase by thymidine/mimosine double block. ABCC10 mRNA level was found to be similar in S phase-synchronized and asynchronous cell populations. In G1 phase it decreased by 2.4- to 3-fold. It is thus inferred, that ABCC10 expression in CWR22Rv1 cells is not S phase-specific but is primarily associated with cell proliferation.

  4. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription

    DEFF Research Database (Denmark)

    Cartwright, P; Müller, H; Wagener, C

    1998-01-01

    The E2F family of transcription factors are essential for the regulation of genes required for appropriate progression through the cell cycle. Five members of the E2F family have been previously reported, namely E2F1-5. All five are key elements in transcriptional regulation of essential genes......, and they can be divided into two functional groups, those that induce S-phase progression when overexpressed in quiescent cells (E2Fs 1-3), and those that do not (E2Fs 4-5). Here, we describe the identification of a novel member of this family, which we refer to as E2F-6. E2F-6 shares significant homology...... promoter (TTTCGCGC). In contrast to the other members of the E2F family, ectopic expression of E2F-6 inhibits transcription from promoters possessing E2F recognition sites rather than activating transcription. In addition, overexpression of E2F-6 suppresses the transactivational effects of coexpression...

  5. Oct3/4 directly regulates expression of E2F3a in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Dai; Ueda, Atsushi; Akagi, Tadayuki; Yokota, Takashi; Koide, Hiroshi, E-mail: hkoide@med.kanazawa-u.ac.jp

    2015-04-10

    Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activity by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth. - Highlights: • Oct3/4 positively regulates E2F3a expression in ES cells. • Oct3/4 binds to the promoter region of the E2F3a gene. • Overexpression of E2F6, an inhibitor of E2F3a, reduces ES cell growth. • E2F3a recovers growth retardation of ES cells caused by Oct3/4 reduction.

  6. DcE2F, a functional plant E2F-like transcriptional activator from Daucus carota

    DEFF Research Database (Denmark)

    Albani, D; Mariconti, L; Ricagno, S

    2000-01-01

    In animal cells the progression of the cell cycle through G(1)/S transition and S phase is under the control of the pRB/E2F regulatory pathway. The E2F transcription factors are key activators of genes coding for several regulatory proteins and for enzymes involved in nucleotide and DNA synthesis...... experiments using anti-DcE2F antiserum have confirmed that the DcE2F protein is a component of the carrot E2F-like nuclear activities. DNA binding assays have demonstrated that the DcE2F protein can recognize a canonical E2F cis-element in association with a mammalian DP protein. Furthermore, transactivation...

  7. Bioinformatic detection of E47, E2F1 and SREBP1 transcription factors as potential regulators of genes associated to acquisition of endometrial receptivity

    Directory of Open Access Journals (Sweden)

    Croxatto Horacio B

    2011-01-01

    Full Text Available Abstract Background The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones. Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology, several reports have provided the gene expression patterns of human endometrial tissue during the window of implantation. However it is required that biological connections be made across these genomic datasets to take full advantage of them. The objective of this work was to perform a research synthesis of available gene expression profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its molecular basis and regulation. Methods Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript list (CERTL. For this cluster of genes we determined their functional annotations using available web-based databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites using bioinformatics tools and determined over-represented features. Results We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it was enriched with transcripts related to the immune response, complement activation and cell cycle regulation. Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription factors were the most consistently over-represented and in both up- and down-regulated genes during the window of implantation. Conclusions Our research synthesis allowed organizing and mining high throughput data to explore endometrial receptivity and focus future research efforts on specific genes and pathways. The discovery of possible

  8. Network-based differential gene expression analysis suggests cell cycle related genes regulated by E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma

    Science.gov (United States)

    2013-01-01

    Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize

  9. CDK4, pRB and E2F1: connected to insulin

    Directory of Open Access Journals (Sweden)

    Blanchet Emilie

    2010-02-01

    Full Text Available Abstract Pancreatic β-cells are metabolic sensors involved in the control of glucose homeostasis. This particular cell type controls insulin secretion through a fine-tuned process, which dregulation have important pathological consequences, such as observed during type 2 diabetes. We recently implicated E2F1 in the control of glucose homeostasis. First we showed that E2f1-/- mice have decreased pancreatic size, as the result of impaired postnatal pancreatic growth. We observed in this study that E2F1 was highly expressed in non-proliferating pancreatic β-cells, suggesting that E2F1, besides the control of β-cell number could have a role in pancreatic β-cell function. We demonstrate in our recent study, both in vitro and in vivo that E2F1 directly regulates the expression of Kir6.2, a key component of the KATP channel involved in the regulation of glucose-induced insulin secretion in pancreatic β-cells. Expression of Kir6.2 is lost in pancreas of E2f1-/- mice, resulting in insulin secretion defects in these mice. Furthermore, we demonstrated by in tissue chromatin immunoprecipitation analysis that regulation of Kir6.2 expression by E2F1 follows the same regulatory pathway that the classical E2F1 target genes, implicating the participation of CDK4 and retinoblastoma protein. Moreover, in this context, E2F1 transcriptional activity is regulated by glucose and insulin through the CDK4-dependent inactivation of the pRB protein. In summary we provide evidence that the CDK4-pRB-E2F1 regulatory pathway is involved in glucose homeostasis. In our recent study we decipher a new function for these factors in the control of insulin secretion and open up new avenues for the treatment of metabolic diseases, in particular type 2 diabetes.

  10. Repression of androgen receptor transcription through the E2F1/DNMT1 axis.

    Directory of Open Access Journals (Sweden)

    Conrad David Valdez

    Full Text Available Although androgen receptor (AR function has been extensively studied, regulation of the AR gene itself has been much less characterized. In this study, we observed a dramatic reduction in the expression of androgen receptor mRNA and protein in hyperproliferative prostate epithelium of keratin 5 promoter driven E2F1 transgenic mice. To confirm an inhibitory function for E2F1 on AR transcription, we showed that E2F1 inhibited the transcription of endogenous AR mRNA, subsequent AR protein, and AR promoter activity in both human and mouse epithelial cells. E2F1 also inhibited androgen-stimulated activation of two AR target gene promoters. To elucidate the molecular mechanism of E2F-mediated inhibition of AR, we evaluated the effects of two functional E2F1 mutants on AR promoter activity and found that the transactivation domain appears to mediate E2F1 repression of the AR promoter. Because DNMT1 is a functional intermediate of E2F1 we examined DNMT1 function in AR repression. Repression of endogenous AR in normal human prostate epithelial cells was relieved by DNMT1 shRNA knock down. DNMT1 was shown to be physically associated within the AR minimal promoter located 22 bps from the transcription start site; however, methylation remained unchanged at the promoter regardless of DNMT1 expression. Taken together, our results suggest that DNMT1 operates either as a functional intermediary or in cooperation with E2F1 inhibiting AR gene expression in a methylation independent manner.

  11. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6.

    Science.gov (United States)

    Gaubatz, S; Wood, J G; Livingston, D M

    1998-08-04

    E2F transcription factors play an important role in the regulation of cell cycle progression. We report here the cloning and characterization of an additional member of this family, E2F-6. E2F-6 lacks pocket protein binding and transactivation domains, and it is a potent transcriptional repressor that contains a modular repression domain at its carboxyl terminus. Overproduction of E2F-6 had no specific effect on cell cycle progression in asynchronously growing Saos2 and NIH 3T3 cells, but it inhibited entry into S phase of NIH 3T3 cells stimulated to exit G0. Taken together, these data suggest that E2F-6 can regulate a subset of E2F-dependent genes whose products are required for entry into the cell cycle but not for normal cell cycle progression.

  12. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors

    Science.gov (United States)

    Kim, So Yoon; Rane, Sushil G.

    2011-01-01

    Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1+ pancreatic progenitor cells. Expression of activated Cdk4R24C kinase leads to increased Nkx2.2+ and Nkx6.1+ cells and a rise in the number and proliferation of Ngn3+ endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors. PMID:21490060

  13. E2F transcription factors and digestive system malignancies: how much do we know?

    Science.gov (United States)

    Xanthoulis, Athanasios; Tiniakos, Dina G

    2013-06-07

    E2F family of transcription factors regulates various cellular functions related to cell cycle and apoptosis. Its individual members have traditionally been classified into activators and repressors, based on in vitro studies. However their contribution in human cancer is more complicated and difficult to predict. We review current knowledge on the expression of E2Fs in digestive system malignancies and its clinical implications for patient prognosis and treatment. E2F1, the most extensively studied member and the only one with prognostic value, exhibits a tumor-suppressing activity in esophageal, gastric and colorectal adenocarcinoma, and in hepatocellular carcinoma (HCC), whereas in pancreatic ductal adenocarcinoma and esophageal squamous cell carcinoma may function as a tumor-promoter. In the latter malignancies, E2F1 immunohistochemical expression has been correlated with higher tumor grade and worse patient survival, whereas in esophageal, gastric and colorectal adenocarcinomas is a marker of increased patient survival. E2F2 has only been studied in colorectal cancer, where its role is not considered significant. E2F4's role in colorectal, gastric and hepatic carcinogenesis is tumor-promoting. E2F8 is strongly upregulated in human HCC, thus possibly contributing to hepatocarcinogenesis. Adenoviral transfer of E2F as gene therapy to sensitize pancreatic cancer cells for chemotherapeutic agents has been used in experimental studies. Other therapeutic strategies are yet to be developed, but it appears that targeted approaches using E2F-agonists or antagonists should take into account the tissue-dependent function of each E2F member. Further understanding of E2Fs' contribution in cellular functions in vivo would help clarify their role in carcinogenesis.

  14. E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism.

    Science.gov (United States)

    Blanchet, Emilie; Annicotte, Jean-Sébastien; Pradelli, Ludivine A; Hugon, Gérald; Matecki, Stéfan; Mornet, Dominique; Rivier, François; Fajas, Lluis

    2012-09-01

    E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1-/- mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mouse model of Duchenne muscular dystrophy (DMD). E2f1-/-;mdx mice demonstrated a strong reduction of physiopathological signs of DMD, including preservation of muscle structure, decreased inflammatory profile, increased utrophin expression, resulting in better endurance and muscle contractile parameters, comparable to normal mdx mice. E2f1 deficiency in the mdx genetic background increased the oxidative metabolic gene program, mitochondrial activity and improved muscle functions. Interestingly, we observed increased E2F1 protein levels in DMD patients, suggesting that E2F1 might represent a promising target for the treatment of DMD.

  15. The E2F transcription factors: key regulators of cell proliferation

    DEFF Research Database (Denmark)

    Müller, H; Helin, K

    2000-01-01

    Ever since its discovery, the RB-1 gene and the corresponding protein, pRB, have been a focal point of cancer research. The isolation of E2F transcription factors provided the key to our current understanding of RB-1 function in the regulation of the cell cycle and in tumor suppression....... It is becoming more and more evident that the regulatory circuits governing the cell cycle are very complex and highly interlinked. Certain aspects of RB-1 function, for instance its role in differentiation, cannot be easily explained by the current models of pRB-E2F interaction. One reason is that pRB has...... targets different from E2F, molecules like MyoD for instance. Another reason may be that we have not completely understood the full complexity of E2F function, itself. In this review, we will try to illuminate the role of E2F in pRB- and p53-mediated tumor suppression pathways with particular emphasis...

  16. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization

    DEFF Research Database (Denmark)

    Müller, H; Moroni, M C; Vigo, E

    1997-01-01

    The E2F transcription factors are essential for regulating the correct timing of activation of several genes whose products are implicated in cell proliferation and DNA replication. The E2Fs are targets for negative regulation by the retinoblastoma protein family, which includes pRB, p107, and p130...... cytoplasmic after the pRB family members have become phosphorylated. We propose a novel mechanism for the regulation of E2F-dependent transcription in which E2F-4 regulates transcription only from G0 until mid- to late G1 phase whereas E2F-1 is active in late G1 and S phases, until it is inactivated by cyclin...

  17. E2F1 is crucial for E2F-dependent apoptosis

    DEFF Research Database (Denmark)

    Lazzerini Denchi, Eros; Helin, Kristian

    2005-01-01

    Loss of the retinoblastoma protein, pRB, leads to apoptosis, and several results have suggested that this is dependent on the E2F transcription factors. However, so far, the ability of the different E2F family members to contribute to apoptosis is controversial. Here, we show that ectopic...... of crucial levels of E2F1 activity, and not total E2F activity, is essential for the induction of apoptosis in response to a deregulated pRB pathway. These results are consistent with previous findings that E2F1, but not other E2Fs, can have tumour-suppressing activities....

  18. Differential expression of members of the E2F family of transcription factors in rodent testes

    Directory of Open Access Journals (Sweden)

    Toppari Jorma

    2006-12-01

    Full Text Available Abstract Background The E2F family of transcription factors is required for the activation or repression of differentially expressed gene programs during the cell cycle in normal and abnormal development of tissues. We previously determined that members of the retinoblastoma protein family that interacts with the E2F family are differentially expressed and localized in almost all the different cell types and tissues of the testis and in response to known endocrine disruptors. In this study, the cell-specific and stage-specific expression of members of the E2F proteins has been elucidated. Methods We used immunohistochemical (IHC analysis of tissue sections and Western blot analysis of proteins, from whole testis and microdissected stages of seminiferous tubules to study the differential expression of the E2F proteins. Results For most of the five E2F family members studied, the localizations appear conserved in the two most commonly studied rodent models, mice and rats, with some notable differences. Comparisons between wild type and E2F-1 knockout mice revealed that the level of E2F-1 protein is stage-specific and most abundant in leptotene to early pachytene spermatocytes of stages IX to XI of mouse while strong staining of E2F-1 in some cells close to the basal lamina of rat tubules suggest that it may also be expressed in undifferentiated spermatogonia. The age-dependent development of a Sertoli-cell-only phenotype in seminiferous tubules of E2F-1 knockout males corroborates this, and indicates that E2F-1 is required for spermatogonial stem cell renewal. Interestingly, E2F-3 appears in both terminally differentiated Sertoli cells, as well as spermatogonial cells in the differentiative pathway, while the remaining member of the activating E2Fs, E2F-2 is most concentrated in spermatocytes of mid to late prophase of meiosis. Comparisons between wildtype and E2F-4 knockout mice demonstrated that the level of E2F-4 protein displays a distinct

  19. E2F5 status significantly improves malignancy diagnosis of epithelial ovarian cancer

    KAUST Repository

    Kothandaraman, Narasimhan

    2010-02-24

    Background: Ovarian epithelial cancer (OEC) usually presents in the later stages of the disease. Factors, especially those associated with cell-cycle genes, affecting the genesis and tumour progression for ovarian cancer are largely unknown. We hypothesized that over-expressed transcription factors (TFs), as well as those that are driving the expression of the OEC over-expressed genes, could be the key for OEC genesis and potentially useful tissue and serum markers for malignancy associated with OEC.Methods: Using a combination of computational (selection of candidate TF markers and malignancy prediction) and experimental approaches (tissue microarray and western blotting on patient samples) we identified and evaluated E2F5 transcription factor involved in cell proliferation, as a promising candidate regulatory target in early stage disease. Our hypothesis was supported by our tissue array experiments that showed E2F5 expression only in OEC samples but not in normal and benign tissues, and by significantly positively biased expression in serum samples done using western blotting studies.Results: Analysis of clinical cases shows that of the E2F5 status is characteristic for a different population group than one covered by CA125, a conventional OEC biomarker. E2F5 used in different combinations with CA125 for distinguishing malignant cyst from benign cyst shows that the presence of CA125 or E2F5 increases sensitivity of OEC detection to 97.9% (an increase from 87.5% if only CA125 is used) and, more importantly, the presence of both CA125 and E2F5 increases specificity of OEC to 72.5% (an increase from 55% if only CA125 is used). This significantly improved accuracy suggests possibility of an improved diagnostics of OEC. Furthermore, detection of malignancy status in 86 cases (38 benign, 48 early and late OEC) shows that the use of E2F5 status in combination with other clinical characteristics allows for an improved detection of malignant cases with sensitivity

  20. E2F-1-Induced p53-independent apoptosis in transgenic mice

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Helin, K.; Sehested, M.

    1998-01-01

    The E2F transcription factors are key targets for the retinoblastoma protein, pRB. By inactivation of E2Fs, pRB prevents progression to the S phase. To test proliferative functions of E2F, we generated transgenic mice expressing human E2F-1 and/or human DP-1. When the hydroxymethyl glutaryl...... involving increased apoptosis in the germinal epithelium. This effect was potentiated by simultaneous overexpression of DP-1. Testicular atrophy as a result of overexpression of E2F-1 and DP-1 is independent of functional p53, since p53-nullizygous transgenic mice overexpressing E2F-1 and DP-1 also suffered...

  1. Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F

    DEFF Research Database (Denmark)

    Hateboer, G; Wobst, A; Petersen, B O

    1998-01-01

    The E2F transcription factors are essential regulators of cell growth in multicellular organisms, controlling the expression of a number of genes whose products are involved in DNA replication and cell proliferation. In Saccharomyces cerevisiae, the MBF and SBF transcription complexes have...... functions similar to those of E2F proteins in higher eukaryotes, by regulating the timed expression of genes implicated in cell cycle progression and DNA synthesis. The CDC6 gene is a target for MBF and SBF-regulated transcription. S. cerevisiae Cdc6p induces the formation of the prereplication complex...... and is essential for initiation of DNA replication. Interestingly, the Cdc6p homolog in Schizosaccharomyces pombe, Cdc18p, is regulated by DSC1, the S. pombe homolog of MBF. By cloning the promoter for the human homolog of Cdc6p and Cdc18p, we demonstrate here that the cell cycle-regulated transcription...

  2. Retinoblastoma 1 protects T cell maturation from premature apoptosis by inhibiting E2F1.

    Science.gov (United States)

    Zhang, Zili; Liu, Wei; Zhao, Lingfeng; Huang, Zhibin; Chen, Xiaohui; Ma, Ning; Xu, Jin; Zhang, Wenqing; Zhang, Yiyue

    2018-01-08

    T lymphocytes are key cellular components of an acquired immune system and play essential roles in cell-mediated immunity. T cell development occurs in the thymus where 95% of immature thymocytes are eliminated via apoptosis. It is known that mutation of Zeb1, one of the retinoblastoma 1 (Rb1) target genes, results in a decrease in the number of immature T cells in mice. E2F1, an RB1-interacting protein, has been shown to regulate mature T cell development by interfering with thymocyte apoptosis. However, whether Rb1 regulates thymocyte development in vivo still needs to be further investigated. Here, we use a zebrafish model to investigate the role of Rb1 in T cell development. We show that Rb1-deficient fish exhibit a significant reduction in T cell number during early development that it is attributed to the accelerated apoptosis of immature T cells in a caspase-dependent manner. We further show that E2F1 overexpression could mimic the reduced T lymphocytes phenotype of Rb1 mutants, and E2F1 knockdown could rescue the phenotype in Rb1-deficient mutants. Collectively, our data indicate that the Rb1-E2F1-caspase axis is crucial for protecting immature T cells from apoptosis during early T lymphocyte maturation. © 2018. Published by The Company of Biologists Ltd.

  3. Liver × receptor ligands disrupt breast cancer cell proliferation through an E2F-mediated mechanism.

    Science.gov (United States)

    Nguyen-Vu, Trang; Vedin, Lise-Lotte; Liu, Ka; Jonsson, Philip; Lin, Jean Z; Candelaria, Nicholes R; Candelaria, Lindsay P; Addanki, Sridevi; Williams, Cecilia; Gustafsson, Jan-Åke; Steffensen, Knut R; Lin, Chin-Yo

    2013-06-20

    Liver × receptors (LXRs) are members of the nuclear receptor family of ligand-dependent transcription factors and have established functions as regulators of cholesterol, glucose, and fatty acid metabolism and inflammatory responses. Published reports of anti-proliferative effects of synthetic LXR ligands on breast, prostate, ovarian, lung, skin, and colorectal cancer cells suggest that LXRs are potential targets in cancer prevention and treatment. To further determine the effects of LXR ligands and identify their potential mechanisms of action in breast cancer cells, we carried out microarray analysis of gene expression in four breast cancer cell lines following treatments with the synthetic LXR ligand GW3965. Differentially expressed genes were further subjected to gene ontology and pathway analyses, and their expression profiles and associations with disease parameters and outcomes were examined in clinical samples. Response of E2F target genes were validated by real-time PCR, and the posited role of E2F2 in breast cancer cell proliferation was tested by RNA interference experiments. We observed cell line-specific transcriptional responses as well as a set of common responsive genes. In the common responsive gene set, upregulated genes tend to function in the known metabolic effects of LXR ligands and LXRs whereas the downregulated genes mostly include those which function in cell cycle regulation, DNA replication, and other cell proliferation-related processes. Transcription factor binding site analysis of the downregulated genes revealed an enrichment of E2F binding site sequence motifs. Correspondingly, E2F2 transcript levels are downregulated following LXR ligand treatment. Knockdown of E2F2 expression, similar to LXR ligand treatment, resulted in a significant disruption of estrogen receptor positive breast cancer cell proliferation. Ligand treatment also decreased E2F2 binding to cis-regulatory regions of target genes. Hierarchical clustering of breast

  4. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium.

    Science.gov (United States)

    Major, Jennifer L; Salih, Maysoon; Tuana, Balwant S

    2015-07-01

    The E2F/Pocket protein (Rb) pathway regulates cell growth, differentiation, and death by modulating gene expression. We previously examined this pathway in the myocardium via manipulation of the unique E2F repressor, E2F6, which is believed to repress gene activity independently of Rb. Mice with targeted expression of E2F6 in postnatal myocardium developed dilated cardiomyopathy (DCM) without hypertrophic growth. We assessed the mechanisms of the apparent failure of compensatory hypertrophic growth as well as their response to the β-adrenergic agonist isoproterenol. As early as 2 weeks, E2F6 transgenic (Tg) mice present with dilated thinner left ventricles and significantly reduced ejection fraction and fractional shortening which persists at 6 weeks of age, but with no apparent increase in left ventricle weight: body weight (LVW:BW). E2F6-Tg mice treated with isoproterenol (6.1 mg/kg/day) show double the increase in LVW:BW than their Wt counterparts (32% vs 16%, p-value: 0.007). Western blot analysis revealed the activation of the adrenergic pathway in Tg heart tissue under basal conditions with ~2-fold increase in the level of β2-adrenergic receptors (p-value: 8.9E-05), protein kinase A catalytic subunit (PKA-C) (p-value: 0.0176), activated c-Src tyrosine-protein kinase (p-value: 0.0002), extracellular receptor kinase 2 (ERK2) (p-value: 0.0005), and induction of the anti-apoptotic protein Bcl2 (p-value 0. 0.00001). In contrast, a ~60% decrease in the cardiac growth regulator: AKT1 (p-value 0.0001) and a ~four fold increase in cyclic AMP dependent phosphodiesterase 4D (PDE4D), the negative regulator of PKA activity, were evident in the myocardium of E2F6-Tg mice. The expression of E2F3 was down-regulated by E2F6, but was restored by isoproterenol. Further, Rb expression was down-regulated in Tg mice in response to isoproterenol implying a net activation of the E2F pathway. Thus the unique regulation of E2F activity by E2F6 renders the myocardium hypersensitive

  5. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14ARF tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Dimri, Goberdhan P.; Itahana, Koji; Acosta, Meileen; Campisi, Judith

    1999-11-05

    Normal cells do not divide indefinitely due to a process known as replicative senescence. Human cells arrest growth with a senescent phenotype when they acquire one or more critically short telomere as a consequence of cell division. Recent evidence suggests that certain types of DNA damage, chromatin remodeling, or oncogenic forms of Rasor Raf can also elicit a senescence response. We show here that E2F1, a multifunctional transcription factor that binds the retinoblastoma (pRb) tumor suppressor and can either promote or suppress tumorigenesis, induces a senescent phenotype when overexpressed in normal human fibroblasts. Normal human cells stably arrested proliferation and expressed several markers of replicative senescence in response to E2F1. This activity of E2F1 was independent of its pRb binding activity, but dependent on its ability to stimulate gene expression. The E2F1 target gene critical for the senescence response appeared to be the p14ARF tumor suppressor. Replicatively senescent human fibroblasts overexpressed p14ARF, and ectopic expression of p14ARF in presenescent cells induced a phenotype similar to that induced by E2F1. Consistent with a critical role for p14ARF, cells with compromised p53 function were immune to senescence induction by E2F1, as were cells deficient in p14ARF. Our findings support the idea that the senescence response is a critical tumor suppressive mechanism, provide an explanation for the apparently paradoxical roles of E2F1 in oncogenesis, and identify p14ARF as a potentially important mediator of the senescent phenotype.

  6. Inhibition of E2F1 activity and cell cycle progression by arsenic via retinoblastoma protein.

    Science.gov (United States)

    Sheldon, Lynn A

    2017-01-01

    The regulation of cell cycle progression by steroid hormones and growth factors is important for maintaining normal cellular processes including development and cell proliferation. Deregulated progression through the G1/S and G2/M cell cycle transitions can lead to uncontrolled cell proliferation and cancer. The transcription factor E2F1, a key cell cycle regulator, targets genes encoding proteins that regulate cell cycle progression through the G1/S transition as well as proteins important in DNA repair and apoptosis. E2F1 expression and activity is inhibited by inorganic arsenic (iAs) that has a dual role as a cancer therapeutic and as a toxin that leads to diseases including cancer. An understanding of what underlies this dichotomy will contribute to understanding how to use iAs as a more effective therapeutic and also how to treat cancers that iAs promotes. Here, we show that quiescent breast adenocarcinoma MCF-7 cells treated with 17-β estradiol (E2) progress through the cell cycle, but few cells treated with E2 + iAs progress from G1 into S-phase due to a block in cell cycle progression. Our data support a model in which iAs inhibits the dissociation of E2F1 from the tumor suppressor, retinoblastoma protein (pRB) due to changes in pRB phosphorylation which leads to decreased E2F1 transcriptional activity. These findings present an explanation for how iAs can disrupt cell cycle progression through E2F1-pRB and has implications for how iAs acts as a cancer therapeutic as well as how it may promote tumorigenesis through decreased DNA repair.

  7. E2F function in muscle growth is necessary and sufficient for viability in Drosophila

    Science.gov (United States)

    Zappia, Maria Paula; Frolov, Maxim V.

    2016-01-01

    The E2F transcription factor is a key cell cycle regulator. However, the inactivation of the entire E2F family in Drosophila is permissive throughout most of animal development until pupation when lethality occurs. Here we show that E2F function in the adult skeletal muscle is essential for animal viability since providing E2F function in muscles rescues the lethality of the whole-body E2F-deficient animals. Muscle-specific loss of E2F results in a significant reduction in muscle mass and thinner myofibrils. We demonstrate that E2F is dispensable for proliferation of muscle progenitor cells, but is required during late myogenesis to directly control the expression of a set of muscle-specific genes. Interestingly, E2f1 provides a major contribution to the regulation of myogenic function, while E2f2 appears to be less important. These findings identify a key function of E2F in skeletal muscle required for animal viability, and illustrate how the cell cycle regulator is repurposed in post-mitotic cells. PMID:26823289

  8. Competitive Binding Between Id1 and E2F1 to Cdc20 Regulates E2F1 Degradation and Thymidylate Synthase Expression to Promote Esophageal Cancer Chemoresistance.

    Science.gov (United States)

    Li, Bin; Xu, Wen Wen; Guan, Xin Yuan; Qin, Yan Ru; Law, Simon; Lee, Nikki Pui Yue; Chan, Kin Tak; Tam, Pui Ying; Li, Yuk Yin; Chan, Kwok Wah; Yuen, Hiu Fung; Tsao, Sai Wah; He, Qing Yu; Cheung, Annie L M

    2016-03-01

    Chemoresistance is a major obstacle in cancer therapy. We found that fluorouracil (5-FU)-resistant esophageal squamous cell carcinoma cell lines, established through exposure to increasing concentrations of 5-FU, showed upregulation of Id1, IGF2, and E2F1. We hypothesized that these genes may play an important role in cancer chemoresistance. In vitro and in vivo functional assays were performed to study the effects of Id1-E2F1-IGF2 signaling in chemoresistance. Quantitative real-time PCR, Western blotting, immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter assays were used to investigate the molecular mechanisms by which Id1 regulates E2F1 and by which E2F1 regulates IGF2. Clinical specimens, tumor tissue microarray, and Gene Expression Omnibus datasets were used to analyze the correlations between gene expressions and the relationships between expression profiles and patient survival outcomes. Id1 conferred 5-FU chemoresistance through E2F1-dependent induction of thymidylate synthase expression in esophageal cancer cells and tumor xenografts. Mechanistically, Id1 protects E2F1 protein from degradation and increases its expression by binding competitively to Cdc20, whereas E2F1 mediates Id1-induced upregulation of IGF2 by binding directly to the IGF2 promoter and activating its transcription. The expression level of E2F1 was positively correlated with that of Id1 and IGF2 in human cancers. More importantly, concurrent high expression of Id1 and IGF2 was associated with unfavorable patient survival in multiple cancer types. Our findings define an intricate E2F1-dependent mechanism by which Id1 increases thymidylate synthase and IGF2 expressions to promote cancer chemoresistance. The Id1-E2F1-IGF2 regulatory axis has important implications for cancer prognosis and treatment. ©2015 American Association for Cancer Research.

  9. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity

    DEFF Research Database (Denmark)

    Fedele, Monica; Visone, Rosa; De Martino, Ivana

    2006-01-01

    show that HMGA2 interacts with pRB and induces E2F1 activity in mouse pituitary adenomas by displacing HDAC1 from the pRB/E2F1 complex-a process that results in E2F1 acetylation. We found that loss of E2F1 function (obtained by mating HMGA2 and E2F1(-/-) mice) suppressed pituitary tumorigenesis in HMGA......HMGA2 gene amplification and overexpression in human prolactinomas and the development of pituitary adenomas in HMGA2 transgenic mice showed that HMGA2 plays a crucial role in pituitary tumorigenesis. We have explored the pRB/E2F1 pathway to investigate the mechanism by which HMGA2 acts. Here we...

  10. The E2F family of transcription factors from Arabidopsis thaliana. Novel and conserved components of the retinoblastoma/E2F pathway in plants.

    Science.gov (United States)

    Mariconti, Luisa; Pellegrini, Barbara; Cantoni, Rita; Stevens, Rebecca; Bergounioux, Catherine; Cella, Rino; Albani, Diego

    2002-03-22

    The E2F transcription factors are key components of the cyclin D/retinoblastoma/E2F pathway. Here we demonstrate that Arabidopsis thaliana contains six functional AtE2F genes that are all expressed in cell suspension culture but show different patterns of expression during cell cycle progression. According to their structural and functional features, the six AtE2Fs can be divided into two distinct groups; although the three members of the first group, AtE2Fa, AtE2Fb and AtE2Fc, possess all the conserved domains found in other plant and animal E2Fs, the remaining AtE2Fs are novel proteins, which reveal a duplication of the DNA binding domain but lack any other conserved region. Furthermore, the AtE2Fs of the first group are functional transcription factors that in association with AtDP proteins can recognize specifically an E2F cis-element and can transactivate an E2F-responsive reporter gene in plant cells. In contrast, the AtE2Fs of the second group can bind specifically the E2F site without interacting with DP partners but cannot activate gene expression and, instead, are able to inhibit E2F-dependent activation of gene expression in Arabidopsis cells. These findings suggest distinctive roles for the plant E2F proteins and point to a complex concerted regulation of E2F-dependent gene expression in plant cells.

  11. E2F activates late-G1 events but cannot replace E1A in inducing S phase in terminally differentiated skeletal muscle cells

    DEFF Research Database (Denmark)

    Pajalunga, D; Tognozzi, D; Tiainen, M

    1999-01-01

    that overexpression of E2F-1, E2F-2 and E2F-4, or a chimeric E2F-4 tethered to a nuclear localization signal cannot reactivate postmitotic skeletal muscle cells (myotubes). This is not due to lack of transcriptional activity, as demonstrated on both a reporter construct and a number of endogenous target genes......We have previously shown that the adenovirus E1A oncogene can reactivate the cell cycle in terminally differentiated cells. Current models imply that much or all of this E1A activity is mediated by the release of the E2F transcription factors from pocket-protein control. In contrast, we show here...... in the presence of E1A, as dominant-negative DP-1 mutants inhibit E1A-mediated cell cycle reentry. Our data show that, to reactivate myotubes, E1A must exert other functions, in addition to releasing E2F. They also establish mouse myotubes as an experimental system uniquely suited to study the most direct E2F...

  12. E2f8 mediates tumor suppression in postnatal liver development

    NARCIS (Netherlands)

    Kent, Lindsey N.; Rakijas, Jessica B.; Pandit, Shusil K.; Westendorp, Bart; Chen, Hui-Zi; Huntington, Justin T.; Tang, Xing; Bae, Sooin; Srivastava, Arunima; Senapati, Shantibhusan; Koivisto, Christopher; Martin, Chelsea K.; Cuitino, Maria C.; Perez, Miguel; Clouse, Julian M.; Chokshi, Veda; Shinde, Neelam; Kladney, Raleigh; Sun, Daokun; Perez-Castro, Antonio; Matondo, Ramadhan B.; Nantasanti, Sathidpak; Mokry, Michal; Huang, Kun; Machiraju, Raghu; Fernandez, Soledad; Rosol, Thomas J.; Coppola, Vincenzo; Pohar, Kamal S.; Pipas, James M.; Schmidt, Carl R.; de Bruin, Alain; Leone, Gustavo

    2016-01-01

    E2F-mediated transcriptional repression of cell cycle-dependent gene expression is critical for the control of cellular proliferation, survival, and development. E2F signaling also interacts with transcriptional programs that are downstream of genetic predictors for cancer development, including

  13. E2f8 mediates tumor suppression in postnatal liver development

    NARCIS (Netherlands)

    Kent, Lindsey N.; Rakijas, Jessica B.; Pandit, Shusil K.; Westendorp, Bart; Chen, Hui Zi; Huntington, Justin T.; Tang, Xing; Bae, Sooin; Srivastava, Arunima; Senapati, Shantibhusan; Koivisto, Christopher; Martin, Chelsea K.; Cuitino, Maria C.; Perez, Miguel; Clouse, Julian M.; Chokshi, Veda; Shinde, Neelam; Kladney, Raleigh; Sun, Daokun; Perez-Castro, Antonio; Matondo, Ramadhan B.; Nantasanti, Sathidpak; Mokry, Michal; Huang, Kun; Machiraju, Raghu; Fernandez, Soledad; Rosol, Thomas J.; Coppola, Vincenzo; Pohar, Kamal S.; Pipas, James M.; Schmidt, Carl R.; De Bruin, Alain; Leone, Gustavo

    2016-01-01

    E2F-mediated transcriptional repression of cell cycle–dependent gene expression is critical for the control of cellular proliferation, survival, and development. E2F signaling also interacts with transcriptional programs that are downstream of genetic predictors for cancer development, including

  14. E2F1 enhances glycolysis through suppressing Sirt6 transcription in cancer cells.

    Science.gov (United States)

    Wu, Minghui; Seto, Edward; Zhang, Jingsong

    2015-05-10

    The fast proliferation of cancer cells requires reprogramming of its energy metabolism with aerobic glycolysis as a major energy source. Sirt6, a class III histone deacetylase, has been shown to down regulate glycolysis by inhibiting the expression of several key glycolytic genes. Based on the published study on the metabolic phenotype of E2F1 -/- mice and SIRT6 -/- mice, we hypothesize that E2F1 enhances glycolysis and inhibits the expression of Sirt6. Indeed, over-expressing of E2F1, but not its DNA binding deficient mutant, significantly enhanced glucose uptake and lactate production in bladder and prostate cancer cell lines. E2F1 over-expression also suppressed Sirt6 expression and function. Moreover, E2F1 directly bound to Sirt6 promoter and suppressed Sirt6 promoter activity under both normoxic and hypoxic culture conditions. E2F1 siRNA blocked the up-regulation of E2F1 under hypoxia, increased Sirt6 expression and decreased glycolysis compared to those of scrambled siRNA transected cells. Furthermore, HDAC1 deacetylated E2F1 and diminished its transcription suppression of Sirt6 promoter. Treatment with the HDAC inhibitor, trichostatin A (TSA), suppressed Sirt6 promoter activity with increased binding of acetylated E2F1 to Sirt6 promoter. Mutating the E2F1 binding site on the proximal Sirt6 promoter abolished the suppression of Sirt6 transcription by TSA. These data indicate a novel oncogenic role of E2F1, i.e. enhancing glycolysis by suppressing Sirt6 transcription.

  15. E2F family members are differentially regulated by reversible acetylation

    DEFF Research Database (Denmark)

    Marzio, G; Wagener, C; Gutierrez, M I

    2000-01-01

    The six members of the E2F family of transcription factors play a key role in the control of cell cycle progression by regulating the expression of genes involved in DNA replication and cell proliferation. E2F-1, -2, and -3 belong to a structural and functional subfamily distinct from those...... of the other E2F family members. Here we report that E2F-1, -2, and -3, but not E2F-4, -5, and -6, associate with and are acetylated by p300 and cAMP-response element-binding protein acetyltransferases. Acetylation occurs at three conserved lysine residues located at the N-terminal boundary of their DNA...

  16. Functional characterization of E2F3b in human HepG2 liver cancer cell line.

    Science.gov (United States)

    Lu, Yujia; Li, Wei

    2018-04-01

    E2F3 is a transcription factor that has been shown to be overexpressed in hepatocellular carcinoma (HCC). It is well-known that the E2F3 gene encodes two proteins E2F3a and E2F3b. Therefore, the functions of the two distinct isoforms need to be clarified separately. To characterize the function of E2F3b in HCC, the effects of ectopic expression of E2F3b on cell proliferation, cell cycle, apoptosis and gene expression were investigated. E2F3b promoted G1/S phase transition and markedly increased cell proliferation, but had minor effect on apoptosis. Microarray analyses identified 366 differentially expressed genes (171 upregulated and 195 downregulated) in E2F3b- overexpressing cells. Differential expression of 16 genes relevant to cell cycle and cell proliferation were further verified by real-time PCR. Six genes, including CDC2, CCNE1, ARF, MAP4K2, MUSK, and PAX2 were confirmed to be upregulated by more than twofold; one gene, CCNA2 was validated to be downregulated by more than twofold. We also confirmed that E2F3b increased the protein levels of both cyclin E and Arf but did not affect cyclin D1 protein. These results suggest that E2F3b functions as an important promoter for cell proliferation and plays important roles in transcriptional regulation in HepG2 liver cancer cells. © 2017 Wiley Periodicals, Inc.

  17. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F

    DEFF Research Database (Denmark)

    Helin, K; Lees, J A; Vidal, M

    1992-01-01

    The retinoblastoma protein (pRB) plays an important role in the control of cell proliferation, apparently by binding to and regulating cellular transcription factors such as E2F. Here we describe the characterization of a cDNA clone that encodes a protein with properties of E2F. This clone, RBP3......, was identified by the ability of its gene product to interact with pRB. RBP3 bound to pRB both in vitro and in vivo, and this binding was competed by viral proteins known to disrupt pRB-E2F association. RBP3 bound to E2F recognition sequences in a sequence-specific manner. Furthermore, transient expression...... of RBP3 caused a 10-fold transactivation of the adenovirus E2 promoter, and this transactivation was dependent on the E2F recognition sequences. These properties suggest that RBP3 encodes E2F, or an E2F-like protein....

  18. SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5.

    Science.gov (United States)

    Cai, Chang; Huo, Qiang; Wang, Xiaolong; Chen, Bing; Yang, Qifeng

    2017-04-01

    Long noncoding RNAs (lncRNAs) have been proved to play important roles in cellular processes of cancer, including the development, proliferation, and migration of cancer cells. In the present study, we demonstrated small nucleolar RNA host gene 16 (SNHG16) as an oncogene on cell migration in breast cancer. Expression levels of SNHG16 were found to be frequently higher in breast cancer tissues than in the paired noncancerous tissues. Gain- and loss-of-function studies proved that SNHG16 significantly promoted breast cancer cell migration. We predicted SNHG16 as a competitive endogenous RNA (ceRNA) of E2F transcription factor 5 protein (E2F5) via competition for the shared miR-98 through bioinformatics analysis, and proved this regulation using relative quantitative real-time PCR (qRT-PCR), western blot, RNA immunoprecipitation (RIP) assay and luciferase reporter assay. In addition, we identified a positive correlation between SNHG16 and E2F5 in breast cancer tissues. Furthermore, we demonstrated that forced expression of miR-98 could partially abrogate SNHG16-mediated increase of breast cancer cells migration, suggesting that SNHG16 promoted cell migration in a miR-98 dependent manner. Taken together, our findings indicated that SNHG16 induces breast cancer cell migration by competitively binding miR-98 with E2F5, and SNHG16 can serve as a potential therapeutic target for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein

    DEFF Research Database (Denmark)

    Helin, K; Harlow, E; Fattaey, A

    1993-01-01

    to transcription factor E2F has provided a model for the mechanism of pRB-mediated growth regulation. Since adenovirus E1A proteins dissociate the pRB-E2F complexes and stimulate E2F-dependent transcription, it has been suggested that pRB inhibits E2F transactivation. Although some evidence for this hypothesis has...... that transactivation mediated by the wild-type E2F-1 protein was inhibited by overexpression of wild-type pRB but not by a naturally occurring mutant of pRB. Transactivation mediated by mutants of E2F-1 which do not bind to pRB was not affected by overexpression of wild-type pRB. Furthermore, when the E2F-1......Loss of a functional retinoblastoma tumor suppressor gene product, pRB, is a key step in the development of many human tumors. pRB is a negative regulator of cell proliferation and appears to participate in control of entry into the S phase of the cell cycle. The recent demonstration that pRB binds...

  20. The RB/E2F pathway and regulation of RNA processing

    Energy Technology Data Exchange (ETDEWEB)

    Ahlander, Joseph [Department of Molecular and Cellular Biology, 1007 East Lowell Street, University of Arizona, Tucson, AZ 85721 (United States); Bosco, Giovanni, E-mail: gbosco@email.arizona.edu [Department of Molecular and Cellular Biology, 1007 East Lowell Street, University of Arizona, Tucson, AZ 85721 (United States)

    2009-07-03

    The retinoblastoma tumor suppressor protein (RB) is inactivated in a majority of cancers. RB restricts cell proliferation by inhibiting the E2F family of transcription factors. The current model for RB/E2F function describes its role in regulating transcription at gene promoters. Whether the RB or E2F proteins might play a role in gene expression beyond transcription initiation is not well known. This review describes evidence that points to a novel role for the RB/E2F network in the regulation of RNA processing, and we propose a model as a framework for future research. The elucidation of a novel role of RB in RNA processing will have a profound impact on our understanding of the role of this tumor suppressor family in cell and developmental biology.

  1. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation

    DEFF Research Database (Denmark)

    Helin, K; Wu, C L; Fattaey, A R

    1993-01-01

    the hypophosphorylated form of the retinoblastoma protein (pRB). The other protein, murine DP-1, was purified from an E2F DNA-affinity column, and it was subsequently shown to bind the consensus E2F DNA-binding site. To study a possible interaction between E2F-1 and DP-1, we have now isolated a cDNA for the human...... is required for stable interaction with pRB in vivo and that trans-activation by E2F-1/DP-1 heterodimers is inhibited by pRB. We suggest that "E2F" is the activity that is formed when an E2F-1-related protein and a DP-1-related protein dimerize.......The E2F transcription factor has been implicated in the regulation of genes whose products are involved in cell proliferation. Two proteins have recently been identified with E2F-like properties. One of these proteins, E2F-1, has been shown to mediate E2F-dependent trans-activation and to bind...

  2. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Tobiasen, Heidi; Holm, Anja

    2013-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer deaths in Western countries. A significant number of CRC patients undergoing curatively intended surgery subsequently develop recurrence and die from the disease. MicroRNAs (miRNAs) are aberrantly expressed in cancers and appear to have......-3p in a second independent cohort of 43 CRC patients, using single TaqMan® microRNA assays. In vitro functional analysis showed that over-expression of miR-362-3p in colon cancer cell lines reduced cell viability, and proliferation mainly due to cell cycle arrest. E2F1, USF2 and PTPN1 were identified...... both diagnostic and prognostic significance. In this study, we identified novel miRNAs associated with recurrence of CRC, and their possible mechanism of action. TaqMan® Human MicroRNA Array Set v2.0 was used to profile the expression of 667 miRNAs in 14 normal colon mucosas and 46 microsatellite...

  3. Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular Phenotypes of Osteosarcoma.

    Science.gov (United States)

    Scott, Milcah C; Sarver, Aaron L; Tomiyasu, Hirotaka; Cornax, Ingrid; Van Etten, Jamie; Varshney, Jyotika; O'Sullivan, M Gerard; Subramanian, Subbaya; Modiano, Jaime F

    2015-11-20

    We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular Phenotypes of Osteosarcoma*

    Science.gov (United States)

    Scott, Milcah C.; Sarver, Aaron L.; Tomiyasu, Hirotaka; Cornax, Ingrid; Van Etten, Jamie; Varshney, Jyotika; O'Sullivan, M. Gerard; Subramanian, Subbaya; Modiano, Jaime F.

    2015-01-01

    We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma. PMID:26378234

  5. [miR-503-5p inhibits the proliferation of T24 and EJ bladder cancer cells by interfering with the Rb/E2F signaling pathway].

    Science.gov (United States)

    Li, Xiaohui; Han, Xingtao; Yang, Jinhui; Sun, Jiantao; Wei, Pengtao

    2017-10-01

    Objective To observe the effect of microRNA-503-5p (miR-503-5p) on the growth of T24 and EJ bladder cancer cells, and explore the possible molecular mechanism. Methods The miR-504-5p mimics or miR-NC was transfected into T24 and EJ cells. The target gene of miR-503-5p was predicted by bioinformatics. The expressions of E2F transcription factor 3 (E2F3) mRNA and Rb/E2F signaling pathway mRNA were detected by the real-time quantitative PCR (qPCR). The expressions of Rb/E2F signal pathway proteins E2F3, cyclin E, CDK2, Rb and p-Rb were detected by Western blotting. The cell cycle of bladder cancer cell lines was determined by flow cytometry. MTT assay and plate cloning assay were performed to observe the proliferation ability of bladder cancer cells. Results After miR-503-5p mimics transfection, the expression of miR-503-5p in bladder cancer cells significantly increased. The increased expression of miR-503-5p significantly reduced the expressions of E2F3 mRNA and Rb/E2F signaling pathway mRNA in bladder cancer cells. What's more, the expressions of Rb/E2F signal pathway proteins were down-regulated. The bladder cancer cells were arrested in G0/G1 phase, and their growth was significantly inhibited by miR-503-5p. Conclusion The miR-503-5p over-expression can inhibit the growth of bladder cancer cell lines T24 and EJ by down-regulating the expression of the Rb/E2F signaling pathway.

  6. Atypical E2f functions are critical for pancreas polyploidization.

    Science.gov (United States)

    Matondo, Ramadhan B; Moreno, Eva; Toussaint, Mathilda J M; Tooten, Peter C J; van Essen, Saskia C; van Liere, Elsbeth A; Youssef, Sameh A; Bongiovanni, Laura; de Bruin, Alain

    2018-01-01

    The presence of polyploid cells in the endocrine and exocrine pancreas has been reported for four decades. In rodents, pancreatic polyploidization is initiated after weaning and the number of polyploid cells increases with age. Surprisingly the molecular regulators and biological functions of polyploidization in the pancreas are still unknown. We discovered that atypical E2f activity is essential for polyploidization in the pancreas, using an inducible Cre/LoxP approach in new-born mice to delete ubiquitously the atypical E2f transcription factors, E2f7 and E2f8. In contrast to its critical role in embryonic survival, conditional deletion of both of both atypical E2fs in newborn mice had no impact on postnatal survival and mice lived until old age. However, deficiency of E2f7 or E2f8 alone was sufficient to suppress polyploidization in the pancreas and associated with only a minor decrease in blood serum levels of glucose, insulin, amylase and lipase under 4 hours starvation condition compared to wildtype littermates. In mice with fewer pancreatic polyploid cells that were fed ad libitum, no major impact on hormones or enzymes levels was observed. In summary, we identified atypical E2fs to be essential for polyploidization in the pancreas and discovered that postnatal induced loss of both atypical E2fs in many organs is compatible with life until old age.

  7. E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF1

    NARCIS (Netherlands)

    Weijts, B.G.; Bakker, W.J.; Cornelissen, P.W.; Liang, K.H.; Schaftenaar, F.H.; Westendorp, B.; de Wolf, C.A.; Paciejewska, M.; Scheele, C.L.; Kent, L.; Leone, G.; Schulte-Merker, S.; de Bruin, A.

    2012-01-01

    The E2F family of transcription factors plays an important role in controlling cell-cycle progression. While this is their best-known function, we report here novel functions for the newest members of the E2F family, E2F7 and E2F8 (E2F7/8). We show that simultaneous deletion of E2F7/8 in zebrafish

  8. Integrated transcriptome and binding sites analysis implicates E2F in the regulation of self-renewal in human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hock Chuan Yeo

    Full Text Available Rapid cellular growth and multiplication, limited replicative senescence, calibrated sensitivity to apoptosis, and a capacity to differentiate into almost any cell type are major properties that underline the self-renewal capabilities of human pluripotent stem cells (hPSCs. We developed an integrated bioinformatics pipeline to understand the gene regulation and functions involved in maintaining such self-renewal properties of hPSCs compared to matched fibroblasts. An initial genome-wide screening of transcription factor activity using in silico binding-site and gene expression microarray data newly identified E2F as one of major candidate factors, revealing their significant regulation of the transcriptome. This is underscored by an elevated level of its transcription factor activity and expression in all tested pluripotent stem cell lines. Subsequent analysis of functional gene groups demonstrated the importance of the TFs to self-renewal in the pluripotency-coupled context; E2F directly targets the global signaling (e.g. self-renewal associated WNT and FGF pathways and metabolic network (e.g. energy generation pathways, molecular transports and fatty acid metabolism to promote its canonical functions that are driving the self-renewal of hPSCs. In addition, we proposed a core self-renewal module of regulatory interplay between E2F and, WNT and FGF pathways in these cells. Thus, we conclude that E2F plays a significant role in influencing the self-renewal capabilities of hPSCs.

  9. E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo

    DEFF Research Database (Denmark)

    Porse, B T; Pedersen TA; Xu, X

    2001-01-01

    differentiation in vivo. These results indicate that E2F repression by C/EBPalpha is critical for its ability to induce terminal differentiation, and thus provide genetic evidence that direct cell cycle control by a mammalian lineage-instructive transcription factor couples cellular growth arrest......The C/EBPalpha transcription factor is required for differentiation of adipocytes and neutrophil granulocytes, and controls cellular proliferation in vivo. To address the molecular mechanisms of C/EBPalpha action, we have identified C/EBPalpha mutants defective in repression of E2F......-dependent transcription and found them to be impaired in their ability to suppress cellular proliferation, and to induce adipocyte differentiation in vitro. Using targeted mutagenesis of the mouse germline, we show that E2F repression-deficient C/EBPalpha alleles failed to support adipocyte and granulocyte...

  10. Non-steroidal anti-inflammatory drugs decrease E2F1 expression and inhibit cell growth in ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Blanca L Valle

    Full Text Available Epidemiological studies have shown that the regular use of non-steroidal anti-inflammatory (NSAIDs drugs is associated with a reduced risk of various cancers. In addition, in vitro and experiments in mouse models have demonstrated that NSAIDs decrease tumor initiation and/or progression of several cancers. However, there are limited preclinical studies investigating the effects of NSAIDs in ovarian cancer. Here, we have studied the effects of two NSAIDs, diclofenac and indomethacin, in ovarian cancer cell lines and in a xenograft mouse model. Diclofenac and indomethacin treatment decreased cell growth by inducing cell cycle arrest and apoptosis. In addition, diclofenac and indomethacin reduced tumor volume in a xenograft model of ovarian cancer. To identify possible molecular pathways mediating the effects of NSAID treatment in ovarian cancer, we performed microarray analysis of ovarian cancer cells treated with indomethacin or diclofenac. Interestingly, several of the genes found downregulated following diclofenac or indomethacin treatment are transcriptional target genes of E2F1. E2F1 was downregulated at the mRNA and protein level upon treatment with diclofenac and indomethacin, and overexpression of E2F1 rescued cells from the growth inhibitory effects of diclofenac and indomethacin. In conclusion, NSAIDs diclofenac and indomethacin exert an anti-proliferative effect in ovarian cancer in vitro and in vivo and the effects of NSAIDs may be mediated, in part, by downregulation of E2F1.

  11. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    Directory of Open Access Journals (Sweden)

    Abel L Carcagno

    Full Text Available BACKGROUND: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. CONCLUSIONS/SIGNIFICANCE: The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell

  12. The retinoblastoma protein binds to a family of E2F transcription factors

    DEFF Research Database (Denmark)

    Lees, J A; Saito, M; Vidal, M

    1993-01-01

    for E2F-2 and E2F-3 were mapped to 1p36 and 6q22, respectfully, confirming their independence from E2F-1. However, the E2F-2 and E2F-3 proteins are closely related to E2F-1. Both E2F-2 and E2F-3 bound to wild-type but not mutant E2F recognition sites, and they bound specifically to the retinoblastoma...... of a family of proteins....

  13. Tandem E2F binding sites in the promoter of the p107 cell cycle regulator control p107 expression and its cellular functions.

    Directory of Open Access Journals (Sweden)

    Deborah L Burkhart

    2010-06-01

    Full Text Available The retinoblastoma tumor suppressor (Rb is a potent and ubiquitously expressed cell cycle regulator, but patients with a germline Rb mutation develop a very specific tumor spectrum. This surprising observation raises the possibility that mechanisms that compensate for loss of Rb function are present or activated in many cell types. In particular, p107, a protein related to Rb, has been shown to functionally overlap for loss of Rb in several cellular contexts. To investigate the mechanisms underlying this functional redundancy between Rb and p107 in vivo, we used gene targeting in embryonic stem cells to engineer point mutations in two consensus E2F binding sites in the endogenous p107 promoter. Analysis of normal and mutant cells by gene expression and chromatin immunoprecipitation assays showed that members of the Rb and E2F families directly bound these two sites. Furthermore, we found that these two E2F sites controlled both the repression of p107 in quiescent cells and also its activation in cycling cells, as well as in Rb mutant cells. Cell cycle assays further indicated that activation of p107 transcription during S phase through the two E2F binding sites was critical for controlled cell cycle progression, uncovering a specific role for p107 to slow proliferation in mammalian cells. Direct transcriptional repression of p107 by Rb and E2F family members provides a molecular mechanism for a critical negative feedback loop during cell cycle progression and tumorigenesis. These experiments also suggest novel therapeutic strategies to increase the p107 levels in tumor cells.

  14. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma

    NARCIS (Netherlands)

    Kent, Lindsey N.; Bae, Sooin; Tsai, Shih-Yin; Tang, Xing; Srivastava, Arunima; Koivisto, Christopher; Martin, Chelsea K.; Ridolfi, Elisa; Miller, Grace C.; Zorko, Sarah M.; Plevris, Emilia; Hadjiyannis, Yannis; Perez, Miguel; Nolan, Eric; Kladney, Raleigh; Westendorp, Bart; de Bruin, Alain; Fernandez, Soledad; Rosol, Thomas J.; Pohar, Kamal S.; Pipas, James M.; Leone, Gustavo

    2017-01-01

    Disruption of the retinoblastoma (RB) tumor suppressor pathway, either through genetic mutation of upstream regulatory components or mutation of RB1 itself, is believed to be a required event in cancer. However, genetic alterations in the RB-regulated E2F family of transcription factors are

  15. Nuclear Smad7 Overexpressed in Mesenchymal Cells Acts as a Transcriptional Corepressor by Interacting with HDAC-1 and E2F to Regulate Cell Cycle

    Directory of Open Access Journals (Sweden)

    Takashi Emori

    2012-02-01

    Smad family proteins are essential intracellular mediators that regulate transforming growth factor-β (TGF-β ligand signaling. In response to diverse stimuli, Smad7 is rapidly expressed and acts as a cytoplasmic inhibitor that selectively interferes with signals elicited from TGF-β family receptors. In addition, earlier works have indicated that retrovirally transduced Smad7 induces long-lasting cell proliferation arrest in a variety of mesenchymal cells through down-regulation of G1 cyclins. However, the molecular mechanisms underlying the cytostatic effects of Smad7 remain unknown. We show here that Smad7 can form a complex with endogenous histone deacetylase proteins HDAC-1 and HDAC-3 in NIH 3T3 mouse fibroblast cells. By contrast, forced expression of a dominant-negative variant of HDAC-1 efficiently protected cells against Smad7 proliferation inhibition, suggesting that Smad7 depends on the deacetylase activity of its associated HDAC-1 to arrest the cell cycle. Furthermore, Smad7 caused HDAC-1 bind to E2F-1 to form a ternary complex on chromosomal DNA containing an E2F-binding motif and leading to repression in the activity of the E2F target genes. Smad7 mutations that prevented its binding to either HDAC-1 or E2F-1 resulted in a significant decrease in Smad7-mediated inhibition of cell proliferation. The present results strongly suggest that nuclear Smad7 is a transcriptional corepressor for E2F, providing a molecular basis for the Smad7-induced arrest of the cell cycle.

  16. Analysis of p107-associated proteins: p107 associates with a form of E2F that differs from pRB-associated E2F-1

    DEFF Research Database (Denmark)

    Dyson, N; Dembski, M; Fattaey, A

    1993-01-01

    The binding of viral oncogenes to cellular proteins is thought to modulate the activities of these cellular targets. The p107 protein is targeted by many viral proteins, including adenovirus E1A, simian virus 40 large T antigen, and human papillomavirus type 16 E7 protein. A panel of monoclonal a...... cell line. The 62- to 65-kDa proteins have many of the properties of the transcription factor E2F but were distinguished from pRB-associated E2F-1 by both immunologic and biochemical properties.......The binding of viral oncogenes to cellular proteins is thought to modulate the activities of these cellular targets. The p107 protein is targeted by many viral proteins, including adenovirus E1A, simian virus 40 large T antigen, and human papillomavirus type 16 E7 protein. A panel of monoclonal...... antibodies against p107 was raised and used to identify cellular proteins that interact with the p107 protein in vivo. p107-associated proteins included cyclin A, cyclin E, and cdk2. In addition, p107 was found to associate with 62- to 65- and 50-kDa phosphoproteins in ML-1 cells, a human myeloid leukemia...

  17. Synergistic functions of E2F7 and E2F8 are critical to suppress stress-induced skin cancer

    NARCIS (Netherlands)

    Thurlings, I.; Lopez-Martinez, Maria J.; Westendorp, B.; Zijp, M.; Kuiper, R.; Tooten, PCJ; Kent, Lindsey N.; Leone, Gustavo; Vos, H.J.; Burgering, B; de Bruin, A.

    2017-01-01

    E2F transcription factors are important regulators of the cell cycle, and unrestrained activation of E2F-dependent transcription is considered to be an important driver of tumor formation and progression. Although highly expressed in normal skin and skin cancer, the role of the atypical E2Fs, E2F7

  18. Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation.

    LENUS (Irish Health Repository)

    Rishi, Loveena

    2014-04-10

    The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein α (C\\/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop for E2F1, C\\/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C\\/EBPα-p42, and in normal granulocyte\\/macrophage progenitor cells, we detect C\\/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle or Trib2 knockdown resulted in a block in AML cell proliferation. Our work proposes a novel paradigm whereby E2F1 plays a key role in the regulation of Trib2 expression important for AML cell proliferation control. Importantly, we identify the contribution of dysregulated C\\/EBPα and E2F1 to elevated Trib2 expression and leukemic cell survival, which likely contributes to the initiation and maintenance of AML and may have significant implications for normal and malignant hematopoiesis.

  19. E2F1 and p53 Transcription Factors as Accessory Factors for Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    David G. Johnson

    2012-10-01

    Full Text Available Many of the biochemical details of nucleotide excision repair (NER have been established using purified proteins and DNA substrates. In cells however, DNA is tightly packaged around histones and other chromatin-associated proteins, which can be an obstacle to efficient repair. Several cooperating mechanisms enhance the efficiency of NER by altering chromatin structure. Interestingly, many of the players involved in modifying chromatin at sites of DNA damage were originally identified as regulators of transcription. These include ATP-dependent chromatin remodelers, histone modifying enzymes and several transcription factors. The p53 and E2F1 transcription factors are well known for their abilities to regulate gene expression in response to DNA damage. This review will highlight the underappreciated, transcription-independent functions of p53 and E2F1 in modifying chromatin structure in response to DNA damage to promote global NER.

  20. p53 inactivation upregulates p73 expression through E2F-1 mediated transcription.

    Directory of Open Access Journals (Sweden)

    Chaitali Tophkhane

    Full Text Available While p73 overexpression has been associated with increased apoptosis in cancer tissues, p73 overexpressing tumors appear to be of high grade malignancy. Why this putative tumor suppressor is overexpressed in cancer cells and what the function of overexpressed p73 is in breast cancers are critical questions to be addressed. By investigating the effect of p53 inactivation on p73 expression, we found that both protein and mRNA levels of TAp73 were increased in MCF-7/p53siRNA cells, MCF-7/p53mt135 cells and HCT-116/p53-/- cells, as compared to wild type control, suggesting that p53 inactivation by various forms upregulates p73. We showed that p53 knockdown induced p73 was mainly regulated at the transcriptional level. However, although p53 has a putative binding site in the TAp73 promoter, deletion of this binding site did not affect p53 knockdown mediated activation of TAp73 promoter. Chromatin immuno-precipitation (ChIP data demonstrated that loss of p53 results in enhanced occupancy of E2F-1 in the TAp73 promoter. The responsive sequence of p53 inactivation mediated p73 upregulation was mapped to the proximal promoter region of the TAp73 gene. To test the role of E2F-1 in p53 inactivation mediated regulation of p73 transcription, we found that p53 knockdown enhanced E2F-1 dependent p73 transcription, and mutations in E2F-1 binding sites in the TAp73 promoter abrogated p53 knockdown mediated activation of TAp73 promoter. Moreover, we demonstrated that p21 is a mediator of p53-E2F crosstalk in the regulation of p73 transcription. We concluded that p53 knockdown/inactivation may upregulate TAp73 expression through E2F-1 mediated transcriptional regulation. p53 inactivation mediated upregulation of p73 suggests an intrinsic rescuing mechanism in response to p53 mutation/inactivation. These findings support further analysis of the correlation between p53 status and p73 expression and its prognostic/predictive significance in human cancers.

  1. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex

    DEFF Research Database (Denmark)

    Lukas, C; Sørensen, Claus Storgaard; Kramer, E

    1999-01-01

    In mammalian somatic-cell cycles, progression through the G1-phase restriction point and initiation of DNA replication are controlled by the ability of the retinoblastoma tumour-suppressor protein (pRb) family to regulate the E2F/DP transcription factors. Continuing transcription of E2F target...

  2. APC/C (Cdh1) controls the proteasome-mediated degradation of E2F3 during cell cycle exit

    NARCIS (Netherlands)

    Ping, Z.; Lim, R.; Bashir, T.; Pagano, M.; Guardavaccaro, D.

    2012-01-01

    E2F transcription factors regulate gene expression in concert with the retinoblastoma tumor suppressor family. These transcriptional complexes are master regulators of cell cycle progression and, in addition, control the expression of genes involved in DNA repair, G 2/M checkpoint and

  3. ERα-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer

    Science.gov (United States)

    Miller, Todd W.; Balko, Justin M.; Fox, Emily M.; Ghazoui, Zara; Dunbier, Anita; Anderson, Helen; Dowsett, Mitch; Jiang, Aixiang; Smith, R. Adam; Maira, Sauveur-Michel; Manning, H. Charles; González-Angulo, Ana M.; Mills, Gordon B.; Higham, Catherine; Chanthaphaychith, Siprachanh; Kuba, Maria G.; Miller, William R.; Shyr, Yu; Arteaga, Carlos L.

    2011-01-01

    Most estrogen receptor α (ER)-positive breast cancers initially respond to antiestrogens, but many eventually become estrogen-independent and recur. We identified an estrogen-independent role for ER and the CDK4/Rb/E2F transcriptional axis in the hormone-independent growth of breast cancer cells. ER downregulation with fulvestrant or siRNA inhibited estrogen-independent growth. Chromatin immunoprecipitation identified ER genomic binding activity in estrogen-deprived cells and primary breast tumors treated with aromatase inhibitors. Gene expression profiling revealed an estrogen-independent, ER/E2F-directed transcriptional program. An E2F activation gene signature correlated with a lesser response to aromatase inhibitors in patients' tumors. siRNA screening showed that CDK4, an activator of E2F, is required for estrogen-independent cell growth. Long-term estrogen-deprived cells hyperactivate phosphatidylinositol 3-kinase (PI3K) independently of ER/E2F. Fulvestrant combined with the pan-PI3K inhibitor BKM120 induced regression of ER+ xenografts. These data support further development of ER downregulators and CDK4 inhibitors, and their combination with PI3K inhibitors for treatment of antiestrogen-resistant breast cancers. PMID:22049316

  4. E2F1/TS Immunophenotype and Survival of Patients with Colorectal Cancer Treated with 5FU-Based Adjuvant Therapy.

    Science.gov (United States)

    Sulzyc-Bielicka, Violetta; Domagala, Pawel; Bielicki, Dariusz; Safranow, Krzysztof; Rogowski, Wojciech; Domagala, Wenancjusz

    2016-07-01

    The predictive value of thymidylate synthase (TS) expression alone for 5FU-based treatment of colorectal cancer (CRC) has not been clinically confirmed. Little is known on the association of expression of E2F1, which controls the transcription of genes encoding proteins engaged in DNA synthesis including TS, and survival of patients with CRC. The purpose of this study is to assess the correlation between expression of both E2F1 and TS in CRCs and survival of patients administered adjuvant 5FU-based chemotherapy, in order to find a better predictor of treatment outcome than expression of TS or E2F1 alone. Nuclear TS and E2F1 were detected by immunohistochemistry in tissue microarrays from 190 CRCs (Astler-Coller stage B2 or C). Multivariate analysis identified significant association of the combined E2F1+TS+ immunophenotype with worse OS (HR = 3,78, P = 0,009) and DFS (HR = 2,30, P = 0,03) of patients with colon cancer. There were significant differences between E2F1+TS+ and E2F1-TS- Kaplan-Meier survival curves in relation to DFS (P = 0.008) and OS (P = 0.01). About 37 and 31 % difference in 3-year DFS and OS respectively were seen between patients with E2F1+TS+ vs. E2F1-TS- colon cancer immunophenotype. The E2F1+TS+ immunophenotype may be a marker of poor prognosis (the worst DFS and OS) of patients with colon cancer treated with 5FU-based adjuvant therapy. A subgroup of patients with this immunophenotype may require different and perhaps more aggressive treatment than 5FU-based chemotherapy. Thus, the combined E2F1/TS immunophenotype could be a potential indicator of colon cancer sensitivity to 5FU.

  5. A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner

    DEFF Research Database (Denmark)

    Attwooll, Claire; Oddi, Sergio; Cartwright, Peter

    2004-01-01

    activity. Furthermore, we identified the proliferation-specific PcG, EZH2, as an EPC1-interacting protein. Using affinity purification, we showed that E2F6, DP1, EPC1, EZH2, and Sin3B co-elute, suggesting the identification of a novel E2F6 complex that exists in vivo in both normal and transformed human...... cell lines. EZH2 is required for cellular proliferation and consistent with this, EZH2 elutes with the E2F6-EPC1 complex only in proliferating cells. Thus we have identified a novel E2F6-PcG complex (E2F6-EPC1) that interacts with EZH2 and may regulate genes required for cell cycle progression....

  6. MicroRNA-17-92 Regulates the Transcription Factor E2F3b during Myogenesis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Zhixiong Tang

    2017-03-01

    Full Text Available Myogenic differentiation, which occurs during muscle development, is a highly ordered process that can be regulated by E2F transcription factors. Available data show that E2F3b, but not E2F3a, is upregulated and required for myogenic differentiation. However, the regulation of E2F3b expression in myogenic differentiation is not well understood. To investigate whether E2Fb expression is controlled by miRNAs, we used bioinformatics to combine the database of microRNAs downregulated during myogenesis and those predicted to target E2F3. This identified miR-17 and miR-20a as miRNAs potentially involved in E2F3 regulation. We found that miR-17-92 controls the expression of E2F3b in C2C12 cells during myogenic differentiation. Moreover, we confirmed that miR-20a regulates the expression of E2F3b proteins in vivo using a muscle regeneration model.

  7. Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation

    DEFF Research Database (Denmark)

    Rishi, Loveena; Hannon, Maura; Salomè, Mara

    2014-01-01

    The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein...... α (C/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop...

  8. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation.

    Science.gov (United States)

    Al-Sharif, Ibtehaj; Remmal, Adnane; Aboussekhra, Abdelilah

    2013-12-13

    Breast cancer is a major health problem that threatens the lives of millions of women worldwide each year. Most of the chemotherapeutic agents that are currently used to treat this complex disease are highly toxic with long-term side effects. Therefore, novel generation of anti-cancer drugs with higher efficiency and specificity are urgently needed. Breast cancer cell lines were treated with eugenol and cytotoxicity was measured using the WST-1 reagent, while propidium iodide/annexinV associated with flow cytometry was utilized in order to determine the induced cell death pathway. The effect of eugenol on apoptotic and pro-carcinogenic proteins, both in vitro and in tumor xenografts was assessed by immunoblotting. While RT-PCR was used to determine eugenol effect on the E2F1 and survivin mRNA levels. In addition, we tested the effect of eugenol on cell proliferation using the real-time cell electronic sensing system. Eugenol at low dose (2 μM) has specific toxicity against different breast cancer cells. This killing effect was mediated mainly through inducing the internal apoptotic pathway and strong down-regulation of E2F1 and its downstream antiapoptosis target survivin, independently of the status of p53 and ERα. Eugenol inhibited also several other breast cancer related oncogenes, such as NF-κB and cyclin D1. Moreover, eugenol up-regulated the versatile cyclin-dependent kinase inhibitor p21WAF1 protein, and inhibited the proliferation of breast cancer cells in a p53-independent manner. Importantly, these anti-proliferative and pro-apoptotic effects were also observed in vivo in xenografted human breast tumors. Eugenol exhibits anti-breast cancer properties both in vitro and in vivo, indicating that it could be used to consolidate the adjuvant treatment of breast cancer through targeting the E2F1/survivin pathway, especially for the less responsive triple-negative subtype of the disease.

  9. E2F6 protein levels modulate drug induced apoptosis in cardiomyocytes.

    Science.gov (United States)

    Major, Jennifer L; Salih, Maysoon; Tuana, Balwant S

    2017-12-01

    The E2F/Rb pathway regulates cell growth, differentiation, and death. In particular, E2F1 promotes apoptosis in all cells including those of the heart. E2F6, which represses E2F activity, was found to induce dilated cardiomyopathy in the absence of apoptosis in murine post-natal heart. Here we evaluate the anti-apoptotic potential of E2F6 in neonatal cardiomyocytes (NCM) from E2F6-Tg hearts which showed significantly less caspase-3 cleavage, a lower Bax/Bcl2 ratio, and improved cell viability in response to CoCl2 exposure. This correlated with a decrease in the pro-apoptotic E2F3 protein levels. In contrast, no difference in apoptotic markers or cell viability was observed in response to Doxorubicin (Dox) treatment between Wt and Tg-NCM. Dox caused a rapid and dramatic loss of the E2F6 protein in Tg-NCM within 6h and was undetectable after 12h. The level of e2f6 transcript was unchanged in Wt NCM, but was dramatically decreased in Tg cells in response to both Dox and CoCl2. This was related to an impact of the drugs on the α-myosin heavy chain promoter used to drive the E2F6 transgene. By comparison in HeLa, Dox induced apoptosis through upregulation of endogenous E2F1 involving post-transcriptional mechanisms, while E2F6 was down regulated with induction of the Checkpoint kinase-1 and proteasome degradation. These data imply that E2F6 serves to modulate E2F activity and protect cells including cardiomyocytes from apoptosis and improve survival. Strategies to modulate E2F6 levels may be therapeutically useful to mitigate cell death associated disorders. Copyright © 2017. Published by Elsevier Inc.

  10. Two E2F sites in the Arabidopsis MCM3 promoter have different roles in cell cycle activation and meristematic expression.

    Science.gov (United States)

    Stevens, Rebecca; Mariconti, Luisa; Rossignol, Pascale; Perennes, Claudette; Cella, Rino; Bergounioux, Catherine

    2002-09-06

    The commitment to DNA replication is a key step in cell division control. The Arabidopsis MCM3 homologue forms part of the mini chromosome maintenance (MCM) complex involved in the initiation of DNA replication at the transition G(1)/S. Consistent with its role at the G(1)/S transition we show that the AtMCM3 gene is transcriptionally regulated at S phase. The 5' region of this gene contains several E2F consensus binding sites, two of which match the human consensus closely and whose roles have been studied here. The identity of the two sequences as E2F binding sites has been confirmed by electrophoretic mobility shift assay analyses. Furthermore the promoter is activated by AtE2F-a and AtDP-a factors in transient expression studies. One of the E2F binding sites is shown to be responsible for the G(2)-specific repression of the promoter in synchronized cell suspension cultures. In contrast, the second E2F binding site has a role in meristem-specific expression in planta as deletion of this site eliminates the expression of a reporter gene in root and apical meristems. Thus two highly similar E2F binding sites in the promoter of the MCM3 gene are responsible for different cell cycle regulation or developmental expression patterns depending on the cellular environment.

  11. Inhibition of in vitro myogenic differentiation by cellular transcription factor E2F1

    DEFF Research Database (Denmark)

    Wang, J; Helin, K; Jin, P

    1995-01-01

    Terminal differentiation of cultured myocytes requires withdrawal of the cells from the cell cycle. Constitutive overexpression of several oncogenes in myoblasts can inhibit in vitro myogenesis. Here we studied the role of the cellular transcription factor E2F1 on myogenic differentiation. E2F1...... expression is irreversibly down-regulated during differentiation of C2C12 myocytes. Furthermore, deregulated E2F1 expression in C2C12 cells prevented myogenic differentiation. This inhibition of myogenesis was associated with the repression of myogenin expression and an elevated cyclin D1 expression....... Moreover, E2F1-overexpressing myocytes failed to exit the cell cycle under differentiation conditions. These results are consistent with the notion that E2F1 can function as an oncogene and further suggest that E2F1 down-regulation is required for myogenic differentiation....

  12. The Possible Role of E2F in Rat Mammary Carcinogenesis

    Science.gov (United States)

    1999-08-01

    activity in cancer , I have used two model systems: a rat mammary tumor assay and an NIH 3T3 focus formation assay. While the rat mammary study did not...inhibitory effects of EMF and E2F3. I am currently investigating if E2F can inhibit transformation mediated by oncogenes other than the ras oncogene. 14...SUBJECT TERMS Breast Cancer 15. NUMBER OF PAGES 13 E2F transcription factors, ras, oncogene, transformation, _________ growth inhibition, NIH 3T3

  13. Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes.

    Science.gov (United States)

    Zellmer, Sebastian; Schmidt-Heck, Wolfgang; Godoy, Patricio; Weng, Honglei; Meyer, Christoph; Lehmann, Thomas; Sparna, Titus; Schormann, Wiebke; Hammad, Seddik; Kreutz, Clemens; Timmer, Jens; von Weizsäcker, Fritz; Thürmann, Petra A; Merfort, Irmgard; Guthke, Reinhard; Dooley, Steven; Hengstler, Jan G; Gebhardt, Rolf

    2010-12-01

    The cellular basis of liver regeneration has been intensely investigated for many years. However, the mechanisms initiating hepatocyte "plasticity" and priming for proliferation are not yet fully clear. We investigated alterations in gene expression patterns during the first 72 hours of C57BL/6N mouse hepatocyte culture on collagen monolayers (CM), which display a high basal frequency of proliferation in the absence of cytokines. Although many metabolic genes were down-regulated, genes related to mitogen-activated protein kinase (MAPK) signaling and cell cycle were up-regulated. The latter genes showed an overrepresentation of transcription factor binding sites (TFBS) for ETF (TEA domain family member 2), E2F1 (E2F transcription factor 1), and SP-1 (Sp1 transcription factor) (P Cultivation of murine hepatocytes on CM primes cells for proliferation through cytokine-independent activation of MAPK signaling. The transcription factors ETF, E2F1, and SP-1 seem to play a pronounced role in mediating proliferation-dependent differential gene expression. Similar events, but on a shorter time-scale, occur very early after liver damage in vivo. Copyright © 2010 American Association for the Study of Liver Diseases.

  14. Suppression of the p53- or pRB-mediated G1 checkpoint is required for E2F-induced S-phase entry

    DEFF Research Database (Denmark)

    Lomazzi, Marina; Moroni, M Cristina; Jensen, Michael R

    2002-01-01

    Deregulation of the retinoblastoma protein (pRB) pathway is a hallmark of cancer. In the absence of other genetic alterations, this deregulation results in lack of differentiation, hyperproliferation and apoptosis. The pRB protein acts as a transcriptional repressor by targeting the E2F...... fibroblasts, increased E2F1 activity can result in S-phase entry in diploid fibroblasts in which the p53-mediated G1 checkpoint is suppressed. In addition, we show that E2F1 can induce S phase in primary mouse fibroblasts lacking pRB. These results indicate that, in addition to acting as an E2F......-dependent transcriptional repressor, pRB is also required for the cells to retain the G1 checkpoint in response to unprogrammed proliferative signals....

  15. Systems Biology-Based Identification of Crosstalk between E2F Transcription Factors and the Fanconi Anemia Pathway

    Directory of Open Access Journals (Sweden)

    Moe Tategu

    2007-01-01

    Full Text Available Fanconi anemia (FA is an autosomal recessive disorder characterized by congenital abnormalities, bone marrow failure, chromosome fragility, and cancer susceptibility. At least eleven members of the FA gene family have been identified using complementation experiments. Ubiquitin-proteasome has been shown to be a key regulator of FA proteins and their involvement in the repair of DNA damage. Here, we identifi ed a novel functional link between the FA/BRCA pathway and E2F-mediated cell cycle regulome. In silico mining of a transcriptome database and promoter analyses revealed that a significant number of FA gene members were regulated by E2F transcription factors, known to be pivotal regulators of cell cycle progression – as previously described for BRCA1. Our findings suggest that E2Fs partly determine cell fate through the FA/BRCA pathway.

  16. Phosphorylation of a specific cdk site in E2F-1 affects its electrophoretic mobility and promotes pRB-binding in vitro

    DEFF Research Database (Denmark)

    Peeper, D S; Keblusek, P; Helin, K

    1995-01-01

    of the retinoblastoma gene (pRB). We find that E2F-1 proteins are heterogeneously phosphorylated in insect cells, as a result of which they migrate as a doublet on SDS-polyacrylamide gels. This electrophoretic shift is shown to be dependent upon specific phosphorylation of E2F-1 on serine-375 (S375), near the pRB......-binding site. Phosphorylation on S375 also occurs in human cells. E2F-1 was most efficiently phosphorylated on this residue by cyclin A/cdk2 kinase, and to a lesser extent by cyclin A/cdk2, irrespective of the presence of the pRB-related p107 protein. Phosphorylation of E2F-1 on S375 greatly enhanced its......The E2F transcription factor family participates in growth control presumably through transcriptional activation of genes that promote entry into S phase. E2F activity is believed to be controlled across the cell cycle by association with various cellular proteins, including the product...

  17. In vitro and ex vivo delivery of tailored siRNA-nanoliposomes for E2F1 silencing as a potential therapy for colorectal cancer.

    Science.gov (United States)

    Bochicchio, Sabrina; Dapas, Barbara; Russo, Ilaria; Ciacci, Carolina; Piazza, Ornella; De Smedt, Stefaan; Pottie, Eline; Barba, Anna Angela; Grassi, Gabriele

    2017-06-20

    Tailored developed nanoliposomes loaded with a siRNA against the transcription factor E2F1 (siE2F1), were produced and delivered to human colorectal adenocarcinoma cell lines and to intestinal human biopsies. siE2F1 loaded nanoliposomes were produced through a dedicated ultrasound assisted technique producing particles with about 40nm size (Small Unilamellar Vesicles, SUVs) and 100% siRNA encapsulation efficiency. Compared to other production methods, the one proposed here can easily produce particles in the nanometric scale by suitable ultrasonic duty cycle treatments. Furthermore, SUVs have a high degree of size homogeneity, a relevant feature for uniform delivery behaviour. siE2F1-loaded SUVs demonstrated a very low cytotoxicity in cells when compared to a commercial transfection agent. Moreover, SUVs loaded with siE2F1 were effective in the down regulation of the target in cultured colon carcinoma cells and in the consequent reduction of cell growth. Finally, a remarkable uptake and target silencing efficiencies were observed in cultured human biopsy of colonic mucosa. In conclusion, whereas further studies in more complex models are required, the siE2F1-SUVs generated have the potential to contribute to the development of novel effective inflammatory bowel diseases-associated colorectal cancer therapies for a future personalized medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. NPAT expression is regulated by E2F and is essential for cell cycle progression

    DEFF Research Database (Denmark)

    Gao, Guang; Bracken, Adrian P; Burkard, Karina

    2003-01-01

    of NPAT is regulated by E2F. Consistently, we find that the E2F sites in the NPAT promoter are required for its activation during the G(1)/S-phase transition. Moreover, we show that the expression of NPAT accelerates S-phase entry in cells released from quiescence. The inhibition of NPAT expression...

  19. Induction of DNA synthesis and apoptosis are separable functions of E2F-1

    DEFF Research Database (Denmark)

    Phillips, A C; Bates, S; Ryan, K M

    1997-01-01

    The family of E2F transcription factors have an essential role in mediating cell cycle progression, and recently, one of the E2F protein family, E2F-1, has been shown to participate in the induction of apoptosis. Cooperation between E2F and the p53 tumor suppressor protein in this apoptotic...... response had led to the suggestion that cell cycle progression induced by E2F-1 expression provides an apoptotic signal when placed in conflict with an arrest to cell cycle progression, such as provided by p53. We show here that although apoptosis is clearly enhanced by p53, E2F-1 can induce significant...... apoptosis in the absence of p53. Furthermore, this apoptotic function of E2F-1 is separable from the ability to accelerate entry into DNA synthesis. Analysis of E2F-1 mutants indicates that although DNA-binding is required, transcriptional transactivation is not necessary for the induction of apoptosis by E...

  20. Cellular Inhibitor of Apoptosis Protein-1 (cIAP1) Can Regulate E2F1 Transcription Factor-mediated Control of Cyclin Transcription*

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-01-01

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity. PMID:21653699

  1. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription.

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-07-29

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity.

  2. Cyclin E-induced S phase without activation of the pRb/E2F pathway

    DEFF Research Database (Denmark)

    Lukas, J; Herzinger, T; Hansen, Klaus

    1997-01-01

    In cells of higher eukaryotes, cyclin D-dependent kinases Cdk4 and Cdk6 and, possibly, cyclin E-dependent Cdk2 positively regulate the G1- to S-phase transition, by phosphorylating the retinoblastoma protein (pRb), thereby releasing E2F transcription factors that control S-phase genes. Here we...... performed microinjection and transfection experiments using rat R12 fibroblasts, their derivatives conditionally overexpressing cyclins D1 or E, and human U-2-OS cells, to explore the action of G1 cyclins and the relationship of E2F and cyclin E in S-phase induction. We demonstrate that ectopic expression...... that the cyclin E-induced S phase and completion of the cell division cycle can occur in the absence of E2F-mediated transactivation. Together with the ability of cyclin E to overcome a G1 block induced by expression of dominant-negative mutant DP-1, a heterodimeric partner of E2Fs, these results provide evidence...

  3. DEPDC1 promotes cell proliferation and tumor growth via activation of E2F signaling in prostate cancer.

    Science.gov (United States)

    Huang, Lin; Chen, Keng; Cai, Zhao-Peng; Chen, Fu-Chao; Shen, Hui-Yong; Zhao, Wei-Hua; Yang, Song-Jie; Chen, Xu-Biao; Tang, Guo-Xue; Lin, Xi

    2017-08-26

    DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Interrupted E2F1-miR-34c-SCF negative feedback loop by hyper-methylation promotes colorectal cancer cell proliferation.

    Science.gov (United States)

    Yang, Shu; Wu, Bo; Sun, Haimei; Ji, Fengqing; Sun, Tingyi; Zhao, Yan; Zhou, Deshan

    2015-12-24

    Tumour suppressor miR-34c deficiency resulted from hyper-methylation in its promoter is believed to be one of the main causes of colorectal cancer (CRC). Till date, miR-34c has been validated as a direct target of p53; but previous evidence suggested other transcription factor(s) must be involved in miR-34c transcription. In the present study, we in the first place identified a core promoter region (-1118 to -883 bp) of pre-miR-34c which was embedded within a hyper-methylated CpG island. Secondly, E2F1 promoted miR-34c transcription by physical interaction with the miR-34c promoter at site -897 to -889 bp. The transcriptional activating effect of E2F1 on miR-34c was in a p53 independent manner but profoundly promoted in the presence of p53 with exposure to 5-aza-2'-deoxycytidine (DAC). Thirdly, stem cell factor (SCF), a miR-34c target, was specifically reduced upon an introduction of E2F1 which lead to suppression of CRC cell proliferation. The E2F1-suppressed cell proliferation was partially abrogated by additional miR-34c inhibitor, indicating that the anti-proliferation effect of E2F1 was probably through activating miR-34c-SCF axis. Finally, SCF/KIT signalling increased E2F1 production by reducing its proteosomal degradation dependent on PI3K/Akt-GSK3β pathway. In conclusion, our results suggested the existence of E2F1-miR-34c-SCF negative feedback loop which was interrupted by the hyper-methylation of miR-34c promoter in CRC cells and increased cell proliferation. © 2016 Authors.

  5. E2F3 transcription factor: A promising biomarker in lung cancer.

    Science.gov (United States)

    Al Ahmed, Hala Abdel; Nada, Ola

    2017-01-01

    Many researches aiming to explore the pathogenesis of lung cancer have extensively studied the molecular alteration in such disease. In the present study we measured the blood E2F3 mRNA using real-time RT-PCR technique in order to evaluate its clinical significance in early diagnosis and monitoring of lung cancer. This case-control study included 50 lung cancer patients, 20 patients with benign lung diseases and 20 healthy controls. Relative quantification of blood E2F3 mRNA was done by real-time RT-PCR. Blood E2F3 mRNA levels were significantly higher in lung cancer patients when compared to either patients with benign lung diseases or healthy subjects. This elevation was significant in those with metastatic lung cancer as compared to those with localized lung cancer. At a cutoff^{(2-Δ Δ CT)} 1.5, blood E2F3 mRNA was able to distinguish malignant from benign lung conditions with a diagnostic sensitivity of 100%; while at a cutoff^{(2-Δ Δ CT)} 5.3, blood E2F3 mRNA discriminated localized from metastatic lung cancer with a sensitivity of 93.6%. Blood E2F3 mRNA is a sensitive diagnostic marker in lung cancer; moreover, it is a promising prognostic marker capable of efficiently discriminating early from late stages of the disease.

  6. Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Courtney Schaal

    Full Text Available Cigarette smoking is the major risk factor for non-small cell lung cancer (NSCLC, which accounts for 80% of all lung cancers. Nicotine, the addictive component of tobacco smoke, can induce proliferation, migration, invasion, epithelial-mesenchymal transition (EMT, angiogenesis, and survival in NSCLC cell lines, as well as growth and metastasis of NSCLC in mice. This nicotine-mediated tumor progression is facilitated through activation of nicotinic acetylcholine receptors (nAChRs, specifically the α7 subunit; however, how the α7 nAChR gene is regulated in lung adenocarcinoma is not fully clear. Here we demonstrate that the α7 nAChR gene promoter is differentially regulated by E2F and STAT transcription factors through a competitive interplay; E2F1 induces the promoter, while STAT transcription factors repress it by binding to an overlapping site at a region -294 through -463bp upstream of the transcription start site. Treatment of cells with nicotine induced the mRNA and protein levels of α7 nAChR; this could be abrogated by treatment with inhibitors targeting Src, PI3K, MEK, α7 nAChR, CDK4/6 or a disruptor of the Rb-Raf-1 interaction. Further, nicotine-mediated induction of α7 nAChR was reduced when E2F1 was depleted and in contrast elevated when STAT1 was depleted by siRNAs. Interestingly, extracts from e-cigarettes, which have recently emerged as healthier alternatives to traditional cigarette smoking, can also induce α7 nAChR expression in a manner similar to nicotine. These results suggest an autoregulatory feed-forward loop that induces the levels of α7 nAChR upon exposure to nicotine, which enhances the strength of the signal. It can be imagined that such an induction of α7 nAChR contributes to the tumor-promoting functions of nicotine.

  7. Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors.

    Science.gov (United States)

    Schaal, Courtney; Chellappan, Srikumar

    2016-01-01

    Cigarette smoking is the major risk factor for non-small cell lung cancer (NSCLC), which accounts for 80% of all lung cancers. Nicotine, the addictive component of tobacco smoke, can induce proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, and survival in NSCLC cell lines, as well as growth and metastasis of NSCLC in mice. This nicotine-mediated tumor progression is facilitated through activation of nicotinic acetylcholine receptors (nAChRs), specifically the α7 subunit; however, how the α7 nAChR gene is regulated in lung adenocarcinoma is not fully clear. Here we demonstrate that the α7 nAChR gene promoter is differentially regulated by E2F and STAT transcription factors through a competitive interplay; E2F1 induces the promoter, while STAT transcription factors repress it by binding to an overlapping site at a region -294 through -463bp upstream of the transcription start site. Treatment of cells with nicotine induced the mRNA and protein levels of α7 nAChR; this could be abrogated by treatment with inhibitors targeting Src, PI3K, MEK, α7 nAChR, CDK4/6 or a disruptor of the Rb-Raf-1 interaction. Further, nicotine-mediated induction of α7 nAChR was reduced when E2F1 was depleted and in contrast elevated when STAT1 was depleted by siRNAs. Interestingly, extracts from e-cigarettes, which have recently emerged as healthier alternatives to traditional cigarette smoking, can also induce α7 nAChR expression in a manner similar to nicotine. These results suggest an autoregulatory feed-forward loop that induces the levels of α7 nAChR upon exposure to nicotine, which enhances the strength of the signal. It can be imagined that such an induction of α7 nAChR contributes to the tumor-promoting functions of nicotine.

  8. The NAMPT/E2F2/SIRT1 axis promotes proliferation and inhibits p53-dependent apoptosis in human melanoma cells.

    Science.gov (United States)

    Zhao, Hailong; Tang, Weiwei; Chen, Xiaowen; Wang, Siyu; Wang, Xianyan; Xu, Haiyan; Li, Lijuan

    2017-11-04

    Melanoma is the most common primary malignant neoplasm in adults, causing more deaths than any other skin cancer, necessitating the development of new target-based approaches. Current evidence suggests SIRT1, the mammalian nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, and nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting NAD+ biosynthetic enzyme, together comprise a novel systemic regulatory network to play a pivotal role in cell proliferation and apoptosis. Nevertheless, how the regulation of this cofactor interfaces with signal transduction network remains poorly understood in melanoma. Here, we report NAMPT is highly expressed in melanomaassociated with poor overall survival in patients. Pharmacological and genetic inhibition of NAMPT decreased NAD+ levels and melanoma cell proliferation capacity, and NAMPT knockdown induced apoptosis through the activity of the tumor suppressor p53. Next, we demonstrate NAMPT regulates the transcription factor E2F family member 2 (E2F2) in the apoptosis process. Downstream, E2F2 control the mRNA and protein levels of SIRT1. Finally, we find NAMPT mediates the apoptosis resistance of melanoma cells through NAMPT-E2F2-SIRT1 axis, more than NAD+-driven transcriptional program. Accordingly, our results demonstrated that NAMPT is a prognostic marker in melanoma, and the identificationofNAMPT-E2F2-SIRT1 pathway establishes another link between NAMPT and apoptosis events in melanoma, with therapeutic implications for this deadly cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The Mechanism of E2F/P130 Mediated Repression and Its Potential Tumor Suppressor Function in Breast Cancer

    National Research Council Canada - National Science Library

    Meloni, Alison

    1999-01-01

    .... Previous work has shown the importance of E2F-Rb and E2F-p13O complexes in promoting this transcriptional silencing, however, the mechanisms of action of these complexes has yet to be thoroughly elucidated...

  10. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Jennifer L Major

    Full Text Available The E2F pathway plays a critical role in cardiac growth and development, yet its role in cardiac metabolism remains to be defined. Metabolic changes play important roles in human heart failure and studies imply the ketogenic enzyme β-hydroxybutyrate dehydrogenase I (BDH1 is a potential biomarker.To define the role of the E2F pathway in cardiac metabolism and dilated cardiomyopathy (DCM with a focus on BDH1.We previously developed transgenic (Tg mice expressing the transcriptional repressor, E2F6, to interfere with the E2F/Rb pathway in post-natal myocardium. These Tg mice present with an E2F6 dose dependent DCM and deregulated connexin-43 (CX-43 levels in myocardium. Using the Seahorse platform, a 22% decrease in glycolysis was noted in neonatal cardiomyocytes isolated from E2F6-Tg hearts. This was associated with a 39% reduction in the glucose transporter GLUT4 and 50% less activation of the regulator of glucose metabolism AKT2. The specific reduction of cyclin B1 (70% in Tg myocardium implicates its importance in supporting glycolysis in the postnatal heart. No changes in cyclin D expression (known to regulate mitochondrial activity were noted and lipid metabolism remained unchanged in neonatal cardiomyocytes from Tg hearts. However, E2F6 induced a 40-fold increase of the Bdh1 transcript and 890% increase in its protein levels in hearts from Tg pups implying a potential impact on ketolysis. By contrast, BDH1 expression is not activated until adulthood in normal myocardium. Neonatal cardiomyocytes from Wt hearts incubated with the ketone β-hydroxybutyrate (β-OHB showed a 100% increase in CX-43 protein levels, implying a role for ketone signaling in gap junction biology. Neonatal cardiomyocyte cultures from Tg hearts exhibited enhanced levels of BDH1 and CX-43 and were not responsive to β-OHB.The data reveal a novel role for the E2F pathway in regulating glycolysis in the developing myocardium through a mechanism involving cyclin B1. We

  11. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy.

    Science.gov (United States)

    Major, Jennifer L; Dewan, Aaraf; Salih, Maysoon; Leddy, John J; Tuana, Balwant S

    2017-01-01

    The E2F pathway plays a critical role in cardiac growth and development, yet its role in cardiac metabolism remains to be defined. Metabolic changes play important roles in human heart failure and studies imply the ketogenic enzyme β-hydroxybutyrate dehydrogenase I (BDH1) is a potential biomarker. To define the role of the E2F pathway in cardiac metabolism and dilated cardiomyopathy (DCM) with a focus on BDH1. We previously developed transgenic (Tg) mice expressing the transcriptional repressor, E2F6, to interfere with the E2F/Rb pathway in post-natal myocardium. These Tg mice present with an E2F6 dose dependent DCM and deregulated connexin-43 (CX-43) levels in myocardium. Using the Seahorse platform, a 22% decrease in glycolysis was noted in neonatal cardiomyocytes isolated from E2F6-Tg hearts. This was associated with a 39% reduction in the glucose transporter GLUT4 and 50% less activation of the regulator of glucose metabolism AKT2. The specific reduction of cyclin B1 (70%) in Tg myocardium implicates its importance in supporting glycolysis in the postnatal heart. No changes in cyclin D expression (known to regulate mitochondrial activity) were noted and lipid metabolism remained unchanged in neonatal cardiomyocytes from Tg hearts. However, E2F6 induced a 40-fold increase of the Bdh1 transcript and 890% increase in its protein levels in hearts from Tg pups implying a potential impact on ketolysis. By contrast, BDH1 expression is not activated until adulthood in normal myocardium. Neonatal cardiomyocytes from Wt hearts incubated with the ketone β-hydroxybutyrate (β-OHB) showed a 100% increase in CX-43 protein levels, implying a role for ketone signaling in gap junction biology. Neonatal cardiomyocyte cultures from Tg hearts exhibited enhanced levels of BDH1 and CX-43 and were not responsive to β-OHB. The data reveal a novel role for the E2F pathway in regulating glycolysis in the developing myocardium through a mechanism involving cyclin B1. We reveal BDH1

  12. File list: Oth.Bld.10.E2f4.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.E2f4.AllCell mm9 TFs and others E2f4 Blood SRX140377,SRX140375,SRX122395...,SRX122396,SRX122394,SRX122397 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.E2f4.AllCell.bed ...

  13. Conditional E2F1 activation in transgenic mice causes testicular atrophy and dysplasia mimicking human CIS

    DEFF Research Database (Denmark)

    Agger, Karl; Santoni-Rugiu, Eric; Holmberg, Christian

    2005-01-01

    E2F1 is a crucial downstream effector of the retinoblastoma protein (pRB) pathway. To address the consequences of short-term increase in E2F1 activity in adult tissues, we generated transgenic mice expressing the human E2F1 protein fused to the oestrogen receptor (ER) ligand-binding domain...

  14. File list: Oth.Bld.20.E2f4.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.E2f4.AllCell mm9 TFs and others E2f4 Blood SRX140377,SRX140375,SRX122395...,SRX122396,SRX122397,SRX122394 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.E2f4.AllCell.bed ...

  15. Hepatitis B virus X protein via the p38MAPK pathway induces E2F1 release and ATR kinase activation mediating p53 apoptosis.

    Science.gov (United States)

    Wang, Wen-Horng; Hullinger, Ronald L; Andrisani, Ourania M

    2008-09-12

    Hepatitis B virus (HBV) X protein (pX) is implicated in hepatocellular carcinoma (HCC) pathogenesis by an unknown mechanism. Deletions or mutations of genes involved in the p53 pathway are often associated with HBV-mediated HCC, indicating rescue from p53 apoptosis is a likely mechanism in HBV-HCC pathogenesis. Herein, we determined the mechanism by which pX sensitizes hepatocytes to p53-mediated apoptosis. Although it is well established that the Rb/E2F/ARF pathway stabilizes p53, and the DNA damage-activated ATM/ATR kinases activate p53, the mechanism that coordinates these two pathways has not been determined. We demonstrate that the p38MAPK pathway activated by pX serves this role in p53 apoptosis. Specifically, the activated p38MAPK pathway stabilizes p53 via E2F1-mediated ARF expression, and also activates the transcriptional function of p53 by activating ATR. Knockdown of p53, E2F1, ATR, or p38MAPKalpha abrogates pX-mediated apoptosis, demonstrating that E2F1, ATR, and p38MAPKalpha are all essential in p53 apoptosis in response to pX. Specifically, in response to pX expression, the p38MAPK pathway activates Cdk4 and Cdk2, leading to phosphorylation of Rb, release of E2F1, and transcription of ARF. The p38MAPK pathway also activates ATR, leading to phosphorylation of p53 on Ser-18 and Ser-23, transcription of pro-apoptotic genes Bax, Fas, and Noxa, and apoptosis. In conclusion, pX sensitizes hepatocytes to p53 apoptosis via activation of the p38MAPK pathway, which couples p53 stabilization and p53 activation, by E2F1 induction and ATR activation, respectively.

  16. Hepatitis B Virus X Protein via the p38MAPK Pathway Induces E2F1 Release and ATR Kinase Activation Mediating p53 Apoptosis*S⃞

    Science.gov (United States)

    Wang, Wen-Horng; Hullinger, Ronald L.; Andrisani, Ourania M.

    2008-01-01

    Hepatitis B virus (HBV) X protein (pX) is implicated in hepatocellular carcinoma (HCC) pathogenesis by an unknown mechanism. Deletions or mutations of genes involved in the p53 pathway are often associated with HBV-mediated HCC, indicating rescue from p53 apoptosis is a likely mechanism in HBV-HCC pathogenesis. Herein, we determined the mechanism by which pX sensitizes hepatocytes to p53-mediated apoptosis. Although it is well established that the Rb/E2F/ARF pathway stabilizes p53, and the DNA damage-activated ATM/ATR kinases activate p53, the mechanism that coordinates these two pathways has not been determined. We demonstrate that the p38MAPK pathway activated by pX serves this role in p53 apoptosis. Specifically, the activated p38MAPK pathway stabilizes p53 via E2F1-mediated ARF expression, and also activates the transcriptional function of p53 by activating ATR. Knockdown of p53, E2F1, ATR, or p38MAPKα abrogates pX-mediated apoptosis, demonstrating that E2F1, ATR, and p38MAPKα are all essential in p53 apoptosis in response to pX. Specifically, in response to pX expression, the p38MAPK pathway activates Cdk4 and Cdk2, leading to phosphorylation of Rb, release of E2F1, and transcription of ARF. The p38MAPK pathway also activates ATR, leading to phosphorylation of p53 on Ser-18 and Ser-23, transcription of pro-apoptotic genes Bax, Fas, and Noxa, and apoptosis. In conclusion, pX sensitizes hepatocytes to p53 apoptosis via activation of the p38MAPK pathway, which couples p53 stabilization and p53 activation, by E2F1 induction and ATR activation, respectively. PMID:18606816

  17. Characterization of the human DYRK1A promoter and its regulation by the transcription factor E2F1

    Directory of Open Access Journals (Sweden)

    Galceran Juan

    2008-03-01

    Full Text Available Abstract Background Overexpression of the human DYRK1A gene due to the presence of a third gene copy in trisomy 21 is thought to play a role in the pathogenesis of Down syndrome. The observation of gene dosage effects in transgenic mouse models implies that subtle changes in expression levels can affect the correct function of the DYRK1A gene product. We have therefore characterized the promoter of the human DYRK1A gene in order to study its transcriptional regulation. Results Transcription start sites of the human DYRK1A gene are distributed over 800 bp within a region previously identified as an unmethylated CpG island. We have identified a new alternative noncoding 5'-exon of the DYRK1A gene which is located 772 bp upstream of the previously described transcription start site. Transcription of the two splicing variants is controlled by non-overlapping promoter regions that can independently drive reporter gene expression. We found no evidence of cell- or tissue-specific promoter usage, but the two promoter regions differed in their activity and their regulation. The sequence upstream of exon 1A (promoter region A induced about 10-fold higher reporter gene activity than the sequence upstream of exon 1B (promoter region B. Overexpression of the transcription factor E2F1 increased DYRK1A mRNA levels in Saos2 and Phoenix cells and enhanced the activity of promoter region B three- to fourfold. Conclusion The identification of two alternatively spliced transcripts whose transcription is initiated from differentially regulated promoters regions indicates that the expression of the DYRK1A gene is subject to complex control mechanisms. The regulatory effect of E2F1 suggests that DYRK1A may play a role in cell cycle regulation or apoptosis.

  18. The Prognostic Role and Relationship between E2F1 and SV40 in Diffuse Large B-Cell Lymphoma of Egyptian Patients

    Directory of Open Access Journals (Sweden)

    Rehab M. Samaka

    2015-01-01

    Full Text Available Diffuse large B-cell lymphoma (DLBCL is the most common type of lymphomas worldwide. The pathogenesis of lymphomas is not yet well understood. SV40 induces malignant transformation by the large T-antigen (L-TAG and promotes transformation by binding and inactivating p53 and pRb. L-TAG can bind pRb promoting the activation of the E2F1 transcription factor, thus inducing the expression of genes required for the entry to the S phase and leading to cell transformation. This immunohistochemical study was conducted to assess the prognostic role and relationship of SV40 L-TAG and E2F1 in diffuse large B-cell lymphoma (DLBCL of Egyptian patients. This retrospective study was conducted on 105 tissue specimens including 20 follicular hyperplasia and 85 DLBCL cases. SV40 L-TAG was identified in 3/85 (4% of DLBCL. High Ki-67 labeling index (Ki-67 LI and apoptotic count were associated with high E2F1 expression (p<0.001 for all. No significant association was reached between E2F1 and SV40. E2F1 expression proved to be the most and first independent prognostic factor on overall survival of DLBCL patients (HR = 5.79, 95% CI = 2.3–14.6, and p<0.001. Upregulation of E2F1 has been implicated in oncogenesis, prognosis, and prediction of therapeutic response but is not seemingly to have a relationship with the accused SV40.

  19. Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Morris Robert

    2010-03-01

    Full Text Available Abstract Background Sulforaphane (SFN, an isothiocyanate phytochemical present predominantly in cruciferous vegetables such as brussels sprout and broccoli, is considered a promising chemo-preventive agent against cancer. In-vitro exposure to SFN appears to result in the induction of apoptosis and cell-cycle arrest in a variety of tumor types. However, the molecular mechanisms leading to the inhibition of cell cycle progression by SFN are poorly understood in epithelial ovarian cancer cells (EOC. The aim of this study is to understand the signaling mechanisms through which SFN influences the cell growth and proliferation in EOC. Results SFN at concentrations of 5 - 20 μM induced a dose-dependent suppression of growth in cell lines MDAH 2774 and SkOV-3 with an IC50 of ~8 μM after a 3 day exposure. Combination treatment with chemotherapeutic agent, paclitaxel, resulted in additive growth suppression. SFN at ~8 μM decreased growth by 40% and 20% on day 1 in MDAH 2774 and SkOV-3, respectively. Cells treated with cytotoxic concentrations of SFN have reduced cell migration and increased apoptotic cell death via an increase in Bak/Bcl-2 ratio and cleavage of procaspase-9 and poly (ADP-ribose-polymerase (PARP. Gene expression profile analysis of cell cycle regulated proteins demonstrated increased levels of tumor suppressor retinoblastoma protein (RB and decreased levels of E2F-1 transcription factor. SFN treatment resulted in G1 cell cycle arrest through down modulation of RB phosphorylation and by protecting the RB-E2F-1 complex. Conclusions SFN induces growth arrest and apoptosis in EOC cells. Inhibition of retinoblastoma (RB phosphorylation and reduction in levels of free E2F-1 appear to play an important role in EOC growth arrest.

  20. Controlling Depth of Cellular Quiescence by an Rb-E2F Network Switch

    Directory of Open Access Journals (Sweden)

    Jungeun Sarah Kwon

    2017-09-01

    Full Text Available Quiescence is a non-proliferative cellular state that is critical to tissue repair and regeneration. Although often described as the G0 phase, quiescence is not a single homogeneous state. As cells remain quiescent for longer durations, they move progressively deeper and display a reduced sensitivity to growth signals. Deep quiescent cells, unlike senescent cells, can still re-enter the cell cycle under physiological conditions. Mechanisms controlling quiescence depth are poorly understood, representing a currently underappreciated layer of complexity in growth control. Here, we show that the activation threshold of a Retinoblastoma (Rb-E2F network switch controls quiescence depth. Particularly, deeper quiescent cells feature a higher E2F-switching threshold and exhibit a delayed traverse through the restriction point (R-point. We further show that different components of the Rb-E2F network can be experimentally perturbed, following computer model predictions, to coarse- or fine-tune the E2F-switching threshold and drive cells into varying quiescence depths.

  1. Distinct phosphorylation events regulate p130- and p107-mediated repression of E2F-4

    DEFF Research Database (Denmark)

    Farkas, Thomas; Hansen, Klaus; Holm, Karin

    2002-01-01

    The "pocket proteins" pRb (retinoblastoma tumor suppressor protein), p107, and p130 regulate cell proliferation via phosphorylation-sensitive interactions with E2F transcription factors and other proteins. We previously identified 22 in vivo phosphorylation sites in human p130, including three...

  2. E2F1 Orchestrates Transcriptomics and Oxidative Metabolism in Wharton's Jelly-Derived Mesenchymal Stem Cells from Growth-Restricted Infants.

    Directory of Open Access Journals (Sweden)

    Peck Yean Tan

    Full Text Available Wharton's jelly-derived Mesenchymal Stem Cells (MSCs isolated from newborns with intrauterine fetal growth restriction were previously shown to exert anabolic features including insulin hypersensitivity. Here, we extend these observations and demonstrate that MSCs from small for gestational age (SGA individuals have decreased mitochondrial oxygen consumption rates. Comparing normally grown and SGA MSCs using next generation sequencing studies, we measured global transcriptomic and epigenetic profiles and identified E2F1 as an over-expressed transcription factor regulating oxidative metabolism in the SGA group. We further show that E2F1 regulates the differential transcriptome found in SGA derived MSCs and is associated with the activating histone marks H3K27ac and H3K4me3. One of the key genes regulated by E2F1 was found to be the fatty acid elongase ELOVL2, a gene involved in the endogenous synthesis of docosahexaenoic acid (DHA. Finally, we shed light on how the E2F1-ELOVL2 pathway may alter oxidative respiration in the SGA condition by contributing to the maintenance of cellular metabolic homeostasis.

  3. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zejun [Sanmen People' s Hospital of Zhejiang, Sanmen, Zhejiang, 317100 (China); Gong, Chaoju [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058 (China); Liu, Hong [Zhejiang Normal University – Jinhua People' s Hospital Joint Center for Biomedical Research, Jinhua, Zhejiang, 321004 (China); Zhang, Xiaomin; Mei, Lingming [Sanmen People' s Hospital of Zhejiang, Sanmen, Zhejiang, 317100 (China); Song, Mintao [Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, 100005 (China); Qiu, Lanlan; Luo, Shuchai; Zhu, Zhihua; Zhang, Ronghui; Gu, Hongqian [Sanmen People' s Hospital of Zhejiang, Sanmen, Zhejiang, 317100 (China); Chen, Xiang, E-mail: sychenxiang@126.com [Sanmen People' s Hospital of Zhejiang, Sanmen, Zhejiang, 317100 (China)

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression of E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration and

  4. File list: Oth.ALL.50.E2f4.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.E2f4.AllCell mm9 TFs and others E2f4 All cell types SRX027460,SRX019010,...SRX140377,SRX019013,SRX142538,SRX140375,SRX122395,SRX122396,SRX122397,SRX122394 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.50.E2f4.AllCell.bed ...

  5. File list: Oth.ALL.20.E2f4.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.E2f4.AllCell mm9 TFs and others E2f4 All cell types SRX027460,SRX019010,...SRX140377,SRX142538,SRX019013,SRX140375,SRX122395,SRX122396,SRX122397,SRX122394 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.20.E2f4.AllCell.bed ...

  6. Differential impact of RB status on E2F1 reprogramming in human cancer.

    Science.gov (United States)

    McNair, Christopher; Xu, Kexin; Mandigo, Amy C; Benelli, Matteo; Leiby, Benjamin; Rodrigues, Daniel; Lindberg, Johan; Gronberg, Henrik; Crespo, Mateus; De Laere, Bram; Dirix, Luc; Visakorpi, Tapio; Li, Fugen; Feng, Felix Y; de Bono, Johann; Demichelis, Francesca; Rubin, Mark A; Brown, Myles; Knudsen, Karen E

    2017-12-04

    The tumor suppressor protein retinoblastoma (RB) is mechanistically linked to suppression of transcription factor E2F1-mediated cell cycle regulation. For multiple tumor types, loss of RB function is associated with poor clinical outcome. RB action is abrogated either by direct depletion or through inactivation of RB function; however, the basis for this selectivity is unknown. Here, analysis of tumor samples and cell-free DNA from patients with advanced prostate cancer showed that direct RB loss was the preferred pathway of disruption in human disease. While RB loss was associated with lethal disease, RB-deficient tumors had no proliferative advantage and exhibited downstream effects distinct from cell cycle control. Mechanistically, RB loss led to E2F1 cistrome expansion and different binding specificity, alterations distinct from those observed after functional RB inactivation. Additionally, identification of protumorigenic transcriptional networks specific to RB loss that were validated in clinical samples demonstrated the ability of RB loss to differentially reprogram E2F1 in human cancers. Together, these findings not only identify tumor-suppressive functions of RB that are distinct from cell cycle control, but also demonstrate that the molecular consequence of RB loss is distinct from RB inactivation. Thus, these studies provide insight into how RB loss promotes disease progression, and identify new nodes for therapeutic intervention.

  7. Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway.

    Directory of Open Access Journals (Sweden)

    Kathleen C Brown

    2010-04-01

    Full Text Available Small cell lung cancer (SCLC is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo.BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation.Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs.

  8. Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland

    DEFF Research Database (Denmark)

    Lazzerini Denchi, Eros; Attwooll, Claire; Pasini, Diego

    2005-01-01

    in hyperproliferation, it is not sufficient to mimic loss of Rb, sustain proliferation of melanotrophs, and ultimately induce pituitary tumors. Similarly, we found that primary cells in tissue culture become insensitive to sustained E2F3 activation and undergo premature senescence in a pRB-, p16Ink4a-, and p19Arf......, while long-term exposure to deregulated E2F activity results in hyperplasia of the intermediate lobe, it did not lead to tumor formation. In fact, melanotrophs become insensitive to sustained E2F stimulation and enter an irreversible senescence-like state. Thus, although deregulated E2F activity results......-dependent manner. Thus, we conclude that deregulated E2F activity is not sufficient to fully mimic loss of Rb due to the engagement of a senescence response....

  9. MAZ induces MYB expression during the exit from quiescence via the E2F site in the MYB promoter.

    Science.gov (United States)

    Álvaro-Blanco, Josué; Urso, Katia; Chiodo, Yuri; Martín-Cortázar, Carla; Kourani, Omar; Arco, Pablo Gómez-Del; Rodríguez-Martínez, María; Calonge, Esther; Alcamí, José; Redondo, Juan Miguel; Iglesias, Teresa; Campanero, Miguel R

    2017-09-29

    Most E2F-binding sites repress transcription through the recruitment of Retinoblastoma (RB) family members until the end of the G1 cell-cycle phase. Although the MYB promoter contains an E2F-binding site, its transcription is activated shortly after the exit from quiescence, before RB family members inactivation, by unknown mechanisms. We had previously uncovered a nuclear factor distinct from E2F, Myb-sp, whose DNA-binding site overlapped the E2F element and had hypothesized that this factor might overcome the transcriptional repression of MYB by E2F-RB family members. We have purified Myb-sp and discovered that Myc-associated zinc finger proteins (MAZ) are major components. We show that various MAZ isoforms are present in Myb-sp and activate transcription via the MYB-E2F element. Moreover, while forced RB or p130 expression repressed the activity of a luciferase reporter driven by the MYB-E2F element, co-expression of MAZ proteins not only reverted repression, but also activated transcription. Finally, we show that MAZ binds the MYB promoter in vivo, that its binding site is critical for MYB transactivation, and that MAZ knockdown inhibits MYB expression during the exit from quiescence. Together, these data indicate that MAZ is essential to bypass MYB promoter repression by RB family members and to induce MYB expression. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop.

    Science.gov (United States)

    Béguelin, Wendy; Rivas, Martín A; Calvo Fernández, María T; Teater, Matt; Purwada, Alberto; Redmond, David; Shen, Hao; Challman, Matt F; Elemento, Olivier; Singh, Ankur; Melnick, Ari M

    2017-10-12

    The EZH2 histone methyltransferase is required for B cells to form germinal centers (GC). Here we show that EZH2 mediates GC formation through repression of cyclin-dependent kinase inhibitor CDKN1A (p21(Cip1)). Deletion of Cdkn1a rescues the GC reaction in Ezh2 (-/-) mice. Using a 3D B cell follicular organoid system that mimics the GC reaction, we show that depletion of EZH2 suppresses G1 to S phase transition of GC B cells in a Cdkn1a-dependent manner. GC B cells of Cdkn1a (-/-) Ezh2 (-/-) mice have high levels of phospho-Rb, indicating that loss of Cdkn1a enables progression of cell cycle. Moreover, the transcription factor E2F1 induces EZH2 during the GC reaction. E2f1 (-/-) mice manifest impaired GC responses, which is rescued by restoring EZH2 expression, thus defining a positive feedback loop in which EZH2 controls GC B cell proliferation by suppressing CDKN1A, enabling cell cycle progression with a concomitant phosphorylation of Rb and release of E2F1.The histone methyltransferase EZH2 silences genes by generating H3K27me3 marks. Here the authors use a 3D GC organoid and show EZH2 mediates germinal centre (GC) formation through epigenetic silencing of CDKN1A and release of cell cycle checkpoints.

  11. The Complex Containing Drosophila Myb and RB/E2F2 Regulates Cytokinesis in a Histone H2Av-Dependent Manner

    Science.gov (United States)

    DeBruhl, Heather; Wen, Hong

    2013-01-01

    In Drosophila, mutation of the oncogene Myb reduced the expression of mitotic genes, such as polo and ial, and caused multiple mitotic defects, including disrupted chromosome condensation and abnormal spindles. We now show that binucleate cells, the hallmark phenotype of cytokinesis failure, accumulate in Myb-null ovarian follicle cell and wing disc epithelia. Myb functions as an activator in the generally repressive Drosophila RBF, E2F2, and Myb (dREAM)/Myb-MuvB complex. Absence of the dREAM subunit Mip130 or E2F2 suppressed the Myb-null cytokinesis defect. Therefore, we used Myb-null binucleate cells as a quantitative phenotypic readout of transcriptional repression by the dREAM complex. In the absence of Myb, the complex was sensitive to the dose of the subunits E2F2, Mip120, Caf1, and Lin-52 but not Mip130 or Mip40. Surprisingly, reduction of the dose of His2Av/H2A.z also suppressed the Myb-null binucleate cell phenotype, suggesting a novel role for this variant histone in transcriptional repression by the dREAM complex. PMID:23438598

  12. Positive and negative regulation of cell proliferation by E2F-1: influence of protein level and human papillomavirus oncoproteins

    DEFF Research Database (Denmark)

    Melillo, R M; Helin, K; Lowy, D R

    1994-01-01

    that is defective for immortalization and binding of pRB and pRB-related proteins. By contrast, E2F-1 was unable to complement two other E7 mutants, p2PRO and p31/32ARG/PRO, which are also defective in the immortalization assay, although their proteins display wild-type binding of pRB in vitro. Since the binding...... levels of E2F-1, produced by transfection of the E2F-1 cDNA under the control of a strong promoter, reduced colony formation in normal human foreskin keratinocytes (NHFKs). This inhibition could not be overcome by wild-type human papillomavirus type 16 (HPV16) E6 and E7, two proteins which cooperate...... to immortalize NHFKs, or by a transdominant p53 mutant. High levels of E2F-1 also inhibited growth of primary and established fibroblasts. The growth-inhibitory activity required the DNA binding function of E2F-1 but not its transactivation or pRB binding activities. A positive role for lower levels of E2F-1...

  13. E2F/Rb Family Proteins Mediate Interferon Induced Repression of Adenovirus Immediate Early Transcription to Promote Persistent Viral Infection.

    Directory of Open Access Journals (Sweden)

    Yueting Zheng

    2016-01-01

    Full Text Available Interferons (IFNs are cytokines that have pleiotropic effects and play important roles in innate and adaptive immunity. IFNs have broad antiviral properties and function by different mechanisms. IFNs fail to inhibit wild-type Adenovirus (Ad replication in established cancer cell lines. In this study, we analyzed the effects of IFNs on Ad replication in normal human cells. Our data demonstrate that both IFNα and IFNγ blocked wild-type Ad5 replication in primary human bronchial epithelial cells (NHBEC and TERT-immortalized normal human diploid fibroblasts (HDF-TERT. IFNs inhibited the replication of divergent adenoviruses. The inhibition of Ad5 replication by IFNα and IFNγ is the consequence of repression of transcription of the E1A immediate early gene product. Both IFNα and IFNγ impede the association of the transactivator GABP with the E1A enhancer region during the early phase of infection. The repression of E1A expression by IFNs requires a conserved E2F binding site in the E1A enhancer, and IFNs increased the enrichment of the E2F-associated pocket proteins, Rb and p107, at the E1A enhancer in vivo. PD0332991 (Pabociclib, a specific CDK4/6 inhibitor, dephosphoryles pocket proteins to promote their interaction with E2Fs and inhibited wild-type Ad5 replication dependent on the conserved E2F binding site. Consistent with this result, expression of the small E1A oncoprotein, which abrogates E2F/pocket protein interactions, rescued Ad replication in the presence of IFNα or IFNγ. Finally, we established a persistent Ad infection model in vitro and demonstrated that IFNγ suppresses productive Ad replication in a manner dependent on the E2F binding site in the E1A enhancer. This is the first study that probes the molecular basis of persistent adenovirus infection and reveals a novel mechanism by which adenoviruses utilize IFN signaling to suppress lytic virus replication and to promote persistent infection.

  14. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans.

    Science.gov (United States)

    Reddien, Peter W; Andersen, Erik C; Huang, Michael C; Horvitz, H Robert

    2007-04-01

    The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.

  15. An E2F binding sequence negatively regulates the response of the insulin-like growth factor 1 (IGF-I) promoter to simian virus 40T antigen and to serum.

    Science.gov (United States)

    Porcu, P; Graña, X; Li, S; Swantek, J; De Luca, A; Giordano, A; Baserga, R

    1994-08-01

    The promoter of the Insulin-like growth factor I (IGF-I) gene is activated by the Simian Virus 40 large T antigen (SVLT), and one of the elements responding to SVLT activation has been localized to a short 124 bp immediately upstream of the first initiation of transcription site. This short promoter contains an E2F binding site, that, in gel shifts, binds a protein complex, but only when the promoter activity is reduced or absent. A mutation in the E2F binding site deregulates the activity of the promoter, which becomes active even in those conditions in which the wild type promoter is inactive. By using antibodies in gel retardation analyses, we can show that the different protein complexes include, at least, the following proteins: E2F, cyclin A and p107. We conclude that the short IGF-I promoter is negatively regulated by an E2F binding site that complexes with several proteins. Our data suggest that disaggregation of these complexes by the action of SVLT (or other activators) increases expression from the promoter, thus establishing a link between the regulation of cell proliferation by growth factors and the E2F-associated proteins.

  16. Regulation of DNA methyltransferase 1 transcription in BRCA1-mutated breast cancer: a novel crosstalk between E2F1 motif hypermethylation and loss of histone H3 lysine 9 acetylation.

    Science.gov (United States)

    Li, Da; Bi, Fang-Fang; Cao, Ji-Min; Cao, Chen; Liu, Bo; Yang, Qing

    2014-02-06

    DNA methyltransferase 1 (DNMT1) plays a critical role in breast cancer progression. However, the epigenetic mechanism regulating DNMT1 expression remains largely unknown. Epigenetic regulation of DNMT1 was assessed in 85 invasive ductal carcinomas from BRCA1 mutation carriers. Association between clinicopathological features and DNMT1 promoter methylation was determined using Fisher's exact test. Univariate analysis of survival was performed using the Kaplan-Meier method. Multivariate Cox regression analysis was performed to identify the independent prognostic factors for overall survival. Hypermethylated E2F transcription factor 1 (E2F1) motif is a key regulatory element for the DNMT1 gene in BRCA1-mutated breast cancer. Mechanistically, the abnormal E2F1 motif methylation-mediated loss of active histone H3 lysine 9 acetylation (H3K9ac) and transcription factor E2F1 enrichment synergistically inhibited the transcription of DNMT1. Clinicopathological data indicated that the hypermethylated E2F1 motif was associated with histological grade, lymph node, Ki67 and E-cadherin status; univariate survival and multivariate analyses demonstrated that lymph node metastasis was an independent and reliable prognostic factor for BRCA1-mutated breast cancer patients. Our findings imply that genetic (such as BRCA1 mutation) and epigenetic mechanisms (such as DNA methylation, histone modification, transcription factor binding) are jointly involved in the malignant progression of DNMT1-related breast cancer.

  17. Arsenic treatment increase Aurora-A overexpression through E2F1 activation in bladder cells.

    Science.gov (United States)

    Kao, Yu-Ting; Wu, Chin-Han; Wu, Shan-Ying; Lan, Sheng-Hui; Liu, Hsiao-Sheng; Tseng, Ya-Shih

    2017-04-18

    Arsenic is a widely distributed metalloid compound that has biphasic effects on cultured cells. In large doses, arsenic can be toxic enough to trigger cell death. In smaller amounts, non-toxic doses may promote cell proliferation and induces carcinogenesis. Aberration of chromosome is frequently detected in epithelial cells and lymphocytes of individuals from arsenic contaminated areas. Overexpression of Aurora-A, a mitotic kinase, results in chromosomal instability and cell transformation. We have reported that low concentration (≦1 μM) of arsenic treatment increases Aurora-A expression in immortalized bladder urothelial E7 cells. However, how arsenic induces carcinogenesis through Aurora-A activation remaining unclear. Bromodeoxyuridine (BrdU) staining, MTT assay, and flow cytometry assay were conducted to determine cell proliferation. Messenger RNA and protein expression levels of Aurora-A were detected by reverse transcriptional-PCR and Western blotting, respectively. Centrosome of cells was observed by immunofluorescent staining. The transcription factor of Aurora-A was investigated by promoter activity, chromosome immunoprecipitation (ChIP), and small interfering RNA (shRNA) assays. Mouse model was utilized to confirm the relationship between arsenic and Aurora-A. We reveal that low dosage of arsenic treatment increased cell proliferation is associated with accumulated cell population at S phase. We also detected increased Aurora-A expression at mRNA and protein levels in immortalized bladder urothelial E7 cells exposed to low doses of arsenic. Arsenic-treated cells displayed increased multiple centrosome which is resulted from overexpressed Aurora-A. Furthermore, the transcription factor, E2F1, is responsible for Aurora-A overexpression after arsenic treatment. We further disclosed that Aurora-A expression and cell proliferation were increased in bladder and uterus tissues of the BALB/c mice after long-term arsenic (1 mg/L) exposure for 2 months. We

  18. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1.

    Science.gov (United States)

    Meyer, Kerstin B; O'Reilly, Martin; Michailidou, Kyriaki; Carlebur, Saskia; Edwards, Stacey L; French, Juliet D; Prathalingham, Radhika; Dennis, Joe; Bolla, Manjeet K; Wang, Qin; de Santiago, Ines; Hopper, John L; Tsimiklis, Helen; Apicella, Carmel; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Van 't Veer, Laura J; Hogervorst, Frans B; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A; Lux, Michael P; Ekici, Arif B; Beckmann, Matthias W; Peto, Julian; Dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Zamora, M Pilar; Arias, Jose I; Benitez, Javier; Neuhausen, Susan; Anton-Culver, Hoda; Ziogas, Argyrios; Dur, Christina C; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Schmutzler, Rita K; Engel, Christoph; Ditsch, Nina; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Dörk, Thilo; Helbig, Sonja; Bogdanova, Natalia V; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Chenevix-Trench, Georgia; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Lambrechts, Diether; Thienpont, Bernard; Christiaens, Marie-Rose; Smeets, Ann; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Bernard, Loris; Couch, Fergus J; Olson, Janet E; Wang, Xianshu; Purrington, Kristen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Teo, Soo-Hwang; Yip, Cheng-Har; Phuah, Sze-Yee; Kristensen, Vessela; Grenaker Alnæs, Grethe; Børresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline M; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J; Lissowska, Jolanta; Czene, Kamila; Darabi, Hartef; Eriksson, Kimael; Hooning, Maartje J; Martens, John W M; van den Ouweland, Ans M W; van Deurzen, Carolien H M; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Reed, Malcolm W R; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Pharoah, Paul D P; Ghoussaini, Maya; Harrington, Patricia; Tyrer, Jonathan; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Noh, Dong-Young; Hartman, Mikael; Hui, Miao; Lim, Wei-Yen; Buhari, Shaik A; Hamann, Ute; Försti, Asta; Rüdiger, Thomas; Ulmer, Hans-Ulrich; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Vachon, Celine; Slager, Susan; Fostira, Florentia; Pilarski, Robert; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Ponder, Bruce A J; Dunning, Alison M; Easton, Douglas F

    2013-12-05

    The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ERα to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Epithelial cell-derived periostin functions as a tumor suppressor in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14ARF/Mdm2 signaling pathway.

    Science.gov (United States)

    Lv, Hongjun; Liu, Rui; Fu, Jiao; Yang, Qi; Shi, Jing; Chen, Pu; Ji, Meiju; Shi, Bingyin; Hou, Peng

    2014-01-01

    Periostin is usually considered as an oncogene in diverse human cancers, including breast, prostate, colon, esophagus, and pancreas cancers, whereas it acts as a tumor suppressor in bladder cancer. In gastric cancer, it has been demonstrated that periglandular periostin expression is decreased whereas stromal periostin expression is significantly increased as compared with normal gastric tissues. Moreover, periostin produced by stromal myofibroblasts markedly promotes gastric cancer cell growth. These observations suggest that periostin derived from different types of cells may play distinct biological roles in gastric tumorigenesis. The aim of this study was to explore the biological functions and related molecular mechanisms of epithelial cell-derived periostin in gastric cancer. Our data showed that periglandular periostin was significantly down-regulated in gastric cancer tissues as compared with matched normal gastric mucosa. In addition, its expression in metastatic lymph nodes was significantly lower than that in their primary cancer tissues. Our data also demonstrated that periglandular periostin expression was negatively associated with tumor stage. More importantly, restoration of periostin expression in gastric cancer cells dramatically suppressed cell growth and invasiveness. Elucidation of the mechanisms involved revealed that periostin restoration enhanced Rb phosphorylation and sequentially activated the transcription of E2F1 target gene p14(ARF), leading to Mdm2 inactivation and the stabilization of p53 and E-cadherin proteins. Strikingly, these effects of periostin were abolished upon Rb deletion. Collectively, we have for the first time demonstrated that epithelial cell-derived periostin exerts tumor-suppressor activities in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14(ARF)/Mdm2 signaling pathway.

  20. PI3Kδ activates E2F1 synthesis in response to mRNA translation stress.

    Science.gov (United States)

    Gnanasundram, Sivakumar Vadivel; Pyndiah, Slovénie; Daskalogianni, Chrysoula; Armfield, Kate; Nylander, Karin; Wilson, Joanna B; Fåhraeus, Robin

    2017-12-13

    The c-myc oncogene stimulates ribosomal biogenesis and protein synthesis to promote cellular growth. However, the pathway by which cells sense and restore dysfunctional mRNA translation and how this is linked to cell proliferation and growth is not known. We here show that mRNA translation stress in cis triggered by the gly-ala repeat sequence of Epstein-Barr virus (EBV)-encoded EBNA1, results in PI3Kδ-dependent induction of E2F1 mRNA translation with the consequent activation of c-Myc and cell proliferation. Treatment with a specific PI3Kδ inhibitor Idelalisib (CAL-101) suppresses E2F1 and c-Myc levels and causes cell death in EBNA1-induced B cell lymphomas. Suppression of PI3Kδ prevents E2F1 activation also in non-EBV-infected cells. These data illustrate an mRNA translation stress-response pathway for E2F1 activation that is exploited by EBV to promote cell growth and proliferation, offering new strategies to treat EBV-carrying cancers.

  1. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Pasini, Diego; Capra, Maria

    2003-01-01

    expression during embryonic development. Here we demonstrate that both EZH2 and EED are essential for the proliferation of both transformed and non-transformed human cells. In addition, the pRB-E2F pathway tightly regulates their expression and, consistent with this, we find that EZH2 is highly expressed...

  2. E2F-dependent induction of p14ARF during cell cycle re-entry in human T cells

    DEFF Research Database (Denmark)

    del Arroyo, Ana Gutierrez; El Messaoudi, Selma; Clark, Paula A

    2007-01-01

    The ARF protein, encoded by alternate exon usage within the CDKN2A locus, provides a link between the retinoblastoma (pRb) and p53 tumor suppressor pathways. Agents that disable pRb or otherwise impinge on the E2F family of transcription factors induce expression of ARF, resulting in stabilization...

  3. Targeted gene flow for conservation.

    Science.gov (United States)

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens. © 2015 Society for Conservation Biology.

  4. The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis.

    Science.gov (United States)

    Fontemaggi, Giulia; Dell'Orso, Stefania; Trisciuoglio, Daniela; Shay, Tal; Melucci, Elisa; Fazi, Francesco; Terrenato, Irene; Mottolese, Marcella; Muti, Paola; Domany, Eytan; Del Bufalo, Donatella; Strano, Sabrina; Blandino, Giovanni

    2009-10-01

    ID4 (inhibitor of DNA binding 4) is a member of a family of proteins that function as dominant-negative regulators of basic helix-loop-helix transcription factors. Growing evidence links ID proteins to cell proliferation, differentiation and tumorigenesis. Here we identify ID4 as a transcriptional target of gain-of-function p53 mutants R175H, R273H and R280K. Depletion of mutant p53 protein severely impairs ID4 expression in proliferating tumor cells. The protein complex mutant p53-E2F1 assembles on specific regions of the ID4 promoter and positively controls ID4 expression. The ID4 protein binds to and stabilizes mRNAs encoding pro-angiogenic factors IL8 and GRO-alpha. This results in the increase of the angiogenic potential of cancer cells expressing mutant p53. These findings highlight the transcriptional axis mutant p53, E2F1 and ID4 as a still undefined molecular mechanism contributing to tumor neo-angiogenesis.

  5. Integrated genomic analyses identify KDM1A's role in cell proliferation via modulating E2F signaling activity and associate with poor clinical outcome in oral cancer.

    Science.gov (United States)

    Narayanan, Sathiya Pandi; Singh, Smriti; Gupta, Amit; Yadav, Sandhya; Singh, Shree Ram; Shukla, Sanjeev

    2015-10-28

    The histone demethylase KDM1A specifically demethylates lysine residues and its deregulation has been implicated in the initiation and progression of various cancers. However, KDM1A's molecular role and its pathological consequences, and prognostic significance in oral cancer remain less understood. In the present study, we sought to investigate the expression of KDM1A and its downstream role in oral cancer pathogenesis. By comparing mRNA expression profiles, we identified an elevated KDM1A expression in oral tumors when compared to normal oral tissues. In silico pathway prediction identified the association between KDM1A and E2F1 signaling in oral cancer. Pathway scanning, functional annotation analysis and In vitro assays showed the KDM1A's involvement in oral cancer cell proliferation and the cell cycle. Moreover, real time PCR and luciferase assays confirmed KDM1A's role in regulation of E2F1 signaling activity in oral cancer. Elevated KDM1A expression is associated with poor clinical outcome in oral cancer. Our data indicate that deregulated KDM1A expression is positively associated with proliferative phenotype of oral cancer and confers poor clinical outcome. These cumulative data suggest that KDM1A might be a potential diagnostic and therapeutic target for oral cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  7. Gene Therapy Targeting HIV Entry

    Directory of Open Access Journals (Sweden)

    Chuka Didigu

    2014-03-01

    Full Text Available Despite the unquestionable success of antiretroviral therapy (ART in the treatment of HIV infection, the cost, need for daily adherence, and HIV-associated morbidities that persist despite ART all underscore the need to develop a cure for HIV. The cure achieved following an allogeneic hematopoietic stem cell transplant (HSCT using HIV-resistant cells, and more recently, the report of short-term but sustained, ART-free control of HIV replication following allogeneic HSCT, using HIV susceptible cells, have served to both reignite interest in HIV cure research, and suggest potential mechanisms for a cure. In this review, we highlight some of the obstacles facing HIV cure research today, and explore the roles of gene therapy targeting HIV entry, and allogeneic stem cell transplantation in the development of strategies to cure HIV infection.

  8. Heterodimerization of the transcription factors E2F-1 and DP-1 is required for binding to the adenovirus E4 (ORF6/7) protein

    DEFF Research Database (Denmark)

    Helin, K; Harlow, E

    1994-01-01

    Adenovirus infection leads to E1A-dependent activation of the transcription factor E2F. E2F has recently been identified in complexes with cellular proteins such as the retinoblastoma protein (pRB) and the two pRB family members p107 and p130. E1A dissociates E2F from these cellular proteins......, and another viral protein, E4 (ORF6/7), can bind to E2F. The binding of E4 to E2F induces the formation of a stable DNA-binding complex containing the two proteins, and stimulation of the adenovirus E2 early promoter can occur. Recent studies have shown that E2F is the combined activity of several proteins......, and we demonstrate here that heterodimerization of two of these proteins, E2F-1 and DP-1, is required for stable binding to E4. This complex is formed independently of DNA binding and requires the C-terminal 20 amino acids of E4. Furthermore, the binding is dependent on a region of E2F-1 between amino...

  9. LA VÍA RB/E2F Y LA FAMILIA DE PROTEÍNAS REPRESORAS POLYCOMB EN EL DESARROLLO DE CÁNCER

    Directory of Open Access Journals (Sweden)

    MERCEDES IMELDA DÁVALOS-SALAS

    2011-01-01

    Full Text Available El control adecuado del ciclo celular mediante la acción coordinada de la familia de factores de transcripción E2F resulta ser clave para la homeostasis celular. El entender su modo de acción desde una perspectiva epigenética resulta ser un tema de gran actualidad y cambia la visión de cómo es regulado el ciclo celular. Uno de los principales reguladores epigenéticos está conformado por el grupo de proteínas Polycomb (PcG, relacionadas con procesos patológicos como el cáncer, a través de la desregulación a nivel epigenético de genes supresores de tumores como BRCA1, p16 y p53, entre otros. Con relación a lo anterior, la regulación del gen supresor Retinoblastoma (Rb ha sido ampliamente estudiado dada su importante participación como regulador negativo del ciclo celular, pero más reciente se ha demostrado que su modo de acción está relacionado con el grupo de proteínas PcG. Cada uno de los procesos que involucran a componentes de la familia de factores E2F, los miembros de Polycomb y la familia de proteína Rb, parecen ser en cierta medida independientes y, por ende, poco relacionados. Sin embargo, existen evidencias de una convergencia a nivel epigenético en la acción de estos conjuntos de moléculas reguladoras de la progresión del ciclo celular y su desregulación nos puede llevar a entender mejor su contribución al desarrollo de procesos patológicos como el cáncer.

  10. New Cholesterol Fighting Meds Target Key Gene

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_165942.html New Cholesterol Fighting Meds Target Key Gene Two trials show ... New gene-based therapies appear to significantly decrease cholesterol levels in people, and could even cut down ...

  11. Targeted integration of genes in Xenopus tropicalis

    DEFF Research Database (Denmark)

    Shi, Zhaoying; Tian, Dandan; Xin, Huhu

    2017-01-01

    With the successful establishment of both targeted gene disruption and integration methods in the true diploid frog Xenopus tropicalis, this excellent vertebrate genetic model now is making a unique contribution to modelling human diseases. Here, we summarize our efforts on establishing homologous...... recombination-mediated targeted integration in Xenopus tropicalis, the usefulness, and limitation of targeted integration via the homology-independent strategy, and future directions on how to further improve targeted gene integration in Xenopus tropicalis....

  12. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jacqueline G. Miller

    2016-03-01

    Full Text Available Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.

  13. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    Science.gov (United States)

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  14. Independent regions of adenovirus E1A are required for binding to and dissociation of E2F-protein complexes

    DEFF Research Database (Denmark)

    Fattaey, A R; Harlow, E; Helin, K

    1993-01-01

    for binding to a number of cellular proteins, including pRB and p107. Through the use of a number of glutathione S-transferase fusion proteins representing different regions of E1A, as well as in vivo expression of E1A proteins containing deletions of either conserved region 1 (CR1) or CR2, we find that CR2...... of E1A can form stable complexes with E2F. E1A proteins containing both CR1 and CR2 also associate with E2F, although the presence of these proteins results in the release of free E2F from its complexes. In vitro reconstitution experiments indicate that E1A-E2F interactions are not direct and that pRB...... can serve to facilitate these interactions. Complexes containing E1A, p107, cyclin A, and E2F were identified in vivo, which indicates that E1A may associate with E2F through either p107 or pRB. Peptide competition experiments demonstrate that the pRB-binding domain of the human E2F-1 protein can...

  15. ASK1 (MAP3K5 is transcriptionally upregulated by E2F1 in adipose tissue in obesity, molecularly defining a human dys-metabolic obese phenotype

    Directory of Open Access Journals (Sweden)

    Yulia Haim

    2017-07-01

    Conclusions: AT E2F1 –ASK1 molecularly defines a metabolically-detrimental obese sub-phenotype. Functionally, it may negatively affect AT endocrine function, linking AT stress to whole-body metabolic dysfunction.

  16. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1)

    DEFF Research Database (Denmark)

    Hsu, Jerry Y; Reimann, Julie D R; Sørensen, Claus S

    2002-01-01

    . At the G1-S transition, hEmi1 is transcriptionally induced by the E2F transcription factor, much like cyclin A. hEmi1 overexpression accelerates S phase entry and can override a G1 block caused by overexpression of Cdh1 or the E2F-inhibitor p105 retinoblastoma protein (pRb). Depleting cells of hEmi1...

  17. E2F1 interactive with BRCA1 pathway induces HCC two different small molecule metabolism or cell cycle regulation via mitochondrion or CD4+T to cytosol.

    Science.gov (United States)

    Chen, Qingchun; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Jiang, Zhenfu; Feng, Haitao; Ji, Zhili

    2018-02-01

    Breast cancer 1 (BRCA1) and E2F transcription factor 1 (E2F1) are related to metabolism and cell cycle regulation. However, the corresponding mechanism is not clear in HCC. High BRCA1 direct pathway was constructed with 11 molecules from E2F1 feedback-interactive network in HCC by GRNInfer based on 39 Pearson mutual positive corelation CC ≥0.25 molecules with E2F1. Integration of GRNInfer with GO, KEGG, BioCarta, GNF_U133A, UNIGENE_EST, Disease, GenMAPP databases by DAVID and MAS 3.0, E2F1 feedback-interactive BRCA1 indirect mitochondrion to cytosol pathway was identified as upstream LAPTM4B activation, feedback UNG, downstream BCAT1-HIST1H2AD-TK1 reflecting protein, and DNA binding with enrichment of small molecule metabolism; The corresponding BRCA1 indirect membrane to cytosol pathway as upstream CCNB2-NUSAP1 activation, feedback TTK-HIST1H2BJ-CENPF, downstream MCM4-TK1 reflecting ATP, and microtubule binding with enrichment of CD4+T-related cell cycle regulation in HCC. Therefore, we propose that E2F1 interactive with BRCA1 pathway induces HCC two different small molecule metabolism or cell cycle regulation via mitochondrion or CD4+T to cytosol. Knowledge analysis demonstrates our E2F1 feedback-interactive BRCA1 pathway wide disease distribution and reflects a novel common one of tumor and cancer. © 2017 Wiley Periodicals, Inc.

  18. Gene Therapy and Targeted Toxins for Glioma

    Science.gov (United States)

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  19. p15(PAF is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Chih-Ning Chang

    Full Text Available The p15(PAF/KIAA0101 protein is a proliferating cell nuclear antigen (PCNA-associated protein overexpressed in multiple types of cancer. Attenuation of p15(PAF expression leads to modifications in the DNA repair process, rendering cells more sensitive to ultraviolet-induced cell death. In this study, we identified that p15(PAF expression peaks during the S phase of the cell cycle. We observed that p15(PAF knockdown markedly inhibited cell proliferation, S-phase progression, and DNA synthesis. Depletion of p15(PAF resulted in p21 upregulation, especially chromatin-bound p21. We further identified that the p15(PAF promoter contains 3 E2F-binding motifs. Loss of Rb-mediated transcriptional repression resulted in upregulated p15(PAF expression. Binding of E2F4 and E2F6 to the p15(PAF promoter caused transcriptional repression. Overall, these results indicate that p15(PAF is tightly regulated by the Rb/E2F complex. Loss of Rb/E2F-mediated repression during the G1/S transition phase leads to p15(PAF upregulation, which facilitates DNA synthesis and S-phase progression.

  20. p15(PAF) is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression.

    Science.gov (United States)

    Chang, Chih-Ning; Feng, Mow-Jung; Chen, Yu-Ling; Yuan, Ray-Hwang; Jeng, Yung-Ming

    2013-01-01

    The p15(PAF)/KIAA0101 protein is a proliferating cell nuclear antigen (PCNA)-associated protein overexpressed in multiple types of cancer. Attenuation of p15(PAF) expression leads to modifications in the DNA repair process, rendering cells more sensitive to ultraviolet-induced cell death. In this study, we identified that p15(PAF) expression peaks during the S phase of the cell cycle. We observed that p15(PAF) knockdown markedly inhibited cell proliferation, S-phase progression, and DNA synthesis. Depletion of p15(PAF) resulted in p21 upregulation, especially chromatin-bound p21. We further identified that the p15(PAF) promoter contains 3 E2F-binding motifs. Loss of Rb-mediated transcriptional repression resulted in upregulated p15(PAF) expression. Binding of E2F4 and E2F6 to the p15(PAF) promoter caused transcriptional repression. Overall, these results indicate that p15(PAF) is tightly regulated by the Rb/E2F complex. Loss of Rb/E2F-mediated repression during the G1/S transition phase leads to p15(PAF) upregulation, which facilitates DNA synthesis and S-phase progression.

  1. The Histone Acetyltransferase GCN5 Expression Is Elevated and Regulated by c-Myc and E2F1 Transcription Factors in Human Colon Cancer

    Science.gov (United States)

    Yin, Yan-Wei; Jin, Hong-Jian; Zhao, Wenjing; Gao, Beixue; Fang, Jiangao; Wei, Junmin; Zhang, Donna D.; Zhang, Jianing; Fang, Deyu

    2017-01-01

    The histone acetyltransferase GCN5 has been suggested to be involved in promoting cancer cell growth. But its role in human colon cancer development remains unknown. Herein we discovered that GCN5 expression is significantly upregulated in human colon adenocarcinoma tissues. We further demonstrate that GCN5 is upregulated in human colon cancer at the mRNA level. Surprisingly, two transcription factors, the oncogenic c-Myc and the proapoptotic E2F1, are responsible for GCN5 mRNA transcription. Knockdown of c-Myc inhibited colon cancer cell proliferation largely through downregulating GCN5 transcription, which can be fully rescued by the ectopic GCN5 expression. In contrast, E2F1 expression induced human colon cancer cell death, and suppression of GCN5 expression in cells with E2F1 overexpression further facilitated cell apoptosis, suggesting that GCN5 expression is induced by E2F1 as a possible negative feedback in suppressing E2F1-mediated cell apoptosis. In addition, suppression of GCN5 with its specific inhibitor CPTH2 inhibited human colon cancer cell growth. Our studies reveal that GCN5 plays a positive role in human colon cancer development, and its suppression holds a great therapeutic potential in antitumor therapy. PMID:26637399

  2. Cellular targeting for cochlear gene therapy.

    Science.gov (United States)

    Ryan, Allen F; Mullen, Lina M; Doherty, Joni K

    2009-01-01

    Gene therapy has considerable potential for the treatment of disorders of the inner ear. Many forms of inherited hearing loss have now been linked to specific locations in the genome, and for many of these the genes and specific mutations involved have been identified. This information provides the basis for therapy based on genetic approaches. However, a major obstacle to gene therapy is the targeting of therapy to the cells and the times that are required. The inner ear is a very complex organ, involving dozens of cell types that must function in a coordinated manner to result in the formation of the ear, and in hearing. Mutations that result in hearing loss can affect virtually any of these cells. Moreover, the genes involved are active during particular times, some for only brief periods of time. In order to be effective, gene therapy must be delivered to the appropriate cells, and at the appropriate times. In many cases, it must also be restricted to these cells and times. This requires methods with which to target gene therapy in space and time. Cell-specific gene promoters offer the opportunity to direct gene therapy to a desired cell type. Moreover, conditional promoters allow gene expression to be turned off and on at desired times. Theoretically, these technologies offer a mechanism by which to deliver gene therapy to any cell, at any given time. This chapter will examine the potential for such targeting to deliver gene therapy to the inner ear in a precisely controlled manner. Copyright (c) 2009 S. Karger AG, Basel.

  3. Progress in gene targeting and gene therapy for retinitis pigmentosa

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, G.J.; Humphries, M.M.; Erven, A. [Trinity College, Dublin (Ireland)] [and others

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectors for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.

  4. Targeting Herpetic Keratitis by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hossein Mostafa Elbadawy

    2012-01-01

    Full Text Available Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1 can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.

  5. Cellular Targeting for Cochlear Gene Therapy

    OpenAIRE

    Ryan, Allen F.; Mullen, Lina M.; Doherty, Joni K.

    2009-01-01

    Gene therapy has considerable potential for the treatment of disorders of the inner ear. Many forms of inherited hearing loss have now been linked to specific locations in the genome, and for many of these the genes and specific mutations involved have been identified. This information provides the basis for therapy based on genetic approaches. However, a major obstacle to gene therapy is the targeting of therapy to the cells and the times that are required. The inner ear is a very complex or...

  6. Targeting tumor suppressor genes for cancer therapy.

    Science.gov (United States)

    Liu, Yunhua; Hu, Xiaoxiao; Han, Cecil; Wang, Liana; Zhang, Xinna; He, Xiaoming; Lu, Xiongbin

    2015-12-01

    Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics. © 2015 WILEY Periodicals, Inc.

  7. Differential cytotoxic pathways of topoisomerase I and II anticancer agents after overexpression of the E2F-1/DP-1 transcription factor complex

    DEFF Research Database (Denmark)

    Hofland, K; Petersen, B O; Falck, J

    2000-01-01

    The transcription factor complex E2F-1/DP-1 regulates the G1-to-S-phase transition and has been associated with sensitivity to the S-phase-specific anticancer agents camptothecin and etoposide, which poison DNA topoisomerase I and II, respectively. To investigate the relationship between E2F-1...... and drug sensitivity in detail, we established human osteosarcoma U-20S-TA cells expressing full-length E2F-1/ DP-1 under the control of a tetracycline-responsive promoter, designated UE1DP-1 cells. Topoisomerase I levels and activity as well as the number of camptothecin-induced DNA single- and double......-strand breaks were unchanged in UEIDP-1/tc- cells with >10-fold E2F-1/DP-1 overexpression. However, UE1DP-1/tc- cells were hypersensitive to camptothecin in both a clonogenic assay and four different apoptotic assays. This indicates that camptothecin-induced toxicity in this model is due to the activation...

  8. miR-92a family and their target genes in tumorigenesis and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Molin, E-mail: molin_li@hotmail.com [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Guan, Xingfang; Sun, Yuqiang [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Mi, Jun [Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Shu, Xiaohong [College of Pharmacy, Dalian Medical University Cancer Center, Dalian 116044 (China); Liu, Fang [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China); Li, Chuangang, E-mail: li_chuangang@sina.com [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China)

    2014-04-15

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.

  9. Roles of salivary components in Streptococcus mutans colonization in a new animal model using NOD/SCID.e2f1-/- mice.

    Directory of Open Access Journals (Sweden)

    Tatsuro Ito

    Full Text Available Streptococcus mutans plays an important role in biofilm formation on the tooth surface and is the primary causative agent of dental caries. The binding of S. mutans to the salivary pellicle is of considerable etiologic significance and is important in biofilm development. Recently, we produced NOD/SCID.e2f1(-/- mice that show hyposalivation, lower salivary antibody, and an extended life span compared to the parent strain: NOD.e2f1(-/-. In this study we used NOD/SCID.e2f1(-/- 4 or 6 mice to determine the roles of several salivary components in S. mutans colonization in vivo. S. mutans colonization in NOD/SCID.e2f1(-/- mice was significantly increased when mice were pre-treated with human saliva or commercial salivary components. Interestingly, pre-treatment with secretory IgA (sIgA at physiological concentrations promoted significant colonization of S. mutans compared with sIgA at higher concentrations, or with human saliva or other components. Our data suggest the principal effects of specific sIgA on S. mutans occur during S. mutans colonization, where the appropriate concentration of specific sIgA may serve as an anti-microbial agent, agglutinin, or an adherence receptor to surface antigens. Further, specific sIgA supported biofilm formation when the mice were supplied 1% sucrose water and a non-sucrose diet. The data suggests that there are multiple effects exerted by sIgA in S. mutans colonization, with synergistic effects evident under the condition of sIgA and limited nutrients on colonization in NOD/SCID.e2f1(-/- mice. This is a new animal model that can be used to assess prevention methods for dental biofilm-dependent diseases such as dental caries.

  10. Genetic nanomedicine: gene delivery by targeted lipoplexes.

    Science.gov (United States)

    Düzgüneş, Nejat; de Ilarduya, Conchita Tros

    2012-01-01

    Cationic liposome-DNA complexes (lipoplexes) are used for the delivery of plasmid DNA to cultured cells and various tissues in vivo. In this chapter, we describe the preparation and evaluation of plain and targeted lipoplexes, using targeting ligands, including epidermal growth factor and transferrin. Ligand-associated lipoplexes may be used to target DNA or other nucleic acid drugs to specific cells, particularly cancer cells that overexpress the receptors for the ligands. We provide examples of the enhancement of gene expression mediated by epidermal growth factor in murine and human oral squamous cell carcinoma cells, and human hepatoblastoma and rat colon adenocarcinoma cells. We also summarize the studies on the use of transferrin-lipoplexes for enhancing gene delivery to cervical carcinoma, murine colon carcinoma, and African green monkey kidney cells. We outline two animal models in which transferrin-lipoplexes have been used for antitumor therapy by delivering either the gene encoding interleukin-12 or a suicide gene: a CT26 murine colon carcinoma, and a syngeneic, orthotopic murine oral squamous cell carcinoma. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. A two-cassette reporter system for assessing target gene translation and target gene product inclusion body formation

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a dual cassette reporter system capable of assessing target gene translation and target gene product folding. The present invention further relates to vectors and host cells comprising the dual cassette reporter system. In addition the invention relates to the use...... of the dual cassette reporter system for assessing target gene translation and target gene product folding....

  12. Targeting Conserved Genes in Alternaria Species.

    Science.gov (United States)

    Pavón, Miguel Ángel; López-Calleja, Inés María; González, Isabel; Martín, Rosario; García, Teresa

    2017-01-01

    Real-time polymerase chain reaction (PCR) is a molecular biology technique based on the detection of the fluorescence produced by a reporter molecule, which increases as the reaction proceeds proportionally to the accumulation of the PCR product within each amplification cycle. The fluorescent reporter molecules include dyes that bind to the double-stranded DNA (i.e., SYBR ® Green) or sequence-specific probes (i.e., Molecular Beacons or TaqMan ® Probes). Real-time PCR provides a tool for accurate and sensitive quantification of target fungal DNA. Here, we describe a TaqMan real-time PCR method for specific detection and quantification of Alternaria spp. The method uses Alternaria-specific primers and probe, targeting the internal transcribed spacer regions ITS1 and ITS2 of the rRNA gene, and a positive amplification control based on 18S rRNA gene.

  13. Engineering liposomal nanoparticles for targeted gene therapy.

    Science.gov (United States)

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  14. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression

    DEFF Research Database (Denmark)

    Lukas, J; Petersen, B O; Holm, K

    1996-01-01

    the coexpression of the heterodimeric partner DP-1 to promote S-phase entry and accelerate G1 progression. Furthermore, the pRB-associated E2Fs were all able to overcome a G1 arrest mediated by the p16INK4 tumor suppressor protein, and E2F-1 was shown to override a G1 block mediated by a neutralizing antibody...

  15. The N-terminal domain of the Drosophila retinoblastoma protein Rbf1 interacts with ORC and associates with chromatin in an E2F independent manner.

    Directory of Open Access Journals (Sweden)

    Joseph Ahlander

    2008-07-01

    Full Text Available The retinoblastoma (Rb tumor suppressor protein can function as a DNA replication inhibitor as well as a transcription factor. Regulation of DNA replication may occur through interaction of Rb with the origin recognition complex (ORC.We characterized the interaction of Drosophila Rb, Rbf1, with ORC. Using expression of proteins in Drosophila S2 cells, we found that an N-terminal Rbf1 fragment (amino acids 1-345 is sufficient for Rbf1 association with ORC but does not bind to dE2F1. We also found that the C-terminal half of Rbf1 (amino acids 345-845 interacts with ORC. We observed that the amino-terminal domain of Rbf1 localizes to chromatin in vivo and associates with chromosomal regions implicated in replication initiation, including colocalization with Orc2 and acetylated histone H4.Our results suggest that Rbf1 can associate with ORC and chromatin through domains independent of the E2F binding site. We infer that Rbf1 may play a role in regulating replication directly through its association with ORC and/or chromatin factors other than E2F. Our data suggest an important role for retinoblastoma family proteins in cell proliferation and tumor suppression through interaction with the replication initiation machinery.

  16. E2F1-Mediated FOS Induction in Arsenic Trioxide–Induced Cellular Transformation: Effects of Global H3K9 Hypoacetylation and Promoter-Specific Hyperacetylation in Vitro

    Science.gov (United States)

    Rahman, Sunniyat; Housein, Zjwan; Dabrowska, Aleksandra; Mayán, Maria Dolores; Boobis, Alan R.

    2015-01-01

    Background: Aberrant histone acetylation has been observed in carcinogenesis and cellular transformation associated with arsenic exposure; however, the molecular mechanisms and cellular outcomes of such changes are poorly understood. Objective: We investigated the impact of tolerated and toxic arsenic trioxide (As2O3) exposure in human embryonic kidney (HEK293T) and urothelial (UROtsa) cells to characterize the alterations in histone acetylation and gene expression as well as the implications for cellular transformation. Methods: Tolerated and toxic exposures of As2O3 were identified by measurement of cell death, mitochondrial function, cellular proliferation, and anchorage-independent growth. Histone extraction, the MNase sensitivity assay, and immunoblotting were used to assess global histone acetylation levels, and gene promoter-specific interactions were measured by chromatin immunoprecipitation followed by reverse-transcriptase polymerase chain reaction. Results: Tolerated and toxic dosages, respectively, were defined as 0.5 μM and 2.5 μM As2O3 in HEK293T cells and 1 μM and 5 μM As2O3 in UROtsa cells. Global hypoacetylation of H3K9 at 72 hr was observed in UROtsa cells following tolerated and toxic exposure. In both cell lines, tolerated exposure alone led to H3K9 hyperacetylation and E2F1 binding at the FOS promoter, which remained elevated after 72 hr, contrary to global H3K9 hypoacetylation. Thus, promoter-specific H3K9 acetylation is a better predictor of cellular transformation than are global histone acetylation patterns. Tolerated exposure resulted in an increased expression of the proto-oncogenes FOS and JUN in both cell lines at 72 hr. Conclusion: Global H3K9 hypoacetylation and promoter-specific hyperacetylation facilitate E2F1-mediated FOS induction in As2O3-induced cellular transformation. Citation: Rahman S, Housein Z, Dabrowska A, Mayán MD, Boobis AR, Hajji N. 2015. E2F1-mediated FOS induction in arsenic trioxide–induced cellular

  17. E2F1-mediated FOS induction in arsenic trioxide-induced cellular transformation: effects of global H3K9 hypoacetylation and promoter-specific hyperacetylation in vitro.

    Science.gov (United States)

    Rahman, Sunniyat; Housein, Zjwan; Dabrowska, Aleksandra; Mayán, Maria Dolores; Boobis, Alan R; Hajji, Nabil

    2015-05-01

    Aberrant histone acetylation has been observed in carcinogenesis and cellular transformation associated with arsenic exposure; however, the molecular mechanisms and cellular outcomes of such changes are poorly understood. We investigated the impact of tolerated and toxic arsenic trioxide (As2O3) exposure in human embryonic kidney (HEK293T) and urothelial (UROtsa) cells to characterize the alterations in histone acetylation and gene expression as well as the implications for cellular transformation. Tolerated and toxic exposures of As2O3 were identified by measurement of cell death, mitochondrial function, cellular proliferation, and anchorage-independent growth. Histone extraction, the MNase sensitivity assay, and immunoblotting were used to assess global histone acetylation levels, and gene promoter-specific interactions were measured by chromatin immunoprecipitation followed by reverse-transcriptase polymerase chain reaction. Tolerated and toxic dosages, respectively, were defined as 0.5 μM and 2.5 μM As2O3 in HEK293T cells and 1 μM and 5 μM As2O3 in UROtsa cells. Global hypoacetylation of H3K9 at 72 hr was observed in UROtsa cells following tolerated and toxic exposure. In both cell lines, tolerated exposure alone led to H3K9 hyperacetylation and E2F1 binding at the FOS promoter, which remained elevated after 72 hr, contrary to global H3K9 hypoacetylation. Thus, promoter-specific H3K9 acetylation is a better predictor of cellular transformation than are global histone acetylation patterns. Tolerated exposure resulted in an increased expression of the proto-oncogenes FOS and JUN in both cell lines at 72 hr. Global H3K9 hypoacetylation and promoter-specific hyperacetylation facilitate E2F1-mediated FOS induction in As2O3-induced cellular transformation.

  18. HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling

    Directory of Open Access Journals (Sweden)

    Choi Chan

    2010-05-01

    Full Text Available Abstract Background Androgen signaling plays a critical role in the development of prostate cancer and its progression. However, androgen-independent prostate cancer cells emerge after hormone ablation therapy, resulting in significant clinical problems. We have previously demonstrated that the HOXB13 homeodomain protein functions as a prostate cancer cell growth suppressor by inhibiting androgen-mediated signals. However, the role of the HOXB13 in androgen-independent growth of prostate cancer cells remains unexplained. Results In this report, we first demonstrated that HOXB13 was highly overexpressed in hormone-refractory tumors compared to tumors without prostate-specific antigen after initial treatment. Functionally, in an androgen-free environment minimal induction of HOXB13 in LNCaP prostate cancer cells, to the level of the normal prostate, markedly promoted cell proliferation while suppression inhibited cell proliferation. The HOXB13-mediated cell growth promotion in the absence of androgen, appears to be mainly accomplished through the activation of RB-E2F signaling by inhibiting the expression of the p21waf tumor suppressor. Indeed, forced expression of HOXB13 dramatically decreased expression of p21waf; this inhibition largely affected HOXB13-mediated promotion of E2F signaling. Conclusions Taken together, the results of this study demonstrated the presence of a novel pathway that helps understand androgen-independent survival of prostate cancer cells. These findings suggest that upregulation of HOXB13 is associated with an additive growth advantage of prostate cancer cells in the absence of or low androgen concentrations, by the regulation of p21-mediated E2F signaling.

  19. Hypermethylated in cancer 1 (HIC1) recruits polycomb repressive complex 2 (PRC2) to a subset of its target genes through interaction with human polycomb-like (hPCL) proteins

    DEFF Research Database (Denmark)

    Boulay, Gaylor; Dubuissez, Marion; Van Rechem, Capucine

    2012-01-01

    HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene epigenetically silenced or deleted in many human cancers. HIC1 is involved in regulatory loops modulating p53- and E2F1-dependent cell survival, growth control, and stress responses. HIC1 is also essential for normal development because...... repression by HIC1 is associated with Polycomb activity during mouse cerebellar development. Thus, our results identify HIC1 as the first transcription factor in mammals able to recruit PRC2 to some target promoters through its interaction with Polycomb-like proteins....... members EZH2, EED, and Suz12. Confirming the implication of HIC1 in Polycomb recruitment, we showed that HIC1 shares some of its target genes with PRC2, including ATOH1. Depletion of HIC1 by siRNA interference leads to a partial displacement of EZH2 from the ATOH1 promoter. Furthermore, in vivo, ATOH1...

  20. The retinoid anticancer signal: mechanisms of target gene regulation

    OpenAIRE

    Liu, T.; Bohlken, A; Kuljaca, S; Lee, M.; Nguyen, T; S.; Smith; Cheung, B; Norris, M D; Haber, M; Holloway, A.J.; Bowtell, D D L; Marshall, G M

    2005-01-01

    Retinoids induce growth arrest, differentiation, and cell death in many cancer cell types. One factor determining the sensitivity or resistance to the retinoid anticancer signal is the transcriptional response of retinoid-regulated target genes in cancer cells. We used cDNA microarray to identify 31 retinoid-regulated target genes shared by two retinoid-sensitive neuroblastoma cell lines, and then sought to determine the relevance of the target gene responses to the retinoid anticancer signal...

  1. Periodic expression of Kv10.1 driven by pRb/E2F1 contributes to G2/M progression of cancer and non-transformed cells

    OpenAIRE

    Urrego, Diana; Movsisyan, Naira; Ufartes, Roser; Pardo, Luis A.

    2016-01-01

    ABSTRACT Progression of cell cycle is associated with changes in K+ channel expression and activity. In this study, we report that Kv10.1, a K+ channel that increases cell proliferation and tumor growth, is regulated at the transcriptional level by the pRb/E2F1 pathway. De-repression of E2F1 by HPV-E7 oncoprotein leads to increased expression of Kv10.1. In proliferating cells, E2F1 transcription factor binds directly to the Kv10.1 promoter during (or close to) G2/M, resulting in transient exp...

  2. Potent anti-tumor effect generated by a novel human papillomavirus (HPV antagonist peptide reactivating the pRb/E2F pathway.

    Directory of Open Access Journals (Sweden)

    Cai-ping Guo

    Full Text Available Human papillomavirus type 16 (HPV16 E7 is a viral oncoprotein believed to play a major role in cervical cancer. In this study, an antagonist peptide against HPV16E7 protein was first identified from screening the c7c phage display peptide library. The binding specificity and affinity of the selected peptide to HPV16E7 were tested by competitive enzyme-linked immunosorbent assay (ELISA. The antagonist peptide showed obvious anti-tumor efficacy both in cell lines and animal tumor models. Significant cell proliferation inhibition with high specificity was noted when HPV16-positive cells were treated with the peptide. This anti-tumor efficacy was resulted from overriding the activities of HPV16E7 and reactivating the pRb/E2F pathway, as shown by a series of experiments. Flow cytometry analysis revealed that the selected peptide induced G1 arrest in a dose-dependent manner. Competitive ELISA, pull down, and Co-IP experiments indicated that the selected peptide disrupted the interaction between HPV16E7 and pRb proteins both in vitro and in vivo. Luciferase reporter assay verified that transcription activities of E2F were suppressed by the peptide through restoration of pRb. RT-PCR and Western blot revealed that it reduced cyclins A, D1, and E1 expression, and led to HPV16E7 protein degradation, but pRb protein stabilization. The current study suggests that this specific peptide may serve as a potential therapeutic agent for HPV16-positive cervical cancer.

  3. Aptamer-guided gene targeting in yeast and human cells

    Science.gov (United States)

    Ruff, Patrick; Koh, Kyung Duk; Keskin, Havva; Pai, Rekha B.; Storici, Francesca

    2014-01-01

    Gene targeting is a genetic technique to modify an endogenous DNA sequence in its genomic location via homologous recombination (HR) and is useful both for functional analysis and gene therapy applications. HR is inefficient in most organisms and cell types, including mammalian cells, often limiting the effectiveness of gene targeting. Therefore, increasing HR efficiency remains a major challenge to DNA editing. Here, we present a new concept for gene correction based on the development of DNA aptamers capable of binding to a site-specific DNA binding protein to facilitate the exchange of homologous genetic information between a donor molecule and the desired target locus (aptamer-guided gene targeting). We selected DNA aptamers to the I-SceI endonuclease. Bifunctional oligonucleotides containing an I-SceI aptamer sequence were designed as part of a longer single-stranded DNA molecule that contained a region with homology to repair an I-SceI generated double-strand break and correct a disrupted gene. The I-SceI aptamer-containing oligonucleotides stimulated gene targeting up to 32-fold in yeast Saccharomyces cerevisiae and up to 16-fold in human cells. This work provides a novel concept and research direction to increase gene targeting efficiency and lays the groundwork for future studies using aptamers for gene targeting. PMID:24500205

  4. Targeted Gene Therapy for Breast Cancer

    Science.gov (United States)

    1999-08-01

    Jaehne, J., Altorki, N., Blundell, M., Urmacher, C., Lauwers, G., Niedzwiecki, D., and Kelsen , D. P. Amplification of HER-2/neu gene in human gastric...and integration into Moloney murine leukemia virus particles, Gene Therapy. 3: 334-342, 1996. 21 Park 14. Han , X., Kasahara, N., and Kan, Y. W. Ligand

  5. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  6. Census and evaluation of p53 target genes

    Science.gov (United States)

    Fischer, M

    2017-01-01

    The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53’s tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation. PMID:28288132

  7. Characterisation of genome-wide PLZF/RARA target genes.

    Directory of Open Access Journals (Sweden)

    Salvatore Spicuglia

    Full Text Available The PLZF/RARA fusion protein generated by the t(11;17(q23;q21 translocation in acute promyelocytic leukaemia (APL is believed to act as an oncogenic transcriptional regulator recruiting epigenetic factors to genes important for its transforming potential. However, molecular mechanisms associated with PLZF/RARA-dependent leukaemogenesis still remain unclear.We searched for specific PLZF/RARA target genes by ChIP-on-chip in the haematopoietic cell line U937 conditionally expressing PLZF/RARA. By comparing bound regions found in U937 cells expressing endogenous PLZF with PLZF/RARA-induced U937 cells, we isolated specific PLZF/RARA target gene promoters. We next analysed gene expression profiles of our identified target genes in PLZF/RARA APL patients and analysed DNA sequences and epigenetic modification at PLZF/RARA binding sites. We identify 413 specific PLZF/RARA target genes including a number encoding transcription factors involved in the regulation of haematopoiesis. Among these genes, 22 were significantly down regulated in primary PLZF/RARA APL cells. In addition, repressed PLZF/RARA target genes were associated with increased levels of H3K27me3 and decreased levels of H3K9K14ac. Finally, sequence analysis of PLZF/RARA bound sequences reveals the presence of both consensus and degenerated RAREs as well as enrichment for tissue-specific transcription factor motifs, highlighting the complexity of targeting fusion protein to chromatin. Our study suggests that PLZF/RARA directly targets genes important for haematopoietic development and supports the notion that PLZF/RARA acts mainly as an epigenetic regulator of its direct target genes.

  8. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: An in vivo and in vitro study.

    Science.gov (United States)

    Chen, Shi; Zhang, Jia-Qiang; Chen, Jiang-Zhi; Chen, Hui-Xing; Qiu, Fu-Nan; Yan, Mao-Lin; Chen, Yan-Ling; Peng, Cheng-Hong; Tian, Yi-Feng; Wang, Yao-Dong

    2017-09-01

    This study aims to investigate the roles of lncRNA ANRIL in epithelial-mesenchymal transition (EMT) by regulating the ATM-E2F1 signaling pathway in pancreatic cancer (PC). PC rat models were established and ANRIL overexpression and interference plasmids were transfected. The expression of ANRIL, EMT markers (E-cadherin, N-cadherin and Vimentin) and ATM-E2F1 signaling pathway-related proteins (ATM, E2F1, INK4A, INK4B and ARF) were detected. Small molecule drugs were applied to activate and inhibit the ATM-E2F1 signaling pathway. Transwell assay and the scratch test were adopted to detect cell invasion and migration abilities. ANRIL expression in the PC cells was higher than in normal pancreatic duct epithelial cells. In the PC rat models and PC cells, ANRIL interference promoted the expressions of INK4B, INK4A, ARF and E-cadherin, while reduced N-cadherin and Vimentin expression. Over-expressed ANRIL decreased the expression of INK4B, INK4A, ARF and E-cadherin, but raised N-cadherin and Vimentin expressions. By inhibiting the ATM-E2F1 signaling pathway in PC cells, E-cadherin expression increased but N-cadherin and Vimentin expressions decreased. After ANRIL was silenced or the ATM-E2F1 signaling pathway inhibited, PC cell migration and invasion abilities were decreased. In conclusion, over-expression of lncRNA ANRIL can promote EMT of PC cells by activating the ATM-E2F1 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. TBC2target: A Resource of Predicted Target Genes of Tea Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Shihua Zhang

    2018-02-01

    Full Text Available Tea is one of the most popular non-alcoholic beverages consumed worldwide. Numerous bioactive constituents of tea were confirmed to possess healthy benefits via the mechanisms of regulating gene expressions or protein activities. However, a complete interacting profile between tea bioactive compounds (TBCs and their target genes is lacking, which put an obstacle in the study of healthy function of tea. To fill this gap, we developed a database of target genes of TBCs (TBC2target, http://camellia.ahau.edu.cn/TBC2target based on a pharmacophore mapping approach. In TBC2target, 6,226 interactions between 240 TBCs and 673 target genes were documented. TBC2target contains detailed information about each interacting entry, such as TBC, CAS number, PubChem CID, source of compound (e.g., green, black, compound type, target gene(s of TBC, gene symbol, gene ID, ENSEMBL ID, PDB ID, TBC bioactivity and the reference. Using the TBC-target associations, we constructed a bipartite network and provided users the global network and local sub-network visualization and topological analyses. The entire database is free for online browsing, searching and downloading. In addition, TBC2target provides a BLAST search function to facilitate use of the database. The particular strengths of TBC2target are the inclusion of the comprehensive TBC-target interactions, and the capacity to visualize and analyze the interacting networks, which may help uncovering the beneficial effects of tea on human health as a central resource in tea health community.

  10. Gene therapy for meningioma : improved gene delivery with targeted adenoviruses

    NARCIS (Netherlands)

    Dirven, CMF; Grill, J; Lamfers, MLM; Van der Valk, P; Leonhart, AM; Van Beusechem, VW; Haisma, HJ; Pinedo, HM; Curiel, DT; Vandertop, WP; Gerritsen, WR

    Object. Due to their surgical inaccessibility or aggressive behavior, some meningiomas cannot be cured with current treatment strategies. Gene therapy is an emerging strategy for the treatment of brain tumors, which the authors investigated to determine whether adenoviruses could be used for gene

  11. Gene expression profiling for targeted cancer treatment.

    Science.gov (United States)

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  12. Targeting a Novel Vector for Breast Cancer Gene Therapy

    National Research Council Canada - National Science Library

    Bzik, David

    2002-01-01

    .... The primary purpose and scope of this IDEA award project is to experimentally examine approaches to safely target the Toxoplasma gondii parasite gene therapy vector to breast cancer tissue using...

  13. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  14. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Science.gov (United States)

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well. PMID:20936127

  15. Genome-wide identification of KANADI1 target genes.

    Directory of Open Access Journals (Sweden)

    Paz Merelo

    Full Text Available Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV. A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.

  16. Viroreplicative Gene Therapy Targeted to Prostate Cancer

    Science.gov (United States)

    2010-08-01

    analysis at each time point after harvest and collagenase digestion of tumors. In collaboration with Dr. David Klatzmann (Hôpital Pitié-Salpêtrière... digested with NotI and ligated into the PsiI and NotI sites of pAZ3-GFP, replacing the green fluores- cent protein (GFP) gene. Copyright  2010 John Wiley... Invitro - gen) was used to isolate DNA from infected and naive PC-3 cells and the concentration of the resulting samples was determined

  17. Adenovirus E4 open reading frame 4-induced dephosphorylation inhibits E1A activation of the E2 promoter and E2F-1-mediated transactivation independently of the retinoblastoma tumor suppressor protein

    DEFF Research Database (Denmark)

    Mannervik, M; Fan, S; Ström, A C

    1999-01-01

    during virus growth. E4-ORF4 has previously been shown to bind to and activate the cellular protein phosphatase 2A. The inhibitory effect of E4-ORF4 was relieved by okadaic acid, which inhibits protein phosphatase 2A activity, suggesting that E4-ORF4 represses E2 transcription by inducing transcription...... of the viral E4 open reading frame 4 (E4-ORF4) protein. This effect does not to require the retinoblastoma protein that previously has been shown to regulate E2F activity. The inhibitory activity of E4-ORF4 appears to be specific because E4-ORF4 had little effect on, for example, E4-ORF6/7 transactivation...... factor dephosphorylation. Interestingly, E4-ORF4 did not inhibit the transactivation capacity of a Gal4-E2F hybrid protein. Instead, E4-ORF4 expression appears to result in reduced stability of E2F/DNA complexes....

  18. TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/.

  19. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    de Groote, M.L.; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  20. Epigenetic Editing : targeted rewriting of epigenetic marks to modulate expression of selected target genes

    NARCIS (Netherlands)

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  1. An examination of targeted gene neighborhoods in strawberry

    Directory of Open Access Journals (Sweden)

    Pontaroli Ana C

    2010-05-01

    Full Text Available Abstract Background Strawberry (Fragaria spp. is the familiar name of a group of economically important crop plants and wild relatives that also represent an emerging system for the study of gene and genome evolution. Its small stature, rapid seed-to-seed cycle, transformability and miniscule basic genome make strawberry an attractive system to study processes related to plant physiology, development and crop production; yet it lacks substantial genomics-level resources. This report addresses this deficiency by characterizing 0.71 Mbp of gene space from a diploid species (F. vesca. The twenty large genomic tracks (30-52 kb captured as fosmid inserts comprise gene regions with roles in flowering, disease resistance, and metabolism. Results A detailed description of the studied regions reveals 131 Blastx-supported gene sites and eight additional EST-supported gene sites. Only 15 genes have complete EST coverage, enabling gene modelling, while 76 lack EST support. Instances of microcolinearity with Arabidopsis thaliana were identified in twelve inserts. A relatively high portion (25% of targeted genes were found in unanticipated tandem duplications. The effectiveness of six FGENESH training models was assessed via comparisons among ab initio predictions and homology-based gene and start/stop codon identifications. Fourteen transposable-element-related sequences and 158 simple sequence repeat loci were delineated. Conclusions This report details the structure and content of targeted regions of the strawberry genome. The data indicate that the strawberry genome is gene-dense, with an average of one protein-encoding gene or pseudogene per 5.9 kb. Current overall EST coverage is sparse. The unexpected gene duplications and their differential patterns of EST support suggest possible subfunctionalization or pseudogenization of these sequences. This report provides a high-resolution depiction of targeted gene neighborhoods that will aid whole

  2. Contextualizing the Genes Altered in Bladder Neoplasms in Pediatric andTeen Patients Allows Identifying Two Main Classes of Biological ProcessesInvolved and New Potential Therapeutic Targets.

    Science.gov (United States)

    Porrello, A; Piergentili, R B

    2016-02-01

    Research on bladder neoplasms in pediatric and teen patients (BNPTP) has described 21 genes, which are variously involved in this disease and are mostly responsible for deregulated cell proliferation. However, due to the limited number of publications on this subject, it is still unclear what type of relationships there are among these genes and which are the chances that, while having different molecular functions, they i) act as downstream effector genes of well-known pro- or anti- proliferative stimuli and/or interplay with biochemical pathways having oncological relevance or ii) are specific and, possibly, early biomarkers of these pathologies. A Gene Ontology (GO)-based analysis showed that these 21 genes are involved in biological processes, which can be split into two main classes: cell regulation-based and differentiation/development-based. In order to understand the involvement/overlapping with main cancer-related pathways, we performed a meta-analysis dependent on the 189 oncogenic signatures of the Molecular Signatures Database (OSMSD) curated by the Broad Institute. We generated a binary matrix with 53 gene signatures having at least one hit; this analysis i) suggests that some genes of the original list show inconsistencies and might need to be experimentally re- assessed or evaluated as biomarkers (in particular, ACTA2) and ii) allows hypothesizing that important (proto)oncogenes (E2F3, ERBB2/HER2, CCND1, WNT1, and YAP1) and (putative) tumor suppressors (BRCA1, RBBP8/CTIP, and RB1-RBL2/p130) may participate in the onset of this disease or worsen the observed phenotype, thus expanding the list of possible molecular targets for the treatment of BNPTP.

  3. Positive-negative-selection-mediated gene targeting in rice

    Directory of Open Access Journals (Sweden)

    Zenpei eShimatani

    2015-01-01

    Full Text Available Gene targeting (GT refers to the designed modification of genomic sequence(s through homologous recombination (HR. GT is a powerful tool both for the study of gene function and for molecular breeding. However, in transformation of higher plants, non-homologous end joining (NHEJ occurs overwhelmingly in somatic cells, masking HR-mediated GT. Positive-negative selection (PNS is an approach for finding HR-mediated GT events because it can eliminate NHEJ effectively by expression of a negative-selection marker gene. In rice—a major crop worldwide—reproducible PNS-mediated GT of endogenous genes has now been successfully achieved. The procedure is based on strong PNS using diphtheria toxin A-fragment as a negative marker, and has succeeded in the directed modification of several endogenous rice genes in various ways. In addition to gene knock-outs and knock-ins, a nucleotide substitution in a target gene was also achieved recently. This review presents a summary of the development of the rice PNS system, highlighting its advantages. Different types of gene modification and gene editing aimed at developing new plant breeding technology (NPBT based on PNS are discussed.

  4. A review on advanced methods in plant gene targeting

    Directory of Open Access Journals (Sweden)

    Raghavendrarao Sanagala

    2017-12-01

    Full Text Available Plant genetic engineering is one of the most significant tools implemented in the modern molecular crop breeding techniques. The conventional approaches of plant genetic transformation include Agrobacterium tumefaciens, particle bombardment, DNA uptake into protoplast. The transgenic events derived by these methods carry the transgenes that are integrated at random sites in the plant genome. Novel techniques that mediate integration of foreign genes at specific pre-determined locations circumvent many problems associated with the existing methods of gene transfer. The recent years have witnessed the emergence of gene targeting techniques by employing zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs, and clustered regularly interspaced short palindrome repeats (CRISPR. The present review focuses on the various approaches and their performance of plant gene targeting and suggests future directions in the important areas of plant molecular biology.

  5. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  6. Gene manipulation to enhance MIBG-targeted radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mairs, Robert J. [Targeted Therapy Group, Centre for Oncology and Applied Pharmacology, Cancer Research UK Beatson Laboratories, University of Glasgow, G61 1BD Glasgow (United Kingdom)]. E-mail: r.mairs@beatson.gla.ac.uk; Fullerton, Natasha E. [Targeted Therapy Group, Centre for Oncology and Applied Pharmacology, Cancer Research UK Beatson Laboratories, University of Glasgow, G61 1BD Glasgow (United Kingdom); Department of Urology, Gartnavel General Hospital, Glasgow G12 0NY (United Kingdom); Cosimo, Emilio [Targeted Therapy Group, Centre for Oncology and Applied Pharmacology, Cancer Research UK Beatson Laboratories, University of Glasgow, G61 1BD Glasgow (United Kingdom); Boyd, Marie [Targeted Therapy Group, Centre for Oncology and Applied Pharmacology, Cancer Research UK Beatson Laboratories, University of Glasgow, G61 1BD Glasgow (United Kingdom)

    2005-10-01

    The goal of targeted radionuclide therapy is the deposition in malignant cells of sterilizing doses of radiation without damaging normal tissue. The radiopharmaceutical [{sup 131}I]meta-iodobenzylguanidine ([{sup 131}I]MIBG) is an effective single agent for the treatment of neuroblastoma. However, uptake of the drug in malignant sites is insufficient to cure disease. A growing body of experimental evidence indicates exciting possibilities for the integration of gene transfer with [{sup 131}I]MIBG-targeted radiotherapy.

  7. Expression of Phosphocitrate-Targeted Genes in Osteoarthritis Menisci

    Directory of Open Access Journals (Sweden)

    Yubo Sun

    2014-01-01

    Full Text Available Phosphocitrate (PC inhibited calcium crystal-associated osteoarthritis (OA in Hartley guinea pigs. However, the molecular mechanisms remain elusive. This study sought to determine PC targeted genes and the expression of select PC targeted genes in OA menisci to test hypothesis that PC exerts its disease modifying activity in part by reversing abnormal expressions of genes involved in OA. We found that PC downregulated the expression of numerous genes classified in immune response, inflammatory response, and angiogenesis, including chemokine (C-C motif ligand 5, Fc fragment of IgG, low affinity IIIb receptor (FCGR3B, and leukocyte immunoglobulin-like receptor, subfamily B member 3 (LILRB3. In contrast, PC upregulated the expression of many genes classified in skeletal development, including collagen type II alpha1, fibroblast growth factor receptor 3 (FGFR3, and SRY- (sex determining region Y- box 9 (SOX-9. Immunohistochemical examinations revealed higher levels of FCGR3B and LILRB3 and lower level of SOX-9 in OA menisci. These findings indicate that OA is a disease associated with immune system activation and decreased expression of SOX-9 gene in OA menisci. PC exerts its disease modifying activity on OA, at least in part, by targeting immune system activation and the production of extracellular matrix and selecting chondroprotective proteins.

  8. Core promoter functions in the regulation of gene expression of Drosophila dorsal target genes.

    Science.gov (United States)

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-04-25

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes.

  9. Polycomb target genes are silenced in multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Antonia Kalushkova

    Full Text Available Multiple myeloma (MM is a genetically heterogeneous disease, which to date remains fatal. Finding a common mechanism for initiation and progression of MM continues to be challenging. By means of integrative genomics, we identified an underexpressed gene signature in MM patient cells compared to normal counterpart plasma cells. This profile was enriched for previously defined H3K27-tri-methylated genes, targets of the Polycomb group (PcG proteins in human embryonic fibroblasts. Additionally, the silenced gene signature was more pronounced in ISS stage III MM compared to stage I and II. Using chromatin immunoprecipitation (ChIP assay on purified CD138+ cells from four MM patients and on two MM cell lines, we found enrichment of H3K27me3 at genes selected from the profile. As the data implied that the Polycomb-targeted gene profile would be highly relevant for pharmacological treatment of MM, we used two compounds to chemically revert the H3K27-tri-methylation mediated gene silencing. The S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin (DZNep and the histone deacetylase inhibitor LBH589 (Panobinostat, reactivated the expression of genes repressed by H3K27me3, depleted cells from the PRC2 component EZH2 and induced apoptosis in human MM cell lines. In the immunocompetent 5T33MM in vivo model for MM, treatment with LBH589 resulted in gene upregulation, reduced tumor load and increased overall survival. Taken together, our results reveal a common gene signature in MM, mediated by gene silencing via the Polycomb repressor complex. The importance of the underexpressed gene profile in MM tumor initiation and progression should be subjected to further studies.

  10. Gene Targeting and Expression Modulation by Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    Peptide nucleic acids (PNA) are artificial structural mimics of nucleic acids capable of sequence specific hybridization to both RNA and DNA. Thus they have obvious potential as gene targeting agents for drug discovery approaches. An overview with emphasis on recent progress on RNA "interference"...

  11. Recombinant adenovirus vectors with knobless fibers for targeted gene transfer

    NARCIS (Netherlands)

    van Beusechem, VW; van Rijswijk, ALCT; van Es, HHG; Haisma, HJ; Pinedo, HM; Gerritsen, WR

    2000-01-01

    Adenoviral vector systems for gene therapy can be much improved by targeting vectors to specific cell types. This requires both the complete ablation of native adenovirus tropism and the introduction of a novel binding affinity in the viral capsid. We reasoned that these requirements could be

  12. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target.

    Science.gov (United States)

    Ulrich, Julia; Dao, Van Anh; Majumdar, Upalparna; Schmitt-Engel, Christian; Schwirz, Jonas; Schultheis, Dorothea; Ströhlein, Nadi; Troelenberg, Nicole; Grossmann, Daniela; Richter, Tobias; Dönitz, Jürgen; Gerischer, Lizzy; Leboulle, Gérard; Vilcinskas, Andreas; Stanke, Mario; Bucher, Gregor

    2015-09-03

    Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.

  13. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  14. Cancer therapeutic target genes identified on chromosome 20q

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2016-08-01

    Full Text Available An integrated quantitative genome data analysis was recently able to pinpoint 18 genes on human chromosome 20q that could potentially serve as novel molecular targets for cancer therapy. Researchers Antoine M Snijders and Jian-Hua Mao from Lawrence Berkeley National Laboratory’s Biological Systems and Engineering Division in Berkeley, California, United States, in their study published by the journal Advances in Modern Oncology Research (AMOR sought to compare the amounts of individual mRNAs – messenger RNAs that specify the amino acid sequence of the protein products of gene expression – in cancerous human tissues with corresponding normal tissues. The duo conducted a meta-analysis of genes on chromosome 20q that are found to be consistently upregulated across different human tumor types, while collecting gene transcript data of normal and tumor tissues across 11 different tumor types including brain, breast, colon, gastric, head and neck, liver, lung, ovarian, cervix, pancreas, and prostate cancers. “We calculated the differential expression of all 301 genes present on chromosome 20q for which gene transcript data was available. We then filtered for genes that were upregulated in tumors by at least 1.5 fold (p < 0.05 in seven or more tumor types,” they said. The resulting analysis identified 18 genes – some such as AURKA, UBE2C, TPX2, FAM83D, ZNF217, SALL4 and MMP9 have been previously known to potentially cause cancer. The 18-gene signature is revealed by the study to have robustly elevated levels across human cancers. “We observed significant association of our signature with disease-free survival in all 18 independent data… These data indicated that our signature is broadly predictive for disease-free survival, independent of tumor type,” the researchers said. In certain cases, Snijders and Mao found that increased gene expression was associated with better prognosis. “For example, the increased expressions of MMP9 and

  15. Muscle as a target for supplementary factor IX gene transfer.

    Science.gov (United States)

    Hoffman, Brad E; Dobrzynski, Eric; Wang, Lixin; Hirao, Lauren; Mingozzi, Federico; Cao, Ou; Herzog, Roland W

    2007-07-01

    Immune responses to the factor IX (F.IX) transgene product are a concern in gene therapy for the X-linked bleeding disorder hemophilia B. The risk for such responses is determined by several factors, including the vector, target tissue, and others. Previously, we have demonstrated that hepatic gene transfer with adeno-associated viral (AAV) vectors can induce F.IX-specific immune tolerance. Muscle-derived F.IX expression, however, is limited by a local immune response. Here, skeletal muscle was investigated as a target for supplemental gene transfer. Given the low invasiveness of intramuscular injections, this route would be ideal for secondary gene transfer, thereby boosting levels of transgene expression. However, this is feasible only if immune tolerance established by compartmentalization of expression to the liver extends to other sites. Immune tolerance to human F.IX established by prior hepatic AAV-2 gene transfer was maintained after subsequent injection of AAV-1 or adenoviral vector into skeletal muscle, and tolerized mice failed to form antibodies or an interferon (IFN)-gamma(+) T cell response to human F.IX. A sustained increase in systemic transgene expression was obtained for AAV-1, whereas an increase after adenoviral gene transfer was transient. A CD8(+) T cell response specifically against adenovirus-transduced fibers was observed, suggesting that cytotoxic T cell responses against viral antigens were sufficient to eliminate expression in muscle. In summary, the data demonstrate that supplemental F.IX gene transfer to skeletal muscle does not break tolerance achieved by liver-derived expression. The approach is efficacious, if the vector for muscle gene transfer does not express immunogenic viral proteins.

  16. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    ... activity of lysozyme in transfected cells culture medium was 180 U/ml. To obtain the gene targeted cells line, bovine fetal fibroblasts were isolated and transfected with linear targeting vector (21.9 kb) using nucleofector device, which the transfection rate was about 25%. After seven rounds of independent cell transfection, ...

  17. Targeted myocardial gene expression in failing hearts by RNA sequencing

    Directory of Open Access Journals (Sweden)

    Kajari Dhar

    2016-11-01

    Full Text Available Abstract Background Myocardial recovery with left ventricular assist device (LVAD therapy is highly variable and difficult to predict. Next generation ribonucleic acid (RNA sequencing is an innovative, rapid, and quantitative approach to gene expression profiling in small amounts of tissue. Our primary goal was to identify baseline transcriptional profiles in non-ischemic cardiomyopathies that predict myocardial recovery in response to LVAD therapy. We also sought to verify transcriptional differences between failing and non-failing human hearts. Methods RNA was isolated from failing (n = 16 and non-failing (n = 8 human hearts. RNA from each patient was reverse transcribed and quantitatively sequenced on the personal genome machine (PGM sequencer (Ion torrent for 95 heart failure candidate genes. Coverage analysis as well as mapping the reads and alignment was done using the Ion Torrent Browser Suite™. Differential expression analyses were conducted by empirical analysis of digital gene expression data in R (edgeR to identify differential expressed genes between failing and non-failing groups, and between responder and non-responder groups respectively. Targeted cardiac gene messenger RNA (mRNA expression was analyzed in proportion to the total number of reads. Gene expression profiles from the PGM sequencer were validated by performing RNA sequencing (RNAseq with the Illumina Hiseq2500 sequencing system. Results The failing sample population was 75% male with an average age of 50 and a left ventricular ejection fraction (LVEF of 16%. Myosin light chain kinase (MYLK and interleukin (IL-6 genes expression were significantly higher in LVAD responders compared to non-responders. Thirty-six cardiac genes were expressed differentially between failing and non-failing hearts (23 decreased, 13 elevated. MYLK, Beta-1 adrenergic receptor (ADRB1 and myosin heavy chain (MYH-6 expression were among those significantly decreased in failing hearts

  18. RFMirTarget: predicting human microRNA target genes with a random forest classifier.

    Directory of Open Access Journals (Sweden)

    Mariana R Mendoza

    Full Text Available MicroRNAs are key regulators of eukaryotic gene expression whose fundamental role has already been identified in many cell pathways. The correct identification of miRNAs targets is still a major challenge in bioinformatics and has motivated the development of several computational methods to overcome inherent limitations of experimental analysis. Indeed, the best results reported so far in terms of specificity and sensitivity are associated to machine learning-based methods for microRNA-target prediction. Following this trend, in the current paper we discuss and explore a microRNA-target prediction method based on a random forest classifier, namely RFMirTarget. Despite its well-known robustness regarding general classifying tasks, to the best of our knowledge, random forest have not been deeply explored for the specific context of predicting microRNAs targets. Our framework first analyzes alignments between candidate microRNA-target pairs and extracts a set of structural, thermodynamics, alignment, seed and position-based features, upon which classification is performed. Experiments have shown that RFMirTarget outperforms several well-known classifiers with statistical significance, and that its performance is not impaired by the class imbalance problem or features correlation. Moreover, comparing it against other algorithms for microRNA target prediction using independent test data sets from TarBase and starBase, we observe a very promising performance, with higher sensitivity in relation to other methods. Finally, tests performed with RFMirTarget show the benefits of feature selection even for a classifier with embedded feature importance analysis, and the consistency between relevant features identified and important biological properties for effective microRNA-target gene alignment.

  19. Reproducible gene targeting in recalcitrant Escherichia coli isolates

    Directory of Open Access Journals (Sweden)

    De Greve Henri

    2011-06-01

    Full Text Available Abstract Background A number of allele replacement methods can be used to mutate bacterial genes. For instance, the Red recombinase system of phage Lambda has been used very efficiently to inactivate chromosomal genes in E. coli K-12, through recombination between regions of homology. However, this method does not work reproducibly in some clinical E. coli isolates. Findings The procedure was modified by using longer homologous regions (85 bp and 500-600 bp, to inactivate genes in the uropathogenic E. coli strain UTI89. An lrhA regulator mutant, and deletions of the lac operon as well as the complete type 1 fimbrial gene cluster, were obtained reproducibly. The modified method is also functional in other recalcitrant E. coli, like the avian pathogenic E. coli strain APEC1. The lrhA regulator and lac operon deletion mutants of APEC1 were successfully constructed in the same way as the UTI89 mutants. In other avian pathogenic E. coli strains (APEC3E, APEC11A and APEC16A it was very difficult or impossible to construct these mutants, with the original Red recombinase-based method, with a Red recombinase-based method using longer (85 bp homologous regions or with our modified protocol, using 500 - 600 bp homologous regions. Conclusions The method using 500-600 bp homologous regions can be used reliably in some clinical isolates, to delete single genes or entire operons by homologous recombination. However, it does not invariably show a greater efficiency in obtaining mutants, when compared to the original Red-mediated gene targeting method or to the gene targeting method with 85 bp homologous regions. Therefore the length of the homology regions is not the only limiting factor for the construction of mutants in these recalcitrant strains.

  20. Mannan-Modified PLGA Nanoparticles for Targeted Gene Delivery

    Directory of Open Access Journals (Sweden)

    Fansheng Kong

    2012-01-01

    Full Text Available The studies of targeted gene delivery nanocarriers have gained increasing attention during the past decades. In this study, mannan modified DNA loaded bioadhesive PLGA nanoparticles (MAN-DNA-NPs were investigated for targeted gene delivery to the Kupffer cells (KCs. Bioadhesive PLGA nanoparticles were prepared and subsequently bound with pEGFP. Following the coupling of the mannan-based PE-grafted ligands (MAN-PE with the DNA-NPs, the MAN-DNA-NPs were delivered intravenously to rats. The transfection efficiency was determined from the isolated KCs and flow cytometry was applied for the quantitation of gene expression after 48 h post transfection. The size of the MAN-DNA-NPs was found to be around 190 nm and the Zeta potential was determined to be −15.46mV. The pEGFP binding capacity of MAN-DNA-NPs was (88.9±5.8% and the in vitro release profiles of the MAN-DNA-NPs follow the Higuchi model. When compared with non-modified DNA-NPs and Lipofectamine 2000-DNA, MAN-DNA-NPs produced the highest gene expressions, especially in vivo. The in vivo data from flow cytometry analysis showed that MAN-DNA-NPs displayed a remarkably higher transfection efficiency (39% than non-modified DNA-NPs (25% and Lipofectamine 2000-DNA (23% in KCs. The results illustrate that MAN-DNA-NPs have the ability to target liver KCs and could function as promising active targeting drug delivery vectors.

  1. Generation of novel resistance genes using mutation and targeted gene editing.

    Science.gov (United States)

    Gal-On, Amit; Fuchs, Marc; Gray, Stewart

    2017-10-01

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a 'dream technology' to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by disrupting host susceptibility genes, or by increasing the expression of viral resistance genes. However, precise targets must be identified and their roles understood to minimize potential negative effects on the plant. Nonetheless, the opportunities for genome editing are expanding, as are the technologies to generate effective and broad-spectrum resistance against plant viruses. Here we provide insights into recent progress related to gene targets and gene editing technologies. Published by Elsevier B.V.

  2. Periodic expression of Kv10.1 driven by pRb/E2F1 contributes to G2/M progression of cancer and non-transformed cells.

    Science.gov (United States)

    Urrego, Diana; Movsisyan, Naira; Ufartes, Roser; Pardo, Luis A

    2016-01-01

    Progression of cell cycle is associated with changes in K(+) channel expression and activity. In this study, we report that Kv10.1, a K(+) channel that increases cell proliferation and tumor growth, is regulated at the transcriptional level by the pRb/E2F1 pathway. De-repression of E2F1 by HPV-E7 oncoprotein leads to increased expression of Kv10.1. In proliferating cells, E2F1 transcription factor binds directly to the Kv10.1 promoter during (or close to) G2/M, resulting in transient expression of the channel. Importantly, this happens not only in cancer cells but also in non-transformed cells. Lack of Kv10.1 in both cancer and non-transformed cells resulted in prolonged G2/M phase, as indicated by phosphorylation of Cdk1 (Y15) and sustained pRb hyperphosphorylation. Our results strongly suggest that Kv10.1 expression is coupled to cell cycle progression and facilitates G2/M progression in both healthy and tumor cells.

  3. Retinoids and their target genes in liver functions and diseases.

    Science.gov (United States)

    Shiota, Goshi; Kanki, Keita

    2013-08-01

    Retinoids have been reported to prevent several kinds of cancers, including hepatocellular carcinoma (HCC). Retinoic acid (RA) coupled with retinoic acid receptor/retinoid X receptor heterodimer exerts its functions by regulating its target genes. We previously reported that transgenic mice, in which RA signaling is suppressed in a hepatocyte-specific manner, developed liver cancer at a high rate, and that disruption of RA functions led to the increased oxidative stress via aberrant metabolisms of lipid and iron, indicating that retinoids play an important role in liver pathophysiology. These data suggest that exploring the metabolism of retinoids in liver diseases and their target genes provides us with useful information to understand the liver functions and diseases. Consequently, the altered metabolism of retinoids was observed in liver diseases, including non-alcoholic fatty liver disease. In this review, we summarize the metabolism of retinoids in the liver, highlight the functions of retinoids in HCC, non-alcoholic fatty liver disease, and alcoholic liver disease, and discuss the target genes of RA. Investigation of retinoids in the liver will likely help us identify novel therapies and diagnostic modalities for HCC. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  4. E2F-Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression

    DEFF Research Database (Denmark)

    Wu, L; Goodwin, E C; Naeger, L K

    2000-01-01

    Expression of the bovine papillomavirus E2 protein in cervical carcinoma cells represses expression of integrated human papillomavirus (HPV) E6/E7 oncogenes, followed by repression of the cdc25A gene and other cellular genes required for cell cycle progression, resulting in dramatic growth arrest...

  5. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Directory of Open Access Journals (Sweden)

    Maria Victoria Maliandi

    2011-01-01

    Full Text Available The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  6. Construction of RNAi lentiviral vector targeting mouse Islet-1 gene

    Directory of Open Access Journals (Sweden)

    Shen-shen ZHI

    2011-02-01

    Full Text Available Objective To construct and select RNAi lentiviral vectors that can silence mouse Islet-1 gene effectively.Methods Three groups of RNAi-target of mouse Islet-1 gene were designed,and corresponding shRNA oligo(sh1,sh2 and sh3 were synthesized,and then they were respectively inserted to the PLVTHM vector that had been digested by endonuclease.Agarose gel electrophoresis and sequencing were used to select and indentify the positive clones.The positive clones were extracted and then mixed with E.coli to amplify positive clones.The amplified clones were then infected into 293T along with the other 3 helper plasmids to produce lentiviral vector.After the construction of the lentiviral vector,plaque formation test was performed to determine the titer of lentiviral vector.The lentiviral vectors were then infected into C3H10T1/2 cells.The transfect efficiency of the lentiviral vectors was determined with flow cytometry with detection of green fluorescent protein(GFP.Q-PCR was employed to detect the RNAi efficiency of the lentiviral vectors.Results Agarose gel electrophoresis analysis showed that the clones with right gene at the target size were successfully established;gene sequencing showed that the right DNA fragments had been inserted;plaque formation test showed that the titer of the virus solution was 3.87×108TU/ml;the transfect efficiency of the lentiviral vector infected into C3H10T1/2 cells was 90.36%.All the 3 groups of shRNA targets(sh1,sh2 and sh3 showed an inhibitory effect on Islet-1 gene,and the sh1 showed the highest inhibitory effect(76.8%,as compared with that of normal cells(P < 0.05.Conclusion The RNAi lentiviral vector that can effectively silence the mouse Islet-1 gene has been constructed successfully,which may lay a foundation for further investigation of Islet-1 gene.

  7. A targeted ultrasound contrast agent carrying gene and cell-penetrating peptide: preparation and gene transfection in vitro.

    Science.gov (United States)

    Ren, Jianli; Zhang, Ping; Tian, Ju; Zhou, Zhiyi; Liu, Xingzhao; Wang, Dong; Wang, Zhigang

    2014-09-01

    Targeted and high efficient gene delivery is a main issue in gene treatment. Taking advantage of ischemic memory target P-selectin and our previous study-synergistic effects of ultrasound-targeted microbubble destruction (UTMD) and TAT peptide on gene transfection, which were characterized by targeted aggregation and high efficient gene transfection, we set up a 'smart' gene delivery system-targeted ultrasound contrast agent (UCA) carrying gene and cell-permeable peptides (CPP). Such UCA had a strong binding force with DNA which was protected from being hydrolysed by nuclease. Moreover, synergistic effects of UTMD and TAT peptide increased gene transfection. Specifically, the UCA were reacted with an ischemic memory target P-selectin overexpressed by ischemic issues (including ischemic heart disease) and loaded with gene and CPP, which enabled targeted localization and gene delivery to ischemic cells overexpressing P-selectin. We demonstrated their targeting affinity for hypoxia human umbilical vein endothelial cell (HUVEC) and gene transfection in vitro. The results of confocal laser scanning microscopy (CLSM) showed that gene and CPP were distributed on the shell of UCA. Red fluorescence was observed on the surface of targeted UCA using immunofluorescent microscopy, which demonstrated that the antibody was successfully connected to the UCA. The targeted UCA was specifically and tightly binded to hypoxia HUVEC, while there were no or little non-targeted UCA binding around hypoxia HUVEC. 24h after transfection, gene transfection efficiency detected by FCM was higher in targeted group than non-targeted group. Overall, the targeted UCA carrying gene and CPP was prepared successfully. It had a strong target binding capacity to hypoxia HUVEC and high efficient gene transfection, which maybe provide a novel strategy for gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity

    National Research Council Canada - National Science Library

    Cradick, Thomas J; Fine, Eli J; Antico, Christopher J; Bao, Gang

    2013-01-01

    .... Here we demonstrate that CRISPR/Cas9 systems targeting the human hemoglobin β and C-C chemokine receptor type 5 genes have substantial off-target cleavage, especially within the hemoglobin δ...

  9. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    Science.gov (United States)

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  10. Understanding the transcriptional regulation of cervix cancer using microarray gene expression data and promoter sequence analysis of a curated gene set.

    Science.gov (United States)

    Srivastava, Prashant; Mangal, Manu; Agarwal, Subhash Mohan

    2014-02-10

    Cervical cancer, the malignant neoplasm of the cervix uteri is the second most common cancer among women worldwide and the top-most cancer in India. Several factors are responsible for causing cervical cancer, which alter the expression of oncogenic genes resulting in up or down-regulation of gene expression and inactivation of tumor-suppressor genes/gene products. Gene expression is regulated by interactions between transcription factors (TFs) and specific regulatory elements in the promoter regions of target genes. Thus, it is important to decipher and analyze TFs that bind to regulatory regions of diseased genes and regulate their expression. In the present study, computational methods involving the combination of gene expression data from microarray experiments and promoter sequence analysis of a curated gene set involved in the cervical cancer causation have been utilized for identifying potential regulatory elements. Consensus predictions of two approaches led to the identification of twelve TFs that might be crucial to the regulation of cervical cancer progression. Subsequently, TF enrichment and oncomine expression analysis suggested that the transcription factor family E2F played an important role for the regulation of genes involve in cervical carcinogenesis. Our results suggest that E2F possesses diagnostic/prognostic value and can act as a potential drug target in cervical cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Targeted gene therapy for rat glomerulonephritis using HVJ-immunoliposomes.

    Science.gov (United States)

    Tomita, Naruya; Morishita, Ryuichi; Yamamoto, Kei; Higaki, Jitsuo; Dzau, Victor J; Ogihara, Toshio; Kaneda, Yasufumi

    2002-01-01

    Kidney targeted gene transfer has been attempted by many researchers over the last 10 years; however, unfortunately, no reliable technique for gene transfer to the kidney has been established. At experimental level several in vivo gene transfer methods have been reported. We were the first to report successful in vivo gene transfer into the kidney using the HVJ-liposome method. Since then, this method has been modified to achieve highly efficient gene transfer. In this study, we have developed a renal glomerulus-specific gene transfer method using HVJ-liposomes with anti-Thy 1 antibody, OX-7. Following systemic delivery of fluoroisothiocyanate (FITC)-labeled oligodeoxynucleotides (ODN) by HVJ-liposomes coupled with OX-7, we observed fluorescence in renal glomeruli from 2 h post-administration. To examine the efficacy of this delivery system, NF-kappaB or scrambled (SD) decoy ODN was administered by HVJ-liposomes coupled with OX-7 into a crescent glomerulonephritis, anti-glomerular basement membrane (GBM) model. Animals given SD decoy ODN developed severe glomerulonephritis by day 7 with heavy albuminuria, glomerular crescent formation and up-regulated renal expression of IL-1beta and ICAM-1. In contrast, NF-kappaB decoy ODN treatment substantially inhibited the disease with a reduction in alubuminuria, histological damage and the renal expression of inflammatory cytokines. This study has demonstrated that systemic delivery of HVJ-liposomes coupled with OX-7 results in efficient ODN transfer in rat glomeruli. NF-kappaB, but not SD decoy ODN administered systemically via HVJ-liposomes complexed with OX-7 showed clear therapeutic potential for glomerulonephritis. This novel ODN transfer method combined with decoy strategy has the potential to lead to the establishment of a new therapeutic approach to glomerular diseases. Copyright 2002 John Wiley & Sons, Ltd.

  12. Production of Cloned Pigs with Targeted Attenuation of Gene Expression

    Science.gov (United States)

    Bordignon, Vilceu; El-Beirouthi, Nayla; Gasperin, Bernardo G.; Albornoz, Marcelo S.; Martinez-Diaz, Mario A.; Schneider, Carine; Laurin, Denyse; Zadworny, David; Agellon, Luis B.

    2013-01-01

    The objective of this study was to demonstrate that RNA interference (RNAi) and somatic cell nuclear transfer (SCNT) technologies can be used to attenuate the expression of specific genes in tissues of swine, a large animal species. Apolipoprotein E (apoE), a secreted glycoprotein known for its major role in lipid and lipoprotein metabolism and transport, was selected as the target gene for this study. Three synthetic small interfering RNAs (siRNA) targeting the porcine apoE mRNA were tested in porcine granulosa cells in primary culture and reduced apoE mRNA abundance ranging from 45–82% compared to control cells. The most effective sequence was selected for cloning into a short hairpin RNA (shRNA) expression vector under the control of RNA polymerase III (U6) promoter. Stably transfected fetal porcine fibroblast cells were generated and used to produce embryos with in vitro matured porcine oocytes, which were then transferred into the uterus of surrogate gilts. Seven live and one stillborn piglet were born from three gilts that became pregnant. Integration of the shRNA expression vector into the genome of clone piglets was confirmed by PCR and expression of the GFP transgene linked to the expression vector. Analysis showed that apoE protein levels in the liver and plasma of the clone pigs bearing the shRNA expression vector targeting the apoE mRNA was significantly reduced compared to control pigs cloned from non-transfected fibroblasts of the same cell line. These results demonstrate the feasibility of applying RNAi and SCNT technologies for introducing stable genetic modifications in somatic cells for eventual attenuation of gene expression in vivo in large animal species. PMID:23737990

  13. Modeling and Targeting MYC Genes in Childhood Brain Tumors.

    Science.gov (United States)

    Hutter, Sonja; Bolin, Sara; Weishaupt, Holger; Swartling, Fredrik J

    2017-03-23

    Brain tumors are the second most common group of childhood cancers, accounting for about 20%-25% of all pediatric tumors. Deregulated expression of the MYC family of transcription factors, particularly c-MYC and MYCN genes, has been found in many of these neoplasms, and their expression levels are often correlated with poor prognosis. Elevated c-MYC/MYCN initiates and drives tumorigenesis in many in vivo model systems of pediatric brain tumors. Therefore, inhibition of their oncogenic function is an attractive therapeutic target. In this review, we explore the roles of MYC oncoproteins and their molecular targets during the formation, maintenance, and recurrence of childhood brain tumors. We also briefly summarize recent progress in the development of therapeutic approaches for pharmacological inhibition of MYC activity in these tumors.

  14. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Andersson, Jens A.; Kristensen, Matilde Bylov

    2008-01-01

    Background: The rapid increase in whole genome fungal sequence information allows large scale functional analyses of target genes. Efficient transformation methods to obtain site-directed gene replacement, targeted over-expression by promoter replacement, in-frame epitope tagging or fusion of cod...... with an average efficiency of 84% for gene replacement and 80% for targeted overexpression. Conclusion: The new vectors designed for USER Friendly cloning provided a fast reliable method to construct vectors for targeted gene manipulations in fungi....

  15. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    Science.gov (United States)

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  16. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation.

    Science.gov (United States)

    Grober, Oli M V; Mutarelli, Margherita; Giurato, Giorgio; Ravo, Maria; Cicatiello, Luigi; De Filippo, Maria Rosaria; Ferraro, Lorenzo; Nassa, Giovanni; Papa, Maria Francesca; Paris, Ornella; Tarallo, Roberta; Luo, Shujun; Schroth, Gary P; Benes, Vladimir; Weisz, Alessandro

    2011-01-14

    Estrogen receptors alpha (ERα) and beta (ERβ) are transcription factors (TFs) that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC). The two receptors can be found co-expressed and play specific, often opposite, roles, with ERβ being able to modulate the effects of ERα on gene transcription and cell proliferation. ERβ is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERβ in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Expression of full-length ERβ in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERβ and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERβ, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERβ+ vs ERβ- cells, 424 showed one or more ERβ site within 10 kb. These putative primary ERβ target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERβ binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Results indicate that the vast majority of the genomic targets of ERβ can bind

  17. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation

    Directory of Open Access Journals (Sweden)

    Papa Maria

    2011-01-01

    Full Text Available Abstract Background Estrogen receptors alpha (ERα and beta (ERβ are transcription factors (TFs that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC. The two receptors can be found co-expressed and play specific, often opposite, roles, with ERβ being able to modulate the effects of ERα on gene transcription and cell proliferation. ERβ is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERβ in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results Expression of full-length ERβ in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERβ and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERβ, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERβ+ vs ERβ- cells, 424 showed one or more ERβ site within 10 kb. These putative primary ERβ target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERβ binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions Results indicate that the

  18. Systematic targeted integration to study Albumin gene control elements.

    Directory of Open Access Journals (Sweden)

    Sanchari Bhattacharyya

    Full Text Available To study transcriptional regulation by distant enhancers, we devised a system of easily modified reporter plasmids for integration into single-copy targeting cassettes in clones of HuH7, a human hepatocellular carcinoma. The plasmid constructs tested transcriptional function of a 35-kb region that contained the rat albumin gene and its upstream flanking region. Expression of integrants was analyzed in two orientations, and compared to transient expression of non-integrated plasmids. Enhancers were studied in their natural positions relative to the promoter and localized by deletion. All constructs were also analyzed by transient transfection assays. In addition to the known albumin gene enhancer (E1 at -10 kb, we demonstrated two new enhancers, E2 at -13, and E4 at +1.2 kb. All three enhancers functioned in both transient assays and integrated constructs. However, chromosomal integration demonstrated several differences from transient expression. For example, analysis of E2 showed that enhancer function within the chromosome required a larger gene region than in transient assays. Another conserved region, E3 at -0.7 kb, functioned as an enhancer in transient assays but inhibited the function of E1 and E2 when chromosomally integrated. The enhancers did not show additive or synergistic behavior,an effect consistent with competition for the promoter or inhibitory interactions among enhancers. Growth arrest by serum starvation strongly stimulated the function of some integrated enhancers, consistent with the expected disruption of enhancer-promoter looping during the cell cycle.

  19. AAC as a Potential Target Gene to Control Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    Xiaofeng Su

    2017-01-01

    Full Text Available Verticillium dahliae invades the roots of host plants and causes vascular wilt, which seriously diminishes the yield of cotton and other important crops. The protein AAC (ADP, ATP carrier is responsible for transferring ATP from the mitochondria into the cytoplasm. When V. dahliae protoplasts were transformed with short interfering RNAs (siRNAs targeting the VdAAC gene, fungal growth and sporulation were significantly inhibited. To further confirm a role for VdAAC in fungal development, we generated knockout mutants (ΔVdACC. Compared with wild-type V. dahliae (Vd wt, ΔVdAAC was impaired in germination and virulence; these impairments were rescued in the complementary strains (ΔVdAAC-C. Moreover, when an RNAi construct of VdAAC under the control of the 35S promoter was used to transform Nicotiana benthamiana, the expression of VdAAC was downregulated in the transgenic seedlings, and they had elevated resistance against V. dahliae. The results of this study suggest that VdAAC contributes to fungal development, virulence and is a promising candidate gene to control V. dahliae. In addition, RNAi is a highly efficient way to silence fungal genes and provides a novel strategy to improve disease resistance in plants.

  20. Systematic targeted integration to study Albumin gene control elements.

    Science.gov (United States)

    Bhattacharyya, Sanchari; Tian, Jianmin; Bouhassira, Eric E; Locker, Joseph

    2011-01-01

    To study transcriptional regulation by distant enhancers, we devised a system of easily modified reporter plasmids for integration into single-copy targeting cassettes in clones of HuH7, a human hepatocellular carcinoma. The plasmid constructs tested transcriptional function of a 35-kb region that contained the rat albumin gene and its upstream flanking region. Expression of integrants was analyzed in two orientations, and compared to transient expression of non-integrated plasmids. Enhancers were studied in their natural positions relative to the promoter and localized by deletion. All constructs were also analyzed by transient transfection assays. In addition to the known albumin gene enhancer (E1 at -10 kb), we demonstrated two new enhancers, E2 at -13, and E4 at +1.2 kb. All three enhancers functioned in both transient assays and integrated constructs. However, chromosomal integration demonstrated several differences from transient expression. For example, analysis of E2 showed that enhancer function within the chromosome required a larger gene region than in transient assays. Another conserved region, E3 at -0.7 kb, functioned as an enhancer in transient assays but inhibited the function of E1 and E2 when chromosomally integrated. The enhancers did not show additive or synergistic behavior,an effect consistent with competition for the promoter or inhibitory interactions among enhancers. Growth arrest by serum starvation strongly stimulated the function of some integrated enhancers, consistent with the expected disruption of enhancer-promoter looping during the cell cycle.

  1. Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA

    National Research Council Canada - National Science Library

    Svitashev, Sergei; Young, Joshua K; Schwartz, Christine; Gao, Huirong; Falco, S Carl; Cigan, A Mark

    2015-01-01

    Targeted mutagenesis, editing of endogenous maize (Zea mays) genes, and site-specific insertion of a trait gene using clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas...

  2. Deletion of the DNA Ligase IV Gene in Candida glabrata Significantly Increases Gene-Targeting Efficiency.

    Science.gov (United States)

    Cen, Yuke; Fiori, Alessandro; Van Dijck, Patrick

    2015-08-01

    Candida glabrata is reported as the second most prevalent human opportunistic fungal pathogen in the United States. Over the last decades, its incidence increased, whereas that of Candida albicans decreased slightly. One of the main reasons for this shift is attributed to the inherent tolerance of C. glabrata toward the commonly used azole antifungal drugs. Despite a close phylogenetic distance to Saccharomyces cerevisiae, homologous recombination works with poor efficiency in C. glabrata compared to baker's yeast, in fact limiting targeted genetic alterations of the pathogen's genome. It has been shown that nonhomologous DNA end joining is dominant over specific gene targeting in C. glabrata. To improve the homologous recombination efficiency, we have generated a strain in which the LIG4 gene has been deleted, which resulted in a significant increase in correct gene targeting. The very specific function of Lig4 in mediating nonhomologous end joining is the reason for the absence of clear side effects, some of which affect the ku80 mutant, another mutant with reduced nonhomologous end joining. We also generated a LIG4 reintegration cassette. Our results show that the lig4 mutant strain may be a valuable tool for the C. glabrata research community. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Targeting Gene-Viro-Therapy with AFP driving Apoptin gene shows potent antitumor effect in hepatocarcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Kang-Jian

    2012-02-01

    Full Text Available Abstract Background Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells. Methods By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay. Results The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects. Conclusion The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system.

  4. Preparation and characterization of magnetic gene vectors for targeting gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S.W.; Liu, G. [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); Hong, R.Y., E-mail: rhong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li, H.Z. [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li, Y.G., E-mail: ilguoliang@sohu.com [Department of radiology, the First Affiliated Hospital of Soochow University, Suzhou 215007 (China); Wei, D.G., E-mail: dougwei@deas.harvard.edu [Center for Nanoscale Systems, School of Engineering and Applied Science, Harvard University, 11 Oxford Street, Cambridge, MA 02139 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer PEI is ideal candidate polymer for the design of gene delivery systems. Black-Right-Pointing-Pointer PEI-CMD-MNPs exhibited a typical superparamagnetic behavior. Black-Right-Pointing-Pointer PEI-CMD-MNPs were well stable over the entire range of pH and NaCl concentration. Black-Right-Pointing-Pointer DNA-PEI-CMD-MNPs transfected cells by a magnet have higher transfection efficiency and gene expression efficiency. - Abstract: The PEI-CMD-MNPs were successfully prepared by the surface modification of magnetic Fe{sub 3}O{sub 4} nanoparticles with carboxymethyl dextran (CMD) and polyethyleneimine (PEI). The PEI-CMD-MNPs polyplexes exhibited a typical superparamagnetic behavior and were well stable over the entire range of pH and NaCl concentration. These PEI-CMD-MNPs were used as magnetic gene vectors for targeting gene delivery. The prepared MNPs at different surface modification stages were characterized using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), field emissions canning electron microscopy (FE-SEM), powder X-ray diffraction (XRD) and dynamic laser light scattering (DLS) analysis. The magnetic properties were studied by vibrating sample magnetometer (VSM). To evaluate the performance of the magnetic nanoparticles as gene transfer vector, the PEI-CMD-MNPs were used to delivery green fluorescent protein (GFP) gene into BHK21 cells. The expression of GFP gene was detected by fluorescence microscope. DNA-PEI-CMD-MNPs polyplexes absorbed by the cells were also monitored by Magnetic resonance imaging (MRI). The transfection efficiency and gene expression efficiency of that transfected with a magnet were much higher than that of standard transfection.

  5. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    Science.gov (United States)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  6. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria.

    Science.gov (United States)

    Coutinho, Eduarda; Batista, Cátia; Sousa, Fani; Queiroz, João; Costa, Diana

    2017-03-06

    Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.

  7. Screening of target genes for RNAi in Tetranychus urticae and RNAi toxicity enhancement by chimeric genes.

    Science.gov (United States)

    Kwon, Deok Ho; Park, Ji Hyun; Ashok, Patil Anandrao; Lee, Unggyu; Lee, Si Hyeock

    2016-06-01

    Due to its rapid development of resistance to nearly all arrays of acaricide, Tetranychus urticae is extremely hard to control using conventional acaricides. As an alternative control measure of acaricide-resistant mites, RNA interference (RNAi)-based method has recently been suggested. A double-stranded RNA (dsRNA) delivery method using multi-unit chambers was established and employed to screen the RNAi toxicity of 42 T. urticae genes. Among them, the dsRNA treatment of coatomer I (COPI) genes, such as coatomer subunit epsilon (COPE) and beta 2 (COPB2), resulted in high mortality [median lethal time (LT50)=89.7 and 120.3h, respectively]. The transcript level of the COPE gene was significantly (F3,9=16.2, P=0.001) reduced by up to 24% following dsRNA treatment, suggesting that the toxicity was likely mediated by the RNAi of the target gene. As a toxicity enhancement strategy, the recombinant dsRNA was generated by reciprocally recombining half-divided fragments of COPE and COPB2. The two recombinant dsRNAs exhibited higher toxicity than the respective single dsRNA treatments as determined by LT50 values (79.2 and 81.5h, respectively). This finding indicates that the recombination of different genes can enhance RNAi toxicity and be utilized to generate synthetic dsRNA with improved RNAi efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. NORMA-Gene: A simple and robust method for qPCR normalization based on target gene data

    Science.gov (United States)

    2011-01-01

    Background Normalization of target gene expression, measured by real-time quantitative PCR (qPCR), is a requirement for reducing experimental bias and thereby improving data quality. The currently used normalization approach is based on using one or more reference genes. Yet, this approach extends the experimental work load and suffers from assumptions that may be difficult to meet and to validate. Results We developed a data driven normalization algorithm (NORMA-Gene). An analysis of the performance of NORMA-Gene compared to reference gene normalization on artificially generated data-sets showed that the NORMA-Gene normalization yielded more precise results under a large range of parameters tested. Furthermore, when tested on three very different real qPCR data-sets NORMA-Gene was shown to be best at reducing variance due to experimental bias in all three data-sets compared to normalization based on the use of reference gene(s). Conclusions Here we present the NORMA-Gene algorithm that is applicable to all biological and biomedical qPCR studies, especially those that are based on a limited number of assayed genes. The method is based on a data-driven normalization and is useful for as little as five target genes comprising the data-set. NORMA-Gene does not require the identification and validation of reference genes allowing researchers to focus their efforts on studying target genes of biological relevance. PMID:21693017

  9. A model of gene-gene and gene-environment interactions and its implications for targeting environmental interventions by genotype

    Directory of Open Access Journals (Sweden)

    Wallace Helen M

    2006-10-01

    Full Text Available Abstract Background The potential public health benefits of targeting environmental interventions by genotype depend on the environmental and genetic contributions to the variance of common diseases, and the magnitude of any gene-environment interaction. In the absence of prior knowledge of all risk factors, twin, family and environmental data may help to define the potential limits of these benefits in a given population. However, a general methodology to analyze twin data is required because of the potential importance of gene-gene interactions (epistasis, gene-environment interactions, and conditions that break the 'equal environments' assumption for monozygotic and dizygotic twins. Method A new model for gene-gene and gene-environment interactions is developed that abandons the assumptions of the classical twin study, including Fisher's (1918 assumption that genes act as risk factors for common traits in a manner necessarily dominated by an additive polygenic term. Provided there are no confounders, the model can be used to implement a top-down approach to quantifying the potential utility of genetic prediction and prevention, using twin, family and environmental data. The results describe a solution space for each disease or trait, which may or may not include the classical twin study result. Each point in the solution space corresponds to a different model of genotypic risk and gene-environment interaction. Conclusion The results show that the potential for reducing the incidence of common diseases using environmental interventions targeted by genotype may be limited, except in special cases. The model also confirms that the importance of an individual's genotype in determining their risk of complex diseases tends to be exaggerated by the classical twin studies method, owing to the 'equal environments' assumption and the assumption of no gene-environment interaction. In addition, if phenotypes are genetically robust, because of epistasis

  10. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets

    National Research Council Canada - National Science Library

    Sun, Xingshen; Yan, Ziying; Yi, Yaling; Li, Ziyi; Lei, Diana; Rogers, Christopher S; Chen, Juan; Zhang, Yulong; Welsh, Michael J; Leno, Gregory H; Engelhardt, John F

    2008-01-01

    .... In this study, we describe the production of a CFTR gene-deficient model in the domestic ferret using recombinant adeno-associated virus-mediated gene targeting in fibroblasts, followed by nuclear transfer cloning...

  11. UP Finder: A COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction

    National Research Council Canada - National Science Library

    Wang, Xi; Yu, Liang; Chen, Shulin

    2017-01-01

    .... It was based on the COBRA toolbox under MATLAB environment. All the key gene/pathway targets are identified in one click after simply loading a Systems Biology Markup Language model and specifying a metabolite as the targeted product...

  12. UP Finder: A COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction

    OpenAIRE

    Wang, Xi; Yu, Liang; Chen, Shulin

    2017-01-01

    Overexpression of key genes is a basic strategy for overproducing target products via metabolic engineering. Traditionally, identifying those key genes/pathways largely relies on the knowledge of biochemistry and bioinformatics. In this study, a modeling tool named UP Finder was developed to facilitate the rapid identification of gene overexpression strategies. It was based on the COBRA toolbox under MATLAB environment. All the key gene/pathway targets are identified in one click after simply...

  13. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    Science.gov (United States)

    Wang, Bin; Zhou, Jiangfeng

    2003-01-01

    The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined. PMID:14614774

  14. SUMOylation of DRIL1 directs its transcriptional activity towards leukocyte lineage-specific genes.

    Directory of Open Access Journals (Sweden)

    Alexandre Prieur

    Full Text Available DRIL1 is an ARID family transcription factor that can immortalize primary mouse fibroblasts, bypass RAS(V12-induced cellular senescence and collaborate with RAS(V12 or MYC in mediating oncogenic transformation. It also activates immunoglobulin heavy chain transcription and engages in heterodimer formation with E2F to stimulate E2F-dependent transcription. Little, however, is known about the regulation of DRIL1 activity. Recently, DRIL1 was found to interact with the SUMO-conjugating enzyme Ubc9, but the functional relevance of this association has not been assessed. Here, we show that DRIL1 is sumoylated both in vitro and in vivo at lysine 398. Moreover, we provide evidence that PIASy functions as a specific SUMO E3-ligase for DRIL1 and promotes its sumoylation both in vitro and in vivo. Furthermore, consistent with the subnuclear localization of PIASy in the Matrix-Associated Region (MAR, SUMO-modified DRIL1 species are found exclusively in the MAR fraction. This post-translational modification interferes neither with the subcellular localization nor the DNA-binding activity of the protein. In contrast, DRIL1 sumoylation impairs its interaction with E2F1 in vitro and modifies its transcriptional activity in vivo, driving transcription of subset of genes regulating leukocyte fate. Taken together, these results identify sumoylation as a novel post-translational modification of DRIL1 that represents an important mechanism for targeting and modulating DRIL1 transcriptional activity.

  15. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    Science.gov (United States)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  16. Transcriptome Analysis of Targeted Mouse Mutations Reveals the Topography of Local Changes in Gene Expression.

    Directory of Open Access Journals (Sweden)

    David B West

    2016-02-01

    Full Text Available The unintended consequences of gene targeting in mouse models have not been thoroughly studied and a more systematic analysis is needed to understand the frequency and characteristics of off-target effects. Using RNA-seq, we evaluated targeted and neighboring gene expression in tissues from 44 homozygous mutants compared with C57BL/6N control mice. Two allele types were evaluated: 15 targeted trap mutations (TRAP; and 29 deletion alleles (DEL, usually a deletion between the translational start and the 3' UTR. Both targeting strategies insert a bacterial beta-galactosidase reporter (LacZ and a neomycin resistance selection cassette. Evaluating transcription of genes in +/- 500 kb of flanking DNA around the targeted gene, we found up-regulated genes more frequently around DEL compared with TRAP alleles, however the frequency of alleles with local down-regulated genes flanking DEL and TRAP targets was similar. Down-regulated genes around both DEL and TRAP targets were found at a higher frequency than expected from a genome-wide survey. However, only around DEL targets were up-regulated genes found with a significantly higher frequency compared with genome-wide sampling. Transcriptome analysis confirms targeting in 97% of DEL alleles, but in only 47% of TRAP alleles probably due to non-functional splice variants, and some splicing around the gene trap. Local effects on gene expression are likely due to a number of factors including compensatory regulation, loss or disruption of intragenic regulatory elements, the exogenous promoter in the neo selection cassette, removal of insulating DNA in the DEL mutants, and local silencing due to disruption of normal chromatin organization or presence of exogenous DNA. An understanding of local position effects is important for understanding and interpreting any phenotype attributed to targeted gene mutations, or to spontaneous indels.

  17. Control of target gene specificity during metamorphosis by the steroid response gene E93.

    Science.gov (United States)

    Mou, Xiaochun; Duncan, Dianne M; Baehrecke, Eric H; Duncan, Ian

    2012-02-21

    Hormonal control of sexual maturation is a common feature in animal development. A particularly dramatic example is the metamorphosis of insects, in which pulses of the steroid hormone ecdysone drive the wholesale transformation of the larva into an adult. The mechanisms responsible for this transformation are not well understood. Work in Drosophila indicates that the larval and adult forms are patterned by the same underlying sets of developmental regulators, but it is not understood how the same regulators pattern two distinct forms. Recent studies indicate that this ability is facilitated by a global change in the responsiveness of target genes during metamorphosis. Here we show that this shift is controlled in part by the ecdysone-induced transcription factor E93. Although long considered a dedicated regulator of larval cell death, we find that E93 is expressed widely in adult cells at the pupal stage and is required for many patterning processes at this time. To understand the role of E93 in adult patterning, we focused on a simple E93-dependent process, the induction of the Dll gene within bract cells of the pupal leg by EGF receptor signaling. In this system, we show that E93 functions to cause Dll to become responsive to EGF receptor signaling. We demonstrate that E93 is both necessary and sufficient for directing this switch. E93 likely controls the responsiveness of many other target genes because it is required broadly for patterning during metamorphosis. The wide conservation of E93 orthologs suggests that similar mechanisms control life-cycle transitions in other organisms, including vertebrates.

  18. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Andersson, Jens A.; Kristensen, Matilde Bylov

    2008-01-01

    Background: The rapid increase in whole genome fungal sequence information allows large scale functional analyses of target genes. Efficient transformation methods to obtain site-directed gene replacement, targeted over-expression by promoter replacement, in-frame epitope tagging or fusion...

  19. Targeted gene transfer of different genes to presynaptic and postsynaptic neocortical neurons connected by a glutamatergic synapse.

    Science.gov (United States)

    Zhang, Guo-rong; Zhao, Hua; Cao, Haiyan; Li, Xu; Geller, Alfred I

    2012-09-14

    Genetic approaches to analyzing neuronal circuits and learning would benefit from a technology to first deliver a specific gene into presynaptic neurons, and then deliver a different gene into an identified subset of their postsynaptic neurons, connected by a specific synapse type. Here, we describe targeted gene transfer across a neocortical glutamatergic synapse, using as the model the projection from rat postrhinal to perirhinal cortex. The first gene transfer, into the presynaptic neurons in postrhinal cortex, used a virus vector and standard gene transfer procedures. The vector expresses an artificial peptide neurotransmitter containing a dense core vesicle targeting domain, a NMDA NR1 subunit binding domain (from a monoclonal antibody), and the His tag. Upon release, this peptide neurotransmitter binds to NMDA receptors on the postsynaptic neurons. Antibody-mediated targeted gene transfer to these postsynaptic neurons in perirhinal cortex used a His tag antibody, as the peptide neurotransmitter contains the His tag. Confocal microscopy showed that with untargeted gene transfer, ~3% of the transduced presynaptic axons were proximal to a transduced postsynaptic dendrite. In contrast, with targeted gene transfer, ≥ 20% of the presynaptic axons were proximal to a transduced postsynaptic dendrite. Targeting across other types of synapses might be obtained by modifying the artificial peptide neurotransmitter to contain a binding domain for a different neurotransmitter receptor. This technology may benefit elucidating how specific neurons and subcircuits contribute to circuit physiology, behavior, and learning. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis.

    Directory of Open Access Journals (Sweden)

    Shikha Vashisht

    Full Text Available Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.

  1. Efficient Gene Targeting in Golden Syrian Hamsters by the CRISPR/Cas9 System

    OpenAIRE

    Zhiqiang Fan; Wei Li; Sang R Lee; Qinggang Meng; Bi Shi; Bunch, Thomas D.; Kenneth L White; Il-Keun Kong; Zhongde Wang

    2014-01-01

    The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs)--three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, ...

  2. Gene-Specific Demethylation as Targeted Therapy in MDS

    Science.gov (United States)

    2017-07-01

    mechanism for Tumor Suppressor Genes silencing during MDS evolution to AML, but the causes leading to aberrant DNA methylation remain elusive. This proposal...of the cases. Aberrant DNA methylation is considered a dominant mechanism for Tumor Suppressor Genes silencing during MDS evolution to AML, but the...or other non-periodical, one-time publications. Other publications, conference papers and presentations..  Website(s) or other Internet site(s

  3. Tumor-Targeting Peptides for Therapeutic Gene Delivery

    National Research Council Canada - National Science Library

    Pasqualini, Renata

    2000-01-01

    The identification of markers expressed on specific tumors would give valuable insights into the specialization of tumor vasculature, and would also provide a means of targeting distinct tumor sites...

  4. Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy.

    Science.gov (United States)

    Beard, Rachel E; Abate-Daga, Daniel; Rosati, Shannon F; Zheng, Zhili; Wunderlich, John R; Rosenberg, Steven A; Morgan, Richard A

    2013-09-15

    The success of immunotherapy for the treatment of metastatic cancer is contingent on the identification of appropriate target antigens. Potential targets must be expressed on tumors but show restricted expression on normal tissues. To maximize patient eligibility, ideal target antigens should be expressed on a high percentage of tumors within a histology and, potentially, in multiple different malignancies. A Nanostring probeset was designed containing 97 genes, 72 of which are considered potential candidate genes for immunotherapy. Five established melanoma cell lines, 59 resected metastatic melanoma tumors, and 31 normal tissue samples were profiled and analyzed using Nanostring technology. Of the 72 potential target genes, 33 were overexpressed in more than 20% of studied melanoma tumor samples. Twenty of those genes were identified as differentially expressed between normal tissues and tumor samples by ANOVA analysis. Analysis of normal tissue gene expression identified seven genes with limited normal tissue expression that warrant further consideration as potential immunotherapy target antigens: CSAG2, MAGEA3, MAGEC2, IL13RA2, PRAME, CSPG4, and SOX10. These genes were highly overexpressed on a large percentage of the studied tumor samples, with expression in a limited number of normal tissue samples at much lower levels. The application of Nanostring RNA counting technology was used to directly quantitate the gene expression levels of multiple potential tumor antigens. Analysis of cell lines, 59 tumors, and normal tissues identified seven potential immunotherapy targets for the treatment of melanoma that could increase the number of patients potentially eligible for adoptive immunotherapy. ©2013 AACR.

  5. Identification of MicroRNAs and target genes involvement in hepatocellular carcinoma with microarray data.

    Science.gov (United States)

    Wang, Dadong; Tan, Jingwang; Xu, Yong; Tan, Xianglong; Han, Mingming; Tu, Yuliang; Zhu, Ziman; Zen, Jianping; Dou, Chunqing; Cai, Shouwang

    2015-01-01

    The aim of the study is to identify the differentially expressed microRNAs (miRNAs) between hepatocellular carcinoma (HCC) samples and controls and provide new diagnostic potential miRNAs for HCC. The miRNAs expression profile data GSE20077 included 7 HCC samples, 1 HeLa sample and 3 controls. Differentially expressed miRNAs (DE-miRNAs) were identified by t-test and wilcox test. The miRNA with significantly differential expression was chosen for further analysis. Target genes for this miRNA were selected using TargetScan and miRbase database. STRING software was applied to construct the target genes interaction network and topology analysis was carried out to identify the hub gene in the network. And we identified the mechanism for affecting miRNA function. A total of 54 differentially expressed miRNAs were identified, in which there were 13 miRNAs published to be related to HCC. The differentially expressed hsa-miR-106b was chosen for further analysis and PTPRT (Receptor-type tyrosine-protein phosphatase T) was its potential target gene. The target genes interaction network was constructed among 33 genes, in which PTPRT was the hub gene. We got the conclusion that the differentially expressed hsa-miR-106b may play an important role in the development of HCC by regulating the expression of its potential target gene PT-PRT.

  6. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Kazuo [Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto (Japan); Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto (Japan); Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Ikeya, Makoto [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto (Japan); Fukuta, Makoto [Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto (Japan); Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto (Japan); Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Woltjen, Knut [Department of Reprogramming Sciences, Center for iPS Cell Research and Application, Kyoto University, Kyoto (Japan); Tamaki, Sakura; Takahara, Naoko; Kato, Tomohisa; Sato, Shingo [Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto (Japan); Otsuka, Takanobu [Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Toguchida, Junya, E-mail: togjun@frontier.kyoto-u.ac.jp [Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto (Japan); Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan)

    2013-03-22

    Highlights: ► We tried to identify targets of synovial sarcoma (SS)-associated SYT–SSX fusion gene. ► We established pluripotent stem cell (PSC) lines with inducible SYT–SSX gene. ► SYT–SSX responsive genes were identified by the induction of SYT–SSX in PSC. ► SS-related genes were selected from database by in silico analyses. ► 51 genes were finally identified among SS-related genes as targets of SYT–SSX in PSC. -- Abstract: Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT–SSX. Although precise function of SYT–SSX remains to be investigated, accumulating evidences suggest its role in gene regulation via epigenetic mechanisms, and the product of SYT–SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT–SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT–SSX2 gene. SYT–SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24 h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24 h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT–SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT–SSX, respectively. Association of these genes with SYT–SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were strikingly

  7. Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Gulec, Cagri, E-mail: cagri.gulec@gmail.com; Coban, Neslihan, E-mail: neslic@istanbul.edu.tr; Ozsait-Selcuk, Bilge, E-mail: ozsaitb@istanbul.edu.tr; Sirma-Ekmekci, Sema, E-mail: semasirma@gmail.com; Yildirim, Ozlem, E-mail: ozlm-yildirim@hotmail.com; Erginel-Unaltuna, Nihan, E-mail: nihanerginel@yahoo.com

    2017-04-01

    ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.

  8. Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines.

    Science.gov (United States)

    Gulec, Cagri; Coban, Neslihan; Ozsait-Selcuk, Bilge; Sirma-Ekmekci, Sema; Yildirim, Ozlem; Erginel-Unaltuna, Nihan

    2017-04-01

    ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection

    Directory of Open Access Journals (Sweden)

    Dawn E. Watkins-Chow

    2017-02-01

    Full Text Available Cpf1 has emerged as an alternative to the Cas9 RNA-guided nuclease. Here we show that gene targeting rates in mice using Cpf1 can meet, or even surpass, Cas9 targeting rates (approaching 100% targeting, but require higher concentrations of mRNA and guide. We also demonstrate that coinjecting two guides with close targeting sites can result in synergistic genomic cutting, even if one of the guides has minimal cutting activity.

  10. Mapping of HNF4alpha target genes in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Boyd, Mette; Bressendorff, Simon; Moller, Jette

    2009-01-01

    ABSTRACT: BACKGROUND: The role of HNF4alpha has been extensively studied in hepatocytes and pancreatic beta-cells, and HNF4alpha is also regarded as key regulator of intestinal epithelial cell differentiation as well. The aim of the present work is to identify novel HNF4alpha target genes....... The HNF4alpha ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4alpha binding to actively transcribed genes with an open chromatin structure. RESULTS: 1,541 genes were identified as potential HNF4alpha targets, many of which have...

  11. Apoptosis and the target genes of microRNA-21.

    Science.gov (United States)

    Buscaglia, Lindsey E Becker; Li, Yong

    2011-06-01

    MicroRNA-21 (miR-21) is frequently up-regulated in cancer and the majority of its reported targets are tumor suppressors. Through functional suppression, miR-21 is implicated in practically every walk of oncogenic life: the promotion of cell proliferation, invasion and metastasis, genome instability and mutation, inflammation, replicative immortalization, abnormal metabolism, angiogenesis, and evading apoptosis, immune destruction, and growth suppressors. In particular, miR-21 is strongly involved in apoptosis. In this article, we reviewed the experimentally validated targets of miR-21 and found that two thirds are linked to intrinsic and/or extrinsic pathways of cellular apoptosis. This suggests that miR-21 is an oncogene which plays a key role in resisting programmed cell death in cancer cells and that targeting apoptosis is a viable therapeutic option against cancers expressing miR-21.

  12. Flux variability scanning based on enforced objective flux for identifying gene amplification targets

    Science.gov (United States)

    2012-01-01

    Background In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which incorporates physiological data into a model to improve the model’s prediction capabilities and to capitalize on the relationships between genes and metabolic fluxes. Results We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF) with grouping reaction (GR) constraints, in an effort to identify gene amplification targets by considering reactions that co-carry flux values based on physiological omics data via “GR constraints”. This method scans changes in the variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene amplification targets predicted using this method were validated by comparing the predicted effects with the previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli. Moreover, new gene amplification targets for further enhancing putrescine production were validated through experiments involving the overexpression of each identified targeted gene under condition-controlled batch cultivation. Conclusions FVSEOF with GR constraints allows identification of gene amplification targets for metabolic engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm was validated through the

  13. Osa-containing Brahma chromatin remodeling complexes are required for the repression of Wingless target genes

    Science.gov (United States)

    Collins, Russell T.; Treisman, Jessica E.

    2000-01-01

    The Wingless signaling pathway directs many developmental processes in Drosophila by regulating the expression of specific downstream target genes. We report here that the product of the trithorax group gene osa is required to repress such genes in the absence of the Wingless signal. The Wingless-regulated genes nubbin, Distal-less, and decapentaplegic and a minimal enhancer from the Ultrabithorax gene are misexpressed in osa mutants and repressed by ectopic Osa. Osa-mediated repression occurs downstream of the up-regulation of Armadillo but is sensitive both to the relative levels of activating Armadillo/Pangolin and repressing Groucho/Pangolin complexes present and to the responsiveness of the promoter to Wingless. Osa functions as a component of the Brahma chromatin-remodeling complex; other components of this complex are likewise required to repress Wingless target genes. These results suggest that altering the conformation of chromatin is an important mechanism by which Wingless signaling activates gene expression. PMID:11124806

  14. High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    Ken-ichi T. Suzuki

    2013-03-01

    Recently, gene editing with transcription activator-like effector nucleases (TALENs has been used in the life sciences. TALENs can be easily customized to recognize a specific DNA sequence and efficiently introduce double-strand breaks at the targeted genomic locus. Subsequent non-homologous end-joining repair leads to targeted gene disruption by base insertion, deletion, or both. Here, to readily evaluate the efficacy of TALENs in Xenopus laevis embryos, we performed the targeted gene disruption of tyrosinase (tyr and pax6 genes that are involved in pigmentation and eye formation, respectively. We constructed TALENs targeting tyr and pax6 and injected their mRNAs into fertilized eggs at the one-cell stage. Expectedly, introduction of tyr TALEN mRNA resulted in drastic loss of pigmentation with high efficiency. Similarly, for pax6, TALENs led to deformed eyes in the injected embryos. We confirmed mutations of the target alleles by restriction enzyme digestion and sequence analyses of genomic PCR products. Surprisingly, not only biallelic but also paralogous, gene disruption was observed. Our results demonstrate that targeted gene disruption by TALENs provides a method comparable to antisense morpholinos in analyzing gene function in Xenopus F0 embryos, but also applies beyond embryogenesis to any life stage.

  15. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi

    Directory of Open Access Journals (Sweden)

    Kristensen Matilde B

    2008-08-01

    Full Text Available Abstract Background The rapid increase in whole genome fungal sequence information allows large scale functional analyses of target genes. Efficient transformation methods to obtain site-directed gene replacement, targeted over-expression by promoter replacement, in-frame epitope tagging or fusion of coding sequences with fluorescent markers such as GFP are essential for this process. Construction of vectors for these experiments depends on the directional cloning of two homologous recombination sequences on each side of a selection marker gene. Results Here, we present a USER Friendly cloning based technique that allows single step cloning of the two required homologous recombination sequences into different sites of a recipient vector. The advantages are: A simple experimental design, free choice of target sequence, few procedures and user convenience. The vectors are intented for Agrobacterium tumefaciens and protoplast based transformation technologies. The system has been tested by the construction of vectors for targeted replacement of 17 genes and overexpression of 12 genes in Fusarium graminearum. The results show that four fragment vectors can be constructed in a single cloning step with an average efficiency of 84% for gene replacement and 80% for targeted overexpression. Conclusion The new vectors designed for USER Friendly cloning provided a fast reliable method to construct vectors for targeted gene manipulations in fungi.

  16. Gene targeting using homologous recombination in embryonic stem cells: The future for behavior genetics?

    Directory of Open Access Journals (Sweden)

    Robert eGerlai

    2016-04-01

    Full Text Available Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior.

  17. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  18. Gene targeting in embryonic stem cells, II: conditional technologies

    Science.gov (United States)

    Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...

  19. MED1 independent activation of endogenous target genes by PPARα

    DEFF Research Database (Denmark)

    Grøntved, Lars; Bugge, Anne K.; Roeder, Robert G.

    derived from TRAP220 KO mice. Interestingly, rescue experiments in confluent TRAP220 KO MEFs with different versions of MED1 indicate that the LXXLL motif is not necessary for PPARgamma mediated gene activation (Ge et al, MCB published online ahead of print 2007). By analogy, we show here that MED1...

  20. Identification of Spt5 target genes in zebrafish development reveals its dual activity in vivo.

    Directory of Open Access Journals (Sweden)

    Keerthi Krishnan

    Full Text Available Spt5 is a conserved essential protein that represses or stimulates transcription elongation in vitro. Immunolocalization studies on Drosophila polytene chromosomes suggest that Spt5 is associated with many loci throughout the genome. However, little is known about the prevalence and identity of Spt5 target genes in vivo during development. Here, we identify direct target genes of Spt5 using fog(sk8 zebrafish mutant, which disrupts the foggy/spt5 gene. We identified that fog(sk8 and their wildtype siblings differentially express less than 5% of genes examined. These genes participate in diverse biological processes from stress response to cell fate specification. Up-regulated genes exhibit shorter overall gene length compared to all genes examined. Through chromatin immunoprecipitation in zebrafish embryos, we identified a subset of developmentally critical genes that are bound by both Spt5 and RNA polymerase II. The protein occupancy patterns on these genes are characteristic of both repressive and stimulatory elongation regulation. Together our findings establish Spt5 as a dual regulator of transcription elongation in vivo and identify a small but diverse set of target genes critically dependent on Spt5 during development.

  1. Disparate chromatin landscapes and kinetics of inactivation impact differential regulation of p53 target genes.

    Science.gov (United States)

    Gomes, Nathan P; Espinosa, Joaquín M

    2010-09-01

    The p53 transcription factor regulates the expression of genes involved in cellular responses to stress, including cell cycle arrest and apoptosis. The p53 transcriptional program is extremely malleable, with target gene expression varying in a stress- and cell type-specific fashion. The molecular mechanisms underlying differential p53 target gene expression remain elusive. Here we provide evidence for gene-specific mechanisms affecting expression of three important p53 target genes. First we show that transcription of the apoptotic gene PUMA is regulated through intragenic chromatin boundaries, as revealed by distinct histone modification territories that correlate with binding of the insulator factors CTCF, Cohesins and USF1/2. Interestingly, this mode of regulation produces an evolutionary conserved long non-coding RNA of unknown function. Second, we demonstrate that the kinetics of transcriptional competence of the cell cycle arrest gene p21 and the apoptotic gene FAS are markedly different in vivo, as predicted by recent biochemical dissection of their core promoter elements in vitro. After a pulse of p53 activity in cells, assembly of the transcriptional apparatus on p21 is rapidly reversed, while FAS transcriptional activation is more sustained. Collectively these data add to a growing list of p53-autonomous mechanisms that impact differential regulation of p53 target genes.

  2. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    Directory of Open Access Journals (Sweden)

    Yoon-Dong Park

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development.

  3. Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis

    Directory of Open Access Journals (Sweden)

    Qiu Ri-Xiang

    2010-11-01

    Full Text Available Abstract Background Noninvasive and tissue-specific technologies of gene transfection would be valuable in clinical gene therapy. This present study was designed to determine whether it could enhance gene transfection in vivo by the combination of ultrasound-targeted microbubble destruction (UTMD with polyethylenimine (PEI in tumor xenografts, and illuminate the effects of gene silencing and apoptosis induction with short hairpin RNA (shRNA interference therapy targeting human survivin by this novel technique. Methods Two different expression vectors (pCMV-LUC and pSIREN were incubated with PEI to prepare cationic complexes (PEI/DNA and confirmed by the gel retardation assay. Human cervical carcinoma (Hela tumors were planted subcutaneously in both flanks of nude mice. Tumor-bearing mice were administered by tail vein with PBS, plasmid, plasmid and SonoVue microbubble, PEI/DNA and SonoVue microbubble. One tumor was exposed to ultrasound irradiation, while the other served as control. The feasibility of targeted delivery and tissue specificity facilitated by UTMD and PEI were investigated. Moreover, immunohistochemistry analyses about gene silencing and apoptosis induction were detected. Results Electrophoresis experiment revealed that PEI could condense DNA efficiently. The application of UTMD significantly increases the tissue transfection. Both expression vectors showed that gene expressions were present in all sections of tumors that received ultrasound exposure but not in control tumors. More importantly, the increases in transgene expression were related to UTMD with the presence of PEI significantly. Silencing of the survivin gene could induce apoptosis effectively by downregulating survivin and bcl-2 expression, also cause up-regulation of bax and caspase-3 expression. Conclusions This noninvasive, novel combination of UTMD with PEI could enhance targeted gene delivery and gene expression in tumor xenografts at intravenous administration

  4. UP Finder: A COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2017-12-01

    Full Text Available Overexpression of key genes is a basic strategy for overproducing target products via metabolic engineering. Traditionally, identifying those key genes/pathways largely relies on the knowledge of biochemistry and bioinformatics. In this study, a modeling tool named UP Finder was developed to facilitate the rapid identification of gene overexpression strategies. It was based on the COBRA toolbox under MATLAB environment. All the key gene/pathway targets are identified in one click after simply loading a Systems Biology Markup Language model and specifying a metabolite as the targeted product. The outputs are also quantitatively ranked to show the preference for determining overexpression strategies in pathway design. Analysis examples for overproducing lycopene precursor in Escherichia coli and fatty acyl-ACP in the cyanobacterium Synechocystis sp. PCC 6803 by the UP Finder showed high degree of agreement with the reported key genes in the literatures.

  5. UP Finder: A COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction.

    Science.gov (United States)

    Wang, Xi; Yu, Liang; Chen, Shulin

    2017-12-01

    Overexpression of key genes is a basic strategy for overproducing target products via metabolic engineering. Traditionally, identifying those key genes/pathways largely relies on the knowledge of biochemistry and bioinformatics. In this study, a modeling tool named UP Finder was developed to facilitate the rapid identification of gene overexpression strategies. It was based on the COBRA toolbox under MATLAB environment. All the key gene/pathway targets are identified in one click after simply loading a Systems Biology Markup Language model and specifying a metabolite as the targeted product. The outputs are also quantitatively ranked to show the preference for determining overexpression strategies in pathway design. Analysis examples for overproducing lycopene precursor in Escherichia coli and fatty acyl-ACP in the cyanobacterium Synechocystis sp. PCC 6803 by the UP Finder showed high degree of agreement with the reported key genes in the literatures.

  6. Identification of novel mouse Delta1 target genes

    OpenAIRE

    Hutterer, Christine

    2008-01-01

    The Delta/Notch signal transduction pathway is an evolutionary conserved pathway involved in many diverse developmental processes. These include neurogenesis, somitogenesis, left-right development, pancreatic development and development of the sensory hair in the inner ear. Numerous genes have been identified in the last years that are part of the signal transduction pathway or can influence the pathway in a way. A model to explain the process of lateral inhibition, one of the main features o...

  7. Generation of Targeted Adeno-Associated Virus (AAV) Vectors for Human Gene Therapy.

    Science.gov (United States)

    Liu, Yarong; Siriwon, Natnaree; Rohrs, Jennifer A; Wang, Pin

    2015-01-01

    Adeno-associated virus (AAV) vectors are promising human gene delivery vehicles due to their ability to establish long-term gene expression in a wide variety of target tissues; however, the broad native viral tropism raises concerns over the feasibility and safety of their systemic administration. To overcome this issue, much effort has been made to redirect AAVs toward specific tissues. This review presents several design strategies that have been applied to generate AAVs that target specific tissues and cells while inhibiting the transduction of non-target tissues. Multiple methods of vector capsid engineering have shown promise in vitro, including indirect targeting by adaptor systems and direct targeting by the insertion of antibodies or receptor-specific small peptide motifs. Other strategies, including creating mosaic or chimeric capsids and directed evolution, have also been used to successfully retarget AAV vectors. This research will further expand the clinical applications of AAV vectors by enhancing the control over tissue-specific gene delivery.

  8. Predicting associations between microRNAs and target genes in breast cancer by bioinformatics analyses.

    Science.gov (United States)

    Zheng, Tianying; Zhang, Xing; Wang, Yonggang; Yu, Xiucui

    2016-08-01

    Breast cancer is the leading type of cancer among females. However, the association between microRNAs (miRNAs) and target genes in breast tumorigenesis is poorly studied. The original data set GSE26659 was downloaded from the Gene Expression Omnibus, and then the differentially expressed miRNAs among 77 breast cancer patients and 17 controls were identified using the Limma package in R software. Furthermore, breast cancer-related differentially expressed miRNAs were selected from a human miRNA disease database and their target genes were selected from five miRNA databases. Then, functional analysis was performed for the target genes followed by construction of a miRNA-target gene network. A total of 34 differentially expressed miRNAs were identified, including 13 breast cancer-related miRNAs. Moreover, the target genes of the 13 miRNAs were significantly enriched in regulation of transcription (P=7.43E-09) and pathways related to cancer (P=3.33E-11). Finally, eight upregulated miRNAs (including hsa-miR-425) and five downregulated miRNAs (including hsa-miR-143, hsa-miR-145 and hsa-miR-125b) were identified in the miRNA-target gene network. In conclusion, using bioinformatics approaches, we demonstrate that the changes in regulation of transcription and cancer pathways may play significant roles in the process of breast cancerogenesis. Differentially expressed miRNAs and their target genes may be new targets for breast cancer therapy.

  9. Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements.

    Science.gov (United States)

    Paulo, Paula; Ribeiro, Franclim R; Santos, Joana; Mesquita, Diana; Almeida, Mafalda; Barros-Silva, João D; Itkonen, Harri; Henrique, Rui; Jerónimo, Carmen; Sveen, Anita; Mills, Ian G; Skotheim, Rolf I; Lothe, Ragnhild A; Teixeira, Manuel R

    2012-07-01

    This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

  10. Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2012-07-01

    Full Text Available This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa, namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1 and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2 was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

  11. Gene-Specific Demethylation as Targeted Therapy in MDS

    Science.gov (United States)

    2016-07-01

    suggest a complex regulation of the locus that can be dictated by a fine-tuning of sense and antisense transcription and enhance the relevance of RNA...selected based on the prediction that they 6 would form a triplex structure with the locus being targeted. The second approach utilized a CRISPR ...MsgRNA. This type of screening should allow us to select the most effective and strongest guides to utilize with the inducible Crispr /dCas9 system and

  12. Multi-targeted priming for genome-wide gene expression assays.

    Science.gov (United States)

    Adomas, Aleksandra B; Lopez-Giraldez, Francesc; Clark, Travis A; Wang, Zheng; Townsend, Jeffrey P

    2010-08-17

    Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and precise assay of the transcribed sequences within the genome.

  13. Identification of Osr2 Transcriptional Target Genes in Palate Development.

    Science.gov (United States)

    Fu, X; Xu, J; Chaturvedi, P; Liu, H; Jiang, R; Lan, Y

    2017-11-01

    Previous studies have identified the odd-skipped related 2 (Osr2) transcription factor as a key intrinsic regulator of palatal shelf growth and morphogenesis. However, little is known about the molecular program acting downstream of Osr2 in the regulation of palatogenesis. In this study, we isolated palatal mesenchyme cells from embryonic day 12.5 (E12.5) and E13.5 Osr2RFP/+ and Osr2RFP/- mutant mouse embryos and performed whole transcriptome RNA sequencing analyses. Differential expression analysis of the RNA sequencing datasets revealed that expression of 70 genes was upregulated and expression of 61 genes was downregulated by >1.5-fold at both E12.5 and E13.5 in the Osr2RFP/- palatal mesenchyme cells, in comparison with Osr2RFP/+ littermates. Gene ontology analysis revealed enrichment of signaling molecules and transcription factors crucial for skeletal development and osteoblast differentiation among those significantly upregulated in the Osr2 mutant palatal mesenchyme. Using quantitative real-time polymerase chain reaction (RT-PCR)and in situ hybridization assays, we validated that the Osr2-/- embryos exhibit significantly increased and expanded expression of many osteogenic pathway genes, including Bmp3, Bmp5, Bmp7, Mef2c, Sox6, and Sp7 in the developing palatal mesenchyme. Furthermore, we demonstrate that expression of Sema3a, Sema3d, and Sema3e, is ectopically activated in the developing palatal mesenchyme in Osr2-/- embryos. Through chromatin immunoprecipitation, followed by RT-PCR analysis, we demonstrate that endogenous Osr2 protein binds to the promoter regions of the Sema3a and Sema3d genes in the embryonic palatal mesenchyme. Moreover, Osr2 expression repressed the transcription from the Sema3a and Sema3d promoters in cotransfected cells. Since the Sema3 subfamily of signaling molecules plays diverse roles in the regulation of cell proliferation, migration, and differentiation, these data reveal a novel role for Osr2 in regulation of palatal

  14. Identification of novel endogenous antisense transcripts by DNA microarray analysis targeting complementary strand of annotated genes

    Directory of Open Access Journals (Sweden)

    Kohama Chihiro

    2009-08-01

    Full Text Available Abstract Background Recent transcriptomic analyses in mammals have uncovered the widespread occurrence of endogenous antisense transcripts, termed natural antisense transcripts (NATs. NATs are transcribed from the opposite strand of the gene locus and are thought to control sense gene expression, but the mechanism of such regulation is as yet unknown. Although several thousand potential sense-antisense pairs have been identified in mammals, examples of functionally characterized NATs remain limited. To identify NAT candidates suitable for further functional analyses, we performed DNA microarray-based NAT screening using mouse adult normal tissues and mammary tumors to target not only the sense orientation but also the complementary strand of the annotated genes. Results First, we designed microarray probes to target the complementary strand of genes for which an antisense counterpart had been identified only in human public cDNA sources, but not in the mouse. We observed a prominent expression signal from 66.1% of 635 target genes, and 58 genes of these showed tissue-specific expression. Expression analyses of selected examples (Acaa1b and Aard confirmed their dynamic transcription in vivo. Although interspecies conservation of NAT expression was previously investigated by the presence of cDNA sources in both species, our results suggest that there are more examples of human-mouse conserved NATs that could not be identified by cDNA sources. We also designed probes to target the complementary strand of well-characterized genes, including oncogenes, and compared the expression of these genes between mammary cancerous tissues and non-pathological tissues. We found that antisense expression of 95 genes of 404 well-annotated genes was markedly altered in tumor tissue compared with that in normal tissue and that 19 of these genes also exhibited changes in sense gene expression. These results highlight the importance of NAT expression in the regulation

  15. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

  16. Targeted gene correction using psoralen, chlorambucil and camptothecin conjugates of triplex forming peptide nucleic acid (PNA)

    DEFF Research Database (Denmark)

    Birkedal, Henrik; Nielsen, Peter E

    2011-01-01

    Gene correction activation effects of a small series of triplex forming peptide nucleic acid (PNA) covalently conjugated to the DNA interacting ligands psoralen, chlorambucil and camptothecin targeted proximal to a stop codon mutation in an EGFP reporter gene were studied. A 15-mer homopyrimidine...

  17. Biallelic targeting of expressed genes in mouse embryonic stem cells using the Cas9 system

    NARCIS (Netherlands)

    Zhang, Yu; Vanoli, Fabio; LaRocque, Jeannine R.; Krawczyk, Przemek M.; Jasin, Maria

    2014-01-01

    Gene targeting - homologous recombination between transfected DNA and a chromosomal locus - is greatly stimulated by a DNA break in the target locus. Recently, the RNA-guided Cas9 endonuclease, involved in bacterial adaptive immunity, has been modified to function in mammalian cells. Unlike other

  18. Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in Aspergillus terreus

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Knox, Benjamin P.; Sanchez, James F.; Chiang, Yi-Ming; Bruno, Kenneth S.; Wang, Clay C.

    2013-07-19

    Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillusterreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP related melanin synthetase was also identified in this species.

  19. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  20. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer

  1. Changes in gene expression in PBMCs profiles of PPARα target genes in obese and non-obese individuals during fasting.

    Science.gov (United States)

    Felicidade, Ingrid; Marcarini, Juliana Cristina; Carreira, Clísia Mara; Amarante, Marla Karine; Afman, Lydia A; Mantovani, Mário Sérgio; Ribeiro, Lúcia Regina

    2015-01-01

    The prevalence of obesity has risen dramatically and the World Health Organization estimates that 700 million people will be obese worldwide by 2015. Approximately, 50% of the Brazilian population above 20 years of age is overweight, and 16% is obese. This study aimed to evaluate the differences in the expression of PPARα target genes in human peripheral blood mononuclear cells (PBMCs) and free fatty acids (FFA) in obese and non-obese individuals after 24 h of fasting. We first presented evidence that Brazilian people exhibit expression changes in PPARα target genes in PBMCs under fasting conditions. Q-PCR was utilized to assess the mRNA expression levels of target genes. In both groups, the FFA concentrations increased significantly after 24 h of fasting. The basal FFA mean concentration was two-fold higher in the obese group compared with the non-obese group. After fasting, all genes evaluated in this study showed increased expression levels compared with basal expression in both groups. However, our results reveal no differences in gene expression between the obese and non-obese, more studies are necessary to precisely delineate the associated mechanisms, particularly those that include groups with different degrees of obesity and patients with diabetes mellitus type 2 because the expression of the main genes that are involved in β-oxidation and glucose level maintenance are affected by these factors. © 2014 S. Karger AG, Basel.

  2. Targeted resequencing of candidate genes reveals novel variants associated with severe Beh?et's uveitis

    OpenAIRE

    Kim, Sang Jin; Lee, Seungbok; Park, Changho; Seo, Jeong-Sun; Kim, Jong-Il; Yu, Hyeong Gon

    2013-01-01

    Beh?et's disease (BD) is a chronic systemic inflammatory disorder characterized by four major manifestations: recurrent uveitis, oral and genital ulcers and skin lesions. To identify some pathogenic variants associated with severe Beh?et's uveitis, we used targeted and massively parallel sequencing methods to explore the genetic diversity of target regions. A solution-based target enrichment kit was designed to capture whole-exonic regions of 132 candidate genes. Using a multiplexing strategy...

  3. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort.

    Science.gov (United States)

    Eggers, Stefanie; Sadedin, Simon; van den Bergen, Jocelyn A; Robevska, Gorjana; Ohnesorg, Thomas; Hewitt, Jacqueline; Lambeth, Luke; Bouty, Aurore; Knarston, Ingrid M; Tan, Tiong Yang; Cameron, Fergus; Werther, George; Hutson, John; O'Connell, Michele; Grover, Sonia R; Heloury, Yves; Zacharin, Margaret; Bergman, Philip; Kimber, Chris; Brown, Justin; Webb, Nathalie; Hunter, Matthew F; Srinivasan, Shubha; Titmuss, Angela; Verge, Charles F; Mowat, David; Smith, Grahame; Smith, Janine; Ewans, Lisa; Shalhoub, Carolyn; Crock, Patricia; Cowell, Chris; Leong, Gary M; Ono, Makato; Lafferty, Antony R; Huynh, Tony; Visser, Uma; Choong, Catherine S; McKenzie, Fiona; Pachter, Nicholas; Thompson, Elizabeth M; Couper, Jennifer; Baxendale, Anne; Gecz, Jozef; Wheeler, Benjamin J; Jefferies, Craig; MacKenzie, Karen; Hofman, Paul; Carter, Philippa; King, Richard I; Krausz, Csilla; van Ravenswaaij-Arts, Conny M A; Looijenga, Leendert; Drop, Sten; Riedl, Stefan; Cools, Martine; Dawson, Angelika; Juniarto, Achmad Zulfa; Khadilkar, Vaman; Khadilkar, Anuradha; Bhatia, Vijayalakshmi; Dũng, Vũ Chí; Atta, Irum; Raza, Jamal; Thi Diem Chi, Nguyen; Hao, Tran Kiem; Harley, Vincent; Koopman, Peter; Warne, Garry; Faradz, Sultana; Oshlack, Alicia; Ayers, Katie L; Sinclair, Andrew H

    2016-11-29

    Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46,XY DSD and 48 with 46,XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46,XY DSD. In patients with 46,XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes.

  4. Improving monitoring of erythromycin ribosome methylase genes in swine and cattle manures with gene targeted approaches

    Science.gov (United States)

    Macrolide antibiotics are often used in feed for animal industry to prevent diseases. Resistance to these antibiotics is associated with erythromycin ribosome methylase genes (erm genes), which were first discovered in Staphylococcus aureus. The erm gene confers resistance by methylating rRNA at the...

  5. Targeting fungal genes by diced siRNAs: a rapid tool to decipher gene function in Aspergillus nidulans.

    Science.gov (United States)

    Kalleda, Natarajaswamy; Naorem, Aruna; Manchikatla, Rajam V

    2013-01-01

    Gene silencing triggered by chemically synthesized small interfering RNAs (siRNAs) has become a powerful tool for deciphering gene function in many eukaryotes. However, prediction and validation of a single siRNA duplex specific to a target gene is often ineffective. RNA interference (RNAi) with synthetic siRNA suffers from lower silencing efficacy, off-target effects and is cost-intensive, especially for functional genomic studies. With the explosion of fungal genomic information, there is an increasing need to analyze gene function in a rapid manner. Therefore, studies were performed in order to investigate the efficacy of gene silencing induced by RNase III-diced-siRNAs (d-siRNA) in model filamentous fungus, Aspergillus nidulans. Stable expression of heterologous reporter gene in A. nidulans eases the examination of a new RNAi-induction route. Hence, we have optimized Agrobacterium tumefaciens-mediated transformation (AMT) of A. nidulans for stable expression of sGFP gene. This study demonstrates that the reporter GFP gene stably introduced into A. nidulans can be effectively silenced by treatment of GFP-d-siRNAs. We have shown the down-regulation of two endogenous genes, AnrasA and AnrasB of A. nidulans by d-siRNAs. We have also elucidated the function of an uncharacterized Ras homolog, rasB gene, which was found to be involved in hyphal growth and development. Further, silencing potency of d-siRNA was higher as compared to synthetic siRNA duplex, targeting AnrasA. Silencing was shown to be sequence-specific, since expression profiles of other closely related Ras family genes in d-siRNA treated AnrasA and AnrasB silenced lines exhibited no change in gene expression. We have developed and applied a fast, specific and efficient gene silencing approach for elucidating gene function in A. nidulans using d-siRNAs. We have also optimized an efficient AMT in A. nidulans, which is useful for stable integration of transgenes.

  6. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells.

    Science.gov (United States)

    Byrne, Susan M; Ortiz, Luis; Mali, Prashant; Aach, John; Church, George M

    2015-02-18

    Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient 'knock-in' targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. SLC7A5 act as a potential leukemic transformation target gene in myelodysplastic syndrome

    Science.gov (United States)

    Ma, Yan; Song, Jing; Chen, Bobin; Xu, Xiaoping; Lin, Guowei

    2016-01-01

    Objective Myelodysplastic syndromes (MDS) are a heterogenous group of clonal hematopoietic stem cell disorders characterized by increased risk of leukemic transformation. This study identifies microRNAs(miRNA) and miRNA targets that might represent leukemic transformation markers for MDS. Methods Based on our previously established nested case-control study cohort of MDS patients, we chose paired patients to undergo Angilent 8 × 15K human miRNA microarrays. Target prediction analysis was administrated using targetscan 5.1 software. We further investigated the function of target gene in MDS cell line using siRNA method, including cell proliferation, cell apoptosis, cell cycle and electron microscope. Results Finally we screened a subset of 7 miRNAs to be significantly differentially expressed between the case (at the end of follow up with leukemic transformation) and control group (at the end of follow up without leukemic transformation). Target prediction analysis revealed SLC7A5 was the common target gene of these 7 miRNAs. Further study on the function of SLC7A5 gene in SKM-1 cell line showed that downregulation of SLC7A5 inhibited SKM-1 cells proliferation, increased apoptosis and caused cell cycle arrest in the G0/G1 stage. Conclusion Our data indicate that SLC7A5 gene may act as a potential leukemic transformation target gene in MDS. PMID:26657287

  8. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Hueng-Chuen Fan

    2015-12-01

    Full Text Available Neurodegenerative diseases (NDs are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD, Huntington’s disease (HD, and Alzheimer’s disease (AD and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM, and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.

  9. Optimal in silico target gene deletion through nonlinear programming for genetic engineering.

    Science.gov (United States)

    Hong, Chung-Chien; Song, Mingzhou

    2010-02-24

    Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized. Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy. Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are expected to achieve higher genetic engineering effectiveness than a trial

  10. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression

    DEFF Research Database (Denmark)

    Ravnskjær, Kim; Kester, Henri; Liu, Yi

    2007-01-01

    A number of hormones and growth factors stimulate gene expression by promoting the phosphorylation of CREB (P-CREB), thereby enhancing its association with the histone acetylase paralogs p300 and CBP (CBP/p300). Relative to cAMP, stress signals trigger comparable amounts of CREB phosphorylation......, but have minimal effects on CRE-dependent transcription. Here, we show that the latent cytoplasmic coactivator TORC2 mediates target gene activation in response to cAMP signaling by associating with CBP/p300 and increasing its recruitment to a subset of CREB target genes. TORC2 is not activated in response......-mediated transcription in cells exposed to stress signals. Taken together, these results indicate that TORC2 is one of the long sought after cofactors that mediates the differential effects of cAMP and stress pathways on CREB target gene expression....

  11. Co-factors necessary for PPAR mediated transactivation of endogenous target genes

    DEFF Research Database (Denmark)

    Grøntved, Lars; Nielsen, Ronni; Stunnenberg, Henk

    physiological scenarios. PPARa and PPARd are transcriptional regulators of fatty acid oxidation and ketogenesis, whereas PPAR? controls genes involved in lipid storage. Consequently, there must be PPAR subtype specific molecular determinants that secure PPAR selective recognition and activation of target...... promoters in a given cell type. In vitro experiments suggest that the different PPAR subtypes might have dissimilar binding preference for some PPAR target sites and may also have different affinity for some transcriptional co-factors. However the molecular mechanisms behind PPAR subtype specific activation...... of endogenous target gene in different cell types are elusive. To mutually compare the ability of the PPAR subtypes to activate endogenous target genes in a given cell, PPARa, PPARb/d and PPARg2 were HA tagged and rapidly, equally and synchronously expressed using adenoviral delivery. Within a few hours after...

  12. Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence.

    Science.gov (United States)

    Gavrilov, Kseniya; Seo, Young-Eun; Tietjen, Gregory T; Cui, Jiajia; Cheng, Christopher J; Saltzman, W Mark

    2015-12-01

    Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein half-life that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities.

  13. Gene Targeted Mice with Conditional Knock-In (-Out) of NMDAR Mutations.

    Science.gov (United States)

    Sprengel, Rolf; Eltokhi, Ahmed; Single, Frank N

    2017-01-01

    For the genetic alterations of NMDA receptor (NMDAR) properties like Ca2+-permeability or voltage-dependent gating in mice and for the experimental analysis of nonsense or missense mutations that were identified in human patients, single nucleotide mutations have to be introduced into the germ line of mice (Burnashev and Szepetowski, Curr Opin Pharmacol 20:73-82, 2015; Endele et al., Nat Genet 42:1021-1026, 2010). This can be done with very high precision by the well-established method of gene replacement, which makes use of homologous recombination in pluripotent embryonic stem (ES) cells of mice. The homologous recombination at NMDAR subunit genes (Grin; for glutamate receptor ionotropic NMDAR subtype) has to be performed by targeting vectors, also called replacement vectors. The targeting vector should encode part of the gene for the NMDAR subunit, the NMDAR mutation, and a removable selection maker. In these days, the targeting vector can be precisely designed using DNA sequences from public databases. The assembly of the vector is then done from isogenic NMDAR gene fragments cloned in bacterial artificial chromosomes (BACs) using "high fidelity" long-range PCR reactions. During these PCR reactions, the NMDAR mutations are introduced into the cloned NMDAR gene fragments of the targeting vector. Finally, the targeting vector is used for homologous recombination in mouse ES cells. Positive ES cell clones which have the correct mutation have to be selected and are then used for blastocyst injection to generate chimeric mice that hopefully transmit the Grin gene targeted ES cells to their offspring. In the first offspring generation of the founder (F1), some animals will be heterozygous for the targeted NMDAR gene mutation. In order to regulate the expression of NMDAR mutations, it is important to keep the targeted NMDAR mutation under conditional control. Here, we describe a general method how those conditionally controlled NMDAR mutations can be engraved into

  14. In vivo gene transfer targeting in pancreatic adenocarcinoma with cell surface antigens

    Directory of Open Access Journals (Sweden)

    Lafitte Marie

    2012-10-01

    Full Text Available Abstract Background Pancreatic ductal adenocarcinoma is a deadly malignancy resistant to current therapies. It is critical to test new strategies, including tumor-targeted delivery of therapeutic agents. This study tested the possibility to target the transfer of a suicide gene in tumor cells using an oncotropic lentiviral vector. Results Three cell surface markers were evaluated to target the transduction of cells by lentiviruses pseudotyped with a modified glycoprotein from Sindbis virus. Only Mucin-4 and the Claudin-18 proteins were found efficient for targeted lentivirus transductions in vitro. In subcutaneous xenografts of human pancreatic cancer cells models, Claudin-18 failed to achieve efficient gene transfer but Mucin-4 was found very potent. Human pancreatic tumor cells were modified to express a fluorescent protein detectable in live animals by bioimaging, to perform a direct non invasive and costless follow up of the tumor growth. Targeted gene transfer of a bicistronic transgene bearing a luciferase gene and the herpes simplex virus thymidine kinase gene into orthotopic grafts was carried out with Mucin-4 oncotropic lentiviruses. By contrast to the broad tropism VSV-G carrying lentivirus, this oncotropic lentivirus was found to transduce specifically tumor cells, sparing normal pancreatic cells in vivo. Transduced cells disappeared after ganciclovir treatment while the orthotopic tumor growth was slowed down. Conclusion This work considered for the first time three aspect of pancreatic adenocarcinoma targeted therapy. First, lentiviral transduction of human pancreatic tumor cells was possible when cells were grafted orthotopically. Second, we used a system targeting the tumor cells with cell surface antigens and sparing the normal cells. Finally, the TK/GCV anticancer system showed promising results in vivo. Importantly, the approach presented here appeared to be a safer, much more specific and an as efficient way to perform gene

  15. Genes associated with genotype-specific DNA methylation in squamous cell carcinoma as candidate drug targets

    Science.gov (United States)

    2014-01-01

    Background Aberrant DNA methylation is often associated with cancers. Thus, screening genes with cancer-associated aberrant DNA methylation is a useful method to identify candidate cancer-causing genes. Aberrant DNA methylation is also genotype dependent. Thus, the selection of genes with genotype-specific aberrant DNA methylation in cancers is potentially important for tailor-made medicine. The selected genes are important candidate drug targets. Results The recently proposed principal component analysis based selection of genes with aberrant DNA methylation was applied to genotype and DNA methylation patterns in squamous cell carcinoma measured using single nucleotide polymorphism (SNP) arrays. SNPs that are frequently found in cancers are usually highly methylated, and the genes that were selected using this method were reported previously to be related to cancers. Thus, genes with genotype-specific DNA methylation patterns will be good therapeutic candidates. The tertiary structures of the proteins encoded by the selected genes were successfully inferred using two profile-based protein structure servers, FAMS and Phyre2. Candidate drugs for three of these proteins, tyrosine kinase receptor (ALK), EGLN3 protein, and NUAK family SNF1-like kinase 1 (NUAK1), were identified by ChooseLD. Conclusions We detected genes with genotype-specific DNA methylation in squamous cell carcinoma that are candidate drug targets. Using in silico drug discovery, we successfully identified several candidate drugs for the ALK, EGLN3 and NUAK1 genes that displayed genotype-specific DNA methylation. PMID:24565165

  16. Identification of a STAT5 target gene, Dpf3, provides novel insights in chronic lymphocytic leukemia.

    Directory of Open Access Journals (Sweden)

    Marina Theodorou

    Full Text Available STAT5 controls essential cellular functions and is encoded by two genes, Stat5a and Stat5b. To provide insight to the mechanisms linking hematologic malignancy to STAT5 activation/regulation of target genes, we identified STAT5 target genes and focused on Dpf3 gene, which encodes for an epigenetic factor. Dpf3 expression was induced upon IL-3 stimulation in Ba/F3 cells, while strong binding of both STAT5a and STAT5b was detected in its promoter. Reduced expression of Dpf3 was detected in Ba/F3 cells with Stat5a and Stat5b knock-down, suggesting that this gene is positively regulated by STAT5, upon IL-3 stimulation. Furthermore, this gene was significantly up-regulated in CLL patients, where DPF3 gene/protein up-regulation and strong STAT5 binding to the DPF3 promoter, correlated with increased STAT5 activation, mainly in non-malignant myeloid cells (granulocytes. Our findings provide insights in the STAT5 dependent transcriptional regulation of Dpf3, and demonstrate for the first time increased STAT5 activation in granulocytes of CLL patients. Novel routes of investigation are opened to facilitate the understanding of the role of STAT5 activation in the communication between non-malignant myeloid and malignant B-cells, and the functions of STAT5 target genes networks in CLL biology.

  17. Metabolic modeling to identify engineering targets for Komagataella phaffii: The effect of biomass composition on gene target identification.

    Science.gov (United States)

    Cankorur-Cetinkaya, Ayca; Dikicioglu, Duygu; Oliver, Stephen G

    2017-11-01

    Genome-scale metabolic models are valuable tools for the design of novel strains of industrial microorganisms, such as Komagataella phaffii (syn. Pichia pastoris). However, as is the case for many industrial microbes, there is no executable metabolic model for K. phaffiii that confirms to current standards by providing the metabolite and reactions IDs, to facilitate model extension and reuse, and gene-reaction associations to enable identification of targets for genetic manipulation. In order to remedy this deficiency, we decided to reconstruct the genome-scale metabolic model of K. phaffii by reconciling the extant models and performing extensive manual curation in order to construct an executable model (Kp.1.0) that conforms to current standards. We then used this model to study the effect of biomass composition on the predictive success of the model. Twelve different biomass compositions obtained from published empirical data obtained under a range of growth conditions were employed in this investigation. We found that the success of Kp1.0 in predicting both gene essentiality and growth characteristics was relatively unaffected by biomass composition. However, we found that biomass composition had a profound effect on the distribution of the fluxes involved in lipid, DNA, and steroid biosynthetic processes, cellular alcohol metabolic process, and oxidation-reduction process. Furthermore, we investigated the effect of biomass composition on the identification of suitable target genes for strain development. The analyses revealed that around 40% of the predictions of the effect of gene overexpression or deletion changed depending on the representation of biomass composition in the model. Considering the robustness of the in silico flux distributions to the changing biomass representations enables better interpretation of experimental results, reduces the risk of wrong target identification, and so both speeds and improves the process of directed strain development

  18. Inhibition of prostate cancer by suicide gene targeting the FCY1 and HSV-TK genes.

    Science.gov (United States)

    Yue, Qiao-Hong; Hu, Xing-Bin; Yin, Ying; Su, Ming-Quan; Cheng, Xiao-Dong; Yang, Liu; Zhou, Tie-Cheng; Hao, Xiaoke

    2009-12-01

    Prostate cancer is one of the most prevalent tumors. The switch of androgen signal dependence makes therapy more complex. Although reports on introduction of a single suicide gene exist, double suicide gene therapy has not been reported yet. In the current study, two suicide genes were constructed in the pIRES plasmid driven by PSMA promoter. 5-FC and GCV combination in vitro led to a higher growth inhibition on prostate cancer compared to a single pro-drug. Retarded xenograft tumor growth was observed in castrated nude mice after double suicide gene activation. Furthermore, decreased metastasis was observed with double suicide gene treatment. These findings suggest that specific double suicide gene strategy could be a potential option for the therapy of prostate cancer.

  19. Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment.

    Science.gov (United States)

    Parker, Brittany C; Zhang, Wei

    2013-11-01

    Studies over the past decades have uncovered fusion genes, a class of oncogenes that provide immense diagnostic and therapeutic advantages because of their tumor-specific expression. Originally associated with hemotologic cancers, fusion genes have recently been discovered in a wide array of solid tumors, including sarcomas, carcinomas, and tumors of the central nervous system. Fusion genes are attractive as both therapeutic targets and diagnostic tools due to their inherent expression in tumor tissue alone. Therefore, the discovery and elucidation of fusion genes in various cancer types may provide more effective therapies in the future for cancer patients.

  20. Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway

    Directory of Open Access Journals (Sweden)

    Michelle R. Campbell

    2013-01-01

    Full Text Available Nuclear factor- (erythroid-derived 2 like 2 (NFE2L2, NRF2 is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1, and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.

  1. Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus.

    Science.gov (United States)

    Liu, Ting-ting; Fan, Di; Ran, Ling-yu; Jiang, Yuan-zhong; Liu, Rui; Luo, Ke-ming

    2015-10-01

    The typeⅡCRISPR/Cas9 system (Clustered regularly interspaced short palindromic repeats /CRISPR-associated 9) has been widely used in bacteria, yeast, animals and plants as a targeted genome editing technique. In previous work, we have successfully knocked out the endogenous phytoene dehydrogenase (PDS) gene in Populus tomentosa Carr. using this system. To study the effect of target design on the efficiency of CRISPR/Cas9-mediated gene knockout in Populus, we analyzed the efficiency of mutagenesis using different single-guide RNA (sgRNA) that target PDS DNA sequence. We found that mismatches between the sgRNA and the target DNA resulted in decreased efficiency of mutagenesis and even failed mutagenesis. Moreover, complementarity between the 3' end nucleotide of sgRNA and target DNA is especially crucial for efficient mutagenesis. Further sequencing analysis showed that two PDS homologs in Populus, PtPDS1 and PtPDS2, could be knocked out simultaneously using this system with 86.4% and 50% efficiency, respectively. These results indicated the possibility of introducing mutations in two or more endogenous genes efficiently and obtaining multi-mutant strains of Populus using this system. We have indeed generated several knockout mutants of transcription factors and structural genes in Populus, which establishes a foundation for future studies of gene function and genetic improvement of Populus.

  2. Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway.

    Science.gov (United States)

    Campbell, Michelle R; Karaca, Mehmet; Adamski, Kelly N; Chorley, Brian N; Wang, Xuting; Bell, Douglas A

    2013-01-01

    Nuclear factor- (erythroid-derived 2) like 2 (NFE2L2, NRF2) is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN) to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq) identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE) in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1), and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.

  3. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes

    Science.gov (United States)

    Auboeuf, Didier; Dowhan, Dennis H.; Kang, Yun Kyoung; Larkin, Kimberly; Lee, Jae Woon; Berget, Susan M.; O'Malley, Bert W.

    2004-01-01

    The biological consequences of steroid hormone-mediated transcriptional activation of target genes might be difficult to predict because alternative splicing of a single neosynthesized precursor RNA can result in production of different protein isoforms with opposite biological activities. Therefore, an important question to address is the manner in which steroid hormones affect the splicing of their target gene transcripts. In this report, we demonstrate that individual steroid hormones had different and opposite effects on alternative splicing decisions, stimulating the production of different spliced variants produced from genes driven by steroid hormone-dependent promoters. Steroid hormone transcriptional effects are mediated by steroid hormone receptor coregulators that also modify alternative splicing decisions. Our data suggest that activated steroid hormone receptors recruit coregulators to the target promoter that participate in both the production and the splicing of the target gene transcripts. Because different coregulators activating transcription can have opposite effects on alternative splicing decisions, we conclude that the precise nature of the transcriptional coregulators recruited by activated steroid receptors, depending on the promoter and cellular contexts, may play a major role in regulating the nature of the spliced variants produced from certain target genes in response to steroid hormones. PMID:14982999

  4. Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes

    Science.gov (United States)

    Liu, Cuilian; Zhang, Song; Wang, Qizhi; Zhang, Xiaobo

    2017-01-01

    Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1′s roles in tumorigenesis of gastric and breast cancers. PMID:28159933

  5. Targeted Gene Addition of Microdystrophin in Mice Skeletal Muscle via Human Myoblast Transplantation

    Directory of Open Access Journals (Sweden)

    Basma F Benabdallah

    2013-01-01

    Full Text Available Zinc finger nucleases (ZFN can facilitate targeted gene addition to the genome while minimizing the risks of insertional mutagenesis. Here, we used a previously characterized ZFN pair targeting the chemokine (C-C motif receptor 5 (CCR5 locus to introduce, as a proof of concept, the enhanced green fluorescent protein (eGFP or the microdystrophin genes into human myoblasts. Using integrase-defective lentiviral vectors (IDLVs and chimeric adenoviral vectors to transiently deliver template DNA and ZFN respectively, we achieved up to 40% targeted gene addition in human myoblasts. When the O6-methylguanine-DNA methyltransferaseP140K gene was co-introduced with eGFP, the frequency of cells with targeted integration could be increased to over 90% after drug selection. Importantly, gene-targeted myoblasts retained their mitogenic activity and potential to form myotubes both in vitro and in vivo when injected into the tibialis anterior of immune-deficient mice. Altogether, our results could lead to the development of improved cell therapy transplantation protocols for muscular diseases.

  6. Yeast-based assay identifies novel Shh/Gli target genes in vertebrate development

    Directory of Open Access Journals (Sweden)

    Milla Luis A

    2012-01-01

    Full Text Available Abstract Background The increasing number of developmental events and molecular mechanisms associated with the Hedgehog (Hh pathway from Drosophila to vertebrates, suggest that gene regulation is crucial for diverse cellular responses, including target genes not yet described. Although several high-throughput, genome-wide approaches have yielded information at the genomic, transcriptional and proteomic levels, the specificity of Gli binding sites related to direct target gene activation still remain elusive. This study aims to identify novel putative targets of Gli transcription factors through a protein-DNA binding assay using yeast, and validating a subset of targets both in-vitro and in-vivo. Testing in different Hh/Gli gain- and loss-of-function scenarios we here identified known (e.g., ptc1 and novel Hh-regulated genes in zebrafish embryos. Results The combined yeast-based screening and MEME/MAST analysis were able to predict Gli transcription factor binding sites, and position mapping of these sequences upstream or in the first intron of promoters served to identify new putative target genes of Gli regulation. These candidates were validated by qPCR in combination with either the pharmacological Hh/Gli antagonist cyc or the agonist pur in Hh-responsive C3H10T1/2 cells. We also used small-hairpin RNAs against Gli proteins to evaluate targets and confirm specific Gli regulation their expression. Taking advantage of mutants that have been identified affecting different components of the Hh/Gli signaling system in the zebrafish model, we further analyzed specific novel candidates. Studying Hh function with pharmacological inhibition or activation complemented these genetic loss-of-function approaches. We provide evidence that in zebrafish embryos, Hh signaling regulates sfrp2, neo1, and c-myc expression in-vivo. Conclusion A recently described yeast-based screening allowed us to identify new Hh/Gli target genes, functionally important in

  7. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network.

    Science.gov (United States)

    Varrault, Annie; Dantec, Christelle; Le Digarcher, Anne; Chotard, Laëtitia; Bilanges, Benoit; Parrinello, Hugues; Dubois, Emeric; Rialle, Stéphanie; Severac, Dany; Bouschet, Tristan; Journot, Laurent

    2017-10-13

    PLAGL1/ZAC1 undergoes parental genomic imprinting, is paternally expressed, and is a member of the imprinted gene network (IGN). It encodes a zinc finger transcription factor with anti-proliferative activity and is a candidate tumor suppressor gene on 6q24 whose expression is frequently lost in various neoplasms. Conversely, gain of PLAGL1 function is responsible for transient neonatal diabetes mellitus, a rare genetic disease that results from defective pancreas development. In the present work, we showed that Plagl1 up-regulation was not associated with DNA damage-induced cell cycle arrest. It was rather associated with physiological cell cycle exit that occurred with contact inhibition, growth factor withdrawal, or cell differentiation. To gain insights into Plagl1 mechanism of action, we identified Plagl1 target genes by combining chromatin immunoprecipitation and genome-wide transcriptomics in transfected cell lines. Plagl1-elicited gene regulation correlated with multiple binding to the proximal promoter region through a GC-rich motif. Plagl1 target genes included numerous genes involved in signaling, cell adhesion, and extracellular matrix composition, including collagens. Plagl1 targets also included 22% of the 409 genes that make up the IGN. Altogether, this work identified Plagl1 as a transcription factor that coordinated the regulation of a subset of IGN genes and controlled extracellular matrix composition. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Concordant and discordant regulation of target genes by miR-31 and its isoforms.

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Chan

    Full Text Available It has been shown that imprecise cleavage of a primary or precursor RNA by Drosha or Dicer, respectively, may yield a group of microRNA (miRNA variants designated as "isomiR". Variations in the relative abundance of isoforms for a given miRNA among different species and different cell types beg the question whether these isomiRs might regulate target genes differentially. We compared the capacity of three miR-31 isoforms (miR-31-H, miR-31-P, and miR-31-M, which differ only slightly in their 5'- and/or 3'-end sequences, to regulate several known targets and a predicted target, Dicer. Notably, we found isomiR-31s displayed concordant and discordant regulation of 6 known target genes. Furthermore, we validated a predicted target gene, Dicer, to be a novel target of miR-31 but only miR-31-P could directly repress Dicer expression in both MCF-7 breast cancer cells and A549 lung cancer cells, resulting in their enhanced sensitivity to cisplatin, a known attribute of Dicer knockdown. This was further supported by reporter assay using full length 3'-untranslated region (UTR of Dicer. Our findings not only revealed Dicer to be a direct target of miR-31, but also demonstrated that isomiRs displayed similar and disparate regulation of target genes in cell-based systems. Coupled with the variations in the distribution of isomiRs among different cells or conditions, our findings support the possibility of fine-tuning gene expression by miRNAs.

  9. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells.

    Science.gov (United States)

    Hayakawa, Kazuo; Ikeya, Makoto; Fukuta, Makoto; Woltjen, Knut; Tamaki, Sakura; Takahara, Naoko; Kato, Tomohisa; Sato, Shingo; Otsuka, Takanobu; Toguchida, Junya

    2013-03-22

    Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT-SSX. Although precise function of SYT-SSX remains to be investigated, accumulating evidences suggest its role in gene regulation via epigenetic mechanisms, and the product of SYT-SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT-SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT-SSX2 gene. SYT-SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT-SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT-SSX, respectively. Association of these genes with SYT-SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were strikingly different in response to the induction of SYT-SSX, and more than half of SYT-SSX target genes in hPSCs were not induced in hMSCs. These results suggest the importance of cellular context for correct understanding of SYT-SSX function, and demonstrated how our new system will help to overcome this issue. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Recurrent Fusion Genes in Leukemia: An Attractive Target for Diagnosis and Treatment.

    Science.gov (United States)

    Wang, Yuhui; Wu, Nan; Liu, Duo; Jin, Yan

    2017-10-01

    Since the first fusion gene was discovered decades ago, a considerable number of fusion genes have been detected in leukemia. The majority of them are generated through chromosomal rearrangement or abnormal transcription. With the development of techniques, high-throughput sequencing method makes it possible to detect fusion genes systematically in multiple human cancers. Owing to their biological significance and tumor-specific expression, some of the fusion genes are attractive diagnostic tools and therapeutic targets. Tyrosine kinase inhibitors (TKI) targeting BCR-ABL1 fusions have been widely used to treat CML. The combination of ATRA and ATO targeting PML-RARA fusions has proven to be effective in acute promyelocytic leukemia (APL). Moreover, therapy with high dose cytarabine (HDAC) has significantly improved the prognosis of core binding factor (CBF) acute myeloid leukemia (AML) patients. Therefore, studies on fusion genes may benefit patients with leukemia by providing more diagnostic markers and therapies in the future. The presented review focuses on the history of fusion genes, mechanisms of formation, and treatments against specific fusion genes in leukemia.

  11. Ultrasound-targeted microbubble destruction in gene therapy: A new tool to cure human diseases

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2017-06-01

    Full Text Available Human gene therapy has made significant advances in less than two decades. Within this short period of time, gene therapy has proceeded from the conceptual stage to technology development and laboratory research, and finally to clinical trials for the treatment of a variety of deadly diseases. Cardiovascular disease, cancer, and stroke are leading causes of death worldwide. Despite advances in medical, interventional, radiation and surgical treatments, the mortality rate remains high, and the need for novel therapies is great. Gene therapy provides an efficient approach to disease treatment. Notable advances in gene therapy have been made for genetic disorders, including severe combined immune deficiency, chronic granulomatus disorder, hemophilia and blindness, as well as for acquired diseases, including cancer and neurodegenerative and cardiovascular diseases. However, lack of an efficient delivery system to target cells as well as the difficulty of sustained expression of transgenes has hindered advancements in gene therapy. Ultrasound targeted microbubble destruction (UTMD is a promising approach for target-specific gene delivery, and it has been successfully investigated for the treatment of many diseases in the past decade. In this paper, we review UTMD-mediated gene delivery for the treatment of cardiovascular diseases, cancer and stroke.

  12. Locally Targeted Cardiac Gene Delivery by AAV Microbubble Destruction in a Large Animal Model.

    Science.gov (United States)

    Schlegel, Philipp; Huditz, Regina; Meinhardt, Eric; Rapti, Kleopatra; Geis, Nicolas; Most, Patrick; Katus, Hugo A; Müller, Oliver J; Bekeredjian, Raffi; Raake, Philip W

    2016-04-01

    Cardiac gene therapy is a promising approach for treating heart diseases. Although clinical studies are ongoing, effective and targeted transgene delivery is still a major obstacle. We sought to improve and direct transgene expression in myocardium by ultrasound-targeted microbubble destruction (UTMD). In pigs, adeno-associated virus-derived (AAV) vectors harboring the luciferase reporter gene were delivered via retroinfusion into the anterior interventricular coronary vein (AIV). AAV vectors were either loaded to lipid microbubbles before injection or injected unmodified. Upon injection of AAV/microbubble solution, UTMD was performed. After 4 weeks, reporter gene expression levels in the anterior wall (target area), in the posterior wall (control area), and in noncardiac organs were analyzed. Retroinfusion of AAV-luciferase vectors loaded to lipid microbubbles led to a significant increase in transgene expression, with an increase in UTMD targeted areas of the anterior wall. Moreover, off-target expression was reduced in comparison to control animals, receiving AAV-luciferase without microbubbles. Besides an increase in overall target area transgene expression, UTMD alters the spatial expression of the luciferase transgene, focusing expression to ultrasound-targeted left ventricular wall. These data suggest UTMD as a promising approach for directing AAV to specific cardiac segments.

  13. Viral microRNAs targeting virus genes promote virus infection in shrimp in vivo.

    Science.gov (United States)

    He, Yaodong; Yang, Kai; Zhang, Xiaobo

    2014-01-01

    Viral microRNAs (miRNAs), most of which are characterized in cell lines, have been found to play important roles in the virus life cycle to avoid attack by the host immune system or to keep virus in the latency state. Viral miRNAs targeting virus genes can inhibit virus infection. In this study, in vivo findings in Marsupenaeus japonicus shrimp revealed that the viral miRNAs could target virus genes and further promote the virus infection. The results showed that white spot syndrome virus (WSSV)-encoded miRNAs WSSV-miR-66 and WSSV-miR-68 were transcribed at the early stage of WSSV infection. When the expression of WSSV-miR-66 and WSSV-miR-68 was silenced with sequence-specific anti-miRNA oligonucleotides (AMOs), the number of copies of WSSV and the WSSV-infected shrimp mortality were significantly decreased, indicating that the two viral miRNAs had a great effect on virus infection. It was revealed that the WSSV wsv094 and wsv177 genes were the targets of WSSV-miR-66 and that the wsv248 and wsv309 genes were the targets of WSSV-miR-68. The data demonstrate that the four target genes play negative roles in the WSSV infection. The targeting of the four virus genes by WSSV-miR-66 and WSSV-miR-68 led to the promotion of virus infection. Therefore, our in vivo findings show a novel aspect of viral miRNAs in virus-host interactions.

  14. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing

    Directory of Open Access Journals (Sweden)

    Chen Shou-Yi

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in higher plants. miRNAs and related target genes have been widely studied in model plants such as Arabidopsis and rice; however, the number of identified miRNAs in soybean (Glycine max is limited, and global identification of the related miRNA targets has not been reported in previous research. Results In our study, a small RNA library and a degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. GO analysis indicated that many of the identified miRNA targets may function in soybean seed development. Additionally, a soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3 (AtSGS3 was detected as a target of the newly identified miRNA Soy_25, suggesting the presence of feedback control of miRNA biogenesis. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library and a degradome library. Our study provides more information about the regulatory network of miRNAs in soybean and advances our understanding of miRNA functions during seed development.

  15. Identification and Characterization of Genes Involved in Leishmania Pathogenesis: The Potential for Drug Target Selection

    Directory of Open Access Journals (Sweden)

    Robert Duncan

    2011-01-01

    Full Text Available Identifying and characterizing Leishmania donovani genes and the proteins they encode for their role in pathogenesis can reveal the value of this approach for finding new drug targets. Effective drug targets are likely to be proteins differentially expressed or required in the amastigote life cycle stage found in the patient. Several examples and their potential for chemotherapeutic disruption are presented. A pathway nearly ubiquitous in living cells targeted by anticancer drugs, the ubiquitin system, is examined. New findings in ubiquitin and ubiquitin-like modifiers in Leishmania show how disruption of those pathways could point to additional drug targets. The programmed cell death pathway, now recognized among protozoan parasites, is reviewed for some of its components and evidence that suggests they could be targeted for antiparasitic drug therapy. Finally, the endoplasmic reticulum quality control system is involved in secretion of many virulence factors. How disruptions in this pathway reduce virulence as evidence for potential drug targets is presented.

  16. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available Recently, the clustered regularly interspaced short palindromic repeats (CRISPR system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction.

  17. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene

    Science.gov (United States)

    Luo, Yumei; Zhang, Zhizhuo; Chen, Yaoyong; Sun, Xiaofang

    2015-01-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB) and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction. PMID:25918715

  18. Characterization of Rad51 from apicomplexan parasite Toxoplasma gondii: an implication for inefficient gene targeting.

    Directory of Open Access Journals (Sweden)

    Sita Swati Achanta

    Full Text Available Repairing double strand breaks (DSBs is absolutely essential for the survival of obligate intracellular parasite Toxoplasma gondii. Thus, DSB repair mechanisms could be excellent targets for chemotherapeutic interventions. Recent genetic and bioinformatics analyses confirm the presence of both homologous recombination (HR as well as non homologous end joining (NHEJ proteins in this lower eukaryote. In order to get mechanistic insights into the HR mediated DSB repair pathway in this parasite, we have characterized the key protein involved in homologous recombination, namely TgRad51, at the biochemical and genetic levels. We have purified recombinant TgRad51 protein to 99% homogeneity and have characterized it biochemically. The ATP hydrolysis activity of TgRad51 shows a higher K(M and much lower k(cat compared to bacterial RecA or Rad51 from other related protozoan parasites. Taking yeast as a surrogate model system we have shown that TgRad51 is less efficient in gene conversion mechanism. Further, we have found that TgRad51 mediated gene integration is more prone towards random genetic loci rather than targeted locus. We hypothesize that compromised ATPase activity of TgRad51 is responsible for inefficient gene targeting and poor gene conversion efficiency in this protozoan parasite. With increase in homologous flanking regions almost three fold increments in targeted gene integration is observed, which is similar to the trend found with ScRad51. Our findings not only help us in understanding the reason behind inefficient gene targeting in T. gondii but also could be exploited to facilitate high throughput knockout as well as epitope tagging of Toxoplasma genes.

  19. SVMRFE based approach for prediction of most discriminatory gene target for type II diabetes

    Directory of Open Access Journals (Sweden)

    Atul Kumar

    2017-06-01

    Full Text Available Type II diabetes is a chronic condition that affects the way our body metabolizes sugar. The body's important source of fuel is now becoming a chronic disease all over the world. It is now very necessary to identify the new potential targets for the drugs which not only control the disease but also can treat it. Support vector machines are the classifier which has a potential to make a classification of the discriminatory genes and non-discriminatory genes. SVMRFE a modification of SVM ranks the genes based on their discriminatory power and eliminate the genes which are not involved in causing the disease. A gene regulatory network has been formed with the top ranked coding genes to identify their role in causing diabetes. To further validate the results pathway study was performed to identify the involvement of the coding genes in type II diabetes. The genes obtained from this study showed a significant involvement in causing the disease, which may be used as a potential drug target.

  20. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    Science.gov (United States)

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Glycoengineering of Human Cell Lines Using Zinc Finger Nuclease Gene Targeting

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric Paul; Clausen, Henrik

    2013-01-01

    with one or even a series of lectins. Here we present a technique to generate cell lines with homogenous truncated O-glycans using zinc finger nuclease gene targeting. Because of their simplified O-glycoproteome, the cells have been named SimpleCells. Glycoproteins from SimpleCells can be isolated...... in a single purification step by lectin chromatography performed on a long lectin column. This protocol describes Zinc finger nuclease gene targeting of human cells to simplify the glycoproteome, as well as lectin chromatography and isolation of glycopeptides from total cell lysates of SimpleCells....

  2. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases.

    Science.gov (United States)

    Suen, Colin M; Mei, Shirley H J; Kugathasan, Lakshmi; Stewart, Duncan J

    2013-10-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety. © 2013 American Physiological Society. Compr Physiol 3:1749-1779, 2013.

  3. Bayesian Joint Modeling of Multiple Gene Networks and Diverse Genomic Data to Identify Target Genes of a Transcription Factor.

    Science.gov (United States)

    Wei, Peng; Pan, Wei

    2012-01-01

    We consider integrative modeling of multiple gene networks and diverse genomic data, including protein-DNA binding, gene expression and DNA sequence data, to accurately identify the regulatory target genes of a transcription factor (TF). Rather than treating all the genes equally and independently a priori in existing joint modeling approaches, we incorporate the biological prior knowledge that neighboring genes on a gene network tend to be (or not to be) regulated together by a TF. A key contribution of our work is that, to maximize the use of all existing biological knowledge, we allow incorporation of multiple gene networks into joint modeling of genomic data by introducing a mixture model based on the use of multiple Markov random fields (MRFs). Another important contribution of our work is to allow different genomic data to be correlated and to examine the validity and effect of the independence assumption as adopted in existing methods. Due to a fully Bayesian approach, inference about model parameters can be carried out based on MCMC samples. Application to an E. coli data set, together with simulation studies, demonstrates the utility and statistical efficiency gains with the proposed joint model.

  4. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing.

    Science.gov (United States)

    Amabile, Angelo; Migliara, Alessandro; Capasso, Paola; Biffi, Mauro; Cittaro, Davide; Naldini, Luigi; Lombardo, Angelo

    2016-09-22

    Gene silencing is instrumental to interrogate gene function and holds promise for therapeutic applications. Here, we repurpose the endogenous retroviruses' silencing machinery of embryonic stem cells to stably silence three highly expressed genes in somatic cells by epigenetics. This was achieved by transiently expressing combinations of engineered transcriptional repressors that bind to and synergize at the target locus to instruct repressive histone marks and de novo DNA methylation, thus ensuring long-term memory of the repressive epigenetic state. Silencing was highly specific, as shown by genome-wide analyses, sharply confined to the targeted locus without spreading to nearby genes, resistant to activation induced by cytokine stimulation, and relieved only by targeted DNA demethylation. We demonstrate the portability of this technology by multiplex gene silencing, adopting different DNA binding platforms and interrogating thousands of genomic loci in different cell types, including primary T lymphocytes. Targeted epigenome editing might have broad application in research and medicine. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Regulation, overexpression, and target gene identification of Potato Homeobox 15 (POTH15) - a class-I KNOX gene in potato.

    Science.gov (United States)

    Mahajan, Ameya S; Kondhare, Kirtikumar R; Rajabhoj, Mohit P; Kumar, Amit; Ghate, Tejashree; Ravindran, Nevedha; Habib, Farhat; Siddappa, Sundaresha; Banerjee, Anjan K

    2016-07-01

    Potato Homeobox 15 (POTH15) is a KNOX-I (Knotted1-like homeobox) family gene in potato that is orthologous to Shoot Meristemless (STM) in Arabidopsis. Despite numerous reports on KNOX genes from different species, studies in potato are limited. Here, we describe photoperiodic regulation of POTH15, its overexpression phenotype, and identification of its potential targets in potato (Solanum tuberosum ssp. andigena). qRT-PCR analysis showed a higher abundance of POTH15 mRNA in shoot tips and stolons under tuber-inducing short-day conditions. POTH15 promoter activity was detected in apical and axillary meristems, stolon tips, tuber eyes, and meristems of tuber sprouts, indicating its role in meristem maintenance and leaf development. POTH15 overexpression altered multiple morphological traits including leaf and stem development, leaflet number, and number of nodes and branches. In particular, the rachis of the leaf was completely reduced and leaves appeared as a bouquet of leaflets. Comparative transcriptomic analysis of 35S::GUS and two POTH15 overexpression lines identified more than 6000 differentially expressed genes, including 2014 common genes between the two overexpression lines. Functional analysis of these genes revealed their involvement in responses to hormones, biotic/abiotic stresses, transcription regulation, and signal transduction. qRT-PCR of selected candidate target genes validated their differential expression in both overexpression lines. Out of 200 randomly chosen POTH15 targets, 173 were found to have at least one tandem TGAC core motif, characteristic of KNOX interaction, within 3.0kb in the upstream sequence of the transcription start site. Overall, this study provides insights to the role of POTH15 in controlling diverse developmental processes in potato. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L.

    Science.gov (United States)

    Wen, Changlong; Mao, Aijun; Dong, Congjuan; Liu, Huyu; Yu, Shuancang; Guo, Yang-Dong; Weng, Yiqun; Xu, Yong

    2015-12-01

    The cucumber target leaf spot resistance gene cca - 3 was fine mapped in a 79-kb region harboring a CC-NB-ARC type R gene that may be responsible for the hypersensitive responses to infection of the target leaf spot pathogen in cucumber. The target leaf spot (TLS) is one of the most important foliar diseases in cucumber (Cucumis sativus L.). In this study, we conducted fine genetic mapping of a simply inherited recessive resistance gene, cca-3 against TLS with 193 F2:3 families and 890 F2 plants derived from the resistant cucumber inbred line D31 and the susceptible line D5. Initial mapping with microsatellite markers and bulked segregant analysis placed cca-3 in a 2.5-Mbp region of cucumber chromosome 6. The D5 and D31 lines were re-sequenced at 10× genome coverage to explore new markers in the target region. Genetic mapping in the large F2 population delimited the cca-3 locus in a 79-kb region with flanking markers Indel16874230 and Indel16953846. Additional fine mapping and gene annotation in this region revealed that a CC-NB-ARC type resistance gene analog, Csa6M375730, seems to be the candidate gene for cca-3. One single nucleotide polymorphism (SNP) was found in the NB-ARC domain of this candidate gene sequence between D31 and D5 that may lead to amino acid change, thus altering the function of the conserved NB-ARC motif. This SNP was validated in the segregating population as well as 24 independent cucumber lines. There was significantly higher level of cca-3 expression in the leaves of D5 (susceptible) than in D31 (resistant), and the expression level was positively correlated with the areas of necrotic spots on leaves after inoculation. It seems the cca-3 resistance gene was able to induce hypersensitive responses to the infection by TLS pathogen.

  7. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury.

    Science.gov (United States)

    Lopes, Cátia D F; Gonçalves, Nádia P; Gomes, Carla P; Saraiva, Maria J; Pêgo, Ana P

    2017-03-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Integrated functional, gene expression and genomic analysis for the identification of cancer targets.

    Directory of Open Access Journals (Sweden)

    Elizabeth Iorns

    Full Text Available The majority of new drug approvals for cancer are based on existing therapeutic targets. One approach to the identification of novel targets is to perform high-throughput RNA interference (RNAi cellular viability screens. We describe a novel approach combining RNAi screening in multiple cell lines with gene expression and genomic profiling to identify novel cancer targets. We performed parallel RNAi screens in multiple cancer cell lines to identify genes that are essential for viability in some cell lines but not others, suggesting that these genes constitute key drivers of cellular survival in specific cancer cells. This approach was verified by the identification of PIK3CA, silencing of which was selectively lethal to the MCF7 cell line, which harbours an activating oncogenic PIK3CA mutation. We combined our functional RNAi approach with gene expression and genomic analysis, allowing the identification of several novel kinases, including WEE1, that are essential for viability only in cell lines that have an elevated level of expression of this kinase. Furthermore, we identified a subset of breast tumours that highly express WEE1 suggesting that WEE1 could be a novel therapeutic target in breast cancer. In conclusion, this strategy represents a novel and effective strategy for the identification of functionally important therapeutic targets in cancer.

  9. Regulation, overexpression, and target gene identification of Potato Homeobox 15 (POTH15) ? a class-I KNOX gene in potato

    OpenAIRE

    Mahajan, Ameya S.; Kondhare, Kirtikumar R.; Rajabhoj, Mohit P.; Kumar, Amit; Ghate, Tejashree; Ravindran, Nevedha; Habib, Farhat; Siddappa, Sundaresha; Banerjee, Anjan K.

    2016-01-01

    Potato Homeobox 15 (POTH15) is a KNOX-I (Knotted1-like homeobox) family gene in potato that is orthologous to Shoot Meristemless (STM) in Arabidopsis. Despite numerous reports on KNOX genes from different species, studies in potato are limited. Here, we describe photoperiodic regulation of POTH15, its overexpression phenotype, and identification of its potential targets in potato (Solanum tuberosum ssp. andigena). qRT-PCR analysis showed a higher abundance of POTH15 mRNA in shoot tips and sto...

  10. A meta analysis of pancreatic microarray datasets yields new targets as cancer genes and biomarkers.

    Directory of Open Access Journals (Sweden)

    Nalin C W Goonesekere

    Full Text Available The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC, which has a five year survival rate of less than 5%. Improved screening for earlier diagnosis, through the detection of diagnostic and prognostic biomarkers provides the best hope of increasing the rate of curatively resectable carcinomas. Though many serum markers have been reported to be elevated in patients with PC, so far, most of these markers have not been implemented into clinical routine due to low sensitivity or specificity. In this study, we have identified genes that are significantly upregulated in PC, through a meta-analysis of large number of microarray datasets. We demonstrate that the biological functions ascribed to these genes are clearly associated with PC and metastasis, and that that these genes exhibit a strong link to pathways involved with inflammation and the immune response. This investigation has yielded new targets for cancer genes, and potential biomarkers for pancreatic cancer. The candidate list of cancer genes includes protein kinase genes, new members of gene families currently associated with PC, as well as genes not previously linked to PC. In this study, we are also able to move towards developing a signature for hypomethylated genes, which could be useful for early detection of PC. We also show that the significantly upregulated 800+ genes in our analysis can serve as an enriched pool for tissue and serum protein biomarkers in pancreatic cancer.

  11. Use of bicistronic retroviral vectors encoding the LacZ gene together with a gene of interest: a method to select producer cells and follow transduced target cells

    NARCIS (Netherlands)

    Staal, F. J.; Bakker, A. Q.; Verkuijlen, M.; van Oort, E.; Spits, H.

    1996-01-01

    The coordinate expression of a marker gene and a therapeutic gene in one retroviral vector has considerable advantages. High-titer producer lines can potentially be selected on the basis of marker gene expression, and the expression of transduced genes in target cells can readily be followed.

  12. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  13. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes

    Directory of Open Access Journals (Sweden)

    Craig W. Herbold

    2015-07-01

    Full Text Available High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with general, interchangeable barcoding primers, enabling nearly limitless customized barcode-primer combinations. Compared to barcoding with long fusion primers, our multiple-target gene approach is more economical because it overall requires lower number of primers and is based on short primers with generally lower synthesis and purification costs. To highlight our approach, we pooled over 900 different small-subunit rRNA and functional gene amplicon libraries obtained from various environmental or host-associated microbial community samples into a single, paired-end Illumina MiSeq run. Although the amplicon regions ranged in size from approximately 290 to 720 bp, we found no significant systematic sequencing bias related to amplicon length or gene target. Our results indicate that this flexible multiplexing approach produces large, diverse and high quality sets of amplicon sequence data for modern studies in microbial ecology.

  14. Normal Collagen and Bone Production by Gene-targeted Human Osteogenesis Imperfecta iPSCs

    Science.gov (United States)

    Deyle, David R; Khan, Iram F; Ren, Gaoying; Wang, Pei-Rong; Kho, Jordan; Schwarze, Ulrike; Russell, David W

    2012-01-01

    Osteogenesis imperfecta (OI) is caused by dominant mutations in the type I collagen genes. In principle, the skeletal abnormalities of OI could be treated by transplantation of patient-specific, bone-forming cells that no longer express the mutant gene. Here, we develop this approach by isolating mesenchymal cells from OI patients, inactivating their mutant collagen genes by adeno-associated virus (AAV)-mediated gene targeting, and deriving induced pluripotent stem cells (iPSCs) that were expanded and differentiated into mesenchymal stem cells (iMSCs). Gene-targeted iMSCs produced normal collagen and formed bone in vivo, but were less senescent and proliferated more than bone-derived MSCs. To generate iPSCs that would be more appropriate for clinical use, the reprogramming and selectable marker transgenes were removed by Cre recombinase. These results demonstrate that the combination of gene targeting and iPSC derivation can be used to produce potentially therapeutic cells from patients with genetic disease. PMID:22031238

  15. Functional characterization of endogenous siRNA target genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heikkinen Liisa

    2008-06-01

    Full Text Available Abstract Background Small interfering RNA (siRNA molecules mediate sequence specific silencing in RNA interference (RNAi, a gene regulatory phenomenon observed in almost all organisms. Large scale sequencing of small RNA libraries obtained from C. elegans has revealed that a broad spectrum of siRNAs is endogenously transcribed from genomic sequences. The biological role and molecular diversity of C. elegans endogenous siRNA (endo-siRNA molecules, nonetheless, remain poorly understood. In order to gain insight into their biological function, we annotated two large libraries of endo-siRNA sequences, identified their cognate targets, and performed gene ontology analysis to identify enriched functional categories. Results Systematic trends in categorization of target genes according to the specific length of siRNA sequences were observed: 18- to 22-mer siRNAs were associated with genes required for embryonic development; 23-mers were associated uniquely with post-embryonic development; 24–26-mers were associated with phosphorus metabolism or protein modification. Moreover, we observe that some argonaute related genes associate with siRNAs with multiple reads. Sequence frequency graphs suggest that different lengths of siRNAs share similarities in overall sequence structure: the 5' end begins with G, while the body predominates with U and C. Conclusion These results suggest that the lengths of endogenous siRNA molecules are consequential to their biological functions since the gene ontology categories for their cognate mRNA targets vary depending upon their lengths.

  16. Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Fan

    Full Text Available The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs--three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, one for KCNQ1, and one for PPP1R12C--and demonstrated that the CRISPR/Cas9 system is highly efficient in introducing site-specific mutations in hamster somatic cells. We then developed unique pronuclear (PN and cytoplasmic injection protocols in hamsters and produced STAT2 knockout (KO hamsters by injecting the sgRNA/Cas9, either in the form of plasmid or mRNA, targeting exon 4 of hamster STAT2. Among the produced hamsters, 14.3% and 88.9% harbored germline-transmitted STAT2 mutations from plasmid and mRNA injection, respectively. Notably, 10.4% of the animals produced from mRNA injection were biallelically targeted. This is the first success in conducting site-specific gene targeting in hamsters and can serve as the foundation for developing other genetically engineered hamster models for human disease.

  17. Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system.

    Science.gov (United States)

    Fan, Zhiqiang; Li, Wei; Lee, Sang R; Meng, Qinggang; Shi, Bi; Bunch, Thomas D; White, Kenneth L; Kong, Il-Keun; Wang, Zhongde

    2014-01-01

    The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs)--three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, one for KCNQ1, and one for PPP1R12C--and demonstrated that the CRISPR/Cas9 system is highly efficient in introducing site-specific mutations in hamster somatic cells. We then developed unique pronuclear (PN) and cytoplasmic injection protocols in hamsters and produced STAT2 knockout (KO) hamsters by injecting the sgRNA/Cas9, either in the form of plasmid or mRNA, targeting exon 4 of hamster STAT2. Among the produced hamsters, 14.3% and 88.9% harbored germline-transmitted STAT2 mutations from plasmid and mRNA injection, respectively. Notably, 10.4% of the animals produced from mRNA injection were biallelically targeted. This is the first success in conducting site-specific gene targeting in hamsters and can serve as the foundation for developing other genetically engineered hamster models for human disease.

  18. Generation of Gene-Edited Chrysanthemum morifolium Using Multicopy Transgenes as Targets and Markers.

    Science.gov (United States)

    Kishi-Kaboshi, Mitsuko; Aida, Ryutaro; Sasaki, Katsutomo

    2017-02-01

    The most widely used gene editing technology-the CRISPR/Cas9 system-employs a bacterial monomeric DNA endonuclease known as clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) and single-guide RNA (sgRNA) that directs Cas9 to a complementary target DNA. However, introducing mutations into higher polyploid plant species, especially for species without genome information, has been difficult. Chrysanthemum morifolium (chrysanthemum) is one of the most important ornamental plants, but it is a hexaploid with a large genome; moreover, it lacks whole-genome information. These characteristics hinder genome editing in chrysanthemum. In the present study, we attempted to perform gene editing using the CRISPR/Cas9 system to introduce mutations into chrysanthemum. We constructed transgenic chrysanthemum plants expressing the yellowish-green fluorescent protein gene from Chiridius poppei (CpYGFP) and targeted CpYGFP for gene editing. We compared the activity of a Cauliflower mosaic virus (CaMV) 35S promoter and parsley ubiquitin promoter in chrysanthemum calli and chose the parsley ubiquitin promoter to drive Cas9. We selected two sgRNAs to target different positions in the CpYGFP gene and obtained transgenic calli containing mutated CpYGFP genes (CRISPR-CpYGFP-chrysanthemum). A DNA sequencing analysis and fluorescence observations indicated that cells containing the mutated CpYGFP gene grew independently of cells containing the original CpYGFP gene in one callus. We finally obtained the CRISPR-CpYGFP-chrysanthemum shoot containing a mutation in the CpYGFP sequence. This is the first report of gene editing using the CRISPR/Cas9 system in chrysanthemum and sheds light on chrysanthemum genome editing. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. In silico identification and characterization of microRNAs and their putative target genes in Solanaceae plants.

    Science.gov (United States)

    Kim, Hyun-Jin; Baek, Kwang-Hyun; Lee, Bong-Woo; Choi, Doil; Hur, Cheol-Goo

    2011-02-01

    MicroRNAs (miRNAs) are a class of small, single-stranded, noncoding RNAs ranging from 19 to 25 nucleotides. The miRNA control various cellular functions by negatively regulating gene expression at the post-transcriptional level. The miRNA regulation over their target genes has a central role in regulating plant growth and development; however, only a few reports have been published on the function of miRNAs in the family Solanaceae. We identified Solanaceae miRNAs and their target genes by analyzing expressed sequence tag (EST) data from five different Solanaceae species. A comprehensive bioinformatic analysis of EST data of Solanaceae species revealed the presence of at least 11 miRNAs and 54 target genes in pepper (Capsicum annuum L.), 22 miRNAs and 221 target genes in potato (Solanum tuberosum L.), 12 miRNAs and 417 target genes in tomato (Solanum lycopersicum L.), 46 miRNAs and 60 target genes in tobacco (Nicotiana tabacum L.), and 7 miRNAs and 28 target genes in Nicotiana benthamiana. The identified Solanaceae miRNAs and their target genes were deposited in the SolmiRNA database, which is freely available for academic research only at http://genepool.kribb.re.kr/SolmiRNA. Our data indicate that the Solanaceae family has both conserved and specific miRNAs and that their target genes may play important roles in growth and development of Solanaceae plants.

  20. Fast and sensitive detection of indels induced by precise gene targeting

    DEFF Research Database (Denmark)

    Yang, Zhang; Steentoft, Catharina; Hauge, Camilla

    2015-01-01

    The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect...... and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect...

  1. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  2. Principles and limitations of computational microRNA gene and target finding

    DEFF Research Database (Denmark)

    Lindow, Morten; Gorodkin, Jan

    2007-01-01

    , but recent methods have challenged this paradigm by simultaneously searching for the gene and the corresponding target(s). Whereas the early methods made predictions based on sets of hand-derived rules from precursor-miRNA structure or observed target-miRNA interactions, recent methods apply machine learning......In 2001 there were four PubMed entries matching the word "microRNA" (miRNA). Interestingly, this number has now far exceeded 1300 and is still rapidly increasing. This more than anything demonstrates the extreme attention this field has had within a short period of time. With the large amounts...

  3. Transcription factor AP2-Sp and its target genes in malarial sporozoites.

    Science.gov (United States)

    Yuda, Masao; Iwanaga, Shiroh; Shigenobu, Shuji; Kato, Tomomi; Kaneko, Izumi

    2010-02-01

    The malarial sporozoite is the stage that infects the liver, and genes expressed in this stage are potential targets for vaccine development. Here, we demonstrate that specific gene expression in this stage is regulated by an AP2-related transcription factor, designated AP2-Sp (APETALA2 in sporozoites), that is expressed from the late oocyst to the salivary gland sporozoite. Disruption of the AP2-Sp gene did not affect parasite replication in the erythrocyte but resulted in loss of sporozoite formation. The electrophoretic mobility-shift assay showed that the DNA-binding domain of AP2-Sp recognizes specific eight-base sequences, beginning with TGCATG, which are present in the proximal promoter region of all known sporozoite-specific genes. Promoter assays demonstrated that these sequences act as cis-acting elements and are critical for the expression of sporozoite-specific genes with different expression profiles. In transgenic parasites that express endogenous AP2-O (APETALA2 in ookinetes), but whose AP2 domain had been swapped with that of AP2-Sp, several target genes of AP2-Sp were induced in the ookinete stage. These results indicate that AP2-Sp is a major transcription factor that regulates gene expression in the sporozoite stage.

  4. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Directory of Open Access Journals (Sweden)

    Sha Lu

    Full Text Available In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  5. Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences.

    Science.gov (United States)

    Leclercq, Mickael; Diallo, Abdoulaye Baniré; Blanchette, Mathieu

    2017-01-25

    MicroRNAs (miRNA) are short single-stranded RNA molecules derived from hairpin-forming precursors that play a crucial role as post-transcriptional regulators in eukaryotes and viruses. In the past years, many microRNA target genes (MTGs) have been identified experimentally. However, because of the high costs of experimental approaches, target genes databases remain incomplete. Although several target prediction programs have been developed in the recent years to identify MTGs in silico, their specificity and sensitivity remain low. Here, we propose a new approach called MirAncesTar, which uses ancestral genome reconstruction to boost the accuracy of existing MTGs prediction tools for human miRNAs. For each miRNA and each putative human target UTR, our algorithm makes uses of existing prediction tools to identify putative target sites in the human UTR, as well as in its mammalian orthologs and inferred ancestral sequences. It then evaluates evidence in support of selective pressure to maintain target site counts (rather than sequences), accounting for the possibility of target site turnover. It finally integrates this measure with several simpler ones using a logistic regression predictor. MirAncesTar improves the accuracy of existing MTG predictors by 26% to 157%. Source code and prediction results for human miRNAs, as well as supporting evolutionary data are available at http://cs.mcgill.ca/∼blanchem/mirancestar. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Driver Gene Mutations in Stools of Colorectal Carcinoma Patients Detected by Targeted Next-Generation Sequencing.

    Science.gov (United States)

    Armengol, Gemma; Sarhadi, Virinder K; Ghanbari, Reza; Doghaei-Moghaddam, Masoud; Ansari, Reza; Sotoudeh, Masoud; Puolakkainen, Pauli; Kokkola, Arto; Malekzadeh, Reza; Knuutila, Sakari

    2016-07-01

    Detection of driver gene mutations in stool DNA represents a promising noninvasive approach for screening colorectal cancer (CRC). Amplicon-based next-generation sequencing (NGS) is a good option to study mutations in many cancer genes simultaneously and from a low amount of DNA. Our aim was to assess the feasibility of identifying mutations in 22 cancer driver genes with Ion Torrent technology in stool DNA from a series of 65 CRC patients. The assay was successful in 80% of stool DNA samples. NGS results showed 83 mutations in cancer driver genes, 29 hotspot and 54 novel mutations. One to five genes were mutated in 75% of cases. TP53, KRAS, FBXW7, and SMAD4 were the top mutated genes, consistent with previous studies. Of samples with mutations, 54% presented concomitant mutations in different genes. Phosphatidylinositol 3-kinase/mitogen-activated protein kinase pathway genes were mutated in 70% of samples, with 58% having alterations in KRAS, NRAS, or BRAF. Because mutations in these genes can compromise the efficacy of epidermal growth factor receptor blockade in CRC patients, identifying mutations that confer resistance to some targeted treatments may be useful to guide therapeutic decisions. In conclusion, the data presented herein show that NGS procedures on stool DNA represent a promising tool to detect genetic mutations that could be used in the future for diagnosis, monitoring, or treating CRC. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Superoxide dismutase - a target for gene therapeutic approach to reduce oxidative stress in erectile dysfunction.

    Science.gov (United States)

    Deng, W; Bivalacqua, T J; Champion, H C; Hellstrom, W J; Murthy, Subramanyam N; Kadowitz, Philip J

    2010-01-01

    Erectile dysfunction (ED) is defined as the inability to attain and/or maintain penile erection sufficient for satisfactory sexual performance. Oxidative stress has been demonstrated to be involved in the pathophysiology of age- or diabetes-related ED. Superoxide dismutase (SOD), an antioxidant enzyme catalyzing the conversion of superoxide anion (O(2) (-)) to hydrogen peroxide (H(2)O(2)) and molecular oxygen (O(2)), is a promising therapeutic target for ED. In vivo gene therapy and adult stem cell-based ex vivo gene therapy are two attractive current gene therapies for the treatment of ED. In this chapter we describe the use of two potent gene transfer techniques to deliver the therapeutic gene extracellular superoxide dismutase (ecSOD) into the penis of aged or diabetic rats for therapy of ED: adenoviral-mediated intracavernosal ecSOD gene transfer for gene therapy of ED and ecSOD gene-modified marrow stromal cells, also known as mesenchymal stem cells, based stem cell and gene therapy.

  8. Big genes are big mutagen targets: a connection to cancerous, spherical cells?

    Science.gov (United States)

    Parry, Michele L; Ramsamooj, Michael; Blanck, George

    2015-01-28

    We determined the most commonly mutated genes in five cancer genome atlas (TCGA) datasets. Many of these genes were extraordinarily large, as are many cancer fusion gene partners. And many of these genes had cytoskeletal related functions. We further determined that these genes were distributed into high and low frequency mutation groups largely according to overall rate of gene-occurrence in the high and low mutation frequency groups, as was also the case with common metastasis and tumor suppressor genes. Oncoproteins were selectively mutated in the low mutation frequency groups in colon and lung datasets. Thus, genes that have very large coding regions and may impact the cytoskeleton are more commonly mutated than are common metastasis and tumor suppressor genes in both high and low frequency mutation groups. These analyses raise questions related to cell shape: (i) Are cancer cells often spherical because cytoskeletal-related proteins are large mutagen targets? (ii) Is drug-resistance facilitated by relatively common mutant proteins that lead to round cells, with altered cell physiology or reduced surface to volume ratios that could reduce intra-cellular drug concentrations? Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  10. Gene Delivery Particle Engineering Strategies for Shape-dependent Targeting of Cells and Tissues.

    Science.gov (United States)

    Kozielski, Kristen L; Sitti, Metin

    2017-01-01

    Successful gene delivery requires overcoming both systemic and intracellular obstacles before the nucleic acid cargo can successfully reach its tissue and subcellular target location. Materials & Methods: Non-viral mechanisms to enable targeting while avoiding off-target delivery have arisen via biological, chemical, and physical engineering strategies. Herein we will discuss the physical parameters in particle design that promote tissue- and cell-targeted delivery of genetic cargo. We will discuss systemic concerns, such as circulation, tissue localization, and clearance, as well as cell-scale obstacles, such as cellular uptake and nucleic acid packaging. In particular, we will focus on engineering particle shape and size in order to enhance delivery and promote precise targeting. We will also address methods to program or change particle shape in situ using environmentally triggered cues. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Epidermal growth factor receptor targeting enhances adenoviral vector based suicide gene therapy of osteosarcoma

    NARCIS (Netherlands)

    Witlox, M.A.; van Beusechem, V.W.; Grill, J.; Haisma, H.J.; Schaap, G.; Bras, J.; Van Diest, P.; De Gast, A.; Curiel, D.T.; Pinedo, H.M.; Gerritsen, W.R.; Wuisman, P.I.

    2002-01-01

    Background Despite improvements in the treatment of osteosarcoma (OS) there are still too many patients who cannot benefit from current treatment modalities. Therefore, new therapeutic approaches are warranted. Here we explore the efficacy of targeted adenoviral based suicide gene therapy. Methods

  12. The effect of COMT gene on the target precision of the athlete movement

    Directory of Open Access Journals (Sweden)

    E. V. Mikhailova

    2014-01-01

    Full Text Available The aim of the study was to find correlation between COMT gene alleles and the target precision of the athlete movement. 68 Russian competing athletes involved in boxing and volleyball, participated in the study. We found interrelation between COMT Met allele and a tall stature in the volleyball players.

  13. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Dietrich, Nikolaj; Pasini, Diego

    2006-01-01

    The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Pol...

  14. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan

    2017-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription facto...

  15. Targeted resequencing of candidate genes reveals novel variants associated with severe Behçet's uveitis.

    Science.gov (United States)

    Kim, Sang Jin; Lee, Seungbok; Park, Changho; Seo, Jeong-Sun; Kim, Jong-Il; Yu, Hyeong Gon

    2013-10-18

    Behçet's disease (BD) is a chronic systemic inflammatory disorder characterized by four major manifestations: recurrent uveitis, oral and genital ulcers and skin lesions. To identify some pathogenic variants associated with severe Behçet's uveitis, we used targeted and massively parallel sequencing methods to explore the genetic diversity of target regions. A solution-based target enrichment kit was designed to capture whole-exonic regions of 132 candidate genes. Using a multiplexing strategy, 32 samples from patients with a severe type of Behçet's uveitis were sequenced with a Genome Analyzer IIx. We compared the frequency of each variant with that of 59 normal Korean controls, and selected five rare and eight common single-nucleotide variants as the candidates for a replication study. The selected variants were genotyped in 61 cases and 320 controls and, as a result, two rare and seven common variants showed significant associations with severe Behçet's uveitis (PMTFHR and MICA also replicated the previous reports at the gene level. The KIR3DL3 and KIR2DL4 genes are novel susceptibility genes that have not been reported in association with BD. In conclusion, this study showed that target enrichment and next-generation sequencing technologies can provide valuable information on the genetic predisposition for Behçet's uveitis.

  16. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    DEFF Research Database (Denmark)

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient...

  17. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    Science.gov (United States)

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer. ©2015 American Association for Cancer Research.

  18. Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System

    Science.gov (United States)

    Szeberényi, József

    2013-01-01

    Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…

  19. Deletion of a target gene in Indica rice via CRISPR/Cas9.

    Science.gov (United States)

    Wang, Ying; Geng, Lizhao; Yuan, Menglong; Wei, Juan; Jin, Chen; Li, Min; Yu, Kun; Zhang, Ya; Jin, Huaibing; Wang, Eric; Chai, Zhijian; Fu, Xiangdong; Li, Xianggan

    2017-08-01

    Using CRISPR/Cas9, we successfully deleted large fragments of the yield-related gene DENSE AND ERECT PANICLE1 in Indica rice at relatively high frequency and generated gain-of-function dep1 mutants. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a rapidly developing technology used to produce gene-specific modifications in both mammalian and plant systems. Most CRISPR-induced modifications in plants reported to date have been small insertions or deletions. Few large target gene deletions have thus far been reported, especially for Indica rice. In this study, we designed multiple CRISPR sgRNAs and successfully deleted DNA fragments in the gene DENSE AND ERECT PANICLE1 (DEP1) in the elite Indica rice line IR58025B. We achieved deletion frequencies of up to 21% for a 430 bp target and 9% for a 10 kb target among T0 events. Constructs with four sgRNAs did not generate higher full-length deletion frequencies than constructs with two sgRNAs. The multiple mutagenesis frequency reached 93% for four targets, and the homozygous mutation frequency reached 21% at the T0 stage. Important yield-related trait characteristics, such as dense and erect panicles and reduced plant height, were observed in dep1 homozygous T0 mutant plants produced by CRISPR/Cas9. Therefore, we successfully obtained deletions in DEP1 in the Indica background using the CRISPR/Cas9 editing tool at relatively high frequency.

  20. Stimulation of homology-directed gene targeting at an endogenous human locus by a nicking endonuclease

    NARCIS (Netherlands)

    G.P. van Nierop (Gijs); A.A.F. de Vries (Antoine); M. Holkers (Maarten); K.R. Vrijsen (Krijn); M.A.F.V. Gonçalves (Manuel)

    2009-01-01

    textabstractHomologous recombination (HR) is a highly accurate mechanism of DNA repair that can be exploited for homology-directed gene targeting. Since in most cell types HR occurs very infrequently (̃10.-6to 10.-8), its practical application has been largely restricted to specific experimental

  1. Targeted insertion of the neomycin phosphotransferase gene into the tubulin gene cluster of Trypanosoma brucei

    NARCIS (Netherlands)

    ten Asbroek, A. L.; Ouellette, M.; Borst, P.

    1990-01-01

    Kinetoplastids are unicellular eukaryotes that include important parasites of man, such as trypanosomes and leishmanias. The study of these organisms received a recent boost from the development of transient transformation allowing the short-term expression of genes reintroduced into parasites like

  2. Generation of novel resistance genes using mutation and targeted gene editing

    Science.gov (United States)

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a "dream technology" to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by ...

  3. miRNA signatures and transcriptional regulation of their target genes in vitiligo.

    Science.gov (United States)

    Mansuri, Mohmmad Shoab; Singh, Mala; Begum, Rasheedunnisa

    2016-10-01

    miRNAs are small non-coding RNA molecules that post-transcriptionally regulate gene expression. We have earlier reported the skin miRNA expression profiling in patients with non-segmental vitiligo. In the present study, we show the expression of previously identified skin miRNAs signatures in blood and their target genes in whole blood and PBMCs as well as skin micro-environment of vitiligo patients and controls. miRNA expression profiling in whole blood was performed using customized TaqMan® Low Density Array. We predicted the potential targets of differentially expressed miRNAs and investigated their expression levels in skin, whole blood and PBMCs from patients and controls using Real-time PCR. Our results showed miR-1, miR-184, miR-328, miR-383 and miR-577 hold similar pattern of expression as of skin, suggesting their potent eminence for being putative markers for vitiligo. In silico target prediction revealed miR-1 targets EDN1, G6PD, HSP60, HSP70, SERP1, SIRT1 & TYR; miR-184 targets EZR & LAMP1; miR-328 targets IL1B, POLH & TRPM1; miR-383 targets EDN1 & TYRP1; and miR-577 targets PTPN22 & TYRP1 which were corroborated by our validation study. In conclusion, the present study for the first time provides new insights into the crucial role of miRNA regulated gene network involved in oxidative stress, autoimmunity and ER stress mediated pathogenesis of vitiligo. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation.

    Science.gov (United States)

    de Pater, Sylvia; Pinas, Johan E; Hooykaas, Paul J J; van der Zaal, Bert J

    2013-05-01

    Previously, we showed that ZFN-mediated induction of double-strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium-mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild-type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T-DNA with an incomplete PPO gene, missing the 5' coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events. Selection on butafenacil yielded 2 GT events for the wild type with a frequency of 0.8 × 10⁻³ per transformation event and 8 GT events for the ZFNs expressing plant line with a frequency of 3.1 × 10⁻³ per transformation event. Molecular analysis using PCR and Southern blot analysis showed that 9 of the GT events were so-called true GT events, repaired via homologous recombination (HR) at the 5' and the 3' end of the gene. One plant line contained a PPO gene repaired only at the 5' end via HR. Most plant lines contained extra randomly integrated T-DNA copies. Two plant lines did not contain extra T-DNAs, and the repaired PPO genes in these lines were transmitted to the next generation in a Mendelian fashion. © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  5. Disease-Specific Target Gene Expression Profiling of Molecular Imaging Probes: Database Development and Clinical Validation

    Directory of Open Access Journals (Sweden)

    Lawrence Wing-Chi Chan

    2014-08-01

    Full Text Available Molecular imaging probes can target abnormal gene expression patterns in patients and allow early diagnosis of disease. For selecting a suitable imaging probe, the current Molecular Imaging and Contrast Agent Database (MICAD provides descriptive and qualitative information on imaging probe characteristics and properties. However, MICAD does not support linkage with the expression profiles of target genes. The proposed Disease-specific Imaging Probe Profiling (DIPP database quantitatively archives and presents the gene expression profiles of targets across different diseases, anatomic regions, and subcellular locations, providing an objective reference for selecting imaging probes. The DIPP database was validated with a clinical positron emission tomography (PET study on lung cancer and an in vitro study on neuroendocrine cancer. The retrieved records show that choline kinase beta and glucose transporters were positively and significantly associated with lung cancer among the targets of 11C-choline and [18F]fluoro-2- deoxy-2-D-glucose (FDG, respectively. Their significant overexpressions corresponded to the findings that the uptake rate of FDG increased with tumor size but that of 11C-choline remained constant. Validated with the in vitro study, the expression profiles of disease-associated targets can indicate the eligibility of patients for clinical trials of the treatment probe. A Web search tool of the DIPP database is available at http://www.polyu.edu.hk/bmi/dipp/.

  6. Analysis of Deregulated microRNAs and Their Target Genes in Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Simonas Juzėnas

    Full Text Available MicroRNAs (miRNAs are widely studied non-coding RNAs that modulate gene expression. MiRNAs are deregulated in different tumors including gastric cancer (GC and have potential diagnostic and prognostic implications. The aim of our study was to determine miRNA profile in GC tissues, followed by evaluation of deregulated miRNAs in plasma of GC patients. Using available databases and bioinformatics methods we also aimed to evaluate potential target genes of confirmed differentially expressed miRNA and validate these findings in GC tissues.The study included 51 GC patients and 51 controls. Initially, we screened miRNA expression profile in 13 tissue samples of GC and 12 normal gastric tissues with TaqMan low density array (TLDA. In the second stage, differentially expressed miRNAs were validated in a replication cohort using qRT-PCR in tissue and plasma samples. Subsequently, we analyzed potential target genes of deregulated miRNAs using bioinformatics approach, determined their expression in GC tissues and performed correlation analysis with targeting miRNAs.Profiling with TLDA revealed 15 deregulated miRNAs in GC tissues compared to normal gastric mucosa. Replication analysis confirmed that miR-148a-3p, miR-204-5p, miR-223-3p and miR-375 were consistently deregulated in GC tissues. Analysis of GC patients' plasma samples showed significant down-regulation of miR-148a-3p, miR-375 and up-regulation of miR-223-3p compared to healthy subjects. Further, using bioinformatic tools we identified targets of replicated miRNAs and performed disease-associated gene enrichment analysis. Ultimately, we evaluated potential target gene BCL2 and DNMT3B expression by qRT-PCR in GC tissue, which correlated with targeting miRNA expression.Our study revealed miRNA profile in GC tissues and showed that miR-148a-3p, miR-223-3p and miR-375 are deregulated in GC plasma samples, but these circulating miRNAs showed relatively weak diagnostic performance as sole biomarkers

  7. Zooplankton community analysis in the Changjiang River estuary by single-gene-targeted metagenomics

    Science.gov (United States)

    Cheng, Fangping; Wang, Minxiao; Li, Chaolun; Sun, Song

    2014-07-01

    DNA barcoding provides accurate identification of zooplankton species through all life stages. Single-gene-targeted metagenomic analysis based on DNA barcode databases can facilitate longterm monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitochondrial cytochrome oxidase subunit 1 (cox1) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity>96%) or genus level (similaritymetagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.

  8. Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes

    Science.gov (United States)

    Rao, Nagesha A.S.; McCalman, Melysia T.; Moulos, Panagiotis; Francoijs, Kees-Jan; Chatziioannou, Aristotelis; Kolisis, Fragiskos N.; Alexis, Michael N.; Mitsiou, Dimitra J.; Stunnenberg, Hendrik G.

    2011-01-01

    Glucocorticoid receptor (GR) exerts anti-inflammatory action in part by antagonizing proinflammatory transcription factors such as the nuclear factor kappa-b (NFKB). Here, we assess the crosstalk of activated GR and RELA (p65, major NFKB component) by global identification of their binding sites and target genes. We show that coactivation of GR and p65 alters the repertoire of regulated genes and results in their association with novel sites in a mutually dependent manner. These novel sites predominantly cluster with p65 target genes that are antagonized by activated GR and vice versa. Our data show that coactivation of GR and NFKB alters signaling pathways that are regulated by each factor separately and provide insight into the networks underlying the GR and NFKB crosstalk. PMID:21750107

  9. ERRγ target genes are poor prognostic factors in Tamoxifen-treated breast cancer.

    Science.gov (United States)

    Madhavan, Subha; Gusev, Yuriy; Singh, Salendra; Riggins, Rebecca B

    2015-05-15

    One-third of estrogen (ER+) and/or progesterone receptor-positive (PGR+) breast tumors treated with Tamoxifen (TAM) do not respond to initial treatment, and the remaining 70% are at risk to relapse in the future. Estrogen-related receptor gamma (ESRRG, ERRγ) is an orphan nuclear receptor with broad, structural similarities to classical ER that is widely implicated in the transcriptional regulation of energy homeostasis. We have previously demonstrated that ERRγ induces resistance to TAM in ER+ breast cancer models, and that the receptor's transcriptional activity is modified by activation of the ERK/MAPK pathway. We hypothesize that hyper-activation or over-expression of ERRγ induces a pro-survival transcriptional program that impairs the ability of TAM to inhibit the growth of ER+ breast cancer. The goal of the present study is to determine whether ERRγ target genes are associated with reduced distant metastasis-free survival (DMFS) in ER+ breast cancer treated with TAM. Raw gene expression data was obtained from 3 publicly available breast cancer clinical studies of women with ER+ breast cancer who received TAM as their sole endocrine therapy. ERRγ target genes were selected from 2 studies that published validated chromatin immunoprecipitation (ChIP) analyses of ERRγ promoter occupancy. Kaplan-Meier estimation was used to determine the association of ERRγ target genes with DMFS, and selected genes were validated in ER+, MCF7 breast cancer cells that express exogenous ERRγ. Thirty-seven validated receptor target genes were statistically significantly altered in women who experienced a DM within 5 years, and could classify several independent studies into poor vs. good DMFS. Two genes (EEF1A2 and PPIF) could similarly separate ER+, TAM-treated breast tumors by DMFS, and their protein levels were measured in an ER+ breast cancer cell line model with exogenous ERRγ. Finally, expression of ERRγ and these two target genes are elevated in models of ER+ breast

  10. Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies.

    Science.gov (United States)

    Oyrer, Julia; Maljevic, Snezana; Scheffer, Ingrid E; Berkovic, Samuel F; Petrou, Steven; Reid, Christopher A

    2018-01-01

    Epilepsy is a common and serious neurologic disease with a strong genetic component. Genetic studies have identified an increasing collection of disease-causing genes. The impact of these genetic discoveries is wide reaching-from precise diagnosis and classification of syndromes to the discovery and validation of new drug targets and the development of disease-targeted therapeutic strategies. About 25% of genes identified in epilepsy encode ion channels. Much of our understanding of disease mechanisms comes from work focused on this class of protein. In this study, we review the genetic, molecular, and physiologic evidence supporting the pathogenic role of a number of different voltage- and ligand-activated ion channels in genetic epilepsy. We also review proposed disease mechanisms for each ion channel and highlight targeted therapeutic strategies. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Reprogramming of the ERRα and ERα target gene landscape triggers tamoxifen resistance in breast cancer.

    Science.gov (United States)

    Thewes, Verena; Simon, Ronald; Schroeter, Petra; Schlotter, Magdalena; Anzeneder, Tobias; Büttner, Reinhard; Benes, Vladimir; Sauter, Guido; Burwinkel, Barbara; Nicholson, Robert I; Sinn, Hans-Peter; Schneeweiss, Andreas; Deuschle, Ulrich; Zapatka, Marc; Heck, Stefanie; Lichter, Peter

    2015-02-15

    Endocrine treatment regimens for breast cancer that target the estrogen receptor-α (ERα) are effective, but acquired resistance remains a limiting drawback. One mechanism of acquired resistance that has been hypothesized is functional substitution of the orphan receptor estrogen-related receptor-α (ERRα) for ERα. To examine this hypothesis, we analyzed ERRα and ERα in recurrent tamoxifen-resistant breast tumors and conducted a genome-wide target gene profiling analysis of MCF-7 breast cancer cell populations that were sensitive or resistant to tamoxifen treatment. This analysis uncovered a global redirection in the target genes controlled by ERα, ERRα, and their coactivator AIB1, defining a novel set of target genes in tamoxifen-resistant cells. Beyond differences in the ERα and ERRα target gene repertoires, both factors were engaged in similar pathobiologic processes relevant to acquired resistance. Functional analyses confirmed a requirement for ERRα in tamoxifen- and fulvestrant-resistant MCF-7 cells, with pharmacologic inhibition of ERRα sufficient to partly restore sensitivity to antiestrogens. In clinical specimens (n = 1041), increased expression of ERRα was associated with enhanced proliferation and aggressive disease parameters, including increased levels of p53 in ERα-positive cases. In addition, increased ERRα expression was linked to reduced overall survival in independent tamoxifen-treated patient cohorts. Taken together, our results suggest that ERα and ERRα cooperate to promote endocrine resistance, and they provide a rationale for the exploration of ERRα as a candidate drug target to treat endocrine-resistant breast cancer. ©2015 American Association for Cancer Research.

  12. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tatiana Flisikowska

    Full Text Available Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM(+ and IgG(+ B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with ∼1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in 18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other research fields.

  13. Global Identification of EVI1 Target Genes in Acute Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Carolyn Glass

    Full Text Available The ecotropic virus integration site 1 (EVI1 transcription factor is associated with human myeloid malignancy of poor prognosis and is overexpressed in 8-10% of adult AML and strikingly up to 27% of pediatric MLL-rearranged leukemias. For the first time, we report comprehensive genomewide EVI1 binding and whole transcriptome gene deregulation in leukemic cells using a combination of ChIP-Seq and RNA-Seq expression profiling. We found disruption of terminal myeloid differentiation and cell cycle regulation to be prominent in EVI-induced leukemogenesis. Specifically, we identified EVI1 directly binds to and downregulates the master myeloid differentiation gene Cebpe and several of its downstream gene targets critical for terminal myeloid differentiation. We also found EVI1 binds to and downregulates Serpinb2 as well as numerous genes involved in the Jak-Stat signaling pathway. Finally, we identified decreased expression of several ATP-dependent P2X purinoreceptors genes involved in apoptosis mechanisms. These findings provide a foundation for future study of potential therapeutic gene targets for EVI1-induced leukemia.

  14. Control of sulfate concentration by miR395-targeted APS genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Qin Ai

    2016-04-01

    Full Text Available Sulfur nutrition is crucial for plant growth and development, as well as crop yield and quality. Inorganic sulfate in the soil is the major sulfur source for plants. After uptake, sulfate is activated by ATP sulfurylase, and then gets assimilated into sulfur-containing metabolites. However, the mechanism of regulation of sulfate levels by ATP sulfurylase is unclear. Here, we investigated the control of sulfate levels by miR395-mediated regulation of APS1/3/4. Sulfate was over-accumulated in the shoots of miR395 over-expression plants in which the expression of the APS1, APS3, and APS4 genes was suppressed. Accordingly, reduced expression of miR395 caused a decline of sulfate concentration. In agreement with these results, over-expression of the APS1, APS3, and APS4 genes led to the reduction of sulfate levels. Differential expression of these three APS genes in response to sulfate starvation implied that they have different functions. Further investigation revealed that the regulation of sulfate levels mediated by miR395 depends on the repression of its APS targets. Unlike the APS1, APS3, and APS4 genes, which encode plastid-localized ATP sulfurylases, the APS2 gene encodes a cytosolic version of ATP sulfurylase. Genetic analysis indicated that APS2 has no significant effect on sulfate levels. Our data suggest that miR395-targeted APS genes are key regulators of sulfate concentration in leaves.

  15. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activation...... to the variety of phenotypes observed as a consequence of a deregulated pRB/E2F pathway....

  16. Improvement of Hydrodynamics-Based Gene Transfer of Nonviral DNA Targeted to Murine Hepatocytes

    Directory of Open Access Journals (Sweden)

    Shingo Nakamura

    2013-01-01

    Full Text Available The liver is an important organ for supporting the life of an individual. Gene transfer toward this organ has been attempted in many laboratories to date; however, there have been few reports on improved liver-targeted gene delivery by using a nonviral vector. In this study, we examined the effect of various types of gene delivery carriers on enhancing the uptake and gene expression of exogenous DNA in murine hepatocytes when a hydrodynamics-based gene delivery (HGD is performed via tail-vein injection. Mice were singly injected with a large amount of phosphate-buffered saline containing reporter plasmid DNA and/or with a gene delivery carrier. One day after the gene delivery, the animals' livers were dissected and subjected to biochemical, histochemical, and molecular biological analyses. The strongest signal from the reporter plasmid DNA was observed when the DNA was mixed with a polyethylenimine- (PEI- based reagent. Coinjection with pCRTEIL (a loxP-floxed reporter construct and pTR/NCre (a liver-specific Cre expression vector resulted in the liver-specific recombination of pCRTEIL. The combination of PEI with HGD would thus be a valuable tool for liver-specific manipulation to examine the function of a gene of interest in the liver and for creating liver disease models.

  17. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis

    Directory of Open Access Journals (Sweden)

    Cuiyuan Huang

    2017-07-01

    Full Text Available Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble–mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.

  18. Mesenchymal stem cells: A new platform for targeting suicide genes in cancer.

    Science.gov (United States)

    Moradian Tehrani, Rana; Verdi, Javad; Noureddini, Mahdi; Salehi, Rasoul; Salarinia, Reza; Mosalaei, Meysam; Simonian, Miganosh; Alani, Behrang; Ghiasi, Moosa Rahimi; Jaafari, Mahmoud Reza; Mirzaei, Hamed Reza; Mirzaei, Hamed

    2017-07-13

    One of the important strategies for the treatment of cancer is gene therapy which has the potential to exclusively eradicate malignant cells, without any damage to the normal tissues. Gene-directed enzyme prodrug therapy (GDEPT) is a two-step gene therapy approach, where a suicide gene is directed to tumor cells. The gene encodes an enzyme that expressed intracellularly where it is able to convert a prodrug into cytotoxic metabolites. Various delivery systems have been developed to achieve the appropriate levels of tumor restricted expression of chemotherapeutic drugs. Nowadays, mesenchymal stem cells (MSCs) have been drawing great attention as cellular vehicles for gene delivery systems. Inherent characteristics of MSCs make them particularly attractive gene therapy tools in cell therapy. They have been used largely for their remarkable homing property toward tumor sites and availability from many different adult tissues and show anti-inflammatory actions in some cases. They do not stimulate proliferative responses of lymphocytes, suggests that MSCs have low immunogenicity and could avoid immune rejection. This review summarizes the current state of knowledge about genetically modified MSCs that enable to co-transduce a variety of therapeutic agents including suicide genes (i.e., cytosine deaminase, thymidine kinase) in order to exert potent anti-carcinogenesis against various tumors growth. Moreover, we highlighted the role of exosomes released from MSCs as new therapeutic platform for targeting various therapeutic agents. © 2017 Wiley Periodicals, Inc.

  19. Human synthetic lethal inference as potential anti-cancer target gene detection

    Directory of Open Access Journals (Sweden)

    Solé Ricard V

    2009-12-01

    Full Text Available Abstract Background Two genes are called synthetic lethal (SL if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases as well as on existent approved drugs (DrugBank database supports our selection of cancer-therapy candidates. Conclusions Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.

  20. Electrotransfer parameters as a tool for controlled and targeted gene expression in skin

    Directory of Open Access Journals (Sweden)

    Spela Kos

    2016-01-01

    Full Text Available Skin is an attractive target for gene electrotransfer. It consists of different cell types that can be transfected, leading to various responses to gene electrotransfer. We demonstrate that these responses could be controlled by selecting the appropriate electrotransfer parameters. Specifically, the application of low or high electric pulses, applied by multi-electrode array, provided the possibility to control the depth of the transfection in the skin, the duration and the level of gene expression, as well as the local or systemic distribution of the transgene. The influence of electric pulse type was first studied using a plasmid encoding a reporter gene (DsRed. Then, plasmids encoding therapeutic genes (IL-12, shRNA against endoglin, shRNA against melanoma cell adhesion molecule were used, and their effects on wound healing and cutaneous B16F10 melanoma tumors were investigated. The high-voltage pulses resulted in gene expression that was restricted to superficial skin layers and induced a local response. In contrast, the low-voltage electric pulses promoted transfection into the deeper skin layers, resulting in prolonged gene expression and higher transgene production, possibly with systemic distribution. Therefore, in the translation into the clinics, it will be of the utmost importance to adjust the electrotransfer parameters for different therapeutic approaches and specific mode of action of the therapeutic gene.

  1. Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    Full Text Available Decorin, small leucine-rich proteoglycan, has been shown to modulate angiogenesis in nonocular tissues. This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the rabbit stroma with adeno-associated virus serotype 5 (AAV5 impedes corneal neovascularization (CNV in vivo without significant side effects. An established rabbit CNV model was used. Targeted decorin gene therapy in the rabbit stroma was delivered with a single topical AAV5 titer (100 µl; 5×10(12 vg/ml application onto the stroma for two minutes after removing corneal epithelium. The levels of CNV were examined with stereomicroscopy, H&E staining, lectin, collagen type IV, CD31 immunocytochemistry and CD31 immunoblotting. Real-time PCR quantified mRNA expression of pro- and anti-angiogenic genes. Corneal health in live animals was monitored with clinical, slit-lamp and optical coherence tomography biomicroscopic examinations. Selective decorin delivery into stroma showed significant 52% (p<0.05, 66% (p<0.001, and 63% (p<0.01 reduction at early (day 5, mid (day 10, and late (day 14 stages of CNV in decorin-delivered rabbit corneas compared to control (no decorin delivered corneas in morphometric analysis. The H&E staining, lectin, collagen type IV, CD31 immunostaining (57-65, p<0.5, and CD31 immunoblotting (62-67%, p<0.05 supported morphometric findings. Quantitative PCR studies demonstrated decorin gene therapy down-regulated expression of VEGF, MCP1 and angiopoietin (pro-angiogenic and up-regulated PEDF (anti-angiogenic genes. The clinical, biomicroscopy and transmission electron microscopy studies revealed that AAV5-mediated decorin gene therapy is safe for the cornea. Tissue-targeted AAV5-mediated decorin gene therapy decreases CNV with no major side effects, and could potentially be used for treating patients.

  2. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting.

    Science.gov (United States)

    Aguirre, Andrew J; Meyers, Robin M; Weir, Barbara A; Vazquez, Francisca; Zhang, Cheng-Zhong; Ben-David, Uri; Cook, April; Ha, Gavin; Harrington, William F; Doshi, Mihir B; Kost-Alimova, Maria; Gill, Stanley; Xu, Han; Ali, Levi D; Jiang, Guozhi; Pantel, Sasha; Lee, Yenarae; Goodale, Amy; Cherniack, Andrew D; Oh, Coyin; Kryukov, Gregory; Cowley, Glenn S; Garraway, Levi A; Stegmaier, Kimberly; Roberts, Charles W; Golub, Todd R; Meyerson, Matthew; Root, David E; Tsherniak, Aviad; Hahn, William C

    2016-08-01

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803. 2016 American Association for Cancer Research.

  3. Prediction of novel target genes and pathways involved in irinotecan-resistant colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Precious Takondwa Makondi

    Full Text Available Acquired drug resistance to the chemotherapeutic drug irinotecan (the active metabolite of which is SN-38 is one of the significant obstacles in the treatment of advanced colorectal cancer (CRC. The molecular mechanism or targets mediating irinotecan resistance are still unclear. It is urgent to find the irinotecan response biomarkers to improve CRC patients' therapy.Genetic Omnibus Database GSE42387 which contained the gene expression profiles of parental and irinotecan-resistant HCT-116 cell lines was used. Differentially expressed genes (DEGs between parental and irinotecan-resistant cells, protein-protein interactions (PPIs, gene ontologies (GOs and pathway analysis were performed to identify the overall biological changes. The most common DEGs in the PPIs, GOs and pathways were identified and were validated clinically by their ability to predict overall survival and disease free survival. The gene-gene expression correlation and gene-resistance correlation was also evaluated in CRC patients using The Cancer Genomic Atlas data (TCGA.The 135 DEGs were identified of which 36 were upregulated and 99 were down regulated. After mapping the PPI networks, the GOs and the pathways, nine genes (GNAS, PRKACB, MECOM, PLA2G4C, BMP6, BDNF, DLG4, FGF2 and FGF9 were found to be commonly enriched. Signal transduction was the most significant GO and MAPK pathway was the most significant pathway. The five genes (FGF2, FGF9, PRKACB, MECOM and PLA2G4C in the MAPK pathway were all contained in the signal transduction and the levels of those genes were upregulated. The FGF2, FGF9 and MECOM expression were highly associated with CRC patients' survival rate but not PRKACB and PLA2G4C. In addition, FGF9 was also associated with irinotecan resistance and poor disease free survival. FGF2, FGF9 and PRKACB were positively correlated with each other while MECOM correlated positively with FGF9 and PLA2G4C, and correlated negatively with FGF2 and PRKACB after doing gene-gene

  4. Bookmarking target genes in mitosis: a shared epigenetic trait of phenotypic transcription factors and oncogenes?

    Science.gov (United States)

    Zaidi, Sayyed K; Grandy, Rodrigo A; Lopez-Camacho, Cesar; Montecino, Martin; van Wijnen, Andre J; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2014-01-15

    The regulatory information for phenotype, proliferation, and growth of normal and tumor cells must be maintained through genome replication in the S phase and cell division during mitosis. Epigenetic mechanisms that include DNA methylation, posttranslational modifications of histones, selective utilization of histone variants, and inheritable RNA molecules play pivotal roles in maintaining cellular identity through mitotic divisions. Recent studies demonstrate that mitotic occupancy of genes, which are determinants of cell fate, growth, and proliferation, by lineage-restricted transcription factors is a key epigenetic mechanism for retention and transmission of cellular expression memory. Evidence is emerging for the presence of distinct transcriptional regulatory microenvironments in mitotic chromosomes in which the genes bookmarked for reactivation postmitotically reside. Importantly, some oncoproteins are present in mitotic microenvironments where they occupy target genes during mitosis and may contribute to perpetuating the transformed phenotype. We discuss emerging regulatory implications of epigenetically bookmarking genes during mitosis for physiologic control as well as for the onset and progression of cancer.

  5. An update on targeted gene repair in mammalian cells: methods and mechanisms

    Directory of Open Access Journals (Sweden)

    Bolund Lars

    2011-02-01

    Full Text Available Abstract Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs, small DNA fragments (SDFs, triplex-forming oligonucleotides (TFOs, adeno-associated virus vectors (AAVs and zinc-finger nucleases (ZFNs. Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research.

  6. Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes.

    Science.gov (United States)

    Collins, R T; Furukawa, T; Tanese, N; Treisman, J E

    1999-01-01

    The yeast SWI/SNF complex and its Drosophila and mammalian homologs are thought to control gene expression by altering chromatin structure, but the mechanism and specificity of this process are not fully understood. The Drosophila osa gene, like yeast SWI1, encodes an AT-rich interaction (ARID) domain protein. We present genetic and biochemical evidence that Osa is a component of the Brahma complex, the Drosophila homolog of SWI/SNF. The ARID domain of Osa binds DNA without sequence specificity in vitro, but it is sufficient to direct transcriptional regulatory domains to specific target genes in vivo. Endogenous Osa appears to promote the activation of some of these genes. We show evidence that some Brahma-containing complexes do not contain Osa and that Osa is not required to localize Brahma to chromatin. These data suggest that Osa modulates the function of the Brahma complex. PMID:10601025

  7. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery

    Science.gov (United States)

    Zhou, Jiangbing; Liu, Jie; Cheng, Christopher J.; Patel, Toral R.; Weller, Caroline E.; Piepmeier, Joseph M.; Jiang, Zhaozhong; Saltzman, W. Mark

    2012-01-01

    Many synthetic polycationic vectors for non-viral gene delivery show high efficiency in vitro, but their usually excessive charge density makes them toxic for in vivo applications. Here we describe the synthesis of a series of high molecular weight terpolymers with low charge density, and show that they exhibit efficient gene delivery, some surpassing the efficiency of the commercial transfection reagents Polyethylenimine and Lipofectamine 2000. The terpolymers were synthesized via enzyme-catalyzed copolymerization of lactone with dialkyl diester and amino diol, and their hydrophobicity adjusted by varying the lactone content and by selecting a lactone comonomer of specific ring size. Targeted delivery of the pro-apoptotic TRAIL gene to tumour xenografts by one of the terpolymers results in significant inhibition of tumour growth, with minimal toxicity both in vitro and in vivo. Our findings suggest that the gene delivery ability of the terpolymers stems from their high molecular weight and increased hydrophobicity, which compensates for their low charge density.

  8. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data.

    Directory of Open Access Journals (Sweden)

    Evi Berchtold

    Full Text Available Several methods predict activity changes of transcription factors (TFs from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score, which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score.

  9. Adeno-associated virus–targeted disruption of the CFTR gene in cloned ferrets

    Science.gov (United States)

    Sun, Xingshen; Yan, Ziying; Yi, Yaling; Li, Ziyi; Lei, Diana; Rogers, Christopher S.; Chen, Juan; Zhang, Yulong; Welsh, Michael J.; Leno, Gregory H.; Engelhardt, John F.

    2008-01-01

    Somatic cell gene targeting combined with nuclear transfer cloning presents tremendous potential for the creation of new, large-animal models of human diseases. Mouse disease models often fail to reproduce human phenotypes, underscoring the need for the generation and study of alternative disease models. Mice deficient for CFTR have been poor models for cystic fibrosis (CF), lacking many aspects of human CF lung disease. In this study, we describe the production of a CFTR gene–deficient model in the domestic ferret using recombinant adeno-associated virus–mediated gene targeting in fibroblasts, followed by nuclear transfer cloning. As part of this approach, we developed a somatic cell rejuvenation protocol using serial nuclear transfer to produce live CFTR-deficient clones from senescent gene-targeted fibroblasts. We transferred 472 reconstructed embryos into 11 recipient jills and obtained 8 healthy male ferret clones heterozygous for a disruption in exon 10 of the CFTR gene. To our knowledge, this study represents the first description of genetically engineered ferrets and describes an approach that may be of substantial utility in modeling not only CF, but also other genetic diseases. PMID:18324338

  10. CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura.

    Science.gov (United States)

    Bi, Hong-Lun; Xu, Jun; Tan, An-Jiang; Huang, Yong-Ping

    2016-06-01

    Custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system provide attractive genome editing tools for insect functional genetics. The targeted gene mutagenesis mediated by the CRISPR/Cas9 system has been achieved in several insect orders including Diptera, Lepidoptera and Coleoptera. However, little success has been reported in agricultural pests due to the lack of genomic information and embryonic microinjection techniques in these insect species. Here we report that the CRISPR/Cas9 system induced efficient gene mutagenesis in an important Lepidopteran pest Spodoptera litura. We targeted the S. litura Abdominal-A (Slabd-A) gene which is an important embryonic development gene and plays a significant role in determining the identities of the abdominal segments of insects. Direct injection of Cas9 messenger RNA and Slabd-A-specific single guide RNA (sgRNA) into S. litura embryos successfully induced the typical abd-A deficient phenotype, which shows anomalous segmentation and ectopic pigmentation during the larval stage. A polymerase chain reaction-based analysis revealed that the Cas9/sgRNA complex effectively induced a targeted mutagenesis in S. litura. These results demonstrate that the CRISPR/Cas9 system is a powerful tool for genome manipulation in Lepidopteran pests such as S. litura. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  11. Searching for novel ATF4 target genes in human hepatoma cells by microarray analysis.

    Science.gov (United States)

    Maruyama, Ryuto; Shimizu, Makoto; Ishijima, Tomoko; Nakai, Yuji; Inoue, Jun; Sato, Ryuichiro

    2016-06-01

    Activating transcription factor 4 (ATF4) is a transcription factor with an important biological activity. ATF4 is induced by various stresses, such as endoplasmic reticulum stress, through the phosphorylation of eukaryotic translation initiation factor 2α. ATF4 is also involved in lipid metabolism. In the present study, we performed a microarray experiment to identify new ATF4 target genes, particularly those involved in lipid metabolism, and identified C12orf39, CSTA, and CALCB as novel ATF4 target genes. An amino acid response element (AARE) as an ATF4-binding site is present in the promoter regions of these genes. In a detailed analysis using luciferase assay, we showed that ATF4 activated C12orf39 promoter activity and that this activation was diminished by deletion or mutation of the AARE sequence in the promoter region. Our results suggest that C12orf39, CSTA, and CALCB are novel ATF4 target genes and that C12orf39 promoter activity is activated by ATF4 through AARE.

  12. A fish-specific transposable element shapes the repertoire of p53 target genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Lucia Micale

    Full Text Available Transposable elements, as major components of most eukaryotic organisms' genomes, define their structural organization and plasticity. They supply host genomes with functional elements, for example, binding sites of the pleiotropic master transcription factor p53 were identified in LINE1, Alu and LTR repeats in the human genome. Similarly, in this report we reveal the role of zebrafish (Danio rerio EnSpmN6_DR non-autonomous DNA transposon in shaping the repertoire of the p53 target genes. The multiple copies of EnSpmN6_DR and their embedded p53 responsive elements drive in several instances p53-dependent transcriptional modulation of the adjacent gene, whose human orthologs were frequently previously annotated as p53 targets. These transposons define predominantly a set of target genes whose human orthologs contribute to neuronal morphogenesis, axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions the orthologs of the EnSpmN6_DR-colonized loci are enriched for genes expressed in the amygdala, the hippocampus and the brain cortex. Our data pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to shape p53-regulated neuronal morphogenesis-related pathways in both a hominid and a teleost fish.

  13. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Ruixin Hao

    Full Text Available Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2 or vehicle from 3 hours to 4 days post fertilization (dpf, harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP. Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database. The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.

  14. Inverse regulation of target genes at the brink of the BMP morphogen activity gradient.

    Science.gov (United States)

    Ziv, Oren; Finkelstein, Rutie; Suissa, Yaron; Dinur, Tama; Deshpande, Girish; Gerlitz, Offer

    2012-12-01

    BMP-dependent patterning in the Drosophila melanogaster wing imaginal disc serves as a paradigm to understand how morphogens specify cell fates. The observed profile of the transcriptional response to the graded signal of BMP relies upon two counter-active gradients of pMad and Brinker (Brk). This patterning model is inadequate to explain the expression of target genes, like vestigial and spalt, in lateral regions of the wing disc where BMP signals decline and Brk levels peak. Here, we show that in contrast to the reciprocal repressor gradient mechanism, where Brk represses BMP targets in medial regions, target expression in lateral regions is downregulated by BMP signalling and activated by Brk. Brk induces lateral expression indirectly, apparently through repression of a negative regulator. Our findings provide a model explaining how the expression of an established BMP target is differentially and inversely regulated along the anterior-posterior axis of the wing disc.

  15. DNA-binding specificities of plant transcription factors and their potential to define target genes.

    Science.gov (United States)

    Franco-Zorrilla, José M; López-Vidriero, Irene; Carrasco, José L; Godoy, Marta; Vera, Pablo; Solano, Roberto

    2014-02-11

    Transcription factors (TFs) regulate gene expression through binding to cis-regulatory specific sequences in the promoters of their target genes. In contrast to the genetic code, the transcriptional regulatory code is far from being deciphered and is determined by sequence specificity of TFs, combinatorial cooperation between TFs and chromatin competence. Here we addressed one of these determinants by characterizing the target sequence specificity of 63 plant TFs representing 25 families, using protein-binding microarrays. Remarkably, almost half of these TFs recognized secondary motifs, which in some cases were completely unrelated to the primary element. Analyses of coregulated genes and transcriptomic data from TFs mutants showed the functional significance of over 80% of all identified sequences and of at least one target sequence per TF. Moreover, combining the target sequence information with coexpression analysis we could predict the function of a TF as activator or repressor through a particular DNA sequence. Our data support the correlation between cis-regulatory elements and the sequence determined in vitro using the protein-binding microarray and provides a framework to explore regulatory networks in plants.

  16. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples.

    Science.gov (United States)

    Scolnick, Jonathan A; Dimon, Michelle; Wang, I-Ching; Huelga, Stephanie C; Amorese, Douglas A

    2015-01-01

    Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET), for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue RNA in both normal tissue and cancer cells.

  17. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples.

    Directory of Open Access Journals (Sweden)

    Jonathan A Scolnick

    Full Text Available Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET, for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE tissue RNA in both normal tissue and cancer cells.

  18. Safety Assessment of Liver-Targeted Hydrodynamic Gene Delivery in Dogs

    Science.gov (United States)

    Kamimura, Kenya; Kanefuji, Tsutomu; Yokoo, Takeshi; Abe, Hiroyuki; Suda, Takeshi; Kobayashi, Yuji; Zhang, Guisheng; Aoyagi, Yutaka; Liu, Dexi

    2014-01-01

    Evidence in support of safety of a gene delivery procedure is essential toward gene therapy. Previous studies using the hydrodynamics-based procedure primarily focus on gene delivery efficiency or gene function analysis in mice. The current study focuses on an assessment of the safety of computer-controlled and liver-targeted hydrodynamic gene delivery in dogs as the first step toward hydrodynamic gene therapy in clinic. We demonstrate that the impacts of the hydrodynamic procedure were limited in the injected region and the influences were transient. Histological examination and the hepatic microcirculation measurement using reflectance spectrophotometry reveal that the liver-specific impact of the procedure involves a transient expansion of the liver sinusoids. No systemic damage or toxicity was observed. Physiological parameters, including electrocardiogram, heart rate, blood pressure, oxygen saturation, and body temperature, remained in normal ranges during and after hydrodynamic injection. Body weight was also examined to assess the long-term effects of the procedure in animals who underwent 3 hydrodynamic injections in 6 weeks with 2-week time interval in between. Serum biochemistry analysis showed a transient increase in liver enzymes and a few cytokines upon injection. These results demonstrate that image-guided, liver-specific hydrodynamic gene delivery is safe. PMID:25251246

  19. Safety assessment of liver-targeted hydrodynamic gene delivery in dogs.

    Directory of Open Access Journals (Sweden)

    Kenya Kamimura

    Full Text Available Evidence in support of safety of a gene delivery procedure is essential toward gene therapy. Previous studies using the hydrodynamics-based procedure primarily focus on gene delivery efficiency or gene function analysis in mice. The current study focuses on an assessment of the safety of computer-controlled and liver-targeted hydrodynamic gene delivery in dogs as the first step toward hydrodynamic gene therapy in clinic. We demonstrate that the impacts of the hydrodynamic procedure were limited in the injected region and the influences were transient. Histological examination and the hepatic microcirculation measurement using reflectance spectrophotometry reveal that the liver-specific impact of the procedure involves a transient expansion of the liver sinusoids. No systemic damage or toxicity was observed. Physiological parameters, including electrocardiogram, heart rate, blood pressure, oxygen saturation, and body temperature, remained in normal ranges during and after hydrodynamic injection. Body weight was also examined to assess the long-term effects of the procedure in animals who underwent 3 hydrodynamic injections in 6 weeks with 2-week time interval in between. Serum biochemistry analysis showed a transient increase in liver enzymes and a few cytokines upon injection. These results demonstrate that image-guided, liver-specific hydrodynamic gene delivery is safe.

  20. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    Directory of Open Access Journals (Sweden)

    Kenta Kobayashi

    2017-08-01

    Full Text Available Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1 with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G and vesicular stomatitis virus glycoprotein (VSV-G enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E, which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease.

  1. Safety assessment of liver-targeted hydrodynamic gene delivery in dogs.

    Science.gov (United States)

    Kamimura, Kenya; Kanefuji, Tsutomu; Yokoo, Takeshi; Abe, Hiroyuki; Suda, Takeshi; Kobayashi, Yuji; Zhang, Guisheng; Aoyagi, Yutaka; Liu, Dexi

    2014-01-01

    Evidence in support of safety of a gene delivery procedure is essential toward gene therapy. Previous studies using the hydrodynamics-based procedure primarily focus on gene delivery efficiency or gene function analysis in mice. The current study focuses on an assessment of the safety of computer-controlled and liver-targeted hydrodynamic gene delivery in dogs as the first step toward hydrodynamic gene therapy in clinic. We demonstrate that the impacts of the hydrodynamic procedure were limited in the injected region and the influences were transient. Histological examination and the hepatic microcirculation measurement using reflectance spectrophotometry reveal that the liver-specific impact of the procedure involves a transient expansion of the liver sinusoids. No systemic damage or toxicity was observed. Physiological parameters, including electrocardiogram, heart rate, blood pressure, oxygen saturation, and body temperature, remained in normal ranges during and after hydrodynamic injection. Body weight was also examined to assess the long-term effects of the procedure in animals who underwent 3 hydrodynamic injections in 6 weeks with 2-week time interval in between. Serum biochemistry analysis showed a transient increase in liver enzymes and a few cytokines upon injection. These results demonstrate that image-guided, liver-specific hydrodynamic gene delivery is safe.

  2. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions.

    Science.gov (United States)

    Kobayashi, Kenta; Inoue, Ken-Ichi; Tanabe, Soshi; Kato, Shigeki; Takada, Masahiko; Kobayashi, Kazuto

    2017-01-01

    Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E-pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson's disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E-pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson's disease.

  3. The alteration of miR-222 and its target genes in nickel-induced tumor.

    Science.gov (United States)

    Zhang, Jing; Zhou, Yang; Ma, Lin; Huang, Shunquan; Wang, Ruijin; Gao, Rongrong; Wu, Youjun; Shi, Hongjun; Zhang, Jun

    2013-05-01

    Nickel is an important kind of metal and a necessary trace element in people's production and livelihood; it is also a well-confirmed human carcinogen. In the past few years, researchers did a large number of studies about the molecular mechanisms of nickel carcinogenesis, and they focused on activation of proto-oncogenes and inactivation of anti-oncogenes caused by gene point mutation, gene deletion, gene amplification, DNA methylation, chromosome condensation, and so on that were induced by nickel. However, the researches on tumorigenic molecular mechanisms regulated by microRNAs (miRNAs) are rare. In this study, we established nickel-induced tumor by injecting Ni3S2 compounds to Wistar Rattus. By establishing a cDNA library of miRNA from rat muscle tumor tissue induced by Ni3S2, we found that the expression of miR-222 was significantly upregulated in tumor tissue compared with the normal tissue. As we expected, the expression levels of target genes of miR-222, CDKN1B and CDKN1C, were downregulated in the nickel-induced tumor. The same alteration of miR-222 and its target genes was also found in malignant 16HBE cells induced with Ni3S2 compounds. We conclude that miR-222 may promote cell proliferation infinitely during nickel-induced tumorigenesis in part by regulating the expression of its target genes CDKN1B and CDKN1C. Our study elucidated a novel molecular mechanism of nickel-induced tumorigenesis.

  4. Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets.

    Science.gov (United States)

    Fernando, Deepani D; Marr, Edward J; Zakrzewski, Martha; Reynolds, Simone L; Burgess, Stewart T G; Fischer, Katja

    2017-06-10

    Scabies is one of the most common and widespread parasitic skin infections globally, affecting a large range of mammals including humans, yet the molecular biology of Sarcoptes scabiei is astonishingly understudied. Research has been hampered primarily due to the difficulty of sampling or culturing these obligatory parasitic mites. A further and major impediment to identify and functionally analyse potential therapeutic targets from the recently emerging molecular databases is the lack of appropriate molecular tools. We performed standard BLAST based searches of the existing S. scabiei genome databases using sequences of genes described to be involved in RNA interference in Drosophila and the mite model organism Tetranychus urticae. Experimenting with the S. scabiei mu-class glutathione S-transferase (SsGST-mu1) as a candidate gene we explored the feasibility of gene knockdown in S. scabiei by double-stranded RNA-interference (dsRNAi). We provide here an analysis of the existing S. scabiei draft genomes, confirming the presence of a double stranded RNA (dsRNA) - mediated silencing machinery. We report for the first time experimental gene silencing by RNA interference (RNAi) in S. scabiei. Non-invasive immersion of S. scabiei in dsRNA encoding an S. scabiei glutathione S-transferase mu-class 1 enzyme (SsGST-mu1) resulted in a 35% reduction in the transcription of the target gene compared to controls. A series of experiments identified the optimal conditions allowing systemic experimental RNAi without detrimental side effects on mite viability. This technique can now be used to address the key questions on the fundamental aspects of mite biology and pathogenesis, and to assess the potential therapeutic benefits of silencing S. scabiei target genes.

  5. HisB as novel selection marker for gene targeting approaches in Aspergillus niger.

    Science.gov (United States)

    Fiedler, Markus R M; Gensheimer, Tarek; Kubisch, Christin; Meyer, Vera

    2017-03-08

    For Aspergillus niger, a broad set of auxotrophic and dominant resistance markers is available. However, only few offer targeted modification of a gene of interest into or at a genomic locus of choice, which hampers functional genomics studies. We thus aimed to extend the available set by generating a histidine auxotrophic strain with a characterized hisB locus for targeted gene integration and deletion in A. niger. A histidine-auxotrophic strain was established via disruption of the A. niger hisB gene by using the counterselectable pyrG marker. After curing, a hisB - , pyrG - strain was obtained, which served as recipient strain for further studies. We show here that both hisB orthologs from A. nidulans and A. niger can be used to reestablish histidine prototrophy in this recipient strain. Whereas the hisB gene from A. nidulans was suitable for efficient gene targeting at different loci in A. niger, the hisB gene from A. niger allowed efficient integration of a Tet-on driven luciferase reporter construct at the endogenous non-functional hisB locus. Subsequent analysis of the luciferase activity revealed that the hisB locus is tight under non-inducing conditions and allows even higher luciferase expression levels compared to the pyrG integration locus. Taken together, we provide here an alternative selection marker for A. niger, hisB, which allows efficient homologous integration rates as well as high expression levels which compare favorably to the well-established pyrG selection marker.

  6. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation.

    Science.gov (United States)

    Hahn, Maria A; Hahn, Torsten; Lee, Dong-Hyun; Esworthy, R Steven; Kim, Byung-Wook; Riggs, Arthur D; Chu, Fong-Fong; Pfeifer, Gerd P

    2008