International Nuclear Information System (INIS)
Rajput, B.S.
1986-01-01
The generalization of the unification of electromagnetic and gravitational forces in the curved spaces is being undertaken currently by using recent non-Abelian gauge theory of fields associated with dyons. The author has also constructed the gauge invariant and Lorentz covariant theory of second quantization of the fields associated with dyons of spin-1 and spin -1/2 and it has been shown that the locality cannot be achieved in general in the commutation of second quantized transverse fields and potentials of dyons and that the effect of making simultaneously the charge and current source densities vanishing is the same as that of making dyonic mass vanishing. Demonstrating that the generalized fields associated with dyons cannot be described in Abelian gauge theory and that the sensible gauge theory of these fields is a non-Ableian one, has recently constructed a suitable Lorentz invariant non-Abelian gauge theory of the fields associated with dyons to describe the dual dynamics between colour isocharges and topological charges
Global quantity for dyons with various charge distributions
International Nuclear Information System (INIS)
Koh, I.G.; Kim, Y.
1980-06-01
The spatial volume integral of Tr *F F characterizes the dyons globally. This integral is investigated for the dyons with various electric and magnetic charge distributions, which can be probed by the scattering of the test particle in these dyon fields. (author)
Supergravity solutions for Born-Infeld dyons
Youm, Donam
1999-01-01
We construct partially localized supergravity counterpart solutions to the 1/2 supersymmetric non-threshold and the 1/4 supersymmetric threshold bound state BI dyons in the D3-brane Dirac-Born-Infeld theory. Such supergravity solutions have all the parameters of the BI dyons. By applying the IIA/IIB T-duality transformations to these supergravity solutions, we obtain the supergravity counterpart solutions to 1/2 and 1/4 supersymmetric BIons carrying electric and magnetic charges of the worldvolume U(1) gauge field in the Dirac-Born-Infeld theory in other dimensions.
Supergravity solutions for Born-Infeld dyons
Youm, D
1999-01-01
We construct partially localized supergravity counterpart solutions to the 1/2 supersymmetric nonthreshold and the 1/4 supersymmetric threshold bound state BI dyons in the D3-brane Dirac-Born-Infeld theory. Such supergravity solutions have all the parameters of the BI dyons. By applying the type-IIA-type-IIB T-duality transformations to these supergravity solutions, we obtain the supergravity counterpart solutions to 1/2 and 1/4 supersymmetric bions carrying electric and magnetic charges of the world volume U(1) gauge field in the Dirac- Born-Infeld theory in other dimensions. (70 refs).
Time Delay and the Dyon Charge
Grossman, Bernard
1983-09-01
The scattering of fermions from a magnetic monopole is analyzed in a theory with CP nonconservation. The dyon charge that arises can be understood as a Friedel sum rule from the theory of alloys, as the data for a Riemann-Hilbert problem in the theory of integral equations, and as a consequence of specifying Wigner's R matrix at the monopole core.
Confining dyon gas with finite-volume effects under control
Energy Technology Data Exchange (ETDEWEB)
Bruckmann, Falk [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Dinter, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ilgenfritz, Ernst-Michael [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Maier, Benjamin; Mueller-Preussker, Michael [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Wagner, Marc [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik
2011-11-15
As an approach to describe the long-range properties of non-Abelian gauge theories at non-zero temperature T
Confining dyon gas with finite-volume effects under control
International Nuclear Information System (INIS)
Bruckmann, Falk; Maier, Benjamin; Mueller-Preussker, Michael; Wagner, Marc; Frankfurt Univ.
2011-11-01
As an approach to describe the long-range properties of non-Abelian gauge theories at non-zero temperature T c , we consider a non-interacting ensemble of dyons (magnetic monopoles) with non-trivial holonomy. We show analytically, that the quark-antiquark free energy from the Polyakov loop correlator grows linearly with the distance, and how the string tension scales with the dyon density. In numerical treatments, the long-range tails of the dyon fields cause severe finite-volume effects. Therefore, we demonstrate the application of Ewald's summation method to this system. Finite-volume effects are shown to be under control, which is a crucial requirement for numerical studies of interacting dyon ensembles. (orig.)
Split Octonion electrodynamics and unified fields of dyons
International Nuclear Information System (INIS)
Bisht, P.S.
2004-01-01
Split octonion electrodynamics has been developed in terms of Zorn's vector matrix realization by reformulating electromagnetic potential, current, field tensor and other dynamical quantities. Corresponding field equation (Unified Maxwell's equations) and equation of motion have been reformulated by means of split octonion and its Zorn vector realization in unique, simpler and consistent manner. It has been shown that this theory reproduces the dyon field equations in the absence of gravito-dyons and vice versa
“Triangular” extremal dilatonic dyons
Directory of Open Access Journals (Sweden)
Dmitri Gal'tsov
2015-04-01
Full Text Available Explicit dyonic solutions in four-dimensional Einstein–Maxwell-dilaton theory are known only for three particular values of the dilaton coupling constant: a=0,1,3. However, numerical evidence was presented on existence of dyons admitting an extremal limit in theories with more general sequence of dilaton couplings a=n(n+1/2 labeled by an integer n. Apart from the lower members n=0,1,2, this family of theories does not have motivation from supergravity/string theory, and analytical origin of the above sequence remained unclear so far. We fill the gap showing that this formula follows from analyticity of the dilaton function at the AdS2×S2 event horizon of the extremal dyonic black hole, with n being the leading dilaton power in the Taylor expansion. We also derive generalization of this rule for asymptotically anti-de Sitter dyonic black holes with spherical, planar and hyperbolic topology of the horizon.
MONOPOLES AND DYONS IN THE PURE EINSTEIN YANG MILLS THEORY
International Nuclear Information System (INIS)
HOSOTANI, Y.; BJORAKER, J.
1999-01-01
In the pure Einstein-Yang-Mills theory in four dimensions there exist monopole and dyon solutions. The spectrum of the solutions is discrete in asymptotically flat or de Sitter space, whereas it is continuous in asymptotically anti-de Sitter space. The solutions are regular everywhere and specified with their mass, and non-Abelian electric and magnetic charges. In asymptotically anti-de Sitter space a class of monopole solutions have no node in non-Abelian magnetic fields, and are stable against spherically symmetric perturbations
A exact rotating dyon solution with the Tomimatsu-Sato metric
International Nuclear Information System (INIS)
Kasuya, M.
1982-01-01
We present an exact rotating dyon solution for which the space-time metric takes the Tomimatsu-Sato form with an arbitrary integer distorion parameter delta. Our solution reduces to the rotating monopole solution for vanishing electric charge. (orig.)
Protected couplings and BPS dyons in half-maximal supersymmetric string vacua
Directory of Open Access Journals (Sweden)
Guillaume Bossard
2017-02-01
Full Text Available We analyze four- and six-derivative couplings in the low energy effective action of D=3 string vacua with half-maximal supersymmetry. In analogy with an earlier proposal for the (∇Φ4 coupling, we propose that the ∇2(∇Φ4 coupling is given exactly by a manifestly U-duality invariant genus-two modular integral. In the limit where a circle in the internal torus decompactifies, the ∇2(∇Φ4 coupling reduces to the ∇2F4 and R2F2 couplings in D=4, along with an infinite series of corrections of order e−R, from four-dimensional 1/4-BPS dyons whose worldline winds around the circle. Each of these contributions is weighted by a Fourier coefficient of a meromorphic Siegel modular form, explaining and extending standard results for the BPS index of 1/4-BPS dyons.
Dyon Condensation and Dual Superconductivity in Abelian Higgs Model of QCD
Directory of Open Access Journals (Sweden)
B. S. Rajput
2010-01-01
Full Text Available Constructing the effective action for dyonic field in Abelian projection of QCD, it has been demonstrated that any charge (electrical or magnetic of dyon screens its own direct potential to which it minimally couples and antiscreens the dual potential leading to dual superconductivity in accordance with generalized Meissner effect. Taking the Abelian projection of QCD, an Abelian Higgs model, incorporating dual superconductivity and confinement, has been constructed and its representation has been obtained in terms of average of Wilson loop.
Dyons, Superstrings, and Wormholes: Exact Solutions of the Non-Abelian Dirac-Born-Infeld Action
Directory of Open Access Journals (Sweden)
Edward A. Olszewski
2015-01-01
Full Text Available We construct dyon solutions on coincident D4-branes, obtained by applying T-duality transformations to type I SO(32 superstring theory in 10 dimensions. These solutions, which are exact, are obtained from an action comprising the non-Abelian Dirac-Born-Infeld action and a Wess-Zumino-like action. When one spatial dimension of the D4-branes is taken to be vanishingly small, the dyons are analogous to the ’t Hooft/Polyakov monopole residing in a 3+1-dimensional spacetime, where the component of the Yang-Mills potential transforming as a Lorentz scalar is reinterpreted as a Higgs boson transforming in the adjoint representation of the gauge group. Applying a T-duality transformation to the vanishingly small spatial dimension, we obtain a collection of D3-branes, not all of which are coincident. Two of the D3-branes, distinct from the others, acquire intrinsic, finite curvature and are connected by a wormhole. The dyons possess electric and magnetic charges whose values on each D3-brane are the negative of one another. The gravitational effects, which arise after the T-duality transformation, occur despite the fact that the action of the system does not explicitly include the gravitational interaction. These solutions provide a simple example of the subtle relationship between the Yang-Mills and gravitational interactions, that is, gauge/gravity duality.
Einstein-Maxwell-axion theory: dyon solution with regular electric field
Energy Technology Data Exchange (ETDEWEB)
Balakin, Alexander B.; Zayats, Alexei E. [Kazan Federal University, Department of General Relativity and Gravitation, Institute of Physics, Kazan (Russian Federation)
2017-08-15
In the framework of the Einstein-Maxwell-axion theory we consider static spherically symmetric solutions which describe a magnetic monopole in the axionic environment. These solutions are interpreted as the solutions for an axionic dyon, the electric charge of which is composite, i.e. in addition to the standard central electric charge it includes an effective electric charge induced by the axion-photon coupling. We focus on the analysis of those solutions which are characterized by the electric field regular at the center. Special attention is paid to the solutions with the electric field that is vanishing at the center, and that has the Coulombian asymptote, and thus displays an extremum at some distant sphere. Constraints on the electric and effective scalar charges of such an object are discussed. (orig.)
Einstein-Maxwell-axion theory: dyon solution with regular electric field
International Nuclear Information System (INIS)
Balakin, Alexander B.; Zayats, Alexei E.
2017-01-01
In the framework of the Einstein-Maxwell-axion theory we consider static spherically symmetric solutions which describe a magnetic monopole in the axionic environment. These solutions are interpreted as the solutions for an axionic dyon, the electric charge of which is composite, i.e. in addition to the standard central electric charge it includes an effective electric charge induced by the axion-photon coupling. We focus on the analysis of those solutions which are characterized by the electric field regular at the center. Special attention is paid to the solutions with the electric field that is vanishing at the center, and that has the Coulombian asymptote, and thus displays an extremum at some distant sphere. Constraints on the electric and effective scalar charges of such an object are discussed. (orig.)
Bjoraker; Hosotani
2000-02-28
A continuum of new monopole and dyon solutions in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space are found. They are regular everywhere and specified by their mass and their non-Abelian electric and magnetic charges. A class of monopole solutions which have no node in non-Abelian magnetic fields is shown to be stable against spherically symmetric linear perturbations.
Optical knots and contact geometry II. From Ranada dyons to transverse and cosmetic knots
Energy Technology Data Exchange (ETDEWEB)
Kholodenko, Arkady L., E-mail: string@clemson.edu
2016-08-15
Some time ago Ranada (1989) obtained new nontrivial solutions of the Maxwellian gauge fields without sources. These were reinterpreted in Kholodenko (2015) [10] (part I) as particle-like (monopoles, dyons, etc.). They were obtained by the method of Abelian reduction of the non-Abelian Yang–Mills functional. The developed method uses instanton-type calculations normally employed for the non-Abelian gauge fields. By invoking the electric–magnetic duality it then becomes possible to replace all known charges/masses by the particle-like solutions of the source-free Abelian gauge fields. To employ these results in high energy physics, it is essential to extend Ranada’s results by carefully analyzing and classifying all dynamically generated knotted/linked structures in gauge fields, including those discovered by Ranada. This task is completed in this work. The study is facilitated by the recent progress made in solving the Moffatt conjecture. Its essence is stated as follows: in steady incompressible Euler-type fluids the streamlines could have knots/links of all types. By employing the correspondence between the ideal hydrodynamics and electrodynamics discussed in part I and by superimposing it with the already mentioned method of Abelian reduction, it is demonstrated that in the absence of boundaries only the iterated torus knots and links could be dynamically generated. Obtained results allow to develop further particle-knot/link correspondence studied in Kholodenko (2015) [13].
Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields
Energy Technology Data Exchange (ETDEWEB)
Abishev, M.E. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation); Boshkayev, K.A. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Ivashchuk, V.D. [Center for Gravitation and Fundamental Metrology, VNIIMS, Moscow (Russian Federation); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation)
2017-03-15
Dilatonic black hole dyon-like solutions in the gravitational 4d model with a scalar field, two 2-forms, two dilatonic coupling constants λ{sub i} ≠ 0, i = 1,2, obeying λ{sub 1} ≠ -λ{sub 2} and the sign parameter ε = ±1 for scalar field kinetic term are considered. Here ε = -1 corresponds to a ghost scalar field. These solutions are defined up to solutions of two master equations for two moduli functions, when λ{sup 2}{sub i} ≠ 1/2 for ε = -1. Some physical parameters of the solutions are obtained: gravitational mass, scalar charge, Hawking temperature, black hole area entropy and parametrized post-Newtonian (PPN) parameters β and γ. The PPN parameters do not depend on the couplings λ{sub i} and ε. A set of bounds on the gravitational mass and scalar charge are found by using a certain conjecture on the parameters of solutions, when 1 + 2λ{sub i}{sup 2} ε > 0, i = 1,2. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Baxter, J. Erik, E-mail: e.baxter@shu.ac.uk [Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S11WB (United Kingdom)
2016-02-15
We investigate dyonic black hole and dyon solutions of four-dimensional su(N) Einstein-Yang-Mills theory with a negative cosmological constant. We derive a set of field equations in this case, and prove the existence of non-trivial solutions to these equations for any integer N, with 2N − 2 gauge degrees of freedom. We do this by showing that solutions exist locally at infinity, and at the event horizon for black holes and the origin for solitons. We then prove that we can patch these solutions together regularly into global solutions that can be integrated arbitrarily far into the asymptotic regime. Our main result is to show that dyonic solutions exist in open sets in the parameter space, and hence that we can find non-trivial dyonic solutions in a number of regimes whose magnetic gauge fields have no zeros, which is likely important to the stability of the solutions.
Tchrakian, D. H.
2011-08-01
We review work on the construction of Monopoles in higher dimensions. These are solutions to a particular class of models descending from Yang-Mills systems on even-dimensional bulk, with spheres as codimensions. The topological lower bounds on the Yang-Mills action translate into Bogomol'nyi lower bounds on the residual Yang-Mills-Higgs systems. Mostly, consideration is restricted to eight-dimensional bulk systems, but extension to the arbitrary case follows systematically. After presenting the monopoles, the corresponding dyons are also constructed. Finally, new Chern-Simons densities expressed in terms of Yang-Mills and Higgs fields are presented. These are defined in all dimensions, including in even-dimensional spacetimes. They are constructed by subjecting the dimensionally reduced Chern-Pontryagin densities to a further descent by two steps.
Chasing the cuprates with dilatonic dyons
Energy Technology Data Exchange (ETDEWEB)
Amoretti, Andrea [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Cambridge, CB3 OWA (United Kingdom); Baggioli, Matteo [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Magnoli, Nicodemo [Dipartimento di Fisica, Università di Genova, and I.N.F.N. - Sezione di Genova,via Dodecaneso 33, I-16146, Genova (Italy); Musso, Daniele [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, I-34151 Trieste (Italy)
2016-06-20
Magnetic field and momentum dissipation are key ingredients in describing condensed matter systems. We include them in gauge/gravity and systematically explore the bottom-up panorama of holographic IR effective field theories based on bulk Einstein-Maxwell Lagrangians plus scalars. The class of solutions here examined appears insufficient to capture the phenomenology of charge transport in the cuprates. We analyze in particular the temperature scaling of the resistivity and of the Hall angle. Keeping an open attitude, we illustrate weak and strong points of the approach.
Dyon condensation and colour confinement in dual QCD
Energy Technology Data Exchange (ETDEWEB)
Nandan, H.; Tulsi, Anna; Chandola, H.C. [Kumaun Univ., Nainital (India). Dept. of Physics
2004-09-01
A dynamical model based on the magnetic symmetry of QCD vacuum has been discussed to explore its magnetic response in dealing with the confinement mechanism. The flux tube formulation of the dyonically condensed dual QCD vacuum is presented by computing the asymptotic flux tube solutions of the field equations in the dynamically broken phase of the dual QCD vacuum which has been shown to be responsible for the confinement of the colour electric sources in the deep infrared regime. Deriving the generalised energy-momentum tensor, the energy and the quantized angular momentum of the flux tube system have been computed analytically, which provides a viable physical basis for the explanation of the colour confinement in the non-perturbative regime of QCD vacuum. (authors)
Monopole-fermion and dyon-fermion bound states. Pt. 5
International Nuclear Information System (INIS)
Osland, P.; Harvard Univ., Cambridge, MA; Schultz, C.L.; Wu, T.T.
1985-02-01
We present explicit, approximate, remarkably precise results for the Kazama-Yang hamiltonian, which describes a Dirac monopole interacting with a spin-1/2 fermion that has an extra magnetic moment. The results are valid for bound states of angular momentum j >= Zvertical strokeegvertical stroke+1/2, where the radial wave functions are determined by four coupled differential equations. These equations have been solved analytically for M - E << M, which is a limit of considerable practical interest. Binding energies and wave functions are given. (orig.)
Counting spinning dyons in maximal supergravity: the Hodge-elliptic genus for tori
Benjamin, Nathan; Kachru, Shamit; Tripathy, Arnav
2017-11-01
We consider M-theory compactified on T^4 × T^2 and describe the count of spinning 1/8-BPS states. This builds on the work of Maldacena-Moore-Strominger in the physics literature. It simultaneously provides a refinement of the recent mathematical work of Bryan-Oberdieck-Pandharipande-Yin and Oberdieck-Shen, which studied (non-motivic) reduced Donaldson-Thomas invariants of abelian surfaces and threefolds. As in previous work on K3 × T^2 compactification, we track angular momenta under both the SU(2)_L and SU(2)_R factors in the 5d little group, providing predictions for the relevant motivic curve counts.
Energy Technology Data Exchange (ETDEWEB)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Silva, G.V., E-mail: gislainevs@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)
2015-11-15
Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights: •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.
Cautionary remarks on the moduli space metric for multidyon simulations
International Nuclear Information System (INIS)
Bruckmann, Falk; Dinter, Simon; Ilgenfritz, Ernst-Michael; Mueller-Preussker, Michael; Wagner, Marc
2009-01-01
We perform a detailed numerical investigation of the approximate moduli space metric proposed by Diakonov and Petrov [Phys. Rev. D 76, 056001 (2007)] for a confining model of dyons. Our findings strongly indicate that this metric is positive definite (and, therefore, a valid moduli space metric) throughout a considerable part of configuration space only for a small number of dyons at sufficiently low density. This poses strong limitations on results obtained by an unrestricted integration over collective coordinates in this model. It also indicates that strong correlations between collective coordinates will be essential for the physical content of a dyon model, which could be exhibited by a suitable simulation algorithm.
Enhancement of the rate of radiative processes in the field of a magnetic monopole
International Nuclear Information System (INIS)
Barut, A.O.; Shnir, Ya.M.; Knyazev, M.A.; Tolkachev, E.A.
1993-07-01
The spontaneous emission rate for the bound system charge-dyon is calculated. It is shown that the magnetic monopole fields leads to the significant increase of the rate of radiative processes. (author). 14 refs
Excitation of simple atoms by slow magnetic monopoles
International Nuclear Information System (INIS)
Kroll, N.M.; Parke, S.J.; Ganapathi, V.; Drell, S.D.
1984-01-01
We present a theory of excitation of simple atoms by slow moving massive monopoles. Previously presented results for a monopole of Dirac strength on hydrogen and helium are reviewed. The hydrogen theory is extended to include arbitrary integral multiples of the Dirac pole strength. The excitation of helium by double strength poles and by dyons is also discussed. It is concluded that a helium proportional counter is a reliable and effective detector for monopoles of arbitrary strength, and for negatively charged dyons
Particle-like structure of coaxial Lie algebras
Vinogradov, A. M.
2018-01-01
This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.
Extremal dyonic black holes in D=4 Gauss-Bonnet gravity
International Nuclear Information System (INIS)
Chen, C.-M.; Gal'tsov, Dmitri V.; Orlov, Dmitry G.
2008-01-01
We investigate extremal dyon black holes in the Einstein-Maxwell-dilaton theory with higher curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. In the same theory without the Gauss-Bonnet term the extremal dyon solutions exist only for discrete values of the dilaton coupling constant a. We show that the Gauss-Bonnet term acts as a dyon hair tonic enlarging the allowed values of a to continuous domains in the plane (a,q m ) where q m is the magnetic charge. In the limit of the vanishing curvature coupling (a large magnetic charge) the dyon solutions obtained tend to the Reissner-Nordstroem solution but not to the extremal dyons of the Einstein-Maxwell-dilaton theory. Both solutions have the same dependence of the horizon radius in terms of charges. The entropy of new dyonic black holes interpolates between the Bekenstein-Hawking value in the limit of the large magnetic charge (equivalent to the vanishing Gauss-Bonnet coupling) and twice this value for the vanishing magnetic charge. Although an expression for the entropy can be obtained analytically using purely local near-horizon solutions, its interpretation as the black hole entropy is legitimate only once the global black hole solution is known to exist, and we obtain numerically the corresponding conditions on the parameters. Thus, a purely local analysis is insufficient to fully understand the entropy of the curvature-corrected black holes. We also find dyon solutions which are not asymptotically flat, but approach the linear dilaton background at infinity. They describe magnetic black holes on the electric linear dilaton background.
Finite temperature LGT in a finite box with BPS monopole boundary conditions
International Nuclear Information System (INIS)
Ilgenfritz, E.-M.; Molodtsov, S.V.; Mueller-Preussker, M.; Veselov, A.I.
1999-01-01
Finite temperature SU(2) lattice gauge theory is investigated in a 3D cubic box with fixed boundary conditions (b.c.) provided by a discretized, static BPS monopole solution with varying core scale μ. For discrete μ-values we find stable classical solutions either of electro-magnetic ('dyon') or of purely magnetic type inside the box. Near the deconfinement transition we study the influence of the b.c. on the quantized fields inside the box. In contrast to the purely magnetic background field case, for the dyon case we observe confinement for temperatures above the usual critical one
On the geometrization of electromagnetism by torsion
International Nuclear Information System (INIS)
Fonseca Neto, J.B. da.
1984-01-01
The possibility of electromagnetism geometrization using an four dimension Cartan geometry is investigated. The Lagrangian density which presents dual invariance for dyons electrodynamics formulated in term of two potentials is constructed. This theory by association of two potentials with track and with torsion pseudo-track and of the field with torsion covariant divergent is described. The minimum coupling of particle gravitational field of scalar and spinorial fields with dyon geometry theory by the minimum coupling of these fields with Cartan geometry was obtained. (author)
A geometric formulation of Einstein Maxwell theory in Einstein-Cartan space-time
International Nuclear Information System (INIS)
Fonseca Neto, J.B. da; Rivelles, V.O.
1984-01-01
A geometric theory is proposed for electrogametism and gravitation where the electromagnetic potential is introduced in the geometry through the torsion. An is first built action for dyon electrodynamics using the two potentials formulation in such a way it is equivalent to Maxwell theory if the ratio between electric and magnetic charges is an universal constant. Since the torsion can be decomposed into a trace, a pseudo-trace and a traceless part, the two potentials of the dyon elctrodynamics with the two traces of the torsion are identified and an action which reproduces the Einstein-Maxwell theory: Matter fields do not have a propor minimal coupling to this theory. (Author) [pt
Electrodynamics as a theory of interacting complex charges
International Nuclear Information System (INIS)
Akeyo Omolo, Joseph
2003-04-01
In this paper, we formulate a general theory of electrodynamics which incorporates both electric and magnetic charges. The mathematical origin of a second vector potential and magnetic charge is established. Electrodynamics is then reformulated in complex form as a theory of complex charges moving in a complex force field. This provides the framework for complex charged particle interactions as a generalization of Schwinger's theory of dyon-dyon interactions. The concept of duality transformation relating electric and magnetic charge spaces is developed within the general framework of electrodynamics in complex form. (author)
Electrically charged one-and-a-half monopole solution
Energy Technology Data Exchange (ETDEWEB)
Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming [Universiti Sains Malaysia, School of Physics, USM Penang (Malaysia)
2014-05-15
Recently, we have discussed the coexistence of a finite energy one-half monopole and a 't Hooft-Polyakov monopole of opposite magnetic charges. In this paper, we would like to introduce electric charge into this new monopoles configuration, thus creating a one-and-a-half dyon. This new dyon possesses finite energy, magnetic dipole moment, and angular momentum and is able to precess in the presence of an external magnetic field. Similar to the other dyon solutions, when the Higgs self-coupling constant, λ, is nonvanishing, this new dyon solution possesses critical electric charge, total energy, magnetic dipolemoment, and dipole separation as the electric charge parameter, η, approaches 1. The electric charge and total energy increase with η to maximum critical values as η → 1 for all nonvanishing λ. However, the magnetic dipole moment decreases with η when λ ≥ 0.1 and the dipole separation decreases with η when λ ≥ 1 to minimum critical values as η → 1. (orig.)
S-duality in N = 4 supersymmetric gauge theories with arbitrary gauge group
International Nuclear Information System (INIS)
Dorey, Nicholas; Fraser, Christophe; Hollowood, Timothy J.; Kneipp, Marco A.C.
1996-12-01
The Goddard, Nuyts and Olive conjecture for electric-magnetic duality in the Yang-Mills theory with an arbitrary gauge group G is extended by including a non-vanishing vacuum angle θ. This extended S-duality conjecture includes the case when the unbroken gauge group in non-Abelian and a definite prediction for the spectrum of dyons results. (author)
International Nuclear Information System (INIS)
Abouelsaood, A.
1983-01-01
The problem of the monopole infinite moments of inertia, and the related degeneracies in the dyon spectrum of a grand unified theory in the absence of light fermions is considered. A careful application to gauge theories of the method of collective coordinates is given in two different classes of gauges. A basic defect in the earlier treatments of the subject is pointed out. It is shown that the commonly accepted method, while giving reasonable qualitative results for the dyon spectrum in the SO(3) model, fails completely when applied to grand unified theories. The reason is simply that there is a contribution to the monopole moments of inertia that has so far been overlooked. This contribution is of the same order of magnitude as the already known one. The sum of the two contributions vanishes for these moments of inertia that have been thought to be infinite. This means that, in a grand unified theory without light fermions, dyon states transforming as definite color representations (chromodyons) do not exist if we believe this lowest-order analysis (which is almost all what one can do to show their existence). It is shown that applying the Bohr-Sommerfeld method to the classical dyon solutions leads to the same result. (orig.)
The Price of an Electroweak Monopole
Ellis, John; You, Tevong
2016-01-01
In a recent paper, Cho, Kim and Yoon (CKY) have proposed a version of the SU(2) $\\times$ U(1) Standard Model with finite-energy monopole and dyon solutions. The CKY model postulates that the effective U(1) gauge coupling $\\to \\infty$ very rapidly as the Englert-Brout-Higgs vacuum expectation value $\\to 0$, but in a way that is incompatible with LHC measurements of the Higgs boson $H \\to \\gamma \\gamma$ decay rate. We construct generalizations of the CKY model that are compatible with the $H \\to \\gamma \\gamma$ constraint, and calculate the corresponding values of the monopole and dyon masses. We find that the monopole mass could be $< 5.5$ TeV, so that it could be pair-produced at the LHC and accessible to the MoEDAL experiment.
A geometric formulation of Einstein-Maxwell theory in Einstein-Cartan space-time
International Nuclear Information System (INIS)
Fonseca Neto, J.B. da; Rivelles, V.O.
1986-01-01
A geometry theory is proposed for electromagnetism and gravitation in which the electromagnetics potential is introduced in the geometry through the torsion. An action is first built for dyon electrodynamics using the two-potential formulation in such a way that it is equivalent to Maxwell theory if the ratio between electric and magnetic charges is a universal constant. Since the torsion can be decomposed into a trace, a pseudo-trace and a traceless part, the two potentials of the dyon electrodynamics with the two tracers of the torsion are identified and an action which reproduces the Einstein-Maxwell theory is built. Matter fields do not have a proper minimal coupling to this theory. (Author) [pt
International Nuclear Information System (INIS)
Jun, J.H.
1980-01-01
From chapter III to chapter V properties of U(1) monopole are discussed by calculating radiative capture of an electron by a monopole, the scattering cross section of an electron by a dyon, and the bound state properties of the electron-dyon system. The Lipkin-Weisberger-Peshkin difficulty is overcome by an introduction of a small magnetic moment of the electron. In chapter VI, the linear deformation of the Prasad-Sommerfield solution of the t'Hooft Polyakov monopole is discussed, where we found all the deformed solutions analytically. In chapter VII and VIII, the question of a deformed bag and properties of an excited bag are discussed. The excited D-state is mixed with S-state to give the correct value of g/sub A/. Initially, in chapter II, energy ratios for trimuons produced through a heavy-lepton cascade decay are calculated
Classical electromagnetic field theory in the presence of magnetic sources
Chen, Wen-Jun; Li, Kang; Naón, Carlos
2001-01-01
Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.
Dyonic black holes at arbitrary locations
Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.
2017-10-01
We construct and study stationary, asymptotically flat multicenter solutions describing regular black holes with non-Abelian hair (colored magnetic-monopole and dyon fields) in two models of N=2 , d = 4 Super-Einstein-Yang-Mills theories: the quadratic model \\overline{CP}^3 and the cubic model ST[2, 6], which can be embedded in 10-dimensional Heterotic Supergravity. These solutions are based on the multicenter dyon recently discovered by one of us, which solves the SU(2) Bogomol'nyi and dyon equations on E^3 . In contrast to the well-known Abelian multicenter solutions, the relative positions of the non-Abelian black-hole centers are unconstrained. We study necessary conditions on the parameters of the solutions that ensure the regularity of the metric. In the case of the \\overline{CP}^3 model we show that it is enough to require the positivity of the "masses" of the individual black holes, the finiteness of each of their entropies and their superadditivity. In the case of the ST[2, 6] model we have not been able to show that analogous conditions are sufficient, but we give an explicit example of a regular solution describing thousands of non-Abelian dyonic black holes in equilibrium at arbitrary relative positions. We also construct non-Abelian solutions that interpolate smoothly between just two aDS2×S2 vacua with different radii ( dumbbell solutions).
Dual Superconductivity in Abelian Higgs Model of QCD
Rajput, B. S.
2017-04-01
The study of generalized field associated with Abelian dyons has been undertaken and it has been demonstrated that topologically, a non-Abelian gauge theory is equivalent to a set of Abelian gauge theories supplemented by dyons which undergo condensation leading to confinement and consequently to superconducting model of QCD vacuum, where the Higgs field plays the role of a regulator only. Constructing the effective action for dyonic field in Abelian projection of QCD, it has been demonstrated that any charge (electrical or magnetic) of dyon screens its own direct potential to which it minimally couples and anti-screens the dual potential leading to dual superconductivity in accordance with generalized Meissner effect. In this Abelian projection of QCD an Abelian Higgs model (AHM) has been successfully constructed and it has been shown to incorporate dual superconductivity and confinement as the consequence of dyonic condensation. It has been demonstrated that in AHM t' Hooft loop creates the string (AHM-string) around which the monopole current under London limit leads to vanishing coherence length in the chromo-magnetic superconductor. It has also been shown that in London limit the squared density of monopole current around AHM-string has a maximum at the distance of the order of penetration length.
Alvarez-Gaumé, Luís; Kounnas, Costas; Marino, M; Alvarez-Gaume, Luis; Distler, Jacques; Kounnas, Costas; Marino, Marcos
1996-01-01
We analyze the possible soft breaking of N=2 supersymmetric Yang-Mills theory with and without matter flavour preserving the analyticity properties of the Seiberg-Witten solution. For small supersymmetry breaking parameter with respect to the dynamical scale of the theory we obtain an exact expression for the effective potential. We describe in detail the onset of the confinement transition and some of the patterns of chiral symmetry breaking. If we extrapolate the results to the limit where supersymmetry decouples, we obtain hints indicating that perhaps a description of the QCD vacuum will require the use of Lagrangians containing simultaneously mutually non-local degrees of freedom (monopoles and dyons).
Duality, Confinement and Supersymmetry in Restricted Quantum Chromodynamics (rcd)
Rana, J. M. S.
Electromagnetic duality has been utilized to study the isocolor charge-dyon interactions in Restricted Quantum Chromodynamics (RCD),in terms of current-current correlation (in magnetic gauge)using dielectric and permeability parameters of the associated vacuum. In the state of dyonic superconductivity, it has been shown that the dual propagators behave as 1/k4 (for small k2), which in analogy with superconductivity (dual superconductivity) leads to the confinement of colored fluxes associated with dyonic quarks vide generalized Meissner effect. Based on semi-quantitative analysis of vortex solutions of RCD and by calculating the masses for the massive collective modes of the condensed vacuum, the expressions for the London penetration depth, coherence length and the associated flux energy functions for the type I and type II superconducting media have been obtained. It has further been demonstrated that in the type I medium, vortices tend to coalesce and hence are attractive, while the energy function supports repulsive forces between vortices in the type II superconducting medium. The RCD has been supersymmetrized in N=1 limit and the supersymmetric dyonic solutions have been obtained. In the dyonic background gauge one-loop quantum corrections to the dyonic mass have been calculated and it has been shown that the one-loop quantum corrections lead no change in classical mass of the dyon.
Cho decomposition of electrically charged one-half monopole
Energy Technology Data Exchange (ETDEWEB)
Ng, Ban-Loong; Teh, Rosy; Wong, Khai-Ming [School of Physics, Universiti Sains Malaysia, 11800 USM Penang (Malaysia)
2014-03-05
Recently we have carried out some work on the Cho decomposition of the electrically neutral, finite energy one-half monopole solution of the SU(2) Yang-Mills-Higgs field theory. In this paper, we performed the decomposition of the electrically charged solution using the same numerical procedure. The gauge potential of the one-half dyon solution is decomposed into Abelian and non-Abelian components. The semi-infinite string singularity in the gauge potential is a contribution of the Higgs field and hence topological in nature. The string singularity cannot be cancelled by the non-Abelian components of the gauge potential. However, the string singularity is integrable and the energy of the solution is finite. By decomposing the magnetic fields and covariant derivatives of the Higgs field into three isospin space directions, we are able to provide conclusive evidence that the constructed one-half dyon is certainly a non-BPS solution even in the limit of vanishing Higgs self-coupling constant and electric charge. Furthermore, we found that the time component of gauge function is parallel to the Higgs field in isospace only at large distances, elsewhere they are non-parallel.
Particle-like structure of Lie algebras
Vinogradov, A. M.
2017-07-01
If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.
Preon Model and Family Replicated E_6 Unification
Directory of Open Access Journals (Sweden)
Larisa V. Laperashvili
2008-02-01
Full Text Available Previously we suggested a new preon model of composite quark-leptons and bosons with the 'flipped' $E_6imes widetilde{E_6}$ gauge symmetry group. We assumed that preons are dyons having both hyper-electric $g$ and hyper-magnetic $ilde g$ charges, and these preons-dyons are confined by hyper-magnetic strings which are an ${f N}=1$ supersymmetric non-Abelian flux tubes created by the condensation of spreons near the Planck scale. In the present paper we show that the existence of the three types of strings with tensions $T_k=k T_0$ $(k = 1,2,3$ producing three (and only three generations of composite quark-leptons, also provides three generations of composite gauge bosons ('hyper-gluons' and, as a consequence, predicts the family replicated $[E_6]^3$ unification at the scale $sim 10^{17}$ GeV. This group of unification has the possibility of breaking to the group of symmetry: $ [SU(3_C]^3imes [SU(2_L]^3imes [U(1_Y]^3 imes [U(1_{(B-L}]^3$ which undergoes the breakdown to the Standard Model at lower energies. Some predictive advantages of the family replicated gauge groups of symmetry are briefly discussed.
Energy Technology Data Exchange (ETDEWEB)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)
2016-10-15
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.
Strong coupling effects in non-commutative spaces from OM theory and supergravity
International Nuclear Information System (INIS)
Russo, J.G.; Sheikh-Jabbari, M.M.
2000-11-01
We show that a four-parameter class of 3+1 dimensional NCOS theories can be obtained by dimensional reduction on a general 2-torus from OM theory. Compactifying two spatial directions of NCOS theory on a 2-torus, we study the transformation properties under the SO(2,2; Z) T-duality group. We then discuss non-perturbative configurations of non-commutative super Yang-Mills theory. In particular, we calculate the tension for magnetic monopoles and (p,q) dyons and exhibit their six-dimensional origin, and construct a supergravity solution representing an instanton in the gauge theory. We also compute the potential for a monopole-antimonopole in the supergravity approximation. (author)
The Theory of High Energy Collision Processes - Final Report DOE/ER/40158-1
Energy Technology Data Exchange (ETDEWEB)
Wu, Tai, T.
2011-09-15
In 1984, DOE awarded Harvard University a new Grant DE-FG02-84ER40158 to continue their support of Tai Tsun Wu as Principal Investigator of research on the theory of high energy collision processes. This Grant was renewed and remained active continuously from June 1, 1984 through November 30, 2007. Topics of interest during the 23-year duration of this Grant include: the theory and phenomenology of collision and production processes at ever higher energies; helicity methods of QED and QCD; neutrino oscillations and masses; Yang-Mills gauge theory; Beamstrahlung; Fermi pseudopotentials; magnetic monopoles and dyons; cosmology; classical confinement; mass relations; Bose-Einstein condensation; and large-momentum-transfer scattering processes. This Final Report describes the research carried out on Grant DE-FG02-84ER40158 for the period June 1, 1984 through November 30, 2007. Two books resulted from this project and a total of 125 publications.
Superconductivity in Restricted Chromo-Dynamics (RCD) in SU(2) and SU(3) Gauge Theories
Kumar, Sandeep
2010-03-01
Characterizing the dyonically condensed vacuum by the presence of two massive modes (one determining how fast the perturbative vacuum around a colour source reaches the condensation and the other giving the penetration length of colored flux) in SU(2) theory, it has been shown that due to the dynamical breaking of magnetic symmetry the vacuum of RCD acquires the properties similar to those of relativistic superconductor. Analysing the behaviour of dyons around RCD string, the solutions of classical field equations have been obtained and it has been shown that magnetic constituent of dyonic current is zero at centre of the string and also at the points far away from the string. Extending RCD in the realistic color gauge group SU(3), it has been shown that the resulting Lagrangian leads to dyonic condensation, color confinement and the superconductivity with the presence of two scalar modes and two vector modes.
Dirac's Dream - the Search for the Magnetic Monopole
International Nuclear Information System (INIS)
Pinfold, James L.
2010-01-01
I first quickly summarize the history of the Magnetic Monopole leading to the quantum theory of magnetic charge that started with a 1931 paper by Paul Dirac who showed that the existence of magnetic monopoles was consistent with Maxwell's equations only if electric charges are quantized. Next I will briefly review the status of monopole searches. Last, but not least I discuss in more detail the MoEDAL experiment--the latest accelerator experiment designed to search for direct production of magnetic monopoles or dyons (particles with electric and magnetic charge) and other highly ionizing particles - such as heavy (pseudo-) stable particles with conventional electric charge - at the LHC. The MoEDAL experiment employs nuclear track-etch detectors deployed in the VELO vertex region of the LHCb experiment.
Seiberg-Witten and 'Polyakov-like' Magnetic Bion Confinements are Continuously Connected
Energy Technology Data Exchange (ETDEWEB)
Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.
2012-06-01
We study four-dimensional N = 2 supersymmetric pure-gauge (Seiberg-Witten) theory and its N = 1 mass perturbation by using compactification on S{sup 1} x R{sup 3}. It is well known that on R{sup 4} (or at large S{sup 1} size L) the perturbed theory realizes confinement through monopole or dyon condensation. At small S{sup 1}, we demonstrate that confinement is induced by a generalization of Polyakov's three-dimensional instanton mechanism to a locally four-dimensional theory - the magnetic bion mechanism - which also applies to a large class of nonsupersymmetric theories. Using a large- vs. small-L Poisson duality, we show that the two mechanisms of confinement, previously thought to be distinct, are in fact continuously connected.
Directory of Open Access Journals (Sweden)
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Dynamics of a magnetic monopole in matter; Dynamique d'un monopole magnetique dans la matiere
Energy Technology Data Exchange (ETDEWEB)
Fayolle, David [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)
1999-07-01
We study the dynamics of a slow (v/c {approx} 10{sup -4}) Dirac magnetic monopole in matter. First, we show at macroscopic scale that the force exerted on a monopole is F vector = g(H vector - v vector x D vector), as if the monopole was not allowed to cross neither microscopic current loops nor microscopic electric dipoles. We interpret this result in terms of adiabatic monopole-atom interactions. Secondly, we generalized the macroscopic Maxwell's equations in 'dual symmetric' matter which contains monopoles and dyons, from which we deduce several properties such as the velocity of light, the behaviour under C, P and T transformation, and we generalize the energy-momentum tensor. These equations also apply when nucleons or electrons possess an electric dipole moment and we propose two experimental methods for detecting this electric dipole moment via its macroscopic polarization effects. (author)
Dynamics of a magnetic monopole in matter
International Nuclear Information System (INIS)
Fayolle, David
1999-07-01
We study the dynamics of a slow (v/c ∼ 10 -4 ) Dirac magnetic monopole in matter. First, we show at macroscopic scale that the force exerted on a monopole is F vector = g(H vector - v vector x D vector), as if the monopole was not allowed to cross neither microscopic current loops nor microscopic electric dipoles. We interpret this result in terms of adiabatic monopole-atom interactions. Secondly, we generalized the macroscopic Maxwell's equations in 'dual symmetric' matter which contains monopoles and dyons, from which we deduce several properties such as the velocity of light, the behaviour under C, P and T transformation, and we generalize the energy-momentum tensor. These equations also apply when nucleons or electrons possess an electric dipole moment and we propose two experimental methods for detecting this electric dipole moment via its macroscopic polarization effects. (author)
Dedicated Trigger for Highly Ionising Particles at ATLAS
Katre, Akshay; The ATLAS collaboration
2015-01-01
In 2012, a novel strategy was designed to detect signatures of Highly Ionising Particles (HIPs) such as magnetic monopoles, dyons or Q-balls with ATLAS. A dedicated trigger was developed and deployed for proton-proton collisions at a centre of mass energy of 8 TeV. It uses the Transition Radiation Tracker (TRT) system, applying an algorithm distinct from standard tracking ones. The high threshold (HT) readout capability of the TRT is used to distinguish HIPs from other background processes. The trigger requires significantly lower energy depositions in the electromagnetic calorimeters and is thereby capable of probing a larger range of HIP masses and charges. A description of the algorithm for this newly developed trigger is presented, along with a comparitive study of its performance during the 2012 data-taking period with respect to previous efforts.
Schwinger type processes via branes and their gravity duals
International Nuclear Information System (INIS)
Gorsky, A.S.; Saraikin, K.A.; Selivanov, K.G.
2002-01-01
We consider Schwinger type processes involving the creation of the charge and monopole pairs in the external fields and propose interpretation of these processes via corresponding brane configurations in type IIB string theory. We suggest simple description of some new interesting nonperturbative processes like monopole/dyon transitions in the electric field and W-boson decay in the magnetic field using the brane language. Nonperturbative pair production in the strong coupling regime using the AdS/CFT correspondence is studied. The treatment of the similar processes in the noncommutative theories when noncommutativity is traded for the background fields is presented and the possible role of the critical magnetic field which is S-dual to the critical electric field is discussed
Electroweak monopoles and the electroweak phase transition
Energy Technology Data Exchange (ETDEWEB)
Arunasalam, Suntharan; Kobakhidze, Archil [The University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia)
2017-07-15
We consider an isolated electroweak monopole solution within the Standard Model with a nonlinear Born-Infeld extension of the hypercharge gauge field. Monopole (and dyon) solutions in such an extension are regular and their masses are predicted to be proportional to the Born-Infeld mass parameter. We argue that cosmological production of electroweak monopoles may delay the electroweak phase transition and make it more strongly first order for monopole masses M >or similar 9.3 . 10{sup 3} TeV, while the nucleosynthesis constraints on the abundance of relic monopoles impose the bound M
2002-01-01
The experiment is designed to search for highly ionizing particles such as the monopole and the dyon. On the assumption that monopole-antimonopole pairs are produced via a virtual photon intermediate state, and have a mass in the range 0-100~GeV, a direct search for Dirac monopoles using e$^+$e$^-$ annihilation carries a distinct cross-sectional advantage over a search using hadron colliders.\\\\ \\\\ The MODAL detector is formed from Lexan/CR-39 dielectric track detector modules arranged in a polyhedral configuration outside of the vacuum pipe and around the intersection region, as shown on the opposite page. Etchable track detectors are more sensitive to particles at normal incidence, the shape of the detector was chosen with this fact in mind to allow for maximum acceptance of monopoles which leave the beam pipe. These dielectric track detectors will enable us to detect particles with magnetic charge: 20e$<$g$ _{d}
Imagens do judeu em quatro romances da geração de 1930
Directory of Open Access Journals (Sweden)
Márcio Henrique Muraca
2014-05-01
Full Text Available O judeu em Suor (1934, de Jorge Amado, Caminho de pedras (1937, de Rachel de Queiroz, Angústia (1936, de Graciliano Ramos, e Os ratos (1935, de Dyonélio Machado, aparece de modo rápido, sobretudo nos dois últimos. Ainda assim, tal representação aponta para conceitos que circundam aquele povo no imaginário brasileiro. Em Amado e Queiroz, o judeu é representado como agitador comunista estrangeiro. Em Ramos e Machado, como negociante capitalista. Porém, conforme a complexidade de cada obra, esse judeu apresenta também matizes em sua representação que vão além da mera redução do estereótipo.
Higher-n triangular dilatonic black holes
Zadora, Anton; Gal'tsov, Dmitri V.; Chen, Chiang-Mei
2018-04-01
Dilaton gravity with the form fields is known to possess dyon solutions with two horizons for the discrete "triangular" values of the dilaton coupling constant a =√{ n (n + 1) / 2 }. This sequence first obtained numerically and then explained analytically as consequence of the regularity of the dilaton, should have some higher-dimensional and/or group theoretical origin. Meanwhile, this origin was explained earlier only for n = 1 , 2 in which cases the solutions were known analytically. We extend this explanation to n = 3 , 5 presenting analytical triangular solutions for the theory with different dilaton couplings a , b in electric and magnetic sectors in which case the quantization condition reads ab = n (n + 1) / 2. The solutions are derived via the Toda chains for B2 and G2 Lie algebras. They are found in the closed form in general D space-time dimensions. Solutions satisfy the entropy product rules indicating on the microscopic origin of their entropy and have negative binding energy in the extremal case.
Directory of Open Access Journals (Sweden)
Samara Duarte da Silva
2015-05-01
Full Text Available A proposta deste artigo é analisar a trajetória econômica e social do Rio Grande do Sul durante a Primeira República, a partir de um conto de Dyonélio Machado, intitulado Um pobre homem (1927. A analogia será feita a partir de três características selecionadas: a questão da rizicultura nas lavouras, a prostituição, e, por último, as doenças que se propagavam pela falta de condições de higiene nas camadas sociais mais populares. A linha teórica na qual se insere a análise está ligada à História Comparada, postulada por Marcel Detienne. Tal proposta metodológica insere um olhar diversificado do historiador em relação aos seus objetos de pesquisa. Além de remeter à interdisciplinaridade, o método comparativo abrange também o estudo de materiais diacrônicos.
Teens join the MoEDAL collaboration
Stephanie Hills
2013-01-01
The principal investigator for any institute joining an experimental collaboration is generally a self-assured researcher with evident leadership skills and an in-depth knowledge of their subject gained over many years. Katherine Evans fits the brief in every respect, except that she is 17 years old and her research institute is the Langton Star Centre, based at the Simon Langton Grammar School for Boys. The school has just joined the MoEDAL experiment. Teacher Becky Parker (left) with two students from the Simon Langton Grammar School for Boys in the MoEDAL experimental area. MoEDAL, the latest LHC experiment has detectors located close to the interaction point of the LHCb experiment. This new experiment is designed to search for the highly ionizing avatars of new physics at the LHC, specifically the magnetic monopole or dyon and other highly ionizing stable massive particles from a number of beyond-the-Standard-Model scenarios. MoEDAL was approved in 2010 and is due to start taking data i...
Angular momentum, g-value, and magnetic flux of gyration states
International Nuclear Information System (INIS)
Arunasalam, V.
1991-10-01
Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B i Z . According to Richard P. Feynman (and also Frank Wilczek) L = (rxμv) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = iℎ L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of L Z = ℎ/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of ''electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint
Spotlight on quantum black holes
International Nuclear Information System (INIS)
Anon.
1995-01-01
, supersymmetry 'froze' out and became almost invisible. In the late 1970s, Klaus Montonen and David Olive pointed out that if magnetic monopoles are included in a supersymmetric quantum picture, the electric and magnetic sectors are in some respects mutually complementary. Magnetic charges provide additional calculational leverage, sidestepping the traditional problem of having to solve the equations of the theory through sometimes unsatisfactory approximations. Subsequently, the ideas were enlarged to include 'dyons' - particles having both electric and magnetic charges, providing a much richer scenario
. Saturation effects in diffractive scattering at LHC By Oleg Selugin. A nonperturbative expansion method in QCD and R-related quantities By Igor Solovtsov. Z-scaling and high multiplicity particle Production in bar pp/pp & AA collisions at Tevatron and RHIC By Mikhail Tokarev. Scaling behaviour of the reactionsdd - > p↑ /3H and pd - > pd with pT at energy I-2 GeV By Yuri Uzikov. [ADS Note: Title formula can not be rendered correctly in ASCII.] CP violation, rare decays, CKM: Precision Measurements of the Mass of the Top Quark at CDF (Precision Top Mass Measurements at CDF) By Daniel Whiteson. Measurement of the Bs Oscillation at CDF By Luciano Ristori. The Bs mixing phase at LHCb By J. J. van Hunen. ATLAS preparations for precise measurements of semileptonic rare B decays By K. Toms. Hadron spectroscopy & exotics: Searches for radial excited states of charmonium in experiments using cooled antiproton beams By M. Yu. Barabanov. Retardation effects in the rotating string model By Fabien Buisseret and Claude Semay. Final results from VEPP-2M (CMD-2 and SND) By G. V. Fedotovich. Heavy Quark Physics: Prospects for B physics measurements using the CMS detector at the LHC By Andreev Valery. Heavy flavour production at HERA-B By Andrey Bogatyrev. B-Meson subleading form factors in the Heavy Quark Effective Theory (HQET) By Frederic Jugeau. Beyond the Standard Model: Monopole Decay in a Variable External Field By Andrey Zayakin. Two-Loop matching coefficients for the strong coupling in the MSSM By Mihaila Luminita. Test of lepton flavour violation at LHC By Hidaka Keisho. Looking at New Physics through 4 jets and no ET By Maity Manas. Are Preons Dyons? Naturalness of Three Generations By Das Chitta Ranjan. SUSY Dark Matter at Linear Collider By Sezen Sekmen, Mehmet Zeyrek. MSSM light Higgs boson scenario and its test at hadron colliders By Alexander Belyaev. Antiscalar Approach to Gravity and Standard Model By E. Mychelkin. GRID distributed analysis in high energy physics: PAX