WorldWideScience

Sample records for dysfunction impairs resolution

  1. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice.

    Directory of Open Access Journals (Sweden)

    Savita Khanna

    2010-03-01

    Full Text Available Chronic inflammation is a characteristic feature of diabetic cutaneous wounds. We sought to delineate novel mechanisms involved in the impairment of resolution of inflammation in diabetic cutaneous wounds. At the wound-site, efficient dead cell clearance (efferocytosis is a pre-requisite for the timely resolution of inflammation and successful healing.Macrophages isolated from wounds of diabetic mice showed significant impairment in efferocytosis. Impaired efferocytosis was associated with significantly higher burden of apoptotic cells in wound tissue as well as higher expression of pro-inflammatory and lower expression of anti-inflammatory cytokines. Observations related to apoptotic cell load at the wound site in mice were validated in the wound tissue of diabetic and non-diabetic patients. Forced Fas ligand driven elevation of apoptotic cell burden at the wound site augmented pro-inflammatory and attenuated anti-inflammatory cytokine response. Furthermore, successful efferocytosis switched wound macrophages from pro-inflammatory to an anti-inflammatory mode.Taken together, this study presents first evidence demonstrating that diabetic wounds suffer from dysfunctional macrophage efferocytosis resulting in increased apoptotic cell burden at the wound site. This burden, in turn, prolongs the inflammatory phase and complicates wound healing.

  2. Proverb comprehension impairments in schizophrenia are related to executive dysfunction.

    Science.gov (United States)

    Thoma, Patrizia; Hennecke, Marie; Mandok, Tobias; Wähner, Alfred; Brüne, Martin; Juckel, Georg; Daum, Irene

    2009-12-30

    The study aimed to investigate the pattern of proverb comprehension impairment and its relationship to proverb familiarity and executive dysfunction in schizophrenia. To assess the specificity of the impairment pattern to schizophrenia, alcohol-dependent patients were included as a psychiatric comparison group, as deficits of executive function and theory of mind as well as dysfunction of the prefrontal cortex, which have been related to proverb comprehension difficulties, are common in both disorders. Twenty-four schizophrenia patients, 20 alcohol-dependent patients and 34 healthy controls were administered a multiple-choice proverb interpretation task incorporating ratings of subjective familiarity and measures of executive function. Schizophrenia patients chose the correct abstract and meaningful interpretations less frequently and instead chose the incorrect concrete (both meaningless and meaningful) proverb interpretations more often than alcohol-dependent patients and healthy controls. Relative to healthy controls, schizophrenia patients also chose more abstract-meaningless response alternatives and were impaired in all executive domains. Impaired divided attention was most consistently associated with proverb interpretation deficits in both patient groups. Taken together, schizophrenia patients showed a specific pattern of proverb comprehension impairments related to executive dysfunction and symptoms. The comparison with the alcohol-dependent subgroup suggests that a more comprehensive and severe impairment of complex higher-order cognitive functions including executive behavioural control and non-literal language comprehension might be associated with frontal dysfunction in schizophrenia as compared to alcohol use disorder.

  3. Impaired NAD+ Metabolism in Neuronal Dysfunction in Critical Conditions

    Directory of Open Access Journals (Sweden)

    A. V Salmina

    2008-01-01

    Full Text Available The present views of the pathogenesis of neuronal dysfunction in critical conditions are analyzed, by taking into account of impairments of cellular NAD+ metabolism, the activity of NAD+-converting enzymes, including ADP-ribosyl cyclase/CD38, the possibilities of developing new neuroprotective strategies. Key words: neuronal dysfunction, ADP-rybosyl cyclase/CD38, NAD+, critical condition.

  4. Parasympathetic Nervous System Dysfunction, as Identified by Pupil Light Reflex, and Its Possible Connection to Hearing Impairment.

    Directory of Open Access Journals (Sweden)

    Yang Wang

    Full Text Available Although the pupil light reflex has been widely used as a clinical diagnostic tool for autonomic nervous system dysfunction, there is no systematic review available to summarize the evidence that the pupil light reflex is a sensitive method to detect parasympathetic dysfunction. Meanwhile, the relationship between parasympathetic functioning and hearing impairment is relatively unknown.To 1 review the evidence for the pupil light reflex being a sensitive method to evaluate parasympathetic dysfunction, 2 review the evidence relating hearing impairment and parasympathetic activity and 3 seek evidence of possible connections between hearing impairment and the pupil light reflex.Literature searches were performed in five electronic databases. All selected articles were categorized into three sections: pupil light reflex and parasympathetic dysfunction, hearing impairment and parasympathetic activity, pupil light reflex and hearing impairment.Thirty-eight articles were included in this review. Among them, 36 articles addressed the pupil light reflex and parasympathetic dysfunction. We summarized the information in these data according to different types of parasympathetic-related diseases. Most of the studies showed a difference on at least one pupil light reflex parameter between patients and healthy controls. Two articles discussed the relationship between hearing impairment and parasympathetic activity. Both studies reported a reduced parasympathetic activity in the hearing impaired groups. The searches identified no results for pupil light reflex and hearing impairment.As the first systematic review of the evidence, our findings suggest that the pupil light reflex is a sensitive tool to assess the presence of parasympathetic dysfunction. Maximum constriction velocity and relative constriction amplitude appear to be the most sensitive parameters. There are only two studies investigating the relationship between parasympathetic activity and hearing

  5. Parasympathetic Nervous System Dysfunction, as Identified by Pupil Light Reflex, and Its Possible Connection to Hearing Impairment.

    Science.gov (United States)

    Wang, Yang; Zekveld, Adriana A; Naylor, Graham; Ohlenforst, Barbara; Jansma, Elise P; Lorens, Artur; Lunner, Thomas; Kramer, Sophia E

    2016-01-01

    Although the pupil light reflex has been widely used as a clinical diagnostic tool for autonomic nervous system dysfunction, there is no systematic review available to summarize the evidence that the pupil light reflex is a sensitive method to detect parasympathetic dysfunction. Meanwhile, the relationship between parasympathetic functioning and hearing impairment is relatively unknown. To 1) review the evidence for the pupil light reflex being a sensitive method to evaluate parasympathetic dysfunction, 2) review the evidence relating hearing impairment and parasympathetic activity and 3) seek evidence of possible connections between hearing impairment and the pupil light reflex. Literature searches were performed in five electronic databases. All selected articles were categorized into three sections: pupil light reflex and parasympathetic dysfunction, hearing impairment and parasympathetic activity, pupil light reflex and hearing impairment. Thirty-eight articles were included in this review. Among them, 36 articles addressed the pupil light reflex and parasympathetic dysfunction. We summarized the information in these data according to different types of parasympathetic-related diseases. Most of the studies showed a difference on at least one pupil light reflex parameter between patients and healthy controls. Two articles discussed the relationship between hearing impairment and parasympathetic activity. Both studies reported a reduced parasympathetic activity in the hearing impaired groups. The searches identified no results for pupil light reflex and hearing impairment. As the first systematic review of the evidence, our findings suggest that the pupil light reflex is a sensitive tool to assess the presence of parasympathetic dysfunction. Maximum constriction velocity and relative constriction amplitude appear to be the most sensitive parameters. There are only two studies investigating the relationship between parasympathetic activity and hearing impairment

  6. Swallowing impairment and pulmonary dysfunction in Parkinson's disease: the silent threats.

    Science.gov (United States)

    Monteiro, Larissa; Souza-Machado, Adelmir; Pinho, Patrícia; Sampaio, Marília; Nóbrega, Ana Caline; Melo, Ailton

    2014-04-15

    Swallowing disorders and respiratory impairment are frequent in Parkinson's disease (PD) patients, and aspiration pneumonia remains the leading cause of death among these subjects. The objective of this study was to investigate whether there is an association between pulmonary impairment and swallowing dysfunction in PD patients. A cross-sectional study with a comparison group was conducted with PD patients. Subjects were submitted to demographic questionnaires and underwent spirometric and videofluorographic assessments. Significance level was considered at 95% (p<0.05). Among 35 PD patients, 40% presented with swallowing complaints. However, 22% of the clinically asymptomatic patients presented airway food penetration when submitted to videofluoroscopy. In 20% of PD patients material entered the airways and there was contact with the vocal folds in 7%. However, there was an efficient cleaning with residue deglutition in almost all patients. No penetration/aspiration was detected among the controls. Respiratory parameters were below the normal predicted values in PD patients when compared to the healthy controls. These data suggest an association between pulmonary dysfunction and swallowing impairment in PD patients; even in patients without swallowing complaints, impaired pulmonary function can be detected. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Both oophorectomy and obesity impaired solely hippocampal-dependent memory via increased hippocampal dysfunction.

    Science.gov (United States)

    Mantor, Duangkamol; Pratchayasakul, Wasana; Minta, Wanitchaya; Sutham, Wissuta; Palee, Siripong; Sripetchwandee, Jirapas; Kerdphoo, Sasiwan; Jaiwongkum, Thidarat; Sriwichaiin, Sirawit; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-04-17

    Our previous study demonstrated that obesity aggravated peripheral insulin resistance and brain dysfunction in the ovariectomized condition. Conversely, the effect of obesity followed by oophorectomy on brain oxidative stress, brain apoptosis, synaptic function and cognitive function, particularly in hippocampal-dependent and hippocampal-independent memory, has not been investigated. Our hypothesis was that oophorectomy aggravated metabolic impairment, brain dysfunction and cognitive impairment in obese rats. Thirty-two female rats were fed with either a normal diet (ND, n = 16) or a high-fat diet (HFD, n = 16) for a total of 20 weeks. At week 13, rats in each group were subdivided into sham and ovariectomized subgroups (n = 8/subgroup). At week 20, all rats were tested for hippocampal-dependent and hippocampal-independent memory by using Morris water maze test (MWM) and Novel objective recognition (NOR) tests, respectively. We found that the obese-insulin resistant condition occurred in sham-HFD-fed rats (HFS), ovariectomized-ND-fed rats (NDO), and ovariectomized-HFD-fed rats (HFO). Increased hippocampal oxidative stress level, increased hippocampal apoptosis, increased hippocampal synaptic dysfunction, decreased hippocampal estrogen level and impaired hippocampal-dependent memory were observed in HFS, NDO, and HFO rats. However, the hippocampal-independent memory, cortical estrogen levels, cortical ROS production, and cortical apoptosis showed no significant difference between groups. These findings suggested that oophorectomy and obesity exclusively impaired hippocampal-dependent memory, possibly via increased hippocampal dysfunction. Nonetheless, oophorectomy did not aggravate these deleterious effects under conditions of obesity. Copyright © 2017. Published by Elsevier Inc.

  8. Autonomic dysfunction and impaired cerebral autoregulation in cirrhosis

    DEFF Research Database (Denmark)

    Frøkjaer, Vibe G; Strauss, Gitte I; Mehlsen, Jesper

    2006-01-01

    Cerebral blood flow autoregulation is lost in patients with severe liver cirrhosis. The cause of this is unknown. We determined whether autonomic dysfunction was related to impaired cerebral autoregulation in patients with cirrhosis. Fourteen patients with liver cirrhosis and 11 healthy volunteers...... were recruited. Autonomic function was assessed in response to deep breathing, head-up tilt and during 24-h Holter monitoring. Cerebral autoregulation was assessed by determining the change in mean cerebral blood flow velocity (MCAVm, transcranial Doppler) during an increase in blood pressure induced...... by norepinephrine infusion (NE). The severity of liver disease was assessed using the Child-Pugh scale (class A, mild; class B, moderate; class C, severe liver dysfunction).NE increased blood pressure similarly in the controls (27 (24-32) mmHg) and patients with the most severe liver cirrhosis (Child-Pugh C, 31 (26...

  9. Statins prevent cognitive impairment after sepsis by reverting neuroinflammation, and microcirculatory/endothelial dysfunction.

    Science.gov (United States)

    Reis, Patricia A; Alexandre, Pedro C B; D'Avila, Joana C; Siqueira, Luciana D; Antunes, Barbara; Estato, Vanessa; Tibiriça, Eduardo V; Verdonk, Franck; Sharshar, Tarek; Chrétien, Fabrice; Castro-Faria-Neto, Hugo C; Bozza, Fernando A

    2017-02-01

    Acute brain dysfunction is a frequent condition in sepsis patients and is associated with increased mortality and long-term neurocognitive consequences. Impaired memory and executive function are common findings in sepsis survivors. Although neuroinflammation and blood-brain barrier dysfunction have been associated with acute brain dysfunction and its consequences, no specific treatments are available that prevent cognitive impairment after sepsis. Experimental sepsis was induced in Swiss Webster mice by intraperitoneal injection of cecal material (5mg/kg, 500μL). Control groups (n=5/group each experiment) received 500μL of saline. Support therapy recover (saline 0.9%, 1mL and imipenem 30mg/kg) were applied (6, 24 and 48h post injection, n=5-10/group, each experiment), together or not with additive orally treatment with statins (atorvastatin/simvastatin 20mg/kg b.w.). Survival rate was monitored at 6, 24 and 48h. In a setting of experiments, animals were euthanized at 6 and 24h after induction for biochemical, immunohistochemistry and intravital analysis. Statins did not prevented mortality in septic mice, however survivors presented lower clinical score. At another setting of experiments, after 15days, mice survivors from fecal supernatant peritoneal sepsis presented cognitive dysfunction for contextual hippocampal and aversive amygdala-dependent memories, which was prevented by atorvastatin/simvastatin treatment. Systemic and brain tissue levels of proinflammatory cytokines/chemokines and activation of microglial were lower in septic mice treated with statins. Brain lipid peroxidation and myeloperoxidase levels were also reduced by statins treatment. Intravital examination of the brain vessels of septic animals revealed decreased functional capillary density and increased rolling and adhesion of leukocytes, and blood flow impairment, which were reversed by treatment with statins. In addition, treatment with statins restored the cholinergic vasodilator response

  10. Impaired activity of adherens junctions contributes to endothelial dilator dysfunction in ageing rat arteries.

    Science.gov (United States)

    Chang, Fumin; Flavahan, Sheila; Flavahan, Nicholas A

    2017-08-01

    Ageing-induced endothelial dysfunction contributes to organ dysfunction and progression of cardiovascular disease. VE-cadherin clustering at adherens junctions promotes protective endothelial functions, including endothelium-dependent dilatation. Ageing increased internalization and degradation of VE-cadherin, resulting in impaired activity of adherens junctions. Inhibition of VE-cadherin clustering at adherens junctions (function-blocking antibody; FBA) reduced endothelial dilatation in young arteries but did not affect the already impaired dilatation in old arteries. After junctional disruption with the FBA, dilatation was similar in young and old arteries. Src tyrosine kinase activity and tyrosine phosphorylation of VE-cadherin were increased in old arteries. Src inhibition increased VE-cadherin at adherens junctions and increased endothelial dilatation in old, but not young, arteries. Src inhibition did not increase dilatation in old arteries treated with the VE-cadherin FBA. Ageing impairs the activity of adherens junctions, which contributes to endothelial dilator dysfunction. Restoring the activity of adherens junctions could be of therapeutic benefit in vascular ageing. Endothelial dilator dysfunction contributes to pathological vascular ageing. Experiments assessed whether altered activity of endothelial adherens junctions (AJs) might contribute to this dysfunction. Aortas and tail arteries were isolated from young (3-4 months) and old (22-24 months) F344 rats. VE-cadherin immunofluorescent staining at endothelial AJs and AJ width were reduced in old compared to young arteries. A 140 kDa VE-cadherin species was present on the cell surface and in TTX-insoluble fractions, consistent with junctional localization. Levels of the 140 kDa VE-cadherin were decreased, whereas levels of a TTX-soluble 115 kDa VE-cadherin species were increased in old compared to young arteries. Acetylcholine caused endothelium-dependent dilatation that was decreased in old

  11. Vestibular Dysfunction in Wernicke’s Encephalopathy: Predominant Impairment of the Horizontal Semicircular Canals

    Directory of Open Access Journals (Sweden)

    Seung-Han Lee

    2018-03-01

    Full Text Available BackgroundWernicke’s encephalopathy (WE, a metabolic disorder due to thiamine deficiency, manifests with various neurological symptoms and signs. It has been known as a cause of vestibular dysfunction. Preliminary reports have proposed predominant involvement of the horizontal semicircular canals (HSCs.ObjectiveTo better characterize the pattern of vestibular impairment in patients with WE using quantitative video head-impulse testing and to review the literature regarding this topic.MethodFrom January 2014 to December 2016, we retrospectively enrolled five cases of WE that received quantitative video-head-impulse testing (vHIT. We retrieved the clinical features from the medical records and reviewed quantitative head-impulse testing (qHIT and caloric irrigation. Based on the gain and the number of corrective saccades, the function (normal vs. impaired of each semicircular canal was rated. In addition, we conducted a MEDLINE and EMBASE search to identify other published cases of WE that had received qHIT. Neuro-otologic and neuro-ophthalmologic findings and vestibular testing results were extracted.ResultsA total of 17 patients (own series = 5; published cases = 12 aged 54.6 ± 11 years were included. Key neurologic findings were ataxia of stance and gait (13/13, 100%, spontaneous nystagmus (7/14, 50%, gaze-evoked nystagmus (GEN (17/17, 100%, positive bedside head-impulse testing for the horizontal canals (16/17, 94%, and memory impairment and mental changes (6/11, 54.5%. Regarding vestibular testing, qHIT (either video based or search-coil based documented selective bilateral horizontal canal dysfunction with normal or minimal vertical canal impairment (14/14, 100%. On caloric irrigation, bilateral horizontal canal paresis was noted in most cases (10/11, 91%.ConclusionIn WE, signs of both peripheral and central vestibular dysfunction (i.e., GEN, ataxia of stance and gait, abnormal head-impulse testing were common. Selective or

  12. Conflict resolution abilities in children with Specific Language Impairment.

    Science.gov (United States)

    Paula, Erica Macêdo de; Befi-Lopes, Debora Maria

    2013-01-01

    To investigate the conflict resolution abilities of children with Specific Language Impairment, and to verify whether the time of speech-language therapy correlates to the performance on the conflict resolution task. Participants included 20 children with Specific Language Impairment (Research Group) and 40 children with normal language development (Control Group), with ages ranging from 7 years to 8 years and 11 months. To assess the conflict resolution abilities, five hypothetical contexts of conflict were presented. The strategies used by the children were classified and scored by the following levels: level 0 (solutions that do not match the other levels), level 1 (physical solutions), level 2 (unilateral solutions), level 3 (cooperative solutions), and level 4 (mutual solutions). Statistical analysis showed group effect for the variable total score. There was a difference between the groups for modal development level, with higher level of modal development observed in the Control Group. There was no correlation between the period of speech-language therapy attendance and the total score. Children with Specific Language Impairment present difficulties in solving problems, in view of the fact that they mainly use physical and unilateral strategies. There was no correlation between the time of speech-language therapy and performance in the task.

  13. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction.

    Science.gov (United States)

    Joseph, Gregory; Soler, Amanda; Hutcheson, Rebecca; Hunter, Ian; Bradford, Chastity; Hutcheson, Brenda; Gotlinger, Katherine H; Jiang, Houli; Falck, John R; Proctor, Spencer; Schwartzman, Michal Laniado; Rocic, Petra

    2017-03-01

    Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO ·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS. NEW & NOTEWORTHY

  14. Why is impaired sexual function distressing to women? The primacy of pleasure in female sexual dysfunction.

    Science.gov (United States)

    Stephenson, Kyle R; Meston, Cindy M

    2015-03-01

    Recent research has highlighted a complex association between female sexual function and subjective distress regarding sexual activity. These findings are difficult to explain given limited knowledge as to the mechanisms through which impaired sexual function causes distress. The current study assessed whether a number of specific consequences of impaired sexual function, including decreased physical pleasure, disruption of sexual activity, and negative partner responses, mediated the association between sexual function and distress. Eighty-seven women in sexually active relationships reporting impairments in sexual function completed validated self-report measures and daily online assessments of sexual experiences. Participants completed the Sexual Satisfaction Scale for Women, the Female Sexual Function Index, and the Measure of Sexual Consequences. Results suggested that decreased physical pleasure and disruption of sexual activity, but not partner responses, statistically mediated the association between sexual function and distress. Sexual consequences represent potential maintaining factors of sexual dysfunction that are highly distressing to women. Results are discussed in the context of theoretical models of sexual dysfunction and related treatments. © 2014 International Society for Sexual Medicine.

  15. Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models.

    Science.gov (United States)

    Biczo, Gyorgy; Vegh, Eszter T; Shalbueva, Natalia; Mareninova, Olga A; Elperin, Jason; Lotshaw, Ethan; Gretler, Sophie; Lugea, Aurelia; Malla, Sudarshan R; Dawson, David; Ruchala, Piotr; Whitelegge, Julian; French, Samuel W; Wen, Li; Husain, Sohail Z; Gorelick, Fred S; Hegyi, Peter; Rakonczay, Zoltan; Gukovsky, Ilya; Gukovskaya, Anna S

    2018-02-01

    Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca 2+ , mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca 2+ overload or through a Ca 2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the

  16. Impaired masturbation-induced erections: a new cardiovascular risk factor for male subjects with sexual dysfunction.

    Science.gov (United States)

    Rastrelli, Giulia; Boddi, Valentina; Corona, Giovanni; Mannucci, Edoardo; Maggi, Mario

    2013-04-01

    Erectile dysfunction (ED) is considered an early surrogate marker of silent, or even overt, cardiovascular diseases (CVD). However, epidemiological studies take into account only sexual intercourse-related erections. Although autoeroticism is a very common practice, data on masturbation-induced erections as a possible predictor of major adverse cardiovascular events (MACE) are lacking. To evaluate the clinical correlates of impaired masturbation-induced erections and to verify the importance of this sexual aspect in predicting MACE. A consecutive series of 4,031 male patients attending the Outpatient Clinic for sexual dysfunction for the first time was retrospectively studied. Among these subjects, 64% reported autoeroticism during the last 3 months, and only this subset was considered in the following analyses. In the longitudinal study, 862 subjects reporting autoeroticism were enrolled. Several clinical, biochemical, and instrumental (Prostaglandin E1 [PGE1 ] test and penile color Doppler ultrasound) parameters were studied. Subjects with an impaired erection during masturbation (46% of those reporting autoeroticism) had more often a positive personal or family history of CVD, a higher risk of reduced intercourse- and sleep-related erections, hypoactive sexual desire and perceived reduced ejaculate volume, and impaired PGE1 test response. Prolactin levels were lower in those having impaired erection during masturbation. In the longitudinal study, unadjusted incidence of MACE was significantly associated with impaired masturbation-induced erections. When dividing the population according to the median age and diagnosis of diabetes, the association between impaired masturbation-induced erections and incidence of MACE was maintained only in the youngest (masturbation-induced erections, can provide further insights on forthcoming MACE in particular in "low risk" subjects. © 2013 International Society for Sexual Medicine.

  17. Dysfunctional Relationship Beliefs in Parent-Late Adolescent Relationship and Conflict Resolution Behaviors

    Science.gov (United States)

    Hamamci, Zeynep

    2007-01-01

    The purpose of this study is to investigate the role of dysfunctional relationships beliefs on both the perceptions of their relationships with the parents and conflict resolution behaviors of late adolescence. The sample was consisted of 372 Turkish university students (248 women and 124 men). Interpersonal Cognitive Distortions Scale,…

  18. Parasympathetic nervous system dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment

    OpenAIRE

    Wang, Yang; Zekveld, Adriana A.; Naylor, Graham; Ohlenforst, Barbara; Jansma, Elise P.; Lorens, Artur; Lunner, Thomas; Kramer, Sophia E.

    2016-01-01

    Context\\ud Although the pupil light reflex has been widely used as a clinical diagnostic tool for autonomic nervous system dysfunction, there is no systematic review available to summarize the evidence that the pupil light reflex is a sensitive method to detect parasympathetic dysfunction. Meanwhile, the relationship between parasympathetic functioning and hearing impairment is relatively unknown.\\ud \\ud Objectives\\ud To 1) review the evidence for the pupil light reflex being a sensitive meth...

  19. Bladder Dysfunction and Vesicoureteral Reflux

    Directory of Open Access Journals (Sweden)

    Ulla Sillén

    2008-01-01

    Full Text Available In this overview the influence of functional bladder disturbances and of its treatment on the resolution of vesicoureteral reflux (VUR in children is discussed. Historically both bladder dysfunction entities, the overactive bladder (OAB and the dysfunctional voiding (DV, have been described in conjunction with VUR. Treatment of the dysfunction was also considered to influence spontaneous resolution in a positive way. During the last decades, however, papers have been published which could not support these results. Regarding the OAB, a prospective study with treatment of the bladder overactivity with anticholinergics, did not influence spontaneous resolution rate in children with a dysfunction including also the voiding phase, DV and DES (dysfunctional elimination syndrome, most studies indicate a negative influence on the resolution rate of VUR in children, both before and after the age for bladder control, both with and without treatment. However, a couple of uncontrolled studies indicate that there is a high short-term resolution rate after treatment with flow biofeedback. It should be emphasized that the voiding phase dysfunctions (DV and DES are more severe than the genuine filling phase dysfunction (OAB, with an increased frequency of UTI and renal damage in the former groups. To be able to answer the question if treatment of bladder dysfunction influence the resolution rate of VUR in children, randomized controlled studies must be performed.

  20. Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: a comparative neuropsychological study of amnestic mild cognitive impairment.

    Science.gov (United States)

    Machts, Judith; Bittner, Verena; Kasper, Elisabeth; Schuster, Christina; Prudlo, Johannes; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Heinze, Hans-Jochen; Vielhaber, Stefan; Schoenfeld, Mircea A; Bittner, Daniel M

    2014-06-30

    Recent work suggests that ALS and frontotemporal dementia can occur together and share at least in part the same underlying pathophysiology. However, it is unclear at present whether memory deficits in ALS stem from a temporal lobe dysfunction, or are rather driven by frontal executive dysfunction. In this study we sought to investigate the nature of memory deficits by analyzing the neuropsychological performance of 40 ALS patients in comparison to 39 amnestic mild cognitive impairment (aMCI) patients and 40 healthy controls (HC). The neuropsychological battery tested for impairment in executive functions, as well as memory and visuo-spatial skills, the results of which were compared across study groups. In addition, we calculated composite scores for memory (learning, recall, recognition) and executive functions (verbal fluency, cognitive flexibility, working memory). We hypothesized that the nature of memory impairment in ALS will be different from those exhibited by aMCI patients. Patient groups exhibited significant differences in their type of memory deficit, with the ALS group showing impairment only in recognition, whereas aMCI patients showed short and delayed recall performance deficits as well as reduced short-term capacity. Regression analysis revealed a significant impact of executive function on memory performance exclusively for the ALS group, accounting for one fifth of their memory performance. Interestingly, merging all sub scores into a single memory and an executive function score obscured these differences. The presented results indicate that the interpretation of neuropsychological scores needs to take the distinct cognitive profiles in ALS and aMCI into consideration. Importantly, the observed memory deficits in ALS were distinctly different from those observed in aMCI and can be explained only to some extent in the context of comorbid (coexisting) executive dysfunction. These findings highlight the qualitative differences in temporal lobe

  1. Autophagic dysfunction in a lysosomal storage disorder due to impaired proteolysis.

    Science.gov (United States)

    Elrick, Matthew J; Lieberman, Andrew P

    2013-02-01

    Alterations in macroautophagy (hereafter referred to as "autophagy") are a common feature of lysosomal storage disorders, and have been hypothesized to play a major role in the pathogenesis of these diseases. We have recently reported multiple defects in autophagy contributing to the lysosomal storage disorder Niemann-Pick type C (NPC). These include increased formation of autophagosomes, slowed turnover of autophagosomes secondary to impaired lysosomal proteolysis, and delivery of stored lipids to the lysosome via autophagy. The study summarized here describes novel methods for the interrogation of individual stages of the autophagic pathway, and suggests mechanisms by which lipid storage may result in broader lysosomal dysfunction.

  2. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes.

    Science.gov (United States)

    Chapouly, Candice; Yao, Qinyu; Vandierdonck, Soizic; Larrieu-Lahargue, Frederic; Mariani, John N; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2016-02-01

    Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function. By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy. The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  3. Impaired Resolution of Inflammation in Alzheimer’s Disease: A Review

    Directory of Open Access Journals (Sweden)

    Robert A. Whittington

    2017-11-01

    Full Text Available Alzheimer’s disease (AD remains the leading cause of dementia worldwide, and over the last several decades, the role of inflammation in the pathogenesis of this neurodegenerative disorder has been increasingly elucidated. The initiation of the acute inflammatory response is counterbalanced by an active process termed resolution. This process is designed to restore homeostasis and promote tissue healing by the activation of neutrophilic apoptosis, promotion of neutrophil clearance by macrophages, and increasing anti-inflammatory cytokine levels, while concurrently leading to a diminution in pro-inflammatory mediators. The switch from the initiation to the resolution phase of inflammation is initially characterized by increased production of arachidonic acid-derived pro-resolving lipoxins and decreases in pro-inflammatory prostaglandin and leukotriene levels, subsequently followed by increases in specialized pro-resolving lipid mediators derived from omega-3 fatty acids (ω-3 FAs. There is mounting evidence that in AD, the resolution of inflammation is impaired, resulting in chronic inflammation and the exacerbation of the AD-related pathology. In this review, we examine preclinical and clinical evidence supporting the hypothesis that AD is a neurodegenerative disorder where the impairment or failure of resolution contributes to the disease process. Moreover, we review the literature supporting the potential therapeutic role of ω-3 FAs and specialized pro-resolving lipid mediators in the management of the disease. Lastly, we highlight areas that could strengthen the association of failed resolution to AD and should, therefore, be the focus of future scientific investigations in this research field.

  4. Framework for Understanding Balance Dysfunction in Parkinson’s Disease

    Science.gov (United States)

    Schoneburg, Bernadette; Mancini, Martina; Horak, Fay; Nutt, John G.

    2013-01-01

    People with Parkinson’s disease (PD) suffer from progressive impairment in their mobility. Locomotor and balance dysfunction that impairs mobility in PD is an important cause of physical and psychosocial disability. The recognition and evaluation of balance dysfunction by the clinician is an essential component of managing PD. In this review, we describe a framework for understanding balance dysfunction in PD to help clinicians recognize patients that are at risk for falling and impaired mobility. PMID:23925954

  5. A novel paradigm links mitochondrial dysfunction with muscle stem cell impairment in sepsis.

    Science.gov (United States)

    Chatre, Laurent; Verdonk, Franck; Rocheteau, Pierre; Crochemore, Clément; Chrétien, Fabrice; Ricchetti, Miria

    2017-10-01

    Sepsis is an acute systemic inflammatory response of the body to microbial infection and a life threatening condition associated with multiple organ failure. Survivors may display long-term disability with muscle weakness that remains poorly understood. Recent data suggest that long-term myopathy in sepsis survivors is due to failure of skeletal muscle stem cells (satellite cells) to regenerate the muscle. Satellite cells impairment in the acute phase of sepsis is linked to unusual mitochondrial dysfunctions, characterized by a dramatic reduction of the mitochondrial mass and hyperactivity of residual organelles. Survivors maintain the impairment of satellite cells, including alterations of the mitochondrial DNA (mtDNA), in the long-term. This condition can be rescued by treatment with mesenchymal stem cells (MSCs) that restore mtDNA alterations and mitochondrial function in satellite cells, and in fine their regenerative potential. Injection of MSCs in turn increases the force of isolated muscle fibers and of the whole animal, and improves the survival rate. These effects occur in the context of reduced inflammation markers that also raised during sepsis. Targeting muscle stem cells mitochondria, in a context of reduced inflammation, may represent a valuable strategy to reduce morbidity and long-term impairment of the muscle upon sepsis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, Christophe A.; Koepfli, Pascal; Namdar, Mehdi; Siegrist, Patrick T.; Kaufmann, Philipp A. [University Hospital, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Luscher, Thomas F. [University Hospital, Division of Cardiology, Cardiovascular Center, Zurich (Switzerland); Camici, Paolo G. [Hammersmith Hospital, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2005-01-01

    Tetrahydrobiopterin (BH{sub 4}) is an essential co-factor for the synthesis of nitric oxide (NO), and BH{sub 4} deficiency may cause impaired NO synthase (NOS) activity. We studied whether BH{sub 4} deficiency contributes to the coronary microcirculatory dysfunction observed in patients with hypercholesterolaemia. Myocardial blood flow (MBF; ml min{sup -1} g{sup -1}) was measured at rest, during adenosine-induced (140 {mu}g kg{sup -1} min{sup -1} over 7 min) hyperaemia (mainly non-endothelium dependent) and immediately after supine bicycle exercise (endothelium-dependent) stress in ten healthy volunteers and in nine hypercholesterolaemic subjects using {sup 15}O-labelled water and positron emission tomography. Measurements were repeated 60 min later, after intravenous infusion of BH{sub 4} (10 mg kg{sup -1} body weight over 30 min). Adenosine-induced hyperaemic MBF is considered to represent (near) maximal flow. Flow reserve utilisation was calculated as the ratio of exercise-induced to adenosine-induced hyperaemic MBF and expressed as percent to indicate how much of the maximal (adenosine-induced) hyperaemia can be achieved by bicycle stress. BH{sub 4} increased exercise-induced hyperaemia in controls (2.96{+-}0.58 vs 3.41{+-}0.73 ml min{sup -1} g{sup -1}, p<0.05) and hypercholesterolaemic subjects (2.47{+-}0.78 vs 2.70{+-}0.72 ml min{sup -1} g{sup -1}, p<0.01) but had no influence on MBF at rest or during adenosine-induced hyperaemia in controls (4.52{+-}1.10 vs 4.85{+-}0.45 ml min{sup -1} g{sup -1}, p=NS) or hypercholesterolaemic subjects (4.86{+-}1.18 vs 4.53{+-}0.93 ml min{sup -1} g{sup -1}, p=NS). Flow reserve utilisation remained unchanged in controls (70{+-}17% vs 71{+-}19%, p=NS) but increased significantly in hypercholesterolaemic subjects (53{+-}15% vs 66{+-}14%, p<0.05). BH{sub 4} restores flow reserve utilisation of the coronary microcirculation in hypercholesterolaemic subjects, suggesting that BH{sub 4} deficiency may contribute to coronary

  7. Burden of Sexual Dysfunction.

    Science.gov (United States)

    Balon, Richard

    2017-01-02

    Similar to the burden of other diseases, the burden of sexual dysfunction has not been systematically studied. However, there is growing evidence of various burdens (e.g., economic, symptomatic, humanistic) among patients suffering from sexual dysfunctions. The burden of sexual dysfunction has been studied a bit more often in men, namely the burden of erectile dysfunction (ED), premature ejaculation (PE) and testosterone deficiency syndrome (TDS). Erectile dysfunction is frequently associated with chronic conditions such as cardiovascular disease, diabetes, and depression. These conditions could go undiagnosed, and ED could be a marker of those diseases. The only available report from the United Kingdom estimated the total economic burden of ED at £53 million annually in terms of direct costs and lost productivity. The burden of PE includes significant psychological distress: anxiety, depression, lack of sexual confidence, poor self-esteem, impaired quality of life, and interpersonal difficulties. Some suggest that increase in female sexual dysfunction is associated with partner's PE, in addition to significant interpersonal difficulties. The burden of TDS includes depression, sexual dysfunction, mild cognitive impairment, and osteoporosis. One UK estimate of the economic burden of female sexual dysfunctions demonstrated that the average cost per patient was higher than the per annum cost of ED. There are no data on burden of paraphilic disorders. The burden of sexual dysfunctions is underappreciated and not well studied, yet it is significant for both the patients and the society.

  8. Endothelial progenitor cells dysfunction and impaired tissue reparation: The missed link in diabetes mellitus development.

    Science.gov (United States)

    Berezin, Alexander E

    Diabetes mellitus (DM) is considered a leading cause of premature cardiovascular (CV) mortality and morbidity in general population and in individuals with known CV disease. Recent animal and clinical studies have shown that reduced number and weak function of endothelial progenitor cells (EPCs) may not only indicate to higher CV risk, but contribute to the impaired heart and vessels reparation in patients with DM. Moreover, EPCs having a protective impact on the vasculature may mediate the functioning of other organs and systems. Therefore, EPCs dysfunction is probably promising target for DM treatment strategy, while the role of restoring of EPCs number and functionality in CV risk diminish and reduce of DM-related complications is not fully clear. The aim of the review is summary of knowledge regarding EPCs dysfunction in DM patients. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  9. Protein energy malnutrition associates with different types of hearing impairments in toddlers: Anemia increases cochlear dysfunction.

    Science.gov (United States)

    Kamel, Terez Boshra; Deraz, Tharwat Ezzat; Elkabarity, Rasha H; Ahmed, Rasha K

    2016-06-01

    This work aimed to highlight a challenging asymptomatic problem which is early detection of hearing impairment in toddlers with protein energy malnutrition (PEM) as a neuro-cognitive effect of PEM on developing brain in relation to hemoglobin level. 100 toddlers, aged 6-24 months, fifty with moderate/severe PEM and fifty healthy children, were included in study. Both TEOAEs and ABR testing were used to assess auditory function. Study reported an association between malnutrition and hearing impairment, 26% of cases had conductive deafness secondary to otitis media with effusion using tympanometry; 84.6% showed type B and 15.4% type C which may suggest developing or resolving otitis media. Their ABR showed 46% mild and 53% moderate impairment. 32% of PEM cases had sensory neural hearing loss and with type (A) tympanometry. Those were assessed using ABR; 58% had mild, 34% moderate and 8% profound impairment. 10% of PEM cases had mixed hearing loss with 50% type B and 50% type C tympanometry and their ABR showed moderate to profound impairment. TEOAEs latencies at different frequencies correlate negatively with hemoglobin level. Toddlers with moderate/severe PEM had hearing impairments of different types and degrees. Neuro-physiological methods could be early and safe detectors of auditory disorders especially in high-risk toddlers. Anemia increases risk for auditory dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Science.gov (United States)

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  11. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment.Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed.In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro.EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  12. Cognitive dysfunction in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Joana eGuimarães

    2012-05-01

    Full Text Available In Multiple Sclerosis (MS prevalence studies of community and clinical samples, indicate that 45–60% of patients are cognitively impaired. These cognitive dysfunctions have been traditionally described as heterogeneous, but more recent studies suggest that there is a specific pattern of MS-related cognitive dysfunctions. With the advent of disease-modifying medications for MS and emphasis on early intervention and treatment, detection of cognitive impairment at its earliest stage becomes particularly important. In this review the authors address: the cognitive domains most commonly impaired in MS (memory, attention, executive functions, speed of information processing and visual spatial abilities; the physiopathological mechanism implied in MS cognitive dysfunction and correlated brain MRI features; the importance of neuropsychological assessment of MS patients in different stages of the disease and the influence of its course on cognitive performance; the most used tests and batteries for neuropsychological assessment; therapeutic strategies to improve cognitive abilities.

  13. Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: a comparative neuropsychological study of amnestic mild cognitive impairment

    OpenAIRE

    Machts, Judith; Bittner, Verena; Kasper, Elisabeth; Schuster, Christina; Prudlo, Johannes; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Heinze, Hans-Jochen; Vielhaber, Stefan; Schoenfeld, Mircea A; Bittner, Daniel M

    2014-01-01

    Background Recent work suggests that ALS and frontotemporal dementia can occur together and share at least in part the same underlying pathophysiology. However, it is unclear at present whether memory deficits in ALS stem from a temporal lobe dysfunction, or are rather driven by frontal executive dysfunction. In this study we sought to investigate the nature of memory deficits by analyzing the neuropsychological performance of 40 ALS patients in comparison to 39 amnestic mild cognitive impair...

  14. Mangifera indica Fruit Extract Improves Memory Impairment, Cholinergic Dysfunction, and Oxidative Stress Damage in Animal Model of Mild Cognitive Impairment

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-Mee, Wipawee; Ingkaninan, Kornkanok; Wittaya-Areekul, Sakchai

    2014-01-01

    To date, the effective preventive paradigm against mild cognitive impairment (MCI) is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180–200 g, were orally given the extract at doses of 12.5, 50, and 200 mg·kg−1 BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv). At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg·kg−1 BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism. PMID:24672632

  15. Mangifera indica Fruit Extract Improves Memory Impairment, Cholinergic Dysfunction, and Oxidative Stress Damage in Animal Model of Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2014-01-01

    Full Text Available To date, the effective preventive paradigm against mild cognitive impairment (MCI is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180–200 g, were orally given the extract at doses of 12.5, 50, and 200 mg·kg−1 BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv. At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg·kg−1 BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism.

  16. Toll-like receptor 4 (TLR4) impairs nitric oxide contributing to Angiotensin II-induced cavernosal dysfunction.

    Science.gov (United States)

    Nunes, Kenia P; Bomfim, Gisele F; Toque, Haroldo A; Szasz, Theodora; Clinton Webb, R

    2017-12-15

    Angiotensin II (AngII), a corpus cavernosum (CC) constrictor peptide, modulates Toll like receptor (TLR) expression, a key element of the innate immune system, contributing to impaired vascular function in pathological conditions. However, it is unknown whether TLR4 is involved in AngII-induced erectile dysfunction. In this study, we investigated whether TLR4 plays a role in cavernosal dysfunction caused by AngII upregulation. Cavernosal smooth muscle cells (CSMC) from C57/BL6 mice were treated with AngII (0.1μM) or bacterial LPS (50ng/ml) for 12-24h and TLR4 expression was assessed. Mice were infused with AngII (90ng/min, 28days) and treated with anti-TLR4 antibody (0.1mg/daily, i.p.) for the last 14days of the treatment. CC tissue was used for functional studies and for Western blotting. Nitric Oxide Synthase (NOS) activity was measured by conversion of [ 3 H]-l-arginine to [ 3 H]-l-citrulline, systemic TNF-α levels by ELISA, and reactive oxygen species (ROS) by immunofluorescence. We report upregulation of TLR4 in CSMC following AngII or LPS stimulation. In AngII-infused mice, chronic treatment with anti-TLR4 antibody (28±2.1%) attenuates adrenergic CC contraction, which also ameliorates nitrergic (68.90±0.21 vs. 51.07±0.63, 8Hz, AngII-infused mice treated vs. non-treated). Decreased endothelial NOS expression, reduced NOS activity, and augmented levels of TNF-α, and ROS were found following AngII-infusion. These alterations were prevented, or at least decreased by anti-TLR4 antibody treatment. Inhibition of TLR4 ameliorates AngII-impaired cavernosal relaxation, decreases TNF-α levels, and restores NO bioavailability, demonstrating that TLR4 partly mediates AngII-induced cavernosal dysfunction. Copyright © 2017. Published by Elsevier Inc.

  17. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    Science.gov (United States)

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  18. Direct comparison of high‐temporal‐resolution CINE MRI with Doppler ultrasound for assessment of diastolic dysfunction in mice

    Science.gov (United States)

    Price, Anthony N.; Jackson, Laurence H.; Taylor, Valerie; David, Anna L.; Lythgoe, Mark F.; Stuckey, Daniel J.

    2017-01-01

    Diastolic dysfunction is a sensitive early indicator of heart failure and can provide additional data to conventional measures of systolic function. Transmitral Doppler ultrasound, which measures the one‐dimensional flow of blood through the mitral valve, is currently the preferred method for the measurement of diastolic function, but the measurement of the left ventricular volume changes using high‐temporal‐resolution cinematic magnetic resonance imaging (CINE MRI) is an alternative approach which is emerging as a potentially more robust and user‐independent technique. Here, we investigated the performance of high‐temporal‐resolution CINE MRI and compared it with ultrasound for the detection of diastolic dysfunction in a mouse model of myocardial infarction. An in‐house, high‐temporal‐resolution, retrospectively gated CINE sequence was developed with a temporal resolution of 1 ms. Diastolic function in mice was assessed using a custom‐made, open‐source reconstruction package. Early (E) and late (A) left ventricular filling phases were easily identifiable, and these measurements were compared directly with high‐frequency, pulsed‐wave, Doppler ultrasound measurements of mitral valve inflow. A repeatability study established that high‐temporal‐resolution CINE MRI and Doppler ultrasound showed comparable accuracy when measuring E/A in normal control mice. However, when applied in a mouse model of myocardial infarction, high‐temporal‐resolution CINE MRI indicated diastolic heart failure (E/A = 0.94 ± 0.11), whereas ultrasound falsely detected normal cardiac function (E/A = 1.21 ± 0.11). The addition of high‐temporal‐resolution CINE MRI to preclinical imaging studies enhances the library of sequences available to cardiac researchers and potentially identifies diastolic heart failure early in disease progression. PMID:28643891

  19. Etiology and Management of Sexual Dysfunction

    Directory of Open Access Journals (Sweden)

    Narendra Kumar Muthugaduru Shivarudrappa

    2009-09-01

    Full Text Available Sexual dysfunction is the impairment or disruption of any of the three phases of normal sexual functioning, including loss of libido, impairment of physiological arousal and loss, delay or alteration of orgasm. Each one of these can be affected by an orchestra of factors like senility, medical and surgical illnesses, medications and drugs of abuse. Non-pharmacological therapy is the main stay in the treatment of sexual dysfunction and drugs are used as adjuncts for a quicker and better result. Management in many of the cases depends on the primary cause. Here is a review of the major etiological factors of sexual dysfunction and its management

  20. Esophageal dysfunction in different stages of Parkinson's disease.

    Science.gov (United States)

    Suttrup, I; Suttrup, J; Suntrup-Krueger, S; Siemer, M-L; Bauer, J; Hamacher, C; Oelenberg, S; Domagk, D; Dziewas, R; Warnecke, T

    2017-01-01

    Dysphagia is a clinically relevant symptom in patients with Parkinson's disease (PD) leading to pronounced reduction in quality of life and other severe complications. Parkinson's disease-related dysphagia may affect the oral and pharyngeal, as well as the esophageal phase of swallowing. To examine the nature and extend of esophageal dysphagia in different stages of PD and their relation to oropharyngeal dysfunction, we examined 65 PD patients (mean age 66.3±9.7 years, mean disease duration 7.9±5.8 years, mean Hoehn & Yahr [H&Y] stage 2.89±0.91) and divided into three groups (early [H&Y I+II; n=21], intermediate [H&Y III; n=25], and advanced stadium [H&Y IV+V; n=19]), using esophageal high-resolution manometry (HRM) to detect esophageal motor disorders. Oropharyngeal impairment was assessed using fiberoptic endoscopic evaluation of swallowing. Major esophageal motor disorders were detected in nearly one third of the PD patients. Minor impairment of the esophageal body was present in 95% of participants and throughout all disease stages with pathological findings especially in peristalsis and intrabolus pressure (IBP). The IBP was found to significantly increase in the advanced stadium. Although dysfunction of the upper and lower esophageal sphincters was observed in individual patients, alterations in these esophageal segments revealed no statistical significance compared with normative data. No clear association was found between the occurrence of oropharyngeal dysphagia and esophageal impairment. Esophageal body impairment in PD is a frequent phenomenon during all disease stages, which possibly reflects α-synucleinopathy in the enteric nervous system. © 2016 John Wiley & Sons Ltd.

  1. Perceptual visual dysfunction, physical impairment and quality of life in Bangladeshi children with cerebral palsy.

    Science.gov (United States)

    Mitry, D; Williams, C; Northstone, K; Akter, A; Jewel, J; Khan, N; Muhit, M; Gilbert, C E; Bowman, R

    2016-09-01

    Cerebral palsy (CP) is the most common cause of motor disability in children and is often accompanied by sensory and/or cognitive impairment. The aim of this study was to characterise visual acuity impairment, perceptual visual dysfunction (PVD) and physical disability in a community-based sample of Bangladeshi children with CP and to assess the impact of these factors on the quality of life of the children. A key informant study was used to recruit children with CP from Sirajganj district. Gross Motor Function Classification System (GMFCS) levels and visual impairment were assessed by a physiotherapist and an optometrist, respectively. Assessments of visual perception were performed and standardised questionnaires were administered to each child's main carer to elicit indicators of PVD and parent-reported health-related quality of life. A generalised linear regression analysis was conducted to assess the determinants of the quality of life scores. 180 children were recruited. The median age was 8 years (IQR: 6-11 years); 112 (62%) were male; 57 (32%) had visual acuity impairment and 95 (53%) had some parent-reported PVD. In analyses adjusted for age, sex, GMFCS and acuity impairment, visual attention (pvisual search (p=0.020). PVD is an important contributor in reducing quality of life in children with CP, independent of motor disability and acuity impairment. Better characterisation of PVD is important to help design interventions for affected children, which may improve their quality of life. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. [Perinatal outcome and cardiac dysfunction in preterm growth-restricted neonates in relation to placental impairment severity].

    Science.gov (United States)

    Candel Pau, Júlia; Castillo Salinas, Félix; Perapoch López, Josep; Carrascosa Lezcano, Antonio; Sánchez García, Olga; Llurba Olivé, Elisa

    2016-10-01

    Intrauterine growth restriction (IUGR) and prematurity have been associated with increased perinatal morbidity and mortality and also with cardiovascular foetal programming. However, there are few studies on the impact of placenta-related IUGR on perinatal outcomes and cardiovascular biomarkers in pre-term infants. To determine differences in neonatal morbidity, mortality and cord blood biomarkers of cardiovascular dysfunction between pre-term placenta-related IUGR and non-IUGR new-borns, and to analyse their relationship with the severity of IUGR according to foetal Doppler evaluation. Prospective cohort study: pre-term infants with placenta-related IUGR and matched pre-term infants without IUGR. A Doppler scan was performed, and placenta-IUGR was classified according to severity. Comparative analysis of perinatal outcomes, neonatal morbidity and mortality, and cord blood levels of biomarkers of cardiovascular dysfunction was performed. IUGR new-borns present lower weight, length, head circumference, and Apgar score at birth, as well as increased neonatal and cardiovascular dysfunction biomarker levels, compared with pre-term new-borns without IUGR. These differences increase with the severity of IUGR determined by prenatal umbilical artery Doppler scan. Placenta-related-IUGR pre-term infants, irrespective of gestational age, present increased neonatal morbidity and mortality that is significantly proportional to the severity of IUGR. Placental impairment and severity also determine levels of cardiovascular dysfunction biomarkers at birth. Copyright © 2015 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Direct comparison of high-temporal-resolution CINE MRI with Doppler ultrasound for assessment of diastolic dysfunction in mice.

    Science.gov (United States)

    Roberts, Thomas A; Price, Anthony N; Jackson, Laurence H; Taylor, Valerie; David, Anna L; Lythgoe, Mark F; Stuckey, Daniel J

    2017-10-01

    Diastolic dysfunction is a sensitive early indicator of heart failure and can provide additional data to conventional measures of systolic function. Transmitral Doppler ultrasound, which measures the one-dimensional flow of blood through the mitral valve, is currently the preferred method for the measurement of diastolic function, but the measurement of the left ventricular volume changes using high-temporal-resolution cinematic magnetic resonance imaging (CINE MRI) is an alternative approach which is emerging as a potentially more robust and user-independent technique. Here, we investigated the performance of high-temporal-resolution CINE MRI and compared it with ultrasound for the detection of diastolic dysfunction in a mouse model of myocardial infarction. An in-house, high-temporal-resolution, retrospectively gated CINE sequence was developed with a temporal resolution of 1 ms. Diastolic function in mice was assessed using a custom-made, open-source reconstruction package. Early (E) and late (A) left ventricular filling phases were easily identifiable, and these measurements were compared directly with high-frequency, pulsed-wave, Doppler ultrasound measurements of mitral valve inflow. A repeatability study established that high-temporal-resolution CINE MRI and Doppler ultrasound showed comparable accuracy when measuring E/A in normal control mice. However, when applied in a mouse model of myocardial infarction, high-temporal-resolution CINE MRI indicated diastolic heart failure (E/A = 0.94 ± 0.11), whereas ultrasound falsely detected normal cardiac function (E/A = 1.21 ± 0.11). The addition of high-temporal-resolution CINE MRI to preclinical imaging studies enhances the library of sequences available to cardiac researchers and potentially identifies diastolic heart failure early in disease progression. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  4. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    Directory of Open Access Journals (Sweden)

    Jackson George R

    2011-06-01

    Full Text Available Abstract Background The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate. Results Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I, and activated caspase-9, which is related to the apoptotic mitochondrial pathway. Conclusions This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers.

  5. A Clinical Research Study of Cognitive Dysfunction and Affective Impairment after Isolated Brainstem Stroke

    Science.gov (United States)

    Fu, Xiujuan; Lu, Zuneng; Wang, Yan; Huang, Lifang; Wang, Xi; Zhang, Hong; Xiao, Zheman

    2017-01-01

    Although the function of the cerebellum in neurocognition has been well-documented, the similar role of the brainstem has yet to be fully elucidated. This clinical research study aimed to combine data relating to neuropsychological assessments and P300 to explore cognitive dysfunction and affective impairment following brainstem stroke. Thirty-four patients with isolated brainstem stroke and twenty-six healthy controls were recruited; for each patient, we collated data pertaining to the P300, Addenbrooke's Cognitive Examination III (ACE-III), Montreal Cognitive Assessment Chinese version (MoCA), trail-making test (TMT), Symbol Digit Modalities Test (SDMT), Wechsler Adult Intelligence Scale-Digit Spans (DS), Stroop test, Self Rating Depression Scale (SDS), and Self Rating Anxiety Scale (SAS). Significance was analyzed using an independent T-test or the Mann-Whitney U-test. Correlation was analyzed using Pearson's correlation analysis or Spearman's correlation analysis. Collectively, data revealed that brainstem stroke caused mild cognitive impairment (MCI), and that visuospatial, attention, linguistic, and emotional disturbances may occur after isolated brainstem stroke. Cognitive decline was linked to P300 latency, ACE-III, and MoCA; P300 latency was correlated with ACE-III. Patients with right brainstem lesions were more likely to suffer memory decline. The present study provides initial data relating to the role of the brainstem in neurocognition, and will be useful for further understanding of vascular cognitive and affective impairment. PMID:29311895

  6. A Clinical Research Study of Cognitive Dysfunction and Affective Impairment after Isolated Brainstem Stroke

    Directory of Open Access Journals (Sweden)

    Xiujuan Fu

    2017-12-01

    Full Text Available Although the function of the cerebellum in neurocognition has been well-documented, the similar role of the brainstem has yet to be fully elucidated. This clinical research study aimed to combine data relating to neuropsychological assessments and P300 to explore cognitive dysfunction and affective impairment following brainstem stroke. Thirty-four patients with isolated brainstem stroke and twenty-six healthy controls were recruited; for each patient, we collated data pertaining to the P300, Addenbrooke's Cognitive Examination III (ACE-III, Montreal Cognitive Assessment Chinese version (MoCA, trail-making test (TMT, Symbol Digit Modalities Test (SDMT, Wechsler Adult Intelligence Scale-Digit Spans (DS, Stroop test, Self Rating Depression Scale (SDS, and Self Rating Anxiety Scale (SAS. Significance was analyzed using an independent T-test or the Mann-Whitney U-test. Correlation was analyzed using Pearson's correlation analysis or Spearman's correlation analysis. Collectively, data revealed that brainstem stroke caused mild cognitive impairment (MCI, and that visuospatial, attention, linguistic, and emotional disturbances may occur after isolated brainstem stroke. Cognitive decline was linked to P300 latency, ACE-III, and MoCA; P300 latency was correlated with ACE-III. Patients with right brainstem lesions were more likely to suffer memory decline. The present study provides initial data relating to the role of the brainstem in neurocognition, and will be useful for further understanding of vascular cognitive and affective impairment.

  7. Understanding taste dysfunction in patients with cancer.

    Science.gov (United States)

    McLaughlin, Laura; Mahon, Suzanne M

    2012-04-01

    Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.

  8. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  9. Motor dysfunction of complex regional pain syndrome is related to impaired central processing of proprioceptive information.

    Science.gov (United States)

    Bank, Paulina J M; Peper, C Lieke E; Marinus, Johan; Beek, Peter J; van Hilten, Jacobus J

    2013-11-01

    Our understanding of proprioceptive deficits in complex regional pain syndrome (CRPS) and its potential contribution to impaired motor function is still limited. To gain more insight into these issues, we evaluated accuracy and precision of joint position sense over a range of flexion-extension angles of the wrist of the affected and unaffected sides in 25 chronic CRPS patients and in 50 healthy controls. The results revealed proprioceptive impairment at both the patients' affected and unaffected sides, characterized predominantly by overestimation of wrist extension angles. Precision of the position estimates was more prominently reduced at the affected side. Importantly, group differences in proprioceptive performance were observed not only for tests at identical percentages of each individual's range of wrist motion but also when controls were tested at wrist angles that corresponded to those of the patient's affected side. More severe motor impairment of the affected side was associated with poorer proprioceptive performance. Based on additional sensory tests, variations in proprioceptive performance over the range of wrist angles, and comparisons between active and passive displacements, the disturbances of proprioceptive performance most likely resulted from altered processing of afferent (and not efferent) information and its subsequent interpretation in the context of a distorted "body schema." The present results point at a significant role for impaired central processing of proprioceptive information in the motor dysfunction of CRPS and suggest that therapeutic strategies aimed at identification of proprioceptive impairments and their restoration may promote the recovery of motor function in CRPS patients. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  10. Acute renal dysfunction in liver diseases

    OpenAIRE

    Betrosian, Alex P; Agarwal, Banwari; Douzinas, Emmanuel E

    2007-01-01

    Renal dysfunction is common in liver diseases, either as part of multiorgan involvement in acute illness or secondary to advanced liver disease. The presence of renal impairment in both groups is a poor prognostic indicator. Renal failure is often multifactorial and can present as pre-renal or intrinsic renal dysfunction. Obstructive or post renal dysfunction only rarely complicates liver disease. Hepatorenal syndrome (HRS) is a unique form of renal failure associated with advanced liver dise...

  11. Screening for cognitive dysfunction in unipolar depression

    DEFF Research Database (Denmark)

    Ott, Caroline Vintergaard; Bjertrup, Anne Juul; Jensen, Johan Høy

    2016-01-01

    BACKGROUND: Persistent cognitive dysfunction in unipolar depression (UD) contributes to socio-occupational impairment, but there are no feasible methods to screen for and monitor cognitive dysfunction in this patient group. The present study investigated the validity of two new instruments...... to screen for cognitive dysfunction in UD, and their associations with socio-occupational capacity. METHOD: Participants (n=53) with UD in partial or full remission and healthy control persons (n=103) were assessed with two new screening instruments, the Danish translations of the Screen for Cognitive...... Impairment in Psychiatry (SCIP-D) and Cognitive Complaints in Bipolar Disorder Rating Assessment (COBRA) and with established neuropsychological and self-assessment measures. Depression symptoms and socio-occupational function were rated with the Hamilton Depression Rating Scale and Functional Assessment...

  12. Low-level neural auditory discrimination dysfunctions in specific language impairment—A review on mismatch negativity findings

    Directory of Open Access Journals (Sweden)

    Teija Kujala

    2017-12-01

    Full Text Available In specific language impairment (SLI, there is a delay in the child’s oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Keywords: Specific language impairment, Auditory processing, Mismatch negativity (MMN

  13. Preservice Teacher Education about Drug or Alcohol-Impaired Dysfunctional Families.

    Science.gov (United States)

    Burke, Robert W.

    2003-01-01

    This article provides an overview of family systems theory, with a particular focus on the roles adapted by children in dysfunctional families. In addition, analyses of narratives about dysfunctional families, written by 125 preservice teachers, provide implications for new directions in teacher education. (Contains references.) (Author/CR)

  14. Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in central nervous system: the potential roles played by microglia

    Directory of Open Access Journals (Sweden)

    Yang Q

    2013-08-01

    Full Text Available Qingchan Yang,1,* Yan Wang,2,* Jing Feng,2 Jie Cao,2 Baoyuan Chen2 1Graduate School of Tianjin Medical University, 2Respiratory Department, Tianjin Medical University General Hospital, Tianjin, People's Republic of China *These authors contributed equally to this work Abstract: Obstructive sleep apnea (OSA is a common condition characterized by repetitive episodes of complete (apnea or partial (hypopnea obstruction of the upper airway during sleep, resulting in oxygen desaturation and arousal from sleep. Intermittent hypoxia (IH resulting from OSA may cause structural neuron damage and dysfunction in the central nervous system (CNS. Clinically, it manifests as neurocognitive and behavioral deficits with oxidative stress and inflammatory impairment as its pathophysiological basis, which are mediated by microglia at the cellular level. Microglia are dominant proinflammatory cells in the CNS. They induce CNS oxidative stress and inflammation, mainly through mitochondria, reduced nicotinamide adenine dinucleotide phosphate oxidase, and the release of excitatory toxic neurotransmitters. The balance between neurotoxic versus protective and anti- versus proinflammatory microglial factors might determine the final roles of microglia after IH exposure from OSA. Microglia inflammatory impairments will continue and cascade persistently upon activation, ultimately resulting in clinically significant neuron damage and dysfunction in the CNS. In this review article, we summarize the mechanisms of structural neuron damage in the CNS and its concomitant dysfunction due to IH from OSA, and the potential roles played by microglia in this process. Keywords: intermittent hypoxia, obstructive sleep apnea, microglia, inflammation, apoptosis

  15. [Social dysfunction in schizotypy].

    Science.gov (United States)

    de Wachter, O; De La Asuncion, J; Sabbe, B; Morrens, M

    2016-01-01

    Schizotypy is a personality organisation that is closely related to schizotypal personality disorder and schizophrenia and is characterised by deficits in social functioning. Although the dimensions of social dysfunction have not yet been fully explored certain aspects of social dysfunction are promising predictive markers for schizophrenia. To describe schizotypy and its influence on social functioning. We reviewed the literature systematically using the online databases PubMed and PsycINFO. The disorder known as schizotypy lies at the basis of schizotypal personality disorder. Both disorders are characterised by an increased risk for schizophrenia. The social dysfunctioning seen in schizotypy corresponds to the social dysfunction seen in schizophrenia. Impairments in social cognition are causal factors of this social dysfunction. Both the negative and the positive dimension of schizotypy influence social cognition. More focused, objective and interactive research to the various aspects of social functioning in schizotypy is needed in order to discover potential premorbid markers for schizophrenia.

  16. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia.

    Science.gov (United States)

    Lerman, Oren Z; Galiano, Robert D; Armour, Mary; Levine, Jamie P; Gurtner, Geoffrey C

    2003-01-01

    Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients.

  17. Post-stroke cognitive impairments

    Directory of Open Access Journals (Sweden)

    Elena Anatolyevna Katunina

    2013-01-01

    Full Text Available Post-stroke cognitive impairments are common effects of stroke. Vascular cognitive impairments are characterized by the heterogeneity of the neuropsychological profile in relation to the site and pattern of stroke. Their common trait is the presence of dysregulation secondary to frontal dysfunction. The treatment of vascular cognitive impairments should be multimodality and aimed at stimulating neuroplasticity processes, restoring neurotransmitter imbalance, and preventing recurrent vascular episodes.

  18. Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction.

    Science.gov (United States)

    van Zutphen, Tim; Ciapaite, Jolita; Bloks, Vincent W; Ackereley, Cameron; Gerding, Albert; Jurdzinski, Angelika; de Moraes, Roberta Allgayer; Zhang, Ling; Wolters, Justina C; Bischoff, Rainer; Wanders, Ronald J; Houten, Sander M; Bronte-Tinkew, Dana; Shatseva, Tatiana; Lewis, Gary F; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M; Jonker, Johan W; Kim, Peter K; Bandsma, Robert H J

    2016-12-01

    Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. Peroxisomes and mitochondria play key roles in various hepatic metabolic functions including lipid metabolism and energy production. To investigate the involvement of these organelles in the mechanisms underlying malnutrition-induced hepatic dysfunction we developed a rat model of malnutrition. Weanling rats were placed on a low protein or control diet (5% or 20% of calories from protein, respectively) for four weeks. Peroxisomal and mitochondrial structural features were characterized using immunofluorescence and electron microscopy. Mitochondrial function was assessed using high-resolution respirometry. A novel targeted quantitative proteomics method was applied to analyze 47 mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle and fatty acid β-oxidation pathways. Low protein diet-fed rats developed hypoalbuminemia and hepatic steatosis, consistent with the human phenotype. Hepatic peroxisome content was decreased and metabolomic analysis indicated peroxisomal dysfunction. This was followed by changes in mitochondrial ultrastructure and increased mitochondrial content. Mitochondrial function was impaired due to multiple defects affecting respiratory chain complex I and IV, pyruvate uptake and several β-oxidation enzymes, leading to strongly reduced hepatic ATP levels. Fenofibrate supplementation restored hepatic peroxisome abundance and increased mitochondrial β-oxidation capacity, resulting in reduced steatosis and normalization of ATP and plasma albumin levels. Malnutrition leads to severe impairments in hepatic peroxisomal and mitochondrial function, and hepatic metabolic dysfunction. We discuss the potential future implications of our findings for the clinical management of malnourished children. Severe malnutrition in children is associated with metabolic disturbances

  19. Diagnosis of hearing impairment by high resolution CT scanning of inner ear anomalies

    International Nuclear Information System (INIS)

    Murata, Kiyotaka; Isono, Michio; Ohta, Fumihiko

    1988-01-01

    High resolution CT scanning of the temporal bone in our clinic has provided a more detailed radiological classification of inner ear anomalies than before. The statistical analysis of inner ear malformations based on the theory of quantification II has produced discriminant equations for the measurable diagnosis of hearing impairment and development of the inner ear. This analysis may make it possible to diagnose total and partial deafness on ipsi- and contralateral sides. (author)

  20. [Cognitive dysfunction in schizophrenic psychoses. Drug and psychological treatment choices].

    Science.gov (United States)

    Sachs, G; Katschnig, H

    2001-03-01

    Primarily from the perspective of psychopharmacology, schizophrenic symptomatology has recently been dichotomized into "plus" and "minus" symptoms, although the role of cognitive dysfunctions has been regarded as particularly important for the diagnosis since the time of Eugen Bleuler. Many studies show that schizophrenic patients suffer consistently from cognitive dysfunction. Among these, are impairments of attention and memory functions as well as executive functions such as planning and problem solving. These impairments are stable or progressive and often continue into the remission phase of schizophrenia and impair both social integration as well as occupational performance. In this overview, research results on cognitive dysfunction in patients with schizophrenic illnesses and their relation to psychosocial disabilities are described first. The therapeutic value and possible clinical-practice implications of atypical anti-psychotics and various cognitive therapy methods are then presented. Methodological weaknesses and open questions, both pharmacological and with regard to cognitive interventions, are discussed.

  1. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    Science.gov (United States)

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Allicin protects against cisplatin-induced vestibular dysfunction by inhibiting the apoptotic pathway.

    Science.gov (United States)

    Wu, Xianmin; Cai, Jing; Li, Xiaofei; Li, He; Li, Jianfeng; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-06-15

    Cisplatin is an anticancer drug that causes the impairment of inner ear function as side effects, including hearing loss and balance dysfunction. The purpose of this study was to investigate the effects of allicin against cisplatin-induced vestibular dysfunction in mice and to make clear the mechanism underlying the protective effects of allicin on oto-vestibulotoxicity. Mice intraperitoneally injected with cisplatin exhibited vestibular dysfunction in swimming test, which agreed with impairment in vestibule. However, these impairments were significantly prevented by pre-treatment with allicin. Allicin markedly reduced cisplatin-activated expression of cleaved-caspase-3 in hair cells and vascular layer cells of utricule, saccule and ampulla, but also decreased AIF nuclear translocation of hair cells in utricule, saccule and ampulla. These results showed that allicin played an effective role in protecting vestibular dysfunction induced by cisplatin via inhibiting caspase-dependent and caspase-independent apoptotic pathways. Therefore, allicin may be useful in preventing oto-vestibulotoxicity mediated by cisplatin. Copyright © 2017. Published by Elsevier B.V.

  3. Neuroanatomical correlates of impaired decision-making and facial emotion recognition in early Parkinson's disease.

    Science.gov (United States)

    Ibarretxe-Bilbao, Naroa; Junque, Carme; Tolosa, Eduardo; Marti, Maria-Jose; Valldeoriola, Francesc; Bargallo, Nuria; Zarei, Mojtaba

    2009-09-01

    Decision-making and recognition of emotions are often impaired in patients with Parkinson's disease (PD). The orbitofrontal cortex (OFC) and the amygdala are critical structures subserving these functions. This study was designed to test whether there are any structural changes in these areas that might explain the impairment of decision-making and recognition of facial emotions in early PD. We used the Iowa Gambling Task (IGT) and the Ekman 60 faces test which are sensitive to the integrity of OFC and amygdala dysfunctions in 24 early PD patients and 24 controls. High-resolution structural magnetic resonance images (MRI) were also obtained. Group analysis using voxel-based morphometry (VBM) showed significant and corrected (P decision-making and recognition of facial emotions occurs at the early stages of PD, (ii) these neuropsychological deficits are accompanied by degeneration of OFC and amygdala, and (iii) bilateral OFC reductions are associated with impaired recognition of emotions, and GM volume loss in left lateral OFC is related to decision-making impairment in PD.

  4. Autonomic dysfunction and impaired cerebral autoregulation in cirrhosis

    DEFF Research Database (Denmark)

    Frøkjaer, Vibe G; Strauss, Gitte I; Mehlsen, Jesper

    2006-01-01

    .0+/-2.0 bpm) compared to the controls (21.7+/-2.2 bpm, p=0.001, Tukey' test). Systolic blood pressure fell during head-up tilt only in patients with severe cirrhosis. Our results imply that cerebral autoregulation was impaired in the most severe cases of liver cirrhosis, and that those with impaired cerebral...

  5. Type 2 diabetes mellitus and exercise impairment.

    Science.gov (United States)

    Reusch, Jane E B; Bridenstine, Mark; Regensteiner, Judith G

    2013-03-01

    Limitations in physical fitness, a consistent finding in individuals with both type I and type 2 diabetes mellitus, correlate strongly with cardiovascular and all-cause mortality. These limitations may significantly contribute to the persistent excess cardiovascular mortality affecting this group. Exercise impairments in VO2 peak and VO2 kinetics manifest early on in diabetes, even with good glycemic control and in the absence of clinically apparent complications. Subclinical cardiac dysfunction is often present but does not fully explain the observed defect in exercise capacity in persons with diabetes. In part, the cardiac limitations are secondary to decreased perfusion with exercise challenge. This is a reversible defect. Similarly, in the skeletal muscle, impairments in nutritive blood flow correlate with slowed (or inefficient) exercise kinetics and decreased exercise capacity. Several correlations highlight the likelihood of endothelial-specific impairments as mediators of exercise dysfunction in diabetes, including insulin resistance, endothelial dysfunction, decreased myocardial perfusion, slowed tissue hemoglobin oxygen saturation, and impairment in mitochondrial function. Both exercise training and therapies targeted at improving insulin sensitivity and endothelial function improve physical fitness in subjects with type 2 diabetes. Optimization of exercise functions in people with diabetes has implications for diabetes prevention and reductions in mortality risk. Understanding the molecular details of endothelial dysfunction in diabetes may provide specific therapeutic targets for the remediation of this defect. Rat models to test this hypothesis are under study.

  6. Medical therapy and smell dysfunction

    NARCIS (Netherlands)

    Hellings, P. W.; Rombaux, P.

    2009-01-01

    Olfactory dysfunction is deemed to be a significant contributor to poor quality of life in different nasal inflammatory conditions like common cold, allergic rhinitis, and acute and chronic rhinosinusitis with and without nasal polyps (NP). The mechanism underlying olfactory impairment in

  7. Cognitive impairment in Chinese neuromyelitis optica

    NARCIS (Netherlands)

    Zhang, N.; Li, Y.J.; Fu, Y.; Shao, J.H.; Luo, L.L.; Yang, L.; Shi, F.D.; Liu, Y.

    2015-01-01

    Background: Cognitive dysfunction is frequently seen in neuromyelitis optica (NMO). However, the features and influencing factors of cognitive impairment of Chinese NMO patients are unclear. Objective: To investigate the patterns of cognitive impairment in Chinese NMO patients, and correlate the

  8. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with

  9. Peripheral insulin resistance rather than beta cell dysfunction accounts for geographical differences in impaired fasting blood glucose among sub-Saharan African individuals : findings from the RODAM study

    NARCIS (Netherlands)

    Meeks, Karlijn A C; Stronks, Karien; Adeyemo, Adebowale; Addo, Juliet; Bahendeka, Silver; Beune, Erik; Owusu-Dabo, Ellis; Danquah, Ina; Galbete, Cecilia; Henneman, Peter; Klipstein-Grobusch, Kerstin; Mockenhaupt, Frank P; Osei, Kwame; Schulze, Matthias B; Spranger, Joachim; Smeeth, Liam; Agyemang, Charles

    2017-01-01

    AIMS/HYPOTHESIS: The aim of this study was to assess the extent to which insulin resistance and beta cell dysfunction account for differences in impaired fasting blood glucose (IFBG) levels in sub-Saharan African individuals living in different locations in Europe and Africa. We also aimed to

  10. Peripheral insulin resistance rather than beta cell dysfunction accounts for geographical differences in impaired fasting blood glucose among sub-Saharan African individuals: findings from the RODAM study

    NARCIS (Netherlands)

    Meeks, Karlijn A. C.; Stronks, Karien; Adeyemo, Adebowale; Addo, Juliet; Bahendeka, Silver; Beune, Erik; Owusu-Dabo, Ellis; Danquah, Ina; Galbete, Cecilia; Henneman, Peter; Klipstein-Grobusch, Kerstin; Mockenhaupt, Frank P.; Osei, Kwame; Schulze, Matthias B.; Spranger, Joachim; Smeeth, Liam; Agyemang, Charles

    2017-01-01

    The aim of this study was to assess the extent to which insulin resistance and beta cell dysfunction account for differences in impaired fasting blood glucose (IFBG) levels in sub-Saharan African individuals living in different locations in Europe and Africa. We also aimed to identify determinants

  11. [Minimal emotional dysfunction and first impression formation in personality disorders].

    Science.gov (United States)

    Linden, M; Vilain, M

    2011-01-01

    "Minimal cerebral dysfunctions" are isolated impairments of basic mental functions, which are elements of complex functions like speech. The best described are cognitive dysfunctions such as reading and writing problems, dyscalculia, attention deficits, but also motor dysfunctions such as problems with articulation, hyperactivity or impulsivity. Personality disorders can be characterized by isolated emotional dysfunctions in relation to emotional adequacy, intensity and responsivity. For example, paranoid personality disorders can be characterized by continuous and inadequate distrust, as a disorder of emotional adequacy. Schizoid personality disorders can be characterized by low expressive emotionality, as a disorder of effect intensity, or dissocial personality disorders can be characterized by emotional non-responsivity. Minimal emotional dysfunctions cause interactional misunderstandings because of the psychology of "first impression formation". Studies have shown that in 100 ms persons build up complex and lasting emotional judgements about other persons. Therefore, minimal emotional dysfunctions result in interactional problems and adjustment disorders and in corresponding cognitive schemata.From the concept of minimal emotional dysfunctions specific psychotherapeutic interventions in respect to the patient-therapist relationship, the diagnostic process, the clarification of emotions and reality testing, and especially an understanding of personality disorders as impairment and "selection, optimization, and compensation" as a way of coping can be derived.

  12. Dysfunction of Rapid Neural Adaptation in Dyslexia.

    Science.gov (United States)

    Perrachione, Tyler K; Del Tufo, Stephanie N; Winter, Rebecca; Murtagh, Jack; Cyr, Abigail; Chang, Patricia; Halverson, Kelly; Ghosh, Satrajit S; Christodoulou, Joanna A; Gabrieli, John D E

    2016-12-21

    Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Impaired smooth-pursuit in Parkinson's disease: normal cue-information memory, but dysfunction of extra-retinal mechanisms for pursuit preparation and execution.

    Science.gov (United States)

    Fukushima, Kikuro; Ito, Norie; Barnes, Graham R; Onishi, Sachiyo; Kobayashi, Nobuyoshi; Takei, Hidetoshi; Olley, Peter M; Chiba, Susumu; Inoue, Kiyoharu; Warabi, Tateo

    2015-03-01

    While retinal image motion is the primary input for smooth-pursuit, its efficiency depends on cognitive processes including prediction. Reports are conflicting on impaired prediction during pursuit in Parkinson's disease. By separating two major components of prediction (image motion direction memory and movement preparation) using a memory-based pursuit task, and by comparing tracking eye movements with those during a simple ramp-pursuit task that did not require visual memory, we examined smooth-pursuit in 25 patients with Parkinson's disease and compared the results with 14 age-matched controls. In the memory-based pursuit task, cue 1 indicated visual motion direction, whereas cue 2 instructed the subjects to prepare to pursue or not to pursue. Based on the cue-information memory, subjects were asked to pursue the correct spot from two oppositely moving spots or not to pursue. In 24/25 patients, the cue-information memory was normal, but movement preparation and execution were impaired. Specifically, unlike controls, most of the patients (18/24 = 75%) lacked initial pursuit during the memory task and started tracking the correct spot by saccades. Conversely, during simple ramp-pursuit, most patients (83%) exhibited initial pursuit. Popping-out of the correct spot motion during memory-based pursuit was ineffective for enhancing initial pursuit. The results were similar irrespective of levodopa/dopamine agonist medication. Our results indicate that the extra-retinal mechanisms of most patients are dysfunctional in initiating memory-based (not simple ramp) pursuit. A dysfunctional pursuit loop between frontal eye fields (FEF) and basal ganglia may contribute to the impairment of extra-retinal mechanisms, resulting in deficient pursuit commands from the FEF to brainstem. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes...... in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  15. The Influence of Cochlear Mechanical Dysfunction, Temporal Processing Deficits, and Age on the Intelligibility of Audible Speech in Noise for Hearing-Impaired Listeners

    Directory of Open Access Journals (Sweden)

    Peter T. Johannesen

    2016-05-01

    Full Text Available The aim of this study was to assess the relative importance of cochlear mechanical dysfunction, temporal processing deficits, and age on the ability of hearing-impaired listeners to understand speech in noisy backgrounds. Sixty-eight listeners took part in the study. They were provided with linear, frequency-specific amplification to compensate for their audiometric losses, and intelligibility was assessed for speech-shaped noise (SSN and a time-reversed two-talker masker (R2TM. Behavioral estimates of cochlear gain loss and residual compression were available from a previous study and were used as indicators of cochlear mechanical dysfunction. Temporal processing abilities were assessed using frequency modulation detection thresholds. Age, audiometric thresholds, and the difference between audiometric threshold and cochlear gain loss were also included in the analyses. Stepwise multiple linear regression models were used to assess the relative importance of the various factors for intelligibility. Results showed that (a cochlear gain loss was unrelated to intelligibility, (b residual cochlear compression was related to intelligibility in SSN but not in a R2TM, (c temporal processing was strongly related to intelligibility in a R2TM and much less so in SSN, and (d age per se impaired intelligibility. In summary, all factors affected intelligibility, but their relative importance varied across maskers.

  16. Bipolar Disorder and Cognitive Dysfunction: A Complex Link.

    Science.gov (United States)

    Cipriani, Gabriele; Danti, Sabrina; Carlesi, Cecilia; Cammisuli, Davide Maria; Di Fiorino, Mario

    2017-10-01

    The aim of this article was to describe the current evidence regarding phenomenon of cognitive functioning and dementia in bipolar disorder (BD). Cochrane Library and PubMed searches were conducted for relevant articles, chapters, and books published before 2016. Search terms used included "bipolar disorder," "cognitive dysfunction," and "dementia." At the end of the selection process, 159 studies were included in our qualitative synthesis. As result, cognitive impairments in BD have been previously considered as infrequent and limited to the affective episodes. Nowadays, there is evidence of stable and lasting cognitive dysfunctions in all phases of BD, including remission phase, particularly in the following domains: attention, memory, and executive functions. The cause of cognitive impairment in BD raises the question if it subtends a neurodevelopmental or a neurodegenerative process. Impaired cognitive functioning associated with BD may contribute significantly to functional disability, in addition to the distorted affective component usually emphasized.

  17. Neurological soft signs are associated with attentional dysfunction in children with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Pitzianti, Mariabernarda; D'Agati, Elisa; Casarelli, Livia; Pontis, Marco; Kaunzinger, Ivo; Lange, Klaus W; Tucha, Oliver; Curatolo, Paolo; Pasini, Augusto

    2016-11-01

    Inattention is one of the core symptoms of Attention Deficit Hyperactivity Disorder (ADHD). Most of patients with ADHD show motor impairment, consisting in the persistence of neurological soft signs (NSS). Our aim was to evaluate attentional and motor functioning in an ADHD sample and healthy children (HC) and possible link between attentional dysfunction and motor impairment in ADHD. Twenty-seven drug-naive patients with ADHD and 23 HC were tested with a test battery, measuring different aspects of attention. Motor evaluation has provided three primary variables: overflow movements (OM), dysrhythmia and total speed of timed activities. Compared to HC, patients were impaired in a considerable number of attentional processes and showed a greater number of NSS. Significant correlations between disturbances of attention and motor abnormalities were observed in ADHD group. Our findings suggest that attentional processes could be involved in the pathophysiology of the NSS and add scientific evidence to the predictive value of NSS as indicators of the severity of functional impairment in ADHD. Given the marked improvement or complete resolution of NSS following treatment with methylphenidate, we suggest that evaluation of NSS is useful to monitor the effectiveness of pharmacological treatment with MPH in ADHD.

  18. Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Nomoto Masanori

    2012-02-01

    Full Text Available Abstract Background Retinoid signaling pathways mediated by retinoic acid receptor (RAR/retinoid × receptor (RXR-mediated transcription play critical roles in hippocampal synaptic plasticity. Furthermore, recent studies have shown that treatment with retinoic acid alleviates age-related deficits in hippocampal long-term potentiation (LTP and memory performance and, furthermore, memory deficits in a transgenic mouse model of Alzheimer's disease. However, the roles of the RAR/RXR signaling pathway in learning and memory at the behavioral level have still not been well characterized in the adult brain. We here show essential roles for RAR/RXR in hippocampus-dependent learning and memory. In the current study, we generated transgenic mice in which the expression of dominant-negative RAR (dnRAR could be induced in the mature brain using a tetracycline-dependent transcription factor and examined the effects of RAR/RXR loss. Results The expression of dnRAR in the forebrain down-regulated the expression of RARβ, a target gene of RAR/RXR, indicating that dnRAR mice exhibit dysfunction of the RAR/RXR signaling pathway. Similar with previous findings, dnRAR mice displayed impaired LTP and AMPA-mediated synaptic transmission in the hippocampus. More importantly, these mutant mice displayed impaired hippocampus-dependent social recognition and spatial memory. However, these deficits of LTP and memory performance were rescued by stronger conditioning stimulation and spaced training, respectively. Finally, we found that pharmacological blockade of RARα in the hippocampus impairs social recognition memory. Conclusions From these observations, we concluded that the RAR/RXR signaling pathway greatly contributes to learning and memory, and LTP in the hippocampus in the adult brain.

  19. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses.

    Science.gov (United States)

    Chu, Shenghui; Gu, Junfei; Feng, Liang; Liu, Jiping; Zhang, Minghua; Jia, Xiaobin; Liu, Min; Yao, Danian

    2014-04-01

    Neuroinflammatory responses play a crucial role in the pathogenesis of Alzheimer's disease (AD). Ginsenoside Rg5 (Rg5), an abundant natural compound in Panax ginseng, has been found to be beneficial in treating AD. In the present study, we demonstrated that Rg5 improved cognitive dysfunction and attenuated neuroinflammatory responses in streptozotocin (STZ)-induced memory impaired rats. Cognitive deficits were ameliorated with Rg5 (5, 10 and 20mg/kg) treatment in a dose-dependent manner together with decreased levels of inflammatory cytokines TNF-α and IL-1β (Pred and immunohistochemistry staining results showed that Rg5 alleviated Aβ deposition but enhanced the expressions of insulin-like growth factors 1 (IGF-1) and brain derived neurophic factor (BDNF) in the hippocampus and cerebral cortex (Pmemory impairments in rats could be improved by Rg5, which was associated with attenuating neuroinflammatory responses. Our findings suggested that Rg5 could be a beneficial agent for the treatment of AD. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury.

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Hellyer, Peter J; Jolly, Amy E; Patel, Maneesh C; Cole, James H; Leech, Robert; Sharp, David J

    2018-01-01

    Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of

  1. [Deficits in medical counseling in olfactory dysfunction].

    Science.gov (United States)

    Haxel, B R; Nisius, A; Fruth, K; Mann, W J; Muttray, A

    2012-05-01

    Olfactory dysfunctions are common with a prevalence of up to 20% in the population. An impaired sense of smell can lead to specific dangers, therefore, counseling and warning of hazardous situations to raise patient awareness is an important medical function. In this study 105 patients presenting to the University of Mainz Medical Centre with dysosmia were evaluated using a questionnaire. For quantification of the olfactory dysfunction a standardized olfactory test (Sniffin' Sticks) was used. Of the patients 46% were hyposmic and 40% were functionally anosmic. The median duration of the olfactory impairment was 10 months and the main causes of dysosmia were upper respiratory tract infections and idiopathic disorders. More than 90% of the patients consulted an otorhinolaryngologist and 60% a general practitioner before presenting to the University of Mainz Medical Center. More than two thirds of the patients conducted a professional activity, 95% of patients reported that they had not received any medical counseling and 6% of the subjects were forced to discontinue their profession because of olfactory dysfunction. In patients with olfactory dysfunctions appropriate diagnostics, including olfactometry should be performed. Furthermore, correct medical counseling concerning necessary additional arrangements (e.g. installation of smoke or gas detectors, precautions while cooking or for hygiene) has to be performed. For patients in a profession an analysis of the hazards at work is crucial.

  2. Temporal lobe dysfunction in childhood autism: a PET study

    International Nuclear Information System (INIS)

    Boddaert, N.; Poline, J.B.; Brunelle, F.; Zilbovicius, M.; Boddaert, N.; Brunelle, F.; Chabane, N.; Barthelemy, C.; Zilbovicius, M.; Bourgeois, M.; Samson, Y.

    2002-01-01

    Childhood autism is a severe developmental disorder that impairs the acquisition of some of the most important skills in human life. Progress in understanding the neural basis of childhood autism requires clear and reliable data indicating specific neuro-anatomical or neuro-physiological abnormalities. The purpose of the present study was to research localized brain dysfunction in autistic children using functional brain imaging. Regional cerebral blood flow (rCBF) was measured with positron emission tomography (PET) in 21 primary autistic children and 10 age-matched non autistic children. A statistical parametric analysis of rCBF images revealed significant bilateral temporal hypoperfusion in the associative auditory cortex (superior temporal gyrus) and in the multimodal cortex (superior temporal sulcus) in the autistic group (p<0.001). In addition, temporal hypoperfusion was detected individually in 77% of autistic children. These findings provide robust evidence of well localized functional abnormalities in autistic children located in the superior temporal lobe. Such localized abnormalities were not detected with the low resolution PET camera (14-22). This study suggests that high resolution PET camera combined with statistical parametric mapping is useful to understand developmental disorders. (authors)

  3. Treatment of Cognitive Impairment in Multiple Sclerosis

    OpenAIRE

    Pierson, Susan H.; Griffith, Nathan

    2006-01-01

    Cognitive impairment in multiple sclerosis is an increasingly recognized entity. This article reviews the cognitive impairment of multiple sclerosis, its prevalence, its relationship to different types of multiple sclerosis, and its contribution to long-term functional prognosis. The discussion also focuses on the key elements of cognitive dysfunction in multiple sclerosis which distinguish it from other forms of cognitive impairment. Therapeutic interventions potentially effective for the co...

  4. Procalcitonin Impairs Liver Cell Viability and Function In Vitro: A Potential New Mechanism of Liver Dysfunction and Failure during Sepsis?

    Directory of Open Access Journals (Sweden)

    Martin Sauer

    2017-01-01

    Full Text Available Purpose. Liver dysfunction and failure are severe complications of sepsis and result in poor outcome and increased mortality. The underlying pathologic mechanisms of hepatocyte dysfunction and necrosis during sepsis are only incompletely understood. Here, we investigated whether procalcitonin, a biomarker of sepsis, modulates liver cell function and viability. Materials and Methods. Employing a previously characterized and patented biosensor system evaluating hepatocyte toxicity in vitro, human hepatocellular carcinoma cells (HepG2/C3A were exposed to 0.01–50 ng/mL procalcitonin for 2×72 h and evaluated for proliferation, necrosis, metabolic activity, cellular integrity, microalbumin synthesis, and detoxification capacity. Acetaminophen served as positive control. For further standardization, procalcitonin effects were confirmed in a cellular toxicology assay panel employing L929 fibroblasts. Data were analyzed using ANOVA/Tukey’s test. Results. Already at concentrations as low as 0.25 ng/mL, procalcitonin induced HepG2/C3A necrosis (P<0.05 and reduced metabolic activity, cellular integrity, synthesis, and detoxification capacity (all P<0.001. Comparable effects were obtained employing L929 fibroblasts. Conclusion. We provide evidence for procalcitonin to directly impair function and viability of human hepatocytes and exert general cytotoxicity in vitro. Therapeutical targeting of procalcitonin could thus display a novel approach to reduce incidence of liver dysfunction and failure during sepsis and lower morbidity and mortality of septic patients.

  5. Predictors of endothelial dysfunction and atherosclerosis in rheumatoid arthritis in Indian population

    Directory of Open Access Journals (Sweden)

    Inderjeet Verma

    2017-03-01

    Conclusions: In the present study, FMD and CIMT were impaired in RA, indicating endothelial dysfunction and accelerated atherosclerosis respectively. CRP, TNF-α, serum nitrite, DAS-28 and depleted EPC population predicted endothelial dysfunction. Age, IL-6, HDL, LDL and depleted EPC population predicted accelerated atherosclerosis.

  6. Does surgery correct esophageal motor dysfunction in gastroesophageal reflux

    International Nuclear Information System (INIS)

    Russell, C.O.; Pope, C.E.; Gannan, R.M.; Allen, F.D.; Velasco, N.; Hill, L.D.

    1981-01-01

    The high incidence of dysphagia in patients with symptomatic gastroesophageal reflux (GER) but no evidence of peptic stricture suggests esophageal motor dysfunction. Conventional methods for detecting dysfunction (radiologic and manometric examinations) often fail to detect abnormality in these patients. Radionuclide transit (RT), a new method for detecting esophageal motor dysfunction, was used to prospectively assess function in 29 patients with symptomatic GER uncomplicated by stricture before and three months after antireflux surgery (HILL). The preoperative incidence of dysphagia and esophageal dysfunction was 73% and 52%, respectively. During operation (Hill repair), intraoperative measurement of the lower esophageal sphincter pressure was performed and the LESP raised to levels between 45 and 55 mmHg. The preoperative lower esophageal sphincter pressure was raised from a mean of 8.6 mmHg, to mean of 18.5 mmHg after operation. No patient has free reflux after operation. Postoperative studies on 20 patients demonstrated persistence of all preoperative esophageal dysfunction despite loss of dysphagia. RT has demonstrated a disorder of esophageal motor function in 52% of patients with symptomatic GER that may be responsible for impaired esophageal clearance. This abnormality is not contraindication to surgery. The results indicate that construction of an effective barrier to reflex corrects symptoms of reflux, even in the presence of impaired esophageal transit. Radionuclide transit is a safe noninvasive test for assessment of esophageal function

  7. Does surgery correct esophageal motor dysfunction in gastroesophageal reflux

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C.O.; Pope, C.E.; Gannan, R.M.; Allen, F.D.; Velasco, N.; Hill, L.D.

    1981-09-01

    The high incidence of dysphagia in patients with symptomatic gastroesophageal reflux (GER) but no evidence of peptic stricture suggests esophageal motor dysfunction. Conventional methods for detecting dysfunction (radiologic and manometric examinations) often fail to detect abnormality in these patients. Radionuclide transit (RT), a new method for detecting esophageal motor dysfunction, was used to prospectively assess function in 29 patients with symptomatic GER uncomplicated by stricture before and three months after antireflux surgery (HILL). The preoperative incidence of dysphagia and esophageal dysfunction was 73% and 52%, respectively. During operation (Hill repair), intraoperative measurement of the lower esophageal sphincter pressure was performed and the LESP raised to levels between 45 and 55 mmHg. The preoperative lower esophageal sphincter pressure was raised from a mean of 8.6 mmHg, to mean of 18.5 mmHg after operation. No patient has free reflux after operation. Postoperative studies on 20 patients demonstrated persistence of all preoperative esophageal dysfunction despite loss of dysphagia. RT has demonstrated a disorder of esophageal motor function in 52% of patients with symptomatic GER that may be responsible for impaired esophageal clearance. This abnormality is not contraindication to surgery. The results indicate that construction of an effective barrier to reflex corrects symptoms of reflux, even in the presence of impaired esophageal transit. Radionuclide transit is a safe noninvasive test for assessment of esophageal function.

  8. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  9. Adiponectin alleviates genioglossal mitochondrial dysfunction in rats exposed to intermittent hypoxia.

    Directory of Open Access Journals (Sweden)

    Hanpeng Huang

    Full Text Available Genioglossal dysfunction is involved in the pathophysiology of obstructive sleep apnea hypoxia syndrome (OSAHS characterized by nocturnal chronic intermittent hypoxia (CIH. The pathophysiology of genioglossal dysfunction and possible targeted pharmacotherapy for alleviation of genioglossal injury in CIH require further investigation.Rats in the control group were exposed to normal air, while rats in the CIH group and CIH+adiponectin (AD group were exposed to the same CIH condition (CIH 8 hr/day for 5 successive weeks. Furthermore, rats in CIH+AD group were administrated intravenous AD supplementation at the dosage of 10 µg, twice a week for 5 consecutive weeks. We found that CIH-induced genioglossus (GG injury was correlated with mitochondrial dysfunction, reduction in the numbers of mitochondrias, impaired mitochondrial ultrastructure, and a reduction in type I fibers. Compared with the CIH group, impaired mitochondrial structure and function was significantly improved and a percentage of type I fiber was elevated in the CIH+AD group. Moreover, compared with the control group, the rats' GG in the CIH group showed a significant decrease in phosphorylation of LKB1, AMPK, and PGC1-α, whereas there was significant rescue of such reduction in phosphorylation within the CIH+AD group.CIH exposure reduces mitochondrial biogenesis and impairs mitochondrial function in GG, while AD supplementation increases mitochondrial contents and alleviates CIH-induced mitochondrial dysfunction possibly through the AMPK pathway.

  10. TEMPOROMANDIBULAR PAIN DYSFUNCTION SYNDROME IN PATIENTS ATTENDING LAGOS UNIVERSITY TEACHING HOSPITAL, LAGOS, NIGERIA.

    Science.gov (United States)

    Eweka, O M; Ogundana, O M; Agbelusi, G A

    2016-01-01

    Temporomandibular joint pain dysfunction syndrome (TMJPDS) is the most common temporomandibular disorder. This condition presents with symptoms of pain, restricted jaw movement and joint noise. Other symptoms include otalgia, headache, neck pain and trismus. To determine the pattern of Temporomandibular joint pain dysfunction syndrome patients managed at the Lagos University Teaching Hospital, Lagos, Nigeria. A descriptive study of patients with signs and symptoms of Temporomandibular joint pain dysfunction syndrome attending the Oral Medicine Clinic of Lagos University Teaching Hospital. Twenty-one patients with Temporomandibular joint pain dysfunction syndrome were enrolled into the study, out of which 10(48%) were females and 11(52%) were males. The age range was 23-81years with a mean of 45.2 ± 18.9 years. Majority of the patients 20(95.2%) complained of pain around the joint, in the pre-auricular region, in the muscles of mastication and the ear. While 7(35%) complained of clicking sounds, 10(47.6%) complained of pain on mouth opening and during mastication only. In all 5(23.8%) had impaired movement of the jaws, mouth opening was normal in 18(85.7%) but reduced in 3(14.3%) patients. Over half of patients 12(57%) experienced clicking sounds, there was tenderness around the temporomandibular joint in 16(76.2%) cases, pain in the ear of 7(33.3%) patients and 13(61.9%) people presented with tenderness of the muscles of mastication. Conservative management of all the cases resulted in resolution of the symptoms. Temporomandibular joint pain dysfunction syndrome has diverse clinical presentation and though distressing, it responds to prompt and effective conservative management.

  11. Neuroanatomy and Physiology of Brain Dysfunction in Sepsis.

    Science.gov (United States)

    Mazeraud, Aurelien; Pascal, Quentin; Verdonk, Franck; Heming, Nicholas; Chrétien, Fabrice; Sharshar, Tarek

    2016-06-01

    Sepsis-associated encephalopathy (SAE), a complication of sepsis, is often complicated by acute and long-term brain dysfunction. SAE is associated with electroencephalogram pattern changes and abnormal neuroimaging findings. The major processes involved are neuroinflammation, circulatory dysfunction, and excitotoxicity. Neuroinflammation and microcirculatory alterations are diffuse, whereas excitotoxicity might occur in more specific structures involved in the response to stress and the control of vital functions. A dysfunction of the brainstem, amygdala, and hippocampus might account for the increased mortality, psychological disorders, and cognitive impairment. This review summarizes clinical and paraclinical features of SAE and describes its mechanisms at cellular and structural levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The impact of mental illness on sexual dysfunction.

    Science.gov (United States)

    Zemishlany, Zvi; Weizman, Abraham

    2008-01-01

    Sexual dysfunction is prevalent among psychiatric patients and may be related to both the psychopathology and the pharmacotherapy. The negative symptoms of schizophrenia limit the capability for interpersonal and sexual relationships. The first-generation antipsychotics cause further deterioration in erectile and orgasmic function. Due to their weak antagonistic activity at D2 receptors, second-generation antipsychotics are associated with fewer sexual side effects, and thus may provide an option for schizophrenia patients with sexual dysfunction. Depression and anxiety are a cause for sexual dysfunction that may be aggravated by antidepressants, especially selective serotonin reuptake inhibitors (SSRIs). SSRI-induced sexual dysfunction may be overcome by lowering doses, switching to an antidepressant with low propensity to cause sexual dysfunction (bupropion, mirtazapine, nefazodone, reboxetine), addition of 5HT2 antagonists (mirtazapine, mianserin) or coadministration of 5-phosphodiesterase inhibitors. Eating disorders and personality disorders, mainly borderline personality disorder, are also associated with sexual dysfunction. Sexual dysfunction in these cases stems from impaired interpersonal relationships and may respond to adequate psychosexual therapy. It is mandatory to identify the specific sexual dysfunction and to treat the patients according to his/her individual psychopathology, current pharmacotherapy and interpersonal relationships.

  13. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria.

    Directory of Open Access Journals (Sweden)

    Brandi D Freeman

    2016-03-01

    Full Text Available Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria.

  14. Insulin dysfunction and Tau pathology

    Directory of Open Access Journals (Sweden)

    Noura eEl Khoury

    2014-02-01

    Full Text Available The neuropathological hallmarks of Alzheimer's disease (AD include senile plaques of β-amyloid (Aβ peptides (a cleavage product of the Amyloid Precursor Protein, or APP and neurofibrillary tangles (NFT of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF. NFT pathology is important since it correlates with the degree of cognitive impairment in AD.Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99% is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease.Insulin dysfunction, manifested by diabetes mellitus (DM might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM and type 2 diabetes (T2DM are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment.Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting on Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.

  15. Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity.

    Science.gov (United States)

    Martín, Maria B C; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M; Merabet, Lotfi B

    2016-01-01

    Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment.

  16. Attention-deficit/hyperactivity disorder and social dysfunctioning

    NARCIS (Netherlands)

    Nijmeijer, Judith S.; Minderaa, Ruud B.; Buitelaar, Jan K.; Mulligan, Aisling; Hartman, Catharina A.; Hoekstra, Pieter J.

    Attention-deficit/hyperactivity disorder (ADHD) is associated with functional impairments in different areas of daily life. One such area is social functioning. The purpose of this paper is to critically review research on social dysfunctioning in children with ADHD. Children with ADHD often have

  17. Attention-deficit/hyperactivity disorder and social dysfunctioning.

    NARCIS (Netherlands)

    Nijmeijer, J.S.; Minderaa, R.B.; Buitelaar, J.K.; Mulligan, A.; Hartman, C.A.; Hoekstra, P.J.

    2008-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with functional impairments in different areas of daily life. One such area is social functioning. The purpose of this paper is to critically review research on social dysfunctioning in children with ADHD. Children with ADHD often have

  18. Dysfunction of serotoninergic and dopaminergic neuronal systems in the antidepressant-resistant impairment of social behaviors induced by social defeat stress exposure as juveniles.

    Science.gov (United States)

    Hasegawa, Sho; Miyake, Yuriko; Yoshimi, Akira; Mouri, Akihiro; Hida, Hirotake; Yamada, Kiyofumi; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2018-03-29

    Extensive studies have been performed on the role of monoaminergic neuronal systems in rodents exposed to social defeat stress as adults. In the present study, we investigated the role of monoaminergic neuronal systems in the impairment of social behaviors induced by social defeat stress exposure as juveniles. Juvenile, male C57BL/6J mice were exposed to social defeat stress for 10 consecutive days. From 1 day after the last stress exposure, desipramine, sertraline, and aripiprazole, were administered for 15 days. Social behaviors were assessed at 1 and 15 days after the last stress exposure. Monoamine turnover was determined in specific regions of the brain in the mice exposed to the stress. Stress exposure as juveniles induced the impairment of social behaviors in adolescent mice. In mice that showed the impairment of social behaviors, turnover of the serotonin and dopamine, but not noradrenaline was decreased in specific brain regions. Acute and repeated administration of desipramine, sertraline, and aripiprazole failed to attenuate the impairment of social behaviors, whereas repeated administration of a combination of sertraline and aripiprazole showed additive attenuating effects. These findings suggest that social defeat stress exposure as juveniles induces the treatment-resistant impairment of social behaviors in adolescents through dysfunction in the serotoninergic and dopaminergic neuronal systems. The combination of sertraline and aripiprazole may be used as a new treatment strategy for treatment-resistant stress-related psychiatric disorders in adolescents with adverse juvenile experiences.

  19. Treatment of Cognitive Impairment in Multiple Sclerosis

    Science.gov (United States)

    Pierson, Susan H.; Griffith, Nathan

    2006-01-01

    Cognitive impairment in multiple sclerosis is an increasingly recognized entity. This article reviews the cognitive impairment of multiple sclerosis, its prevalence, its relationship to different types of multiple sclerosis, and its contribution to long-term functional prognosis. The discussion also focuses on the key elements of cognitive dysfunction in multiple sclerosis which distinguish it from other forms of cognitive impairment. Therapeutic interventions potentially effective for the cognitive impairment of multiple sclerosis are reviewed including the effects of disease modifying therapies and the use of physical and cognitive interventions. PMID:16720960

  20. Diaphragm Dysfunction in Critical Illness.

    Science.gov (United States)

    Supinski, Gerald S; Morris, Peter E; Dhar, Sanjay; Callahan, Leigh Ann

    2018-04-01

    The diaphragm is the major muscle of inspiration, and its function is critical for optimal respiration. Diaphragmatic failure has long been recognized as a major contributor to death in a variety of systemic neuromuscular disorders. More recently, it is increasingly apparent that diaphragm dysfunction is present in a high percentage of critically ill patients and is associated with increased morbidity and mortality. In these patients, diaphragm weakness is thought to develop from disuse secondary to ventilator-induced diaphragm inactivity and as a consequence of the effects of systemic inflammation, including sepsis. This form of critical illness-acquired diaphragm dysfunction impairs the ability of the respiratory pump to compensate for an increased respiratory workload due to lung injury and fluid overload, leading to sustained respiratory failure and death. This review examines the presentation, causes, consequences, diagnosis, and treatment of disorders that result in acquired diaphragm dysfunction during critical illness. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  1. A Review: Radiographic Iodinated Contrast Media-Induced Thyroid Dysfunction

    Science.gov (United States)

    Leung, Angela M.; Braverman, Lewis E.; Brent, Gregory A.; Pearce, Elizabeth N.

    2015-01-01

    Context: Thyroid hormone production is dependent on adequate iodine intake. Excess iodine is generally well-tolerated, but thyroid dysfunction can occur in susceptible individuals after excess iodine exposure. Radiological iodinated contrast media represent an increasingly common source of excess iodine. Objective: This review will discuss the thyroidal response after acute exposure to excess iodine; contrast iodine-induced thyroid dysfunction; risks of iodine-induced thyroid dysfunction in vulnerable populations, such as the fetus, neonate, and patients with impaired renal function; and recommendations for the assessment and treatment of contrast iodine-induced thyroid dysfunction. Methods: Data for this review were identified by searching PubMed, Google Scholar, and references from relevant articles from 1948 to 2014. Conclusions: With the increase in the use of computed tomography scans in the United States, there is increasing risk of contrast-induced thyroid dysfunction. Patients at risk of developing iodine-induced thyroid dysfunction should be closely monitored after receiving iodinated contrast media and should be treated as needed. PMID:25375985

  2. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    Science.gov (United States)

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  3. Orgasmic Dysfunction after Radical Prostatectomy

    Science.gov (United States)

    Ventimiglia, Eugenio; Cazzaniga, Walter; Montorsi, Francesco; Salonia, Andrea

    2017-01-01

    In addition to urinary incontinence and erectile dysfunction, several other impairments of sexual function potentially occurring after radical prostatectomy (RP) have been described; as a whole, these less frequently assessed disorders are referred to as neglected side effects. In particular, orgasmic dysfunctions (ODs) have been reported in a non-negligible number of cases, with detrimental impacts on patients' overall sexual life. This review aimed to comprehensively discuss the prevalence and physiopathology of post-RP ODs, as well as potential treatment options. Orgasm-associated incontinence (climacturia) has been reported to occur in between 20% and 93% of patients after RP. Similarly, up to 19% of patients complain of postoperative orgasm-associated pain, mainly referred pain at the level of the penis. Moreover, impairment in the sensation of orgasm or even complete anorgasmia has been reported in 33% to 77% of patients after surgery. Clinical and surgical factors including age, the use of a nerve-sparing technique, and robotic surgery have been variably associated with the risk of ODs after RP, although robust and reliable data allowing for a proper estimation of the risk of postoperative orgasmic function impairment are still lacking. Likewise, little evidence regarding the management of postoperative ODs is currently available. In general, physicians should be aware of the prevalence of ODs after RP, in order to properly counsel all patients both preoperatively and immediately post-RP about the potential occurrence of bothersome and distressful changes in their overall sexual function. PMID:28459142

  4. Orgasmic Dysfunction after Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Paolo Capogrosso

    2017-04-01

    Full Text Available In addition to urinary incontinence and erectile dysfunction, several other impairments of sexual function potentially occurring after radical prostatectomy (RP have been described; as a whole, these less frequently assessed disorders are referred to as neglected side effects. In particular, orgasmic dysfunctions (ODs have been reported in a non-negligible number of cases, with detrimental impacts on patients’ overall sexual life. This review aimed to comprehensively discuss the prevalence and physiopathology of post-RP ODs, as well as potential treatment options. Orgasm-associated incontinence (climacturia has been reported to occur in between 20% and 93% of patients after RP. Similarly, up to 19% of patients complain of postoperative orgasm-associated pain, mainly referred pain at the level of the penis. Moreover, impairment in the sensation of orgasm or even complete anorgasmia has been reported in 33% to 77% of patients after surgery. Clinical and surgical factors including age, the use of a nerve-sparing technique, and robotic surgery have been variably associated with the risk of ODs after RP, although robust and reliable data allowing for a proper estimation of the risk of postoperative orgasmic function impairment are still lacking. Likewise, little evidence regarding the management of postoperative ODs is currently available. In general, physicians should be aware of the prevalence of ODs after RP, in order to properly counsel all patients both preoperatively and immediately post-RP about the potential occurrence of bothersome and distressful changes in their overall sexual function.

  5. Prevalence of Neurobehavioral, Social, and Emotional Dysfunction in Patients Treated for Childhood Craniopharyngioma: A Systematic Literature Review

    Science.gov (United States)

    Zada, Gabriel; Kintz, Natalie; Pulido, Mario; Amezcua, Lilyana

    2013-01-01

    Background Craniopharyngiomas (CP) are locally invasive and frequently recurring neoplasms often resulting in neurological and endocrinological dysfunction in children. In addition, social-behavioral impairment is commonly reported following treatment for childhood CP, yet remains to be fully understood. The authors aimed to further characterize the prevalence of neurobehavioral, social, and emotional dysfunction in survivors of childhood craniopharyngiomas. Materials and Methods A systematic literature review was conducted in PubMed to identify studies formally assessing neurobehavioral, social, and emotional outcomes in patients treated for CP prior to 18 years of age. Studies published between the years 1990-2012 that reported the primary outcome (prevalence of neurobehavioral, social, emotional/affective dysfunction, and/or impaired quality of life (QoL)) in ≥10 patients were included. Results Of the 471 studies screened, 11 met inclusion criteria. Overall neurobehavioral dysfunction was reported in 51 of 90 patients (57%) with available data. Social impairment (i.e. withdrawal, internalizing behavior) was reported in 91 of 222 cases (41%). School dysfunction was reported in 48 of 136 patients (35%). Emotional/affective dysfunction was reported in 58 of 146 patients (40%), primarily consisting of depressive symptoms. Health related quality of life was affected in 49 of 95 patients (52%). Common descriptors of behavior in affected children included irritability, impulsivity, aggressiveness, and emotional outbursts. Conclusions Neurobehavioral, social, and emotional impairment is highly prevalent in survivors of childhood craniopharyngioma, and often affects quality of life. Thorough neurobehavioral/emotional screening and appropriate counseling is recommended in this population. Additional research is warranted to identify risk factors and treatment strategies for these disorders. PMID:24223703

  6. Prevalence of neurobehavioral, social, and emotional dysfunction in patients treated for childhood craniopharyngioma: a systematic literature review.

    Directory of Open Access Journals (Sweden)

    Gabriel Zada

    Full Text Available Craniopharyngiomas (CP are locally invasive and frequently recurring neoplasms often resulting in neurological and endocrinological dysfunction in children. In addition, social-behavioral impairment is commonly reported following treatment for childhood CP, yet remains to be fully understood. The authors aimed to further characterize the prevalence of neurobehavioral, social, and emotional dysfunction in survivors of childhood craniopharyngiomas.A systematic literature review was conducted in PubMed to identify studies formally assessing neurobehavioral, social, and emotional outcomes in patients treated for CP prior to 18 years of age. Studies published between the years 1990-2012 that reported the primary outcome (prevalence of neurobehavioral, social, emotional/affective dysfunction, and/or impaired quality of life (QoL in ≥ 10 patients were included.Of the 471 studies screened, 11 met inclusion criteria. Overall neurobehavioral dysfunction was reported in 51 of 90 patients (57% with available data. Social impairment (i.e. withdrawal, internalizing behavior was reported in 91 of 222 cases (41%. School dysfunction was reported in 48 of 136 patients (35%. Emotional/affective dysfunction was reported in 58 of 146 patients (40%, primarily consisting of depressive symptoms. Health related quality of life was affected in 49 of 95 patients (52%. Common descriptors of behavior in affected children included irritability, impulsivity, aggressiveness, and emotional outbursts.Neurobehavioral, social, and emotional impairment is highly prevalent in survivors of childhood craniopharyngioma, and often affects quality of life. Thorough neurobehavioral/emotional screening and appropriate counseling is recommended in this population. Additional research is warranted to identify risk factors and treatment strategies for these disorders.

  7. Post Operative Cognitive Dysfunction (POCD in Geriatric Population

    Directory of Open Access Journals (Sweden)

    Rajesh MC

    2015-10-01

    Full Text Available Post-operative mental dysfunction and confusion in aged patients is a well recognized entity. Commonly known as post-operative delirium and cognitive dysfunction (POCD, these are important for any peri-operative physician dealing with geriatric population. The incidence is more in older patients with pre-existing impairment. Impact of POCD is grave. This can result in poor rehabilitation outcome and increased hospital stay. Incidence ranges from 15-50% with ˂5% for cataract surgery and as high as 60% after hip replacement procedures.

  8. Cognitive impairments in epilepsy

    Directory of Open Access Journals (Sweden)

    Aleksandr Anatolyevich Kostylev

    2013-01-01

    Full Text Available Cognitive impairments in epilepsy are a current problem in neurology. The basis of the idea on the pathogenesis of higher nervous system dysfunctions is the interaction of a few factors that include the form and duration of the disease, gender differences, and the impact of antiepileptic therapy. The role of interattack epileptiform changes in the development of cognitive deficit in adults and epileptic encephalopathies in children is discussed. Up-to-date neurophysiological and neuroimaging diagnostic methods allow the detection of new features in the course and progression of higher nervous system dysfunctions in epilepsy.

  9. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  10. Change in Dysfunctional Beliefs About Sleep in Behavior Therapy, Cognitive Therapy, and Cognitive-Behavioral Therapy for Insomnia.

    Science.gov (United States)

    Eidelman, Polina; Talbot, Lisa; Ivers, Hans; Bélanger, Lynda; Morin, Charles M; Harvey, Allison G

    2016-01-01

    As part of a larger randomized controlled trial, 188 participants were randomized to behavior therapy (BT), cognitive therapy (CT), or cognitive-behavioral therapy (CBT) for insomnia. The aims of this study were threefold: (a) to determine whether change in dysfunctional beliefs about sleep was related to change in sleep, insomnia symptoms, and impairment following treatment; (b) to determine whether BT, CT, and CBT differ in their effects on dysfunctional beliefs; and (c) to determine whether the treatments differ in their effects on particular kinds of dysfunctional beliefs. Beliefs, sleep, insomnia symptoms, and sleep-related psychosocial impairment were assessed at pretreatment, posttreatment, and 6- and 12-month follow-up. Greater change in dysfunctional beliefs occurring over the course of BT, CT, or CBT was associated with greater improvement in insomnia symptoms and impairment at posttreatment and both follow-ups. All groups experienced a significant decrease in dysfunctional beliefs during treatment, which were sustained through 6- and 12-month follow-up. Compared with the BT group, a greater proportion of participants in the CT and/or CBT groups endorsed dysfunctional beliefs below a level considered clinically significant at posttreatment and 12-month follow-up. The results demonstrate the importance of targeting dysfunctional beliefs in insomnia treatment, suggest that beliefs may be significantly modified with BT alone, and indicate that cognitive interventions may be particularly powerful in enhancing belief change. Copyright © 2016. Published by Elsevier Ltd.

  11. Churg-Strauss syndrome associated with rapid deterioration of left ventricular diastolic dysfunction and conduction disturbance.

    Science.gov (United States)

    Chin, Jung Yeon; Yi, Jeong Eun; Youn, Ho-Joong

    2013-10-01

    Cardiac involvement in Churg-Strauss syndrome (CSS) is a major cause of mortality. Here we report a case of a 75-year-old woman with eosinophilic endomyocarditis due to CSS. An electrocardiogram showed intraventricular conduction delay, and echocardiography showed an impaired relaxation pattern and biventricular apical thickening. Magnetic resonance imaging revealed subendocardial delayed enhancement with biventricular apical thrombi. Endomyocardial biopsy showed perivascular eosinophilic infiltration. Despite resolution of the hypereosinophilia after steroid therapy, her left ventricular (LV) diastolic function worsened into a restrictive pattern and she died with a ventricular escape rhythm on her 14th day in the hospital. This case is unusual in that there was rapid progression of the LV diastolic dysfunction and conduction disturbance due to CSS. © 2013, Wiley Periodicals, Inc.

  12. Toxoplasma gondii Infection in Mice Impairs Long-Term Fear Memory Consolidation through Dysfunction of the Cortex and Amygdala.

    Science.gov (United States)

    Ihara, Fumiaki; Nishimura, Maki; Muroi, Yoshikage; Mahmoud, Motamed Elsayed; Yokoyama, Naoaki; Nagamune, Kisaburo; Nishikawa, Yoshifumi

    2016-10-01

    Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Impaired emotion recognition in music in Parkinson's disease.

    Science.gov (United States)

    van Tricht, Mirjam J; Smeding, Harriet M M; Speelman, Johannes D; Schmand, Ben A

    2010-10-01

    Music has the potential to evoke strong emotions and plays a significant role in the lives of many people. Music might therefore be an ideal medium to assess emotion recognition. We investigated emotion recognition in music in 20 patients with idiopathic Parkinson's disease (PD) and 20 matched healthy volunteers. The role of cognitive dysfunction and other disease characteristics in emotion recognition was also evaluated. We used 32 musical excerpts that expressed happiness, sadness, fear or anger. PD patients were impaired in recognizing fear and anger in music. Fear recognition was associated with executive functions in PD patients and in healthy controls, but the emotion recognition impairments of PD patients persisted after adjusting for executive functioning. We found no differences in the recognition of happy or sad music. Emotion recognition was not related to depressive symptoms, disease duration or severity of motor symptoms. We conclude that PD patients are impaired in recognizing complex emotions in music. Although this impairment is related to executive dysfunction, our findings most likely reflect an additional primary deficit in emotional processing. 2010 Elsevier Inc. All rights reserved.

  14. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss.

    Science.gov (United States)

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2016-04-01

    Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits.

  15. Psycho acoustical Measures in Individuals with Congenital Visual Impairment.

    Science.gov (United States)

    Kumar, Kaushlendra; Thomas, Teenu; Bhat, Jayashree S; Ranjan, Rajesh

    2017-12-01

    In congenital visual impaired individuals one modality is impaired (visual modality) this impairment is compensated by other sensory modalities. There is evidence that visual impaired performed better in different auditory task like localization, auditory memory, verbal memory, auditory attention, and other behavioural tasks when compare to normal sighted individuals. The current study was aimed to compare the temporal resolution, frequency resolution and speech perception in noise ability in individuals with congenital visual impaired and normal sighted. Temporal resolution, frequency resolution, and speech perception in noise were measured using MDT, GDT, DDT, SRDT, and SNR50 respectively. Twelve congenital visual impaired participants with age range of 18 to 40 years were taken and equal in number with normal sighted participants. All the participants had normal hearing sensitivity with normal middle ear functioning. Individual with visual impairment showed superior threshold in MDT, SRDT and SNR50 as compared to normal sighted individuals. This may be due to complexity of the tasks; MDT, SRDT and SNR50 are complex tasks than GDT and DDT. Visual impairment showed superior performance in auditory processing and speech perception with complex auditory perceptual tasks.

  16. Semantic memory impairment in the earliest phases of Alzheimer's disease

    DEFF Research Database (Denmark)

    Vogel, Asmus; Gade, Anders; Stokholm, Jette

    2005-01-01

    The presence and the nature of semantic memory dysfunction in Alzheimer's disease (AD) have been widely debated. This study aimed to determine the frequency of impaired semantic test performances in mild AD and to study whether incipient semantic impairments could be identified in predementia AD...

  17. Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA.

    Science.gov (United States)

    Scheibye-Knudsen, Morten; Tseng, Anne; Borch Jensen, Martin; Scheibye-Alsing, Karsten; Fang, Evandro Fei; Iyama, Teruaki; Bharti, Sanjay Kumar; Marosi, Krisztina; Froetscher, Lynn; Kassahun, Henok; Eckley, David Mark; Maul, Robert W; Bastian, Paul; De, Supriyo; Ghosh, Soumita; Nilsen, Hilde; Goldberg, Ilya G; Mattson, Mark P; Wilson, David M; Brosh, Robert M; Gorospe, Myriam; Bohr, Vilhelm A

    2016-11-01

    Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1). Indeed, inhibition of ribosomal DNA transcription leads to mitochondrial dysfunction in a number of cell lines. Furthermore, machine-learning algorithms predict that diseases with defects in ribosomal DNA (rDNA) transcription have mitochondrial dysfunction, and, accordingly, this is found when factors involved in rDNA transcription are knocked down. Mechanistically, loss of CSA or CSB leads to polymerase stalling at non-B DNA in a neuroblastoma cell line, in particular at G-quadruplex structures, and recombinant CSB can melt G-quadruplex structures. Indeed, stabilization of G-quadruplex structures activates PARP1 and leads to accelerated aging in Caenorhabditis elegans In conclusion, this work supports a role for impaired ribosomal DNA transcription in Cockayne syndrome and suggests that transcription-coupled resolution of secondary structures may be a mechanism to repress spurious activation of a DNA damage response.

  18. Cognitive Impairment in Bipolar Disorder: Treatment and Prevention Strategies

    Science.gov (United States)

    Solé, Brisa; Jiménez, Esther; Torrent, Carla; Reinares, Maria; Bonnin, Caterina del Mar; Torres, Imma; Varo, Cristina; Grande, Iria; Valls, Elia; Salagre, Estela; Sanchez-Moreno, Jose; Martinez-Aran, Anabel; Carvalho, André F

    2017-01-01

    Abstract Over the last decade, there has been a growing appreciation of the importance of identifying and treating cognitive impairment associated with bipolar disorder, since it persists in remission periods. Evidence indicates that neurocognitive dysfunction may significantly influence patients’ psychosocial outcomes. An ever-increasing body of research seeks to achieve a better understanding of potential moderators contributing to cognitive impairment in bipolar disorder in order to develop prevention strategies and effective treatments. This review provides an overview of the available data from studies examining treatments for cognitive dysfunction in bipolar disorder as well as potential novel treatments, from both pharmacological and psychological perspectives. All these data encourage the development of further studies to find effective strategies to prevent and treat cognitive impairment associated with bipolar disorder. These efforts may ultimately lead to an improvement of psychosocial functioning in these patients. PMID:28498954

  19. Impaired Prefrontal-Amygdala Pathway, Self-Reported Emotion, and Erection in Psychogenic Erectile Dysfunction Patients With Normal Nocturnal Erection

    Directory of Open Access Journals (Sweden)

    Jianhuai Chen

    2018-04-01

    Full Text Available Background: Neuroimaging studies have demonstrated that the prefrontal cortex and amygdala play an important role in sexual arousal (SA. However, little is known about the interactions between the prefrontal and cortex amygdala, which mediate the cognitive regulation of emotion and SA.Objective: We seek to determine whether nocturnal erection of psychogenic erectile dysfunction (pED patients are normal and whether there are changes of topological organization in the prefrontal-amygdala pathway of brain network in pED. In addition, whether there are correlations between network property changes and self-reported emotion and erection.Design, setting, and participants: We used the RigiScan device to evaluate erectile function of patients and employed diffusion MRI and graph theory to construct brain networks of 21 pED patients and 24 healthy controls.Outcome measurements and statistical analysis: We considered four nodal metrics and their asymmetry scores, and nocturnal penile tumescence (NPT parameters, to evaluate the topological properties of brain networks of pED and their relationships with the impaired self-reported emotion and erection.Results and limitations: All the pED patients showed normal nocturnal penile erection, however impaired self-reported erection and negative emotion. In addition, patients showed lower connectivity degree and strength in the left prefrontal-amygdala pathway. We also found that pED exhibited lower leftward asymmetry in the inferior frontal gyrus. Furthermore, patients showed more hub regions and fewer pivotal connections. Moreover, the degree of the left amygdala of pED showed significantly negative correlation with the self-reported erection and positive correlation with the self-reported negative emotion.Conclusions: Together, these results suggest normal nocturnal erection in pED. However, abnormalities of brain network organization in pED, particularly in the left prefrontal-amygdala pathway, are associated

  20. Impaired Prefrontal-Amygdala Pathway, Self-Reported Emotion, and Erection in Psychogenic Erectile Dysfunction Patients With Normal Nocturnal Erection

    Science.gov (United States)

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-01-01

    Background: Neuroimaging studies have demonstrated that the prefrontal cortex and amygdala play an important role in sexual arousal (SA). However, little is known about the interactions between the prefrontal and cortex amygdala, which mediate the cognitive regulation of emotion and SA. Objective: We seek to determine whether nocturnal erection of psychogenic erectile dysfunction (pED) patients are normal and whether there are changes of topological organization in the prefrontal-amygdala pathway of brain network in pED. In addition, whether there are correlations between network property changes and self-reported emotion and erection. Design, setting, and participants: We used the RigiScan device to evaluate erectile function of patients and employed diffusion MRI and graph theory to construct brain networks of 21 pED patients and 24 healthy controls. Outcome measurements and statistical analysis: We considered four nodal metrics and their asymmetry scores, and nocturnal penile tumescence (NPT) parameters, to evaluate the topological properties of brain networks of pED and their relationships with the impaired self-reported emotion and erection. Results and limitations: All the pED patients showed normal nocturnal penile erection, however impaired self-reported erection and negative emotion. In addition, patients showed lower connectivity degree and strength in the left prefrontal-amygdala pathway. We also found that pED exhibited lower leftward asymmetry in the inferior frontal gyrus. Furthermore, patients showed more hub regions and fewer pivotal connections. Moreover, the degree of the left amygdala of pED showed significantly negative correlation with the self-reported erection and positive correlation with the self-reported negative emotion. Conclusions: Together, these results suggest normal nocturnal erection in pED. However, abnormalities of brain network organization in pED, particularly in the left prefrontal-amygdala pathway, are associated with the

  1. Hypoxia-induced dysfunction of rat diaphragm: role of peroxynitrite.

    NARCIS (Netherlands)

    Zhu, X.; Heunks, L.M.A.; Versteeg, E.M.M.; Heijden, E. van der; Ennen, L.; Kuppevelt, A.H.M.S.M. van; Vina, J.; Dekhuijzen, P.N.R.

    2005-01-01

    Oxidants may play a role in hypoxia-induced respiratory muscle dysfunction. In the present study we hypothesized that hypoxia-induced impairment in diaphragm contractility is associated with elevated peroxynitrite generation. In addition, we hypothesized that strenuous contractility of the diaphragm

  2. Hyperthyroidism causes cardiac dysfunction by mitochondrial impairment and energy depletion.

    Science.gov (United States)

    Maity, Sangeeta; Kar, Dipak; De, Kakali; Chander, Vivek; Bandyopadhyay, Arun

    2013-05-01

    This study elucidates the role of metabolic remodeling in cardiac dysfunction induced by hyperthyroidism. Cardiac hypertrophy, structural remodeling, and expression of the genes associated with fatty acid metabolism were examined in rats treated with triiodothyronine (T3) alone (8 μg/100 g body weight (BW), i.p.) for 15 days or along with a peroxisome proliferator-activated receptor alpha agonist bezafibrate (Bzf; 30 μg/100 g BW, oral) and were found to improve in the Bzf co-treated condition. Ultrastructure of mitochondria was damaged in T3-treated rat heart, which was prevented by Bzf co-administration. Hyperthyroidism-induced oxidative stress, reduction in cytochrome c oxidase activity, and myocardial ATP concentration were also significantly checked by Bzf. Heart function studied at different time points during the course of T3 treatment shows an initial improvement and then a gradual but progressive decline with time, which is prevented by Bzf co-treatment. In summary, the results demonstrate that hyperthyroidism inflicts structural and functional damage to mitochondria, leading to energy depletion and cardiac dysfunction.

  3. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    Science.gov (United States)

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  4. Assessing the role of relationship conflict in sexual dysfunction.

    Science.gov (United States)

    Metz, Michael E; Epstein, Norman

    2002-01-01

    Relationship conflict has long been thought to cause, maintain, and influence the therapeutic outcome of sexual problems in the absence of a physical cause. The results of conflict can influence partners' relationship satisfaction, and relationship satisfaction can influence sexual satisfaction. General relationship deficiencies, such as unresolved conflict, undermine the mutual acceptance that is important to healthy sexual functioning. The purpose of this article is to summarize some of the basic empirical findings of studies of conflict patterns in relationships and their role in sex dysfunction and to suggest a model for assessing relationship conflict as a feature of sexual dysfunction. Results from several studies indicate that couples with sexual problems may have conflict-management issues and employ distinct conflict-resolution styles compared to satisfied couples. Dysfunctional conflict resolution may be a cause or result of some sexual problems, whereas constructive interaction concerning conflict can add to emotional and sexual intimacy in a couple's relationship. These patterns warrant systematic attention in assessment and intervention in sex therapy.

  5. Intravenous Milrinone Infusion Improves Congestive Heart Failure Caused by Diastolic Dysfunction

    Science.gov (United States)

    Albrecht, Carlos A.; Giesler, Gregory M.; Kar, Biswajit; Hariharan, Ramesh; Delgado, Reynolds M.

    2005-01-01

    Although there have been significant advances in the medical treatment of heart failure patients with impaired systolic function, very little is known about the diagnosis and treatment of diastolic dysfunction. We report the cases of 3 patients in New York Heart Association functional class IV who had echocardiographically documented diastolic dysfunction as the main cause of heart failure. All 3 patients received medical therapy with long-term milrinone infusion. PMID:16107121

  6. Do subjects with acute/subacute temporomandibular disorder have associated cervical impairments: A cross-sectional study.

    Science.gov (United States)

    von Piekartz, Harry; Pudelko, Ani; Danzeisen, Mira; Hall, Toby; Ballenberger, Nikolaus

    2016-12-01

    There is preliminary evidence of cervical musculoskeletal impairment in some temporomandibular disorder (TMD) pain states. To determine whether people with TMD, classified as either mild or moderate/severe TMD, have more cervical signs of dysfunction than healthy subjects. Cross-sectional survey. Based on the Conti Amnestic Questionnaire and examination of the temporomandibular joint (Axis I classification of the Research Diagnostic Criteria for TMD), of 144 people examined 59 were classified to a mild TMD group, 40 to a moderate/severe TMD group and 45 to an asymptomatic control group without TMD. Subjects were evaluated for signs of cervical musculoskeletal impairment and disability including the Neck Disability Index, active cervical range of motion, the Flexion-Rotation Test, mechanical pain threshold of the upper trapezius and obliquus capitis inferior muscles, Cranio-Cervical Flexion test and passive accessory movements of the upper 3 cervical vertebrae. According to cervical musculoskeletal dysfunction, the control group without TMD were consistently the least impaired and the group with moderate/severe TMD were the most impaired. These results suggest, that the more dysfunction and pain is identified in the temporomandibular region, the greater levels of dysfunction is observable on a number of cervical musculoskeletal function tests. The pattern of cervical musculoskeletal dysfunction is distinct to other cervical referred pain phenomenon such as cervicogenic headache. These findings provide evidence that TMD in an acute/subacute pain state is strongly related with certain cervical spine musculoskeletal impairments which suggests the cervical spine should be examined in patients with TMD as a potential contributing factor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cognitive Impairments and Subjective Cognitive Complaints in Fabry Disease

    DEFF Research Database (Denmark)

    Loeb, Josefine; Feldt-Rasmussen, Ulla; Madsen, Christoffer Valdorff

    2018-01-01

    Fabry disease is a rare progressive X-linked lysosomal storage disorder which leads to neuropathic pain, organ dysfunction and cerebral pathology. Few studies have investigated cognitive impairment in Fabry disease and these previous studies are difficult to compare due to heterogeneous methodolo......Fabry disease is a rare progressive X-linked lysosomal storage disorder which leads to neuropathic pain, organ dysfunction and cerebral pathology. Few studies have investigated cognitive impairment in Fabry disease and these previous studies are difficult to compare due to heterogeneous...... methodological designs and small cohorts. The objective was to investigate the frequency of cognitive impairment in the Danish nationwide cohort of Fabry patients. Further, we examined if subjective cognitive complaints were associated with objective cognitive performances in this patient group....... Neuropsychological tests (17 measures) and evaluation of subjective complaints with the Perceived Deficits Questionnaire (PDQ) were applied in 41 of 63 patients. According to an a priori definition, 12 patients (29.3%) were cognitively impaired. Tests tapping psychomotor speed, attention and executive functions had...

  8. Auditory sensory ("echoic") memory dysfunction in schizophrenia.

    Science.gov (United States)

    Strous, R D; Cowan, N; Ritter, W; Javitt, D C

    1995-10-01

    Studies of working memory dysfunction in schizophrenia have focused largely on prefrontal components. This study investigated the integrity of auditory sensory ("echoic") memory, a component that shows little dependence on prefrontal functioning. Echoic memory was investigated in 20 schizophrenic subjects and 20 age- and IQ-matched normal comparison subjects with the use of nondelayed and delayed tone matching. Schizophrenic subjects were markedly impaired in their ability to match two tones after an extremely brief delay between them (300 msec) but were unimpaired when there was no delay between tones. Working memory dysfunction in schizophrenia affects brain regions outside the prefrontal cortex as well as within.

  9. Factors associated with the severity of motor impairment in children ...

    African Journals Online (AJOL)

    The purpose of this study was to assess the relation between the severity of gross motor dysfunction (GMD) and certain factors such as the type of CP, aetiology of CP, nutrition, socioeconomic class (SEC), and the frequency of these accompanying impairments like visual, auditory, cognitive and speech impairments.

  10. Congenital hearing impairment

    Energy Technology Data Exchange (ETDEWEB)

    Robson, Caroline D. [Children' s Hospital and Harvard Medical School, Division of Neuroradiology, Department of Radiology, Boston, MA (United States)

    2006-04-15

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  11. Congenital hearing impairment

    International Nuclear Information System (INIS)

    Robson, Caroline D.

    2006-01-01

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  12. Frontal Cognitive Function and Memory in Parkinson’s Disease: Toward a Distinction between Prospective and Declarative Memory Impairments?

    Directory of Open Access Journals (Sweden)

    A. I. Tröster

    1995-01-01

    Full Text Available Memory dysfunction is a frequent concomitant of Parkinson's disease (PD. Historically, two classes of hypotheses, focusing on different cognitive mechanisms, have been advanced to explain this memory impairment: one postulating retrieval deficits (common to several neurodegenerative disorders involving the basal ganglia, and the other postulating frontally mediated executive deficits as fundamental to memory impairment. After outlining empirical support for the retrieval deficit hypothesis, research on the more recent “frontal executive deficit hypothesis” is reviewed, and major challenges to this hypothesis are identified. It is concluded that the frontal executive deficit hypothesis cannot adequately account for all memory impairments in PD, and that a more parsimonious theoretical account might invoke a distinction between prospective and declarative memory impairments. It is suggested that there may be three subgroups of PD patients: one demonstrating prospective memory dysfunction only, one with declarative memory dysfunction only, and one with both prospective and declarative memory dysfunction. Consequently, PD might provide a useful model within which to investigate the relationship between prospective and declarative memory.

  13. Gender differences in left vantricular diastolic dysfunction in normotensive type 2 diabetic patients

    International Nuclear Information System (INIS)

    Hameedullah, A.; Khan, S.S.; Khan, S.S.; Shah, I.; Hifizullah, M.

    2012-01-01

    Objective: To determine the pattern and severity of left ventricular diastolic dysfunction in normotensive type 2 diabetic males and females patients. Methodology: This descriptive study was performed in Department of Cardiology, Lady Reading Hospital, Peshawar, from March 2007 to February 2008. Total of 60 patients were enrolled. Glycemic status was defined on the basis of HbA1c level. Detailed history and physical examination was performed on every patient. Exercise tolerance test was performed on every patient to exclude major ischemia. Echocardiography was performed in left lateral position. Main outcome measure was left ventricular diastolic dysfunction. Results: We enrolled 60 normotesive type 2 diabetic patients in the study that fulfills the inclusion criteria. Left ventricular diastolic dysfunction was found in 50% (30/60). There were 12 males (40%) and 18 females (60%) among subjects presenting with diastolic dysfunction. In male gender impaired relaxation was found in 75% (9 males) and in female gender it was found in 66.6% (12 females) (p=0.58). Pseudonormal pattern was found in 25% in male gender (3 males) and in 33.3% in female gender (6 females) (p=0.003). Males subjects with diastolic dysfunction the mean age were 54 +- 8.8 and mean age of females' subject were 60+-13.2 (p=0.17). Conclusion: Left ventricular diastolic dysfunction is more common in female gender and is more severely impaired in female gender than in male gender. (author)

  14. Methylglyoxal Impairs Insulin Secretion of Pancreatic β-Cells through Increased Production of ROS and Mitochondrial Dysfunction Mediated by Upregulation of UCP2 and MAPKs

    Directory of Open Access Journals (Sweden)

    Jinshuang Bo

    2016-01-01

    Full Text Available Methylglyoxal (MG is a highly reactive glucose metabolic intermediate and a major precursor of advanced glycation end products. MG level is elevated in hyperglycemic disorders such as diabetes mellitus. Substantial evidence has shown that MG is involved in the pathogenesis of diabetes and diabetic complications. We investigated the impact of MG on insulin secretion by MIN6 and INS-1 cells and the potential mechanisms of this effect. Our study demonstrates that MG impaired insulin secretion by MIN6 or ISN-1 cells in a dose-dependent manner. It increased reactive oxygen species (ROS production and apoptosis rate in MIN6 or ISN-1 cells and inhibited mitochondrial membrane potential (MMP and ATP production. Furthermore, the expression of UCP2, JNK, and P38 as well as the phosphorylation JNK and P38 was increased by MG. These effects of MG were attenuated by MG scavenger N-acetyl cysteine. Collectively, these data indicate that MG impairs insulin secretion of pancreatic β-cells through increasing ROS production. High levels of ROS can damage β-cells directly via JNK/P38 upregulation and through activation of UCP2 resulting in reduced MMP and ATP production, leading to β-cell dysfunction and impairment of insulin production.

  15. Pragmatic communication is impaired in Parkinson disease.

    Science.gov (United States)

    Hall, Deborah; Ouyang, Bichun; Lonnquist, Eryn; Newcombe, Jill

    2011-05-01

    The purpose of this study was to determine whether severity of disease, cognitive function, age, gender, or amount of social interaction were associated with pragmatic dysfunction in Parkinson disease. No studies have previously been done to investigate variables that may be associated with pragmatic dysfunction in Parkinson disease. A case-control study was conducted with 17 Parkinson disease patients and 17 convenience controls. Each Parkinson disease patient and a control were interviewed, and their pragmatic skills were evaluated using a scale of pragmatic communication skills. Correlation analysis was used to determine what factors were associated with pragmatic dysfunction in the Parkinson disease patients. Cases scored lower on the pragmatic scale with a mean of 29.7 compared with 38.9 in the controls (p communication skills had moderate to strong correlations with the MMSE (r = .81, p = .002), Unified Parkinson's Disease Rating Scale score (r = -.71, p = .002), and duration of disease (r = -.53, p = .03). These results show that Parkinson disease patients have impaired pragmatic function compared with controls on both verbal and nonverbal sections, and this impairment correlates with mental state, duration, and severity of disease.

  16. Dysfunctional overnight memory consolidation in ecstasy users.

    Science.gov (United States)

    Smithies, Vanessa; Broadbear, Jillian; Verdejo-Garcia, Antonio; Conduit, Russell

    2014-08-01

    Sleep plays an important role in the consolidation and integration of memory in a process called overnight memory consolidation. Previous studies indicate that ecstasy users have marked and persistent neurocognitive and sleep-related impairments. We extend past research by examining overnight memory consolidation among regular ecstasy users (n=12) and drug naïve healthy controls (n=26). Memory recall of word pairs was evaluated before and after a period of sleep, with and without interference prior to testing. In addition, we assessed neurocognitive performances across tasks of learning, memory and executive functioning. Ecstasy users demonstrated impaired overnight memory consolidation, a finding that was more pronounced following associative interference. Additionally, ecstasy users demonstrated impairments on tasks recruiting frontostriatal and hippocampal neural circuitry, in the domains of proactive interference memory, long-term memory, encoding, working memory and complex planning. We suggest that ecstasy-associated dysfunction in fronto-temporal circuitry may underlie overnight consolidation memory impairments in regular ecstasy users. © The Author(s) 2014.

  17. Pseudotumor Cerebri and Glymphatic Dysfunction

    Directory of Open Access Journals (Sweden)

    Marcio Luciano de Souza Bezerra

    2018-01-01

    Full Text Available In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF through the brain parenchyma along paravascular spaces (PVSs and by exchanges with the interstitial fluid (IF. Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH. The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer’s disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses.

  18. Pseudotumor Cerebri and Glymphatic Dysfunction.

    Science.gov (United States)

    Bezerra, Marcio Luciano de Souza; Ferreira, Ana Carolina Andorinho de Freitas; de Oliveira-Souza, Ricardo

    2017-01-01

    In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF) through the brain parenchyma along paravascular spaces (PVSs) and by exchanges with the interstitial fluid (IF). Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH). The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i) visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii) there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii) glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer's disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses.

  19. Cognitive Impairment in Bipolar Disorder: Treatment and Prevention Strategies.

    Science.gov (United States)

    Solé, Brisa; Jiménez, Esther; Torrent, Carla; Reinares, Maria; Bonnin, Caterina Del Mar; Torres, Imma; Varo, Cristina; Grande, Iria; Valls, Elia; Salagre, Estela; Sanchez-Moreno, Jose; Martinez-Aran, Anabel; Carvalho, André F; Vieta, Eduard

    2017-08-01

    Over the last decade, there has been a growing appreciation of the importance of identifying and treating cognitive impairment associated with bipolar disorder, since it persists in remission periods. Evidence indicates that neurocognitive dysfunction may significantly influence patients' psychosocial outcomes. An ever-increasing body of research seeks to achieve a better understanding of potential moderators contributing to cognitive impairment in bipolar disorder in order to develop prevention strategies and effective treatments. This review provides an overview of the available data from studies examining treatments for cognitive dysfunction in bipolar disorder as well as potential novel treatments, from both pharmacological and psychological perspectives. All these data encourage the development of further studies to find effective strategies to prevent and treat cognitive impairment associated with bipolar disorder. These efforts may ultimately lead to an improvement of psychosocial functioning in these patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  20. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination

    Directory of Open Access Journals (Sweden)

    Weniger Dorothea

    2009-12-01

    Full Text Available Abstract Objective To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD with deficient haptic perception. Methods Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. Results We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. Conclusion PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.

  1. Hypothalamic dysfunction following whole-brain irradiation

    International Nuclear Information System (INIS)

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-01-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage

  2. Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?

    Directory of Open Access Journals (Sweden)

    Danny Moore

    2008-04-01

    Full Text Available Danny Moore, Alon Harris, Darrell WuDunn, Nisha Kheradiya, Brent Siesky1Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USAAbstract: Primary open angle glaucoma (OAG is a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and associated visual field loss. OAG is an emerging disease with increasing costs and negative outcomes, yet its fundamental pathophysiology remains largely undetermined. A major treatable risk factor for glaucoma is elevated intraocular pressure (IOP. Despite the medical lowering of IOP, however, some glaucoma patients continue to experience disease progression and subsequent irreversible vision loss. The scientific community continues to accrue evidence suggesting that alterations in ocular blood flow play a prominent role in OAG disease processes. This article develops the thesis that dysfunctional regulation of ocular blood flow may contribute to glaucomatous optic neuropathy. Evidence suggests that impaired vascular autoregulation renders the optic nerve head susceptible to decreases in ocular perfusion pressure, increases in IOP, and/or increased local metabolic demands. Ischemic damage, which likely contributes to further impairment in autoregulation, results in changes to the optic nerve head consistent with glaucoma. Included in this review are discussions of conditions thought to contribute to vascular regulatory dysfunction in OAG, including atherosclerosis, vasospasm, and endothelial dysfunction.Keywords: glaucoma, autoregulation, blood flow, atherosclerosis, vasospasm, endothelial dysfunction

  3. Identifying and characterising cerebral visual impairment in children: a review.

    Science.gov (United States)

    Philip, Swetha Sara; Dutton, Gordon N

    2014-05-01

    Cerebral visual impairment (CVI) comprises visual malfunction due to retro-chiasmal visual and visual association pathway pathology. This can be isolated or accompany anterior visual pathway dysfunction. It is a major cause of low vision in children in the developed and developing world due to increasing survival in paediatric and neonatal care. CVI can present in many combinations and degrees. There are multiple causes and it is common in children with cerebral palsy. CVI can be identified easily, if a structured approach to history-taking is employed. This review describes the features of CVI and describes practical management strategies aimed at helping affected children. A literature review was undertaken using 'Medline' and 'Pubmed'. Search terms included cerebral visual impairment, cortical visual impairment, dorsal stream dysfunction and visual function in cerebral palsy. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  4. The Facts About Sexual (Dys)function in Schizophrenia: An Overview of Clinically Relevant Findings

    Science.gov (United States)

    de Boer, Marrit K.; Castelein, Stynke; Wiersma, Durk; Schoevers, Robert A.; Knegtering, Henderikus

    2015-01-01

    A limited number of studies have evaluated sexual functioning in patients with schizophrenia. Most patients show an interest in sex that differs little from the general population. By contrast, psychiatric symptoms, institutionalization, and psychotropic medication contribute to frequently occurring impairments in sexual functioning. Women with schizophrenia have a better social outcome, longer lasting (sexual) relationships, and more offspring than men with schizophrenia. Still, in both sexes social and interpersonal impairments limit the development of stable sexual relationships. Although patients consider sexual problems to be highly relevant, patients and clinicians not easily discuss these spontaneously, leading to an underestimation of their prevalence and contributing to decreased adherence to treatment. Studies using structured interviews or questionnaires result in many more patients reporting sexual dysfunctions. Although sexual functioning can be impaired by different factors, the use of antipsychotic medication seems to be an important factor. A comparison of different antipsychotics showed high frequencies of sexual dysfunction for risperidone and classical antipsychotics, and lower frequencies for clozapine, olanzapine, quetiapine, and aripiprazole. Postsynaptic dopamine antagonism, prolactin elevation, and α1-receptor blockade may be the most relevant factors in the pathogenesis of antipsychotic-induced sexual dysfunction. Psychosocial strategies to treat antipsychotic-induced sexual dysfunction include psychoeducation and relationship counseling. Pharmacological strategies include lowering the dose or switching to a prolactin sparing antipsychotic. Also, the addition of a dopamine agonist, aripiprazole, or a phosphodiesterase-5 inhibitor has shown some promising results, but evidence is currently scarce. PMID:25721311

  5. Aging and recurrent urinary tract infections are associated with bladder dysfunction in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Tzu-Li Lin

    2012-09-01

    Conclusion: The urodynamic study revealed a temporal effect on bladder function, and women with diabetic voiding dysfunction were found to have had a longer duration of DM than women with an overactive detrusor. However, aging and recurrent urinary tract infections are the two independent factors that contribute to impaired voiding function and diabetic bladder dysfunction.

  6. Proximal tubular dysfunction as an indicator of chronic graft dysfunction

    Directory of Open Access Journals (Sweden)

    N.O.S. Câmara

    2009-03-01

    Full Text Available New strategies are being devised to limit the impact of renal sclerosis on graft function. Individualization of immunosuppression, specifically the interruption of calcineurin-inhibitors has been tried in order to promote better graft survival once chronic graft dysfunction has been established. However, the long-term impact of these approaches is still not totally clear. Nevertheless, patients at higher risk for tubular atrophy and interstitial fibrosis (TA/IF development should be carefully monitored for tubular function as well as glomerular performance. Since tubular-interstitial impairment is an early event in TA/IF pathogenesis and associated with graft function, it seems reasonable that strategies directed at assessing tubular structural integrity and function would yield important functional and prognostic data. The measurement of small proteins in urine such as α-1-microglobulin, N-acetyl-beta-D-glucosaminidase, alpha/pi S-glutathione transferases, β-2 microglobulin, and retinol binding protein is associated with proximal tubular cell dysfunction. Therefore, its straightforward assessment could provide a powerful tool in patient monitoring and ongoing clinical assessment of graft function, ultimately helping to facilitate longer patient and graft survival associated with good graft function.

  7. Behavioral measures of cochlear compression and temporal resolution as predictors of speech masking release in hearing-impaired listeners

    Science.gov (United States)

    Gregan, Melanie J.; Nelson, Peggy B.; Oxenham, Andrew J.

    2013-01-01

    Hearing-impaired (HI) listeners often show less masking release (MR) than normal-hearing listeners when temporal fluctuations are imposed on a steady-state masker, even when accounting for overall audibility differences. This difference may be related to a loss of cochlear compression in HI listeners. Behavioral estimates of compression, using temporal masking curves (TMCs), were compared with MR for band-limited (500–4000 Hz) speech and pure tones in HI listeners and age-matched, noise-masked normal-hearing (NMNH) listeners. Compression and pure-tone MR estimates were made at 500, 1500, and 4000 Hz. The amount of MR was defined as the difference in performance between steady-state and 10-Hz square-wave-gated speech-shaped noise. In addition, temporal resolution was estimated from the slope of the off-frequency TMC. No significant relationship was found between estimated cochlear compression and MR for either speech or pure tones. NMNH listeners had significantly steeper off-frequency temporal masking recovery slopes than did HI listeners, and a small but significant correlation was observed between poorer temporal resolution and reduced MR for speech. The results suggest either that the effects of hearing impairment on MR are not determined primarily by changes in peripheral compression, or that the TMC does not provide a sufficiently reliable measure of cochlear compression. PMID:24116426

  8. Impaired temporal, not just spatial, resolution in amblyopia.

    Science.gov (United States)

    Spang, Karoline; Fahle, Manfred

    2009-11-01

    In amblyopia, neuronal deficits deteriorate spatial vision including visual acuity, possibly because of a lack of use-dependent fine-tuning of afferents to the visual cortex during infancy; but temporal processing may deteriorate as well. Temporal, rather than spatial, resolution was investigated in patients with amblyopia by means of a task based on time-defined figure-ground segregation. Patients had to indicate the quadrant of the visual field where a purely time-defined square appeared. The results showed a clear decrease in temporal resolution of patients' amblyopic eyes compared with the dominant eyes in this task. The extent of this decrease in figure-ground segregation based on time of motion onset only loosely correlated with the decrease in spatial resolution and spanned a smaller range than did the spatial loss. Control experiments with artificially induced blur in normal observers confirmed that the decrease in temporal resolution was not simply due to the acuity loss. Amblyopia not only decreases spatial resolution, but also temporal factors such as time-based figure-ground segregation, even at high stimulus contrasts. This finding suggests that the realm of neuronal processes that may be disturbed in amblyopia is larger than originally thought.

  9. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output.

    Science.gov (United States)

    Zhao, K; Ao, Y; Harper, R M; Go, V L W; Yang, H

    2013-09-05

    Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56-81% in GK rats. Fasting (48h) and refeeding (2h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. Published by Elsevier Ltd.

  10. Predictors of Cognitive Dysfunction among Patients with Moderate to Severe Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Uduak Effiong Williams

    2017-04-01

    Full Text Available Cognitive dysfunction including dementia is a common complication of chronic kidney disease (CKD that has just been recently appreciated. It has negative outcomes in the management of patients with CKD. This study explored the possible biochemical and clinical features of patients with CKD that can predict the occurrence of cognitive impairment in patients with moderate to severe CKD. We evaluate patients with stages 3-5 CKD for the occurrence and predictors of cognitive impairment. Multiple areas of cognitive function were tested in this single-center study using Community Screening Interview for Dementia (CSID and Trial-Making Test A (TMTA/Trial-Making Test B (TMTB. Cognitive impairment was correlated with patients’ routine biochemical, hematological, and selected clinical parameters. We observed a negative correlation between cognitive impairment and patient’s serum calcium (r = 0.240; p = 0.033 and estimated Glomerular filtration rate (eGFR (r = 0.379; p = 0.0006. Therefore, eGFR is an accurate predictor of cognitive dysfunction in patients with moderate to severe CKD. Early evaluation of cognitive function in CKD is indeed advised for optimal outcome in the management of patients with CKD.

  11. Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: advances, gaps, and needs in current research.

    Science.gov (United States)

    Goschke, Thomas

    2014-01-01

    Disadvantageous decision-making and impaired volitional control over actions, thoughts, and emotions are characteristics of a wide range of mental disorders such as addiction, eating disorders, depression, and anxiety disorders and may reflect transdiagnostic core mechanisms and possibly vulnerability factors. Elucidating the underlying neurocognitive mechanisms is a precondition for moving from symptom-based to mechanism-based disorder classifications and ultimately mechanism-targeted interventions. However, despite substantial advances in basic research on decision-making and cognitive control, there are still profound gaps in our current understanding of dysfunctions of these processes in mental disorders. Central unresolved questions are: (i) to which degree such dysfunctions reflect transdiagnostic mechanisms or disorder-specific patterns of impairment; (ii) how phenotypical features of mental disorders relate to dysfunctional control parameter settings and aberrant interactions between large-scale brain systems involved in habit and reward-based learning, performance monitoring, emotion regulation, and cognitive control; (iii) whether cognitive control impairments are consequences or antecedent vulnerability factors of mental disorders; (iv) whether they reflect generalized competence impairments or context-specific performance failures; (v) whether not only impaired but also chronic over-control contributes to mental disorders. In the light of these gaps, needs for future research are: (i) an increased focus on basic cognitive-affective mechanisms underlying decision and control dysfunctions across disorders; (ii) longitudinal-prospective studies systematically incorporating theory-driven behavioural tasks and neuroimaging protocols to assess decision-making and control dysfunctions and aberrant interactions between underlying large-scale brain systems; (iii) use of latent-variable models of cognitive control rather than single tasks; (iv) increased focus on

  12. Multiple sclerosis with predominant, severe cognitive impairment

    Science.gov (United States)

    Staff, Nathan P.; Lucchinetti, Claudia F.; Keegan, B. Mark

    2009-01-01

    Objective To describe the characteristics of multiple sclerosis (MS) presenting with severe cognitive impairment as its primary disabling manifestation. Design Retrospective case series. Setting Tertiary referral center. Patients Patients were identified through the Mayo Clinic data retrieval system (1996–2008) with definite MS (McDonald criteria) and severe cognitive impairment as their primary neurological symptom without accompanying significant MS-related impairment or alternative diagnosis for cognitive dysfunction. Twenty-three patients meeting inclusion criteria were compared regarding demographics, clinical course and radiological features. Main Outcome Measures Demographic, clinical, and radiological characteristics of the disease. Results Twelve patients were men. The median age of the first clinical symptom suggestive of CNS demyelination was 33 years, and severe MS-related cognitive impairment developed at a median of 39 years. Cognitive impairment could be dichotomized as subacute fulminant (n=9) or chronic progressive (n=14) in presentation, which corresponded to subsequent relapsing or progressive MS courses. Study patients commonly exhibited psychiatric (65%), mild cerebellar (57%) and cortical symptoms and signs (e.g. seizure, aphasia, apraxia) (39%). Fourteen of 21 (67%), where documented, smoked cigarettes. Brain MRI demonstrated diffuse cerebral atrophy in 16 and gadolinium enhancing lesions in 11. Asymptomatic spinal cord MRI lesions were present in 12 of 16 patients (75%). Immunomodulatory therapies were generally ineffective in improving these patients. Conclusions We describe patients with MS whose clinical phenotype is characterized by severe cognitive dysfunction and prominent cortical and psychiatric signs presenting as a subacute fulminant or chronic progressive clinical course. Cigarette smokers may be over represented in this phenotype. PMID:19752304

  13. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase......, the molecular mechanisms responsible for this defect remain unknown. Recently, the use of phospho-specific antibodies in human diabetic muscle has revealed hyperphosphorylation of glycogen synthase at sites not regulated by the classical insulin signaling pathway. In addition, novel approaches such as gene...

  14. Preventing cognitive impairment in children with epilepsy

    NARCIS (Netherlands)

    Braun, Kees P J

    PURPOSE OF REVIEW: Cognitive impairments are common in children with epilepsy. They may already be present before the onset of epilepsy or occur – and even progress – during its course. Many variables contribute to cognitive dysfunction. Those that can be targeted to prevent (further) cognitive

  15. 2,3,7,8-TCDD exposure, endothelial dysfunction and impaired microvascular reactivity

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Prázdný, M.; Škrha, J.; Fenclová, Z.; Kalousová, M.; Urban, P.; Navrátil, Tomáš; Šenholdová, Z.; Šmerhovský, Z.

    2007-01-01

    Roč. 26, - (2007), s. 705-713 ISSN 0960-3271 Institutional research plan: CEZ:AV0Z40400503 Keywords : 2,3,7,8-TCDD * endothelial dysfunction * oxidative stress * superoxide dismutase Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.335, year: 2007

  16. Autonomic dysfunction in mild cognitive impairment: evidence from power spectral analysis of heart rate variability in a cross-sectional case-control study.

    Directory of Open Access Journals (Sweden)

    Paola Nicolini

    Full Text Available Mild cognitive impairment (MCI is set to become a major health problem with the exponential ageing of the world's population. The association between MCI and autonomic dysfunction, supported by indirect evidence and rich with clinical implications in terms of progression to dementia and increased risk of mortality and falls, has never been specifically demonstrated.To conduct a comprehensive assessment of autonomic function in subjects with MCI by means of power spectral analysis (PSA of heart rate variability (HRV at rest and during provocative manoeuvres.This cross-sectional study involved 80 older outpatients (aged ≥ 65 consecutively referred to a geriatric unit and diagnosed with MCI or normal cognition (controls based on neuropsychological testing. PSA was performed on 5-minute electrocardiographic recordings under three conditions--supine rest with free breathing (baseline, supine rest with paced breathing at 12 breaths/minute (parasympathetic stimulation, and active standing (orthosympathetic stimulation--with particular focus on the changes from baseline to stimulation of indices of sympathovagal balance: normalized low frequency (LFn and high frequency (HFn powers and the LF/HF ratio. Blood pressure (BP was measured at baseline and during standing. Given its exploratory nature in a clinical population the study included subjects on medications with a potential to affect HRV.There were no significant differences in HRV indices between the two groups at baseline. MCI subjects exhibited smaller physiological changes in all three HRV indices during active standing, consistently with a dysfunction of the orthosympathetic system. Systolic BP after 10 minutes of standing was lower in MCI subjects, suggesting dysautonomia-related orthostatic BP dysregulation.Our study is novel in providing evidence of autonomic dysfunction in MCI. This is associated with orthostatic BP dysregulation and the ongoing follow-up of the study population will

  17. [Lung dysfunction in patients with mild chronic obstructive bronchitis].

    Science.gov (United States)

    Nefedov, V B; Popova, L A; Shergina, E A

    2004-01-01

    VC, FVC, FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, TCL, TGV, RV, Ravt, Riin, Rex, DLCO-SS, PaO2, and PaO2 were determined in 33 patients with mild chronic obstructive lung disease (FEV1 > 70% of the normal value). All the patients were found to have impaired bronchial patency; most (63.6%) patients had lung volume and capacity changes, almost half (45.5%) the patients had pulmonary gas exchange dysfunction. Impaired bronchial patency mainly appeared as decreased MEF50, MEF15, and FEV1/VC%; altered lung volumes and capacities manifested chiefly by increased RV and decreased VC; pulmonary gas exchange dysfunction showed up primarily as lowered PaO2. The magnitude of the observed functional changes was generally slight. MEF50, MEF75, FEV1/VC%, and VC dropped to 59-20 and 79-70% of the normal value, respectively. RV increased up to 142-196% of the normal value; PaO2 reduced up to 79-60% mm Hg.

  18. Sensory Dysfunction and Sexuality in the U.S. Population of Older Adults.

    Science.gov (United States)

    Zhong, Selena; Pinto, Jayant M; Wroblewski, Kristen E; McClintock, Martha K

    2018-04-01

    The sexual experience is shaped by sensory function; with aging, sensory dysfunction may interfere with sexuality and sexual behavior between partners. Specifically, older adults with age-related sensory dysfunction may have less sexual activity than those with better sensory function. In addition, since sexual desire and attraction rests in part upon sensory function, sensory dysfunction may also be associated with less sexual motivation. To test the association between sexual activity and motivation in older adults and their sensory dysfunction. Sensory dysfunction was measured both by global sensory impairment (a validated measure of dysfunction shared among the 5 classic senses: olfaction, vision, taste, touch, hearing) and by total sensory burden (cumulative sensory loss). Sexual activity was quantified by frequency and type of sexual behavior. Sexual motivation was measured by the frequency of sexual ideation and the importance of sex to the respondent. We used cross-sectional data from a nationally representative sample of community-dwelling older adults (aged 57-85 years) in the United States (National Social Life, Health, and Aging Project, N = 3,005) in logistic regression analyses. Sexual activity, sexual motivation, and satisfaction with the sexual relationship were self-reported. Older adults with sensory dysfunction were less likely to be sexually active-an association that persisted when accounting for other factors that also affected sexual activity (age, gender, partnered status, mental and physical health, and relationship satisfaction). Nonetheless, sensory dysfunction did not impair sexual motivation, nor affect the physical and emotional satisfaction with the sexual relationship. Among currently sexually active older adults, sensory dysfunction did not affect the frequency of sex or the type of sexual activity (foreplay, vaginal intercourse, or oral sex). These results were the same for 2 different measures of sensory dysfunction. This is the

  19. Surgical Management of Neurogenic Lower Urinary Tract Dysfunction.

    Science.gov (United States)

    Gor, Ronak A; Elliott, Sean P

    2017-08-01

    Surgery for patients with neurogenic urinary tract dysfunction (nLUTD) is indicated when medical therapy fails, to correct conditions affecting patient safety, or when surgery can enhance the quality of life better than nonoperative management. Examples include failure of maximal medical therapy, inability to perform or aversion to clean intermittent catheterization, refractory incontinence, and complications from chronic, indwelling catheters. Adults with nLUTD have competing risk factors, including previous operations, obesity, poor nutritional status, complex living arrangements, impaired dexterity/paralysis, and impaired executive and cognitive function. Complications are common in this subgroup of patients requiring enduring commitments from surgeons, patients, and their caretakers. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cognitive impairment in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Jing YUAN

    2017-07-01

    Full Text Available Parkinson's disease cognitive impairment (PD-CI is one of the major non-motor symtoms (NMS of PD, including Parkinson's disease with mild cognitive impairment (PD - MCI and Parkinson's disease dementia (PDD. Executive dysfunction is relatively prominent, but other cognitive domains as visuospatial ability, memory and language can also be affected. Main risk factors for PD-CI include male gender, advanced age, low education, severe motor symptoms, low baseline cognitive function and excessive daytime sleepiness (EDS. Lewy bodies are main pathological changes, and Alzheimer's disease (AD related pathological changes can also be seen. The application value of decreased α?synuclein (α-Syn and β-amyloid 1-42 (Aβ1-42 levels in cerebrospinal fluid (CSF as biomarkers remains controversial. There are few related research and no defined pathogenic genes currently. Both dopaminergic pathway and acetylcholinergic pathway are involved in the occurrence of PD - CI as demonstrated in PET studies. Cortical and subcortical atrophy are associated with PD - CI as observed in MRI studies. Olfactory dysfunction may be one of the predictors of cognitive impairment. PDD and dementia with Lewy bodies (DLB share common biological characteristics, therefore the differential diagnosis sometimes is difficult. Cholinesterase inhibitors (ChEIs and memantine help to improve clinical symptoms, but treatment decision should be made with individualization. Cognitive behavioral treatment (CBT has potential clinical value and should be investigated by more studies. DOI: 10.3969/j.issn.1672-6731.2017.06.004

  1. Extent and neural basis of semantic memory impairment in mild cognitive impairment.

    Science.gov (United States)

    Barbeau, Emmanuel J; Didic, Mira; Joubert, Sven; Guedj, Eric; Koric, Lejla; Felician, Olivier; Ranjeva, Jean-Philippe; Cozzone, Patrick; Ceccaldi, Mathieu

    2012-01-01

    An increasing number of studies indicate that semantic memory is impaired in mild cognitive impairment (MCI). However, the extent and the neural basis of this impairment remain unknown. The aim of the present study was: 1) to evaluate whether all or only a subset of semantic domains are impaired in MCI patients; and 2) to assess the neural substrate of the semantic impairment in MCI patients using voxel-based analysis of MR grey matter density and SPECT perfusion. 29 predominantly amnestic MCI patients and 29 matched control subjects participated in this study. All subjects underwent a full neuropsychological assessment, along with a battery of five tests evaluating different domains of semantic memory. A semantic memory composite Z-score was established on the basis of this battery and was correlated with MRI grey matter density and SPECT perfusion measures. MCI patients were found to have significantly impaired performance across all semantic tasks, in addition to their anterograde memory deficit. Moreover, no temporal gradient was found for famous faces or famous public events and knowledge for the most remote decades was also impaired. Neuroimaging analyses revealed correlations between semantic knowledge and perirhinal/entorhinal areas as well as the anterior hippocampus. Therefore, the deficits in the realm of semantic memory in patients with MCI is more widespread than previously thought and related to dysfunction of brain areas beyond the limbic-diencephalic system involved in episodic memory. The severity of the semantic impairment may indicate a decline of semantic memory that began many years before the patients first consulted.

  2. Cognitive Impairment in Chronic Alcoholics: Some Cause for Optimism.

    Science.gov (United States)

    Goldman, Mark S.

    1983-01-01

    It appears that, although the cognitive functioning of many alcoholics remains impaired even after drinking has stopped, considerable recovery can occur. New findings now suggest the possibility of reducing cognitive dysfunction and enhancing alcoholism treatment outcomes. (CMG)

  3. A longitudinal analysis of cognitive dysfunction, coping, and depression in multiple sclerosis.

    Science.gov (United States)

    Rabinowitz, Amanda R; Arnett, Peter A

    2009-09-01

    Using a longitudinal design, the authors examined coping and cognitive functioning in the development of depression in individuals with multiple sclerosis (MS). Coping style was evaluated in 2 conceptually distinct roles: as moderator and mediator of the impact of cognitive dysfunction on depression. Using indices derived from the COPE (C. S. Carver, M. F. Scheier, & J. K. Weintraub, 1989), the authors operationalized coping in 3 ways-as active, avoidant, and an index accounting for relative levels of both. Coping both moderated and partially mediated the relationship between cognitive dysfunction and depression. Moderation results suggest that the relationship between cognitive dysfunction and depression is dependent on coping style-adaptive coping protects individuals from experiencing depression related to their cognitive deficits; however, when individuals use maladaptive coping, cognitive dysfunction puts them at risk for depression. Mediational results suggest that cognitive dysfunction leads to depression partially due to cognitive dysfunction's effects on coping. That is, cognitive deficits may impair individuals' ability to use adaptive coping strategies, leaving them more likely to use maladaptive strategies. Clinical and theoretical implications of these findings are discussed.

  4. [Behavioral impairments in Parkinson's disease].

    Science.gov (United States)

    Kashihara, Kenichi

    2004-09-01

    Behavioral impairments in parkinsonian patients include agitation, hypersexuality, stereotypic movement, pathological gambling, abuse of antiparkinsonian drugs, REM sleep behavioral disorder, and restless legs syndrome. Dementia, psychoses, and emotional disorders, such as depression and anxiety/panic disorder, also impair behavior. Symptoms may be produced by dysfunction of the central nervous system, medication, and/or the psychosocial problems associated with Parkinson's disease. Treatment therefore should be based on the cause of the symptoms seen. In some cases, the reduction or change of antiparkinsonian drugs, or both, may be effective. Treatment of the motor symptoms of Parkinson's disease, including motor fluctuations, may reduce the risk of panic attacks being evoked in the 'off' period. Use of antidepressants, sedatives, and neuroleptics may often be effective. Physicians should identify the causes of the symptoms of behavioral impairment and select appropriate treatments.

  5. Orofacial manual therapy improves cervical movement impairment associated with headache and features of temporomandibular dysfunction: a randomized controlled trial.

    Science.gov (United States)

    von Piekartz, Harry; Hall, Toby

    2013-08-01

    There is evidence that temporomandibular disorder (TMD) may be a contributing factor to cervicogenic headache (CGH), in part because of the influence of dysfunction of the temporomandibular joint on the cervical spine. The purpose of this randomized controlled trial was to determine whether orofacial treatment in addition to cervical manual therapy, was more effective than cervical manual therapy alone on measures of cervical movement impairment in patients with features of CGH and signs of TMD. In this study, 43 patients (27 women) with headache for more than 3-months and with some features of CGH and signs of TMD were randomly assigned to receive either cervical manual therapy (usual care) or orofacial manual therapy to address TMD in addition to usual care. Subjects were assessed at baseline, after 6 treatment sessions (3-months), and at 6-months follow-up. 38 subjects (25 female) completed all analysis at 6-months follow-up. The outcome criteria were: cervical range of movement (including the C1-2 flexion-rotation test) and manual examination of the upper 3 cervical vertebra. The group that received orofacial treatment in addition to usual care showed significant reduction in all aspects of cervical impairment after the treatment period. These improvements persisted to the 6-month follow-up, but were not observed in the usual care group at any point. These observations together with previous reports indicate that manual therapists should look for features of TMD when examining patients with headache, particularly if treatment fails when directed to the cervical spine. Copyright © 2013. Published by Elsevier Ltd.

  6. Visual impairment and traits of autism in children.

    Science.gov (United States)

    Wrzesińska, Magdalena; Kapias, Joanna; Nowakowska-Domagała, Katarzyna; Kocur, Józef

    2017-04-30

    Visual impairment present from birth or from an early childhood may lead to psychosocial and emotional disorders. 11-40% of children in the group with visual impairment show traits of autism. The aim of this paper was to present the selected examples of how visual impairment in children is related to the occurrence of autism and to describe the available tools for diagnosing autism in children with visual impairment. So far the relation between visual impairment in children and autism has not been sufficiently confirmed. Psychiatric and psychological diagnosis of children with visual impairment has some difficulties in differentiating between "blindism" and traits typical for autism resulting from a lack of standardized diagnostic tools used to diagnosing children with visual impairment. Another difficulty in diagnosing autism in children with visual impairment is the coexistence of other disabilities in case of most children with vision impairment. Additionally, apart from difficulties in diagnosing autistic disorders in children with eye dysfunctions there is also a question of what tools should be used in therapy and rehabilitation of patients.

  7. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Science.gov (United States)

    Sartori, Michelle; Conti, Filipe F.; Dias, Danielle da Silva; dos Santos, Fernando; Machi, Jacqueline F.; Palomino, Zaira; Casarini, Dulce E.; Rodrigues, Bruno; De Angelis, Kátia; Irigoyen, Maria-Claudia

    2017-01-01

    Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice. Methods: Metabolic parameters, cardiac function, arterial pressure (AP), autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group) and ob/ob mice (OB group). Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF) and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress. Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals. PMID:28878683

  8. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Michelle Sartori

    2017-08-01

    Full Text Available Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice.Methods: Metabolic parameters, cardiac function, arterial pressure (AP, autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group and ob/ob mice (OB group.Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress.Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals.

  9. Vascular Cognitive Impairment Linked to Brain Endothelium Inflammation in Early Stages of Heart Failure in Mice.

    Science.gov (United States)

    Adamski, Mateusz G; Sternak, Magdalena; Mohaissen, Tasnim; Kaczor, Dawid; Wierońska, Joanna M; Malinowska, Monika; Czaban, Iwona; Byk, Katarzyna; Lyngsø, Kristina S; Przyborowski, Kamil; Hansen, Pernille B L; Wilczyński, Grzegorz; Chlopicki, Stefan

    2018-03-26

    Although advanced heart failure (HF) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved. Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte-specific overexpression of G-αq*44 protein were studied before the end-stage HF, at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively. In 6- to 10-month-old but not in 3-month-old Tgαq*44 mice, behavioral and cognitive impairment was identified with compromised blood-brain barrier permeability, most significantly in brain cortex, that was associated with myelin sheet loss and changes in astrocytes and microglia. Brain endothelial cells displayed increased E-selectin immunoreactivity, which was accompanied by increased amyloid-β 1-42 accumulation in piriform cortex and increased cortical oxidative stress (8-OHdG immunoreactivity). Resting cerebral blood flow measured by magnetic resonance imaging in vivo was preserved, but ex vivo NO-dependent cortical arteriole flow regulation was impaired. Platelet hyperreactivity was present in 3- to 10-month-old Tgαq*44 mice, but it was not associated with increased platelet-dependent thrombogenicity. We report for the first time that vascular cognitive impairment is already present in the early stage of HF development, even before left ventricle systolic dysfunction. The underlying pathomechanism, independent of brain hypoperfusion, involves preceding platelet hyperreactivity and brain endothelium inflammatory activation. © 2018 The Authors. Published on behalf of the American Heart

  10. Aging and recurrent urinary tract infections are associated with bladder dysfunction in type 2 diabetes.

    Science.gov (United States)

    Lin, Tzu-Li; Chen, Gin-Den; Chen, Yi-Ching; Huang, Chien-Ning; Ng, Soo-Cheen

    2012-09-01

    The objective of this study was to demonstrate the diversity of urodynamic findings and temporal effects on bladder dysfunction in diabetes as well as to evaluate the predisposing factors that attenuate the storage and voiding function of diabetic women. In this prospective study, 181 women with type 2 diabetes mellitus (DM) and lower urinary tract dysfunction underwent complete urogynecological evaluations and urodynamic studies. The patients' histories of DM and the treatment agents used were documented from chart records and interviews. The urodynamic diagnoses were recategorized into two groups for comparison, namely overactive detrusor (detrusor overactivity and/or increased bladder sensation as well as mixed incontinence) and voiding dysfunction (detrusor hyperactivity with insufficient contractility and detrusor underactivity with poor voiding efficiency) in order to evaluate the temporal effect of DM on diabetic bladder dysfunction. The development of bladder dysfunction showed a trend involving time-dependent progression, beginning with storage problems (i.e. advancing from urodynamic stress incontinence to detrusor overactivity and/or increased bladder sensation) and eventually led to impaired voiding function. The duration of DM relative to the urodynamic diagnoses of these women was longer in women with voiding dysfunction (6.8 ± 2.8 years with urodynamic stress incontinence, 7.3 ± 6.5 years with detrusor overactivity and/or increased bladder sensation, and 10.4 ± 8.3 years with women with voiding dysfunction). Notwithstanding these findings, stepwise logistic regression analysis indicated that age and recurrent urinary tract infections were the two independent factors associated with developing voiding dysfunction. The urodynamic study revealed a temporal effect on bladder function, and women with diabetic voiding dysfunction were found to have had a longer duration of DM than women with an overactive detrusor. However, aging and recurrent

  11. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  12. Actively Coping with Violation: Exploring Upward Dissent Patterns in Functional, Dysfunctional, and Deserted Psychological Contract End States

    Directory of Open Access Journals (Sweden)

    René Schalk

    2018-02-01

    Full Text Available Recently, scholars have emphasized the importance of examining how employees cope with psychological contract violation and how the coping process contributes to psychological contract violation resolution and post-violation psychological contracts. Recent work points to the important role of problem-focused coping. Yet, to date, problem-focused coping strategies have not been conceptualized on a continuum from constructive to destructive strategies. Consequently, potential differences in the use of specific types of problem-focused coping strategies and the role these different strategies play in the violation resolution process has not been explored. In this study, we stress the importance of focusing on different types of problem-focused coping strategies. We explore how employee upward dissent strategies, conceptualized as different forms of problem-focused coping, contribute to violation resolution and post-violation psychological contracts. Two sources of data were used. In-depth interviews with supervisors of a Dutch car lease company provided 23 case descriptions of employee-supervisor interactions after a psychological contract violation. Moreover, a database with descriptions of Dutch court sentences provided eight case descriptions of employee-organization interactions following a perceived violation. Based on these data sources, we explored the pattern of upward dissent strategies employees used over time following a perceived violation. We distinguished between functional (thriving and reactivation, dysfunctional (impairment and dissolution and deserted psychological contract end states and explored whether different dissent patterns over time differentially contributed to the dissent outcome (i.e., psychological contract end state. The results of our study showed that the use of problem-focused coping is not as straightforward as suggested by the post-violation model. While the post-violation model suggests that problem

  13. Actively Coping with Violation: Exploring Upward Dissent Patterns in Functional, Dysfunctional, and Deserted Psychological Contract End States.

    Science.gov (United States)

    Schalk, René; De Ruiter, Melanie; Van Loon, Joost; Kuijpers, Evy; Van Regenmortel, Tine

    2018-01-01

    Recently, scholars have emphasized the importance of examining how employees cope with psychological contract violation and how the coping process contributes to psychological contract violation resolution and post-violation psychological contracts. Recent work points to the important role of problem-focused coping. Yet, to date, problem-focused coping strategies have not been conceptualized on a continuum from constructive to destructive strategies. Consequently, potential differences in the use of specific types of problem-focused coping strategies and the role these different strategies play in the violation resolution process has not been explored. In this study, we stress the importance of focusing on different types of problem-focused coping strategies. We explore how employee upward dissent strategies, conceptualized as different forms of problem-focused coping, contribute to violation resolution and post-violation psychological contracts. Two sources of data were used. In-depth interviews with supervisors of a Dutch car lease company provided 23 case descriptions of employee-supervisor interactions after a psychological contract violation. Moreover, a database with descriptions of Dutch court sentences provided eight case descriptions of employee-organization interactions following a perceived violation. Based on these data sources, we explored the pattern of upward dissent strategies employees used over time following a perceived violation. We distinguished between functional (thriving and reactivation), dysfunctional (impairment and dissolution) and deserted psychological contract end states and explored whether different dissent patterns over time differentially contributed to the dissent outcome (i.e., psychological contract end state). The results of our study showed that the use of problem-focused coping is not as straightforward as suggested by the post-violation model. While the post-violation model suggests that problem-focused coping will most

  14. Actively Coping with Violation: Exploring Upward Dissent Patterns in Functional, Dysfunctional, and Deserted Psychological Contract End States

    Science.gov (United States)

    Schalk, René; De Ruiter, Melanie; Van Loon, Joost; Kuijpers, Evy; Van Regenmortel, Tine

    2018-01-01

    Recently, scholars have emphasized the importance of examining how employees cope with psychological contract violation and how the coping process contributes to psychological contract violation resolution and post-violation psychological contracts. Recent work points to the important role of problem-focused coping. Yet, to date, problem-focused coping strategies have not been conceptualized on a continuum from constructive to destructive strategies. Consequently, potential differences in the use of specific types of problem-focused coping strategies and the role these different strategies play in the violation resolution process has not been explored. In this study, we stress the importance of focusing on different types of problem-focused coping strategies. We explore how employee upward dissent strategies, conceptualized as different forms of problem-focused coping, contribute to violation resolution and post-violation psychological contracts. Two sources of data were used. In-depth interviews with supervisors of a Dutch car lease company provided 23 case descriptions of employee-supervisor interactions after a psychological contract violation. Moreover, a database with descriptions of Dutch court sentences provided eight case descriptions of employee-organization interactions following a perceived violation. Based on these data sources, we explored the pattern of upward dissent strategies employees used over time following a perceived violation. We distinguished between functional (thriving and reactivation), dysfunctional (impairment and dissolution) and deserted psychological contract end states and explored whether different dissent patterns over time differentially contributed to the dissent outcome (i.e., psychological contract end state). The results of our study showed that the use of problem-focused coping is not as straightforward as suggested by the post-violation model. While the post-violation model suggests that problem-focused coping will most

  15. Aspartic acid in the hippocampus: a biomarker for postoperative cognitive dysfunction.

    Science.gov (United States)

    Hu, Rong; Huang, Dong; Tong, Jianbin; Liao, Qin; Hu, Zhonghua; Ouyang, Wen

    2014-01-15

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2% isoflurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethylacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction.

  16. Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin?

    Directory of Open Access Journals (Sweden)

    Jaime M. Ross

    2015-08-01

    Full Text Available Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, the proteome, and mitophagy, and mitochondrial dysfunction impairing cellular protein homeostasis by oxidative damage. Here, we review the current literature and argue that the interplay of the two systems should be considered in order to better understand the cellular dysfunction observed in ageing and age-related diseases. Such an approach may provide valuable insights into molecular mechanisms underlying the ageing process, and further discovery of treatments to counteract ageing and its associated diseases. Furthermore, we provide a hypothetical model for the heterogeneity described among individuals during ageing.

  17. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications

    OpenAIRE

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A.; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C. Ronald

    2014-01-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-...

  18. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder.

    Science.gov (United States)

    Debashree, Bandopadhyay; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Natarajan, Archana; Christopher, Rita; Nalini, Atchayaram; Bindu, Parayil Sankaran; Gayathri, Narayanappa; Srinivas Bharath, Muchukunte Mukunda

    2018-02-09

    Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. © 2018 International Society for Neurochemistry.

  19. The urodynamic evaluation of neuromodulation in patients with voiding dysfunction.

    Science.gov (United States)

    Everaert, K; Plancke, H; Lefevere, F; Oosterlinck, W

    1997-05-01

    To determine which patients with voiding dysfunction might be suitable for treatment with neuromodulation, using urodynamics to obtain an objective measure of improvement and to illustrate the effect of neuromodulation on voiding dysfunction. Patients were selected for implantation of a neuroprosthesis using a urodynamic evaluation before and during subchronic stimulation; 27 such patients (four men and 23 women, mean age 33 years, SD 15) were evaluated. Of the 27 patients, the 17 who responded well to neuromodulation all had hypocontractile detrusors and sphincter hypertonicity; sphincter relaxation during micturition was impaired. The urodynamic evaluation showed that these patients were not obstructed. Of 10 patients with spastic pelvic floor syndrome, nine responded well to the treatment. Those not responding to neuromodulation had mainly acontractile detrusors. The ideal candidates for neuromodulation are those patients with a spastic pelvic floor syndrome or with a hypocontractile detrusor, in combination with sphincter instability, and impaired sphincter relaxation. An increase of bladder contractility, enhancement of sphincter relaxation and decrease in bladder capacity and residual urine are the most important features of the response.

  20. The cerebellum mediates conflict resolution.

    Science.gov (United States)

    Schweizer, Tom A; Oriet, Chris; Meiran, Nachshon; Alexander, Michael P; Cusimano, Michael; Stuss, Donald T

    2007-12-01

    Regions within the frontal and parietal cortex have been implicated as important neural correlates for cognitive control during conflict resolution. Despite the extensive reciprocal connectivity between the cerebellum and these putatively critical cortical areas, a role for the cerebellum in conflict resolution has never been identified. We used a task-switching paradigm that separates processes related to task-set switching and the management of response conflict independent of motor processing. Eleven patients with chronic, focal lesions to the cerebellum and 11 healthy controls were compared. Patients were slower and less accurate in conditions involving conflict resolution. In the absence of response conflict, however, tasks-witching abilities were not impaired in our patients. The cerebellum may play an important role in coordinating with other areas of cortex to modulate active response states. These results are the first demonstration of impaired conflict resolution following cerebellar lesions in the presence of an intact prefrontal cortex.

  1. Methodological issues of postoperative cognitive dysfunction research

    DEFF Research Database (Denmark)

    Funder, Kamilia S; Steinmetz, Jacob; Rasmussen, Lars S

    2010-01-01

    Postoperative cognitive dysfunction (POCD) is a subtle impairment of memory, concentration, and speed of information processing. It is a frequent complication following surgery and can have a debilitating effect on patients' recovery and future prognosis. Neuropsychological testing is needed...... to reveal postoperative cognitive decline, and questionnaires are not useful for this purpose. There is a profound lack of consensus regarding the research methodology for detection of cognitive deterioration, especially the diagnostic criteria. Issues, such as baseline performance, learning effects...

  2. An Actor-Partner Interdependence Model of Acquired Brain Injury Patient Impairments and Caregiver Psychosocial Functioning

    DEFF Research Database (Denmark)

    Perrin, Paul B; Norup, Anne; Caracuel, Alfonso

    2017-01-01

    adequate or good fit indices found that patient ratings of their own impairments in the domains of social disadaptation and depression were uniquely and positively associated with patient ratings of caregiver psychosocial dysfunction, yet none of the patient ratings of their own impairments were uniquely...

  3. POST-STROKE COGNITIVE IMPAIRMENT – PHENOMENOLOGY AND PROGNOSTIC FACTORS

    Directory of Open Access Journals (Sweden)

    Maya Danovska

    2012-09-01

    Full Text Available Stroke patients are at higher risk of developing cognitive impairment. Cognitive dysfunctions, especially progressive ones, worsen stroke prognosis and outcome. A longitudinal follow-up of cognitive disorders, however, is rendered difficult by their heterogeneity and the lack of definitions generally agreed upon. Stroke is a major cause of cognitive deficit. The identification of risk factors, clinical determinants and laboratory markers of post-stroke cognitive deficit may help detect patients at increased risk of cognitive deterioration, and prevent or delay the occurrence of post-stroke cognitive impairments. Though inflammatory processes have been implicated in the pathogenesis of stroke, their role in the complex pathophysiological mechanisms of post-stroke cognitive impairment is not completely understood. Evidence suggests that elevated serum C-reactive protein is associated with both the increased risk of stroke and post-stroke cognitive deficit. The hypothesis of a possible relationship between markers of systemic inflammation and cognitive dysfunctions raises the question of how rational the option of applying non-steroidal anti-inflammatory drugs in a proper therapeutic window will be, especially during the acute phase of stroke, to prevent cognitive decline and dementia.

  4. Are old people so gentle? Functional and dysfunctional impulsivity in the elderly.

    Science.gov (United States)

    Morales-Vives, Fabia; Vigil-Colet, Andreu

    2012-03-01

    Although old people may seem less impulsive than adults, numerous experimental studies report that they have inhibitory deficits. Bearing in mind that there is a relationship between inhibition processes and impulsivity, age-related inhibition deficits suggest that older people could be more impulsive than adults. The aim of the current study was to compare the functional and dysfunctional impulsivity scores obtained in a sample of elderly people (65 years old and above) with those obtained in previous studies on samples of adolescents and adults. Dickman's Impulsivity Inventory was administered to 190 individuals aged between 65 and 94 years without dementia or cognitive impairment. Results indicated that the elderly sample showed higher dysfunctional impulsivity levels than the adult samples, which is consistent with the inhibition deficits mentioned above. There were no significant differences in functional impulsivity. Furthermore, old women had higher scores than old men on dysfunctional impulsivity. This study provides evidence of age-related changes in dysfunctional impulsivity. Functional impulsivity did not show the same pattern as dysfunctional impulsivity, being quite stable across the age span. it seems, then, that impulsivity cannot be considered to decrease with age and dysfunctional impulsivity may even increase.

  5. Growth hormone replacement normalizes impaired fibrinolysis: new insights into endothelial dysfunction in patients with hypopituitarism and growth hormone deficiency.

    Science.gov (United States)

    Miljic, D; Miljic, P; Doknic, M; Pekic, S; Stojanovic, M; Cvijovic, G; Micic, D; Popovic, V

    2013-12-01

    Cardiovascular morbidity in adult patients with growth hormone deficiency (GHD) and hypopituitarism is increased. Clustering of cardiovascular risk factors leading to endothelial dysfunction and impaired fibrinolysis has also been reported and may account for progression to overt vascular changes in these patients. However, effect of long lasting GH replacement therapy on fibrinolytic capacity in GH deficient patients has not been investigated so far. To investigate fibrinolysis before and after challenge with venous occlusion in GHD patients with hypopituitarism before and during one year of growth hormone replacement. Hospital based, interventional, prospective study. Twenty one patient with GHD and fourteen healthy control subjects matched for age, sex and body mass index (BMI). Anthropometric, metabolic and fibrinolytic parameters were measured at the start and after three, six and twelve months of treatment with human recombinant GH. At baseline GHD patients had significantly impaired fibrinolysis compared to healthy persons. During treatment with GH, significant changes were observed in insulin like growth factor 1(IGF-1) [from baseline 6.9(2.4-13.5) to 22.0(9.0-33.0) nmol/l after one month of treatment; p<0.01] and fibrinolysis. Improvement in fibrinolysis was mostly attributed to improvement of stimulated endothelial tissue plasminogen activator (t-PA) release in response to venous occlusion [from baseline 1.1(0.4-2.6) to 1.9(0.5-8.8) after one year of treatment; p<0.01]. Growth hormone replacement therapy has favorable effects on t-PA release from endothelium and net fibrinolytic capacity in GHD adults, which may contribute to decrease their risk of vascular complications. © 2013.

  6. Lower limb vascular dysfunction in cyclists

    Directory of Open Access Journals (Sweden)

    Thiago Ayala Melo Di Alencar

    2013-06-01

    Full Text Available Sports-related vascular insufficiency affecting the lower limbs is uncommon, and early signs and symptoms can be confused with musculoskeletal injuries. This is also the case among professional cyclists, who are always at the threshold between endurance and excess training. The aim of this review was to analyze the occurrence of vascular disorders in the lower limbs of cyclists and to discuss possible etiologies. Eighty-five texts, including papers and books, published from 1950 to 2012, were used. According to the literature reviewed, some cyclists receive a late diagnosis of vascular dysfunction due to a lack of familiarity of the medical team with this type of dysfunction. Data revealed that a reduced blood flow in the external iliac artery, especially on the left, is much more common than in the femoral and popliteal arteries, and that vascular impairment is responsible for the occurrence of early fatigue and reduced performance in cycling.

  7. Cognitive Impairment in Chronic Kidney Disease: Vascular Milieu and the Potential Therapeutic Role of Exercise

    Directory of Open Access Journals (Sweden)

    Ulf G. Bronas

    2017-01-01

    Full Text Available Chronic kidney disease (CKD is considered a model of accelerated aging. More specifically, CKD leads to reduced physical functioning and increased frailty, increased vascular dysfunction, vascular calcification and arterial stiffness, high levels of systemic inflammation, and oxidative stress, as well as increased cognitive impairment. Increasing evidence suggests that the cognitive impairment associated with CKD may be related to cerebral small vessel disease and overall impairment in white matter integrity. The triad of poor physical function, vascular dysfunction, and cognitive impairment places patients living with CKD at an increased risk for loss of independence, poor health-related quality of life, morbidity, and mortality. The purpose of this review is to discuss the available evidence of cerebrovascular-renal axis and its interconnection with early and accelerated cognitive impairment in patients with CKD and the plausible role of exercise as a therapeutic modality. Understanding the cerebrovascular-renal axis pathophysiological link and its interconnection with physical function is important for clinicians in order to minimize the risk of loss of independence and improve quality of life in patients with CKD.

  8. Reduced Mastication Impairs Memory Function.

    Science.gov (United States)

    Fukushima-Nakayama, Y; Ono, Takehito; Hayashi, M; Inoue, M; Wake, H; Ono, Takashi; Nakashima, T

    2017-08-01

    Mastication is an indispensable oral function related to physical, mental, and social health throughout life. The elderly tend to have a masticatory dysfunction due to tooth loss and fragility in the masticatory muscles with aging, potentially resulting in impaired cognitive function. Masticatory stimulation has influence on the development of the central nervous system (CNS) as well as the growth of maxillofacial tissue in children. Although the relationship between mastication and cognitive function is potentially important in the growth period, the cellular and molecular mechanisms have not been sufficiently elucidated. Here, we show that the reduced mastication resulted in impaired spatial memory and learning function owing to the morphological change and decreased activity in the hippocampus. We used an in vivo model for reduced masticatory stimuli, in which juvenile mice were fed with powder diet and found that masticatory stimulation during the growth period positively regulated long-term spatial memory to promote cognitive function. The functional linkage between mastication and brain was validated by the decrease in neurons, neurogenesis, neuronal activity, and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. These findings taken together provide in vivo evidence for a functional linkage between mastication and cognitive function in the growth period, suggesting a need for novel therapeutic strategies in masticatory function-related cognitive dysfunction.

  9. Incidental Learning of Sound Categories is Impaired in Developmental Dyslexia

    Science.gov (United States)

    Gabay, Yafit; Holt, Lori L.

    2015-01-01

    Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. PMID:26409017

  10. Cognitive dysfunction in pediatric multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Suppiej A

    2014-07-01

    Full Text Available Agnese Suppiej,1 Elisa Cainelli1,2 1Child Neurology and Clinical Neurophysiology, Pediatric University Hospital, Padua, Italy; 2Lifespan Cognitive Neuroscience Laboratory (LCNL, Department of General Psychology, University of Padua, Italy Abstract: Cognitive and neuropsychological impairments are well documented in adult ­multiple sclerosis (MS. Research has only recently focused on cognitive disabilities in pediatric cases, highlighting some differences between pediatric and adult cases. Impairments in several functions have been reported in children, particularly in relation to attention, processing speed, visual–motor skills, and language. Language seems to be particularly vulnerable in pediatric MS, unlike in adults in whom it is usually preserved. Deficits in executive functions, which are considered MS-specific in adults, have been inconsistently reported in children. In children, as compared to adults, the relationship between cognitive dysfunctions and the two other main symptoms of MS, fatigue and psychiatric disorders, was poorly explored. Furthermore, data on the correlations of cognitive impairments with clinical and neuroimaging features are scarce in children, and the results are often incongruent; interestingly, involvement of corpus callosum and reduced thalamic volume differentiated patients identified as having a cognitive impairment from those without a cognitive impairment. Further studies about pediatric MS are needed in order to better understand the impact of the disease on brain development and the resulting effect on cognitive functions, particularly with respect to different therapeutic strategies. Keywords: central nervous system, child, deficit, IQ, inflammatory demyelination, neuropsychological

  11. Characteristic patterns of cerebral blood perfusion and cognitive impairment in patients with Parkinsons disease

    International Nuclear Information System (INIS)

    Jeong, Y. J.; Park, M. J.; Cha, J. G.; Kim, S. H.; Kim, J. W.; Kang, D. Y.

    2005-01-01

    Parkinsons disease (PD) is a neurodegenerative disorder that represents cognitive impairment as well as motor symptoms. Even in the early stages of PD, cognitive alterations can be demonstrated by careful neuropsychological test. The purposes of this study are to investigate the pattern of cognitive impairment and the regional cerebral blood flow (rCBF) using Tc-99m HMPAO SPECT in patients with PD. One hundred and twenty two patients with PD and 35 control subjects participated in this study. Patients with PD who had dementia clinically or K-MMSE score below 25 points or with severe motor dysfunction to interfere with the tests were also excluded. They were all matched for age (61±10 vs 61±8), education periods (8.8±4.9 vs 8.8±4.5), and K-MMSE score (27±1.6 vs 27±1.5). All subjects were evaluated using the Seoul Neuropsychological Screening Battery (SNSB) and Tc-99m HMPAO SPECT with SPM software to measure rCBF. Patients with PD performed worse in digit span backward, Rey Complex Figure Test, visual memory, semantic fluency, stroop test, and alternating hand movement test(p<0.05) compared with control group. On SNSB test, 100 patients (82.0%) showed some abnormalities. Eighty-six patients (70.5%) showed frontal dysfunction, 47 (38.5%) memory impairment, 33 (27.0%) language dysfunction, 25 (20.5%) attention deficit and 22 (18.3%) visuospatial dysfunction in the order of frequency. Eight patients with PD showed single memory domain MCI and 28 single non-memory domain MCI (20 frontal dysfunction). Multiple domain MCI was found in 64 patients with PD. SPM analysis of the SPECT image revealed multiple perfusion deficit in the both frontal, temporal, both limbic lobes, Lt. parietal and Lt. Putamen. It is concluded that abnormalities of cognitive function be detected very commonly in patients with PD. MCI in PD patients is most frequently involved in the item of frontal lobe function. SPECT image might be helpful to explain cognitive impairment in some PD patients

  12. Characteristic patterns of cerebral blood perfusion and cognitive impairment in patients with Parkinsons disease

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. J.; Park, M. J.; Cha, J. G.; Kim, S. H.; Kim, J. W.; Kang, D. Y. [Dong-A University College of medicine, Pusan (Korea, Republic of)

    2005-07-01

    Parkinsons disease (PD) is a neurodegenerative disorder that represents cognitive impairment as well as motor symptoms. Even in the early stages of PD, cognitive alterations can be demonstrated by careful neuropsychological test. The purposes of this study are to investigate the pattern of cognitive impairment and the regional cerebral blood flow (rCBF) using Tc-99m HMPAO SPECT in patients with PD. One hundred and twenty two patients with PD and 35 control subjects participated in this study. Patients with PD who had dementia clinically or K-MMSE score below 25 points or with severe motor dysfunction to interfere with the tests were also excluded. They were all matched for age (61{+-}10 vs 61{+-}8), education periods (8.8{+-}4.9 vs 8.8{+-}4.5), and K-MMSE score (27{+-}1.6 vs 27{+-}1.5). All subjects were evaluated using the Seoul Neuropsychological Screening Battery (SNSB) and Tc-99m HMPAO SPECT with SPM software to measure rCBF. Patients with PD performed worse in digit span backward, Rey Complex Figure Test, visual memory, semantic fluency, stroop test, and alternating hand movement test(p<0.05) compared with control group. On SNSB test, 100 patients (82.0%) showed some abnormalities. Eighty-six patients (70.5%) showed frontal dysfunction, 47 (38.5%) memory impairment, 33 (27.0%) language dysfunction, 25 (20.5%) attention deficit and 22 (18.3%) visuospatial dysfunction in the order of frequency. Eight patients with PD showed single memory domain MCI and 28 single non-memory domain MCI (20 frontal dysfunction). Multiple domain MCI was found in 64 patients with PD. SPM analysis of the SPECT image revealed multiple perfusion deficit in the both frontal, temporal, both limbic lobes, Lt. parietal and Lt. Putamen. It is concluded that abnormalities of cognitive function be detected very commonly in patients with PD. MCI in PD patients is most frequently involved in the item of frontal lobe function. SPECT image might be helpful to explain cognitive impairment in some

  13. Apraxia and motor dysfunction in corticobasal syndrome.

    Directory of Open Access Journals (Sweden)

    James R Burrell

    Full Text Available BACKGROUND: Corticobasal syndrome (CBS is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM, is associated with motor system dysfunction and limb apraxia in CBS. METHODS: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R, with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM. RESULTS: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/- 6.6 years were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices. CONCLUSIONS: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and

  14. Resolution of temporomandibular joint dysfunction (TMJD) by correcting a lateral head translation posture following previous failed traditional chiropractic therapy: a CBP® case report.

    Science.gov (United States)

    Jaeger, Jason O; Oakley, Paul A; Moore, Robert R; Ruggeroli, Edward P; Harrison, Deed E

    2018-01-01

    [Purpose] To present the case of the resolution of right temporomandibular joint dysfunction (TMJD) following the correction of a right lateral head translation posture. [Subject and Methods] A 24 year old female reported facial pain and jaw clicking in the right TMJ. Radiography revealed a 19 mm right head (shift) translation posture. TMJ vibration analysis showed characteristic abnormalities for the right TMJ. The patient was treated with CBP ® technique mirror image ® left sided exercises, and traction methods as well as spinal manipulative therapy (SMT). [Results] After 36 treatments over a 12-week time period, a complete correction of the lateral head posture was achieved corresponding with a complete resolution of jaw pain and clicking. TMJ vibration analysis demonstrated normal right side TMJ characteristics following treatment. [Conclusion] Abnormal head/neck postures, such as lateral head translation, may be an unrealized source of TMJD and may be explained through the 'regional interdependence' model or by how seemingly unrelated anatomy may be associated with a primary complaint.

  15. Revisiting nicotine's role in the ageing brain and cognitive impairment

    DEFF Research Database (Denmark)

    Majdi, Alireza; Kamari, Farzin; Vafaee, Manouchehr Seyedi

    2017-01-01

    Brain ageing is a complex process which in its pathologic form is associated with learning and memory dysfunction or cognitive impairment. During ageing, changes in cholinergic innervations and reduced acetylcholinergic tonus may trigger a series of molecular pathways participating in oxidative...... in optimum therapeutic effects without imparting abuse potential or toxicity. Overall, this review aims to compile the previous and most recent data on nicotine and its effects on cognition-related mechanisms and age-related cognitive impairment....

  16. Mild cognitive dysfunction does not affect diabetes mellitus control in minority elderly adults.

    Science.gov (United States)

    Palta, Priya; Golden, Sherita H; Teresi, Jeanne; Palmas, Walter; Weinstock, Ruth S; Shea, Steven; Manly, Jennifer J; Luchsinger, Jose A

    2014-12-01

    To determine whether older adults with type 2 diabetes mellitus and cognitive dysfunction have poorer metabolic control of glycosylated hemoglobin, systolic blood pressure, and low-density lipoprotein cholesterol than those without cognitive dysfunction. Prospective cohort study. A minority cohort in New York City previously recruited for a trial of telemedicine. Persons aged 73.0 ± 3.0 (N = 613; 69.5% female; 82.5% Hispanic, 15.5% non-Hispanic black). Participants were classified with executive or memory dysfunction based on standardized score cutoffs (<16th percentile) for the Color Trails Test and Selective Reminding Test. Linear mixed models were used to compare repeated measures of the metabolic measures and evaluate the rates of change in individuals with and without dysfunction. Of the 613 participants, 331 (54%) had executive dysfunction, 202 (33%) had memory dysfunction, and 96 (16%) had both. Over a median of 2 years, participants with executive or memory dysfunction did not exhibit significantly poorer metabolic control than those without executive function or memory type cognitive dysfunction. Cognitive dysfunction in the mild range did not seem to affect diabetes mellitus control parameters in this multiethnic cohort of older adults with diabetes mellitus, although it cannot be excluded that cognitive impairment was overcome through assistance from formal or informal caregivers. It is possible that more-severe cognitive dysfunction could affect control. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  17. Impaired lung transfer factor in fibromyalgia syndrome.

    Science.gov (United States)

    Rizzi, Maurizio; Atzeni, Fabiola; Airoldi, Andrea; Masala, Ignazio Francesco; Frassanito, Francesca; Salaffi, Fausto; Macaluso, Claudio; Sarzi-Puttini, Piercarlo

    2016-01-01

    The aim of this study was to evaluate whether pulmonary diffusing capacity is impaired in patients with fibromyalgia (FM) as it is in those with other diseases characterised by autonomic nerve system (ANS) dysfunction such as type 1 diabetes. Forty-five consecutive anti-nuclear antibody (ANA)-negative female Caucasian patients aged 50.1± 5.6 years with FM and compared with 45 healthy female control volunteers matched in terms of age and body mass index (BMI). The autonomic function has been evaluated by means of standard electrocardiography (ECG), finger blood pressure respiration, and muscle sympathetic nerve activity (MSNA) at rest and during a stepwise tilt test up to 75°. Their autonomic profiles were drawn up on the basis of MSNA, plasma catecholamine levels, and spectral indices of cardiac sympathetic and vagal modulation, and sympathetic vasomotor control computed by means of the spectrum analysis of RR and systolic arterial pressure (SAP) variability. Lung volumes and dynamic spirometry parameters were assessed by means of plethysmography. All of the patients were clinically evaluated and completed the FQI and COMPASS questionnaire. There was no difference in lung volumes between the FM patients and healthy controls, but DLCO (83±4 vs. 96±5; p<0.001), Kco (84±5 vs 98±5; p<0.001), DM (12.7±2.4 vs 13.6±1.8; p<0.05) and Vc (48±3.9 vs 65±7; p<0.001) were significantly reduced in the patients. The COMPASS-31, RCS and pain VAS scores significantly correlated with DLCO, Kco and Vc with the correlation being particularly close in the case of Vc. Furthermore, univariate Cox proportional hazard analysis showed that the three scores were all significantly associated with an increased risk of impaired DLCO (respectively, χ(2) 16.21, p<0.0005; χ(2) 7.09, p<0.005; χ(2) 6.37, p<0.01). FM impairs DLCO mainly as a result of a reduction in Vc, and that this defect is inversely proportional to the severity of the dysfunction suggesting a relationship between

  18. Tadalafil reversal of sexual dysfunction caused by serotonin enhancing medications in women.

    Science.gov (United States)

    Ashton, Adam Keller; Weinstein, Wendy

    2006-01-01

    Sexual dysfunction is a common side effect of many antidepressants, especially those that increase serotonin. Many strategies have been reported to assist patients in minimizing impairment, with variable degrees of success. One of the newer approaches is to augment with phosphodiesterase type-5 inhibitors. Our report using the most recently released agent in this class, tadalafil is the first demonstrating potential benefit in women. We report here of three women who derived benefit from using 20 mg of tadalafil before anticipated sexual activity to reverse medication-induced sexual dysfunction. Tadalafil utility was maintained over time and was well tolerated.

  19. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function.

    Science.gov (United States)

    Fujiwara, Toshihiro; Duscher, Dominik; Rustad, Kristine C; Kosaraju, Revanth; Rodrigues, Melanie; Whittam, Alexander J; Januszyk, Michael; Maan, Zeshaan N; Gurtner, Geoffrey C

    2016-03-01

    Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-β1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  1. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2013-01-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  2. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  3. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    International Nuclear Information System (INIS)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-01-01

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment

  4. Undetected cognitive impairment and decision-making capacity in patients receiving hospice care.

    Science.gov (United States)

    Burton, Cynthia Z; Twamley, Elizabeth W; Lee, Lana C; Palmer, Barton W; Jeste, Dilip V; Dunn, Laura B; Irwin, Scott A

    2012-04-01

    : Cognitive dysfunction is common in patients with advanced, life-threatening illness and can be attributed to a variety of factors (e.g., advanced age, opiate medication). Such dysfunction likely affects decisional capacity, which is a crucial consideration as the end-of-life approaches and patients face multiple choices regarding treatment, family, and estate planning. This study examined the prevalence of cognitive impairment and its impact on decision-making abilities among hospice patients with neither a chart diagnosis of a cognitive disorder nor clinically apparent cognitive impairment (e.g., delirium, unresponsiveness). : A total of 110 participants receiving hospice services completed a 1-hour neuropsychological battery, a measure of decisional capacity, and accompanying interviews. : In general, participants were mildly impaired on measures of verbal learning, verbal memory, and verbal fluency; 54% of the sample was classified as having significant, previously undetected cognitive impairment. These individuals performed significantly worse than the other participants on all neuropsychological and decisional capacity measures, with effect sizes ranging from medium to very large (0.43-2.70). A number of verbal abilities as well as global cognitive functioning significantly predicted decision-making capacity. : Despite an absence of documented or clinically obvious impairment, more than half of the sample had significant cognitive impairments. Assessment of cognition in hospice patients is warranted, including assessment of verbal abilities that may interfere with understanding or reasoning related to treatment decisions. Identification of patients at risk for impaired cognition and decision making may lead to effective interventions to improve decision making and honor the wishes of patients and families.

  5. Cochlear implant users' spectral ripple resolution.

    Science.gov (United States)

    Jeon, Eun Kyung; Turner, Christopher W; Karsten, Sue A; Henry, Belinda A; Gantz, Bruce J

    2015-10-01

    This study revisits the issue of the spectral ripple resolution abilities of cochlear implant (CI) users. The spectral ripple resolution of recently implanted CI recipients (implanted during the last 10 years) were compared to those of CI recipients implanted 15 to 20 years ago, as well as those of normal-hearing and hearing-impaired listeners from previously published data from Henry, Turner, and Behrens [J. Acoust. Soc. Am. 118, 1111-1121 (2005)]. More recently, implanted CI recipients showed significantly better spectral ripple resolution. There is no significant difference in spectral ripple resolution for these recently implanted subjects compared to hearing-impaired (acoustic) listeners. The more recently implanted CI users had significantly better pre-operative speech perception than previously reported CI users. These better pre-operative speech perception scores in CI users from the current study may be related to better performance on the spectral ripple discrimination task; however, other possible factors such as improvements in internal and external devices cannot be excluded.

  6. Cognitive Impairment in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Farnaz Etesam

    2014-01-01

    Full Text Available Cognitive impairment can emerge in the earliest phases of multiple sclerosis. It strongly impacts different aspects of Multiple Sclerosis (MS patients' lives, like employment, social relationships and the overall quality of life; thus, its on-time recognition and treatment is mandatory. This paper discusses issues, diagnostic methods and treatment options for cognitive dysfunctions in MS. This paper is a descriptive review of the related studies in the recent 10 years, performing a keyword search in the main databases4T. Cognitive impairment mostly involves aspects of information processing, memory and executive functioning in MS. Neuropsychological tests like MACFIMS and BRB-N are recommended for its assessment. Still, there is no fully efficient treatment for cognitive impairment. Researchers have shown some positive effects, using disease-modifying therapies and cognitive rehabilitation. Depression, pain, fatigue and other factors influencing cognitive functions must be paid attention to4T. Recognizing cognitive impairment as a major symptom for MS, makes studying this subject one of the priorities in dealing with the disease. Therefore, a consecutive research for identification and management of this part of quality of life in MS patients is obligatory4T.4T

  7. Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies.

    Science.gov (United States)

    Palma, Jose-Alberto; Kaufmann, Horacio

    2018-03-01

    Dysfunction of the autonomic nervous system afflicts most patients with Parkinson disease and other synucleinopathies such as dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure, reducing quality of life and increasing mortality. For example, gastrointestinal dysfunction can lead to impaired drug pharmacodynamics causing a worsening in motor symptoms, and neurogenic orthostatic hypotension can cause syncope, falls, and fractures. When recognized, autonomic problems can be treated, sometimes successfully. Discontinuation of potentially causative/aggravating drugs, patient education, and nonpharmacological approaches are useful and should be tried first. Pathophysiology-based pharmacological treatments that have shown efficacy in controlled trials of patients with synucleinopathies have been approved in many countries and are key to an effective management. Here, we review the treatment of autonomic dysfunction in patients with Parkinson disease and other synucleinopathies, summarize the nonpharmacological and current pharmacological therapeutic strategies including recently approved drugs, and provide practical advice and management algorithms for clinicians, with focus on neurogenic orthostatic hypotension, supine hypertension, dysphagia, sialorrhea, gastroparesis, constipation, neurogenic overactive bladder, underactive bladder, and sexual dysfunction. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  8. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus

    Science.gov (United States)

    Zhao, Jing-Bo; Frøkjær, Jens Brøndum; Drewes, Asbjørn Mohr; Ejskjaer, Niels

    2006-01-01

    Gastrointestinal (GI) sensory-motor abnormalities are common in patients with diabetes mellitus and may involve any part of the GI tract. Abnormalities are frequently sub-clinical, and fortunately only rarely do severe and life-threatening problems occur. The pathogenesis of abnormal upper GI sensory-motor function in diabetes is incompletely understood and is most likely multi-factorial of origin. Diabetic autonomic neuropathy as well as acute suboptimal control of diabetes has been shown to impair GI motor and sensory function. Morphological and biomechanical remodeling of the GI wall develops during the duration of diabetes, and may contribute to motor and sensory dysfunction. In this review sensory and motility disorders of the upper GI tract in diabetes is discussed; and the morphological changes and biomechanical remodeling related to the sensory-motor dysfunction is also addressed. PMID:16718808

  9. Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury.

    Science.gov (United States)

    McDonough, Kathleen H; Virag, Jitka Ismail

    2006-01-01

    Sepsis, bacteremia and inflammation cause myocardial depression. The mechanism of the dysfunction is not clearly established partly because dysfunction can be elicited by many different mechanisms which can all manifest in disruption of myocardial mechanical function. In addition the models of sepsis and bacteremia and inflammation may vary drastically in the sequence of the coordinated immune response to the inflammatory or septic stimulus. Patterns of cytokine expression can vary as can other responses of the immune system. Patterns of neurohumoral activation in response to the stress of sepsis or bacteremia or inflammation can also vary in both magnitude of response and temporal sequence of response. Stress induced activation of the sympathetic nervous system and humoral responses to stress have a wide range of intensity that can be elicited. The fairly uniform response of the myocardium indicating cardiac dysfunction is surprisingly constant. Systolic performance, as measured by stroke volume or cardiac output and pressure work as estimated by ventricular pressure, are impaired when myocardial contraction is compromised. At times, diastolic function, assessed by ventricular relaxation and filling, is impaired. In addition to the dysfunction that occurs, there is a longer term response of the myocardium to sepsis, and this response is similar to that which is elicited in the heart by multiple brief ischemia/reperfusion episodes and by numerous pharmacological agents as well as heat stress and modified forms of lipopolysaccharide. The myocardium develops protection after an initial stress such that during a second stress, the myocardium does not exhibit as much damage as does a non-protected heart. Many agents can induce this protection which has been termed preconditioning. Both early preconditioning (protection that is measurable min to hours after the initial stimulus) and late preconditioning (protection that is measurable hours to days after the initial

  10. Incidental learning of sound categories is impaired in developmental dyslexia.

    Science.gov (United States)

    Gabay, Yafit; Holt, Lori L

    2015-12-01

    Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. Copyright © 2015 Elsevier Ltd. All rights

  11. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice.

    Science.gov (United States)

    Bowen, T Scott; Aakerøy, Lars; Eisenkolb, Sophia; Kunth, Patricia; Bakkerud, Fredrik; Wohlwend, Martin; Ormbostad, Anne Marie; Fischer, Tina; Wisloff, Ulrik; Schuler, Gerhard; Steinshamn, Sigurd; Adams, Volker; Bronstad, Eivind

    2017-05-01

    Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Smoking reduced body weight by 26% (P 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P exercise training (P smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P exercise training (P smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.

  12. Impaired associative learning with food rewards in obese women.

    Science.gov (United States)

    Zhang, Zhihao; Manson, Kirk F; Schiller, Daniela; Levy, Ifat

    2014-08-04

    Obesity is a major epidemic in many parts of the world. One of the main factors contributing to obesity is overconsumption of high-fat and high-calorie food, which is driven by the rewarding properties of these types of food. Previous studies have suggested that dysfunction in reward circuits may be associated with overeating and obesity. The nature of this dysfunction, however, is still unknown. Here, we demonstrate impairment in reward-based associative learning specific to food in obese women. Normal-weight and obese participants performed an appetitive reversal learning task in which they had to learn and modify cue-reward associations. To test whether any learning deficits were specific to food reward or were more general, we used a between-subject design in which half of the participants received food reward and the other half received money reward. Our results reveal a marked difference in associative learning between normal-weight and obese women when food was used as reward. Importantly, no learning deficits were observed with money reward. Multiple regression analyses also established a robust negative association between body mass index and learning performance in the food domain in female participants. Interestingly, such impairment was not observed in obese men. These findings suggest that obesity may be linked to impaired reward-based associative learning and that this impairment may be specific to the food domain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sonographic evaluation of penile in patients with erectile dysfunction

    International Nuclear Information System (INIS)

    Urena Trigueros, Christian

    2012-01-01

    A review of the current state of knowledge is made on sonographic evaluation of penile in patients with erectile dysfunction. This sonography is developed with high resolution ultrasound on gray scale, combined with color Doppler ultrasonography; which the arteries of penile are examined before and during the erection. The penile ultrasonography has meant an important tool in the evaluation of specific patients who have submitted erectile dysfunction, particularly, in those with record of trauma and history of Peyronie's disease. In addition, through a sonographic evaluation has permitted to prove manifestations of the pathophysiological phenomena of the patient in order to establish their classification and guide their treatment [es

  14. Vascular impairment as a pathological mechanism underlying long-lasting cognitive dysfunction after pediatric traumatic brain injury.

    Science.gov (United States)

    Ichkova, Aleksandra; Rodriguez-Grande, Beatriz; Bar, Claire; Villega, Frederic; Konsman, Jan Pieter; Badaut, Jerome

    2017-12-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children. Indeed, the acute mechanical injury often evolves to a chronic brain disorder with long-term cognitive, emotional and social dysfunction even in the case of mild TBI. Contrary to the commonly held idea that children show better recovery from injuries than adults, pediatric TBI patients actually have worse outcome than adults for the same injury severity. Acute trauma to the young brain likely interferes with the fine-tuned developmental processes and may give rise to long-lasting consequences on brain's function. This review will focus on cerebrovascular dysfunction as an important early event that may lead to long-term phenotypic changes in the brain after pediatric TBI. These, in turn may be associated with accelerated brain aging and cognitive dysfunction. Finally, since no effective treatments are currently available, understanding the unique pathophysiological mechanisms of pediatric TBI is crucial for the development of new therapeutic options. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modafinil for attentional and psychomotor dysfunction in advanced cancer: a double-blind, randomised, cross-over trial

    DEFF Research Database (Denmark)

    Lundorff, L E; Jønsson, B H; Sjøgren, P

    2009-01-01

    Cognitive impairment seems to be highly prevalent in patients with advanced cancer. Modafinil, a novel vigilance and wake-promoting agent, may be an alternative treatment. We wanted to investigate this treatment on attentional and psychomotor dysfunction in cancer patients. 28 cancer patients wit...... cognitive tests of psychomotor speed and attention. Furthermore subjective scores of depression and drowsiness were significantly improved by modafinil.......Cognitive impairment seems to be highly prevalent in patients with advanced cancer. Modafinil, a novel vigilance and wake-promoting agent, may be an alternative treatment. We wanted to investigate this treatment on attentional and psychomotor dysfunction in cancer patients. 28 cancer patients...... were statistically significantly improved on modafinil (p-values=0.006 and 0.042, respectively). On ESAS, depression and drowsiness also improved statistically significantly (p-values=

  16. Right anterior temporal lobe dysfunction underlies theory of mind impairments in semantic dementia.

    Science.gov (United States)

    Irish, Muireann; Hodges, John R; Piguet, Olivier

    2014-04-01

    Semantic dementia is a progressive neurodegenerative disorder characterized by the amodal and profound loss of semantic knowledge attributable to the degeneration of the left anterior temporal lobe. Although traditionally conceptualized as a language disorder, patients with semantic dementia display significant alterations in behaviour and socioemotional functioning. Recent evidence points to an impaired capacity for theory of mind in predominantly left-lateralized cases of semantic dementia; however, it remains unclear to what extent semantic impairments contribute to these deficits. Further the neuroanatomical signature of such disturbance remains unknown. Here, we sought to determine the neural correlates of theory of mind performance in patients with left predominant semantic dementia (n=11), in contrast with disease-matched cases with behavioural-variant frontotemporal dementia (n=10) and Alzheimer's disease (n=10), and healthy older individuals (n=14) as control participants. Participants completed a simple cartoons task, in which they were required to describe physical and theory of mind scenarios. Irrespective of subscale, patients with semantic dementia exhibited marked impairments relative to control subjects; however, only theory of mind deficits persisted when we covaried for semantic comprehension. Voxel-based morphometry analyses revealed that atrophy in right anterior temporal lobe structures, including the right temporal fusiform cortex, right inferior temporal gyrus, bilateral temporal poles and amygdalae, correlated significantly with theory of mind impairments in the semantic dementia group. Our results point to the marked disruption of cognitive functions beyond the language domain in semantic dementia, not exclusively attributable to semantic processing impairments. The significant involvement of right anterior temporal structures suggests that with disease evolution, the encroachment of pathology into the contralateral hemisphere heralds the

  17. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75 and an abnormal gait group (n = 25. Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV in stride length, two with base of support (BOS deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was

  18. Chronopathological aspects of sleep disorders and cognitive dysfunctions in children with visual impairments

    Directory of Open Access Journals (Sweden)

    I. A. Kelmanson

    2015-01-01

    Full Text Available The most important and noticeable rhythmical phenomenon observed in the human body is a sleep-wake rhythm and related physical and mental changes. The so-called circadian rhythms that vary over a period of approximately 24 hours are most important. The suprachi-asmatic nucleus of the hypothalamus is a primary circadian pacemaker in mammals; and light pulses out of all stimuli obtained by this structure have been mostly studied. The light pulses unrelated to visual perception serve as the most important synchronizers of circadian rhythms. Children with visual impairments lack adequate photic stimulation and hence circadian rhythm disorders develop and cognitive impairments worsen with a high probability. The most important types of sleep disorders in children with visual impairments are considered; their negative impact on a child's cognitive functions is discussed; possible correction approaches are laid down.

  19. Epoxygenase inactivation exacerbates diet and aging-associated metabolic dysfunction resulting from impaired adipogenesis

    Directory of Open Access Journals (Sweden)

    Antoni Olona

    2018-05-01

    Full Text Available Objective: When molecular drivers of healthy adipogenesis are perturbed, this can cause hepatic steatosis. The role of arachidonic acid (AA and its downstream enzymatic cascades, such as cyclooxygenase, in adipogenesis is well established. The exact contribution of the P450 epoxygenase pathway, however, remains to be established. Enzymes belonging to this pathway are mainly encoded by the CYP2J locus which shows extensive allelic expansion in mice. Here we aimed to establish the role of endogenous epoxygenase during adipogenesis under homeostatic and metabolic stress conditions. Methods: We took advantage of the simpler genetic architecture of the Cyp2j locus in the rat and used a Cyp2j4 (orthologue of human CYP2J2 knockout rat in two models of metabolic dysfunction: physiological aging and cafeteria diet (CAF. The phenotyping of Cyp2j4−/− rats under CAF was integrated with proteomics (LC-MS/MS and lipidomics (LC-MS analyses in the liver and the adipose tissue. Results: We report that Cyp2j4 deletion causes adipocyte dysfunction under metabolic challenges. This is characterized by (i down-regulation of white adipose tissue (WAT PPARγ and C/EBPα, (ii adipocyte hypertrophy, (iii extracellular matrix remodeling, and (iv alternative usage of AA pathway. Specifically, in Cyp2j4−/− rats treated with a cafeteria diet, the dysfunctional adipogenesis is accompanied by exacerbated weight gain, hepatic lipid accumulation, and dysregulated gluconeogenesis. Conclusion: These results suggest that AA epoxygenases are essential regulators of healthy adipogenesis. Our results uncover their synergistic role in fine-tuning AA pathway in obesity-mediated hepatic steatosis. Keywords: Adipogenesis, Cytochrome P450 2j4, Cafeteria diet, Aging, Steatosis, Arachidonic acid

  20. Higher incidence of mild cognitive impairment in familial hypercholesterolemia

    Science.gov (United States)

    Zambón, D.; Quintana, M.; Mata, P.; Alonso, R.; Benavent, J.; Cruz-Sánchez, F.; Gich, J.; Pocoví, M.; Civeira, F.; Capurro, S.; Bachman, D.; Sambamurti, K.; Nicholas, J.; Pappolla, M. A.

    2010-01-01

    Objective Hypercholesterolemia is an early risk factor for Alzheimer’s disease. Low density lipoprotein (LDL) receptors may be involved in this disorder. Our objective was to determine the risk of mild cognitive impairment in a population of patients with heterozygous familial hypercholesterolemia, a condition involving LDL receptors dysfunction and life long hypercholesterolemia. Methods Using a cohort study design, patients with (N=47) meeting inclusion criteria and comparison patients without familial hypercholesterolemia (N=70) were consecutively selected from academic specialty and primary care clinics respectively. All patients were older than 50 years. Those with disorders which could impact cognition, including history of stroke or transient ischemic attacks, were excluded from both groups. Thirteen standardized neuropsychological tests were performed in all subjects. Mutational analysis was performed in patients with familial hypercholesterolemia and brain imaging was obtained in those with familial hypercholesterolemia and mild cognitive impairment. Results Patients with familial hypercholesterolemia showed a very high incidence of mild cognitive impairment compared to those without familial hypercholesterolemia (21.3% vs. 2.9%; p = 0.00). This diagnosis was unrelated to structural pathology or white matter disease. There were significant differences between the familial hypercholesterolemia and the no-familial hypercholesterolemia groups in several cognitive measures, all in the direction of worse performance for familial hypercholesterolemia patients, independent of apoE4 or apoE2 status. Conclusions Because prior studies have shown that older patients with sporadic hypercholesterolemia do not show higher incidence of mild cognitive impairment, the findings presented here suggest that early exposure to elevated cholesterol or LDL receptors dysfunction may be risk factors for mild cognitive impairment. PMID:20193836

  1. Bilirubin-Induced Neurological Dysfunction: A Clinico-Radiological-Neurophysiological Correlation in 30 Consecutive Children.

    Science.gov (United States)

    van Toorn, Ronald; Brink, Philip; Smith, Johan; Ackermann, Christelle; Solomons, Regan

    2016-12-01

    The clinical expression of bilirubin-induced neurological dysfunction varies according to severity and location of the disease. Definitions have been proposed to describe different bilirubin-induced neurological dysfunction subtypes. Our objective was to describe the severity and clinico-radiological-neurophysiological correlation in 30 consecutive children with bilirubin-induced neurological dysfunction seen over a period of 5 years. Thirty children exposed to acute neonatal bilirubin encephalopathy were included in the study. The mean peak total serum bilirubin level was 625 μmol/L (range 480-900 μmol/L). Acoustic brainstem responses were abnormal in 73% (n = 22). Pallidal hyperintensity was observed on magnetic resonance imaging in 20 children. Peak total serum bilirubin levels correlated with motor severity (P = .03). Children with severe motor impairment were likely to manifest severe auditory neuropathy (P bilirubin-induced neurological dysfunction subtype, and the majority of children had abnormal acoustic brainstem responses and magnetic resonance imaging. © The Author(s) 2016.

  2. Postpartum Vascular Dysfunction in the Reduced Uteroplacental Perfusion Model of Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Lesley Brennan

    Full Text Available Preeclampsia is a disorder affecting 2-8% of all pregnancies, characterized by gestational hypertension (≥ 140/90 mmHg and proteinuria (≥300 mg over 24 hours diagnosed following the 20th week of pregnancy, and for which there is currently no available treatment. While the precise cause of preeclampsia is unknown, placental ischemia/hypoxia resulting from abnormal trophoblast invasion and maternal endothelial dysfunction are central characteristics. Preeclampsia is a major cause of both maternal and fetal morbidity and mortality in the perinatal period. In addition, women who have experienced preeclampsia are more likely to suffer cardiovascular disease later in life. The cause of this elevation in cardiovascular risk postpartum, however, is unknown. We hypothesize that there may be lasting vascular dysfunction following exposure to reduced uteroplacental perfusion during pregnancy that may contribute to increased cardiovascular risk postpartum. Using the rat reduced utero-placental perfusion pressure (RUPP model of preeclampsia, blood pressure was assessed in dams at gestational day 20, one and three months postpartum. Mesenteric artery and aortic function were assessed using wire myography. We demonstrated hypertension and increased mesenteric artery responses to phenylephrine at gestational day 20, with the latter due to a decreased contribution of nitric oxide without any change in methylcholine-induced relaxation. At one month postpartum, we demonstrated a small but significant vasoconstrictive phenotype that was due to an underlying loss of basal nitric oxide contribution. At three months postpartum, endothelium-dependent relaxation of the aorta demonstrated sensitivity to oxLDL and mesenteric arteries demonstrated decreased nitric oxide bioavailability with impaired methylcholine-induced relaxation; indicative of an early development of endothelial dysfunction. In summary, we have demonstrated impaired vascular function following

  3. Heterogeneity in executive impairment in patients with very mild Alzheimer's

    DEFF Research Database (Denmark)

    Stokholm, J.; Gade, Anders; Vogel, A.

    2006-01-01

    The presence of executive impairment in mild Alzheimer's disease (AD) has primarily been demonstrated by means of group comparison. Whether executive dysfunction is a common feature of mild AD or only present in a subgroup of patients remains unclear. The aim of this study was to describe...

  4. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...... from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional...

  5. Maternal supplementation with conjugated linoleic acid in the setting of diet-induced obesity normalises the inflammatory phenotype in mothers and reverses metabolic dysfunction and impaired insulin sensitivity in offspring.

    Science.gov (United States)

    Segovia, Stephanie A; Vickers, Mark H; Zhang, Xiaoyuan D; Gray, Clint; Reynolds, Clare M

    2015-12-01

    Maternal consumption of a high-fat diet significantly impacts the fetal environment and predisposes offspring to obesity and metabolic dysfunction during adulthood. We examined the effects of a high-fat diet during pregnancy and lactation on metabolic and inflammatory profiles and whether maternal supplementation with the anti-inflammatory lipid conjugated linoleic acid (CLA) could have beneficial effects on mothers and offspring. Sprague-Dawley rats were fed a control (CD; 10% kcal from fat), CLA (CLA; 10% kcal from fat, 1% total fat as CLA), high-fat (HF; 45% kcal from fat) or high fat with CLA (HFCLA; 45% kcal from fat, 1% total fat as CLA) diet ad libitum 10days prior to and throughout gestation and lactation. Dams and offspring were culled at either late gestation (fetal day 20, F20) or early postweaning (postnatal day 24, P24). CLA, HF and HFCLA dams were heavier than CD throughout gestation. Plasma concentrations of proinflammatory cytokines interleukin-1β and tumour necrosis factor-α were elevated in HF dams, with restoration in HFCLA dams. Male and female fetuses from HF dams were smaller at F20 but displayed catch-up growth and impaired insulin sensitivity at P24, which was reversed in HFCLA offspring. HFCLA dams at P24 were protected from impaired insulin sensitivity as compared to HF dams. Maternal CLA supplementation normalised inflammation associated with consumption of a high-fat diet and reversed associated programming of metabolic dysfunction in offspring. This demonstrates that there are critical windows of developmental plasticity in which the effects of an adverse early-life environment can be reversed by maternal dietary interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Asymmetric dimethyl-L-arginine (ADMA): a possible link between homocyst(e)ine and endothelial dysfunction.

    Science.gov (United States)

    Stühlinger, Markus C; Stanger, Olaf

    2005-02-01

    Hyperhomocyst(e)inemia is associated with an increased risk for atherosclerotic disease and venous thromboembolism. The impact of elevated plasma homocysteine levels seems to be clinically relevant, since the total cardiovascular risk of hyperhomocyst(e)inemia is comparable to the risk associated with hyperlipidemia or smoking. There is substantial evidence for impairment of endothelial function in human and animal models of atherosclerosis, occurring even before development of overt plaques. Interestingly endothelial dysfunction appears to be a sensitive indicator of the process of atherosclerotic lesion development and predicts future vascular events. NO is the most potent endogenous vasodilator known. It is released by the endothelium, and reduced NO bioavailability is responsible for impaired endothelium-dependent vasorelaxation in hyperhomocyst(e)inemia and other metabolic disorders associated with vascular disease. Substances leading to impaired endothelial function as a consequence of reduced NO generation are endogenous NO synthase inhibitors such as ADMA. Indeed there is accumulating evidence from animal and human studies that ADMA, endothelial function and homocyst(e)ine might be closely interrelated. Specifically elevations of ADMA associated with impaired endothelium-dependent relaxation were found in chronic hyperhomocyst(e)inemia, as well as after acute elevation of plasma homocyst(e)ine following oral methionine intake. The postulated mechanisms for ADMA accumulation are increased methylation of arginine residues within proteins, as well as reduced metabolism of ADMA by the enzyme DDAH, but they still need to be confirmed to be operative in vivo. Hyperhomocyst(e)inemia, as well as subsequent endothelial dysfunction can be successfully treated by application of folate and B vitamins. Since ADMA seems to play a central role in homocyst(e)ine-induced endothelial dysfunction, another way of preventing vascular disease in patients with elevated homocyst

  7. Amyloid β Enhances Typical Rodent Behavior While It Impairs Contextual Memory Consolidation.

    Science.gov (United States)

    Salgado-Puga, Karla; Prado-Alcalá, Roberto A; Peña-Ortega, Fernando

    2015-01-01

    Alzheimer's disease (AD) is associated with an early hippocampal dysfunction, which is likely induced by an increase in soluble amyloid beta peptide (Aβ). This hippocampal failure contributes to the initial memory deficits observed both in patients and in AD animal models and possibly to the deterioration in activities of daily living (ADL). One typical rodent behavior that has been proposed as a hippocampus-dependent assessment model of ADL in mice and rats is burrowing. Despite the fact that AD transgenic mice show some evidence of reduced burrowing, it has not been yet determined whether or not Aβ can affect this typical rodent behavior and whether this alteration correlates with the well-known Aβ-induced memory impairment. Thus, the purpose of this study was to test whether or not Aβ affects burrowing while inducing hippocampus-dependent memory impairment. Surprisingly, our results show that intrahippocampal application of Aβ increases burrowing while inducing memory impairment. We consider that this Aβ-induced increase in burrowing might be associated with a mild anxiety state, which was revealed by increased freezing behavior in the open field, and conclude that Aβ-induced hippocampal dysfunction is reflected in the impairment of ADL and memory, through mechanisms yet to be determined.

  8. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa.

    Science.gov (United States)

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-09-01

    Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

  9. Amelioration of non-motor dysfunctions after transplantation of human dopamine neurons in a model of Parkinson's disease.

    Science.gov (United States)

    Lelos, M J; Morgan, R J; Kelly, C M; Torres, E M; Rosser, A E; Dunnett, S B

    2016-04-01

    Patients suffering from Parkinson's disease (PD) display cognitive and neuropsychiatric dysfunctions, especially with disease progression. Although these impairments have been reported to impact more heavily upon a patient's quality of life than any motor dysfunctions, there are currently no interventions capable of adequately targeting these non-motor deficits. Utilizing a rodent model of PD, we investigated whether cell replacement therapy, using intrastriatal transplants of human-derived ventral mesencephalic (hVM) grafts, could alleviate cognitive and neuropsychiatric, as well as motor, dysfunctions. Rats with unilateral 6-hydroxydopamine lesions to the medial forebrain bundle were tested on a complex operant task that dissociates motivational, visuospatial and motor impairments sensitive to the loss of dopamine. A subset of lesioned rats received intrastriatal hVM grafts of ~9 weeks gestation. Post-graft, rats underwent repeated drug-induced rotation tests and were tested on two versions of the complex operant task, before post-mortem analysis of the hVM tissue grafts. Post-graft behavioural testing revealed that hVM grafts improved non-motor aspects of task performance, specifically visuospatial function and motivational processing, as well as alleviating motor dysfunctions. We report the first evidence of human VM cell grafts alleviating both non-motor and motor dysfunctions in an animal model of PD. This intervention, therefore, is the first to improve cognitive and neuropsychiatric symptoms long-term in a model of PD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Structural and functional cerebral impairments in cirrhotic patients with a history of overt hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun [Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Zhu, Xi-Qi [Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Department of Radiology, The Second Hospital of Nanjing, Medical School of Southeast University, Nanjing 210002 (China); Shu, Hao [Department of Neurology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Yang, Ming; Zhang, Yi; Ding, Jie; Wang, Yu [Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China)

    2012-10-15

    Objective: Diffuse brain atrophy has been observed in cirrhotic patients and recent reports have revealed the persistence of cognitive impairment after clinical resolution of overt hepatic encephalopathy. We sought to explore the continued influence of overt hepatic encephalopathy on neurological function by measuring brain resting-state inherent connectivity, based on an investigation of structural abnormalities. Methods: Neuropsychological tests and structural and functional magnetic resonance scanning were conducted in 20 healthy controls and 21 cirrhotic patients with a history of overt hepatic encephalopathy. The analysis of voxel-based morphometry and functional connectivity were performed to detect the alterations in brain structure and function, respectively. Results: Patients showed significantly worse performance in neuropsychological tests as compared with controls, despite apparently normal mental status. Analysis of voxel-based morphometry revealed a decrease in gray matter volume primarily in the midline regions, bilateral insular cortex and caudates, left parahippocampal gyrus, and right cerebellum posterior lobe, while the volume of the bilateral thalamus showed an increase. Of these regions, the posterior cingulate cortex with peak atrophy was selected as the origin for the analysis of functional connectivity. Typical patterns of a default mode network were identified in both groups. Decreased functional connectivity was found in the medial prefrontal gyrus, left inferior parietal lobule, and left middle temporal gyrus in the patients. Conclusions: Both functional and structural impairments were evident after apparent recovery from overt hepatic encephalopathy, demonstrating that brain dysfunction induced by hepatic encephalopathy persisted after clinical resolution and provided a basis for further evolution of the disease.

  11. Structural and functional cerebral impairments in cirrhotic patients with a history of overt hepatic encephalopathy

    International Nuclear Information System (INIS)

    Chen, Hua-Jun; Zhu, Xi-Qi; Shu, Hao; Yang, Ming; Zhang, Yi; Ding, Jie; Wang, Yu; Teng, Gao-Jun

    2012-01-01

    Objective: Diffuse brain atrophy has been observed in cirrhotic patients and recent reports have revealed the persistence of cognitive impairment after clinical resolution of overt hepatic encephalopathy. We sought to explore the continued influence of overt hepatic encephalopathy on neurological function by measuring brain resting-state inherent connectivity, based on an investigation of structural abnormalities. Methods: Neuropsychological tests and structural and functional magnetic resonance scanning were conducted in 20 healthy controls and 21 cirrhotic patients with a history of overt hepatic encephalopathy. The analysis of voxel-based morphometry and functional connectivity were performed to detect the alterations in brain structure and function, respectively. Results: Patients showed significantly worse performance in neuropsychological tests as compared with controls, despite apparently normal mental status. Analysis of voxel-based morphometry revealed a decrease in gray matter volume primarily in the midline regions, bilateral insular cortex and caudates, left parahippocampal gyrus, and right cerebellum posterior lobe, while the volume of the bilateral thalamus showed an increase. Of these regions, the posterior cingulate cortex with peak atrophy was selected as the origin for the analysis of functional connectivity. Typical patterns of a default mode network were identified in both groups. Decreased functional connectivity was found in the medial prefrontal gyrus, left inferior parietal lobule, and left middle temporal gyrus in the patients. Conclusions: Both functional and structural impairments were evident after apparent recovery from overt hepatic encephalopathy, demonstrating that brain dysfunction induced by hepatic encephalopathy persisted after clinical resolution and provided a basis for further evolution of the disease

  12. [The relationship between neuroendocrine dysfunction and free-radical oxidation in old age alcoholism].

    Science.gov (United States)

    Vinogradov, D B; Mingazov, A Kh; Izarovskaya, I V; Babin, K A; Sinitsky, A I

    2015-01-01

    to study the relationship between dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis and free-radical oxidation in old age alcoholism. Authors examined 46 men and women, aged 60-80 years, with alcoholism. Contents of cortisol, lipid peroxidation products and the level of an oxidatively modified protein were measured. A decrease in blood cortisol content and correlations between its level and activity of free-radical oxidation were identified. The severity of neuroendocrine dysfunction in old patients was sex-related. It has been suggested that the impairment of HPA system activity may be a cause of oxidative stress and development of alcoholism.

  13. Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew.

    Science.gov (United States)

    Nation, Daniel A; Bondi, Mark W; Gayles, Ellis; Delis, Dean C

    2017-01-01

    Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1-10).

  14. High Triglycerides Predicts Arteriogenic Erectile Dysfunction and Major Adverse Cardiovascular Events in Subjects With Sexual Dysfunction.

    Science.gov (United States)

    Corona, Giovanni; Cipriani, Sarah; Rastrelli, Giulia; Sforza, Alessandra; Mannucci, Edoardo; Maggi, Mario

    2016-09-01

    The atherogenic role of triglycerides (TG) remains controversial. The aim of the present study is to analyze the contribution of TG in the pathogenesis of erectile dysfunction (ED) and to verify the value of elevated TG in predicting major adverse cardiovascular events (MACE). An unselected series of 3,990 men attending our outpatient clinic for sexual dysfunction was retrospectively studied. A subset of this sample (n = 1,687) was enrolled in a longitudinal study. Several clinical, biochemical, and instrumental (penile color Doppler ultrasound; PCDU) factors were evaluated. Among the patients studied, after adjustment for confounders, higher TG levels were associated with arteriogenic ED and a higher risk of clinical and biochemical hypogonadism. Conversely, no association between TG and other sexual dysfunctions was observed. When pathological PCDU parameters-including flaccid acceleration (<1.17 m/sec(2)) or dynamic peak systolic velocity (PSV <35 cm/sec)-were considered, the negative association between impaired penile flow and higher TG levels was confirmed, even when subjects taking lipid-lowering drugs or those with diabetes were excluded from the analysis (OR = 6.343 [1.243;32.362], P = .026 and 3.576 [1.104;11.578]; P = .34 for impaired acceleration and PSV, respectively). Similarly, when the same adjusted models were applied, TG levels were associated with a higher risk of hypogonadism, independently of the definition criteria (OR = 2.892 [1.643;5.410], P < .0001 and 4.853 [1.965;11.990]; P = .001 for total T <12 and 8 nM, respectively). In the longitudinal study, after adjusting for confounders, elevated TG levels (upper quartile: 162-1686 mg/dL) were independently associated with a higher incidence of MACE (HR = 2.469 [1.019;5.981]; P = .045), when compared to the rest of the sample. Our data suggest an association between elevated TG and arteriogenic ED and its cardiovascular (CV) risk stratification. Whether the use of TG lowering drugs

  15. Association of social and cognitive impairment and biomarkers in autism spectrum disorders

    OpenAIRE

    Alabdali, Altaf; Al-Ayadhi, Laila; El-Ansary, Afaf

    2014-01-01

    Objectives The neurological basis for autism is still not fully understood, and the role of the interaction between neuro-inflammation and neurotransmission impairment needs to be clearer. This study aims to test the possible association between impaired levels of gamma aminobutyric acid (GABA), serotonin, dopamine, oxytocin, and interferon-γ-induced protein-16 (IFI16) and the severity of social and cognitive dysfunctions in individuals with autism spectrum disorders. Materials and methods GA...

  16. Executive dysfunction in Parkinson's disease and timing deficits

    Directory of Open Access Journals (Sweden)

    Krystal L Parker

    2013-10-01

    Full Text Available Patients with Parkinson’s disease (PD have deficits in perceptual timing, or the perception and estimation of time. PD patients can also have cognitive symptoms, including deficits in executive functions such as working memory, planning, and visuospatial attention. Here, we discuss how PD-related cognitive symptoms contribute to timing deficits. Timing is influenced by signaling of the neurotransmitter dopamine in the striatum. Timing also involves the frontal cortex, which is dysfunctional in PD. Frontal cortex impairments in PD may influence memory subsystems as well as decision processes during timing tasks. These data suggest that timing may be a type of executive function. As such, timing can be used to study the neural circuitry of cognitive symptoms of PD as they can be studied in animal models. Performance of timing tasks also maybe a useful clinical biomarker of frontal as well as striatal dysfunction in PD.

  17. Postoperative respiratory muscle dysfunction: pathophysiology and preventive strategies.

    Science.gov (United States)

    Sasaki, Nobuo; Meyer, Matthew J; Eikermann, Matthias

    2013-04-01

    Postoperative pulmonary complications are responsible for significant increases in hospital cost as well as patient morbidity and mortality; respiratory muscle dysfunction represents a contributing factor. Upper airway dilator muscles functionally resist the upper airway collapsing forces created by the respiratory pump muscles. Standard perioperative medications (anesthetics, sedatives, opioids, and neuromuscular blocking agents), interventions (patient positioning, mechanical ventilation, and surgical trauma), and diseases (lung hyperinflation, obesity, and obstructive sleep apnea) have differential effects on the respiratory muscle subgroups. These effects on the upper airway dilators and respiratory pump muscles impair their coordination and function and can result in respiratory failure. Perioperative management strategies can help decrease the incidence of postoperative respiratory muscle dysfunction. Such strategies include minimally invasive procedures rather than open surgery, early and optimal mobilizing of respiratory muscles while on mechanical ventilation, judicious use of respiratory depressant anesthetics and neuromuscular blocking agents, and noninvasive ventilation when possible.

  18. Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Roland, Bartholomew P.; Zeccola, Alison M.; Larsen, Samantha B.; Amrich, Christopher G.; Talsma, Aaron D.; Stuchul, Kimberly A.; Heroux, Annie; Levitan, Edwin S.; VanDemark, Andrew P.; Palladino, Michael J.; Pallanck, Leo J.

    2016-03-31

    Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches to demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. The present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.

  19. Sexual dysfunction prevalence in a group of pre- and postmenopausal Mexican women

    Science.gov (United States)

    Núñez, Flor de Durazno Casillas

    2018-01-01

    Introduction To determine the prevalence of sexual dysfunction in pre and postmenopausal women. Material and methods A cross-sectional, descriptive, comparative study was done in climacteric women from 40 to 59 years of age. Female sexual function was evaluated with the female sexual function index (FSFI) on the day of consultation. The comparison between pre and postmenopausal women and between those with or without sexual dysfunction was done with Mann Whitney U test, χ2, and Spearman’s correlation analysis was done. Results One hundred and ten women were studied, 55 were premenopausal (group 1) and 55 postmenopausal (group 2). The median of age in group 1 was 46 (40-58) years and in group 2 it was 53 (45-60) years. Premenopausal women had higher education level than postmenopausal women (p < 0.023). From those sexually active, 62.1% had sexual dysfunction. No statistically significant difference was found in education level, religion and marital status between women with or without sexual dysfunction. No difference in sexual dysfunction was found between premenopausal (62.1%) and postmenopausal (62.5%) women, but greater sexual dysfunction was found starting from 50 years age. Age negatively correlated with FSFI score (ρ = –0.324, p < 0.001). Conclusion In postmenopausal women, those older had a greater impairment in sexual function.

  20. Left atrial function in heart failure with impaired and preserved ejection fraction.

    Science.gov (United States)

    Fang, Fang; Lee, Alex Pui-Wai; Yu, Cheuk-Man

    2014-09-01

    Left atrial structural and functional changes in heart failure are relatively ignored parts of cardiac assessment. This review illustrates the pathophysiological and functional changes in left atrium in heart failure as well as their prognostic value. Heart failure can be divided into those with systolic dysfunction and heart failure with preserved ejection fraction (HFPEF). Left atrial enlargement and dysfunction commonly occur in systolic heart failure, in particular, in idiopathic dilated cardiomyopathy. Atrial enlargement and dysfunction also carry important prognostic value in systolic heart failure, independently of known parameters such as left ventricular ejection fraction. In HFPEF, there is evidence of left atrial enlargement, impaired atrial compliance, and reduction of atrial pump function. This occurs not only at rest but also during exercise, indicating significant impairment of atrial contractile reserve. Furthermore, atrial dyssynchrony is common in HFPEF. These factors further contribute to the development of new onset or progression of atrial arrhythmias, in particular, atrial fibrillation. Left atrial function is an integral part of cardiac function and its structural and functional changes in heart failure are common. As changes of left atrial structure and function have different clinical implications in systolic heart failure and HFPEF, routine assessment is warranted.

  1. Outcomes of targeted treatment for vesicoureteral reflux in children with nonneurogenic lower urinary tract dysfunction.

    Science.gov (United States)

    Fast, Angela M; Nees, Shannon N; Van Batavia, Jason P; Combs, Andrew J; Glassberg, Kenneth I

    2013-09-01

    There is a known association between nonneurogenic lower urinary tract conditions and vesicoureteral reflux. Whether reflux is secondary to the lower urinary tract condition or coincidental is controversial. We determined the rate of reflux resolution in patients with lower urinary tract dysfunction using targeted treatment for the underlying condition. Patients diagnosed and treated for a lower urinary tract condition who had concomitant vesicoureteral reflux at or near the time of diagnosis were included. Patients underwent targeted treatment and antibiotic prophylaxis, and reflux was monitored with voiding cystourethrography or videourodynamics. Vesicoureteral reflux was identified in 58 ureters in 36 females and 5 males with a mean age of 6.2 years. After a mean of 3.1 years of treatment reflux resolved with targeted treatment in 26 of 58 ureters (45%). All of these patients had a history of urinary tract infections before starting targeted treatment. Resolution rates of vesicoureteral reflux were similar for all reflux grades. Resolution or significant improvement of reflux was greater in the ureters of patients with dysfunctional voiding (70%) compared to those with idiopathic detrusor overactivity disorder (38%) or detrusor underutilization (40%). Vesicoureteral reflux associated with lower urinary tract conditions resolved with targeted treatment and antibiotic prophylaxis in 45% of ureters. Unlike the resolution rates reported in patients with reflux without a coexisting lower urinary tract condition, we found that there were no differences in resolution rates among grades I to V reflux in patients with lower urinary tract conditions. Patients with dysfunctional voiding had the most improvement and greatest resolution of reflux. Additionally grade V reflux resolved in some patients. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Assessment of cognitive impairment in patients with Parkinson's disease: prevalence and risk factors

    Directory of Open Access Journals (Sweden)

    Wang Q

    2014-02-01

    Full Text Available Qiumei Wang,1 Zhenxin Zhang,2 Ling Li,2 Hongbo Wen,2 Qun Xu3,4 1Department of Geriatrics, 2Department of Neurology, 3School of Basic Medicine, Peking Union Medical College Hospital, 4Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, People's Republic of China Background: Although Parkinson's disease (PD is clinically characterized by motor symptoms, cognitive impairment is one of the most disabling non-motor symptoms. Despite it attracting increasing attention worldwide, less is known about its prevalence in the Chinese population. The objective of this study was to assess cognitive impairment and related risk factors in Chinese PD patients. Methods: We collected the demographic, diagnostic, and treatment information of 901 PD patients from 42 centers throughout the People's Republic of China, then administered a battery of neuropsychological tests, to assess motor, cognitive, and neuropsychiatric symptoms. Results: Overall, 193 of 901 (21.4% PD patients met the criteria for dementia (PD-D, and 206 (22.8% met the criteria for mild cognitive impairment (PD-MCI. Visuospatial dysfunction and attention/executive impairment predominated. Increased severity of cognitive impairment was associated with greater motor impairment. Patients with psychiatric symptoms, such as depression and hallucinations, were more likely to have dementia. Potentially, the younger-aged and more educated are shown less cognitive impairment, but age at onset, and levodopa equivalent dose, were not associated with the presence of cognitive dysfunction. Conclusion: The prevalence and profile of cognitive impairment in Chinese PD patients, as well as the risk factors, are similar as those reported for other races, but the frequency of nonamnestic cognitive domains differs. Keywords: cognitive impairment, risk factor, prevalence, Parkinson's disease

  3. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  4. Recreational cocaine polydrug use impairs cognitive flexibility but not working memory

    NARCIS (Netherlands)

    Colzato, L.S.; Huizinga, M.; Hommel, B.

    2009-01-01

    Rationale: Chronic use of cocaine is associated with dysfunctions in frontal brain regions and dopamine D2 receptors, with poorer mental flexibility and a reduced ability to inhibit manual and attentional responses. Little is known, however, about cognitive impairments in the upcoming type of

  5. The effect of endoscopic sinus surgery on symptoms of eustachian tube dysfunction.

    Science.gov (United States)

    Stoikes, Nathaniel F N; Dutton, Jay M

    2005-01-01

    The symptom of eustachian tube dysfunction has been categorized as a "minor" symptom in chronic rhinosinusitis. The aim of this pilot study was to determine the frequency of otologic symptoms in patients with confirmed rhinosinusitis and the likelihood of its resolution in those patients undergoing endoscopic sinus surgery (ESS). Questionnaires were obtained from 168 patients who had undergone prior ESS over a 5-year period. Patients were asked to evaluate if they suffered from several different potential symptoms of eustachian tube dysfunction before ESS and whether that symptom changed postoperatively. Using the binomial test, 95% confidence intervals were determined for the following otologic symptoms of tubal dysfunction: "earfullness and congestion," "ear cracking and popping," "dizziness," and "ear pain. "ESS was found to have a significant treatment effect for the indicated otologic symptoms of tubal dysfunction. Tubal dysfunction, as manifested by otologic symptoms, is common in patients with chronic rhinosinusitis undergoing ESS. The classification of this as a "minor" symptom of rhinosinusitis needs to be reevaluated. These symptoms improve or resolve in the majority of patients undergoing ESS.

  6. [Lung dysfunction in patients with severe chronic obstructive bronchitis].

    Science.gov (United States)

    Nefedov, V B; Popova, L A; Shergina, E A

    2005-01-01

    VC, FVC, FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, TCL, TGV, RV, Raw, Rin, Rex, DLCO-SS, PaO2, and PaCO2 were determined in 36 patients with severe chronic obstructive lung disease (FEV1 volumes and capacities; 83.3% of the patients had pulmonary gas exchange dysfunction. Impaired bronchial patency mainly appeared as decreased FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, Raw, Rin, Rex; altered lung volumes and capacities manifested by increased RV, TGV, and TLC, and by decreased VC and FVC; pulmonary gas exchange dysfunction showed up as lowered PaO2 and DLCO-SS, as decreased or increased PaCO2. The observed bronchial patency disorders varied from significant to severe; functional changes in lung volumes and capacities were mild to severe.

  7. Indoxyl Sulfate Impairs Endothelial Progenitor Cells and Might Contribute to Vascular Dysfunction in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Cheng-Jui Lin

    2016-12-01

    Full Text Available Background/Aims: Indoxyl sulfate (IS is a protein-bound uremic toxin that accumulates in patients with chronic kidney disease (CKD. We explored the effect of IS on human early endothelial progenitor cells (EPCs and analyzed the correlation between serum IS levels and parameters of vascular function, including endothelial function in a CKD-based cohort. Methods: A cross-sectional study with 128 stable CKD patients was conducted. Flow-mediated dilation (FMD, pulse wave velocity (PWV, ankle brachial index, serum IS and other biochemical parameters were measured and analyzed. In parallel, the activity of early EPCs was also evaluated after exposure to IS. Results: In human EPCs, a concentration-dependent inhibitory effect of IS on chemotactic motility and colony formation was observed. Additionally, serum IS levels were significantly correlated with CKD stages. The total IS (T-IS and free IS (F-IS were strongly associated with age, hypertension, cardiovascular disease, blood pressure, PWV, blood urea nitrogen, creatine and phosphate but negatively correlated with FMD, the estimated glomerular filtration rate (eGFR, hemoglobin, hematocrit, and calcium. A multivariate linear regression analysis also showed that FMD was significantly associated with IS after adjusting for other confounding factors. Conclusions: In humans, IS impairs early EPCs and was strongly correlated with vascular dysfunction. Thus, we speculate that this adverse effect of IS may partly result from the inhibition of early EPCs.

  8. Bihippocampal damage with emotional dysfunction: impaired auditory recognition of fear.

    Science.gov (United States)

    Ghika-Schmid, F; Ghika, J; Vuilleumier, P; Assal, G; Vuadens, P; Scherer, K; Maeder, P; Uske, A; Bogousslavsky, J

    1997-01-01

    A right-handed man developed a sudden transient, amnestic syndrome associated with bilateral hemorrhage of the hippocampi, probably due to Urbach-Wiethe disease. In the 3rd month, despite significant hippocampal structural damage on imaging, only a milder degree of retrograde and anterograde amnesia persisted on detailed neuropsychological examination. On systematic testing of recognition of facial and vocal expression of emotion, we found an impairment of the vocal perception of fear, but not that of other emotions, such as joy, sadness and anger. Such selective impairment of fear perception was not present in the recognition of facial expression of emotion. Thus emotional perception varies according to the different aspects of emotions and the different modality of presentation (faces versus voices). This is consistent with the idea that there may be multiple emotion systems. The study of emotional perception in this unique case of bilateral involvement of hippocampus suggests that this structure may play a critical role in the recognition of fear in vocal expression, possibly dissociated from that of other emotions and from that of fear in facial expression. In regard of recent data suggesting that the amygdala is playing a role in the recognition of fear in the auditory as well as in the visual modality this could suggest that the hippocampus may be part of the auditory pathway of fear recognition.

  9. Progressive posterior cortical dysfunction

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    Full Text Available Abstract Progressive posterior cortical dysfunction (PPCD is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal and ventral (occipito-temporal pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction, complete Balint's syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right . Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD.

  10. Progressive posterior cortical dysfunction

    Science.gov (United States)

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  11. Cumulative Head Impact Exposure Predicts Later-Life Depression, Apathy, Executive Dysfunction, and Cognitive Impairment in Former High School and College Football Players.

    Science.gov (United States)

    Montenigro, Philip H; Alosco, Michael L; Martin, Brett M; Daneshvar, Daniel H; Mez, Jesse; Chaisson, Christine E; Nowinski, Christopher J; Au, Rhoda; McKee, Ann C; Cantu, Robert C; McClean, Michael D; Stern, Robert A; Tripodis, Yorghos

    2017-01-15

    The term "repetitive head impacts" (RHI) refers to the cumulative exposure to concussive and subconcussive events. Although RHI are believed to increase risk for later-life neurological consequences (including chronic traumatic encephalopathy), quantitative analysis of this relationship has not yet been examined because of the lack of validated tools to quantify lifetime RHI exposure. The objectives of this study were: 1) to develop a metric to quantify cumulative RHI exposure from football, which we term the "cumulative head impact index" (CHII); 2) to use the CHII to examine the association between RHI exposure and long-term clinical outcomes; and 3) to evaluate its predictive properties relative to other exposure metrics (i.e., duration of play, age of first exposure, concussion history). Participants included 93 former high school and collegiate football players who completed objective cognitive and self-reported behavioral/mood tests as part of a larger ongoing longitudinal study. Using established cutoff scores, we transformed continuous outcomes into dichotomous variables (normal vs. impaired). The CHII was computed for each participant and derived from a combination of self-reported athletic history (i.e., number of seasons, position[s], levels played), and impact frequencies reported in helmet accelerometer studies. A bivariate probit, instrumental variable model revealed a threshold dose-response relationship between the CHII and risk for later-life cognitive impairment (p < 0.0001), self-reported executive dysfunction (p < 0.0001), depression (p < 0.0001), apathy (p = 0.0161), and behavioral dysregulation (p < 0.0001). Ultimately, the CHII demonstrated greater predictive validity than other individual exposure metrics.

  12. Percentage of vestibular dysfunction in 361 elderly citizens responding to a newspaper advertisement

    DEFF Research Database (Denmark)

    Brandt, Michael Smærup; Grönvall, Erik; Mørch, Marianne Metz

    Percentage of Vestibular Dysfunction in 361 Elderly Citizens Responding to a Newspaper Advertisement. Brandt M, Grönvall E, Henriksen JJ, Larsen SB, Læssøe U, Mørch MM, Damsgaard EM Introduction Elderly patients with vestibular dysfunction have an eight-fold increased risk of falling compared...... advertisement. Method To recruit elderly citizens with dizziness we advertised in a local newspaper. A telephone interview with the respondents was done by a physiotherapist (PT). If the PT concluded that the reason for the dizziness could be vestibular dysfunction the citizen was invited to further...... Department, Aarhus University Hospital. Results 361 elderly citizens responded to the advertisement. 8 patients had alcohol problems, 14 had significantly impaired vision, 42 had evidence of orthostatic hypotension, 49 didn’t want to participate, 50 had evidence of Benign Paroxysmal Positional Vertigo (BPPV...

  13. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins.

    Science.gov (United States)

    Gillard, Baiba K; Rosales, Corina; Xu, Bingqing; Gotto, Antonio M; Pownall, Henry J

    2018-04-12

    Human plasma high-density lipoprotein cholesterol concentrations are a negative risk factor for atherosclerosis-linked cardiovascular disease. Pharmacological attempts to reduce atherosclerotic cardiovascular disease by increasing plasma high-density lipoprotein cholesterol have been disappointing so that recent research has shifted from HDL quantity to HDL quality, that is, functional vs dysfunctional HDL. HDL has varying degrees of dysfunction reflected in impaired reverse cholesterol transport (RCT). In the context of atheroprotection, RCT occurs by 2 mechanisms: one is the well-known trans-hepatic pathway comprising macrophage free cholesterol (FC) efflux, which produces early forms of FC-rich nascent HDL (nHDL). Lecithin:cholesterol acyltransferase converts HDL-FC to HDL-cholesteryl ester while converting nHDL from a disc to a mature spherical HDL, which transfers its cholesteryl ester to the hepatic HDL receptor, scavenger receptor B1 for uptake, conversion to bile salts, or transfer to the intestine for excretion. Although widely cited, current evidence suggests that this is a minor pathway and that most HDL-FC and nHDL-FC rapidly transfer directly to the liver independent of lecithin:cholesterol acyltransferase activity. A small fraction of plasma HDL-FC enters the trans-intestinal efflux pathway comprising direct FC transfer to the intestine. SR-B1 -/- mice, which have impaired trans-hepatic FC transport, are characterized by high plasma levels of a dysfunctional FC-rich HDL that increases plasma FC bioavailability in a way that produces whole-body hypercholesterolemia and multiple pathologies. The design of future therapeutic strategies to improve RCT will have to be formulated in the context of these dual RCT mechanisms and the role of FC bioavailability. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  14. Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers

    Science.gov (United States)

    Sydykov, Akylbek; Mamazhakypov, Argen; Petrovic, Aleksandar; Kosanovic, Djuro; Sarybaev, Akpay S.; Weissmann, Norbert; Ghofrani, Hossein A.; Schermuly, Ralph T.

    2018-01-01

    Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function. PMID:29875701

  15. Analysis of the Role of Neurospecific Proteins in the Diagnosis of Cognitive Dysfunction in Patients with Type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Yulia Gennad'evna Samoylova

    2014-04-01

    Full Text Available Background. Impairment of the central nervous system manifested as cognitive dysfunction caused by metabolic or structural changes is a severe progressive vascular complication of type 1 diabetes mellitus (T1DM. Significant difficulties in the diagnosis of cognitive dysfunction are associated with subjective diagnostic techniques. Objective. To identify the role of neurospecific markers in the diagnosis of cognitive dysfunction in patients with T1DM. Materials and Methods. A total of 58 patients with T1DM aged 16?30 years were included in this study. The control group included 29 healthy young adults matched by gender and age. The survey included clinical and laboratory examinations, psychological testing and magnetic resonance imaging (MRI of the brain. The Montreal Cognitive Assessment (MoCA was used to screen for cognitive impairment. The levels of neurospecific proteins (S100, glial fibrillary acidic protein and myelin basic protein were determined to identify early markers of cognitive impairment. MRI of the brain was performed using a Siemens Magnetom 1.0 T system to assess structural changes in the central nervous system. Results. The study revealed increased levels of all neurospecific proteins, which correlated with parameters of hyperglycaemia and cognitive deficit (MoCA scores of

  16. Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update

    Directory of Open Access Journals (Sweden)

    A.P. Davel

    2011-09-01

    Full Text Available The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.

  17. Impairment of Procedural Learning and Motor Intracortical Inhibition in Neurofibromatosis Type 1 Patients

    Directory of Open Access Journals (Sweden)

    Máximo Zimerman

    2015-10-01

    Interpretations: Collectively, the present results provide evidence that learning of a motor skill is impaired even in clinically intact NF1 patients based, at least partially, on a GABAergic-cortical dysfunctioning as suggested in previous animal work.

  18. Impairment of Release Site Clearance within the Active Zone by Reduced SCAMP5 Expression Causes Short-Term Depression of Synaptic Release

    Directory of Open Access Journals (Sweden)

    Daehun Park

    2018-03-01

    Full Text Available Summary: Despite being a highly enriched synaptic vesicle (SV protein and a candidate gene for autism, the physiological function of SCAMP5 remains mostly enigmatic. Here, using optical imaging and electrophysiological experiments, we demonstrate that SCAMP5 plays a critical role in release site clearance at the active zone. Truncation analysis revealed that the 2/3 loop domain of SCAMP5 directly interacts with adaptor protein 2, and this interaction is critical for its role in release site clearance. Knockdown (KD of SCAMP5 exhibited pronounced synaptic depression accompanied by a slower recovery of the SV pool. Moreover, it induced a strong frequency-dependent short-term depression of synaptic release, even under the condition of sufficient release-ready SVs. Super-resolution microscopy further proved the defects in SV protein clearance induced by KD. Thus, reduced expression of SCAMP5 may impair the efficiency of SV clearance at the active zone, and this might relate to the synaptic dysfunction observed in autism. : Park et al. show that SCAMP5 plays an important role in release site clearance during intense neuronal activity. Loss of SCAMP5 results in a traffic jam at release sites, causing aberrant short-term synaptic depression that might be associated with the synaptic dysfunction observed in autism. Keywords: secretory carrier membrane protein, SCAMP5, autism spectrum disorder, adaptor protein 2, release site clearance, presynaptic active zone, short-term depression, endocytosis, super-resolution microscopy

  19. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    Science.gov (United States)

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (Plycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (Plycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  20. Glycated hemoglobin correlates with arterial stiffness and endothelial dysfunction in patients with resistant hypertension and uncontrolled diabetes mellitus.

    Science.gov (United States)

    Moreno, Beatriz; de Faria, Ana Paula; Ritter, Alessandra Mileni Versuti; Yugar, Lara Buonalumi Tacito; Ferreira-Melo, Silvia Elaine; Amorim, Rivadavio; Modolo, Rodrigo; Fattori, André; Yugar-Toledo, Juan Carlos; Coca, Antonio; Moreno, Heitor

    2018-05-01

    This study aimed to evaluate the effects of glycated hemoglobin (HbA 1c ) on flow-mediated dilation, intima-media thickness, pulse wave velocity, and left ventricular mass index in patients with resistant hypertension (RHTN) comparing RHTN-controlled diabetes mellitus and RHTN-uncontrolled type 2 diabetes mellitus. Two groups were formed: HbA 1c diabetes mellitus: n = 98) and HbA 1c ≥7.0% (RHTN-uncontrolled diabetes mellitus: n = 122). Intima-media thickness and flow-mediated dilation were measured by high-resolution ultrasound, left ventricular mass index by echocardiography, and arterial stiffness by carotid-femoral pulse wave velocity. No differences in blood pressure levels were found between the groups but body mass index was higher in patients with RHTN-uncontrolled diabetes mellitus. Endothelial dysfunction and arterial stiffness were worse in patients with RHTN-uncontrolled diabetes mellitus. Intima-media thickness and left ventricular mass index measurements were similar between the groups. After adjustments, multiple linear regression analyses showed that HbA 1c was an independent predictor of flow-mediated dilation and pulse wave velocity in all patients with RHTN. In conclusion, HbA 1c may predict the grade of arterial stiffness and endothelial dysfunction in patients with RHTN, and superimposed uncontrolled diabetes mellitus implicates further impairment of vascular function. ©2018 Wiley Periodicals, Inc.

  1. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    Science.gov (United States)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  2. How well do the ADAS-cog and its subscales measure cognitive dysfunction in Alzheimer's disease?

    Science.gov (United States)

    Benge, Jared F; Balsis, Steve; Geraci, Lisa; Massman, Paul J; Doody, Rachelle S

    2009-01-01

    The Alzheimer's Disease Assessment Scale-cognitive (ADAS-cog) is regularly used to assess cognitive dysfunction in Alzheimer's disease (AD) clinical trials. Yet, little is known about how the instrument and its subscales measure cognition across the spectrum of AD. The current investigation used item response theory (IRT) analyses to assess the measurement properties of the ADAS-cog across the range of cognitive dysfunction in AD. We used IRT-based analyses to establish the relationship between cognitive dysfunction and the probability of obtaining observed scores on each subscale and the test as a whole. Data were obtained from 1,087 patients with AD and amnestic mild cognitive impairment. Results showed that the ADAS-cog and its subscales provide maximum information at moderate levels of cognitive dysfunction. Raw score differences toward the lower and higher ends of the scale corresponded to large differences in cognitive dysfunction, whereas raw score differences toward the middle of the scale corresponded to smaller differences. The utility of the ADAS-cog and its subscales is optimal in the moderate range of cognitive dysfunction, but raw score differences in that region correspond to relatively small differences in cognitive dysfunction. Implications for tracking and staging dementia and for clinical trials are discussed. Copyright 2009 S. Karger AG, Basel.

  3. Postoperative delirium and postoperative cognitive dysfunction in the elderly - what are the differences?

    DEFF Research Database (Denmark)

    Krenk, L; Rasmussen, L S

    2011-01-01

    Postoperative cognitive impairment is an increasingly common problem as more elderly patients undergo major surgery. Cognitive deficits in the postoperative period cause severe problems and are associated with a marked increase in morbidity and mortality. There are two main entities of postoperat......Postoperative cognitive impairment is an increasingly common problem as more elderly patients undergo major surgery. Cognitive deficits in the postoperative period cause severe problems and are associated with a marked increase in morbidity and mortality. There are two main entities...... of postoperative cognitive decline, delirium and postoperative cognitive dysfunction, which are often reported as being part of the same continuum. Although there are similarities in the predisposing factors, it seems unlikely that they share the same pathophysiology. Both have multifactorial pathogenesis...... but differ in numerous other ways, with delirium being well-defined and acute in onset and postoperative cognitive dysfunction (POCD) being subtler and with longer duration. This review aims to provide an overview of the differences in the diagnosis of the two entities and to illustrate the methodological...

  4. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction.

    Science.gov (United States)

    Gilliam, Laura A A; Lark, Daniel S; Reese, Lauren R; Torres, Maria J; Ryan, Terence E; Lin, Chien-Te; Cathey, Brook L; Neufer, P Darrell

    2016-08-01

    The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction. Copyright © 2016 the American Physiological Society.

  5. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    Science.gov (United States)

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  6. Semantic memory impairment in the earliest phases of Alzheimer's disease

    DEFF Research Database (Denmark)

    Vogel, Asmus; Gade, Anders; Stokholm, Jette

    2005-01-01

    The presence and the nature of semantic memory dysfunction in Alzheimer's disease (AD) have been widely debated. This study aimed to determine the frequency of impaired semantic test performances in mild AD and to study whether incipient semantic impairments could be identified in predementia AD....... Five short neuropsychological tests sensitive to semantic memory and easily applicable in routine practice were administered to 102 patients with mild AD (Mini-Mental State Examination score above 19), 22 predementia AD patients and 58 healthy subjects. 'Category fluency' and 'naming of famous faces......' were the most frequently impaired tests in both patient groups. The study demonstrated that impairments on semantically related tests are common in mild AD and may exist prior to the clinical diagnosis. The results imply that assessment of semantic memory is relevant in the evaluation of patients...

  7. Quercetin ameliorates chronic unpredicted stress-induced behavioral dysfunction in male Swiss albino mice by modulating hippocampal insulin signaling pathway.

    Science.gov (United States)

    Mehta, Vineet; Singh, Tiratha Raj; Udayabanu, Malairaman

    2017-12-01

    Chronic stress is associated with impaired neurogenesis, neurodegeneration and behavioral dysfunction, whereas the mechanism underlying stress-mediated neurological complications is still not clear. In the present study, we aimed to investigate whether chronic unpredicted stress (CUS) mediated neurological alterations are associated with impaired hippocampal insulin signaling or not, and studied the effect of quercetin in this scenario. Male Swiss albino mice were subjected to 21day CUS, during which 30mg/kg quercetin treatment was given orally. After 21days, behavioral functions were evaluated in terms of locomotor activity (Actophotometer), muscle coordination (Rota-rod), depression (Tail Suspension Test (TST), Forced Swim Test (FST)) and memory performance (Passive-avoidance step-down task (PASD)). Further, hippocampal insulin signaling was evaluated in terms of protein expression of insulin, insulin receptor (IR) and glucose transporter 4 (GLUT-4) and neurogenesis was evaluated in terms of doublecortin (DCX) expression. 21day CUS significantly impaired locomotion and had no effect on muscle coordination. Stressed animals were depressed and showed markedly impaired memory functions. Quercetin treatment significantly improvement stress-mediated behavior dysfunction as indicated by improved locomotion, lesser immobility time and greater frequency of upward turning in TST and FST and increased transfer latency on the day 2 (short-term memory) and day 5 (long-term memory) in PASD test. We observed significantly higher IR expression and significantly lower GLUT-4 expression in the hippocampus of stressed animals, despite of nonsignificant difference in insulin levels. Further, chronic stress impaired hippocampal neurogenesis, as indicated by the significantly reduced levels of hippocampal DCX expression. Quercetin treatment significantly lowered insulin and IR expression and significantly enhanced GLUT-4 and DCX expression in the hippocampus, when compared to CUS. In

  8. EEG Mu Rhythm and Imitation Impairments in Individuals with Autism Spectrum Disorder

    Science.gov (United States)

    Bernier, R.; Dawson, G.; Webb, S.; Murias, M.

    2009-01-01

    Imitation ability has consistently been shown to be impaired in individuals with autism. A dysfunctional execution/observation matching system has been proposed to account for this impairment. The EEG mu rhythm is believed to reflect an underlying execution/observation matching system. This study investigated evidence of differential mu rhythm attenuation during the observation, execution, and imitation of movements and examined its relation to behaviorally assessed imitation abilities. Fourteen high-functioning adults with autism spectrum disorder (ASD) and 15 IQ- and age-matched typical adults participated. On the behavioral imitation task, adults with ASD demonstrated significantly poorer performance compared to typical adults in all domains of imitation ability. On the EEG task, both groups demonstrated significant attenuation of the mu rhythm when executing an action. However, when observing movement, the individuals with ASD showed significantly reduced attenuation of the mu wave. Behaviorally assessed imitation skills were correlated with degree of mu wave attenuation during observation of movement. These findings suggest that there is execution/observation matching system dysfunction in individuals with autism and that this matching system is related to degree of impairment in imitation abilities. PMID:17451856

  9. The Outward Spiral: A vicious cycle model of obesity and cognitive dysfunction.

    Science.gov (United States)

    Hargrave, Sara L; Jones, Sabrina; Davidson, Terry L

    2016-06-01

    Chronic failure to suppress intake during states of positive energy balance leads to weight gain and obesity. The ability to use context - including interoceptive satiety states - to inhibit responding to previously rewarded cues appears to depend on the functional integrity of the hippocampus. Recent evidence implicates energy dense Western diets in several types of hippocampal dysfunction, including reduced expression of neurotrophins and nutrient transporters, increased inflammation, microglial activation, and blood brain barrier permeability. The functional consequences of such insults include impairments in an animal's ability to modulate responding to a previously reinforced cues. We propose that such deficits promote overeating, which can further exacerbate hippocampal dysfunction and thus initiate a vicious cycle of both obesity and progressive cognitive decline.

  10. Loss of Mitochondrial Function Impairs Lysosomes.

    Science.gov (United States)

    Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc

    2016-05-06

    Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Chemosensory Dysfunction in Alcohol-Related Disorders: A Joint Exploration of Olfaction and Taste.

    Science.gov (United States)

    Brion, Mélanie; de Timary, Philippe; Vander Stappen, Caroline; Guettat, Lamia; Lecomte, Benoît; Rombaux, Philippe; Maurage, Pierre

    2015-11-01

    Chemosensory (olfaction-taste) dysfunctions are considered as reliable biomarkers in many neurological and psychiatric states. However, experimental measures of chemosensory abilities are lacking in alcohol-dependence (AD) and Korsakoff Syndrome (KS, a neurological complication of AD), despite the role played by alcohol-related odors and taste in the emergence and maintenance of AD. This study thus investigated chemosensory impairments in AD and KS. Olfactory-gustatory measures were taken among 20 KS, 20 AD, and 20 control participants. Olfaction (odor detection-discrimination-identification) was assessed using the "Sniffin Sticks" battery and taste was measured using the "Taste Strips" task. Impairments were found for high-level olfaction in AD (odor discrimination) and KS (odor discrimination-identification), even after controlling for psychopathological comorbidities. Gustatory deficits were also observed in both groups, indexing a global deficit for chemosensory perception. Finally, the gradient of impairment between the successive disease stages for odor identification suggests that the hypothesis of a continuum between AD and KS regarding cognitive deficits can be generalized to chemosensory perception. AD and KS are thus characterized by deficits in chemosensory abilities, which could constitute a marker of the AD-KS transition. In view of its deleterious influence on everyday life, chemosensory dysfunction should also be taken into account in clinical settings. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Dysfunctional or hyperfunctional? The amygdala in posttraumatic stress disorder is the bull in the evolutionary China shop.

    Science.gov (United States)

    Diamond, David M; Zoladz, Phillip R

    2016-06-01

    Our motivation in writing this Review arose not only from the great value in contributing to this special issue of the Journal of Neuroscience Research but also from the desire to express our opinion that the description of the amygdala as "dysfunctional" in posttraumatic stress disorder (PTSD) might not be appropriate. We acknowledge that excessive activation of the amygdala contributes to the cluster of PTSD symptoms, including hypervigilance, intrusive memories, and impaired sleep, that underlies the devastating mental and physical outcomes in trauma victims. The issue that we address is whether the symptoms of PTSD represent an impaired (dysfunctional) or sensitized (hyperfunctional) amygdala status. We propose that the amygdala in PTSD is hyperfunctional rather than dysfunctional in recognition of the fact that the individual has already survived one life-threatening attack and that another may be forthcoming. We therefore consider PTSD to be a state in which the amygdala is functioning optimally if the goal is to ensure a person's survival. The misery caused by a hyperfunctional amygdala in PTSD is the cost of inheriting an evolutionarily primitive mechanism that considers survival more important than the quality of one's life. © 2015 Wiley Periodicals, Inc.

  13. Executive dysfunctions in pedophilic and nonpedophilic child molesters.

    Science.gov (United States)

    Schiffer, Boris; Vonlaufen, Corinne

    2011-07-01

    There is some evidence that child molesters show neuropsychological abnormalities which might reflect specific structural and/or functional brain alterations, but there are also inconsistencies in the existing findings which need to be clarified. Most of the different outcomes can either be explained by the fact that different types of child molesters were examined or by not having accounted for basically confounding factors such as age, education/intelligence, or criminality. The present study therefore sought to determine whether pedophilic and nonpedophilic child molesters, compared to relevant control groups, show different profiles of executive dysfunction when accounting for potentially confounding factors. The performance of 30 child molesters (15 pedophilic and 15 nonpedophilic) and 33 age- and education-matched controls (16 nonsexual offenders and 17 healthy controls) was assessed regarding several neuropsychological functions. Scores on different neurocognitive tests and semistructured diagnostical interviews. Results indicate that pedophilic child molesters exhibited less performance deficits in cognitive functioning than nonpedophilic child molesters. Compared to healthy controls and nonsexual offenders, the pedophilic child molesters only showed executive dysfunction concerning response inhibition, whereas the nonpedophilic child molesters revealed more severe dysfunction, especially on tasks associated with cognitive flexibility and verbal memory. These results enhance our knowledge about executive dysfunction associated with criminality and/or pedophilia, as they suggest different profiles of impairment between groups. In summary, data suggest that nonpedophilic child molesters showed more severe cognitive deficits than pedophilic child molesters. However, as response inhibition is associated with prefrontal (i.e., orbitofrontal) functioning, the deficits observed in both child molester groups indicate dysfunction in the orbitofrontal cortex. This

  14. Bulbar impairment score and survival of stable amyotrophic lateral sclerosis patients after noninvasive ventilation initiation.

    Science.gov (United States)

    Sancho, Jesús; Martínez, Daniel; Bures, Enric; Díaz, José Luis; Ponz, Alejandro; Servera, Emilio

    2018-04-01

    There is general agreement that noninvasive ventilation (NIV) prolongs survival in amyotrophic lateral sclerosis (ALS) and that the main cause of NIV failure is the severity of bulbar dysfunction. However, there is no evidence that bulbar impairment is a contraindication for NIV. The aim of this study was to determine the effect of bulbar impairment on survival in ALS patients with NIV. ALS patients for whom NIV was indicated were included. Those patients who refused NIV were taken as the control group. 120 patients who underwent NIV and 20 who refused NIV were included. The NIV group presented longer survival (median 18.50 months, 95% CI 12.62-24.38 months) than the no-NIV group (3.00 months, 95% CI 0.82-5.18 months) (pNIV, adjusted for NIV failure, were severity of bulbar dysfunction (hazard ratio (HR) 0.5, 95% CI 0.92-0.97; p=0.001) and time spent with oxygen saturation measured by pulse oximetry NIV (HR 1.12, 95% CI 1.01-1.24; p=0.02). Severe bulbar impairment in ALS does not always prevent NIV from being used, but the severity of bulbar dysfunction at NIV initiation and %sleep S pO 2 NIV appear to be the main prognostic factors of NIV failure in ALS.

  15. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    Science.gov (United States)

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  16. Evaluating sub-clinical cognitive dysfunction and event-related potentials (P300) in clinically isolated syndrome.

    Science.gov (United States)

    Kocer, Belgin; Unal, Tugba; Nazliel, Bijen; Biyikli, Zeynep; Yesilbudak, Zulal; Karakas, Sirel; Irkec, Ceyla

    2008-12-01

    This study investigated the presence of sub-clinical cognitive dysfunction in patients with clinically isolated syndrome (CIS) and the abnormalities of cognitive event-related potentials (ERPs). Subclinical cognitive dysfunction was assessed in 20 patients with CIS and in 20 healthy controls. Patients had impairments in verbal learning and long-term memory, evaluating attention, executive function and visuospatial skills, in decreasing order of frequency. SDLT and SIT were the most, and COWAT and BNT were the least affected tests. The N200 and P200 latencies were prolonged, and N100, N200 and P200 amplitudes were reduced in the patients relative to the controls, from the Fz, Cz and Pz electrode positions (p<0.05). Detailed cognitive testing is valuable in determining subclinical cognitive dysfunction in CIS patients. ERP abnormalities as well as abnormalities in detailed cognitivetesting in patients with CIS are helpful in the diagnosis of sub-clinical cognitive dysfunction.

  17. The resting state fMRI study of patients with Parkinson's disease associated with cognitive dysfunction

    International Nuclear Information System (INIS)

    Feng Jieying; Huang Biao

    2013-01-01

    Parkinson's disease (PD) is the most common neurodegenerative cause of Parkinsonism, but the high morbidity of PD accompanied cognitive dysfunction hasn't drawn enough attention by the clinicians. With the rapid development of the resting state functional MRI (fMRI) technique, the cause of PD patients with cognitive dysfunction may be associated with the damage of functional connectivity of the motor networks and the cognitive networks. The relationship between neuropathologic mechanism of PD patients with cognitive dysfunction and impaired cognitive circuits will be disclosed by building the changes of brain topological structure in patients. The resting state fMRI study can provide the rationale for prevention, diagnosis and treatment of PD. (authors)

  18. Long-term bladder dysfunction and renal function in boys with posterior urethral valves based on urodynamic findings

    NARCIS (Netherlands)

    M.A.I. Ghanem (Mazen); K.P. Wolffenbuttel (Katja); A. de Vylder (Ann); R.J.M. Nijman (Rien)

    2004-01-01

    textabstractPurpose: Posterior urethral valves are the most common cause of congenital obstructive uropathy leading to renal failure in childhood. We investigate the influence of bladder dysfunction on renal function impairment. Materials and Methods: We retrospectively reviewed the records of 116

  19. Cognitive impairment in anxiety disorders

    Directory of Open Access Journals (Sweden)

    B. A. Volel

    2018-01-01

    Full Text Available Anxiety disorders are an important biomedical problem due to the high prevalence and significant negative impact on the quality of life and the course of concomitant somatic and neurological diseases. Cognitive impairment (CI is one of the most intensively studied aspects of pathological anxiety. Impairments in attention, executive functions, memory, cognitive deficit, as well as abnormal cognitions and metacognitions are identified in anxiety disorders. Moreover, the treatment of the latter with the most frequently used drugs (antidepressants, atypical antipsychotics, anticonvulsants, tranquilizers does not lead to a significant improvement in cognitive functions, and often contributes to their worsening. In this connection, in addition to psychotherapy, cognitive function-improving agents play a large role in treating anxiety diseases associated with cognitive dysfunction. Ginkgo Biloba extract (EGb 761, Tanakan® that positively affects cognitive functions, especially in the domains of memory, concentration and attention deserves special attention.

  20. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    Science.gov (United States)

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-06-01

    microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a. Copyright © 2017 the American Physiological Society.

  1. [Impaired lung function in patients with moderate chronic obstructive bronchitis].

    Science.gov (United States)

    Nefedov, V B; Popova, L A; Shergina, E A

    2004-01-01

    VC, FVC, FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, TLC, TGV, RV, Raw, Rin, Rex, DLCO-SS, paO2 and paCO2 were determined in 22 patients with moderate chronic obstructive bronchitis (FEV1, 79-50% of the normal value). All the patients were found to have impaired bronchial patency, 90.9% of the patients had lung volume and capacity changes; pulmonary gas exchange dysfunction was present in 72.7%. Bronchial patency impairments were manifested by a decrease in FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, and an increase in Raw, Rin, Rex. Changes in the lung volumes and capacities appeared as higher RV, TGV, TLC, lower VC and FVC. Pulmonary gas exchange dysfunction showed up as a reduction in pO2 and DLCO-SS a reduction and an increase in paCO2. The magnitude of the functional changes observed in most patients was low. Significant and pronounced disorders were seen in one third of the patients.

  2. Temporal lobe dysfunction in childhood autism: a PET study; Dysfonctionnement bitemporal dans l'autisme infantile: etude en tomographie par emission de positons

    Energy Technology Data Exchange (ETDEWEB)

    Boddaert, N; Poline, J B; Brunelle, F; Zilbovicius, M [Service Hospitalier Frederic Joliot, ER-M INSERM 0205, DSV, DRM CEA, 91 - Orsay (France); Brunelle, F [Centre Hospitalier Universitaire Necker-Enfants-Malades, Service de Radiologie Pediatrique, 75 - Paris (France); Chabane, N [Hopital Robert-Debre, Service de Pedopsychiatrie, 75 - Paris (France); Barthelemy, C; Zilbovicius, M [Centre Hospitalier Universitaire Bretonneau, INSERM Unite 316, 37 - Tours (France); Bourgeois, M [Centre Hospitalier Universitaire Necker-Enfants-Malades, Dept. de Pediatrie, 75 - Paris (France); Samson, Y [Centre Hospitalier Universitaire Pitie-Salpetriere, Service des Urgences Cerebraux Vasculaires, 75 - Paris (France)

    2002-12-01

    Childhood autism is a severe developmental disorder that impairs the acquisition of some of the most important skills in human life. Progress in understanding the neural basis of childhood autism requires clear and reliable data indicating specific neuro-anatomical or neuro-physiological abnormalities. The purpose of the present study was to research localized brain dysfunction in autistic children using functional brain imaging. Regional cerebral blood flow (rCBF) was measured with positron emission tomography (PET) in 21 primary autistic children and 10 age-matched non autistic children. A statistical parametric analysis of rCBF images revealed significant bilateral temporal hypoperfusion in the associative auditory cortex (superior temporal gyrus) and in the multimodal cortex (superior temporal sulcus) in the autistic group (p<0.001). In addition, temporal hypoperfusion was detected individually in 77% of autistic children. These findings provide robust evidence of well localized functional abnormalities in autistic children located in the superior temporal lobe. Such localized abnormalities were not detected with the low resolution PET camera (14-22). This study suggests that high resolution PET camera combined with statistical parametric mapping is useful to understand developmental disorders. (authors)

  3. Association Between Olfactory Dysfunction and Amnestic Mild Cognitive Impairment and Alzheimer Disease Dementia.

    Science.gov (United States)

    Roberts, Rosebud O; Christianson, Teresa J H; Kremers, Walter K; Mielke, Michelle M; Machulda, Mary M; Vassilaki, Maria; Alhurani, Rabe E; Geda, Yonas E; Knopman, David S; Petersen, Ronald C

    2016-01-01

    To increase the opportunity to delay or prevent mild cognitive impairment (MCI) or Alzheimer disease (AD) dementia, markers of early detection are essential. Olfactory impairment may be an important clinical marker and predictor of these conditions and may help identify persons at increased risk. To examine associations of impaired olfaction with incident MCI subtypes and progression from MCI subtypes to AD dementia. Participants enrolled in the population-based, prospective Mayo Clinic Study of Aging between 2004 and 2010 were clinically evaluated at baseline and every 15 months through 2014. Participants (N = 1630) were classified as having normal cognition, MCI (amnestic MCI [aMCI] and nonamnestic MCI [naMCI]), and dementia. We administered the Brief Smell Identification Test (B-SIT) to assess olfactory function. Mild cognitive impairment, AD dementia, and longitudinal change in cognitive performance measures. Of the 1630 participants who were cognitively normal at the time of the smell test, 33 died before follow-up and 167 were lost to follow-up. Among the 1430 cognitively normal participants included, the mean (SD) age was 79.5 (5.3) years, 49.4% were men, the mean duration of education was 14.3 years, and 25.4% were APOE ε4 carriers. Over a mean 3.5 years of follow-up, there were 250 incident cases of MCI among 1430 cognitively normal participants. We observed an association between decreasing olfactory identification, as measured by a decrease in the number of correct responses in B-SIT score, and an increased risk of aMCI. Compared with the upper B-SIT quartile (quartile [Q] 4, best scores), hazard ratios (HRs) (95% CI) were 1.12 (0.65-1.92) for Q3 (P = .68); 1.95 (1.25-3.03) for Q2 (P = .003); and 2.18 (1.36-3.51) for Q1 (P = .001) (worst scores; P for trend dementia cases among 221 prevalent MCI cases. The B-SIT score also predicted progression from aMCI to AD dementia, with a significant dose-response with worsening B-SIT quartiles

  4. Worsening Cognitive Impairment and Neurodegenerative Pathology Progressively Increase Risk for Delirium

    Science.gov (United States)

    Davis, Daniel H.J.; Skelly, Donal T.; Murray, Carol; Hennessy, Edel; Bowen, Jordan; Norton, Samuel; Brayne, Carol; Rahkonen, Terhi; Sulkava, Raimo; Sanderson, David J.; Rawlins, J. Nicholas; Bannerman, David M.; MacLullich, Alasdair M.J.; Cunningham, Colm

    2015-01-01

    Background Delirium is a profound neuropsychiatric disturbance precipitated by acute illness. Although dementia is the major risk factor this has typically been considered a binary quantity (i.e., cognitively impaired versus cognitively normal) with respect to delirium risk. We used humans and mice to address the hypothesis that the severity of underlying neurodegenerative changes and/or cognitive impairment progressively alters delirium risk. Methods Humans in a population-based longitudinal study, Vantaa 85+, were followed for incident delirium. Odds for reporting delirium at follow-up (outcome) were modeled using random-effects logistic regression, where prior cognitive impairment measured by Mini-Mental State Exam (MMSE) (exposure) was considered. To address whether underlying neurodegenerative pathology increased susceptibility to acute cognitive change, mice at three stages of neurodegenerative disease progression (ME7 model of neurodegeneration: controls, 12 weeks, and 16 weeks) were assessed for acute cognitive dysfunction upon systemic inflammation induced by bacterial lipopolysaccharide (LPS; 100 μg/kg). Synaptic and axonal correlates of susceptibility to acute dysfunction were assessed using immunohistochemistry. Results In the Vantaa cohort, 465 persons (88.4 ± 2.8 years) completed MMSE at baseline. For every MMSE point lost, risk of incident delirium increased by 5% (p = 0.02). LPS precipitated severe and fluctuating cognitive deficits in 16-week ME7 mice but lower incidence or no deficits in 12-week ME7 and controls, respectively. This was associated with progressive thalamic synaptic loss and axonal pathology. Conclusion A human population-based cohort with graded severity of existing cognitive impairment and a mouse model with progressing neurodegeneration both indicate that the risk of delirium increases with greater severity of pre-existing cognitive impairment and neuropathology. PMID:25239680

  5. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Ivanova

    Full Text Available Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.

  6. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    Science.gov (United States)

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart

  7. Expression of classical mediators in hearts of rats with hepatic dysfunction.

    Science.gov (United States)

    Jarkovska, Dagmar; Bludovska, Monika; Mistrova, Eliska; Krizkova, Vera; Kotyzova, Dana; Kubikova, Tereza; Slavikova, Jana; Erek, Sumeyye Nur; Djordjevic, Aleksandar; Chottova Dvorakova, Magdalena

    2017-11-01

    Liver cirrhosis is associated with impairment of cardiovascular function including alterations of the heart innervation, humoral and nervous dysregulation, changes in systemic circulation and electrophysiological abnormalities. Choline acetyltransferase (ChAT), enzyme forming acetylcholine, tyrosine hydroxylase (TH), and dopamine-β-hydroxylase (DBH), enzymes participating in noradrenaline synthesis, are responsible for the production of classical neurotransmitters, and atrial natriuretic peptide (ANP) is produced by cardiomyocytes. The aim of this study was to evaluate the influence of experimentally induced hepatic dysfunction on the expression of proANP, ChAT, TH, and DBH in the heart. Hepatic dysfunction was induced by application of thioacetamide (TAA) or by ligation of bile duct. Biochemical parameters of hepatic injury and levels of peroxidation in the liver and heart were measured. Liver enzymes measured in the plasma were significantly elevated. Cardiac level of peroxidation was increased in operated but not TAA group animals. In the left atrium of operated rats, the expression of TH and DBH was lower, while expression of ChAT remained unchanged. In TAA group, no significant differences in the expression of the genes compared to controls were observed. Liver injury induced by ligation leads to an imbalance in the intracardiac innervation, which might impair nervous control of the heart.

  8. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection.

    Science.gov (United States)

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.

  9. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure.

    Science.gov (United States)

    Aghapour, Mahyar; Raee, Pourya; Moghaddam, Seyed Javad; Hiemstra, Pieter S; Heijink, Irene H

    2018-02-01

    The epithelial lining of the airway forms the first barrier against environmental insults, such as inhaled cigarette smoke, which is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). The barrier is formed by airway epithelial junctions, which are interconnected structures that restrict permeability to inhaled pathogens and environmental stressors. Destruction of the epithelial barrier not only exposes subepithelial layers to hazardous agents in the inspired air, but also alters the normal function of epithelial cells, which may eventually contribute to the development of COPD. Of note, disruption of epithelial junctions may lead to modulation of signaling pathways involved in differentiation, repair, and proinflammatory responses. Epithelial barrier dysfunction may be particularly relevant in COPD, where repeated injury by cigarette smoke exposure, pathogens, inflammatory mediators, and impaired epithelial regeneration may compromise the barrier function. In the current review, we discuss recent advances in understanding the mechanisms of barrier dysfunction in COPD, as well as the molecular mechanisms that underlie the impaired repair response of the injured epithelium in COPD and its inability to redifferentiate into a functionally intact epithelium.

  10. Long-term bladder dysfunction and renal function in boys with posterior urethral valves based on urodynamic findings

    NARCIS (Netherlands)

    Ghanem, MA; Wolffenbuttel, KP; De Vylder, A; Nijman, RJ

    Purpose: Posterior urethral valves are the most common cause of congenital obstructive uropathy leading to renal failure in childhood. We investigate the influence of bladder dysfunction on renal function impairment. Materials and Methods: We retrospectively reviewed the records of 116 patients with

  11. Endothelial Dysfunction Plays a Key Role in Increasing Cardiovascular Risk in Type 2 Diabetes The Hoorn Study

    NARCIS (Netherlands)

    van Sloten, T.T.; Henry, R.M.A.; Dekker, J.M.; Nijpels, G.; Unger, T.; Schram, M.T.; Stehouwer, C.D.A.

    2014-01-01

    In the pathogenesis of cardiovascular events, interaction between risk factors has seldom been identified. However, endothelial dysfunction on the one hand and type 2 diabetes mellitus, impaired glucose metabolism (IGM), and insulin resistance on the other may act synergistically (ie, interact) in

  12. Autophagic dysfunction in a lysosomal storage disorder due to impaired proteolysis

    OpenAIRE

    Elrick, Matthew J.; Lieberman, Andrew P.

    2013-01-01

    Alterations in macroautophagy (hereafter referred to as “autophagy”) are a common feature of lysosomal storage disorders, and have been hypothesized to play a major role in the pathogenesis of these diseases. We have recently reported multiple defects in autophagy contributing to the lysosomal storage disorder Niemann-Pick type C (NPC). These include increased formation of autophagosomes, slowed turnover of autophagosomes secondary to impaired lysosomal proteolysis, and delivery of stored lip...

  13. The endorsement of dysfunctional attitudes is associated with an impaired retrieval of specific autobiographical memories in response to matching cues

    NARCIS (Netherlands)

    Spinhoven, Philip; Bockting, Claudi L H; Kremers, Ismay P; Schene, Aart H; Mark, J; Williams, G

    Two studies investigated a hypothesis of Dalgleish et al. (2003) that overgeneral memory may arise from matching between task cues and dysfunctional attitudes or schemas. In the first study, 111 euthymic patients with at least two previous major depressive episodes completed the Dysfunctional

  14. The endorsement of dysfunctional attitudes is associated with an impaired retrieval of specific autobiographical memories in response to matching cues

    NARCIS (Netherlands)

    Spinhoven, Philip; Bockting, Claudi L. H.; Kremers, Ismay P.; Schene, Aart H.; Mark, J.; Williams, G.

    2007-01-01

    Two studies investigated a hypothesis of Dalgleish et al. (2003) that overgeneral memory may arise from matching between task cues and dysfunctional attitudes or schemas. In the first study, 111 euthymic patients with at least two previous major depressive episodes completed the Dysfunctional

  15. The role of tissue renin angiotensin aldosterone system in the development of endothelial dysfunction and arterial stiffness

    Directory of Open Access Journals (Sweden)

    Annayya R Aroor

    2013-10-01

    Full Text Available Epidemiological studies support the notion that arterial stiffness is an independent predictor of adverse cardiovascular events contributing significantly to systolic hypertension, impaired ventricular-arterial coupling and diastolic dysfunction, impairment in myocardial oxygen supply and demand, and progression of kidney disease. Although arterial stiffness is associated with aging, it is accelerated in the presence of obesity and diabetes. The prevalence of arterial stiffness parallels the increase of obesity that is occurring in epidemic proportions and is partly driven by a sedentary life style and consumption of a high fructose, high salt and high fat western diet. Although the underlying mechanisms and mediators of arterial stiffness are not well understood, accumulating evidence supports the role of insulin resistance and endothelial dysfunction. The local tissue renin angiotensin aldosterone system (RAAS in the vascular tissue and immune cells and perivascular adipose tissue is recognized as an important element involved in endothelial dysfunction which contributes significantly to arterial stiffness. Activation of vascular RAAS is seen in humans and animal models of obesity and diabetes, and associated with enhanced oxidative stress and inflammation in the vascular tissue. The cross talk between angiotensin and aldosterone underscores the importance of mineralocorticoid receptors in modulation of insulin resistance, decreased bioavailability of nitric oxide, endothelial dysfunction and arterial stiffness. In addition, both innate and adaptive immunity are involved in this local tissue activation of RAAS. In this review we will attempt to present a unifying mechanism of how environmental and immunological factors are involved in this local tissue RAAS activation, and the role of this process in the development of endothelial dysfunction and arterial stiffness and targeting tissue RAAS activation.

  16. cAMP-dependent Protein Kinase (PKA) Signaling Is Impaired in the Diabetic Heart.

    Science.gov (United States)

    Bockus, Lee B; Humphries, Kenneth M

    2015-12-04

    Diabetes mellitus causes cardiac dysfunction and heart failure that is associated with metabolic abnormalities and autonomic impairment. Autonomic control of ventricular function occurs through regulation of cAMP-dependent protein kinase (PKA). The diabetic heart has suppressed β-adrenergic responsiveness, partly attributable to receptor changes, yet little is known about how PKA signaling is directly affected. Control and streptozotocin-induced diabetic mice were therefore administered 8-bromo-cAMP (8Br-cAMP) acutely to activate PKA in a receptor-independent manner, and cardiac hemodynamic function and PKA signaling were evaluated. In response to 8Br-cAMP treatment, diabetic mice had impaired inotropic and lusitropic responses, thus demonstrating postreceptor defects. This impaired signaling was mediated by reduced PKA activity and PKA catalytic subunit content in the cytoplasm and myofilaments. Compartment-specific loss of PKA was reflected by reduced phosphorylation of discrete substrates. In response to 8Br-cAMP treatment, the glycolytic activator PFK-2 was robustly phosphorylated in control animals but not diabetics. Control adult cardiomyocytes cultured in lipid-supplemented media developed similar changes in PKA signaling, suggesting that lipotoxicity is a contributor to diabetes-induced β-adrenergic signaling dysfunction. This work demonstrates that PKA signaling is impaired in diabetes and suggests that treating hyperlipidemia is vital for proper cardiac signaling and function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. cAMP-dependent Protein Kinase (PKA) Signaling Is Impaired in the Diabetic Heart*

    Science.gov (United States)

    Bockus, Lee B.; Humphries, Kenneth M.

    2015-01-01

    Diabetes mellitus causes cardiac dysfunction and heart failure that is associated with metabolic abnormalities and autonomic impairment. Autonomic control of ventricular function occurs through regulation of cAMP-dependent protein kinase (PKA). The diabetic heart has suppressed β-adrenergic responsiveness, partly attributable to receptor changes, yet little is known about how PKA signaling is directly affected. Control and streptozotocin-induced diabetic mice were therefore administered 8-bromo-cAMP (8Br-cAMP) acutely to activate PKA in a receptor-independent manner, and cardiac hemodynamic function and PKA signaling were evaluated. In response to 8Br-cAMP treatment, diabetic mice had impaired inotropic and lusitropic responses, thus demonstrating postreceptor defects. This impaired signaling was mediated by reduced PKA activity and PKA catalytic subunit content in the cytoplasm and myofilaments. Compartment-specific loss of PKA was reflected by reduced phosphorylation of discrete substrates. In response to 8Br-cAMP treatment, the glycolytic activator PFK-2 was robustly phosphorylated in control animals but not diabetics. Control adult cardiomyocytes cultured in lipid-supplemented media developed similar changes in PKA signaling, suggesting that lipotoxicity is a contributor to diabetes-induced β-adrenergic signaling dysfunction. This work demonstrates that PKA signaling is impaired in diabetes and suggests that treating hyperlipidemia is vital for proper cardiac signaling and function. PMID:26468277

  18. Pharmacokinetics and Safety of Bortezomib in Patients with Advanced Malignancies and Varying Degrees of Liver Dysfunction: Phase 1 NCI Organ Dysfunction Working Group Study NCI-6432

    Science.gov (United States)

    LoRusso, Patricia M; Venkatakrishnan, Karthik; Ramanathan, Ramesh K; Sarantopoulos, John; Mulkerin, Daniel; Shibata, Stephen I; Hamilton, Anne; Dowlati, Afshin; Mani, Sridhar; Rudek, Michelle A; Takimoto, Chris H; Neuwirth, Rachel; Esseltine, Dixie-Lee; Ivy, Percy

    2013-01-01

    Purpose The proteasome inhibitor bortezomib undergoes oxidative hepatic metabolism. This study (NCI-6432; NCT00091117) was conducted to evaluate bortezomib pharmacokinetics and safety in patients with varying degrees of hepatic impairment, to inform dosing recommendations in these special populations. Methods Patients received bortezomib on days 1, 4, 8, and 11 of 21-day cycles. Patients were assigned to four hepatic function groups based on the National Cancer Institute Organ Dysfunction Working Group classification. Those with normal function received bortezomib at the 1.3 mg/m2 standard dose. Patients with severe, moderate, and mild impairment received escalating doses from 0.5, 0.7, and 1.0 mg/m2, respectively, up to a 1.3 mg/m2 maximum. Serial blood samples were collected for 24 hours post-dose on days 1 and 8, cycle 1, for bortezomib plasma concentration measurements. Results Sixty-one patients were treated, including 14 with normal hepatic function and 17, 12, and 18 with mild, moderate, and severe impairment, respectively. Mild hepatic impairment did not alter dose-normalized bortezomib exposure (AUC0-tlast) or Cmax compared with patients with normal function. Mean dose-normalized AUC0-tlast was increased by approximately 60% on day 8 in patients with moderate or severe impairment. Conclusions Patients with mild hepatic impairment do not require a starting dose adjustment of bortezomib. Patients with moderate or severe hepatic impairment should be started at a reduced dose of 0.7 mg/m2. PMID:22394984

  19. Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice

    OpenAIRE

    Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent A? accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and human...

  20. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    International Nuclear Information System (INIS)

    Liu, Penghao; Xie, Qihai; Wei, Tong; Chen, Yichen; Chen, Hong; Shen, Weili

    2015-01-01

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in both strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.

  1. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Penghao [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Xie, Qihai [Department of Cardiology, Shanghai Jiading District Central Hospital, Shanghai (China); Wei, Tong [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Chen, Yichen [Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Chen, Hong, E-mail: hchen100@shsmu.edu.cn [Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Shen, Weili, E-mail: wlshen@sibs.ac.cn [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2015-12-04

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in both strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.

  2. Temporal lobe dysfunction in childhood autism: a PET study; Dysfonctionnement bitemporal dans l'autisme infantile: etude en tomographie par emission de positons

    Energy Technology Data Exchange (ETDEWEB)

    Boddaert, N.; Poline, J.B.; Brunelle, F.; Zilbovicius, M. [Service Hospitalier Frederic Joliot, ER-M INSERM 0205, DSV, DRM CEA, 91 - Orsay (France); Brunelle, F. [Centre Hospitalier Universitaire Necker-Enfants-Malades, Service de Radiologie Pediatrique, 75 - Paris (France); Chabane, N. [Hopital Robert-Debre, Service de Pedopsychiatrie, 75 - Paris (France); Barthelemy, C.; Zilbovicius, M. [Centre Hospitalier Universitaire Bretonneau, INSERM Unite 316, 37 - Tours (France); Bourgeois, M. [Centre Hospitalier Universitaire Necker-Enfants-Malades, Dept. de Pediatrie, 75 - Paris (France); Samson, Y. [Centre Hospitalier Universitaire Pitie-Salpetriere, Service des Urgences Cerebraux Vasculaires, 75 - Paris (France)

    2002-12-01

    Childhood autism is a severe developmental disorder that impairs the acquisition of some of the most important skills in human life. Progress in understanding the neural basis of childhood autism requires clear and reliable data indicating specific neuro-anatomical or neuro-physiological abnormalities. The purpose of the present study was to research localized brain dysfunction in autistic children using functional brain imaging. Regional cerebral blood flow (rCBF) was measured with positron emission tomography (PET) in 21 primary autistic children and 10 age-matched non autistic children. A statistical parametric analysis of rCBF images revealed significant bilateral temporal hypoperfusion in the associative auditory cortex (superior temporal gyrus) and in the multimodal cortex (superior temporal sulcus) in the autistic group (p<0.001). In addition, temporal hypoperfusion was detected individually in 77% of autistic children. These findings provide robust evidence of well localized functional abnormalities in autistic children located in the superior temporal lobe. Such localized abnormalities were not detected with the low resolution PET camera (14-22). This study suggests that high resolution PET camera combined with statistical parametric mapping is useful to understand developmental disorders. (authors)

  3. Gait characteristics and their discriminative power in geriatric patients with and without cognitive impairment

    NARCIS (Netherlands)

    Kikkert, Lisette H. J. C.; Vuillerme, Nicolas; van Campen, Jos P.; Appels, Bregje A.; Hortobagyi, Tibor; Lamoth, Claudine J.

    2017-01-01

    Background: A detailed gait analysis (e.g., measures related to speed, self-affinity, stability, and variability) can help to unravel the underlying causes of gait dysfunction, and identify cognitive impairment. However, because geriatric patients present with multiple conditions that also affect

  4. Nucleotide Excision DNA Repair is Associated with Age-Related Vascular Dysfunction

    Science.gov (United States)

    Durik, Matej; Kavousi, Maryam; van der Pluijm, Ingrid; Isaacs, Aaron; Cheng, Caroline; Verdonk, Koen; Loot, Annemarieke E.; Oeseburg, Hisko; Musterd-Bhaggoe, Usha; Leijten, Frank; van Veghel, Richard; de Vries, Rene; Rudez, Goran; Brandt, Renata; Ridwan, Yanto R.; van Deel, Elza D.; de Boer, Martine; Tempel, Dennie; Fleming, Ingrid; Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Uitterlinden, Andre G.; Hofman, Albert; Duckers, Henricus J.; van Duijn, Cornelia M.; Oostra, Ben A.; Witteman, Jacqueline C.M.; Duncker, Dirk J.; Danser, A.H. Jan; Hoeijmakers, Jan H.; Roks, Anton J.M.

    2012-01-01

    Background Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. Conclusions Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease. PMID:22705887

  5. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications.

    Science.gov (United States)

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C Ronald

    2014-10-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications. © FASEB.

  6. Oxidative-Nitrosative Stress and Myocardial Dysfunctions in Sepsis: Evidence from the Literature and Postmortem Observations

    Directory of Open Access Journals (Sweden)

    M. Neri

    2016-01-01

    Full Text Available Background. Myocardial depression in sepsis is common, and it is associated with higher mortality. In recent years, the hypothesis that the myocardial dysfunction during sepsis could be mediated by ischemia related to decreased coronary blood flow waned and a complex mechanism was invoked to explain cardiac dysfunction in sepsis. Oxidative stress unbalance is thought to play a critical role in the pathogenesis of cardiac impairment in septic patients. Aim. In this paper, we review the current literature regarding the pathophysiology of cardiac dysfunction in sepsis, focusing on the possible role of oxidative-nitrosative stress unbalance and mitochondria dysfunction. We discuss these mechanisms within the broad scenario of cardiac involvement in sepsis. Conclusions. Findings from the current literature broaden our understanding of the role of oxidative and nitrosative stress unbalance in the pathophysiology of cardiac dysfunction in sepsis, thus contributing to the establishment of a relationship between these settings and the occurrence of oxidative stress. The complex pathogenesis of septic cardiac failure may explain why, despite the therapeutic strategies, sepsis remains a big clinical challenge for effectively managing the disease to minimize mortality, leading to consideration of the potential therapeutic effects of antioxidant agents.

  7. Verbal and Visual Memory Impairments in Bipolar I and II Disorder.

    Science.gov (United States)

    Ha, Tae Hyon; Kim, Ji Sun; Chang, Jae Seung; Oh, Sung Hee; Her, Ju Young; Cho, Hyun Sang; Park, Tae Sung; Shin, Soon Young; Ha, Kyooseob

    2012-12-01

    To compare verbal and visual memory performances between patients with bipolar I disorder (BD I) and patients with bipolar II disorder (BD II) and to determine whether memory deficits were mediated by impaired organizational strategies. Performances on the Korean-California Verbal Learning Test (K-CVLT) and the Rey-Osterrieth Complex Figure Test (ROCF) in 37 patients with BD I, 46 patients with BD II and 42 healthy subjects were compared. Mediating effects of impaired organization strategies on poor delayed recall was tested by comparing direct and mediated models using multiple regression analysis. Both patients groups recalled fewer words and figure components and showed lower Semantic Clustering compared to controls. Verbal memory impairment was partly mediated by difficulties in Semantic Clustering in both subtypes, whereas the mediating effect of Organization deficit on the visual memory impairment was present only in BD I. In all mediated models, group differences in delayed recall remained significant. Our findings suggest that memory impairment may be one of the fundamental cognitive deficits in bipolar disorders and that executive dysfunctions can exert an additional influence on memory impairments.

  8. Impaired hand size estimation in CRPS.

    Science.gov (United States)

    Peltz, Elena; Seifert, Frank; Lanz, Stefan; Müller, Rüdiger; Maihöfner, Christian

    2011-10-01

    A triad of clinical symptoms, ie, autonomic, motor and sensory dysfunctions, characterizes complex regional pain syndromes (CRPS). Sensory dysfunction comprises sensory loss or spontaneous and stimulus-evoked pain. Furthermore, a disturbance in the body schema may occur. In the present study, patients with CRPS of the upper extremity and healthy controls estimated their hand sizes on the basis of expanded or compressed schematic drawings of hands. In patients with CRPS we found an impairment in accurate hand size estimation; patients estimated their own CRPS-affected hand to be larger than it actually was when measured objectively. Moreover, overestimation correlated significantly with disease duration, neglect score, and increase of two-point-discrimination-thresholds (TPDT) compared to the unaffected hand and to control subjects' estimations. In line with previous functional imaging studies in CRPS patients demonstrating changes in central somatotopic maps, we suggest an involvement of the central nervous system in this disruption of the body schema. Potential cortical areas may be the primary somatosensory and posterior parietal cortices, which have been proposed to play a critical role in integrating visuospatial information. CRPS patients perceive their affected hand to be bigger than it is. The magnitude of this overestimation correlates with disease duration, decreased tactile thresholds, and neglect-score. Suggesting a disrupted body schema as the source of this impairment, our findings corroborate the current assumption of a CNS involvement in CRPS. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  9. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    Science.gov (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. ROLE OF BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF IN THE DIAGNOSIS OF COGNTIVE DYSFUNCTION IN PATIENTS WITH TYPE 2 DIABETES

    Directory of Open Access Journals (Sweden)

    Irina Vladimirovna Gatskikh

    2016-02-01

    Full Text Available One of the heavy progressive vascular complications of type 2 diabetes is a central nervous system, manifesting cognitive dysfunction due to metabolic changes. Goal. Defining the role of brain-derived neurotrophic factor (BDNF in the diagnosis of cognitive dysfunction in patients with type 2 diabetes. Materials and methods. The study involved 83 patients with type 2 diabetes at the age of 40 - 70 years. Complex examination included clinical and laboratory examination, neuropsychological testing. To screen for cognitive impairment used the Montreal Cognitive Assessment Scale (MOS test. To identify early markers of cognitive impairment was determined the level of brain-derived neurotrophic factor (BDNF. Results. The study found a negative correlation between the level of BDNF and the HbA1c (r = - 0,494, p = 0.01, fasting glucose (r = - 0,499, p = 0.01, and a positive relationship between the level of BDNF and cognitive function in patients with type 2 diabetes. Conclusion. In patients with type 2 diabetes revealed cognitive dysfunction in the form of reduced memory, attention, optical-dimensional activity that correlated with chronic hyperglycemia. The role of brain-derived neurotrophic factor (BDNF in the complex diagnosis of cognitive dysfunction in patients with type 2 diabetes. With an increase in HbA1c in patients with type 2 diabetes reduces the level of BDNF in the blood plasma, and a decline in cognitive function. Recommended use of BDNF as an additional marker of cognitive dysfunction in patients with type 2 diabetes.

  11. Encoding changes in orbitofrontal cortex in reversal-impaired aged rats.

    Science.gov (United States)

    Schoenbaum, Geoffrey; Setlow, Barry; Saddoris, Michael P; Gallagher, Michela

    2006-03-01

    Previous work in rats and primates has shown that normal aging can be associated with a decline in cognitive flexibility mediated by prefrontal circuits. For example, aged rats are impaired in rapid reversal learning, which in young rats depends critically on the orbitofrontal cortex. To assess whether aging-related reversal impairments reflect orbitofrontal dysfunction, we identified aged rats with reversal learning deficits and then recorded single units as these rats, along with unimpaired aged cohorts and young control rats, learned and reversed a series of odor discrimination problems. We found that the flexibility of neural correlates in orbitofrontal cortex was markedly diminished in aged rats characterized as reversal-impaired in initial training. In particular, although many cue-selective neurons in young and aged-unimpaired rats reversed odor preference when the odor-outcome associations were reversed, cue-selective neurons in reversal-impaired aged rats did not. In addition, outcome-expectant neurons in aged-impaired rats failed to become active during cue sampling after learning. These altered features of neural encoding could provide a basis for cognitive inflexibility associated with normal aging.

  12. Attention Deficit Hyperactivity Disorder and Executive Function Impairment: An Overview.

    OpenAIRE

    Carruthers, Lindsey.

    2016-01-01

    As with any cognitive ability, attention is vulnerable to dysfunction. The most common attentional problem is attention deficit hyperactivity disorder (ADHD). This brief overview will highlight the symptoms and deficits associated with ADHD, its prevalence in today’s society, the association between executive function impairment and ADHD using Barkley’s (1997) work, and the personal and societal effects of the disorder.

  13. Thinking After Drinking: Impaired Hippocampal Dependent Cognition in Human Alcoholics and Animal Models of Alcohol Dependence

    Directory of Open Access Journals (Sweden)

    Miranda Staples

    2016-09-01

    Full Text Available Alcohol use disorder currently affects approximately 18 million Americans, with at least half of these individuals having significant cognitive impairments subsequent to their chronic alcohol use. This is most widely apparent as frontal cortex dependent cognitive dysfunction, where executive function and decision making are severely compromised, as well as hippocampus dependent cognitive dysfunction, where contextual and temporal reasoning are negatively impacted. This review discusses the relevant clinical literature to support the theory that cognitive recovery in tasks dependent on the prefrontal cortex and hippocampus is temporally different across extended periods of abstinence from alcohol. Additional studies from preclinical models are discussed to support clinical findings. Finally, the unique cellular composition of the hippocampus and cognitive impairment dependent on the hippocampus is highlighted in the context of alcohol dependence.

  14. Hypothyroidism presenting as reversible renal impairment: an interesting case report.

    Science.gov (United States)

    Vikrant, Sanjay; Chander, Subhash; Kumar, Satish; Gupta, Dalip

    2013-10-01

    We describe an interesting case of reversible renal impairment secondary to hypothyroidism. A 57-years-old man was referred from peripheral institution for evaluation of elevated serum creatinine. He had vague complaints of weakness, lethargy and muscle ache but no urinary symptoms. He was found to have hypothyroidism, and thyroid hormone replacement therapy (THRT) was started which resulted in reversal of the renal dysfunction. There was marked improvement in estimated glomerular filtration rate. 99mTc DTPA renal scans done before and after THRT suggested hypothyroidism responsible for this reversible renal impairment. Several studies have described the pathophysiology of diminished renal function in hypothyroidism. Few studies or case reports have shown total amelioration of renal impairment as seen in our patient. The etiology is presumed to be multifactorial, in which hemodynamic effects and a direct effect of thyroid hormone on the kidney play an important role. We suggest that patients with renal impairment of unknown cause have thyroid function tests undertaken as part of routine investigation.

  15. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    Science.gov (United States)

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF. Copyright © 2016 the American Physiological Society.

  16. Noradrenergic Dysfunction in Alzheimer's and Parkinson's Diseases—An Overview of Imaging Studies

    Directory of Open Access Journals (Sweden)

    Andrew C. Peterson

    2018-05-01

    Full Text Available Noradrenergic dysfunction contributes to cognitive impairment in Alzheimer's Disease (AD and Parkinson's Disease (PD. Conventional therapeutic strategies seek to enhance cholinergic and dopaminergic neurotransmission in AD and PD, respectively, and few studies have examined noradrenergic dysfunction as a target for medication development. We review the literature of noradrenergic dysfunction in AD and PD with a focus on human imaging studies that implicate the locus coeruleus (LC circuit. The LC sends noradrenergic projections diffusely throughout the cerebral cortex and plays a critical role in attention, learning, working memory, and cognitive control. The LC undergoes considerable degeneration in both AD and PD. Advances in magnetic resonance imaging have facilitated greater understanding of how structural and functional alteration of the LC may contribute to cognitive decline in AD and PD. We discuss the potential roles of the noradrenergic system in the pathogenesis of AD and PD with an emphasis on postmortem anatomical studies, structural MRI studies, and functional MRI studies, where we highlight changes in LC connectivity with the default mode network (DMN. LC degeneration may accompany deficient capacity in suppressing DMN activity and increasing saliency and task control network activities to meet behavioral challenges. We finish by proposing potential and new directions of research to address noradrenergic dysfunction in AD and PD.

  17. MPTP-induced executive dysfunction is associated with altered prefrontal serotonergic function.

    Science.gov (United States)

    Maiti, Panchanan; Gregg, Laura C; McDonald, Michael P

    2016-02-01

    In Parkinson's disease, cognitive deficits manifest as fronto-striatally-mediated executive dysfunction, with impaired attention, planning, judgment, and impulse control. We examined changes in executive function in mice lesioned with subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a 3-choice serial reaction-time (SRT) task, which included measures of sustained attention and impulse control. Each trial of the baseline SRT task comprised a pseudo-random pre-cue period ranging from 3 to 8 s, followed by a 1-s cue duration. MPTP impaired all measures of impulsive behavior acutely, but with additional training their performance normalized to saline control levels. When challenged with shorter cue durations, MPTP-lesioned mice had significantly slower reaction times than wild-type mice. When challenged with longer pre-cue times, the MPTP-lesioned mice exhibited a loss of impulse control at the longer durations. In lesioned mice, striatal dopamine was depleted by 54% and the number of tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta was reduced by 75%. Serotonin (5-HT) was unchanged in the striatum and prefrontal cortex (PFC), but the ratio of 5-hydroxyindolacetic acid (5-HIAA) to 5-HT was significantly reduced in the MPTP group in the PFC. In lesioned mice, prefrontal 5-HIAA/5-HT was significantly correlated with the executive impairments and striatal norepinephrine was associated with slower reaction times. None of the neurochemical measures was significantly associated with behavior in saline-treated controls. Taken together, these results show that prefrontal 5-HT turnover may play a pivotal role in MPTP-induced executive dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cardiovascular autonomic dysfunction in primary ovarian insufficiency: clinical and experimental evidence

    Science.gov (United States)

    Goldmeier, Silvia; De Angelis, Kátia; Rabello Casali, Karina; Vilodre, César; Consolim-Colombo, Fernanda; Belló Klein, Adriane; Plentz, Rodrigo; Spritzer, PoliMara; Irigoyen, Maria-Cláudia

    2014-01-01

    Objective: Women with primary ovarian insufficiency (POI) present an increased risk for cardiovascular disease. In this study we tested the hypothesis that POI in women under hormone therapy (HT) are associated with vascular vasodilatation attenuation and cardiovascular autonomic dysfunction and these impairments are related to changes in systemic antioxidant enzymes. Furthermore, the possibility that ovarian hormone deprivation can induce such changes and that HT cannot reverse all of those impairments was examined in an experimental model of POI. Methods: Fifteen control and 17 patients with primary ovarian insufficiency receiving HT were included in the study. To test the systemic and cardiac consequences of ovarian hormone deprivation, ovariectomy was induced in young female rats that were submitted or not to HT. Spectral analysis of RR interval and blood pressure signals were performed and oxidative stress parameters were determined. Results: POI women under HT have increased mean arterial pressure (94±10 vs. 86±5 mmHg) despite normal endothelial and autonomic modulation of vasculature. Additionally, they presented impaired baroreflex sensitivity (3.9±1.38 vs. 7.15±3.62 ms/mmHg) and reduced heart rate variability (2310±1173 vs. 3754±1921 ms2). Similar results obtained in ovariectomized female rats were accompanied by an increased lipoperoxidation (7433±1010 vs. 6180±289 cps/mg protein) and decreased antioxidant enzymes in cardiac tissue. As it was observed in women, the HT in animals did not restore hemodynamic and autonomic dysfunctions. Conclusion: These data provide clinical and experimental evidence that long term HT may not restore all cardiovascular risk factors associated with ovarian hormone deprivation. PMID:24349626

  19. Association between vestibular function and motor performance in hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  20. Functional MRI Study of Working Memory Impairment in Patients with Symptomatic Carotid Artery Disease

    Directory of Open Access Journals (Sweden)

    Shasha Zheng

    2014-01-01

    Full Text Available The neuropsychological tests in patients with internal carotid artery (ICA demonstrated cognitive deficits associated with frontal lobe dysfunction, but the pathophysiological mechanism of memory impairment is not fully understood. This study evaluated relationship between degree of ICA stenosis and frontal activations induced by working memory (WM task using fMRI. The fMRI data of 21 patients with unilateral ICA stenosis (left/right, 11/10 and 21 controls were analyzed. In comparison with controls, ICA patients demonstrated significant activations in middle frontal gyrus (MFG bilaterally, particularly in left MFG. In right ICA stenosis, there was slightly less MFG activation than that of controls. Importantly, lower MFG activity was associated with higher stenosis of ipsilateral ICA. For left ICA stenosis, weaker activation in left MFG was negatively correlated with degree of stenosis. Similarly, for right ICA stenosis, there was a significant negative correlation between right ICA stenosis and weaker activation of right MFG. Cognitive impairments in ICA stenosis were associated with frontal lobe dysfunctions. Left ICA stenosis had worse WM impairments than right ICA stenosis, which was affected by the degree of stenosis.

  1. Cardiac impairment evaluated by transesophageal echocardiography and invasive measurements in rats undergoing sinoaortic denervation.

    Directory of Open Access Journals (Sweden)

    Raquel A Sirvente

    Full Text Available BACKGROUND: Sympathetic hyperactivity may be related to left ventricular (LV dysfunction and baro- and chemoreflex impairment in hypertension. However, cardiac function, regarding the association of hypertension and baroreflex dysfunction, has not been previously evaluated by transesophageal echocardiography (TEE using intracardiac echocardiographic catheter. METHODS AND RESULTS: We evaluated exercise tests, baroreflex sensitivity and cardiovascular autonomic control, cardiac function, and biventricular invasive pressures in rats 10 weeks after sinoaortic denervation (SAD. The rats (n = 32 were divided into 4 groups: 16 Wistar (W with (n = 8 or without SAD (n = 8 and 16 spontaneously hypertensive rats (SHR with (n = 8 or without SAD (SHRSAD (n = 8. Blood pressure (BP and heart rate (HR did not change between the groups with or without SAD; however, compared to W, SHR groups had higher BP levels and BP variability was increased. Exercise testing showed that SHR had better functional capacity compared to SAD and SHRSAD. Echocardiography showed left ventricular (LV concentric hypertrophy; segmental systolic and diastolic biventricular dysfunction; indirect signals of pulmonary arterial hypertension, mostly evident in SHRSAD. The end-diastolic right ventricular (RV pressure increased in all groups compared to W, and the end-diastolic LV pressure increased in SHR and SHRSAD groups compared to W, and in SHRSAD compared to SAD. CONCLUSIONS: Our results suggest that baroreflex dysfunction impairs cardiac function, and increases pulmonary artery pressure, supporting a role for baroreflex dysfunction in the pathogenesis of hypertensive cardiac disease. Moreover, TEE is a useful and feasible noninvasive technique that allows the assessment of cardiac function, particularly RV indices in this model of cardiac disease.

  2. Comprehensive visual impairment evaluation for cerebral palsy children

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-01-01

    Full Text Available AIM: To evaluate the visual impairment in cerebral palsy children with series objective indicators, and conclude their clinical features of visual function.METHODS: Objective tests including following pursuing test, optokinetic nystagmus(OKNdrum test, refractive error examination, fundus examination, ocular deviation examination, pattern visual evoked potential(P-VEPtests and brain magnetic resonance imaging(MRIwere carried out in 43 cerebral palsy children(86 eyeswith ocular visual dysfunction; The visual impairment data of the cerebral palsy children were collected, and the clinical features and possible mechanism were analyzed.RESULTS: 1. Of the 43 cerebral palsy children(86 eyeswith the visual impairment presented diversified, 25(50 eyes, 58.1%of refractive error, 24(48 eyes, 55.8%of strabismus, 12(24 eyes, 27.9%with nystagmus, 19(38 eyes, 44.2%of optical nerve atrophy or hyperplasia, 35(70 eyes, 81.4%of VEP abnormality. Among children with spastic cerebral palsy, the incidence of visual impairment was statistically significant difference compared with other groups(PP>0.05, no nystagmus in patients with severe occipital cortex damage.CONCLUSION: Cerebral palsy children were usually with visual impairment, and presented with special clinical features; Comprehensive objective visual tests are accurate and reliable for evaluation of the visual function in cerebral palsy children.

  3. An integrative examination of general personality dysfunction in a large community sample.

    Science.gov (United States)

    Hengartner, Michael Pascal; De Fruyt, Filip; Rodgers, Stephanie; Müller, Mario; Rössler, Wulf; Ajdacic-Gross, Vladeta

    2014-10-01

    Recently, the severity of general personality dysfunction has gained broad interest in personality disorder (PD) research. We analysed data of 511 participants aged 20-41 years from a comprehensive psychiatric survey in the general population of Zurich, Switzerland. We added the trait-scores from all DSM-IV PDs, as assessed by a self-report questionnaire, to provide a measure of general personality dysfunction. Adjusting for the Big Five personality domains as a proxy for stylistic PD elements, this composite PD score exhibited strong associations with neuroticism and schizotypy. General personality dysfunction additionally revealed a moderate detrimental association with psychosocial functioning and a strong effect on coping resources, on heavy drinking and drug use and on most psychopathological syndromes. Of particular interest is the strong association with total psychopathological distress and co-occurrence of multiple disorders, suggesting that increasing PD severity relates to the degree of global impairment independent of specific PD traits. Discussed herein are implications for public mental health policies, classification, conceptualization and treatment of PDs. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Reactive Airways Dysfunction Syndrome from Acute Inhalation of Dishwasher Detergent Powder

    Directory of Open Access Journals (Sweden)

    Timo J Hannu

    2012-01-01

    Full Text Available Reactive airway dysfunction syndrome, a type of occupational asthma without a latency period, is induced by irritating vapour, fumes or smoke. The present report is the first to describe a case of reactive airway dysfunction syndrome caused by acute exposure to dishwater detergent containing sodium metasilicate and sodium dichloroisocyanurate. The diagnosis was based on exposure data, clinical symptoms and signs, as well as respiratory function tests. A 43-year-old nonatopic male apprentice cook developed respiratory symptoms immediately after exposure to a cloud of detergent powder that was made airborne by vigorous shaking of the package. In spirometry, combined obstructive and restrictive ventilatory impairment developed, and the histamine challenge test revealed bronchial hyper-responsiveness. Even routine handling of a strongly caustic detergent, such as filling a dishwasher container, is not entirely risk free and should be performed with caution.

  5. Upper esophageal sphincter abnormalities: frequent finding on high-resolution esophageal manometry and associated with poorer treatment response in achalasia.

    Science.gov (United States)

    Chavez, Yamile H; Ciarleglio, Maria M; Clarke, John O; Nandwani, Monica; Stein, Ellen; Roland, Bani C

    2015-01-01

    Abnormalities of the upper esophageal sphincter (UES) on high-resolution esophageal manometry (HREM) have been observed in both symptomatic and asymptomatic individuals and are often interpreted as incidental findings of unclear clinical significance. Our primary aims were: (1) to assess the frequency of UES abnormalities in consecutive patients referred for HREM studies; and (2) to characterize the demographics, clinical symptoms, and manometric profiles associated with UES abnormalities as compared with those with normal UES function. We performed a retrospective study of 200 consecutive patients referred for HREM. Patients were divided into those with normal and abnormal UES function, including impaired relaxation (residual pressure >12 mm Hg), hypertensive (>104 mm Hg), and hypotensive (achalasia were significantly more likely to have UES abnormalities as compared with normal UES function (57.2% vs. 42.9%, P=0.04), with the most frequent abnormality being a hypertensive UES (50%). In addition, patients with impaired lower esophageal sphincter (LES) relaxation (esophagogastric junction outflow obstruction or achalasia) were more likely to have an UES abnormality present as compared with those with normal LES relaxation (53.1% vs. 28.6%, P=0.01). When we assessed for treatment response among patients with achalasia, we found that subjects with evidence of UES dysfunction had significantly worse treatment outcomes as compared with those without UES abnormalities present (20% improved vs. 100%, P=0.015). This remained true even after adjusting for type of treatment received (surgical myotomy, per-oral endoscopic mytotomy, botulinum toxin injection, pneumatic dilatation, medical therapy, P=0.67) and achalasia subtype (P=1.00). UES abnormalities are a frequent finding on HREM studies, especially in patients with impaired LES relaxation, including both achalasia and esophagogastric junction outflow obstruction. Interestingly, the most common UES abnormality associated

  6. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo.

    Science.gov (United States)

    Itani, Nozomi; Skeffington, Katie L; Beck, Christian; Niu, Youguo; Giussani, Dino A

    2016-01-01

    There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy. © 2015 The Authors. Journal of Pineal Research. Published by John Wiley & Sons Ltd.

  7. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    Science.gov (United States)

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  8. Peripheral Nerve Dysfunction in Middle-Aged Subjects Born with Thalidomide Embryopathy.

    Directory of Open Access Journals (Sweden)

    Alessia Nicotra

    Full Text Available Phocomelia is an extremely rare congenital malformation that emerged as one extreme of a range of defects resulting from in utero exposure to thalidomide. Individuals with thalidomide embryopathy (TE have reported developing symptoms suggestive of peripheral nervous system dysfunction in the mal-developed limbs in later life.Case control study comparing TE subjects with upper limb anomalies and neuropathic symptoms with healthy controls using standard neurophysiological testing. Other causes of a peripheral neuropathy were excluded prior to assessment.Clinical examination of 17 subjects with TE (aged 50.4±1.3 [mean±standard deviation] years, 10 females and 17 controls (37.9±9.0 years; 8 females demonstrated features of upper limb compressive neuropathy in three-quarters of subjects. Additionally there were examination findings suggestive of mild sensory neuropathy in the lower limbs (n = 1, L5 radiculopathic sensory impairment (n = 1 and cervical myelopathy (n = 1. In TE there were electrophysiological changes consistent with a median large fibre neuropathic abnormality (mean compound muscle action potential difference -6.3 mV ([-9.3, -3.3], p = 0.0002 ([95% CI], p-value and reduced sympathetic skin response amplitudes (-0.8 mV ([-1.5, -0.2], p = 0.0089 in the affected upper limbs. In the lower limbs there was evidence of sural nerve dysfunction (sensory nerve action potential -5.8 μV ([-10.7, -0.8], p = 0.0232 and impaired warm perception thresholds (+3.0°C ([0.6, 5.4], p = 0.0169.We found a range of clinical features relevant to individuals with TE beyond upper limb compressive neuropathies supporting the need for a detailed neurological examination to exclude other treatable pathologies. The electrophysiological evidence of large and small fibre axonal nerve dysfunction in symptomatic and asymptomatic limbs may be a result of the original insult and merits further investigation.

  9. Health-related quality of life in school-age children with speech-language-impairment

    NARCIS (Netherlands)

    Flapper, B.C.; Van Den Heuvel, M.

    Speech-language-impairment (SLI) as well as behavioral-dysfunction and school-type might influence health-related-quality-of-life. Patients and methods: Cross-sectional study in 124 children aged 5-8 years with SLI, in 4 special education (SE) and 7 mainstream ambulatory care (AC) schools, and 35

  10. Herpes zoster-associated voiding dysfunction in hematopoietic malignancy patients.

    Science.gov (United States)

    Imafuku, Shinichi; Takahara, Masakazu; Uenotsuchi, Takeshi; Iwato, Koji; Furue, Masutaka

    2008-01-01

    Voiding dysfunction is a rare but important complication of lumbo-sacral herpes zoster. Although the symptoms are transient, the clinical impact on immunocompromised patients cannot be overlooked. To clarify the time course of voiding dysfunction in herpes zoster, 13 herpes zoster patients with voiding dysfunction were retrospectively analyzed. Of 13 patients, 12 had background disease, and six of these were hematopoietic malignancies; four of these patients were hematopoietic stem cell transplant (HSCT) recipients. Ten patients had sacral lesions, two had lumbar, and one had thoracic lesions. Interestingly, patients with severe rash, or with hematopoietic malignancy had later onset of urinary retention than did patients with mild skin symptoms (Mann-Whitney U analysis, P = 0.053) or with other background disease (P = 0.0082). Patients with severe skin rash also had longer durations (P = 0.035). In one case, acute urinary retention occurred as late as 19 days after the onset of skin rash. In immune compromised subjects, attention should be paid to patients with herpes zoster in the lumbo-sacral area for late onset of acute urinary retention even after the resolution of skin symptoms.

  11. Reduced Treatment-Emergent Sexual Dysfunction as a Potential Target in the Development of New Antidepressants

    Directory of Open Access Journals (Sweden)

    David S. Baldwin

    2013-01-01

    Full Text Available Pleasurable sexual activity is an essential component of many human relationships, providing a sense of physical, psychological, and social well-being. Epidemiological and clinical studies show that depressive symptoms and depressive illness are associated with impairments in sexual function and satisfaction, both in untreated and treated patients. The findings of randomized placebo-controlled trials demonstrate that most of the currently available antidepressant drugs are associated with the development or worsening of sexual dysfunction, in a substantial proportion of patients. Sexual difficulties during antidepressant treatment often resolve as depression lifts but can endure over long periods and may reduce self-esteem and affect mood and relationships adversely. Sexual dysfunction during antidepressant treatment is typically associated with many possible causes, but the risk and type of dysfunction vary with differing compounds and should be considered when making decisions about the relative merits and drawbacks of differing antidepressants. A range of interventions can be considered when managing patients with sexual dysfunction associated with antidepressants, including the prescription of phosphodiesterase-5 inhibitors, but none of these approaches can be considered “ideal.” As treatment-emergent sexual dysfunction is less frequent with certain drugs, presumably related to differences in their pharmacological properties, and because current management approaches are less than ideal, a reduced burden of treatment-emergent sexual dysfunction represents a tolerability target in the development of novel antidepressants.

  12. Three screening methods for cognitive dysfunction using the Mini-Mental State Examination and Korean Dementia Screening Questionnaire.

    Science.gov (United States)

    Choi, Seong Hye; Park, Moon Ho

    2016-02-01

    To screen for and determine cognitive dysfunction, cognitive tests and/or informant reports are commonly used. However, these cognitive tests and informant reports are not always available. The present study investigated three screening methods using the Mini-Mental State Examination (MMSE) as the cognitive test, and the Korean dementia screening questionnaire (KDSQ) as the informant report. Participants were recruited from the Korea Clinical Research Center for Dementia of South Korea, and included 2861 patients with Alzheimer's disease (dementia), 3519 patients with mild cognitive impairment and 1375 controls with no cognitive dysfunction. Three screening methods were tested: (i) MMSE alone (MMSE(cut-off) ); (ii) a conventional combination of MMSE and KDSQ (MMSE+KDSQ(cut-off) ); and (iii) a decision tree with MMSE and KDSQ (MMSE+KDSQ(decision tree) ). For discriminating any cognitive dysfunction from controls, MMSE+KDSQ(cut-off) had the highest area under the receiver operating characteristic curve (0.784). For discriminating dementia from controls, MMSE+KDSQ(cut-off) had the highest area under the receiver operating characteristic curve (0.899). For discriminating mild cognitive impairment from controls, MMSE(cut-off) had the highest area under the receiver operating characteristic curve (0.683). MMSE+KDSQ(decision tree) showed the highest sensitivity for all discriminations. For overall classification accuracy, MMSE+KDSQ(decision tree) had the highest value (70.0%). These three methods had different advantageous properties for screening and staging cognitive dysfunction. As there might be different availability across clinical settings, these three methods can be selected and used according to situational needs. © 2015 Japan Geriatrics Society.

  13. Evaluation of Helkimo anamnestic and dysfunction index in identical twins

    Directory of Open Access Journals (Sweden)

    Kučević Esad H.

    2016-01-01

    and symptoms of impaired function of TMJ were established in 23 twins (38.3%, while the index dysfunction equal to 0 (dI = 0 was found in 37 (61.7% twins. Spearman's correlation (0.728 demonstrates there is a coefficient of interdependence and mutual association between anamnestic index (Ai and the dysfunction index (Di, with statistic significance at 1% (p = 0.000. Conclusion: This comparative statistical analysis showed there is a correlation between anamnestic index (Ai and clinical dysfunction index (Di by Helkimo et al.

  14. Hippocampal Dysfunction Provoked by Mercury Chloride Exposure: Evaluation of Cognitive Impairment, Oxidative Stress, Tissue Injury and Nature of Cell Death

    Directory of Open Access Journals (Sweden)

    Walessa Alana Bragança Aragão

    2018-01-01

    Full Text Available Mercury (Hg is a highly toxic metal, which can be found in its inorganic form in the environment. This form presents lower liposolubility and lower absorption in the body. In order to elucidate the possible toxicity of inorganic Hg in the hippocampus, we investigated the potential of low doses of mercury chloride (HgCl2 to promote hippocampal dysfunction by employing a chronic exposure model. For this, 56 rats were exposed to HgCl2 (0.375 mg/kg/day via the oral route for 45 days. After the exposure period, the animals were submitted to the cognitive test of fear memory. The hippocampus was collected for the measurement of total Hg levels, analysis of oxidative stress, and evaluation of cytotoxicity, apoptosis, and tissue injury. It was observed that chronic exposure to inorganic Hg promotes an increase in mercury levels in this region and damage to short- and long-term memory. Furthermore, we found that this exposure model provoked oxidative stress, which led to cytotoxicity and cell death by apoptosis, affecting astrocytes and neurons in the hippocampus. Our study demonstrated that inorganic Hg, even with its low liposolubility, is able to produce deleterious effects in the central nervous system, resulting in cognitive impairment and hippocampal damage when administered for a long time at low doses in rats.

  15. Dopamine and the development of executive dysfunction in autism spectrum disorders.

    Science.gov (United States)

    Kriete, Trenton; Noelle, David C

    2015-01-01

    Persons with autism regularly exhibit executive dysfunction (ED), including problems with deliberate goal-directed behavior, planning, and flexible responding in changing environments. Indeed, this array of deficits is sufficiently prominent to have prompted a theory that executive dysfunction is at the heart of these disorders. A more detailed examination of these behaviors reveals, however, that some aspects of executive function remain developmentaly appropriate. In particular, while people with autism often have difficulty with tasks requiring cognitive flexibility, their fundamental cognitive control capabilities, such as those involved in inhibiting an inappropriate but relatively automatic response, show no significant impairment on many tasks. In this article, an existing computational model of the prefrontal cortex and its role in executive control is shown to explain this dichotomous pattern of behavior by positing abnormalities in the dopamine-based modulation of frontal systems in individuals with autism. This model offers excellent qualitative and quantitative fits to performance on standard tests of cognitive control and cognitive flexibility in this clinical population. By simulating the development of the prefrontal cortex, the computational model also offers a potential explanation for an observed lack of executive dysfunction early in life.

  16. Dopamine and the development of executive dysfunction in autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Trenton Kriete

    Full Text Available Persons with autism regularly exhibit executive dysfunction (ED, including problems with deliberate goal-directed behavior, planning, and flexible responding in changing environments. Indeed, this array of deficits is sufficiently prominent to have prompted a theory that executive dysfunction is at the heart of these disorders. A more detailed examination of these behaviors reveals, however, that some aspects of executive function remain developmentaly appropriate. In particular, while people with autism often have difficulty with tasks requiring cognitive flexibility, their fundamental cognitive control capabilities, such as those involved in inhibiting an inappropriate but relatively automatic response, show no significant impairment on many tasks. In this article, an existing computational model of the prefrontal cortex and its role in executive control is shown to explain this dichotomous pattern of behavior by positing abnormalities in the dopamine-based modulation of frontal systems in individuals with autism. This model offers excellent qualitative and quantitative fits to performance on standard tests of cognitive control and cognitive flexibility in this clinical population. By simulating the development of the prefrontal cortex, the computational model also offers a potential explanation for an observed lack of executive dysfunction early in life.

  17. Chronically impaired autoregulation of cerebral blood flow in long-term diabetics

    DEFF Research Database (Denmark)

    Bentsen, N; Larsen, B; Lassen, N A

    1975-01-01

    Using the arteriovenous oxygen difference method autoregulation of cerebral blood flow (CBF) was tested in 16 long-term diabetics and eight control patients. Blood pressure was raised by angiotensin infusion and lowered by trimethaphan camsylate infusion, in some cases combined with head-up tilting...... of the patient. Regression analysis was carried out on the results in order to quantify autoregulatory capacity. In the control patients CBF did not vary with moderate blood pressure variations, indicating normal autoregulation. In four of the 16 diabetic patients CBF showed significant pressure dependency......, indicating impaired autoregulation. The cause of impaired autoregulation in some long-term diabetics is believed to be diffuse or multifocal dysfunction of cerebral arterioles due to diabetic vascular disease. Other conditions with impaired autoregulation are discussed and compared with that seen in long...

  18. Resistance Training in Type II Diabetes Mellitus: Impact on Areas of Metabolic Dysfunction in Skeletal Muscle and Potential Impact on Bone

    Directory of Open Access Journals (Sweden)

    Richard J. Wood

    2012-01-01

    Full Text Available The prevalence of Type II Diabetes mellitus (T2DM is increasing rapidly and will continue to be a major healthcare expenditure burden. As such, identification of effective lifestyle treatments is paramount. Skeletal muscle and bone display metabolic and functional disruption in T2DM. Skeletal muscle in T2DM is characterized by insulin resistance, impaired glycogen synthesis, impairments in mitochondria, and lipid accumulation. Bone quality in T2DM is decreased, potentially due to the effects of advanced glycation endproducts on collagen, impaired osteoblast activity, and lipid accumulation. Although exercise is widely recognized as an important component of treatment for T2DM, the focus has largely been on aerobic exercise. Emerging research suggests that resistance training (strength training may impose potent and unique benefits in T2DM. The purpose of this review is to examine the role of resistance training in treating the dysfunction in skeletal muscle and the potential role for resistance training in treating the associated dysfunction in bone.

  19. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  20. Infection related renal impairment: a major cause of acute allograft dysfunction.

    Science.gov (United States)

    Nampoory, Mangalathillam R N; Johny, Kaivilayil V; Costandy, Jamal N; Nair, Madhavan P; Said, Tarek; Homoud, Hani; Al-Muzairai, Ibrahim; Samhan, Mohmoud; Al-Moussawi, Mustafa

    2003-06-01

    We prospectively analyzed the impact of post-transplant infections on the renal function in 532 stable renal transplant recipients (M=340; F=192) over a period of 5 years. Their age ranged from 3-75 years (40+14 years). During the follow-up period, 52 patients expired and 64 lost on followup. We defined renal impairment (RI) as a persistent rise in serum creatinine above 20% from baseline value. 495 episodes of RI occurred in 269 recipients. This included 180-36% episodes of acute rejection, 53-10.7% Cyclosporine toxicity, 236-47.7% infection related renal impairment [IRRI] and 26-5.3% others. The severity of renal failure is less in IRRI (100+90.2) than that of acute rejection (166+127.1), but was more than that in cyclosporine toxicity (50+42.2). Sites of infection in IRRI were urinary (33%), respiratory (26.3%), septicemia (15.7%) and others (25.4%). Episode of IRRI occurred more frequently in LURD (159-67.4%) compared to LRD-RTR (50-21.2%). Occurrence of IRRI is more significantly higher in patients on triple drug immunosuppression (IS) (34.3%) than those on two drug IS (13.2%) (P=orEcoli (23.1%), Pseudomonas (11.1%), Salmonella (8.8%), Klebsiella (8.8%) and Staphylococai (8.3%) were the major organisms producing IRRI. IRRI is frequent (27.8%) during the first six months. Present study denotes that IRRI is a major cause of acute failure in RTR.

  1. Sleep Dysfunction and Gastrointestinal Diseases.

    Science.gov (United States)

    Khanijow, Vikesh; Prakash, Pia; Emsellem, Helene A; Borum, Marie L; Doman, David B

    2015-12-01

    Sleep deprivation and impaired sleep quality have been associated with poor health outcomes. Many patients experience sleep disturbances, which can increase the risk of medical conditions such as hypertension, obesity, stroke, and heart disease as well as increase overall mortality. Recent studies have suggested that there is a strong association between sleep disturbances and gastrointestinal diseases. Proinflammatory cytokines, such as tumor necrosis factor, interleukin-1, and interleukin-6, have been associated with sleep dysfunction. Alterations in these cytokines have been seen in certain gastrointestinal diseases, such as gastroesophageal reflux disease, inflammatory bowel disease, liver disorders, and colorectal cancer. It is important for gastroenterologists to be aware of the relationship between sleep disorders and gastrointestinal illnesses to ensure good care for patients. This article reviews the current research on the interplay between sleep disorders, immune function, and gastrointestinal diseases.

  2. Angiogenic dysfunction in bone marrow-derived early outgrowth cells from diabetic animals is attenuated by SIRT1 activation.

    Science.gov (United States)

    Yuen, Darren A; Zhang, Yanling; Thai, Kerri; Spring, Christopher; Chan, Lauren; Guo, Xiaoxin; Advani, Andrew; Sivak, Jeremy M; Gilbert, Richard E

    2012-12-01

    Impaired endothelial repair is a key contributor to microvascular rarefaction and consequent end-organ dysfunction in diabetes. Recent studies suggest an important role for bone marrow-derived early outgrowth cells (EOCs) in mediating endothelial repair, but the function of these cells is impaired in diabetes, as in advanced age. We sought to determine whether diabetes-associated EOC dysfunction might be attenuated by pharmacological activation of silent information regulator protein 1 (SIRT1), a lysine deacetylase implicated in nutrient-dependent life span extension in mammals. Despite being cultured in normal (5.5 mM) glucose for 7 days, EOCs from diabetic rats expressed less SIRT1 mRNA, induced less endothelial tube formation in vitro and neovascularization in vivo, and secreted less of the proangiogenic ELR(+) CXC chemokines CXCL1, CXCL3, and CXCL5. Ex vivo SIRT1 activation restored EOC chemokine secretion and increased the in vitro and in vivo angiogenic activity of EOC conditioned medium derived from diabetic animals to levels similar to that derived from control animals. These findings suggest a pivotal role for SIRT1 in diabetes-induced EOC dysfunction and that its pharmacologic activation may provide a new strategy for the restoration of EOC-mediated repair mechanisms.

  3. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Leanid Luksha

    Full Text Available The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS, prerequisites for myoendothelial gap junctions (MEGJ, and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.

  4. Exocrine Dysfunction Correlates with Endocrinal Impairment of Pancreas in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Prasanna Kumar, H R; Gowdappa, H Basavana; Hosmani, Tejashwi; Urs, Tejashri

    2018-01-01

    Diabetes mellitus (DM) is a chronic abnormal metabolic condition, which manifests elevated blood sugar level over a prolonged period. The pancreatic endocrine system generally gets affected during diabetes, but often abnormal exocrine functions are also manifested due to its proximity to the endocrine system. Fecal elastase-1 (FE-1) is found to be an ideal biomarker to reflect the exocrine insufficiency of the pancreas. The aim of this study was conducted to assess exocrine dysfunction of the pancreas in patients with type-2 DM (T2DM) by measuring FE levels and to associate the level of hyperglycemia with exocrine pancreatic dysfunction. A prospective, cross-sectional comparative study was conducted on both T2DM patients and healthy nondiabetic volunteers. FE-1 levels were measured using a commercial kit (Human Pancreatic Elastase ELISA BS 86-01 from Bioserv Diagnostics). Data analysis was performed based on the important statistical parameters such as mean, standard deviation, standard error, t -test-independent samples, and Chi-square test/cross tabulation using SPSS for Windows version 20.0. Statistically nonsignificant ( P = 0.5051) relationship between FE-1 deficiency and age was obtained, which implied age as a noncontributing factor toward exocrine pancreatic insufficiency among diabetic patients. Statistically significant correlation ( P = 0.003) between glycated hemoglobin and FE-1 levels was also noted. The association between retinopathy ( P = 0.001) and peripheral pulses ( P = 0.001) with FE-1 levels were found to be statistically significant. This study validates the benefit of FE-1 estimation, as a surrogate marker of exocrine pancreatic insufficiency, which remains unmanifest and subclinical.

  5. Thyroid dysfunction among long-term survivors of bone marrow transplantation

    International Nuclear Information System (INIS)

    Sklar, C.A.; Kim, T.H.; Ramsay, N.K.

    1982-01-01

    Thyroid function studies were followed serially in 27 long-term survivors (median 33 months) of bone marrow transplantation. There were 15 men and 12 women (median age 13 1/12 years, range 11/12 to 22 6/12 years). Aplastic anemia (14 patients) and acute nonlymphocytic leukemia (eight patients) were the major reasons for bone marrow transplantation. Pretransplant conditioning consisted of single-dose irradiation combined with high-dose, short-term chemotherapy in 23 patients, while four patients received a bone marrow transplantation without any radiation therapy. Thyroid dysfunction occurred in 10 of 23 (43 percent) irradiated patients; compensated hypothyroidism (elevated thyroid-stimulating hormone levels only) developed in eight subjects, and two patients had primary thyroid failure (elevated thyroid-stimulating hormone levels and low T4 index). The abnormal thyroid studies were detected a median of 13 months after bone marrow transplantation. The four subjects who underwent transplantation without radiation therapy have remained euthyroid (median follow-up two years). The only variable that appeared to correlate with the subsequent development of impaired thyroid function was the type of graft-versus-host disease prophylaxis employed; the irradiated subjects treated with methotrexate alone had a higher incidence of thyroid dysfunction compared to those treated with methotrexate combined with antithymocyte globulin and prednisone (eight of 12 versus two of 11, p less than 0.05). The high incidence and subtle nature of impaired thyroid function following single-dose irradiation for bone marrow transplantation are discussed

  6. Cardiovascular autonomic dysfunction in Ehlers-Danlos syndrome-Hypermobile type.

    Science.gov (United States)

    Hakim, Alan; O'Callaghan, Chris; De Wandele, Inge; Stiles, Lauren; Pocinki, Alan; Rowe, Peter

    2017-03-01

    Autonomic dysfunction contributes to health-related impairment of quality of life in the hypermobile type of Ehlers-Danlos syndrome (hEDS). Typical signs and symptoms include tachycardia, hypotension, gastrointestinal dysmotility, and disturbed bladder function and sweating regulation. Cardiovascular autonomic dysfunction may present as Orthostatic Intolerance, Orthostatic Hypotension, Postural Orthostatic Tachycardia Syndrome, or Neurally Mediated Hypotension. The incidence, prevalence, and natural history of these conditions remain unquantified, but observations from specialist clinics suggest they are frequently seen in hEDS. There is growing understanding of how hEDS-related physical and physiological pathology contributes to the development of these conditions. Evaluation of cardiovascular symptoms in hEDS should include a careful history and clinical examination. Tests of cardiovascular function range from clinic room observation to tilt-table assessment to other laboratory investigations such as supine and standing catecholamine levels. Non-pharmacologic treatments include education, managing the environment to reduce exposure to triggers, improving cardiovascular fitness, and maintaining hydration. Although there are limited clinical trials, the response to drug treatments in hEDS is supported by evidence from case and cohort observational data, and short-term physiological studies. Pharmacologic therapy is indicated for patients with moderate-severe impairment of daily function and who have inadequate response or tolerance to conservative treatment. Treatment in hEDS often requires a focus on functional maintenance. Also, the negative impact of cardiovascular symptoms on physical and psycho-social well-being may generate a need for a more general evaluation and on-going management and support. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart.

    Science.gov (United States)

    Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L

    2015-09-15

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.

  8. Meta-analysis of Theory of Mind (ToM) impairment in bipolar disorder.

    Science.gov (United States)

    Bora, E; Bartholomeusz, C; Pantelis, C

    2016-01-01

    Theory of mind (ToM) dysfunction is prominent in a number of psychiatric disorders, in particular, autism and schizophrenia, and can play a significant role in poor functioning. There is now emerging evidence suggesting that ToM abilities are also impaired in bipolar disorder (BP); however, the relationship between ToM deficits and mood state is not clear. We conducted a meta-analysis of ToM studies in BP. Thirty-four studies comparing 1214 patients with BP and 1097 healthy controls were included. BP groups included remitted (18 samples, 545 BP patients), subsyndromal (12 samples, 510 BP patients), and acute (manic and/or depressed) (10 samples, 159 BP patients) patients. ToM performance was significantly impaired in BP compared to controls. This impairment was evident across different types of ToM tasks (including affective/cognitive and verbal/visual) and was also evident in strictly euthymic patients with BP (d = 0.50). There were no significant differences between remitted and subsyndromal samples. However, ToM deficit was significantly more severe during acute episodes (d = 1.23). ToM impairment was significantly associated with neurocognitive and particularly with manic symptoms. Significant but modest sized ToM dysfunction is evident in remitted and subsyndromal BP. Acute episodes are associated with more robust ToM deficits. Exacerbation of ToM deficits may contribute to the more significant interpersonal problems observed in patients with acute or subsyndromal manic symptoms. There is a need for longitudinal studies comparing the developmental trajectory of ToM deficits across the course of the illness.

  9. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sin Bond Leung

    2013-01-01

    Full Text Available Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction.

  10. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Science.gov (United States)

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  11. Alliance Coordination, Dysfunctions, and the Protection of Idiosyncratic Knowledge in Strategic Learning Alliances

    OpenAIRE

    Müller, Dirk

    2010-01-01

    In high technology industries firms use strategic learning alliances to create value that can’t be created alone. While they open their interorganizational membrane to gain new skills and competences, generate new products and services, accelerate development speed, and enter into new markets their idiosyncratic knowledge base may be impaired when knowledge related dysfunctions like the unintended knowledge transfer, asymmetric learning speed or premature closing occur. Within a value approac...

  12. Endothelial function and dysfunction: clinical significance and assessment

    Directory of Open Access Journals (Sweden)

    Shaghayegh Haghjooyejavanmard

    2008-08-01

    Full Text Available

    • Over the past two decades, investigators have increasingly recognized the importance of the endothelium as a centralregulator of vascular and body homeostasis. The endothelial lining represents an organ of 1.5 kg in an adult, which is distributed throughout the body. The endothelium is versatile and multifunctional. In addition to its role as a selective permeability barrier, it has many synthetic and metabolic properties, including modulation of vascular tone and blood flow, regulation of immune and inflammatory responses, and regulation of coagulation, fibrinolysis and thrombosis. Endothelial dysfunction (ED is a frequently used term, which can be referred to abnormalities in various physiological functions of the endothelium, and it is known as a key variable in the pathogenesis of several diseases and their complications. Finding suitable markers for endothelial damage or ED is certainly of interest. Established and emerging techniques to detect ED are divided into three large families of functional, cellular, and biochemical markers. Instead of performing single assessments, it may be much more valuable to determine various biological aspects of endothelium. It seems that there is likely a spectrum between normality, endothelial activation (by inflammatory cytokines, endothelial dysfunction (e.g., impairment of nitric oxide, resulting in loss of regulation of vascular tone and endothelial damage (e.g., atherosclerosis. In this review we review the importance of endothelium and its activation, biomarkers and dysfunction.
    •  KEYWORDS: Endothelial function, endothelium, Disease.

  13. Sudden death and paroxysmal autonomic dysfunction in stiff-man syndrome.

    Science.gov (United States)

    Mitsumoto, H; Schwartzman, M J; Estes, M L; Chou, S M; La Franchise, E F; De Camilli, P; Solimena, M

    1991-04-01

    Two women with typical stiff-man syndrome (SMS) developed increasingly frequent attacks of muscle spasms with severe paroxysmal autonomic dysfunctions such as transient hyperpyrexia, diaphoresis, tachypnea, tachycardia, pupillary dilation, and arterial hypertension. Autoantibodies to GABA-ergic neurons were identified in the serum of both patients and in the cerebrospinal fluid of one. Both died suddenly and unexpectedly. General autopsy did not reveal the cause of death. Neuropathological studies revealed perivascular gliosis in the spinal cord and brain stem of one patient and lymphocytic perivascular infiltration in the spinal cord, brain stem, and basal ganglia of the other. The occurrence of a chronic inflammatory reaction in one of the two patients supports the idea that an autoimmune disease against GABA-ergic neurons may be involved in SMS. A review of the literature indicates that functional impairment in SMS is severe and prognosis is unpredictable because of the potential for sudden and unexpected death. Both muscular abnormalities and autonomic dysfunctions may result from autoimmunity directed against GABA-ergic neurons.

  14. The combination of vestibular impairment and congenital sensorineural hearing loss predisposes patients to ocular anomalies, including Usher syndrome.

    Science.gov (United States)

    Kletke, S; Batmanabane, V; Dai, T; Vincent, A; Li, S; Gordon, K A; Papsin, B C; Cushing, S L; Héon, E

    2017-07-01

    The co-occurrence of hearing impairment and visual dysfunction is devastating. Most deaf-blind etiologies are genetically determined, the commonest being Usher syndrome (USH). While studies of the congenitally deaf population reveal a variable degree of visual problems, there are no effective ophthalmic screening guidelines. We hypothesized that children with congenital sensorineural hearing loss (SNHL) and vestibular impairment were at an increased risk of having USH. A retrospective chart review of 33 cochlear implants recipients for severe to profound SNHL and measured vestibular dysfunction was performed to determine the ocular phenotype. All the cases had undergone ocular examination and electroretinogram (ERG). Patients with an abnormal ERG underwent genetic testing for USH. We found an underlying ocular abnormality in 81.81% (27/33) of cases; of which 75% had refractive errors, and 50% of those patients showed visual improvement with refractive correction. A total of 14 cases (42.42%; 14/33) had generalized rod-cone dysfunction on ERG suggestive of Usher syndrome type 1, confirmed by mutational analysis. This work shows that adding vestibular impairment as a criterion for requesting an eye exam and adding the ERG to detect USH increases the chances of detecting ocular anomalies, when compared with previous literature focusing only on congenital SNHL. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Relevance of quality of life assessment for multiple sclerosis patients with memory impairment.

    Directory of Open Access Journals (Sweden)

    Karine Baumstarck

    Full Text Available BACKGROUND: Memory disturbances, in particular episodic verbal memory dysfunction, are the most frequent cognitive impairment observed in multiple sclerosis (MS patients. The use of self-reported outcomes for evaluating treatment and managing care of these subjects has been questioned. The aim of this study was to provide new evidence about the suitability of self-reported outcomes for use in this impaired population by exploring the internal structure, reliability and external validity of a specific quality of life (QoL instrument, the Multiple Sclerosis International Quality of Life questionnaire (MusiQoL. METHODS: DESIGN: cross-sectional study. INCLUSION CRITERIA: MS patients of any disease subtype. DATA COLLECTION: sociodemographic (age, gender, marital status, education level, and occupational activity and clinical data (MS subtype, Expanded Disability Status Scale, disease duration; QoL (MusiQoL and SF36; and memory performance (Grober and Buschke test. In accordance with the French norms of the memory test, non-impaired and impaired populations were defined for short- and long-delay free composites and for short- and long-delay total composites. For the 8 populations, psychometric properties were compared to those reported from the reference population assessed in the validation study. PRINCIPAL FINDINGS: One hundred and twenty-four consecutive patients were enrolled. The analysis performed in the impaired populations showed that the questionnaire structure adequately matched the initial structure of the MusiQoL. The unidimensionality of the dimensions was preserved, and the internal/external validity indices were close to those of the reference population. CONCLUSIONS/SIGNIFICANCE: Our study suggests that memory dysfunction did not compromise the reliability or validity of the self-reported QoL questionnaires.

  16. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    Science.gov (United States)

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Skeletal Muscle and Lymphocyte Mitochondrial Dysfunctions in Septic Shock Trigger ICU-Acquired Weakness and Sepsis-Induced Immunoparalysis

    Directory of Open Access Journals (Sweden)

    Quentin Maestraggi

    2017-01-01

    Full Text Available Fundamental events driving the pathological processes of septic shock-induced multiorgan failure (MOF at the cellular and subcellular levels remain debated. Emerging data implicate mitochondrial dysfunction as a critical factor in the pathogenesis of sepsis-associated MOF. If macrocirculatory and microcirculatory dysfunctions undoubtedly participate in organ dysfunction at the early stage of septic shock, an intrinsic bioenergetic failure, sometimes called “cytopathic hypoxia,” perpetuates cellular dysfunction. Short-term failure of vital organs immediately threatens patient survival but long-term recovery is also severely hindered by persistent dysfunction of organs traditionally described as nonvital, such as skeletal muscle and peripheral blood mononuclear cells (PBMCs. In this review, we will stress how and why a persistent mitochondrial dysfunction in skeletal muscles and PBMC could impair survival in patients who overcome the first acute phase of their septic episode. First, muscle wasting protracts weaning from mechanical ventilation, increases the risk of mechanical ventilator-associated pneumonia, and creates a state of ICU-acquired muscle weakness, compelling the patient to bed. Second, failure of the immune system (“immunoparalysis” translates into its inability to clear infectious foci and predisposes the patient to recurrent nosocomial infections. We will finally emphasize how mitochondrial-targeted therapies could represent a realistic strategy to promote long-term recovery after sepsis.

  18. Urtica dioica extract attenuates depressive like behavior and associative memory dysfunction in dexamethasone induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Udayabanu, Malairaman

    2014-03-01

    Evidences suggest that glucocorticoids results in depression and is a risk factor for type 2 diabetes. Further diabetes induces oxidative stress and hippocampal dysfunction resulting in cognitive decline. Traditionally Urtica dioica has been used for diabetes mellitus and cognitive dysfunction. The present study investigated the effect of the hydroalcoholic extract of Urtica dioica leaves (50 and 100 mg/kg, p.o.) in dexamethasone (1 mg/kg, i.m.) induced diabetes and its associated complications such as depressive like behavior and cognitive dysfunction. We observed that mice administered with chronic dexamethasone resulted in hypercortisolemia, oxidative stress, depressive like behavior, cognitive impairment, hyperglycemia with reduced body weight, increased water intake and decreased hippocampal glucose transporter-4 (GLUT4) mRNA expression. Urtica dioica significantly reduced hyperglycemia, plasma corticosterone, oxidative stress and depressive like behavior as well as improved associative memory and hippocampal GLUT4 mRNA expression comparable to rosiglitazone (5 mg/kg, p.o.). Further, Urtica dioica insignificantly improved spatial memory and serum insulin. In conclusion, Urtica dioica reversed dexamethasone induced hyperglycemia and its associated complications such as depressive like behavior and cognitive dysfunction.

  19. Resolution proposition for the creation of an inquiry commission on dysfunctions of the nuclear sector in France

    International Nuclear Information System (INIS)

    2009-11-01

    Written by members of the French Parliament, this paper comments different dysfunctions of the French nuclear sector which could justify the creation of an official parliamentary inquiry commission. These dysfunctions concern uncertainties in the EPR system, the discovery of a quantity of enriched uranium greater than the authorized one in Cadarache, the export of nuclear wastes in Siberia, the general safety of French nuclear power stations, the right to information, the financial problems met by the sector in relationship with a recent loan and foreign investments, the relationship between the African origin of uranium supplies and human rights in these countries, the practices of espionage of NGOs and anti-nuclear associations by EDF

  20. Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice.

    Science.gov (United States)

    Hu, Yang; Ding, Wenting; Zhu, Xiaonan; Chen, Ruzhu; Wang, Xuelan

    2016-04-01

    Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.

  1. The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment

    Directory of Open Access Journals (Sweden)

    Youhua Xu

    2017-04-01

    Full Text Available Progressive cognitive dysfunction is a central characteristic of diabetic encephalopathy (DE. With an aging population, the incidence of DE is rising and it has become a major threat that seriously affects public health. Studies within this decade have indicated the important role of risk factors such as oxidative stress and inflammation on the development of cognitive impairment. With the recognition of the two-way communication between gut and brain, recent investigation suggests that “microbiota-gut-brain axis” also plays a pivotal role in modulating both cognition function and endocrine stability. This review aims to systemically elucidate the underlying impact of diabetes on cognitive impairment.

  2. Baroreflex deficiency induces additional impairment of vagal tone, diastolic function and calcium handling proteins after myocardial infarction

    Science.gov (United States)

    Mostarda, Cristiano; Rodrigues, Bruno; Medeiros, Alessandra; Moreira, Edson D; Moraes-Silva, Ivana C; Brum, Patricia C; Angelis, Katia De; Irigoyen, Maria-Cláudia

    2014-01-01

    Baroreflex dysfunction has been considered an important mortality predictor after myocardial infarction (MI). However, the impact of baroreflex deficiency prior to MI on tonic autonomic control and cardiac function, and on the profile of proteins associated with intracellular calcium handling has not yet been studied. The aim of the present study was to analyze how the impairment of baroreflex induced by sinoaortic denervation (SAD) prior to MI in rats affects the tonic autonomic control, ventricular function and cardiomyocyte calcium handling proteins. After 15 days of following or SAD surgery, rats underwent MI. Echocardiographic, hemodynamic, autonomic and molecular evaluations were performed 90 days after MI. Baroreflex impairment led to additional damage on: left ventricular remodeling, diastolic function, vagal tonus and intrinsic heart rate after MI. The loss of vagal component of the arterial baroreflex and vagal tonus were correlated with changes in the cardiac proteins involved in intracellular calcium homeostasis. Furthermore, additional increase in sodium calcium exchanger expression levels was associated with impaired diastolic function in experimental animals. Our findings strongly suggest that previous arterial baroreflex deficiency may induce additional impairment of vagal tonus, which was associated with calcium handling proteins abnormalities, probably triggering ventricular diastolic dysfunction after MI in rats. PMID:24936224

  3. Reactive airways dysfunction syndrome from acute inhalation of a dishwasher detergent powder.

    Science.gov (United States)

    Hannu, Timo J; Riihimäki, Vesa E; Piirilä, Päivi L

    2012-01-01

    Reactive airway dysfunction syndrome, a type of occupational asthma without a latency period, is induced by irritating vapour, fumes or smoke. The present report is the first to describe a case of reactive airway dysfunction syndrome caused by acute exposure to dishwater detergent containing sodium metasilicate and sodium dichloroisocyanurate. The diagnosis was based on exposure data, clinical symptoms and signs, as well as respiratory function tests. A 43-year-old nonatopic male apprentice cook developed respiratory symptoms immediately after exposure to a cloud of detergent powder that was made airborne by vigorous shaking of the package. In spirometry, combined obstructive and restrictive ventilatory impairment developed, and the histamine challenge test revealed bronchial hyper-responsiveness. Even routine handling of a strongly caustic detergent, such as filling a dishwasher container, is not entirely risk free and should be performed with caution.

  4. Olfactory Dysfunction as an Early Biomarker in Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Michelle E.Fullard; James F.Morley; John E.Duda

    2017-01-01

    Olfactory dysfunction is common in Parkinson's disease (PD) and often predates the diagnosis by years,reflecting early deposition of Lewy pathology,the histologic hallmark of PD,in the olfactory bulb.Clinical tests are available that allow for the rapid characterization of olfactory dysfunction,including tests of odor identification,discrimination,detection,and recognition thresholds,memory,and tests assessing the build-up of odor intensity across increasing suprathreshold stimulus concentrations.The high prevalence of olfactory impairment,along with the ease and low cost of assessment,has fostered great interest in olfaction as a potential biomarker for PD.Hyposmia may help differentiate PD from other causes of parkinsonism,and may also aid in the identification of "pre-motor" PD due to the early pathologic involvement of olfactory pathways.Olfactory function is also correlated with other non-motor features of PD and may serve as a predictor of cognitive decline.In this article,we summarize the existing literature on olfaction in PD,focusing on the potential for olfaction as a biomarker for early or differential diagnosis and prognosis.

  5. School dysfunction in youth with autistic spectrum disorder in Taiwan: The effect of subtype and ADHD.

    Science.gov (United States)

    Chiang, Huey-Ling; Kao, Wei-Chih; Chou, Mei-Chun; Chou, Wen-June; Chiu, Yen-Nan; Wu, Yu-Yu; Gau, Susan Shur-Fen

    2018-02-10

    School dysfunction is observed in youths with autism spectrum disorder (ASD), but the factors moderating their school dysfunction have not been well explored. This study investigated school functions in youths with ASD in Taiwan, stratified by personal characteristics including demographics, ASD subtypes, intelligence profiles, and the presence of attention-deficit hyperactivity disorder (ADHD). We recruited 160 youths (aged 6-18 years, 87.5% boys) with a clinical diagnosis of ASD and 160 age and gender-matched typically developing (TD) youths. Their parents received a semi-structured psychiatric interview for their ASD and ADHD diagnoses and reported their school functions. Youths with ASD were further grouped into low-functioning autism (LFA, ASD with intellectual disability and developmental language delay, n = 44), high-functioning autism (HFA, ASD with no intellectual disability, n = 55) and Asperger's syndrome (AS, ASD with neither language delay nor intellectual disability, n = 61). Compared to TD, ASD had worse school functions in the domains of academic performance, attitude toward schoolwork, social interaction, and behavioral problems except for no academic differences from TD in HFA and ASD without ADHD. Subgroup analysis revealed that HFA and AS had better academic performance but showed worse attitude toward school than LFA. Comorbidity of ADHD negatively impacted all domains of school functions. Besides autistic and ADHD symptoms, oppositional symptoms, lower intelligence, older age, and female gender in youths also predicted school dysfunction. Although youths with ASD have school dysfunction in several domains, this study specifically addresses the role of intelligence and comorbid ADHD on their school dysfunction. Autism Res 2018. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. Impaired school functions varied in ASD youths with different characteristics. Youths with autism spectrum disorder (ASD) encounter

  6. Exocrine dysfunction correlates with endocrinal impairment of pancreas in Type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    H R Prasanna Kumar

    2018-01-01

    Full Text Available Background: Diabetes mellitus (DM is a chronic abnormal metabolic condition, which manifests elevated blood sugar level over a prolonged period. The pancreatic endocrine system generally gets affected during diabetes, but often abnormal exocrine functions are also manifested due to its proximity to the endocrine system. Fecal elastase-1 (FE-1 is found to be an ideal biomarker to reflect the exocrine insufficiency of the pancreas. Aim: The aim of this study was conducted to assess exocrine dysfunction of the pancreas in patients with type-2 DM (T2DM by measuring FE levels and to associate the level of hyperglycemia with exocrine pancreatic dysfunction. Methodology: A prospective, cross-sectional comparative study was conducted on both T2DM patients and healthy nondiabetic volunteers. FE-1 levels were measured using a commercial kit (Human Pancreatic Elastase ELISA BS 86-01 from Bioserv Diagnostics. Data analysis was performed based on the important statistical parameters such as mean, standard deviation, standard error, t-test-independent samples, and Chi-square test/cross tabulation using SPSS for Windows version 20.0. Results: Statistically nonsignificant (P = 0.5051 relationship between FE-1 deficiency and age was obtained, which implied age as a noncontributing factor toward exocrine pancreatic insufficiency among diabetic patients. Statistically significant correlation (P = 0.003 between glycated hemoglobin and FE-1 levels was also noted. The association between retinopathy (P = 0.001 and peripheral pulses (P = 0.001 with FE-1 levels were found to be statistically significant. Conclusion: This study validates the benefit of FE-1 estimation, as a surrogate marker of exocrine pancreatic insufficiency, which remains unmanifest and subclinical.

  7. Memory and Executive Screening for the Detection of Cognitive Impairment in Obstructive Sleep Apnea.

    Science.gov (United States)

    Mu, Li; Peng, Liping; Zhang, Zhengjiao; Jie, Jing; Jia, Siqi; Yuan, Haibo

    2017-10-01

    Obstructive sleep apnea (OSA) is commonly associated with cognitive dysfunction, which is more apparent in severe OSA and impairs quality of life. However, the clinical screening methods for these impairments in OSA are still limited. In this study, we evaluated the feasibility of using the Memory and Executive Screening (MES) for assessing cognitive performance in OSA. Twenty-four patients with nonsevere OSA and 36 patients with severe OSA participated in this study. All participants underwent comprehensive, laboratory-based polysomnography and completed assessments of cognitive function, which included both the MES and the Beijing version of the Montreal Cognitive Assessment (MoCA-BJ). Both the total MES scores and 5 recall scores of the MES (MES-5R) were significantly lower in the severe OSA group than those in the nonsevere OSA group. The patients with severe OSA performed worse on the memory subtests of the MES-5R, especially on immediate recall. The sensitivity and specificity of the MES for identifying cognitive impairment in patients with OSA were 63.89% and 66.67%, respectively, for a cutoff value of cognitive dysfunction in patients with OSA. The sensitivity and specificity of the MES were similar to those of the MoCA-BJ. The MES-5R and total MES scores can assess the presence and severity of cognitive impairment in patients with severe OSA. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  8. Caspase-2 cleavage of tau reversibly impairs memory.

    Science.gov (United States)

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  9. Lateral Fluid Percussion Injury Impairs Hippocampal Synaptic Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Receptor Complex Formation

    Directory of Open Access Journals (Sweden)

    Shaun W. Carlson

    2017-10-01

    Full Text Available Traumatic brain injury (TBI and the activation of secondary injury mechanisms have been linked to impaired cognitive function, which, as observed in TBI patients and animal models, can persist for months and years following the initial injury. Impairments in neurotransmission have been well documented in experimental models of TBI, but the mechanisms underlying this dysfunction are poorly understood. Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE complex facilitates vesicular docking and neurotransmitter release in the synaptic cleft. Published studies highlight a direct link between reduced SNARE complex formation and impairments in neurotransmitter release. While alterations in the SNARE complex have been described following severe focal TBI, it is not known if deficits in SNARE complex formation manifest in a model with reduced severity. We hypothesized that lateral fluid percussion injury (lFPI reduces the abundance of SNARE proteins, impairs SNARE complex formation, and contributes to impaired neurobehavioral function. To this end, rats were subjected to lFPI or sham injury and tested for acute motor performance and cognitive function at 3 weeks post-injury. lFPI resulted in motor impairment between 1 and 5 days post-injury. Spatial acquisition and spatial memory, as assessed by the Morris water maze, were significantly impaired at 3 weeks after lFPI. To examine the effect of lFPI on synaptic SNARE complex formation in the injured hippocampus, a separate cohort of rats was generated and brains processed to evaluate hippocampal synaptosomal-enriched lysates at 1 week post-injury. lFPI resulted in a significant reduction in multiple monomeric SNARE proteins, including VAMP2, and α-synuclein, and SNARE complex abundance. The findings in this study are consistent with our previously published observations suggesting that impairments in hippocampal SNARE complex formation may contribute to

  10. Pharmacotherapy of erectile dysfunction: Current standards

    Directory of Open Access Journals (Sweden)

    Kew-Kim Chew

    2006-01-01

    Full Text Available Pharmacotherapy is currently the therapeutic option of choice for erectile dysfunction. Comprising mainly intracavernosal injection therapy using alprostadil or alprostadil combined with phentolamine and/or papaverine and oral phosphodiesterase-5 inhibitors, it is safe and effective if appropriately prescribed and administered. The medications in current use produce satisfactory erectile responses by enhancing cavernosal vasodilatation mainly through their ability to promote relaxation of the smooth muscle cells in the corpora cavernosa involving the synthesis and activity of nitric oxide via the cyclic guanosine monophosphate and cyclic adenosine monophosphate biochemical pathways. The main side-effects and complications of intracavernosal injections are postinjection pain, prolonged erections, priapism and penile fibrosis. There may be a variety of side-effects with phosphodiesterase-5 inhibition but these are usually inconsequential. Recent serious ill health and the need for ongoing long-acting nitrate therapy or frequent use of short-acting nitrates for angina are absolute contraindications to the use of phosphodiesterase-5 inhibitors. Caution has to be exercised in prescribing phosphodiesterase-5 inhibitors for patients with impaired renal or hepatic functions or receiving multi-drug therapy for any systemic disease. All patients presenting with erectile dysfunction should be investigated and treated for cardiovascular risk factors. They should also be counseled regarding lifestyle factors particularly healthy balanced diet, regular physical exercise and inappropriate social habits.

  11. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel

    Directory of Open Access Journals (Sweden)

    Terry D. Fife

    2018-05-01

    Full Text Available We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8 fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3–5 years’ duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n-hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel.

  12. Melanoma NOS1 expression promotes dysfunctional IFN signaling.

    Science.gov (United States)

    Liu, Qiuzhen; Tomei, Sara; Ascierto, Maria Libera; De Giorgi, Valeria; Bedognetti, Davide; Dai, Cuilian; Uccellini, Lorenzo; Spivey, Tara; Pos, Zoltan; Thomas, Jaime; Reinboth, Jennifer; Murtas, Daniela; Zhang, Qianbing; Chouchane, Lotfi; Weiss, Geoffrey R; Slingluff, Craig L; Lee, Peter P; Rosenberg, Steven A; Alter, Harvey; Yao, Kaitai; Wang, Ena; Marincola, Francesco M

    2014-05-01

    In multiple forms of cancer, constitutive activation of type I IFN signaling is a critical consequence of immune surveillance against cancer; however, PBMCs isolated from cancer patients exhibit depressed STAT1 phosphorylation in response to IFN-α, suggesting IFN signaling dysfunction. Here, we demonstrated in a coculture system that melanoma cells differentially impairs the IFN-α response in PBMCs and that the inhibitory potential of a particular melanoma cell correlates with NOS1 expression. Comparison of gene transcription and array comparative genomic hybridization (aCGH) between melanoma cells from different patients indicated that suppression of IFN-α signaling correlates with an amplification of the NOS1 locus within segment 12q22-24. Evaluation of NOS1 levels in melanomas and IFN responsiveness of purified PBMCs from patients indicated a negative correlation between NOS1 expression in melanomas and the responsiveness of PBMCs to IFN-α. Furthermore, in an explorative study, NOS1 expression in melanoma metastases was negatively associated with patient response to adoptive T cell therapy. This study provides a link between cancer cell phenotype and IFN signal dysfunction in circulating immune cells.

  13. Functional and structural changes in internal pudendal arteries underlie erectile dysfunction induced by androgen deprivation

    Directory of Open Access Journals (Sweden)

    Rhéure Alves-Lopes

    2017-01-01

    Full Text Available Androgen deficiency is strongly associated with erectile dysfunction (ED. Inadequate penile arterial blood flow is one of the major causes of ED. The blood flow to the corpus cavernosum is mainly derived from the internal pudendal arteries (IPAs; however, no study has evaluated the effects of androgen deprivation on IPA′s function. We hypothesized that castration impairs IPAs reactivity and structure, contributing to ED. In our study, Wistar male rats, 8-week-old, were castrated and studied 30 days after orchiectomy. Functional and structural properties of rat IPAs were determined using wire and pressure myograph systems, respectively. Protein expression was determined by Western blot and immunohistochemistry. Plasma testosterone levels were determined using the IMMULITE 1000 Immunoassay System. Castrated rats exhibited impaired erectile function, represented by decreased intracavernosal pressure/mean arterial pressure ratio. IPAs from castrated rats exhibited decreased phenylephrine- and electrical field stimulation (EFS-induced contraction and decreased acetylcholine- and EFS-induced vasodilatation. IPAs from castrated rats exhibited decreased internal diameter, external diameter, thickness of the arterial wall, and cross-sectional area. Castration decreased nNOS and α-actin expression and increased collagen expression, p38 (Thr180/Tyr182 phosphorylation, as well as caspase 3 cleavage. In conclusion, androgen deficiency is associated with impairment of IPA reactivity and structure and increased apoptosis signaling markers. Our findings suggest that androgen deficiency-induced vascular dysfunction is an event involving hypotrophic vascular remodeling of IPAs.

  14. The emerging role of norepinephrine in cognitive dysfunctions of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Elena eVazey

    2012-07-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disorder, affecting 1% of the population over age 60. In those patients cognitive dysfunction is a persistent issue that impairs quality of life and productivity. Neuropathological studies demonstrate significant damage in brain regions outside the nigral dopamine (DA system, including early degeneration of locus coeruleus norepinephrine (LC-NE neurons, yet discussion of PD and treatment focus has remained dopaminergic-based. Motor symptoms benefit from DA replacement for many years, but other symptoms including several cognitive deficits continue unabated. Recent interest in non-DA substrates of PD highlights early involvement of LC-NE neurons and provides evidence for a prodromal phase, with cognitive disturbance, even in sporadic PD. We outline insights from basic research in LC-NE function to clinical and pathological evidence highlighting a role for NE in PD cognitive dysfunction. We propose that loss of LC-NE regulation, particularly in higher cortical regions, critically underlies certain cognitive dysfunctions in early PD. As a major unmet need for patients, research and use of NE drugs in PD may provide significant benefits for cognitive processing.

  15. Self-reported emotional dysregulation but no impairment of emotional intelligence in borderline personality disorder: an explorative study.

    Science.gov (United States)

    Beblo, Thomas; Pastuszak, Anna; Griepenstroh, Julia; Fernando, Silvia; Driessen, Martin; Schütz, Astrid; Rentzsch, Katrin; Schlosser, Nicole

    2010-05-01

    Emotional dysfunction is a key feature of patients with borderline personality disorder (BPD) but emotional intelligence (EI) has rarely been investigated in this sample. This study aimed at an investigation of ability EI, general intelligence, and self-reported emotion regulation in BPD. We included 19 patients with BPD and 20 healthy control subjects in the study. EI was assessed by means of the Mayer-Salovey-Caruso emotional intelligence test and the test of emotional intelligence. For the assessment of general intelligence, we administered the multidimensional "Leistungsprüfsystem-Kurzversion." The emotion regulation questionnaire and the difficulties in Emotion Regulation Scale were used to assess emotion regulation. The patients with BPD did not exhibit impairments of ability EI and general intelligence but reported severe impairments in emotion regulation. Ability EI was related both to general intelligence (patients and controls) and to self-reported emotion regulation (patients). In conclusion, emotional dysfunction in BPD might primarily affect self-perceived behavior rather than abilities. Intense negative emotions in everyday life may trigger dysfunctional emotion regulation strategies in BPD although patients possess sufficient theoretical knowledge about optimal regulation strategies.

  16. Sexual dysfunctions in MS in relation to neuropsychiatric aspects and its psychological treatment: A scoping review

    Science.gov (United States)

    Rose, Anita; van de Vis, Wim; Engelbrecht, Jannie; Pirard, Michelle; Lau, Stefanie; Heesen, Christoph; Köpke, Sascha

    2018-01-01

    Objective Sexual dysfunction in multiple sclerosis (MS) is a significant, but often underestimated and overlooked suffering. Interventions to treat sexual dysfunction in MS are rare. The relation between sexual dysfunction in MS and psychological as well as neuropsychological aspects is evident. However, this field of research remains markedly underdeveloped in this severe chronic illness. The aim of this scoping review is to describe the relevant knowledge in this area and to identify psychological interventions to treat sexual dysfunctions in MS. Methods A scoping review was conducted to answer the following questions: (1) Which psychological and neuropsychological factors impact on sexual dysfunction in MS and vice versa? (2) What kind of psychological interventions aiming to improve sexual dysfunctions in MS are available? A comprehensive search and review of MEDLINE, PsycINFO, and CINAHL was completed by using a recent methodological framework for scoping reviews. Results 23 publications covering a total of 13,259 people with MS and 532 healthy controls were identified. Sexual dysfunction was found to be very common in MS and there is an obvious relation to psychological disorders as e.g. depression and anxiety and also to psychological aspects as partner relationship and quality of life. The relation between sexual dysfunction in MS and neuropsychological impairment has only rarely been studied and no clear results were found. Only two studies were identified, assessing the effectiveness of psychological intervention studies on sexual dysfunction in people with MS, and a third study presenting a secondary analysis of a study targeting depression. All three studies reported significant improvements in sexual dysfunction as well as partly in psychological variables. Conclusions There is a pressing need for the development and adequate evaluation of psychological interventions for sexual dysfunctions in MS. In addition, sexual dysfunction and its impact on

  17. A longitudinal study of delirium phenomenology indicates widespread neural dysfunction.

    Science.gov (United States)

    Leonard, Maeve; Adamis, Dimitrios; Saunders, Jean; Trzepacz, Paula; Meagher, David

    2015-04-01

    Delirium affects all higher cortical functions supporting complex information processing consistent with widespread neural network impairment. We evaluated the relative prominence of delirium symptoms throughout episodes to assess whether impaired consciousness is selectively affecting certain brain functions at different timepoints. Twice-weekly assessments of 100 consecutive patients with DSM-IV delirium in a palliative care unit used the Delirium Rating Scale Revised-98 (DRS-R98) and Cognitive Test for Delirium (CTD). A mixed-effects model was employed to estimate changes in severity of individual symptoms over time. Mean age = 7 0.2 ± 10.5 years, 51% were male, and 27 had a comorbid dementia. A total of 323 assessments (range 2-9 per case) were conducted, but up to 6 are reported herein. Frequency and severity of individual DRS-R98 symptoms was very consistent over time even though the majority of patients (80%) experienced fluctuation in symptom severity over the course of hours or minutes. Over time, DRS-R98 items for attention (88-100%), sleep-wake cycle disturbance (90-100%), and any motor disturbance (87-100%), and CTD attention and vigilance were most frequently and consistently impaired. Mixed-effects regression modeling identified only very small magnitudes of change in individual symptoms over time, including the three core domains. Attention is disproportionately impaired during the entire episode of delirium, consistent with thalamic dysfunction underlying both an impaired state of consciousness and well-known EEG slowing. All individual symptoms and three core domains remain relatively stable despite small fluctuations in symptom severity for a given day, which supports a consistent state of impaired higher cortical functions throughout an episode of delirium.

  18. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes?

    DEFF Research Database (Denmark)

    Faerch, K; Borch-Johnsen, K; Holst, Jens Juul

    2009-01-01

    Prior to the development of type 2 diabetes, glucose levels increase into the prediabetic states of isolated impaired fasting glycaemia (i-IFG), isolated impaired glucose tolerance (i-IGT), or combined IFG/IGT. A better understanding of the aetiology and pathophysiology of the prediabetic states...... might give a basis for the development of individualised prevention and treatment strategies for type 2 diabetes. Several studies have examined mechanisms and potential aetiological factors leading to the development of the different prediabetic states. The pathophysiology of i-IFG seems to include...... the following key defects: reduced hepatic insulin sensitivity, stationary beta cell dysfunction and/or chronic low beta cell mass, altered glucagon-like peptide-1 secretion and inappropriately elevated glucagon secretion. Conversely, the prediabetic state i-IGT is characterised by reduced peripheral insulin...

  19. Skin Immunization Obviates Alcohol-Related Immune Dysfunction

    Directory of Open Access Journals (Sweden)

    Rhonda M. Brand

    2015-11-01

    Full Text Available Alcoholics suffer from immune dysfunction that can impede vaccine efficacy. If ethanol (EtOH-induced immune impairment is in part a result of direct exposure of immune cells to EtOH, then reduced levels of exposure could result in less immune dysfunction. As alcohol ingestion results in lower alcohol levels in skin than blood, we hypothesized that the skin immune network may be relatively preserved, enabling skin-targeted immunizations to obviate the immune inhibitory effects of alcohol consumption on conventional vaccines. We employed the two most common chronic EtOH mouse feeding models, the liver-damaging Lieber-DeCarli (LD and liver-sparing Meadows-Cook (MC diets, to examine the roles of EtOH and/or EtOH-induced liver dysfunction on alcohol related immunosuppression. Pair-fed mice were immunized against the model antigen ovalbumin (OVA by DNA immunization or against flu by administering the protein-based influenza vaccine either systemically (IV, IM, directly to liver (hydrodynamic, or cutaneously (biolistic, ID. We measured resulting tissue EtOH levels, liver stress, regulatory T cell (Treg, and myeloid-derived suppressor cell (MDSC populations. We compared immune responsiveness by measuring delayed-type hypersensitivity (DTH, antigen-specific cytotoxic T lymphocyte (CTL, and antibody induction as a function of delivery route and feeding model. We found that, as expected, and independent of the feeding model, EtOH ingestion inhibits DTH, CTL lysis, and antigen-specific total IgG induced by traditional systemic vaccines. On the other hand, skin-targeted vaccines were equally immunogenic in alcohol-exposed and non-exposed subjects, suggesting that cutaneous immunization may result in more efficacious vaccination in alcohol-ingesting subjects.

  20. Review of the mechanisms and therapeutic avenues for retinal and choroidal vascular dysfunctions in retinopathy of prematurity.

    Science.gov (United States)

    Rivera, José Carlos; Madaan, Ankush; Zhou, Tianwei Ellen; Chemtob, Sylvain

    2016-12-01

    Retinopathy of prematurity (ROP) is a multifactorial disease and the main cause of visual impairment and blindness in premature neonates. The inner retina has been considered the primary region affected in ROP, but choroidal vascular degeneration and progressive outer retinal dysfunctions have also been observed. This review focuses on observations regarding neurovascular dysfunctions in both the inner and outer immature retina, the mechanisms and the neuronal-derived factors implicated in the development of ROP, as well potential therapeutic avenues for this disorder. Alterations in the neurovascular integrity of the inner and outer retina contribute to the development of ROP. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  1. Neuroimaging of post-traumatic higher brain dysfunction using 123I-Iomazenil (IMZ) SPECT

    International Nuclear Information System (INIS)

    Nakagawara, Jyoji; Kamiyama, Kenji; Takahashi, Masaaki; Nakamura, Hirohiko

    2010-01-01

    In patients with mild traumatic brain injury (MTBI), higher brain dysfunctions which consist of cognitive impairments such as memory, attention, performance and social behavioral disturbances could be rarely apparent. However, higher brain dysfunctions should be identified by neuropsychological tests and supported by a social welfare for handicapped patients. Acknowledgement of higher brain dysfunctions after MTBI without obvious brain damages on morphological neuroimagings could be a social issue under controversy. An imaging of cortical neuron damages in patients with higher brain dysfunctions after MTBI was studied by functional neuroimaging using 123 I-Iomazenil (IMZ) single photon emission computed tomography (SPECT). Statistical imaging analyses using 3 dimensional stereotactic surface projections (3D-SSP) for 123 I-IMZ SPECT and 123 I-IMP SPECT as cerebral blood flow (CBF) studies were performed in 11 patients with higher brain dysfunctions after MTBI. In all patients with higher brain dysfunctions defined by neuropsychological tests, cortical neuron damages were observed in bilateral medial frontal lobes, but reduction of CBF in bilateral medial frontal lobes were less obviously showed in 8 patients (apparent in 3 and little in 5). Group comparison of 3D-SSP of 123 I-IMZ SPECT between 11 patients and 18 normal controls demonstrated significant selective loss of cortical neuron in bilateral medial frontal gyrus (MFG). Extent of abnormal pixels on each cortical gyrus using stereotactic extraction estimation (SEE) for 3D-SSP of 123 I-IMZ SPECT confirmed that 8 patients had abnormal pixel extent >10% in bilateral MFG and 5 patients had abnormal pixel extent >10% in bilateral anterior cingulate gyrus. In patients with MTBI, higher brain dysfunctions seems to correlate with selective loss of cortical neuron within bilateral MFG which could be caused by Wallerian degeneration as secondary phenomena after diffuse axonal injury within corpus callosum. Statistical

  2. Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice

    Science.gov (United States)

    Yang, Siming; Gu, Changping; Mandeville, Emiri T.; Dong, Yuanlin; Esposito, Elga; Zhang, Yiying; Yang, Guang; Shen, Yuan; Fu, Xiaobing; Lo, Eng H.; Xie, Zhongcong

    2017-01-01

    Blood–brain barrier (BBB) dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy) under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL)-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification), and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium. PMID:28848542

  3. Association of social and cognitive impairment and biomarkers in autism spectrum disorders

    Science.gov (United States)

    2014-01-01

    Objectives The neurological basis for autism is still not fully understood, and the role of the interaction between neuro-inflammation and neurotransmission impairment needs to be clearer. This study aims to test the possible association between impaired levels of gamma aminobutyric acid (GABA), serotonin, dopamine, oxytocin, and interferon-γ-induced protein-16 (IFI16) and the severity of social and cognitive dysfunctions in individuals with autism spectrum disorders. Materials and methods GABA, serotonin, dopamine, oxytocin, and IFI16 as biochemical parameters related to neurochemistry and inflammation were determined in the plasma of 52 Saudi autistic male patients, categorized as mild-moderate and severe as indicated by their Childhood Autism Rating Scale (CARS) or social responsiveness scale (SRS), and compared to 30 age- and gender-matched control samples. Results The data indicated that Saudi patients with autism have remarkably impaired plasma levels of the measured parameters compared to age and gender-matched controls. While serotonin in platelet-free plasma and dopamine did not correlated with the severity in social and cognitive dysfunction, GABA, oxytocin, and IFI16 were remarkably associated with the severity of both tested scores (SRS and CARS). Conclusions The relationship between the selected parameters confirms the role of impaired neurochemistry and neuro-inflammation in the etiology of autism spectrum disorders and the possibility of using GABA, oxytocin, and IFI16 as markers of autism severity. Receiver operating characteristic analysis together with predictiveness diagrams proved that the measured parameters could be used as predictive biomarkers of clinical symptoms and provide significant guidance for future therapeutic strategy to re-establish physiological homeostasis. PMID:24400970

  4. Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice

    Directory of Open Access Journals (Sweden)

    Siming Yang

    2017-08-01

    Full Text Available Blood–brain barrier (BBB dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy under 1.4% isoflurane anesthesia (anesthesia/surgery for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification, and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium.

  5. Grammatical Impairments in PPA.

    Science.gov (United States)

    Thompson, Cynthia K; Mack, Jennifer E

    2014-09-01

    PPA, as well as the structural and functional neural correlates of grammatical impairments across linguistic domains. Few studies have examined the effects of treatment for grammatical impairments in PPA; research in this area is needed to better understand how (or if) grammatical processing ability can be improved, the potential for spared neural tissue to be recruited to support this, and whether the neural connections within areas of dysfunctional tissue required for grammatical processing can be enhanced using cortical stimulation.

  6. Association between academic performance and cognitive dysfunction in patients with juvenile systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Renan Bazuco Frittoli

    2016-06-01

    Full Text Available Abstract Objective To determine whether there is an association between the profile of cognitive dysfunction and academic outcomes in patients with juvenile systemic lupus erythematosus (JSLE. Methods Patients aged ≤18 years at the onset of the disease and education level at or above the fifth grade of elementary school were selected. Cognitive evaluation was performed according to the American College of Rheumatology (ACR recommendations. Symptoms of anxiety and depression were assessed by Beck scales; disease activity was assessed by Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; and cumulative damage was assessed by Systemic Lupus International Collaborating Clinics (SLICC. The presence of autoantibodies and medication use were also assessed. A significance level of 5% (p < 0.05 was adopted. Results 41 patients with a mean age of 14.5 ± 2.84 years were included. Cognitive dysfunction was noted in 17 (41.46% patients. There was a significant worsening in mathematical performance in patients with cognitive dysfunction (p = 0.039. Anxiety symptoms were observed in 8 patients (19.51% and were associated with visual perception (p = 0.037 and symptoms of depression were observed in 1 patient (2.43%. Conclusion Patients with JSLE concomitantly with cognitive dysfunction showed worse academic performance in mathematics compared to patients without cognitive impairment.

  7. Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders.

    Science.gov (United States)

    Hägele, Claudia; Schlagenhauf, Florian; Rapp, Michael; Sterzer, Philipp; Beck, Anne; Bermpohl, Felix; Stoy, Meline; Ströhle, Andreas; Wittchen, Hans-Ulrich; Dolan, Raymond J; Heinz, Andreas

    2015-01-01

    A dimensional approach in psychiatry aims to identify core mechanisms of mental disorders across nosological boundaries. We compared anticipation of reward between major psychiatric disorders, and investigated whether reward anticipation is impaired in several mental disorders and whether there is a common psychopathological correlate (negative mood) of such an impairment. We used functional magnetic resonance imaging (fMRI) and a monetary incentive delay (MID) task to study the functional correlates of reward anticipation across major psychiatric disorders in 184 subjects, with the diagnoses of alcohol dependence (n = 26), schizophrenia (n = 44), major depressive disorder (MDD, n = 24), bipolar disorder (acute manic episode, n = 13), attention deficit/hyperactivity disorder (ADHD, n = 23), and healthy controls (n = 54). Subjects' individual Beck Depression Inventory-and State-Trait Anxiety Inventory-scores were correlated with clusters showing significant activation during reward anticipation. During reward anticipation, we observed significant group differences in ventral striatal (VS) activation: patients with schizophrenia, alcohol dependence, and major depression showed significantly less ventral striatal activation compared to healthy controls. Depressive symptoms correlated with dysfunction in reward anticipation regardless of diagnostic entity. There was no significant correlation between anxiety symptoms and VS functional activation. Our findings demonstrate a neurobiological dysfunction related to reward prediction that transcended disorder categories and was related to measures of depressed mood. The findings underline the potential of a dimensional approach in psychiatry and strengthen the hypothesis that neurobiological research in psychiatric disorders can be targeted at core mechanisms that are likely to be implicated in a range of clinical entities.

  8. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease.

    Science.gov (United States)

    Tönnies, Eric; Trushina, Eugenia

    2017-01-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-β (Aβ) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.

  9. Complementary role of cardiac CT in the assessment of aortic valve replacement dysfunction

    Science.gov (United States)

    Moss, Alastair J; Dweck, Marc R; Dreisbach, John G; Williams, Michelle C; Mak, Sze Mun; Cartlidge, Timothy; Nicol, Edward D; Morgan-Hughes, Gareth J

    2016-01-01

    Aortic valve replacement is the second most common cardiothoracic procedure in the UK. With an ageing population, there are an increasing number of patients with prosthetic valves that require follow-up. Imaging of prosthetic valves is challenging with conventional echocardiographic techniques making early detection of valve dysfunction or complications difficult. CT has recently emerged as a complementary approach offering excellent spatial resolution and the ability to identify a range of aortic valve replacement complications including structural valve dysfunction, thrombus development, pannus formation and prosthetic valve infective endocarditis. This review discusses each and how CT might be incorporated into a multimodal cardiovascular imaging pathway for the assessment of aortic valve replacements and in guiding clinical management. PMID:27843568

  10. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring.

    Science.gov (United States)

    Walton, Sarah L; Singh, Reetu R; Tan, Tiffany; Paravicini, Tamara M; Moritz, Karen M

    2016-03-01

    Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  11. Child, parent and family dysfunction as predictors of outcome in cognitive-behavioral treatment of antisocial children.

    Science.gov (United States)

    Kazdin, A E

    1995-03-01

    The present study examined factors that predicted favorable treatment outcomes among clinically referred conduct problem children (N = 105, ages 7-13) who received cognitive-behavioral treatment. Three domains (severity and breadth of child impairment, parent stress and psychopathology and family dysfunction) assessed at pretreatment were predicted to affect treatment outcome. The results only partially supported the prediction. Less dysfunction in each of the domains predicted who responded favorably to treatment on parent ratings of deviance and prosocial functioning but not on teacher ratings of these outcomes. The findings have implications for identifying youths who respond to available treatments. The results also underscore fundamental questions about the assessment of treatment effects and the criteria for evaluating outcome.

  12. Androgens and Psychosocial Factors Related to Sexual Dysfunctions in Premenopausal Women∗: ∗2016 ISSM Female Sexual Dysfunction Prize.

    Science.gov (United States)

    Wåhlin-Jacobsen, Sarah; Kristensen, Ellids; Pedersen, Anette Tønnes; Laessøe, Nanna Cassandra; Cohen, Arieh S; Hougaard, David M; Lundqvist, Marika; Giraldi, Annamaria

    2017-03-01

    The female sexual response is complex and influenced by several biological, psychological, and social factors. Testosterone is believed to modulate a woman's sexual response and desire, because low levels are considered a risk factor for impaired sexual function, but previous studies have been inconclusive. To investigate how androgen levels and psychosocial factors are associated with female sexual dysfunction (FSD), including hypoactive sexual desire disorder (HSDD). The cross-sectional study included 428 premenopausal women 19 to 58 years old who completed a questionnaire on psychosocial factors and had blood sampled at days 6 to 10 in their menstrual cycle. Logistic regression models were built to test the association among hormone levels, psychosocial factors, and sexual end points. Five different sexual end points were measured using the Female Sexual Function Index and the Female Sexual Distress Scale: impaired sexual function, sexual distress, FSD, low sexual desire, and HSDD. Serum levels of total and free testosterone, androstenedione, dehydroepiandrosterone sulfate, and androsterone glucuronide were analyzed using mass spectrometry. After adjusting for psychosocial factors, women with low sexual desire had significantly lower mean levels of free testosterone and androstenedione compared with women without low sexual desire. None of the androgens were associated with FSD in general or with HSDD in particular. Relationship duration longer than 2 years and mild depressive symptoms increased the risk of having all the sexual end points, including FSD in general and HSDD in particular in multivariate analyses. In this large cross-sectional study, low sexual desire was significantly associated with levels of free testosterone and androstenedione, but FSD in general and HSDD in particular were not associated with androgen levels. Length of relationship and depression were associated with FSD including HSDD. Wåhlin-Jacobsen S, Kristensen E, Tønnes Pedersen A

  13. Reversible cerebellar dysfunction associated with ciguatera fish poisoning.

    Science.gov (United States)

    Oh, Sun-Young; Kim, Do-Hyung; Seo, Man-Wook; Shin, Byoung-Soo

    2012-10-01

    Ciguatera-fish poisoning (or ciguatera) is a common but underdiagnosed food-borne illness related to fish consumption that is characterized by nausea, vomiting and neurologic symptoms such as tingling in the fingers or toes. We describe the case of a young man who suffered from diarrhea and abdominal pain after eating raw fish and who also developed severe ataxia with spontaneous downbeat and perverted head-shaking nystagmus. The patient experienced visual fixation suppression failure during the bithermal caloric test and bilateral smooth-pursuit impairment. Oculomotor findings suggested dysfunction of the vestibulocerebellum, especially the flocculus. These findings suggest that both the peripheral and the central nervous systems can be involved in ciguatera. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Pronounced impairment of everyday skills and self-care in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Yong, Keir X X; Foxe, David; Hodges, John; Crutch, Sebastian J

    2015-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visual dysfunction and parietal, occipital, and occipitotemporal atrophy. The aim of this study was to compare the impact of PCA and typical Alzheimer's disease (tAD) on everyday functional abilities and neuropsychiatric status. The Cambridge Behavioural Inventory-Revised was given to carers of 32 PCA and 71 tAD patients. PCA patients showed significantly greater impairment in everyday skills and self-care while the tAD group showed greater impairment in aspects of memory and orientation, and motivation. We suggest that PCA poses specific challenges for those caring for people affected by the condition.

  15. Cognitive impairments in young people with opioid addiction and their correction

    Directory of Open Access Journals (Sweden)

    Maria Lazarevna Chukhlovina

    2012-01-01

    Full Text Available Objective: to evaluate cognitive functions and drug correction of identified impairments in heroin users. Patients and methods. Thirty-two patients (7 women and 25 men aged 18 to 45 years who had used heroin for 1—3 years were examined using the mini-mental state examination (MMSE, the techniques of «memorizing words» and «excluding words», the tests of «information-memory-concentration», quantitative assessment of clock drawing, and the frontal assessment battery. The detected cognitive impairments were corrected with the standardized Ginkgo Biloba extract (EGb 761 ®, Tanakan ®. Results. Cognitive impairments were found in all the patients: moderate cognitive disorders in 68.8% and mild dementia in 31.2%; thinking disorders were most noticeable; decreased attention, frontal lobe dysfunction, and visual spatial impairments were detectable. After a course of therapy with tanakan (120—240 g/day according to the degree of cognitive impairments for 3 months, there was a significant improvement in MMSE scores, thought, concentration, memory; however, they failed to achieve the scores in the control group consisting of 10 apparently healthy individuals of the same age and sex.

  16. MEG-based detection and localization of perilesional dysfunction in chronic stroke

    Directory of Open Access Journals (Sweden)

    Ron K.O. Chu

    2015-01-01

    Full Text Available Post-stroke impairment is associated not only with structural lesions, but also with dysfunction in surviving perilesional tissue. Previous studies using equivalent current dipole source localization of MEG/EEG signals have demonstrated a preponderance of slow-wave activity localized to perilesional areas. Recent studies have also demonstrated the utility of nonlinear analyses such as multiscale entropy (MSE for quantifying neuronal dysfunction in a wide range of pathologies. The current study utilized beamformer-based reconstruction of signals in source space to compare spectral and nonlinear measures of electrical activity in perilesional and healthy cortices. Data were collected from chronic stroke patients and healthy controls, both young and elderly. We assessed relative power in the delta (1–4 Hz, theta (4–7 Hz, alpha (8–12 Hz and beta (15–30 Hz frequency bands, and also measured the nonlinear complexity of electrical activity using MSE. Perilesional tissue exhibited a general slowing of the power spectrum (increased delta/theta, decreased beta as well as a reduction in MSE. All measures tested were similarly sensitive to changes in the posterior perilesional regions, but anterior perilesional dysfunction was detected better by MSE and beta power. The findings also suggest that MSE is specifically sensitive to electrophysiological dysfunction in perilesional tissue, while spectral measures were additionally affected by an increase in rolandic beta power with advanced age. Furthermore, perilesional electrophysiological abnormalities in the left hemisphere were correlated with the degree of language task-induced activation in the right hemisphere. Finally, we demonstrate that single subject spectral and nonlinear analyses can identify dysfunctional perilesional regions within individual patients that may be ideal targets for interventions with noninvasive brain stimulation.

  17. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  18. Influence of renal dysfunction on the accuracy of procalcitonin for the diagnosis of postoperative infection after vascular surgery.

    Science.gov (United States)

    Amour, Julien; Birenbaum, Aurélie; Langeron, Olivier; Le Manach, Yannick; Bertrand, Michèle; Coriat, Pierre; Riou, Bruno; Bernard, Maguy; Hausfater, Pierre

    2008-04-01

    Procalcitonin has been advocated as a specific biomarker for bacterial infection. We performed this study to determine whether accuracy of procalcitonin for diagnosis of postoperative bacterial infection is affected by renal function after aortic surgery. Single-center prospective study. University hospital. Two hundred seventy-six patients scheduled for elective major aortic surgery. Blood samples were taken before surgery and each day over the 5-day postoperative period, and measurement of serum procalcitonin was performed. Diagnosis of infection was performed by a blinded expert panel. Renal function was assessed using an estimate of creatinine clearance with the Cockcroft formulas. Renal dysfunction was defined as a creatinine clearance <50 mL x min(-1). Infection was diagnosed in 67 patients. Seventy five patients (27%) had postoperative renal dysfunction. Procalcitonin was significantly higher in infected patients, with a peak reached at the fourth postoperative day, but it was significantly higher in patients with impaired renal function in both control and infected patients. The optimal threshold of procalcitonin markedly differed in patients with renal dysfunction compared with patients without renal dysfunction (2.57 vs. 0.80 ng x mL(-1), p < .05). The diagnostic accuracy of procalcitonin significantly increased (0.74 vs. 0.70, p < .05) when the threshold of procalcitonin was adapted to the renal function. The elevation of procalcitonin occurred 2 days before the medical team was able to diagnose infection. Procalcitonin is a valuable marker of bacterial infections after major aortic surgery, but renal function is a major determinant of procalcitonin levels and thus different thresholds should be applied according to renal function impairment.

  19. Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions.

    Directory of Open Access Journals (Sweden)

    Masami Watabe-Rudolph

    Full Text Available Atrophy of the olfactory epithelium (OE associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc(-/- with short telomeres compared to wild type mice (mTerc(+/+ with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc(-/- mice compared to mTerc(+/+ mice. Seven days after chemical induced damage, G3 mTerc(-/- mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc(+/+ mice (p = 0.031. Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21 rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people.

  20. Mindreading Dysfunction in Avoidant Personality Disorder Compared With Other Personality Disorders.

    Science.gov (United States)

    Moroni, Fabio; Procacci, Michele; Pellecchia, Giovanni; Semerari, Antonio; Nicolò, Giuseppe; Carcione, Antonino; Pedone, Roberto; Colle, Livia

    2016-10-01

    The ability to reflect on one's own states of mind and those of others (metacognition or mindreading) is strongly implicated in personality disorders (PDs). Metacognition involves different abilities, and there is evidence that specific abilities can be selectively impaired in different PDs. The purposes of this study were to compare metacognitive competence in avoidant PD (AvPD) with that in other PDs and to investigate whether there is a specific profile for AvPD. Sixty-three patients with AvPD and 224 patients with other PDs were assessed using the Metacognitive Assessment Interview. AvPD patients showed difficulties with two metacognitive functions: monitoring and decentration, even when the severity of psychopathology was controlled for. These results support the hypothesis of specific profiles of metacognitive dysfunction in different PDs and highlight a close link between impaired monitoring and decentration functions and the inhibited and withdrawn personality style typical of AvPD.

  1. Diastolic dysfunction characterizes cirrhotic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Piyush O. Somani

    2014-11-01

    Conclusions: Present study shows that although diastolic dysfunction is a frequent event in cirrhosis, it is usually of mild degree and does not correlate with severity of liver dysfunction. There are no significant differences in echocardiographic parameters between alcoholic and non-alcoholic cirrhosis. HRS is not correlated to diastolic dysfunction in cirrhotic patients. There is no difference in survival at one year between patients with or without diastolic dysfunction. Diastolic dysfunction in cirrhosis is unrelated to circulatory dysfunction, ascites and HRS.

  2. Aging-associated dysfunction of Akt/protein kinase B: S-nitrosylation and acetaminophen intervention.

    Directory of Open Access Journals (Sweden)

    Miaozong Wu

    Full Text Available BACKGROUND: Aged skeletal muscle is characterized by an increased incidence of metabolic and functional disorders, which if allowed to proceed unchecked can lead to increased morbidity and mortality. The mechanism(s underlying the development of these disorders in aging skeletal muscle are not well understood. Protein kinase B (Akt/PKB is an important regulator of cellular metabolism and survival, but it is unclear if aged muscle exhibits alterations in Akt function. Here we report a novel dysfunction of Akt in aging muscle, which may relate to S-nitrosylation and can be prevented by acetaminophen intervention. PRINCIPAL FINDINGS: Compared to 6- and 27-month rats, the phosphorylation of Akt (Ser473 and Thr308 was higher in soleus muscles of very aged rats (33-months. Paradoxically, these increases in Akt phosphorylation were associated with diminished mammalian target of rapamycin (mTOR phosphorylation, along with decreased levels of insulin receptor beta (IR-beta, phosphoinositide 3-kinase (PI3K, phosphatase and tensin homolog deleted on chromosome 10 (PTEN and phosphorylation of phosphoinositide-dependent kinase-1 (PDK1 (Ser241. In vitro Akt kinase measurements and ex vivo muscle incubation experiments demonstrated age-related impairments of Akt kinase activity, which were associated with increases in Akt S-nitrosylation and inducible nitric oxide synthase (iNOS. Impairments in Akt function occurred parallel to increases in myocyte apoptosis and decreases in myocyte size and the expression of myosin and actin. These age-related disorders were attenuated by treating aged (27-month animals with acetaminophen (30 mg/kg body weight/day for 6-months. CONCLUSIONS: These data demonstrate that Akt dysfunction and increased S-nitrosylation of Akt may contribute to age-associated disorders in skeletal muscle and that acetaminophen may be efficacious for the treatment of age-related muscle dysfunction.

  3. Does abnormal sleep impair memory consolidation in schizophrenia?

    Directory of Open Access Journals (Sweden)

    Dara S Manoach

    2009-09-01

    Full Text Available Although disturbed sleep is a prominent feature of schizophrenia, its relation to the pathophysiology, signs, and symptoms of schizophrenia remains poorly understood. Sleep disturbances are well known to impair cognition in healthy individuals. Yet, in spite of its ubiquity in schizophrenia, abnormal sleep has generally been overlooked as a potential contributor to cognitive deficits. Amelioration of cognitive deficits is a current priority of the schizophrenia research community, but most efforts to define, characterize, and quantify cognitive deficits focus on cross-sectional measures. While this approach provides a valid snapshot of function, there is now overwhelming evidence that critical aspects of learning and memory consolidation happen offline, both over time and with sleep. Initial memory encoding is followed by a prolonged period of consolidation, integration, and reorganization, that continues over days or even years. Much of this evolution of memories is mediated by sleep. This article briefly reviews (i abnormal sleep in schizophrenia, (ii sleep-dependent memory consolidation in healthy individuals, (iii recent findings of impaired sleep-dependent memory consolidation in schizophrenia, and (iv implications of impaired sleep-dependent memory consolidation in schizophrenia. This literature suggests that abnormal sleep in schizophrenia disrupts attention and impairs sleep-dependent memory consolidation and task automation. We conclude that these sleep-dependent impairments may contribute substantially to generalized cognitive deficits in schizophrenia. Understanding this contribution may open new avenues to ameliorating cognitive dysfunction and thereby improve outcome in schizophrenia.

  4. Incidence and treatment of visual dysfunction in traumatic brain injury.

    Science.gov (United States)

    Schlageter, K; Gray, B; Hall, K; Shaw, R; Sammet, R

    1993-01-01

    The incidence of visual dysfunction and effectiveness of visual exercises in acute traumatically brain injured inpatients in a rehabilitation programme were studied. Vision evaluation norms were established on 23 hospital staff. The evaluation was then administered to 51 inpatients within days after admission. An additional 21 patients were unable to participate, usually due to decreased cognition or agitation. Thirty of 51 (59%) scored impaired in one or more of the following: pursuits, saccades, ocular posturing, stereopsis, extra-ocular movements, and near/far eso-exotropia. For patients having dysfunction in pursuits or saccades, a 2-week baseline was followed by vision exercises. During the baseline interval patients were evaluated by an optometrist to verify therapists' findings. Six patients who participated in several weeks of treatment were evaluated at 2-week intervals by an independent rater. Progress is graphically illustrated. Conclusions were that the suitability of an inpatient vision programme, from our experience, is questionable. However, an initial evaluation proved valuable for informing staff of patients' visual status and for referral to an optometrist/ophthalmologist for further treatment.

  5. Maternal Metabolic Syndrome Programs Mitochondrial Dysfunction via Germline Changes across Three Generations

    Directory of Open Access Journals (Sweden)

    Jessica L. Saben

    2016-06-01

    Full Text Available Maternal obesity impairs offspring health, but the responsible mechanisms are not fully established. To address this question, we fed female mice a high-fat/high-sugar diet from before conception until weaning and then followed the outcomes in the next three generations of offspring, all fed a control diet. We observed that female offspring born to obese mothers had impaired peripheral insulin signaling that was associated with mitochondrial dysfunction and altered mitochondrial dynamic and complex proteins in skeletal muscle. This mitochondrial phenotype persisted through the female germline and was passed down to the second and third generations. Our results indicate that maternal programming of metabolic disease can be passed through the female germline and that the transfer of aberrant oocyte mitochondria to subsequent generations may contribute to the increased risk for developing insulin resistance.

  6. Cognitive structures in women with sexual dysfunction: the role of early maladaptive schemas.

    Science.gov (United States)

    Oliveira, Cátia; Nobre, Pedro J

    2013-07-01

    Cognitive schemas are often related to psychological problems. However, the role of these structures within sexual problems is not yet well established. The aim of this study was to evaluate the presence and importance of early maladaptive schemas on women's sexual functioning and cognitive schemas activated in response to negative sexual events. A total of 228 women participated in the study: a control sample of 167 women without sexual problems, a subclinical sample of 37 women with low sexual functioning, and a clinical sample of 24 women with sexual dysfunction. Participants completed several self-reported measures: the Schema Questionnaire, the Questionnaire of Cognitive Schema Activation in Sexual Context, the Brief Symptom Inventory, the Beck Depression Inventory, and the Female Sexual Function Index. Findings indicated that women with sexual dysfunction presented significantly more early maladaptive schemas from the Impaired Autonomy and Performance domain, particularly failure (P depreciation (P < 0.01, η(2) = 0.05), and difference/loneliness (P < 0.01, η(2) = 0.05) schemas. Results supported differences between women with and without sexual problems regarding cognitive factors. This may have implications for the knowledge, assessment, and treatment of sexual dysfunction in women. © 2012 International Society for Sexual Medicine.

  7. Modulating functional and dysfunctional mentalizing by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Tobias eSchuwerk

    2014-11-01

    Full Text Available Mentalizing, the ability to attribute mental states to others and oneself, is a cognitive function with high relevance for social interactions. Recent neuroscientific research has increasingly contributed to attempts to decompose this complex social cognitive function into constituting neurocognitive building blocks. Additionally, clinical research that focuses on social cognition to find links between impaired social functioning and neurophysiological deviations has accumulated evidence that mentalizing is affected in most psychiatric disorders. Recently, both lines of research have started to employ transcranial magnetic stimulation: the first to modulate mentalizing in order to specify its neurocognitive components, the latter to treat impaired mentalizing in clinical conditions. This review integrates findings of these two different approaches to draw a more detailed picture of the neurocognitive basis of mentalizing and its deviations in psychiatric disorders. Moreover, we evaluate the effectiveness of hitherto employed stimulation techniques and protocols, paradigms and outcome measures. Based on this overview we highlight new directions for future research on the neurocognitive basis of functional and dysfunctional social cognition.

  8. Anti-MuSK-Positive Myasthenia Gravis in a Patient with Parkinsonism and Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    S. Lanfranconi

    2011-01-01

    Full Text Available Muscle-specific tyrosine kinase- (MuSK- antibodies-positive Myasthenia Gravis accounts for about one third of Seronegative Myasthenia Gravis and is clinically characterized by early onset of prominent bulbar, neck, shoulder girdle, and respiratory weakness. The response to medical therapy is generally poor. Here we report a case of late-onset MuSK-antibodies-positive Myasthenia Gravis presenting with signs of cognitive impairment and parkinsonism in addition to bulbar involvement and external ophthalmoplegia. The pattern of involvement of both peripheral and central nervous system dysfunction might suggest a common pathogenic mechanism, involving impaired cholinergic transmission.

  9. Emotion recognition in mild cognitive impairment: relationship to psychosocial disability and caregiver burden.

    Science.gov (United States)

    McCade, Donna; Savage, Greg; Guastella, Adam; Hickie, Ian B; Lewis, Simon J G; Naismith, Sharon L

    2013-09-01

    Impaired emotion recognition in dementia is associated with increased patient agitation, behavior management difficulties, and caregiver burden. Emerging evidence supports the presence of very early emotion recognition difficulties in mild cognitive impairment (MCI); however, the relationship between these impairments and psychosocial measures is not yet explored. Emotion recognition abilities of 27 patients with nonamnestic MCI (naMCI), 29 patients with amnestic MCI (aMCI), and 22 control participants were assessed. Self-report measures assessed patient functional disability, while informants rated the degree of burden they experienced. Difficulties in recognizing anger was evident in the amnestic subtype. Although both the patient groups reported greater social functioning disability, compared with the controls, a relationship between social dysfunction and anger recognition was evident only for patients with naMCI. A significant association was found between burden and anger recognition in patients with aMCI. Impaired emotion recognition abilities impact MCI subtypes differentially. Interventions targeted at patients with MCI, and caregivers are warranted.

  10. The effects of hydroxychloroquine on endothelial dysfunction.

    Science.gov (United States)

    Rahman, Rahana; Murthi, Padma; Singh, Harmeet; Gurusinghe, Seshini; Mockler, Joanne C; Lim, Rebecca; Wallace, Euan M

    2016-10-01

    Hydroxychloroquine is an anti-malarial drug which, due to its anti-inflammatory and immunomodulatory effects, is widely used for the treatment of autoimmune diseases. In a model of systemic lupus erythematosus hydroxychloroquine has been shown to exert protective endothelial effects. In this study, we aimed to investigate whether hydroxychloroquine was endothelial protective in an in vitro model of TNF-α and preeclamptic serum induced dysfunction. We showed that hydroxychloroquine significantly reduced the production of TNF-α and preeclamptic serum induced endothelin-1 (ET-1). Hydroxychloroquine also significantly mitigated TNF-α induced impairment of angiogenesis. These findings support the further assessment of hydroxychloroquine as an adjuvant therapy in preeclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  11. Maternal biomarkers of endothelial dysfunction and preterm delivery.

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    Full Text Available Endothelial dysfunction is key to the development of atherosclerosis. Preterm delivery foreshadows later maternal cardiovascular disease (CVD, but it is not known if endothelial dysfunction also occurs. We prospectively measured circulating biomarkers of endothelial dysfunction in pregnant women with preterm or term delivery.We conducted a case-control study nested within a large prospective epidemiological study of young, generally healthy pregnant women. Women who delivered preterm (<37 completed weeks gestation, n = 240 and controls who delivered at term (n = 439 were included. Pregnancies complicated by preeclampsia were analyzed separately. Circulating endothelial dysfunction biomarkers included soluble intercellular adhesion molecule-1 (sICAM-1, vascular cell adhesion molecule-1 (sVCAM-1 and soluble E-selectin (sE-selectin.Elevated levels of sICAM-1 and sVCAM-1 were positively associated with preterm delivery independent of usual risk factors. At entry (∼16 wks, the adjusted odds ratio (AOR was 1.73 (95% confidence interval (CI 1.09-2.74 for the highest quartile of sICAM-1 versus the lowest quartile and for sVCAM-1 the AOR was 2.17 (95% CI 1.36-3.46. When analysis was limited to cases with a spontaneous preterm delivery, the results were unchanged. Similar results were obtained for the 3rd trimester (∼30 wks. Elevated sE-selectin was increased only in preterm delivery complicated by preeclampsia; risk was increased at entry (AOR 2.32, 95% CI 1.22-4.40 and in the 3rd trimester (AOR 3.37, 95% CI 1.78-6.39.Impaired endothelial function as indicated by increased levels of soluble molecules commonly secreted by endothelial cells is a pathogenic precursor to CVD that is also present in women with preterm delivery. Our findings underscore the need for follow-up studies to determine if improving endothelial function prevents later CVD risk in women.

  12. White matter atrophy and cognitive dysfunctions in neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Frederic Blanc

    Full Text Available Neuromyelitis optica (NMO is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain and VBM for focal brain volume (GM and WM, NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54% had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in

  13. Executive dysfunction affects word list recall performance: Evidence from amyotrophic lateral sclerosis and other neurodegenerative diseases.

    Science.gov (United States)

    Consonni, Monica; Rossi, Stefania; Cerami, Chiara; Marcone, Alessandra; Iannaccone, Sandro; Francesco Cappa, Stefano; Perani, Daniela

    2017-03-01

    The Rey Auditory Verbal Learning Test (RAVLT) is widely used in clinical practice to evaluate verbal episodic memory. While there is evidence that RAVLT performance can be influenced by executive dysfunction, the way executive disorders affect the serial position curve (SPC) has not been yet explored. To this aim, we analysed immediate and delayed recall performances of 13 non-demented amyotrophic lateral sclerosis (ALS) patients with a specific mild executive dysfunction (ALSci) and compared their performances to those of 48 healthy controls (HC) and 13 cognitively normal patients with ALS. Moreover, to control for the impact of a severe dysexecutive syndrome and a genuine episodic memory deficit on the SPC, we enrolled 15 patients with a diagnosis of behavioural variant of frontotemporal dementia (bvFTD) and 18 patients with probable Alzheimer's disease (AD). Results documented that, compared to cognitively normal subjects, ALSci patients had a selective mid-list impairment for immediate recall scores. The bvFTD group obtained low performances with a selectively increased forgetting rate for terminal items, whereas the AD group showed a disproportionately large memory loss on the primary and middle part of the SPC for immediate recall scores and were severely impaired in the delayed recall trial. These results suggested that subtle executive dysfunctions might influence the recall of mid-list items, possibly reflecting deficiency in control strategies at retrieval of word lists, whereas severer dysexecutive syndrome might also affect the recall of terminal items possibly due to attention deficit or retroactive interference. © 2015 The British Psychological Society.

  14. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia.

    Science.gov (United States)

    Talbert, Erin E; Guttridge, Denis C

    2016-06-01

    While changes in muscle protein synthesis and degradation have long been known to contribute to muscle wasting, a body of literature has arisen which suggests that regulation of the satellite cell and its ensuing regenerative program are impaired in atrophied muscle. Lessons learned from cancer cachexia suggest that this regulation is simply not a consequence, but a contributing factor to the wasting process. In addition to satellite cells, evidence from mouse models of cancer cachexia also suggests that non-satellite progenitor cells from the muscle microenvironment are also involved. This chapter in the series reviews the evidence of dysfunctional muscle repair in multiple wasting conditions. Potential mechanisms for this dysfunctional regeneration are discussed, particularly in the context of cancer cachexia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Infliximab ameliorates AD-associated object recognition memory impairment.

    Science.gov (United States)

    Kim, Dong Hyun; Choi, Seong-Min; Jho, Jihoon; Park, Man-Seok; Kang, Jisu; Park, Se Jin; Ryu, Jong Hoon; Jo, Jihoon; Kim, Hyun Hee; Kim, Byeong C

    2016-09-15

    Dysfunctions in the perirhinal cortex (PRh) are associated with visual recognition memory deficit, which is frequently detected in the early stage of Alzheimer's disease. Muscarinic acetylcholine receptor-dependent long-term depression (mAChR-LTD) of synaptic transmission is known as a key pathway in eliciting this type of memory, and Tg2576 mice expressing enhanced levels of Aβ oligomers are found to have impaired mAChR-LTD in this brain area at as early as 3 months of age. We found that the administration of Aβ oligomers in young normal mice also induced visual recognition memory impairment and perturbed mAChR-LTD in mouse PRh slices. In addition, when mice were treated with infliximab, a monoclonal antibody against TNF-α, visual recognition memory impaired by pre-administered Aβ oligomers dramatically improved and the detrimental Aβ effect on mAChR-LTD was annulled. Taken together, these findings suggest that Aβ-induced inflammation is mediated through TNF-α signaling cascades, disturbing synaptic transmission in the PRh, and leading to visual recognition memory deficits. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Visual attentional engagement deficits in children with specific language impairment and their role in real-time language processing.

    Science.gov (United States)

    Dispaldro, Marco; Leonard, Laurence B; Corradi, Nicola; Ruffino, Milena; Bronte, Tiziana; Facoetti, Andrea

    2013-09-01

    In order to become a proficient user of language, infants must detect temporal cues embedded within the noisy acoustic spectra of ongoing speech by efficient attentional engagement. According to the neuro-constructivist approach, a multi-sensory dysfunction of attentional engagement - hampering the temporal sampling of stimuli - might be responsible for language deficits typically shown in children with Specific Language Impairment (SLI). In the present study, the efficiency of visual attentional engagement was investigated in 22 children with SLI and 22 typically developing (TD) children by measuring attentional masking (AM). AM refers to impaired identification of the first of two sequentially presented masked objects (O1 and O2) in which the O1-O2 interval was manipulated. Lexical and grammatical comprehension abilities were also tested in both groups. Children with SLI showed a sluggish engagement of temporal attention, and individual differences in AM accounted for a significant percentage of unique variance in grammatical performance. Our results suggest that an attentional engagement deficit - probably linked to a dysfunction of the right fronto-parietal attentional network - might be a contributing factor in these children's language impairments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Impaired coherence of life narratives of patients with schizophrenia.

    Science.gov (United States)

    Allé, Mélissa C; Potheegadoo, Jevita; Köber, Christin; Schneider, Priscille; Coutelle, Romain; Habermas, Tilmann; Danion, Jean-Marie; Berna, Fabrice

    2015-08-10

    Self-narratives of patients have received increasing interest in schizophrenia since they offer unique material to study patients' subjective experience related to their illness, in particular the alteration of self that accompanies schizophrenia. In this study, we investigated the life narratives and the ability to integrate and bind memories of personal events into a coherent narrative in 27 patients with schizophrenia and 26 controls. Four aspects of life narratives were analyzed: coherence with cultural concept of biography, temporal coherence, causal-motivational coherence and thematic coherence. Results showed that in patients cultural biographical knowledge is preserved, whereas temporal coherence is partially impaired. Furthermore, causal-motivational and thematic coherence are significantly impaired: patients have difficulties explaining how events have modeled their identity, and integrating different events along thematic lines. Impairment of global causal-motivational and thematic coherence was significantly correlated with patients' executive dysfunction, suggesting that cognitive impairment observed in patients could affect their ability to construct a coherent narrative of their life by binding important events to their self. This study provides new understanding of the cognitive deficits underlying self-disorders in patients with schizophrenia. Our findings suggest the potential usefulness of developing new therapeutic interventions to improve autobiographical reasoning skills.

  18. Narcissistic personality disorder: relations with distress and functional impairment.

    Science.gov (United States)

    Miller, Joshua D; Campbell, W Keith; Pilkonis, Paul A

    2007-01-01

    This study examined the construct validity of narcissistic personality disorder (NPD) by examining the relations between NPD and measures of psychologic distress and functional impairment both concurrently and prospectively across 2 samples. In particular, the goal was to address whether NPD typically "meets" criterion C of the DSM-IV definition of Personality Disorder, which requires that the symptoms lead to clinically significant distress or impairment in functioning. Sample 1 (n = 152) was composed of individuals receiving psychiatric treatment, whereas sample 2 (n = 151) was composed of both psychiatric patients (46%) and individuals from the community. Narcissistic personality disorder was linked to ratings of depression, anxiety, and several measures of impairment both concurrently and at 6-month follow-up. However, the relations between NPD and psychologic distress were (a) small, especially in concurrent measurements, and (b) largely mediated by impaired functioning. Narcissistic personality disorder was most strongly related to causing pain and suffering to others, and this relationship was significant even when other Cluster B personality disorders were controlled. These findings suggest that NPD is a maladaptive personality style which primarily causes dysfunction and distress in interpersonal domains. The behavior of narcissistic individuals ultimately leads to problems and distress for the narcissistic individuals and for those with whom they interact.

  19. Longitudinal effects of dysfunctional perfectionism and avoidant personality style on postpartum mental disorders: Pathways through antepartum depression and anxiety.

    Science.gov (United States)

    Oddo-Sommerfeld, Silvia; Hain, Sarah; Louwen, Frank; Schermelleh-Engel, Karin

    2016-02-01

    There is first evidence that some personality characteristics raise the risk of postpartum depression (PPD). The present longitudinal study investigates whether dysfunctional perfectionism and avoidant personality style predict PPD, postpartum anxiety (PPA) and bonding impairment (BI) directly or indirectly through antepartum anxiety (APA) and antepartum depression (APD). Pregnant women were recruited in two obstetric departments in Germany. The assessment occurred at two measurement time points: In the third trimester of pregnancy (N=297) and twelve weeks postpartum (N=266). Six questionnaires were administered during pregnancy: perfectionism, personality styles, anxiety, and depression. Postpartum, data on PPA, PPD and BI were collected. We conducted two path analyses in order to examine direct and indirect effects of the two personality characteristics on postpartum disorders. Testing for direct effects of dysfunctional perfectionism and avoidant personality style on PPD, PPA, and BI did not yield significant results. Instead, significant indirect effects were found: PPD, PPA, and BI were influenced indirectly by dysfunctional perfectionism and avoidant personality style via APD and APA. This model explained high portions of the variance of PPD, PPA, and impaired bonding. Each of the two personality characteristics explained a unique part of the outcome measures. The influence on BI was mediated by PPD. APD affected PPD and PPA more strongly than APA. Path models with manifest (observed) variables may lead to measurement errors. Self-rating questionnaires may raise the problem of social desirability. Dysfunctional perfectionism and avoidant personality style are significant risk factors for PPD, PPA, and BI. Screenings of both variables, as well as of APA and APD, which mediated the effect of personality traits on postpartum syndromes, are necessary. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The Global Cognition, Frontal Lobe Dysfunction and Behavior Changes in Chinese Patients with Multiple System Atrophy.

    Directory of Open Access Journals (Sweden)

    Bei Cao

    Full Text Available Studies on cognition in multiple system atrophy (MSA patients are limited.A total of 110 MSA patients were evaluated using Addenbrooke's Cognitive Examination-Revised (ACE-R, Frontal Assessment Battery (FAB, Frontal Behavioral Inventory (FBI, and Unified MSA Rating Scale (UMSARS tests. Fifty-five age-, sex-, education- and domicile-matched healthy controls were recruited to perform the FAB and ACE-R scales.Approximately 32.7% of the patients had global cognitive deficits with the most impaired domain being verbal fluency and visuospatial ability (26.4%, followed by memory (24.5%, language (20% and orientation/attention (20% based on a cut-off score of ACE-R ≤ 70. A total of 41.6% of the patients had frontal lobe dysfunction, with inhibitory control (60.9% as the most impaired domain based on a cut-off score of FAB ≤14. Most patients (57.2% showed moderate frontal behavior changes (FBI score 4-15, with incontinence (64.5% as the most impaired domain. The binary logistic regression model revealed that an education level < 9 years (OR:13.312, 95% CI:2.931-60.469, P = 0.001 and UMSARS ≥ 40 (OR: 2.444, 95%CI: 1.002-5.962, P< 0.049 were potential determinants of abnormal ACE-R, while MSA-C (OR: 4.326, 95%CI: 1.631-11.477, P = 0.003, an education level < 9 years (OR:2.809 95% CI:1.060-7.444, P = 0.038 and UMSARS ≥ 40 (OR:5.396, 95%CI: 2.103-13.846, P < 0.0001 were potential determinants of abnormal FAB.Cognitive impairment is common in Chinese MSA patients. MSA-C patients with low education levels and severe motor symptoms are likely to experience frontal lobe dysfunction, while MSA patients with low education levels and severe motor symptoms are likely to experience global cognitive deficits. These findings strongly suggest that cognitive impairment should not be an exclusion criterion for the diagnosis of MSA.

  1. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Renal dysfunction prevalence and clinical impact in heart failure

    Directory of Open Access Journals (Sweden)

    Palazzuoli A

    2011-09-01

    Full Text Available Alberto Palazzuoli, Susanna Benincasa, Stefanie Grothgar, Pasquale Di Sipio, Giovanni Paganini, Marco Pellegrini, Ranuccio NutiDepartment of Internal Medicine and Metabolic Diseases, Cardiology Section, Le Scotte Hospital, University of Siena, ItalyAbstract: Chronic kidney disease (CKD is associated with a significant increase in death and cardiovascular mortality. However the exact mechanism by which CKD impairs the cardiovascular outcome is not well established. Some reasons may lie in the association of CKD with several other cardiovascular and noncardiovascular disorders including accelerated systemic atherosclerosis, endothelial dysfunction, increased levels of inflammatory factors, anemic status, bone mineral dysfunction, electrolyte imbalance, and renin–angiotensin–aldosterone system (RAAS activation. Therefore several risk factors such as hypertension, diabetes, lipid disorders, and older age are common in both conditions. In patients affected with heart failure (HF a key role is represented by the neurohormonal activation. This condition causes fluid and sodium retention, peripheral vasoconstriction, as well as increased congestion and cardiac workload. Moreover, HF during the decompensated phases is often associated with a worsening renal function that leads to further RAAS activation, microvascular damage, and intrarenal flow redistribution. In order to clarify the interactions between these factors, several questions need to be answered: the universal definition of “worsening renal function,” the identification of the best laboratory parameters to investigate renal function in terms of sensitivity and specificity, and a better definition of the comorbidities’ role in the determination of the outcome, especially in patients with chronic HF. A clarification of these key points could lead to the individualization of new specific therapeutic targets and to a reduction in mortality and hospitalization in patients with HF and

  3. A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea : A Systematic Review Sponsored by the World Workshop on Oral Medicine VI

    NARCIS (Netherlands)

    Wolff, Andy; Joshi, Revan Kumar; Ekström, Jörgen; Aframian, Doron; Pedersen, Anne Marie Lynge; Proctor, Gordon; Narayana, Nagamani; Villa, Alessandro; Sia, Ying Wai; Aliko, Ardita; McGowan, Richard; Kerr, Alexander Ross; Jensen, Siri Beier; Vissink, Arjan; Dawes, Colin

    BACKGROUND: Medication-induced salivary gland dysfunction (MISGD), xerostomia (sensation of oral dryness), and subjective sialorrhea cause significant morbidity and impair quality of life. However, no evidence-based lists of the medications that cause these disorders exist. OBJECTIVE: Our objective

  4. Impaired affective prosody decoding in severe alcohol use disorder and Korsakoff syndrome.

    Science.gov (United States)

    Brion, Mélanie; de Timary, Philippe; Mertens de Wilmars, Serge; Maurage, Pierre

    2018-06-01

    Recognizing others' emotions is a fundamental social skill, widely impaired in psychiatric populations. These emotional dysfunctions are involved in the development and maintenance of alcohol-related disorders, but their differential intensity across emotions and their modifications during disease evolution remain underexplored. Affective prosody decoding was assessed through a vocalization task using six emotions, among 17 patients with severe alcohol use disorder, 16 Korsakoff syndrome patients (diagnosed following DSM-V criteria) and 19 controls. Significant disturbances in emotional decoding, particularly for negative emotions, were found in alcohol-related disorders. These impairments, identical for both experimental groups, constitute a core deficit in excessive alcohol use. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Impaired theta-gamma coupling during working memory performance in schizophrenia.

    Science.gov (United States)

    Barr, Mera S; Rajji, Tarek K; Zomorrodi, Reza; Radhu, Natasha; George, Tony P; Blumberger, Daniel M; Daskalakis, Zafiris J

    2017-11-01

    Working memory deficits represent a core feature of schizophrenia. These deficits have been associated with dysfunctional dorsolateral prefrontal cortex (DLPFC) cortical oscillations. Theta-gamma coupling describes the modulation of gamma oscillations by theta phasic activity that has been directly associated with the ordering of information during working memory performance. Evaluating theta-gamma coupling may provide greater insight into the neural mechanisms mediating working memory deficits in this disorder. Thirty-eight patients diagnosed with schizophrenia or schizoaffective disorder and 38 healthy controls performed the verbal N-Back task administered at 4 levels, while EEG was recorded. Theta (4-7Hz)-gamma (30-50Hz) coupling was calculated for target and non-target correct trials for each working memory load. The relationship between theta-gamma coupling and accuracy was determined. Theta-gamma coupling was significantly and selectively impaired during correct responses to target letters among schizophrenia patients compared to healthy controls. A significant and positive relationship was found between theta-gamma coupling and 3-Back accuracy in controls, while this relationship was not observed in patients. These findings suggest that impaired theta-gamma coupling contribute to working memory dysfunction in schizophrenia. Future work is needed to evaluate the predictive utility of theta-gamma coupling as a neurophysiological marker for functional outcomes in this disorder. Copyright © 2017. Published by Elsevier B.V.

  6. Prognostic implications of left ventricular diastolic dysfunction with preserved systolic function following acute myocardial infarction

    DEFF Research Database (Denmark)

    Poulsen, S H; Møller, J E; Nørager, B

    2001-01-01

    of the mitral and pulmonary venous flow, and the propagation velocity of early mitral flow by color M-mode Doppler echocardiography in 183 consecutive patients at day 5-7 following their first acute MI. Patients were classified into four groups: group A: preserved LV systolic and diastolic function (n = 73......%) and D (38%) compared to A (2%) (p class >or=II (p = 0.006), and age (0.008) as predictors of cardiac death or readmission due to heart failure. The presence of LV diastolic dysfunction with preserved......The contribution of diastolic dysfunction in patients with preserved left ventricular (LV) systolic function to impaired functional status and cardiac mortality in myocardial infarction (MI) is unknown. In the present study, assessment of LV diastolic function was performed by Doppler analysis...

  7. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  8. Short Communication: Protective Effects of Cyperus Rotundus Extract on Amyloid β-Peptide (1-40-Induced Memory Impairment in Male Rats: A Behavioral Study

    Directory of Open Access Journals (Sweden)

    Mehdi Mehdizadeh

    2017-05-01

    Conclusion: The current study findings showed that C. Rotundus could improve the learning impairment, following the Aβ treatment, and it may lead to an improvement of AD-induced cognitive dysfunction.

  9. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Jingbo Liu

    Full Text Available It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR increases the susceptibility of offspring to high-fat (HF diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW, and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA, and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH and glucose-6-phosphate dehydrogenase (G6PD. These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction.

  10. Intrauterine Growth Retardation Increases the Susceptibility of Pigs to High-Fat Diet-Induced Mitochondrial Dysfunction in Skeletal Muscle

    Science.gov (United States)

    Liu, Jingbo; Chen, Daiwen; Yao, Ying; Yu, Bing; Mao, Xiangbing; He, Jun; Huang, Zhiqing; Zheng, Ping

    2012-01-01

    It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. PMID:22523560

  11. Visual Dysfunction in Posterior Cortical Atrophy

    Science.gov (United States)

    Maia da Silva, Mari N.; Millington, Rebecca S.; Bridge, Holly; James-Galton, Merle; Plant, Gordon T.

    2017-01-01

    Posterior cortical atrophy (PCA) is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical) visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions. PMID:28861031

  12. Visual Dysfunction in Posterior Cortical Atrophy

    Directory of Open Access Journals (Sweden)

    Mari N. Maia da Silva

    2017-08-01

    Full Text Available Posterior cortical atrophy (PCA is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions.

  13. Cats with diabetes mellitus have diastolic dysfunction in the absence of structural heart disease.

    Science.gov (United States)

    Pereira, N J; Novo Matos, J; Baron Toaldo, M; Bartoszuk, U; Summerfield, N; Riederer, A; Reusch, C; Glaus, T M

    2017-07-01

    Diabetes mellitus (DM) can result in cardiovascular dysfunction and heart failure characterized by diastolic dysfunction with or without the presence of systolic dysfunction in people and laboratory animals. The objective of this prospective study was to determine if cats with newly diagnosed DM had myocardial dysfunction and, if present, whether it would progress if appropriate antidiabetic therapy was commenced. Thirty-two diabetic cats were enrolled and received baseline echocardiographic examination; of these, 15 cats were re-examined after 6 months. Ten healthy age- and weight-matched cats served as controls. Diabetic cats at diagnosis showed decreased diastolic, but not systolic function, when compared to healthy controls, with lower mitral inflow E wave (E) and E/E' than controls. After 6 months, E and E/IVRT' decreased further in diabetic cats compared to the baseline evaluation. After excluding cats whose DM was in remission at 6 months, insulin-dependent diabetic cats had lower E, E/A and E' than controls. When classifying diastolic function according to E/A and E'/A', there was shift towards impaired relaxation patterns at 6 months. All insulin-dependent diabetic cats at 6 months had abnormal diastolic function. These results indicate that DM has similar effects on diastolic function in feline and human diabetics. The dysfunction seemed to progress rather than to normalize after 6 months, despite antidiabetic therapy. In cats with pre-existing heart disease, the development of DM could represent an important additional health risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sacroiliac joint dysfunction.

    Science.gov (United States)

    Ilaslan, Hakan; Arslan, Ahmet; Koç, Omer Nadir; Dalkiliç, Turker; Naderi, Sait

    2010-07-01

    Sacroiliac joint dysfunction is a disorder presenting with low back and groin pain. It should be taken into consideration during the preoperative differential diagnosis of lumbar disc herniation, lumbar spinal stenosis and facet syndrome. Four cases with sacroiliac dysfunction are presented. The clinical and radiological signs supported the evidence of sacroiliac dysfunction, and exact diagnosis was made after positive response to sacroiliac joint block. A percutaneous sacroiliac fixation provided pain relief in all cases. The mean VAS scores reduced from 8.2 to 2.2. It is concluded that sacroiliac joint dysfunction diagnosis requires a careful physical examination of the sacroiliac joints in all cases with low back and groin pain. The diagnosis is made based on positive response to the sacroiliac block. Sacroiliac fixation was found to be effective in carefully selected cases.

  15. EEG evidence for mirror neuron dysfunction in autism spectrum disorders.

    Science.gov (United States)

    Oberman, Lindsay M; Hubbard, Edward M; McCleery, Joseph P; Altschuler, Eric L; Ramachandran, Vilayanur S; Pineda, Jaime A

    2005-07-01

    Autism spectrum disorders (ASD) are largely characterized by deficits in imitation, pragmatic language, theory of mind, and empathy. Previous research has suggested that a dysfunctional mirror neuron system may explain the pathology observed in ASD. Because EEG oscillations in the mu frequency (8-13 Hz) over sensorimotor cortex are thought to reflect mirror neuron activity, one method for testing the integrity of this system is to measure mu responsiveness to actual and observed movement. It has been established that mu power is reduced (mu suppression) in typically developing individuals both when they perform actions and when they observe others performing actions, reflecting an observation/execution system which may play a critical role in the ability to understand and imitate others' behaviors. This study investigated whether individuals with ASD show a dysfunction in this system, given their behavioral impairments in understanding and responding appropriately to others' behaviors. Mu wave suppression was measured in ten high-functioning individuals with ASD and ten age- and gender-matched control subjects while watching videos of (1) a moving hand, (2) a bouncing ball, and (3) visual noise, or (4) moving their own hand. Control subjects showed significant mu suppression to both self and observed hand movement. The ASD group showed significant mu suppression to self-performed hand movements but not to observed hand movements. These results support the hypothesis of a dysfunctional mirror neuron system in high-functioning individuals with ASD.

  16. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    Energy Technology Data Exchange (ETDEWEB)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l' Exercice en conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171 Aubière cedex (France); Fabre, O.; Bordenave, S. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Hillaire-Buys, D. [CHRU Montpellier, 34295 Montpellier (France); Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France)

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  17. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    International Nuclear Information System (INIS)

    Sirvent, P.; Fabre, O.; Bordenave, S.; Hillaire-Buys, D.; Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J.

    2012-01-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  18. Endothelial dysfunction is associated with carotid plaque: a cross-sectional study from the population based Northern Manhattan Study

    Directory of Open Access Journals (Sweden)

    Boden-Albala Bernadette

    2006-08-01

    Full Text Available Abstract Background Impaired vascular function occurs early in atherogenesis. Brachial flow mediated dilatation (FMD is a non-invasive measure of vascular function and may be an important marker of preclinical atherosclerosis. Data on the association between FMD and carotid plaque in multi-ethnic populations are limited. The objective of this study was to determine whether endothelial dysfunction is independently associated with carotid plaque in a community of northern Manhattan. Methods In the population-based Northern Manhattan Study (NOMAS, high-resolution B-mode ultrasound images of the brachial and carotid arteries were obtained in 643 stroke-free subjects (mean age 66 years; 55% women; 65% Caribbean-Hispanic, 17% African-American, 16% Caucasian. Brachial FMD was measured during reactive hyperemia. Maximum carotid plaque thickness (MCPT was measured at the peak plaque prominence. Results The mean brachial FMD was 5.78 ± 3.83 %. Carotid plaque was present in 339 (53% subjects. The mean MCPT was 1.68 ± 0.82 mm, and the 75th percentile was 2.0 mm. Reduced FMD was significantly associated with increased MCPT. After adjusting for demographics, vascular risk factors, and education, each percent of FMD decrease was associated with a significant 0.02 mm increase in MCPT (p = 0.028. In a dichotomous adjusted model, blunted FMD was associated with an increased risk of MCPT ≥ 2.0 mm (OR, 1.11 for every 1% decrease in FMD; 95% CI, 1.03–1.19. Conclusion Decreased brachial FMD is independently associated with carotid plaque. Non-invasive evaluation of endothelial dysfunction may be a useful marker of preclinical atherosclerosis and help to individualize cardiovascular risk assessment beyond traditional risk factors.

  19. Patients with restored occlusions. Part III: The effect of occlusal splint therapy and occlusal adjustments on TMJ dysfunction.

    Science.gov (United States)

    Lederman, K H; Clayton, J A

    1983-07-01

    An earlier study of 50 patients with occlusions restored by fixed partial dentures indicated a high percent (68%) of TMJ dysfunction. Occlusal interferences can play a significant role in causing TMJ dysfunction. To determine the significance of occlusal interferences, occlusal splints were placed in 10 of these restored patients who had moderate to severe dysfunction. The PRI was used to detect the presence or absence of TMJ dysfunction. The PRI TMJ dysfunction scores were reduced in all 10 patients after use of the occlusal splint. Five of the patients achieved reproducible tracings (no TMJ dysfunction) during the experiment time of 7 months. The occlusion of two patients was adjusted to eliminate the need for the occlusal splint. Patients who wore the splint 24 hours a day showed a significant (0.0004 level) reduction in TMJ dysfunction. Those patients who did not wear the splint regularly or had high levels of stress had PRI scores that varied. This finding indicates that the occlusal splint is not a treatment, as its removal permits reactivation of the occlusal interference. Resolution of dysfunction did not occur until occlusal interferences were removed. The changes in PRI scores to different dysfunction categories (none, slight, moderate, and severe) for the experimental group were significant at the 0.01 level. A control group of five patients had similar pantographic tracings but no other treatment. Their PRI scores varied, but there was no significant change in PRI scores or dysfunction categories. It was concluded that occlusal interferences were active causes of TMJ dysfunction in 10 of 36 patients in a population with restored occlusions.

  20. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  1. Myocardial tissue deformation is reduced in subjects with coronary microvascular dysfunction but not rescued by treatment with Ranolazine

    Science.gov (United States)

    Nelson, Michael D.; Sharif, Behzad; Shaw, Jaime L.; Cook-Wiens, Galen; Wei, Janet; Shufelt, Chrisandra; Mehta, Puja K.; Thomson, Louise EJ; Berman, Daniel S.; Thompson, Richard B.; Handberg, Eileen M.; Pepine, Carl J.; Li, Debiao; Bairey Merz, C. Noel

    2016-01-01

    Background Patients with coronary microvascular dysfunction (CMD) often have diastolic dysfunction, representing an important therapeutic target. Ranolazine—a late-sodium current inhibitor—improves diastolic function in animal models, and subjects with obstructive CAD. We hypothesized that ranolazine would beneficially alter diastolic function in CMD. Methods To test this hypothesis, we performed retrospective tissue tracking analysis to evaluate systolic/diastolic strain, using cardiac magnetic resonance imaging cine images: a) acquired in a recently completed, randomized, double-blind, placebo-controlled, crossover trial of short-term ranolazine in subjects with CMD, and b) from 43 healthy reference controls. Results Diastolic strain rate was impaired in CMD vs. controls (circumferential diastolic strain rate: 99.9 ± 2.5%/s vs. 120.1 ± 4.0%/s, p=0.0003; radial diastolic strain rate: −199.5 ± 5.5%/s vs. −243.1 ± 9.6%/s, p=0.0008, case vs. control). Moreover, peak systolic circumferential (CS) and radial (RS) strain were also impaired in cases vs. controls (CS: −18.8 ± 0.3% vs. −20.7 ± 0.3%; RS: 35.8 ± 0.7% vs. 41.4 ± 0.9%; respectively; both p < 0.0001), despite similar and preserved ejection fraction. In contrast to our hypothesis however, we observed no significant changes in left ventricular diastolic function in CMD cases after two weeks of ranolazine vs. placebo. Conclusions The case-control comparison both confirms and extends our prior observations of diastolic dysfunction in CMD. That CMD cases were also found to have sub-clinical systolic dysfunction is a novel finding, highlighting the utility of this retrospective approach. In contrast to previous studies in obstructive CAD, ranolazine did not improve diastolic function in CMD. PMID:28004395

  2. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Sharma, Bhupesh; Sharma, P.M.

    2013-01-01

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  3. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-01-01

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HCAEC biology in vitro. ► EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5′end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  4. Cigarette Smoke-Induced Cell Death Causes Persistent Olfactory Dysfunction in Aged Mice

    Directory of Open Access Journals (Sweden)

    Rumi Ueha

    2018-06-01

    Full Text Available Introduction: Exposure to cigarette smoke is a cause of olfactory dysfunction. We previously reported that in young mice, cigarette smoke damaged olfactory progenitors and decreased mature olfactory receptor neurons (ORNs, then, mature ORNs gradually recovered after smoking cessation. However, in aged populations, the target cells in ORNs by cigarette smoke, the underlying molecular mechanisms by which cigarette smoke impairs the regenerative ORNs, and the degree of ORN regeneration after smoking cessation remain unclear.Objectives: To explore the effects of cigarette smoke on the ORN cell system using an aged mouse model of smoking, and to investigate the extent to which smoke-induced damage to ORNs recovers following cessation of exposure to cigarette smoke in aged mice.Methods: We intranasally administered a cigarette smoke solution (CSS to 16-month-old male mice over 24 days, then examined ORN existence, cell survival, changes of inflammatory cytokines in the olfactory epithelium (OE, and olfaction using histological analyses, gene analyses and olfactory habituation/dishabituation tests.Results: CSS administration reduced the number of mature ORNs in the OE and induced olfactory dysfunction. These changes coincided with an increase in the number of apoptotic cells and Tumor necrosis factor (TNF expression and a decrease in Il6 expression. Notably, the reduction in mature ORNs did not recover even on day 28 after cessation of treatment with CSS, resulting in persistent olfactory dysfunction.Conclusion: In aged mice, by increasing ORN death, CSS exposure could eventually overwhelm the regenerative capacity of the OE, resulting in continued reduction in the number of mature ORNs and olfactory dysfunction.

  5. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  6. CXCL12/CXCR4-Axis Dysfunctions: Markers of the Rare Immunodeficiency Disorder WHIM Syndrome

    Directory of Open Access Journals (Sweden)

    Françoise Bachelerie

    2010-01-01

    Full Text Available The WHIM syndrome features susceptibility to human Papillomavirus infection-induced warts and carcinomas, hypogammaglobulinemia, recurrent bacterial infections, B and T-cell lymphopenia, and neutropenia associated with retention of senescent neutrophils in the bone marrow (i.e. myelokathexis. This rare disorder is mostly linked to inherited heterozygous autosomal dominant mutations in the gene encoding CXCR4, a G protein coupled receptor with a unique ligand, the chemokine CXCL12/SDF-1. Some individuals who have full clinical forms of the syndrome carry a wild type CXCR4 gene. In spite of this genetic heterogeneity, leukocytes from WHIM patients share in common dysfunctions of the CXCR4-mediated signaling pathway upon exposure to CXCL12. Dysfunctions are characterized by impaired desensitization and receptor internalization, which are associated with enhanced responses to the chemokine. Our increasing understanding of the mechanisms that account for the aberrant CXCL12/CXCR4-mediated responses is beginning to provide insight into the pathogenesis of the disorder. As a result we can expect to identify markers of the WHIM syndrome, as well as other disorders with WHIM-like features that are associated with dysfunctions of the CXCL12/CXCR4 axis.

  7. Predictors of Memory and Processing Speed Dysfunctions after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    William Winardi

    2014-01-01

    Full Text Available Background. The aims of this study were to evaluate the predictive value of admission Glasgow Coma Scale (GCS scores, duration of unconsciousness, neurosurgical intervention, and countercoup lesion on the impairment of memory and processing speed functions six months after a traumatic brain injury (TBI based on a structural equation modeling. Methods. Thirty TBI patients recruited from Neurosurgical Department at the Kaohsiung Medical University Hospital were administered the Wechsler Memory Scale-III (WMS-III and the Wechsler Adult Intelligence Scale-III processing speed index to evaluate the memory and processing speed functions. Results. The study showed that GCS scores accounted for 40% of the variance in memory/processing speed. No significant predictive effects were found for the other three variables. GCS classification at the time of TBI seems to correspond moderately to the severity of memory/processing speed dysfunctions. Conclusions. The present study demonstrated that admission GCS score is a robust predictor of memory/processing speed dysfunctions after TBI. The results should be replicated with a large sample of patients with TBI, or be extended by examining other potential clinical predictors.

  8. Prognostic impact of renal dysfunction does not differ according to the clinical profiles of patients: insight from the acute decompensated heart failure syndromes (ATTEND registry.

    Directory of Open Access Journals (Sweden)

    Taku Inohara

    Full Text Available BACKGROUND: Renal dysfunction associated with acute decompensated heart failure (ADHF is associated with impaired outcomes. Its mechanism is attributed to renal arterial hypoperfusion or venous congestion, but its prognostic impact based on each of these clinical profiles requires elucidation. METHODS AND RESULTS: ADHF syndromes registry subjects were evaluated (N = 4,321. Logistic regression modeling calculated adjusted odds ratios (OR for in-hospital mortality for patients with and without renal dysfunction. Renal dysfunction risk was calculated for subgroups with hypoperfusion-dominant (eg. cold extremities, a low mean blood pressure or a low proportional pulse pressure or congestion-dominant clinical profiles (eg. peripheral edema, jugular venous distension, or elevated brain natriuretic peptide to evaluate renal dysfunction's prognostic impact in the context of the two underlying mechanisms. On admission, 2,150 (49.8% patients aged 73.3 ± 13.6 years had renal dysfunction. Compared with patients without renal dysfunction, those with renal dysfunction were older and had dominant ischemic etiology jugular venous distension, more frequent cold extremities, and higher brain natriuretic peptide levels. Renal dysfunction was associated with in-hospital mortality (OR 2.36; 95% confidence interval 1.75-3.18, p0.05. CONCLUSIONS: Baseline renal dysfunction was significantly associated with in-hospital mortality in ADHF patients. The prognostic impact of renal dysfunction was the same, regardless of its underlying etiologic mechanism.

  9. TrkB blockade in the hippocampus after training or retrieval impairs memory: protection from consolidation impairment by histone deacetylase inhibition.

    Science.gov (United States)

    Blank, Martina; Petry, Fernanda S; Lichtenfels, Martina; Valiati, Fernanda E; Dornelles, Arethuza S; Roesler, Rafael

    2016-03-01

    Relatively little is known about the requirement of signaling initiated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), in the early phases of memory consolidation, as well as about its possible functional interactions with epigenetic mechanisms. Here we show that blocking TrkB in the dorsal hippocampus after learning or retrieval impairs retention of memory for inhibitory avoidance (IA). More importantly, the impairing effect of TrkB antagonism on consolidation was completely prevented by the histone deacetylase (HDAC) inhibitor sodium butyrate (NaB). Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or NaB before training, followed by an infusion of either vehicle (VEH) or the selective TrkB antagonist ANA-12 immediately after training. In a second experiment, the infusions were administered before and after retrieval. ANA-12 after either training or retrieval produced a significant impairment in a subsequent memory retention test. Pretraining administration of NaB prevented the effect of ANA-12, although NaB given before retrieval did not alter the impairment resulting from TrkB blockade. The results indicate that inhibition of BDNF/TrkB in the hippocampus can hinder consolidation and reconsolidation of IA memory. However, TrkB activity is not required for consolidation in the presence of NaB, suggesting that a dysfunction in BDNF/TrkB signaling can be fully compensated by HDAC inhibition to allow hippocampal memory formation.

  10. An Event-Related Potential and Behavioral Study of Impaired Inhibitory Control in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Tsai, Chia-Liang; Pan, Chien-Yu; Wang, Chun-Hao; Tseng, Yu-Ting; Hsieh, Kai-Wen

    2011-01-01

    Autism spectrum disorders (ASD) are characterized by a deficit of dorsal visual stream processing as well as the impairment of inhibitory control capability. However, the cognitive processing mechanisms of executive dysfunction have not been addressed. In the present study, the endogenous Posner paradigm task was administered to 15 children with…

  11. Thinking through postoperative cognitive dysfunction: How to bridge the gap between clinical and pre-clinical perspectives.

    Science.gov (United States)

    Hovens, Iris B; Schoemaker, Regien G; van der Zee, Eddy A; Heineman, Erik; Izaks, Gerbrand J; van Leeuwen, Barbara L

    2012-10-01

    Following surgery, patients may experience cognitive decline, which can seriously reduce quality of life. This postoperative cognitive dysfunction (POCD) is mainly seen in the elderly and is thought to be mediated by surgery-induced inflammatory reactions. Clinical studies tend to define POCD as a persisting, generalised decline in cognition, without specifying which cognitive functions are impaired. Pre-clinical research mainly describes early hippocampal dysfunction as a consequence of surgery-induced neuroinflammation. These different approaches to study POCD impede translation between clinical and pre-clinical research outcomes and may hamper the development of appropriate interventions. This article analyses which cognitive domains deteriorate after surgery and which brain areas might be involved. The most important outcomes are: (1) POCD encompasses a wide range of cognitive impairments; (2) POCD affects larger areas of the brain; and (3) individual variation in the vulnerability of neuronal networks to neuroinflammatory mechanisms may determine if and how POCD manifests itself. We argue that, for pre-clinical and clinical research of POCD to advance, the effects of surgery on various cognitive functions and brain areas should be studied. Moreover, in addition to general characteristics, research should take inter-relationships between cognitive complaints and physical and mental characteristics into account. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Role of Oxidative Stress in the Neurocognitive Dysfunction of Obstructive Sleep Apnea Syndrome

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2016-01-01

    Full Text Available Obstructive sleep apnea syndrome (OSAS is characterized by chronic nocturnal intermittent hypoxia and sleep fragmentations. Neurocognitive dysfunction, a significant and extraordinary complication of OSAS, influences patients’ career, family, and social life and reduces quality of life to some extent. Previous researches revealed that repetitive hypoxia and reoxygenation caused mitochondria and endoplasmic reticulum dysfunction, overactivated NADPH oxidase, xanthine oxidase, and uncoupling nitric oxide synthase, induced an imbalance between prooxidants and antioxidants, and then got rise to a series of oxidative stress (OS responses, such as protein oxidation, lipid peroxidation, and DNA oxidation along with inflammatory reaction. OS in brain could trigger neuron injury especially in the hippocampus and cerebral cortex regions. Those two regions are fairly susceptible to hypoxia and oxidative stress production which could consequently result in cognitive dysfunction. Apart from continuous positive airway pressure (CPAP, antioxidant may be a promising therapeutic method to improve partially reversible neurocognitive function. Understanding the role that OS played in the cognitive deficits is crucial for future research and therapeutic strategy development. In this paper, recent important literature concerning the relationship between oxidative stress and cognitive impairment in OSAS will be summarized and the results can provide a rewarding overview for future breakthrough in this field.

  13. Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib

    Directory of Open Access Journals (Sweden)

    Stefania Gorini

    2018-01-01

    Full Text Available Many cancer therapies produce toxic side effects whose molecular mechanisms await full elucidation. The most feared and studied side effect of chemotherapeutic drugs is cardiotoxicity. Also, skeletal muscle physiology impairment has been recorded after many chemotherapeutical treatments. However, only doxorubicin has been extensively studied for its side effects on skeletal muscle. Chemotherapeutic-induced adverse side effects are, in many cases, mediated by mitochondrial damage. In particular, trastuzumab and sunitinib toxicity is mainly associated with mitochondria impairment and is mostly reversible. Vice versa, doxorubicin-induced toxicity not only includes mitochondria damage but can also lead to a more robust and extensive cell injury which is often irreversible and lethal. Drugs interfering with mitochondrial functionality determine the depletion of ATP reservoirs and lead to subsequent reversible contractile dysfunction. Mitochondrial damage includes the impairment of the respiratory chain and the loss of mitochondrial membrane potential with subsequent disruption of cellular energetic. In a context of increased stress, AMPK has a key role in maintaining energy homeostasis, and inhibition of the AMPK pathway is one of the proposed mechanisms possibly mediating mitochondrial toxicity due to chemotherapeutics. Therapies targeting and protecting cell metabolism and energy management might be useful tools in protecting muscular tissues against the toxicity induced by chemotherapeutic drugs.

  14. Impaired baroreflex function in mice overexpressing alpha-synuclein

    Directory of Open Access Journals (Sweden)

    Sheila eFleming

    2013-07-01

    Full Text Available Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson’s disease (PD. In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn, a genetic mouse model of synucleinopathy. The beat-to-beat change in heart rate, computed from R-R interval, in relation to blood pressure was measured in anesthetized and conscious mice equipped with arterial blood pressure telemetry transducers during transient bouts of hypertension and hypotension. Compared to wildtype, tachycardia following nitroprusside-induced hypotension was significantly reduced in Thy1-aSyn mice. Thy1-aSyn mice also showed an abnormal cardiovascular response (i.e., diminished tachycardia to muscarinic blockade with atropine. We conclude that Thy1-aSyn mice have impaired basal and dynamic range of sympathetic and parasympathetic-mediated changes in heart rate and will be a useful model for long-term study of cardiovascular autonomic dysfunction associated with PD.

  15. Vascular remodeling versus amyloid beta-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer's disease.

    Science.gov (United States)

    Tong, Xin-Kang; Nicolakakis, Nektaria; Kocharyan, Ara; Hamel, Edith

    2005-11-30

    The roles of oxidative stress and structural alterations in the cerebrovascular dysfunctions associated with Alzheimer's disease (AD) were investigated in transgenic mice overexpressing amyloid precusor protein (APP+) or transforming growth factor-beta1 (TGF+). Age-related impairments and their in vitro reversibility were evaluated, and underlying pathogenic mechanisms were assessed and compared with those seen in AD brains. Vasoconstrictions to 5-HT and endothelin-1 were preserved, except in the oldest (18-21 months of age) TGF+ mice. Despite unaltered relaxations to sodium nitroprusside, acetylcholine (ACh) and calcitonin gene-related peptide-mediated dilatations were impaired, and there was an age-related deficit in the basal availability of nitric oxide (NO) that progressed more gradually in TGF+ mice. The expression and progression of these deficits were unrelated to the onset or extent of thioflavin-S-positive vessels. Manganese superoxide dismutase (SOD2) was upregulated in pial vessels and around brain microvessels of APP+ mice, pointing to a role of superoxide in the dysfunctions elicited by amyloidosis. In contrast, vascular wall remodeling associated with decreased levels of endothelial NO synthase and cyclooxygenase-2 and increased contents of vascular endothelial growth factor and collagen-I and -IV characterized TGF+ mice. Exogenous SOD or catalase normalized ACh dilatations and NO availability in vessels from aged APP+ mice but had no effect in those of TGF+ mice. Increased perivascular oxidative stress was not evidenced in AD brains, but vascular wall alterations compared well with those seen in TGF+ mice. We conclude that brain vessel remodeling and associated alterations in levels of vasoactive signaling molecules are key contributors to AD cerebrovascular dysfunctions.

  16. <Symposium I>Genetic dissection of age-related memory impairment in Drosophila

    OpenAIRE

    Yamazaki, Daisuke; Horiuchi, Junjiro; Saitoe, Minoru

    2010-01-01

    Age-related memory impairment (AMI) is an important phenotype of brain aging. Understandingthe molecular mechanisms underlying AMI is important not only from a scientific viewpoint but also for thedevelopment of therapeutics that may eventually lead to developing drugs to combat memory loss. AMI has beengenerally considered to be an overall or nonspecifi c decay of memory processes that results from dysfunction ofneural networks. However, extensive behavioral genetic characterization of AMI w...

  17. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea

    Science.gov (United States)

    Polotsky, Vsevolod Y.; O'Donnell, Christopher P.; Cravo, Sergio L.; Lorenzi-Filho, Geraldo; Machado, Benedito H.

    2015-01-01

    Obstructive sleep apnea (OSA) is known to be independently associated with several cardiovascular diseases including hypertension, myocardial infarction, and stroke. To determine how OSA can increase cardiovascular risk, animal models have been developed to explore the underlying mechanisms and the cellular and end-organ targets of the predominant pathophysiological disturbance in OSA–intermittent hypoxia. Despite several limitations in translating data from animal models to the clinical arena, significant progress has been made in our understanding of how OSA confers increased cardiovascular risk. It is clear now that the hypoxic stress associated with OSA can elicit a broad spectrum of pathological systemic events including sympathetic activation, systemic inflammation, impaired glucose and lipid metabolism, and endothelial dysfunction, among others. This review provides an update of the basic, clinical, and translational advances in our understanding of the metabolic dysfunction and cardiovascular consequences of OSA and highlights the most recent findings and perspectives in the field. PMID:26232233

  18. Functional imaging of neurocognitive dysfunction in attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Wolf, I.; Tost, H.; Ruf, M.; Ende, G.

    2005-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a neurobiological disorder of early childhood onset. Defining symptoms are chronic impairments of attention, impulse control and motor hyperactivity that frequently persist until adulthood. Miscellaneous causes of the disorder have been discussed. Accumulating evidence from imaging- and molecular genetic studies strengthened the theory of ADHS being a predominantly inherited disorder of neurobiological origin. In the last 15 years, non-invasive brain imaging methods were successfully implemented in pediatric research. Functional magnetic resonance imaging studies gave major insight into the neurobiological correlates of executive malfunction, inhibitory deficits and psychomotoric soft signs. These findings are in good accordance with brain morphometric data indicating a significant volumetric decrease of major components of striato-thalamo-cortical feedback loops, primarily influencing prefrontal executive functioning (e.g. basal ganglia). Empirical evidence points to a broad array of associated behavioral disturbances like deficient visuomotor abilities and oculomotor dysfunctions. This paper reviews the current empirical evidence derived from prior imaging studies. Special emphasis is given to the relevance of oculomotor dysfunctions in clinical and research settings, as well as their assessment in the MR environment. (orig.) [de

  19. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders

    Directory of Open Access Journals (Sweden)

    Mami eNoda

    2015-06-01

    Full Text Available It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS. Among hormones closely related to the nervous system, thyroid hormones (THs are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of human brain, leading to various neurological dysfunctions. In adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Though hypothyroidism impairs synaptic transmission and plasticity, its effect on glial cells and cellular mechanisms are unknown. This mini-review article summarizes how THs are transported to the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, showing an example of glioendocrine system. It may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders.

  20. Functional Impairment and Changes in Depression Subtypes for Women in STAR*D: A Latent Transition Analysis

    Science.gov (United States)

    Rothschild, Anthony J.; Lapane, Kate L.

    2016-01-01

    Abstract Objective: To characterize the association between functional impairment and major depression subtypes at baseline and to characterize changes in subtypes by functional impairment level in women receiving citalopram in level 1 of the Sequenced Treatment Alternatives to Relieve Depression trial. Method: Women who completed baseline and week 12 study visits were included. Items from the self-reported Quick Inventory of Depressive Symptomatology were used to define the latent depression subtypes. The Work and Social Adjustment Scale was used to classify baseline functional impairment. A latent transition analysis model provided estimates of the prevalence of subtype membership and transition probabilities by functional impairment level. Results: Of the 755 women included, 69% had major functional impairment at baseline. Regardless of functional impairment level, the subtypes were differentiated by depression severity, appetite changes, psychomotor disturbances, and insomnia. Sixty-seven percent of women with normal/significant functional impairment and 60% of women with major impairment were likely to transition to a symptom resolution subtype at week 12. Women with baseline major impairment who were in the severe with psychomotor agitation subtype at the beginning of the study were least likely to transition to the symptom resolution subtype (4% chance). Conclusions: Functional impairment level was related to both the baseline depression subtype and the likelihood of moving to a different subtype. These results underscore the need to incorporate not only depression symptoms but also functioning in the assessment and treatment of depression. PMID:26488110

  1. Monocytes/Macrophages Control Resolution of Transient Inflammatory Pain

    Science.gov (United States)

    Willemen, Hanneke L. D. M.; Eijkelkamp, Niels; Carbajal, Anibal Garza; Wang, Huijing; Mack, Matthias; Zijlstra, Jitske; Heijnen, Cobi J.; Kavelaars, Annemieke

    2014-01-01

    Insights into mechanisms governing resolution of inflammatory pain are of great importance for many chronic pain–associated diseases. Here we investigate the role of macrophages/monocytes and the anti-inflammatory cytokine interleukin-10 (IL-10) in the resolution of transient inflammatory pain. Depletion of mice from peripheral monocytes/macrophages delayed resolution of intraplantar IL-1β- and carrageenan-induced inflammatory hyperalgesia from 1 to 3 days to >1 week. Intrathecal administration of a neutralizing IL-10 antibody also markedly delayed resolution of IL-1β- and carrageenan-induced inflammatory hyperalgesia. Recently, we showed that IL-1β- and carrageenan-induced hyperalgesia is significantly prolonged in LysM-GRK2+/− mice, which have reduced levels of G-protein-coupled receptor kinase 2 (GRK2) in LysM+ myeloid cells. Here we show that adoptive transfer of wild-type, but not of GRK2+/−, bone marrow-derived monocytes normalizes the resolution of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Adoptive transfer of IL-10−/− bone marrow-derived monocytes failed to normalize the duration of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Mechanistically, we show that GRK2+/− macrophages produce less IL-10 in vitro. In addition, intrathecal IL-10 administration attenuated IL-1β-induced hyperalgesia in LysM-GRK2+/− mice, whereas it had no effect in wild-type mice. Our data uncover a key role for monocytes/macrophages in promoting resolution of inflammatory hyperalgesia via a mechanism dependent on IL-10 signaling in dorsal root ganglia. Perspective We show that IL-10-producing monocytes/macrophages promote resolution of transient inflammatory hyperalgesia. Additionally, we show that reduced monocyte/macrophage GRK2 impairs resolution of hyperalgesia and reduces IL-10 production. We propose that low GRK2 expression and/or impaired IL-10 production by monocytes/macrophages represent peripheral biomarkers for the risk of developing

  2. Cognitive dysfunction improves in systemic lupus erythematosus: Results of a 10 years prospective study.

    Directory of Open Access Journals (Sweden)

    Fulvia Ceccarelli

    Full Text Available Cognitive impairment (CI has been described in 3-80% of Systemic lupus erythematosus (SLE patients but only short-term studies evaluated its over-time changes, suggesting that CI is usually a stable finding. We aimed at evaluating the changes of SLE-related CI in a 10-years prospective single center cohort study.We evaluated 43 patients (M/F 5/38; mean age = 45.7±10.1 years; mean disease duration = 230.8±74.3 months at baseline (T0 and after 10 years (T1. A test battery designed to detect fronto-subcortical dysfunction across five domains (memory, attention, abstract reasoning, executive and visuospatial function was administered. A global cognitive dysfunction score (GCD was obtained and associated with clinical and laboratory features.Prevalence of CI was 20.9% at T0 and 13.9% at T1 (P = NS. This impairment was prevalently mild at T0 (55.5% and mild or moderate at T1 (36.3% for both degrees. After 10 years, CI improved in 50% of patients, while 10% worsened. Impaired memory (P = 0.02, executive functions (P = 0.02 and abstract reasoning (P = 0.03 were associated with dyslipidemia at T0. Worsening of visuospatial functions was significantly associated with dyslipidemia and Lupus Anticoagulant (P = 0.04 for both parameters. Finally, GCD significantly correlated with chronic damage measured by SLICC/damage index at T0 (r = 0.3; P = 0.04 and T1 (r = 0.3; P = 0.03.For the first time, we assessed CI changes over 10-years in SLE. CI improved in the majority of the patients. Furthermore, we observed an improvement of the overall cognitive functions. These results could suggest that an appropriate management of the disease during the follow-up could be able to control SLE-related CI.

  3. Neural substrates of the impaired effort expenditure decision making in schizophrenia.

    Science.gov (United States)

    Huang, Jia; Yang, Xin-Hua; Lan, Yong; Zhu, Cui-Ying; Liu, Xiao-Qun; Wang, Ye-Fei; Cheung, Eric F C; Xie, Guang-Rong; Chan, Raymond C K

    2016-09-01

    Unwillingness to expend more effort to pursue high value rewards has been associated with motivational anhedonia in schizophrenia (SCZ) and abnormal dopamine activity in the nucleus accumbens (NAcc). The authors hypothesized that dysfunction of the NAcc and the associated forebrain regions are involved in the impaired effort expenditure decision-making of SCZ. A 2 (reward magnitude: low vs. high) × 3 (probability: 20% vs. 50% vs. 80%) event-related fMRI design in the effort-expenditure for reward task (EEfRT) was used to examine the neural response of 23 SCZ patients and 23 demographically matched control participants when the participants made effort expenditure decisions to pursue uncertain rewards. SCZ patients were significantly less likely to expend high level of effort in the medium (50%) and high (80%) probability conditions than healthy controls. The neural response in the NAcc, the posterior cingulate gyrus and the left medial frontal gyrus in SCZ patients were weaker than healthy controls and did not linearly increase with an increase in reward magnitude and probability. Moreover, NAcc activity was positively correlated with the willingness to expend high-level effort and concrete consummatory pleasure experience. NAcc and posterior cingulate dysfunctions in SCZ patients may be involved in their impaired effort expenditure decision-making. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Implications of immune dysfunction on endometriosis associated infertility.

    Science.gov (United States)

    Miller, Jessica E; Ahn, Soo Hyun; Monsanto, Stephany P; Khalaj, Kasra; Koti, Madhuri; Tayade, Chandrakant

    2017-01-24

    Endometriosis is a complex, inflammatory disease that affects 6-10% of reproductive-aged women. Almost half of the women with endometriosis experience infertility. Despite the excessive prevalence, the pathogenesis of endometriosis and its associated infertility is unknown and a cure is not available. While many theories have been suggested to link endometriosis and infertility, a consensus among investigators has not emerged. In this extensive review of the literature as well as research from our laboratory, we provide potential insights into the role of immune dysfunction in endometriosis associated infertility. We discuss the implication of the peritoneal inflammatory microenvironment on various factors that contribute to infertility such as hormonal imbalance, oxidative stress and how these could further lead to poor oocyte, sperm and embryo quality, impaired receptivity of the endometrium and implantation failure.

  5. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    International Nuclear Information System (INIS)

    Liu, Cong; Sekine, Shuichi; Ito, Kousei

    2016-01-01

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.

  6. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Sekine, Shuichi, E-mail: ssekine@faculty.chiba-u.jp; Ito, Kousei

    2016-07-01

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.

  7. Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease

    OpenAIRE

    Sarkar, Sovan; Carroll, Bernadette; Buganim, Yosef; Maetzel, Dorothea; Ng, Alex H.M.; Cassady, John P.; Cohen, Malkiel A.; Chakraborty, Souvik; Wang, Haoyi; Spooner, Eric; Ploegh, Hidde; Gsponer, Joerg; Korolchuk, Viktor I.; Jaenisch, Rudolf

    2013-01-01

    Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1) disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal prot...

  8. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    Science.gov (United States)

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  9. Molecular mechanisms of cognitive dysfunction following traumatic brain injury.

    Science.gov (United States)

    Walker, Kendall R; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  10. Theory of mind difficulties in patients with alcohol dependence: beyond the prefrontal cortex dysfunction hypothesis.

    Science.gov (United States)

    Maurage, François; de Timary, Philippe; Tecco, Juan Martin; Lechantre, Stéphane; Samson, Dana

    2015-06-01

    Previous studies have shown that alcohol-dependent (AD) individuals have difficulties inferring other people's emotion, understanding humor, and detecting a faux pas. This study aimed at further understanding the nature of such "Theory of Mind" (ToM) difficulties. A total of 34 recently detoxified AD and 34 paired controls were compared based on 2 nonverbal and video-based false belief tasks. These tasks were designed to identify 3 different types of deficits: (i) a deficit in dealing with the general task demands, (ii) a selective deficit in self-perspective inhibition, and (iii) a deficit in tracking the other person's mental state. (i) and (ii) are compatible with the hypothesis of a prefrontal cortex dysfunction being at the origin of AD individuals' social difficulties, while (iii) would suggest the possible contribution of a dysfunction of the temporo-parietal junction in explaining the social difficulties. Group analyses highlighted that AD individuals performed worse on the 2 false belief tasks than controls. Individual analyses showed, however, that just under half of the AD individuals were impaired compared to controls. Moreover, most of the AD individuals who were impaired showed a deficit in tracking the other person's belief. This deficit was linked to disease-related factors such as illness duration, average alcohol consumption, and craving but not to general reasoning abilities, depression, anxiety, or demographic variables. Just under half of the AD individuals tested showed a ToM deficit, and in most cases, the deficit concerned the tracking of other people's mental states. Such a type of deficit has previously been associated with lesions to the temporo-parietal brain areas, indicating that a prefrontal cortex dysfunction may not be the sole origin of the social cognition deficits observed in alcohol dependence. Copyright © 2015 by the Research Society on Alcoholism.

  11. Remote Traumatic Brain Injury Is Associated with Motor Dysfunction in Older Military Veterans.

    Science.gov (United States)

    Gardner, Raquel C; Peltz, Carrie B; Kenney, Kimbra; Covinsky, Kenneth E; Diaz-Arrastia, Ramon; Yaffe, Kristine

    2017-09-01

    Traumatic brain injury (TBI) has been identified as a risk factor for Parkinson's disease (PD). Motor dysfunction among TBI-exposed elders without PD has not been well characterized. We sought to determine whether remote TBI is a risk factor for motor dysfunction on exam and functionally relevant motor dysfunction in day-to-day life among independently living elders without PD. This is a cross-sectional cohort study of independently living retired military veterans aged 50 or older with (n = 78) and without (n = 85) prior TBI-all without diagnosed PD. To characterize multidimensional aspects of motor function on exam, the Unified Parkinson's Disease Rating Scale (UPDRS) Motor Examination was performed by a board-certified neurologist and used to calculate a modified UPDRS (mUPDRS) global motor score and four domain scores (tremor, rigidity, bradykinesia, and posture/gait). Functionally relevant motor dysfunction was assessed via self-report of falls within the past year. In analyses adjusted for demographics and comorbidities that differed between groups, compared with veterans without TBI, those with moderate-to-severe TBI were more likely to have fallen in past year (33% vs. 14%, risk ratio 2.5 [95% confidence interval 1.1-5.4]), had higher (worse) mUPDRS global motor (p = .03) and posture/gait scores (p = .02), but not higher tremor (p = .70), rigidity (p = .21), or bradykinesia scores (p = .22). Mild TBI was not associated with worse motor function. Remote moderate-to-severe TBI is a risk factor for motor dysfunction-defined as recent falls and impaired posture/gait-among older veterans. TBI-exposed older adults may be ideal candidates for aggressive fall-screening and prevention strategies. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Sulforaphane Protects against High Cholesterol-Induced Mitochondrial Bioenergetics Impairments, Inflammation, and Oxidative Stress and Preserves Pancreatic β-Cells Function

    Directory of Open Access Journals (Sweden)

    Catalina Carrasco-Pozo

    2017-01-01

    Full Text Available Cholesterol plays an important role in inducing pancreatic β-cell dysfunction, leading to an impaired insulin secretory response to glucose. This study aimed to determine the protective effects of sulforaphane, a natural isothiocyanate Nrf2-inducer, against cholesterol-induced pancreatic β-cells dysfunction, through molecular and cellular mechanisms involving mitochondrial bioenergetics. Sulforaphane prevented cholesterol-induced alterations in the coupling efficiency of mitochondrial respiration, improving ATP turnover and spare capacity, and averted the impairment of the electron flow at complexes I, II, and IV. Sulforaphane also attenuated the cholesterol-induced activation of the NFκB pathway, normalizing the expression of pro- and anti-inflammatory cytokines. In addition, it also inhibited the decrease in sirtuin 1 expression and greatly increased Pgc-1α expression in Min6 cells. Sulforaphane increased the expression of antioxidant enzymes downstream of the Nrf2 pathway and prevented lipid peroxidation induced by cholesterol. The antioxidant and anti-inflammatory properties of sulforaphane and its ability to protect and improve mitochondrial bioenergetic function contribute to its protective action against cholesterol-induced pancreatic β-cell dysfunction. Our data provide a scientifically tested foundation upon which sulforaphane can be developed as nutraceutical to preserve β-cell function and eventually control hyperglycemia.

  13. Neuropsychological Impairments in Schizophrenia and Psychotic Bipolar Disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Study

    Science.gov (United States)

    Hill, S. Kristian; Reilly, James L.; Keefe, Richard S.E.; Gold, James M.; Bishop, Jeffrey R.; Gershon, Elliot S.; Tamminga, Carol A.; Pearlson, Godfrey D.; Keshavan, Matcheri S.; Sweeney, John A.

    2017-01-01

    Objective Familial neuropsychological deficits are well established in schizophrenia but remain less well characterized in other psychotic disorders. This study from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium 1) compares cognitive impairment in schizophrenia and bipolar disorder with psychosis, 2) tests a continuum model of cognitive dysfunction in psychotic disorders, 3) reports familiality of cognitive impairments across psychotic disorders, and 4) evaluates cognitive impairment among nonpsychotic relatives with and without cluster A personality traits. Method Participants included probands with schizophrenia (N=293), psychotic bipolar disorder (N=227), schizoaffective disorder (manic, N=110; depressed, N=55), their first-degree relatives (N=316, N=259, N=133, and N=64, respectively), and healthy comparison subjects (N=295). All participants completed the Brief Assessment of Cognition in Schizophrenia (BACS) neuropsychological battery. Results Cognitive impairments among psychotic probands, compared to healthy comparison subjects, were progressively greater from bipolar disorder (z=−0.77) to schizoaffective disorder (manic z=−1.08; depressed z=−1.25) to schizophrenia (z=−1.42). Profiles across subtests of the BACS were similar across disorders. Familiality of deficits was significant and comparable in schizophrenia and bipolar disorder. Of particular interest were similar levels of neuropsychological deficits in relatives with elevated cluster A personality traits across proband diagnoses. Nonpsychotic relatives of schizophrenia probands without these personality traits exhibited significant cognitive impairments, while relatives of bipolar probands did not. Conclusions Robust cognitive deficits are present and familial in schizophrenia and psychotic bipolar disorder. Severity of cognitive impairments across psychotic disorders was consistent with a continuum model, in which more prominent affective features and less

  14. Facial emotion perception impairments in schizophrenia patients with comorbid antisocial personality disorder.

    Science.gov (United States)

    Tang, Dorothy Y Y; Liu, Amy C Y; Lui, Simon S Y; Lam, Bess Y H; Siu, Bonnie W M; Lee, Tatia M C; Cheung, Eric F C

    2016-02-28

    Impairment in facial emotion perception is believed to be associated with aggression. Schizophrenia patients with antisocial features are more impaired in facial emotion perception than their counterparts without these features. However, previous studies did not define the comorbidity of antisocial personality disorder (ASPD) using stringent criteria. We recruited 30 participants with dual diagnoses of ASPD and schizophrenia, 30 participants with schizophrenia and 30 controls. We employed the Facial Emotional Recognition paradigm to measure facial emotion perception, and administered a battery of neurocognitive tests. The Life History of Aggression scale was used. ANOVAs and ANCOVAs were conducted to examine group differences in facial emotion perception, and control for the effect of other neurocognitive dysfunctions on facial emotion perception. Correlational analyses were conducted to examine the association between facial emotion perception and aggression. Patients with dual diagnoses performed worst in facial emotion perception among the three groups. The group differences in facial emotion perception remained significant, even after other neurocognitive impairments were controlled for. Severity of aggression was correlated with impairment in perceiving negative-valenced facial emotions in patients with dual diagnoses. Our findings support the presence of facial emotion perception impairment and its association with aggression in schizophrenia patients with comorbid ASPD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. The cognitive profile of occipital lobe epilepsy and the selective association of left temporal lobe hypometabolism with verbal memory impairment.

    Science.gov (United States)

    Knopman, Alex A; Wong, Chong H; Stevenson, Richard J; Homewood, Judi; Mohamed, Armin; Somerville, Ernest; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Bleasel, Andrew F

    2014-08-01

    We investigated the cognitive profile of structural occipital lobe epilepsy (OLE) and whether verbal memory impairment is selectively associated with left temporal lobe hypometabolism on [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Nine patients with OLE, ages 8-29 years, completed presurgical neuropsychological assessment. Composite measures were calculated for intelligence quotient (IQ), speed, attention, verbal memory, nonverbal memory, and executive functioning. In addition, the Wisconsin Card Sorting Test (WCST) was used as a specific measure of frontal lobe functioning. Presurgical FDG-PET was analyzed with statistical parametric mapping in 8 patients relative to 16 healthy volunteers. Mild impairments were evident for IQ, speed, attention, and executive functioning. Four patients demonstrated moderate or severe verbal memory impairment. Temporal lobe hypometabolism was found in seven of eight patients. Poorer verbal memory was associated with left temporal lobe hypometabolism (p = 0.002), which was stronger (p = 0.03 and p = 0.005, respectively) than the association of left temporal lobe hypometabolism with executive functioning or with performance on the WCST. OLE is associated with widespread cognitive comorbidity, suggesting cortical dysfunction beyond the occipital lobe. Verbal memory impairment is selectively associated with left temporal lobe hypometabolism in OLE, supporting a link between neuropsychological dysfunction and remote hypometabolism in focal epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  16. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    International Nuclear Information System (INIS)

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-01-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ m ) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H 2 O 2 ), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ m depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H 2 O 2 -induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ m depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS

  17. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  18. The correlation between emotional distress and aging males’ symptoms at a psychiatric outpatient clinic: sexual dysfunction as a distinguishing characteristic between andropause and anxiety/depression in aging men

    Directory of Open Access Journals (Sweden)

    Chen CY

    2013-06-01

    Full Text Available Ching-Yen Chen,1,4,5 Chin-Pang Lee,1,4 Yu Chen,2,4,5 Jun-Ran Jiang,3,4,5 Chun-Lin Chu,1,4,5 Chun-Liang Chen3,4,5 1Department of Psychiatry, 2Department of Urology, 3Department of Traditional Chinese Medicine, 4Men’s Health Center, Chang Gung Memorial Hospital at Linkou, Taiwan; 5School of Medicine, Chang Gung University, Taoyuan, Taiwan Background: Andropause and psychiatric disorders are associated with various symptoms in aging males and are part of the differential diagnosis of depression and anxiety. This study was designed to investigate the relationship between symptoms of aging, anxiety, and depression, and to determine if sexual dysfunction could be a differentiating characteristic in the psychiatric outpatient clinic. Methods: One hundred seventy-six male psychiatric outpatients participated in the study and completed self-reported measures assessing symptoms of aging, depression, and anxiety. Symptoms of aging were assessed by the Aging Males’ Symptoms scale. Anxiety and depression were measured by the Hospital Anxiety and Depression Scale. Erectile dysfunction was considered if a response to item 15 on the Aging Males’ Symptoms scale (impaired sexual potency was rated with 4 or 5 points. Affective disturbance was assessed by the total scores of the Hospital Anxiety and Depression Scale. Results: Age was correlated with less anxiety and more sexual symptoms. Anxiety and depression were associated with more severe symptoms of aging, and depression was associated with more sexual symptoms than was anxiety. Impaired sexual potency was the only sexual symptom not significantly associated with depression and anxiety. Depression was associated with an interspousal age gap of ≥6 years. The point prevalence of erectile dysfunction was 28.4%, and age and affective disturbance were associated with the risk of erectile dysfunction. Conclusion: Impaired sexual potency should raise the suspicion of androgen deficiency rather than depression

  19. Relational Intimacy Mediates Sexual Outcomes Associated With Impaired Sexual Function: Examination in a Clinical Sample.

    Science.gov (United States)

    Witherow, Marta Parkanyi; Chandraiah, Shambhavi; Seals, Samantha R; Sarver, Dustin E; Parisi, Kathryn E; Bugan, Antal

    2017-06-01

    Relational intimacy is hypothesized to underlie the association between female sexual functioning and various sexual outcomes, and married women and women with sexual dysfunction have been generally absent from prior studies investigating these associations, thus restricting generalizability. To investigate whether relational intimacy mediates sexual outcomes (sexual satisfaction, coital frequency, and sexual distress) in a sample of married women with and without impaired sexual functioning presenting in clinical settings. Using a cross-sectional design, 64 heterosexual married women with (n = 44) and without (n = 20) impaired sexual functioning completed a battery of validated measurements assessing relational intimacy, sexual dysfunction, sexual frequency, satisfaction, and distress. Intimacy measurements were combined using latent factor scores before analysis. Bias-corrected mediation models of the indirect effect were used to test mediation effects. Moderated mediation models examined whether indirect effects were influenced by age and marital duration. Patients completed the Female Sexual Function Index, the Couple's Satisfaction Index, the Sexual Satisfaction Scale for Women, the Inclusion of the Other in the Self Scale, and the Miller Social Intimacy Test. Mediation models showed that impaired sexual functioning is associated with all sexual outcomes directly and indirectly through relational intimacy. Results were predominantly independent of age and marital duration. Findings have important treatment implications for modifying interventions to focus on enhancing relational intimacy to improve the sexual functioning of women with impaired sexual functioning. The importance of the role relational intimacy plays in broad sexual outcomes of women with impaired sexual functioning is supported in clinically referred and married women. Latent factor scores to improve estimation of study constructs and the use of contemporary mediation analysis also are

  20. Pharmacokinetics and Safety of Momelotinib in Subjects With Hepatic or Renal Impairment.

    Science.gov (United States)

    Xin, Yan; Kawashima, Jun; Weng, Winnie; Kwan, Ellen; Tarnowski, Thomas; Silverman, Jeffrey A

    2018-04-01

    Momelotinib is a Janus kinase 1/2 inhibitor in clinical development for the treatment of myelofibrosis. Two phase 1 open-label, parallel-group, adaptive studies were conducted to evaluate the pharmacokinetics of a single 200-mg oral dose of momelotinib in subjects with hepatic or renal impairment compared with healthy matched control subjects with normal hepatic or renal function. Plasma pharmacokinetics of momelotinib and its major active metabolite, M21, were evaluated, and geometric least-squares mean ratios (GMRs) and associated 90% confidence intervals (CIs) for impaired versus each control group were calculated for plasma exposures (area under concentration-time curve from time 0 to ∞ [AUC ∞ ] and maximum concentration) of momelotinib and M21. There was no clinically significant difference in plasma exposures of momelotinib and M21 between subjects with moderate or severe renal impairment or moderate hepatic impairment and healthy control subjects. Compared with healthy control subjects, momelotinib AUC ∞ was increased (GMR, 197%; 90%CI, 129%-301%), and M21 AUC ∞ was decreased (GMR, 52%; 90%CI, 34%-79%) in subjects with severe hepatic impairment. The safety profile following a single dose of momelotinib was similar between subjects with hepatic or renal dysfunction and healthy control subjects. These pharmacokinetic and safety results indicate that dose adjustment is not necessary for momelotinib in patients with renal impairment or mild to moderate hepatic impairment. In patients with severe hepatic impairment, however, the dose of momelotinib should be reduced. © 2017, The American College of Clinical Pharmacology.

  1. Emotion Recognition and Social/Role Dysfunction in Non-Clinical Psychosis

    Science.gov (United States)

    Pelletier, Andrea L.; Dean, Derek J.; Lunsford-Avery, Jessica R.; Smith, Ashley K.; Orr, Joseph M.; Gupta, Tina; Millman, Zachary B.; Mittal, Vijay A.

    2013-01-01

    As researchers continue to understand non-clinical psychosis (NCP- brief psychotic-like experiences occurring in 5–7% of the general population; van Os et al., 2009), it is becoming evident that functioning deficits and facial emotion recognition (FER) impairment characterize this phenomenon. However, the extent to which these domains are related remains unclear. Social/role functioning and FER were assessed in 65 adolescents/young adults exhibiting Low and High-NCP. Results indicate that FER and social/role functioning deficits were present in the High-NCP group, and that the domains were associated in this group alone. Taken together, findings suggest that a core emotive deficit is tied to broader social/role dysfunction in NCP. PMID:23182437

  2. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  3. Health-Related Quality of Life in Men with Erectile Dysfunction

    Science.gov (United States)

    Litwin, Mark S; Nied, Robert J; Dhanani, Nasreen

    1998-01-01

    associated with more profound impairment than are the physical domains in men with erectile dysfunction. Erectile dysfunction and the bother it causes are discrete domains of HRQOL and distinct from each other in these patients. With increased attention to patient-centered medical outcomes, greater emphasis has been placed on such variables as HRQOL. This should be particularly true for a patient-driven symptom, such as erectile dysfunction. PMID:9541372

  4. An assistance device to help people with trunk impairment maintain posture.

    Science.gov (United States)

    Ogura, Tomoka; Itami, Taku; Yano, Ken'ichi; Mori, Ichidai; Kameda, Kazuhiro

    2017-07-01

    People with trunk impairment cannot lean forward because of the dysfunction of the trunk resulting from events such as cervical cord injury (CCI). It is therefore difficult for such people to work at a table because they may easily fall from their wheelchair, and it is also hard for them to return to their original position. This limits the activities of daily living (ADLs) of people with trunk impairment. These problems can be solved to some extent with equipment such as a wheelchair belt or a spinal orthosis that can help the person to maintain his or her posture. However, people cannot move freely with this equipment. Furthermore, if this equipment is used for a long time, there is a risk of physical pain and skin issues. In this study, we developed a device that assists the trunk of people with trunk impairment when they lean forward. This device supports people with trunk impairment so that they may take their meals at the table and prevents them from falling over their wheelchair without hindering their daily performance when they are sitting normally. The effectiveness of our proposed device was verified by experiments involving having a meal, operating a wheelchair, and colliding with a curb. Our device can help people with trunk impairment by improving their ADLs and quality of life (QOL).

  5. Temporal Cerebral Microbleeds Are Associated With Radiation Necrosis and Cognitive Dysfunction in Patients Treated for Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Shen, Qingyu; Lin, Focai; Rong, Xiaoming; Yang, Wuyang; Li, Yi; Cai, Zhaoxi; Xu, Pengfei; Xu, Yongteng; Tang, Yamei

    2016-01-01

    Purpose: Radiation therapy for patients with nasopharyngeal carcinoma (NPC) may be complicated with radiation-induced brain necrosis (RN), resulting in deteriorated cognitive function. However, the underlying mechanism of this phenomenon remains unclear. This study attempts to elucidate the association between cerebral microbleeds (CMBs) and radiation necrosis and cognitive dysfunction in NPC patients treated with radiation therapy. Methods and Materials: This cross-sectional study included 106 NPC patients who were exposed to radiation therapy (78 patients with RN and 28 without RN). Sixty-six patients without discernable intracranial pathology were included as the control group. CMBs were confirmed using susceptibility-weighted magnetic resonance imaging. Cognitive function was accessed using Montreal Cognitive Assessment. Patients with a total score below 26 were defined as cognitively dysfunction. Results: Seventy-seven patients (98.7%) in the RN group and 12 patients (42.9%) in the non-RN group had at least 1 CMB. In contrast, only 14 patients (21.2%) in the control group had CMBs. In patients with a history of radiation therapy, CMBs most commonly presented in temporal lobes (76.4%) followed by cerebellum (23.7%). Patients with RN had more temporal CMBs than those in the non-RN group (37.7 ± 51.9 vs 3.8 ± 12.6, respectively; P<.001). The number of temporal lobe CMBs was predictive for larger volume of brain necrosis (P<.001) in multivariate linear regression analysis. Although cognitive impairment was diagnosed in 55.1% of RN patients, only 7.1% of non-RN patients sustained cognitive impairment (P<.001). After adjusting for age, sex, education, period after radiation therapy, CMBs in other lobes, and RN volume, the number of temporal CMBs remained an independent risk factor for cognitive dysfunction (odds ratio [OR]: 1.03; 95% confidence interval [CI]: 1.01-1.04; P=.003). Conclusions: CMBs is a common radiological manifestation in NPC patients with RN

  6. Temporal Cerebral Microbleeds Are Associated With Radiation Necrosis and Cognitive Dysfunction in Patients Treated for Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Qingyu [Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Department of Neurology, Zengcheng People' s Hospital, Guangzhou (China); Lin, Focai; Rong, Xiaoming [Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Yang, Wuyang [Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Li, Yi; Cai, Zhaoxi; Xu, Pengfei; Xu, Yongteng [Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Tang, Yamei, E-mail: yameitang@hotmail.com [Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou (China); Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province (China)

    2016-04-01

    Purpose: Radiation therapy for patients with nasopharyngeal carcinoma (NPC) may be complicated with radiation-induced brain necrosis (RN), resulting in deteriorated cognitive function. However, the underlying mechanism of this phenomenon remains unclear. This study attempts to elucidate the association between cerebral microbleeds (CMBs) and radiation necrosis and cognitive dysfunction in NPC patients treated with radiation therapy. Methods and Materials: This cross-sectional study included 106 NPC patients who were exposed to radiation therapy (78 patients with RN and 28 without RN). Sixty-six patients without discernable intracranial pathology were included as the control group. CMBs were confirmed using susceptibility-weighted magnetic resonance imaging. Cognitive function was accessed using Montreal Cognitive Assessment. Patients with a total score below 26 were defined as cognitively dysfunction. Results: Seventy-seven patients (98.7%) in the RN group and 12 patients (42.9%) in the non-RN group had at least 1 CMB. In contrast, only 14 patients (21.2%) in the control group had CMBs. In patients with a history of radiation therapy, CMBs most commonly presented in temporal lobes (76.4%) followed by cerebellum (23.7%). Patients with RN had more temporal CMBs than those in the non-RN group (37.7 ± 51.9 vs 3.8 ± 12.6, respectively; P<.001). The number of temporal lobe CMBs was predictive for larger volume of brain necrosis (P<.001) in multivariate linear regression analysis. Although cognitive impairment was diagnosed in 55.1% of RN patients, only 7.1% of non-RN patients sustained cognitive impairment (P<.001). After adjusting for age, sex, education, period after radiation therapy, CMBs in other lobes, and RN volume, the number of temporal CMBs remained an independent risk factor for cognitive dysfunction (odds ratio [OR]: 1.03; 95% confidence interval [CI]: 1.01-1.04; P=.003). Conclusions: CMBs is a common radiological manifestation in NPC patients with RN

  7. The effects of participation in leisure activities on neuropsychiatric symptoms of persons with cognitive impairment: a cross-sectional study.

    Science.gov (United States)

    Chiu, Yi-Chen; Huang, Chien-Ying; Kolanowski, Ann M; Huang, Hsiu-Li; Shyu, Yeaing Lotus; Lee, Shu-Hwa; Lin, Ching-Rong; Hsu, Wen-Chuin

    2013-10-01

    People with cognitive impairment have been shown to engage in few structured activities. During periods of unoccupied time or boredom, these patients most likely manifest neuropsychiatric symptoms. The purposes of this study were to (1) describe the leisure-activity indicators (variety in leisure activities, appraisal of each activity's restorative function, and leisure dysfunction, i.e. failure to appreciate the importance of restorative aspects of leisure activity), of community-dwelling older Taiwanese adults with cognitive impairment, and (2) explore the relationships between these indicators and neuropsychiatric symptoms in this population. Cross-sectional. Memory disorder and geriatric psychiatric clinics of two hospitals in northern Taiwan. Patient-family caregiver dyads (N=60). Patients' dementia severity, based on Clinical Dementia Rating scores, was 0.5-2.0. Family caregivers completed the Chinese Neuropsychiatric Inventory to assess patients' behavioral problems and the Restorative Activity Questionnaire to assess patients' participation in leisure activities, restorative experience, and leisure dysfunction. On average, patients participated in approximately five individual leisure activities, but very few group leisure activities. The top three leisure activities were watching TV, taking a walk, and talking to relatives and friends. The leisure activities in which participants least commonly engaged were fishing, attending cultural exhibitions, and chess/card playing. All leisure-activity indicators were significantly correlated with disease stage, global cognitive function, and neuropsychiatric symptoms. Two leisure-activity indicators (leisure dysfunction and restorative experiences) were significantly correlated with depressive symptoms. Only leisure dysfunction significantly and consistently predicted neuropsychiatric symptoms. These results can be used by home health or community health nurses to design tailored leisure-activity plans for improving

  8. Neuroprotective effects of oleuropein against cognitive dysfunction induced by colchicine in hippocampal CA1 area in rats.

    Science.gov (United States)

    Pourkhodadad, Soheila; Alirezaei, Masoud; Moghaddasi, Mehrnoush; Ahmadvand, Hassan; Karami, Manizheh; Delfan, Bahram; Khanipour, Zahra

    2016-09-01

    Alzheimer's disease is a progressive neurodegenerative disorder with decline in memory. The role of oxidative stress is well known in the pathogenesis of the disease. The purpose of this study was to evaluate pretreatment effects of oleuropein on oxidative status and cognitive dysfunction induced by colchicine in the hippocampal CA1 area. Male Wistar rats were pretreated orally once daily for 10 days with oleuropein at doses of 10, 15 and 20 mg/kg. Thereafter, colchicine (15 μg/rat) was administered into the CA1 area of the hippocampus to induce cognitive dysfunction. The Morris water maze was used to assess learning and memory. Biochemical parameters such as glutathione peroxidase and catalase activities, nitric oxide and malondialdehyde concentrations were measured to evaluate the antioxidant status in the rat hippocampus. Our results indicated that colchicine significantly impaired spatial memory and induced oxidative stress; in contrast, oleuropein pretreatment significantly improved learning and memory retention, and attenuated the oxidative damage. The results clearly indicate that oleuropein has neuroprotective effects against colchicine-induced cognitive dysfunction and oxidative damage in rats.

  9. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment.

    Science.gov (United States)

    Taghizadeh, Ghorban; Pourahmad, Jalal; Mehdizadeh, Hajar; Foroumadi, Alireza; Torkaman-Boutorabi, Anahita; Hassani, Shokoufeh; Naserzadeh, Parvaneh; Shariatmadari, Reyhaneh; Gholami, Mahdi; Rouini, Mohammad Reza; Sharifzadeh, Mohammad

    2016-10-01

    Debate continues about the effect of 3, 4-methylenedioxymethamphetamine (MDMA) on cognitive and mitochondrial function through the CNS. It has been shown that physical exercise has an important protective effect on cellular damage and death. Therefore, we investigated the effect of physical exercise on MDMA-induced impairments of spatial learning and memory as well as MDMA effects on brain mitochondrial function in rats. Male wistar rats underwent short-term (2 weeks) or long-term (4 weeks) treadmill exercise. After completion of exercise duration, acquisition and retention of spatial memory were evaluated by Morris water maze (MWM) test. Rats were intraperitoneally (I.P) injected with MDMA (5, 10, and 15mg/kg) 30min before the first training trial in 4 training days of MWM. Different parameters of brain mitochondrial function were measured including the level of ROS production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outermembrane damage, the amount of cytochrome c release from the mitochondria, and ADP/ATP ratio. MDMA damaged the spatial learning and memory in a dose-dependent manner. Brain mitochondria isolated from the rats treated with MDMA showed significant increase in ROS formation, collapse of MMP, mitochondrial swelling, and outer membrane damage, cytochrome c release from the mitochondria, and finally increased ADP/ATP ratio. This study also found that physical exercise significantly decreased the MDMA-induced impairments of spatial learning and memory and also mitochondrial dysfunction. The results indicated that MDMA-induced neurotoxicity leads to brain mitochondrial dysfunction and subsequent oxidative stress is followed by cognitive impairments. However, physical exercise could reduce these deleterious effects of MDMA through protective effects on brain mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Organizational Dysfunctions: Sources and Areas

    Directory of Open Access Journals (Sweden)

    Jacek Pasieczny

    2016-12-01

    Full Text Available Objective:The purpose of this article is to identify and describe various types and sources of organizational dysfunctions. Research Design & Methods: The findings are based on literature review and an ongoing empirical research project conducted in private sector organisations. The empirical study can be situated within interpretative approach. In this qualitative project open interviews and observations were used to collect data. Findings: The study indicates that various types and sources of organizational dysfunctions can be identified in organizations operating in Poland. The sources of dysfunctions may be found both within the organization and its environment. Regardless of its specific features, most of the dysfunctions may be interpreted as an undesirable goal displacement. Very often areas of these dysfunctions are strongly interconnected and create a system that hinders organizational performance. Yet, it is difficult to study these phenomena as respondents are unwilling, for various reasons, to disclose the problems faced by their organizations. Implications & Recommendations: The results imply that the issue of organisational dysfunctions requires open, long-lasting and comparative studies. Recommendations for further studies are formulated in the last section of the paper. Contribution & Value Added: The paper provides insight into "the dark side of organising" by identifying sources and areas of dysfunctions. It also reveals difficulties connected with conducting research on dysfunctions in the Polish context.

  11. The effect of two different glycemic management protocols on postoperative cognitive dysfunction in coronary artery bypass surgery

    Directory of Open Access Journals (Sweden)

    Pinar Kurnaz

    Full Text Available Abstract Introduction: Postoperative cognitive dysfunction (POCD is an adverse outcome of surgery that is more common after open heart procedures. The aim of this study is to investigate the role of tightly controlled blood glucose levels during coronary artery surgery on early and late cognitive decline. Methods: 40 patients older than 50 years undergoing elective coronary surgery were randomized into two groups. In the "Tight Control" group (GI, the glycemia was maintained between 80 and 120 mg dL-1 while in the "Liberal" group (GII, it ranged between 80-180 mg dL-1. A neuropsychological test battery was performed three times: baseline before surgery and follow-up first and 12th weeks, postoperatively. POCD was defined as a drop of one standard deviation from baseline on two or more tests. Results: At the postoperative first week, neurocognitive tests showed that 10 patients in the GI and 11 patients in GII had POCD. The incidence of early POCD was similar between groups. However the late assessment revealed that cognitive dysfunction persisted in five patients in the GII whereas none was rated as cognitively impaired in GI (p = 0.047. Conclusion: We suggest that tight perioperative glycemic control in coronary surgery may play a role in preventing persistent cognitive impairment.

  12. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    vasodilatation produced by drugs that are NO donors, such as nitroglycerine, called "endothelium independent". The vasodilatation is quantified by measuring the arterial diameter with high resolution ultrasonography. Laser-Doppler techniques are now starting to be used that also consider tissue perfusion. There is so much proof about endothelial dysfunction that it is reasonable to believe that there is diagnostic and prognostic value in its evaluation for the late outcome. There is no doubt that endothelial dysfunction contributes to the initiation and progression of atherosclerotic disease and could be considered an independent vascular risk factor. Although prolonged randomized clinical trials are needed for unequivocal evidence, the data already obtained allows the methods of evaluation of endothelial dysfunction to be considered useful in clinical practice and have overcome the experimental step, being non-invasive increases its value making it use full for follow-up of the progression of the disease and the effects of different treatments.

  13. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia.

    Science.gov (United States)

    Lin, Ke; Sherrington, Paul D; Dennis, Michael; Matrai, Zoltan; Cawley, John C; Pettitt, Andrew R

    2002-08-15

    Established adverse prognostic factors in chronic lymphocytic leukemia (CLL) include CD38 expression, relative lack of IgV(H) mutation, and defects of the TP53 gene. However, disruption of the p53 pathway can occur through mechanisms other than TP53 mutation, and we have recently developed a simple screening test that detects p53 dysfunction due to mutation of the genes encoding either p53 or ATM, a kinase that regulates p53. The present study was conducted to examine the predictive value of this test and to establish the relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation. CLL cells from 71 patients were examined for IgV(H) mutation, CD38 expression, and p53 dysfunction (detected as an impaired p53/p21 response to ionizing radiation). Survival data obtained from 69 patients were analyzed according to each of these parameters. Relative lack of IgV(H) mutation (less than 5%; n = 45), CD38 positivity (antigen expressed on more than 20% of malignant cells; n = 19), and p53 dysfunction (n = 19) were independently confirmed as adverse prognostic factors. Intriguingly, all p53-dysfunctional patients and all but one of the CD38(+) patients had less [corrected] than 5% IgV(H) mutation. Moreover, patients with p53 dysfunction and/or CD38 positivity (n = 31) accounted for the short survival of the less mutated group. These findings indicate that the poor outcome associated with having less than 5% IgV(H) mutation may be due to the overrepresentation of high-risk patients with p53 dysfunction and/or CD38 positivity within this group, and that CD38(-) patients with functionally intact p53 may have a prolonged survival regardless of the extent of IgV(H) mutation.

  14. One Minute of Marijuana Secondhand Smoke Exposure Substantially Impairs Vascular Endothelial Function.

    Science.gov (United States)

    Wang, Xiaoyin; Derakhshandeh, Ronak; Liu, Jiangtao; Narayan, Shilpa; Nabavizadeh, Pooneh; Le, Stephenie; Danforth, Olivia M; Pinnamaneni, Kranthi; Rodriguez, Hilda J; Luu, Emmy; Sievers, Richard E; Schick, Suzaynn F; Glantz, Stanton A; Springer, Matthew L

    2016-07-27

    Despite public awareness that tobacco secondhand smoke (SHS) is harmful, many people still assume that marijuana SHS is benign. Debates about whether smoke-free laws should include marijuana are becoming increasingly widespread as marijuana is legalized and the cannabis industry grows. Lack of evidence for marijuana SHS causing acute cardiovascular harm is frequently mistaken for evidence that it is harmless, despite chemical and physical similarity between marijuana and tobacco smoke. We investigated whether brief exposure to marijuana SHS causes acute vascular endothelial dysfunction. We measured endothelial function as femoral artery flow-mediated dilation (FMD) in rats before and after exposure to marijuana SHS at levels similar to real-world tobacco SHS conditions. One minute of exposure to marijuana SHS impaired FMD to a comparable extent as impairment from equal concentrations of tobacco SHS, but recovery was considerably slower for marijuana. Exposure to marijuana SHS directly caused cannabinoid-independent vasodilation that subsided within 25 minutes, whereas FMD remained impaired for at least 90 minutes. Impairment occurred even when marijuana lacked cannabinoids and rolling paper was omitted. Endothelium-independent vasodilation by nitroglycerin administration was not impaired. FMD was not impaired by exposure to chamber air. One minute of exposure to marijuana SHS substantially impairs endothelial function in rats for at least 90 minutes, considerably longer than comparable impairment by tobacco SHS. Impairment of FMD does not require cannabinoids, nicotine, or rolling paper smoke. Our findings in rats suggest that SHS can exert similar adverse cardiovascular effects regardless of whether it is from tobacco or marijuana. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Progress and Prospects in Human Genetic Research into Age-Related Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Yasue Uchida

    2014-01-01

    Full Text Available Age-related hearing impairment (ARHI is a complex, multifactorial disorder that is attributable to confounding intrinsic and extrinsic factors. The degree of impairment shows substantial variation between individuals, as is also observed in the senescence of other functions. This individual variation would seem to refute the stereotypical view that hearing deterioration with age is inevitable and may indicate that there is ample scope for preventive intervention. Genetic predisposition could account for a sizable proportion of interindividual variation. Over the past decade or so, tremendous progress has been made through research into the genetics of various forms of hearing impairment, including ARHI and our knowledge of the complex mechanisms of auditory function has increased substantially. Here, we give an overview of recent investigations aimed at identifying the genetic risk factors involved in ARHI and of what we currently know about its pathophysiology. This review is divided into the following sections: (i genes causing monogenic hearing impairment with phenotypic similarities to ARHI; (ii genes involved in oxidative stress, biologic stress responses, and mitochondrial dysfunction; and (iii candidate genes for senescence, other geriatric diseases, and neurodegeneration. Progress and prospects in genetic research are discussed.

  16. Biomarkers of postoperative delirium and cognitive dysfunction

    Directory of Open Access Journals (Sweden)

    Ganna eAndrosova

    2015-06-01

    Full Text Available Elderly surgical patients frequently experience postoperative delirium (POD and the subsequent development of postoperative cognitive dysfunction (POCD. Clinical features include deterioration in cognition, disturbance in attention and reduced awareness of the environment and result in higher morbidity, mortality and greater utilization of social financial assistance. The aging Western societies can expect an increase in the incidence of POD and POCD. The underlying pathophysiological mechanisms have been studied on the molecular level albeit with unsatisfying small research efforts given their societal burden. Here, we review the known physiological and immunological changes and genetic risk factors, identify candidates for further studies and integrate the information into a draft network for exploration on a systems level. The pathogenesis of these postoperative cognitive impairments is multifactorial; application of integrated systems biology has the potential to reconstruct the underlying network of molecular mechanisms and help in the identification of prognostic and diagnostic biomarkers.

  17. Dysfunctions in public psychiatric bureaucracies.

    Science.gov (United States)

    Marcos, L R

    1988-03-01

    The author describes common dysfunctions in public psychiatric organizations according to the model of bureaucracy articulated by Max Weber. Dysfunctions are divided into the categories of goal displacement, outside interference, unclear authority structure and hierarchy, and informal relations in the work place. The author emphasizes the bureaucratic nature of public psychiatry and the need for mental health professionals to understand the dysfunctions of the organizations in which they work, including the impact of these dysfunctions on the provision of quality care.

  18. Impairments of learning and memory in the rats after brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Nobuhiko [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-06-01

    Clinical trials of hadrontherapy have been carried out world wide at several facilities including National Institute of Radiological Sciences (NIRS). Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumors. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We investigated and reported here the early consequences of brain damages caused by proton beam. The animals that had memorized the location of the standard position were locally irradiated to brain with either 70 MeV protons or 290 MeV carbon ions. At 24 hr after irradiation, impairment of the long-term memory was not observed in the irradiated rats compared to control. Irradiated animals, however, required substantially longer time finding out the standard position than control rats when the standard platform displaced to a position different from memorized position. This follows that a single doses of 30 Gy, either protons or carbon ions, impairs the working memory of animals. Function of muscarinic acetylcholine receptors was analyzed by an in vivo binding assay using radioligand quinuclidinyl benzilate (QNB). Irradiated rats were intravenously injected with 5.5 MBq of {sup 3}H-QNB 24 hr after the irradiation, and decapitated 60 min after tracer injection. The autoradiographic studies showed an transitional increase of {sup 3}H-QNB in vivo binding in the early phase after proton irradiation, even though no change in in-vitro {sup 3}H-QNB binding was see in brain autoradiograms of irradiated rats. The cerebral blood flow and the histrogical features of brain were also changed at 3 months post-irradiation. These results indicate that the memory impairment caused by radiation is closely related to the early change of acetylcholine receptor in vivo. (author)

  19. Impairments of learning and memory in the rats after brain irradiation

    International Nuclear Information System (INIS)

    Takai, Nobuhiko

    2002-01-01

    Clinical trials of hadrontherapy have been carried out world wide at several facilities including National Institute of Radiological Sciences (NIRS). Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumors. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We investigated and reported here the early consequences of brain damages caused by proton beam. The animals that had memorized the location of the standard position were locally irradiated to brain with either 70 MeV protons or 290 MeV carbon ions. At 24 hr after irradiation, impairment of the long-term memory was not observed in the irradiated rats compared to control. Irradiated animals, however, required substantially longer time finding out the standard position than control rats when the standard platform displaced to a position different from memorized position. This follows that a single doses of 30 Gy, either protons or carbon ions, impairs the working memory of animals. Function of muscarinic acetylcholine receptors was analyzed by an in vivo binding assay using radioligand quinuclidinyl benzilate (QNB). Irradiated rats were intravenously injected with 5.5 MBq of 3 H-QNB 24 hr after the irradiation, and decapitated 60 min after tracer injection. The autoradiographic studies showed an transitional increase of 3 H-QNB in vivo binding in the early phase after proton irradiation, even though no change in in-vitro 3 H-QNB binding was see in brain autoradiograms of irradiated rats. The cerebral blood flow and the histrogical features of brain were also changed at 3 months post-irradiation. These results indicate that the memory impairment caused by radiation is closely related to the early change of acetylcholine receptor in vivo. (author)

  20. A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice.

    Science.gov (United States)

    Carbone, Salvatore; Mauro, Adolfo G; Mezzaroma, Eleonora; Kraskauskas, Donatas; Marchetti, Carlo; Buzzetti, Raffaella; Van Tassell, Benjamin W; Abbate, Antonio; Toldo, Stefano

    2015-11-01

    Heart failure (HF) is a clinical syndrome characterized by dyspnea, fatigue, exercise intolerance and cardiac dysfunction. Unhealthy diet has been associated with increased risk of obesity and heart disease, but whether it directly affects cardiac function, and promotes the development and progression of HF is unknown. We fed 8-week old male or female CD-1 mice with a standard diet (SD) or a diet rich in saturated fat and sugar, resembling a "Western" diet (WD). Cardiac systolic and diastolic function was measured at baseline and 4 and 8 weeks by Doppler echocardiography, and left ventricular (LV) end-diastolic pressure (EDP) by cardiac catheterization prior to sacrifice. An additional group of mice received WD for 4 weeks followed by SD (wash-out) for 8 weeks. WD-fed mice experienced a significant decreased in LV ejection fraction (LVEF), reflecting impaired systolic function, and a significant increase in isovolumetric relaxation time (IRT), myocardial performance index (MPI), and LVEDP, showing impaired diastolic function, without any sex-related differences. Switching to a SD after 4 weeks of WD partially reversed the cardiac systolic and diastolic dysfunction. A diet rich in saturated fat and sugars (WD) impairs cardiac systolic and diastolic function in the mouse. Further studies are required to define the mechanism through which diet affects cardiac function, and whether dietary interventions can be used in patients with, or at risk for, HF. Published by Elsevier Ireland Ltd.